Verfahren zur Verfestigung und Abdichtung von durchlässigen Böden, fein zerklüfteten Gesteinen, porösem 31auerwerk, Beton und Fundamenten durch Injektionen. Der Vorschlag, durchlässige Böden durch Injektionen einer chemischen Lösung, wobei als Basis Natriumsilikat verwendet wird, zu verfestigen, ist nicht neu. Ebenso ist es be reits bekannt, aus für solche Zwecke verwen deten Lösungen durel-i Hinzugabe eines Elek trolyten (Salze oder Säure) ein Kieselsäure- gel auszuscheiden.
Bei allen bestehenden Ver fahren wurde aber bisher nicht darauf Rück sicht genommen, dass das so erhaltene Gel teils aus löslichen, teils aus unlöslichen Ver bindungen besteht. Es ist auch bisher noch nicht gelungen, auf rationelle und ökonomisch anwendbare Weise ein Kieselsäure-Gel von grösserer Härte im Boden herzustellen. Es ist auch schon vorgeschlagen worden, zwei ver schiedene Lösungen hintereinander zu injizie ren, bei deren Vermengung in der Injektions zone das Kieselsäuregel ausgeschieden wird.
Es zeigt sieh dabei aber, dass die Vermengung der beiden Lösungen oft ungleichmässig er folgt und dadurch nur ein Teil der Hohl- räume des Bodens durch das Kieselsäure-Gel ausgefüllt wird. Auch ergeben die bisher ver- #vendeten Lösungen meistens einen mehr oder weniger starken Niederschlag, der durch Bil den einer Filterhaut im Boden, das Fort schreiten der Injektion teilweise verhindert.
Die vorliegende Erfindung betrifft ein Verfahren zur Verfestigung und -Abdielitung von durchlässigen Böden, fein zerklüfteten Gesteinen, porösem Mauerwerk, Beton und Fundamenten durch Injektionen gemäss wel chem als Injektionsmittel eine klare, kolloi dale Natriumsilikatlösung verwendet wird, deren Stabilität durch Hinzufügen einer Säure so herabgesetzt ist, dass durch Hin zufügung von mindestens einem löslichen Schwermetallsalz die Ausfällung eines Kie- selsäure-gels in einer vorausbestimmbaren Zeit veranlasst wird.
Da die verfahrensgemäss verwendete Lö sung klar ist, und keinen Niederschlag auf- weist, bietet sie einen sehr grossen Aktions radius im Boden.
Wird Natriumsilikat eine gewisse Menge eines Elektrolyten beigefügt, so ergibt sich ein gelatinöser Niederschlag. Im vorliegenden Verfahren wird durch eine Säure der beste hende pH-Gehalt des Natriumsilikates herab gesetzt, um eine schwächer alkalische Lösung zu erhalten, die durch Hinzufügung eines ge eigneten, Schwermetallsalzes (Eisen, Kupfer, Blei, Zink, oder dergl.) als Elektrolyten zer stört wird und zu einem Gel erstarrt.
Durch die Herabsetzung des p11-Gehaltes wird die Wasserglaslösung empfindlicher und durch entsprechend genaue Dosierung des Elektro lyten, der gleichzeitig oder erst später als die Säure hinzugefügt werden kann. kann eine Erstarrung zum Gel in jedem gewollten Zeit punkt im Boden hervorgerufen werden. Es können hierbei unter Umständen auch zwei oder mehr verschiedene Metallsalze mitein ander verwendet werden.
Das auf diese Weise erhaltene Gel erhär tet nach längerer Zeit durch Wasserabgabe und Umformung der Ultramikronen in ultra mikroskopische Kristalle. So wurden zum Beispiel nach zweimonatiger Aufbewahrung bei gewöhnlicher Temperatur Quarzkristalle festgestellt.
Zur Erläuterung des Verfahrens seien zwei praktische Anwendungsbeispiele ange führt: Ausführungsbeieiel <I>I:</I> Ein feiner Schwimmsandgrund wurde, um die Aushubarbeiten für die Fundierung einer Wasserklärungsanlage möglich zu machen, gemäss dem vorliegenden Verfahren verfestigt und abgedichtet. Der Schwimmsand wies eine Kornverteilungskurve auf, bei der<B>80%</B> der Körner kleiner als<B>0,11</B> mm,<B>50%</B> kleiner als <B>0,098</B> mm,<B>30%</B> kleiner als- <B>0,090</B> und<B>10%</B> der Körner kleiner als<B>0,076</B> mrn waren.
Die Durehlässigkeit de-q Sandes war bei einer Temperatur von<B>15 ' C: 9,1</B> X<B>10-1</B> cm<B>'</B> /mi- nute. Die injizierte klare, kolleidale Lösung bestand aus industriellem Natriumsilikat <B>36 '</B> B6 mit Wasser verdünnt<B>(100</B> Gewichts teile Natriumsilikat und<B>100</B> Gewichtsteile Wasser), zu dem eine Salzsäure und Kupfer sulfat enthaltende Lösung, und zwar auf zwei Volumenteile Natriumsilikatlösung ein Volumenteil Lösung, beigegeben wurde.
Durch. die Salzsäure wurde die Stabilität der Natriumsilikatlösung derart herabgesetzt" dass das Kupfersulfat die Ausfällung eines Kieselsäuregels in einer vorausbestimmbaren Zeit veranlasste. Die injizierte Lösung er starrte nämlich nach ungefähr 47 Minuten im Boden zu einem Kieselaäuregel.
Es wurde durch eine doppelte Reihe von Injektionen eine kreiszylind-riiehe Zone sowie eine Grundplatte konsolidiert um während der Aushubarbeiten ein Nachfliessen der übrigen Sandmassen zu verhindern. Die äussere Injektiouszone, das heisst die äufWm Reihe der Injektionsrohre, wurde anfänglich nur mit sehr schwachen Drücken injiziert (Beginn<B>0,5</B> atü, Ende 3--4 atü). Bei der innern Injektionszone stiegen die Drücke be reits nach kurzer Zeit auf<B>7-8</B> atü, das heisst der Boden stellte diesen Injektionen infolge der vorherigen Behandlung bereits einen grossen Widerstand entgegen.
Auf diese Weise wurde die Fundierung zirka<B>15</B> Meter unterhalb des Grundwaaser- spiegels unter Vermeidung von Caiswnarbei- ten ohne besondere Waaserhaltung durch geführt.
<I>Ausführungsbeispiel H:</I> Sehr poröse Betonproben am einem Trok kendock wurden gemäss dem vorliegenden Verfahren verfestigt und undurchlässig ge- el macht. Der durch Meerwasser allmählich an gegriffene Beton dee Trockendocks wies vor der Behandlung eine Durchlässigkeit von zirka<B>1 . 10-3</B> cm/sec. auf. Die vorstehend angegebene Lösung wurde unter mässigem Druck injiziert. Nach der Behandlung zeigte der Beton eine Durchlässigkeit unter<B>5</B> atü Wasserdrugk von zirka<B>1. 10-8</B> cm/sec.
Process for consolidating and sealing permeable soils, finely fissured rocks, porous masonry, concrete and foundations by means of injections. The proposal to consolidate permeable soils by injecting a chemical solution using sodium silicate as a base is not new. It is also already known to precipitate a silica gel from solutions used for such purposes by adding an electrolyte (salts or acid).
In all existing methods, however, no consideration has been given to the fact that the gel obtained in this way consists partly of soluble and partly of insoluble compounds. It has also not yet been possible to produce a silica gel of greater hardness in the soil in a rational and economically applicable way. It has also been proposed to inject two different solutions one after the other, and when they are mixed in the injection zone, the silica gel is excreted.
However, it shows that the two solutions are often mixed up unevenly and that only part of the cavities in the bottom are filled by the silica gel. The solutions used up to now mostly result in a more or less strong precipitation, which partially prevents the progress of the injection by the formation of a filter skin in the soil.
The present invention relates to a method for solidifying and draining permeable soils, finely fissured rocks, porous masonry, concrete and foundations by injections according to wel chem as an injection means a clear, colloidal sodium silicate solution is used, the stability of which is reduced by adding an acid that the addition of at least one soluble heavy metal salt causes the precipitation of a silica gel in a predetermined time.
Since the solution used according to the procedure is clear and shows no precipitation, it offers a very large radius of action in the soil.
If a certain amount of an electrolyte is added to sodium silicate, a gelatinous precipitate results. In the present process, the existing pH content of the sodium silicate is reduced by an acid in order to obtain a weaker alkaline solution, which zer by adding a suitable heavy metal salt (iron, copper, lead, zinc, or the like.) As an electrolyte interferes and solidifies into a gel.
By lowering the p11 content, the waterglass solution becomes more sensitive and with correspondingly precise metering of the electrolyte, which can be added at the same time or later than the acid. solidification to form a gel can be caused in the soil at any desired point in time. Under certain circumstances, two or more different metal salts can also be used together.
The gel obtained in this way hardened after a long period of time due to the release of water and the transformation of the ultramicrons into ultra-microscopic crystals. For example, quartz crystals were found after storage for two months at normal temperature.
Two practical application examples are given to explain the process: Implementation example <I> I: </I> A fine floating sand base was consolidated and sealed according to the present process in order to enable excavation work for the foundation of a water purification system. The floating sand had a grain distribution curve in which <B> 80% </B> of the grains were smaller than <B> 0.11 </B> mm, <B> 50% </B> smaller than <B> 0.098 < / B> mm, <B> 30% </B> smaller than- <B> 0.090 </B> and <B> 10% </B> of the grains were smaller than <B> 0.076 </B> mrn.
The permeability of the de-q sand was at a temperature of <B> 15 'C: 9.1 </B> X <B> 10-1 </B> cm <B>' </B> / minute. The injected clear, colloidal solution consisted of industrial sodium silicate <B> 36 '</B> B6 diluted with water <B> (100 </B> parts by weight sodium silicate and <B> 100 </B> parts by weight water), to which a solution containing hydrochloric acid and copper sulfate, namely one volume of solution to two volumes of sodium silicate solution, was added.
By. the hydrochloric acid reduced the stability of the sodium silicate solution to such an extent that the copper sulphate caused the precipitation of a silica gel in a predetermined time. The injected solution stiffened into a silica gel after about 47 minutes in the ground.
A circular cylindrical zone and a base plate were consolidated by a double series of injections in order to prevent the remaining sand from flowing in during the excavation work. The outer injection zone, i.e. the row of injection tubes, was initially injected with only very weak pressures (beginning <B> 0.5 </B> atmospheres, end 3--4 atmospheres). In the case of the inner injection zone, the pressures rose to <B> 7-8 </B> atü after a short time, which means that the soil was already showing great resistance to these injections as a result of the previous treatment.
In this way, the foundations were carried out around <B> 15 </B> meters below the groundwater level, avoiding caesun work without special water maintenance.
<I> Embodiment H: </I> Very porous concrete samples on a dry dock were consolidated and made impermeable according to the present method. The concrete of the dry docks, which was gradually attacked by sea water, had a permeability of about 1 before the treatment. 10-3 cm / sec. on. The above solution was injected under moderate pressure. After the treatment, the concrete showed a permeability below <B> 5 </B> atü water drug of about <B> 1. 10-8 cm / sec.