CH101435A - Method for fatigue testing of bent rotating bars. - Google Patents

Method for fatigue testing of bent rotating bars.

Info

Publication number
CH101435A
CH101435A CH101435DA CH101435A CH 101435 A CH101435 A CH 101435A CH 101435D A CH101435D A CH 101435DA CH 101435 A CH101435 A CH 101435A
Authority
CH
Switzerland
Prior art keywords
cross
machine
offset
axes
sectional
Prior art date
Application number
Other languages
German (de)
Inventor
Cie Aktiengesellschaft Boveri
Original Assignee
Bbc Brown Boveri & Cie
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bbc Brown Boveri & Cie filed Critical Bbc Brown Boveri & Cie
Publication of CH101435A publication Critical patent/CH101435A/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/32Investigating strength properties of solid materials by application of mechanical stress by applying repeated or pulsating forces
    • G01N3/34Investigating strength properties of solid materials by application of mechanical stress by applying repeated or pulsating forces generated by mechanical means, e.g. hammer blows
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0023Bending
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0026Combination of several types of applied forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0026Combination of several types of applied forces
    • G01N2203/0028Rotation and bending
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/0069Fatigue, creep, strain-stress relations or elastic constants
    • G01N2203/0073Fatigue

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Description

  

  Verfahren zur     Ermiidungsprüfung    von     durchgebogen    rotierenden Stäben.         Martens    hat ein Verfahren angegeben, um  Stäbe auf Ermüdung des Materials zu prüfen,  indem er sie in durchgebogenem Zustande um  ihre gebogene Achse rotieren liess. Der Stab     a     ruht dabei gemäss     Fig.    1 in zwei festen Kugel  lagern b, während am äusseren Laufring zweier  weiterer Kugellager c die Belastungsgewichte d  angehängt sind.  



  Will man nun Stäbe mit unsymmetrischem  Querschnitt auf rotierende Biegung prüfen, so  treten infolge der ungleichen     Durchbiegung     in den beiden Querschnittsachsen erhebliche  Schwingungen der Belastungsstellen c     d    auf,  die durch ihre Massenwirkungen die Genauig  keit des Versuches bis zur Unbrauchbarkeit  ungünstig     beeinflussen.     



  Nach der Erfindung werden diese Schwin  gungen wesentlich vermindert dadurch, dass  man     etatt    eines Probestabes mindestens zwei  gleiche Probestäbe in die Maschine einlegt  und ihre Querschnittsachsen gegeneinander im  Winkel verdreht.  



  Gemäss     Fig.    2 sind zwei gleiche Profil  stäbe e und f so hintereinander montiert,  dass die erste Hauptachse des einen in der  gleichen     achsialen    Ebene liegt wie die zweite    Hauptachse des andern. Der Winkel, den  die Rotationsachsen der beiden Lagerzapfen     g     und     lt    miteinander einschliessen, ist konstant,  er ändert aber seine Lage im Laufe der  Drehung. Die Lage der belastenden Gewichte d  bleibt dauernd unverändert, falls passende  Zugfedern zwischen Gewicht und Aufhänge  stellen eingeschaltet werden.  



  Gemäss     Fig.    3 sind die beiden     Profilstücke    e  und f wiederum um 90   gegeneinander ver  dreht, aber nunmehr einander parallel zwischen  je zwei Paaren von Lagerzapfen     g        g,        1a        h    ein  gespannt, deren feste Lager b und deren be  wegliche Lager     c    auf jeder Maschinenseite  jeweils 'starr miteinander verbunden sind. Die  Einspannung ist so gewählt, dass die Profil  stücke immer nur um ihre schwächere Haupt  achse gebogen werden, während sie in der um  90   verdrehten Stellung spannungsfrei sind.

    Die     Stabenden    sind zu diesem Zweck in  Gelenkköpfen i eingespannt, durch die das       Biegungsmoment    abwechselnd bald auf die  eine, bald auf die andere Probe übertragen  wird, falls diese mit gleicher Geschwindigkeit  und unter Beibehaltung ihrer anfänglichen  relativen Verdrehung rotieren. Bei dieser           Altordnung    bleibt die Lage der Gewichte  dauernd die nämliche, was die     Anwendung          grösserer    Tourenzahlen als bei der Anordnung  nach     Fig.    1 gestattet.



  Procedure for the failure test of bent rotating bars. Martens has specified a method to test bars for fatigue in the material by allowing them to rotate around their bent axis in a bent state. The rod a rests according to FIG. 1 in two fixed ball bearings b, while the load weights d are attached to the outer race of two further ball bearings c.



  If you want to test bars with an asymmetrical cross-section for rotating bending, the unequal deflection in the two cross-sectional axes causes considerable vibrations in the load points c d, which, through their mass effects, adversely affect the accuracy of the test until it is unusable.



  According to the invention, these vibrations are significantly reduced by inserting at least two identical test bars into the machine instead of a test bar and twisting their cross-sectional axes at an angle to one another.



  According to FIG. 2, two identical profile rods e and f are mounted one behind the other so that the first main axis of one lies in the same axial plane as the second main axis of the other. The angle that the axes of rotation of the two bearing journals g and lt include with one another is constant, but it changes its position in the course of rotation. The position of the onerous weights d remains unchanged if suitable tension springs are switched on between the weight and the suspension points.



  According to Fig. 3, the two profile pieces e and f are again rotated by 90 against each other, but now parallel to each other between two pairs of bearing journals gg, 1a h clamped, their fixed bearing b and their moving bearing c on each side of the machine each ' are rigidly connected to each other. The clamping is chosen so that the profile pieces are only bent around their weaker main axis, while they are free of tension in the position rotated by 90.

    For this purpose, the rod ends are clamped in joint heads i, through which the bending moment is alternately transmitted now to one specimen and now to the other specimen if they rotate at the same speed and while maintaining their initial relative rotation. In this old arrangement, the position of the weights remains the same, which allows the use of greater numbers of revolutions than in the arrangement according to FIG.

 

Claims (1)

PATENTANSPRÜCHE: 1. Verfahren zur Prüfung von durchgebogen rotierenden Stäben von unsymmetrischem Querschnitt auf Ermüdung, dadurch ge kennzeichnet, dar zwei gleiche Probe,täbe zusammen, jedoch mit gegeneinander im Winkel verdrehten Querschnittsachsen, in die Maschine eingesetzt werden. II. Maschine zur Ausübung des Verfahrens nach Patentanspruch I, gekennzeichnet durch eine Einrichtung zum Einspannen zweier gleicher Probestäbe mit gegenein ander im Winkel versetzten Querschnitts achsen. UNTERANSPRÜCHE: 1. PATENT CLAIMS: 1. A method for testing bent rotating bars of asymmetrical cross-section for fatigue, characterized in that two identical specimens are used together, but with cross-sectional axes twisted at an angle to each other, in the machine. II. Machine for carrying out the method according to claim I, characterized by a device for clamping two identical test rods with axles with cross-sectional offset at an angle to each other. SUBCLAIMS: 1. Verfahren nach Patentanspruch I, dadurch gekennzeichnet, da.ss die beiden Proben mit versetzten Querschnittsachsen hinterein ander zwischen die Lagerzapfen der Ma- schine eingesetzt werden, so dass bei der Drehung die Rotationsachsen der beiden Zapfen einen nahezu konstanten Winkel miteinander einschliefen. 2. Verfahren nach Patentanspruch I, dadurch gekennzeichnet, dass die beiden Proben mit versetzten Querschnittsachsen parallel zwischen je zwei Lagerzapfen eingesetzt werden, deren feste zwei Lager und deren bewegliche zwei Lager auf jeder Maschinen seite paarweise starr miteinander ver bunden sind. 3. Method according to patent claim 1, characterized in that the two samples with offset cross-sectional axes are inserted one behind the other between the bearing journals of the machine, so that the rotation axes of the two journals formed an almost constant angle with one another during rotation. 2. The method according to claim I, characterized in that the two samples with offset cross-sectional axes are used in parallel between two bearing journals, the fixed two bearings and the movable two bearings on each side of the machine are rigidly connected to each other in pairs. 3. Verfahren nach Patentanspruch I, dadurch gekennzeichnet, dass die Querschnittsachsen der beiden Probestücke um 90 gegenein ander versetzt sind. 4. 'Maschine nach Patentanspruch II, gekenn zeichnet durch gemeinsame Lagerkörper für je zwei senkrecht übereinander liegende Lager. b. Maschine nach Unteranspruch 4, dadurch gekennzeichnet, dass an den einander zu gekehrten Enden der Lagerzapfen Gelenk- köpfe angeordnet sind, zwischen denen die Probestäbe eingesetzt werden. Method according to claim 1, characterized in that the cross-sectional axes of the two test pieces are offset by 90 relative to one another. 4. 'Machine according to claim II, marked is characterized by common bearing bodies for two perpendicular bearings. b. Machine according to dependent claim 4, characterized in that joint heads, between which the test rods are inserted, are arranged on the ends of the bearing journals facing one another.
CH101435D 1922-08-18 1922-08-18 Method for fatigue testing of bent rotating bars. CH101435A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CH101435T 1922-08-18

Publications (1)

Publication Number Publication Date
CH101435A true CH101435A (en) 1923-09-17

Family

ID=4359839

Family Applications (1)

Application Number Title Priority Date Filing Date
CH101435D CH101435A (en) 1922-08-18 1922-08-18 Method for fatigue testing of bent rotating bars.

Country Status (1)

Country Link
CH (1) CH101435A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3170321A (en) * 1960-01-05 1965-02-23 Vincent E Sullivan Fatigue testing machine
US3324714A (en) * 1965-03-10 1967-06-13 Albert B Simon Flexure stiffness testing machine for ultra-thin sheets
US5231882A (en) * 1991-02-16 1993-08-03 Telefunken Systemtechnik Gmbh Testing device for performing four-point fatigue strength tests under alternating bending stresses
WO1995002810A1 (en) * 1993-07-15 1995-01-26 Industrieanlagen-Betriebsgesellschaft Mbh Rotating bending testing machine for long round rods

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3170321A (en) * 1960-01-05 1965-02-23 Vincent E Sullivan Fatigue testing machine
US3324714A (en) * 1965-03-10 1967-06-13 Albert B Simon Flexure stiffness testing machine for ultra-thin sheets
US5231882A (en) * 1991-02-16 1993-08-03 Telefunken Systemtechnik Gmbh Testing device for performing four-point fatigue strength tests under alternating bending stresses
WO1995002810A1 (en) * 1993-07-15 1995-01-26 Industrieanlagen-Betriebsgesellschaft Mbh Rotating bending testing machine for long round rods

Similar Documents

Publication Publication Date Title
EP2293040B1 (en) Method and device for checking a sample body by combined rotational bending and torsion loading
EP1111366A2 (en) Method for monitoring the creep behaviour of rotating components of a compressor or turbine stage
CH101435A (en) Method for fatigue testing of bent rotating bars.
DE102010017455B4 (en) Apparatus and method for testing the fatigue life of a body
DE585457C (en) Device for the mass balancing of wave elastic bodies
DE102009015689B4 (en) Apparatus and method for testing the durability of an eccentric shaft
DE716010C (en) Method for examining the entire fracture process of materials subject to changing loads
DE650511C (en) Method and device for testing sheet metal for flexural fatigue strength
DE578298C (en) Balancing method and device with storage of the test body in at least three places
DE540805C (en) Continuous bending machine for sheet metal
DE890876C (en) Dynamic material testing machine
DE904479C (en) Continuous bending machine with rotating test rod and constant bending moment
DE675150C (en) Dynamic test method for determining the strength of the teeth of gears
DE506427C (en) Procedure for balancing circulating bodies
DE713923C (en) Device for determining bearing pressures
DE693379C (en) Method and device for the static balancing of machine parts
DE849021C (en) Method for determining the buckling strength of fibers, threads, foils, fabrics and the like like
DE479966C (en) Continuous bending machine
DE415089C (en) Device for balancing test bodies on the free shaft end
CH445867A (en) Strain gauge
DE726234C (en) Continuous impact machine for the simultaneous determination of the flexural vibration strength of several test bars
DE726556C (en) Method and device for determining the splinter resistance of individual fibers
DE900023C (en) Torsion testing machine, on which the test specimen is simultaneously subjected to torsion and bending stress
DE200856C (en)
DE956176C (en) Dynamic endurance test device for yarns