CA3195441A1 - Systemes et procedes de fourniture fonction de perte modifiee dans un apprentissage federe/divise - Google Patents

Systemes et procedes de fourniture fonction de perte modifiee dans un apprentissage federe/divise

Info

Publication number
CA3195441A1
CA3195441A1 CA3195441A CA3195441A CA3195441A1 CA 3195441 A1 CA3195441 A1 CA 3195441A1 CA 3195441 A CA3195441 A CA 3195441A CA 3195441 A CA3195441 A CA 3195441A CA 3195441 A1 CA3195441 A1 CA 3195441A1
Authority
CA
Canada
Prior art keywords
client
server
client system
model
server system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CA3195441A
Other languages
English (en)
Inventor
Gharib GHARIBI
Ravi PATEL
Babak Poorebrahim GILKALAYE
Praneeth Vepakomma
Greg STORM
Riddhiman Das
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TripleBlind Inc
Original Assignee
TripleBlind Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TripleBlind Inc filed Critical TripleBlind Inc
Priority claimed from US17/499,153 external-priority patent/US11431688B2/en
Publication of CA3195441A1 publication Critical patent/CA3195441A1/fr
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/084Backpropagation, e.g. using gradient descent
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Computing Systems (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Artificial Intelligence (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Storage Device Security (AREA)

Abstract

L'invention concerne un procédé qui comprend l'entraînement, au niveau d'un client, d'une partie d'un réseau d'apprentissage profond jusqu'à une couche divisée du client. En fonction d'une sortie de la couche divisée, le procédé comprend la réalisation, au niveau d'un serveur, de l'entraînement du réseau d'apprentissage profond par la propagation directe de la sortie reçue au niveau d'une couche divisée du serveur vers une dernière couche du serveur. Le serveur calcule une fonction de perte pondérée pour le client au niveau de la dernière couche et stocke la fonction de perte calculée. Après le stockage de la fonction de perte respective de chaque client respectif d'une pluralité de clients, le serveur calcule la moyenne de la pluralité de fonctions de perte de client pondérées respectives et effectue la rétropropagation des gradients en fonction de la valeur de perte moyenne de la dernière couche du serveur dans la couche divisée du serveur et transmet uniquement les gradients de couche divisée de serveur aux clients respectifs.
CA3195441A 2020-10-13 2021-10-12 Systemes et procedes de fourniture fonction de perte modifiee dans un apprentissage federe/divise Pending CA3195441A1 (fr)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US202063090904P 2020-10-13 2020-10-13
US63/090,904 2020-10-13
US202163226135P 2021-07-27 2021-07-27
US63/226,135 2021-07-27
US17/499,153 US11431688B2 (en) 2019-12-13 2021-10-12 Systems and methods for providing a modified loss function in federated-split learning
PCT/US2021/054518 WO2022081539A1 (fr) 2020-10-13 2021-10-12 Systèmes et procédés de fourniture fonction de perte modifiée dans un apprentissage fédéré/divisé
US17/499,153 2021-10-12

Publications (1)

Publication Number Publication Date
CA3195441A1 true CA3195441A1 (fr) 2022-04-21

Family

ID=81208549

Family Applications (1)

Application Number Title Priority Date Filing Date
CA3195441A Pending CA3195441A1 (fr) 2020-10-13 2021-10-12 Systemes et procedes de fourniture fonction de perte modifiee dans un apprentissage federe/divise

Country Status (2)

Country Link
CA (1) CA3195441A1 (fr)
WO (1) WO2022081539A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115545172B (zh) * 2022-11-29 2023-02-07 支付宝(杭州)信息技术有限公司 兼顾隐私保护和公平性的图神经网络的训练方法及装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE22222E (en) 1934-07-20 1942-11-10 Follo web machine
US2130101A (en) 1934-09-07 1938-09-13 Ritzerfeld Wilhelm Apparatus for feeding envelopes and method relating thereto
US2130103A (en) 1935-04-10 1938-09-13 Eagle Picher Lead Company Storage battery plate and composition therefor
US2130100A (en) 1937-09-30 1938-09-13 Reuben G Doege Trailer hitch
US9984337B2 (en) * 2014-10-08 2018-05-29 Nec Corporation Parallelized machine learning with distributed lockless training
US10755172B2 (en) 2016-06-22 2020-08-25 Massachusetts Institute Of Technology Secure training of multi-party deep neural network
US10924460B2 (en) 2019-12-13 2021-02-16 TripleBlind, Inc. Systems and methods for dividing filters in neural networks for private data computations

Also Published As

Publication number Publication date
WO2022081539A1 (fr) 2022-04-21

Similar Documents

Publication Publication Date Title
US11431688B2 (en) Systems and methods for providing a modified loss function in federated-split learning
US12278806B2 (en) Operating system for blockchain IoT devices
TWI770022B (zh) 電腦實施之控制方法、系統及控制系統
US12277548B2 (en) System and method of multi-round token distribution using a blockchain network
US11991156B2 (en) Systems and methods for secure averaging of models for federated learning and blind learning using secure multi-party computation
AU2019389028A1 (en) Multi-hop security amplification
Hamza et al. A social qualitative trust framework for Fog computing
CA3195441A1 (fr) Systemes et procedes de fourniture fonction de perte modifiee dans un apprentissage federe/divise
CN116167868A (zh) 基于隐私计算的风险识别方法、装置、设备以及存储介质
EP3379408B1 (fr) Fonctions aléatoires actualisables
CN119046955A (zh) 一种图联邦训练方法、装置、设备、存储介质及产品
EP4229559A1 (fr) Systèmes et procédés de fourniture fonction de perte modifiée dans un apprentissage fédéré/divisé
Piotrowski et al. Towards a secure peer-to-peer federated learning framework
Rahmani et al. Secure two-party computation via measurement-based quantum computing
US20250182861A1 (en) Computation system and computation method
Barbosa Secure two-party computation via measurement-based quantum computing
Hong et al. A designated private set based trapdoor authentication scheme for privacy preserving trust management in decentralized systems
Kirubakaran et al. Enhanced VANET Communication: Fractional Order Water Flow Optimization and Secure Communication via Spatial Bayesian Neural Network
Hota et al. Advanced federated learning security: NTRU and blockchain synergy
HK40017117B (en) System and method of multi-round token distribution using a blockchain network
HK40017117A (en) System and method of multi-round token distribution using a blockchain network