CA3129588A1 - Electrode terminal assembly for liquid quality meter apparatus and liquid quality meter apparatus comprising same - Google Patents

Electrode terminal assembly for liquid quality meter apparatus and liquid quality meter apparatus comprising same Download PDF

Info

Publication number
CA3129588A1
CA3129588A1 CA3129588A CA3129588A CA3129588A1 CA 3129588 A1 CA3129588 A1 CA 3129588A1 CA 3129588 A CA3129588 A CA 3129588A CA 3129588 A CA3129588 A CA 3129588A CA 3129588 A1 CA3129588 A1 CA 3129588A1
Authority
CA
Canada
Prior art keywords
electrode
pair
fixing body
housing
holes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CA3129588A
Other languages
French (fr)
Inventor
Tae Seong Kwon
Ji Hyung Yoon
Jong Kil Kim
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyungdong Navien Co Ltd
Original Assignee
Kyungdong Navien Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyungdong Navien Co Ltd filed Critical Kyungdong Navien Co Ltd
Priority claimed from PCT/KR2019/017685 external-priority patent/WO2020179991A1/en
Publication of CA3129588A1 publication Critical patent/CA3129588A1/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/06Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a liquid
    • G01N27/07Construction of measuring vessels; Electrodes therefor

Abstract

According to the present invention, an electrode terminal assembly for a liquid quality meter apparatus for measuring liquid quality on the basis of the electrical resistance of a liquid to be measured comprises: a pair of electrode terminals comprising a body, which contacts the liquid being measured when liquid quality is measured and has an overall rod shape, and a protruding step formed at a predetermined portion between the opposite ends of the body; and a fixing body comprising a pair of electrode through-holes through which the pair of electrode terminals pass. In the electrode terminal assembly having the above-described structure, each of the pair of electrode terminals is arranged such that, when the electrode terminals are inserted into the electrode through-holes of the fixing body by a predetermined length, the protruding step is caught by the fixing body so that the electrode terminals are no longer inserted.

Description

[DESCRIPTION]
[Invention Title]
ELECTRODE TERMINAL ASSEMBLY FOR LIQUID QUALITY METER
APPARATUS AND LIQUID QUALITY METER APPARATUS
COMPRISING SAME
[Technical Field]
[1] The present disclosure relates to an electrode teiminal assembly for a liquid quality meter apparatus and a liquid quality meter apparatus including the same.
[Background Art]
[2] In the case of a liquid used for a certain purpose, such as water introduced into a boiler, it is important to measure the quality or pollution level of the liquid.
[3] For example, when a boiler is operated by using water containing several dissolved substances rather than pure water, foreign matter may be generated inside the boiler, and the efficiency of the boiler may be degraded.
[4] Particularly, in a system including a filter that is able to be turned on/off or has variable filtering perfoimance, it may be more meaningful to measure the quality or pollution level of a liquid. This is because the liquid is able to be effectively filtered with minimum power consumption by turning on or off the Date Recue/Date Received 2021-08-09 filter, or setting the filtering performance to high performance or low performance, depending on the measured quality or pollution level of the liquid.
[5] Total dissolved solids or total dissolved salts (TDS) is an indicator for the quality of a liquid, and an apparatus for measuring the TDS of a liquid is referred to as a TDS sensor or a TDS meter.
[6] A TDS meter generally includes an electrode body assembly including electrode tettninals brought into contact with a liquid to be measured, when the quality of the liquid is measured, and a controller for controlling power applied to the electrode tettninals.
[7] An electrode terminal assembly for a TDS meter in the related art is generally manufactured by a method (generally referred to as an injection-molding method) of locating electrode tettninals at predetermined positions in a mold and fottning a fixing body by filling the mold with a molding liquid.
In the electrode tettninal assembly in the related art, the electrode tettninals are simply fottned in a rod shape.
[8] The electrode terminal assembly in the related art has a problem in that the electrode terminals are pushed into the fixing body when used in a high-temperature and high-pressure condition. In this case, a liquid may infiltrate between the electrode terminals and the fixing body, and water leakage may occur inside a liquid quality meter apparatus, which may lead to deterioration in durability.
[9] Furthermore, when the electrode terminal assembly is used in a liquid at high temperature (about 80 C or more), the molding that forms the fixing body Date Recue/Date Received 2021-08-09 may be dissolved, and therefore the electrode terminals may not be fixed.
[Disclosure]
[Technical Problem]
[10] An aspect of the present disclosure provides an electrode terminal assembly having a structure in which electrode tettninals are able to be firmly fixed even though used in a high-temperature and high-pressure condition, and a liquid quality meter apparatus including the electrode tettninal assembly.
[11] In addition, another aspect of the present disclosure is to raise durability by preventing occurrence of water leakage in an electrode terminal assembly.
[12] The technical problems to be solved by the present disclosure are not limited to the aforementioned problems, and any other technical problems not mentioned herein will be clearly understood from the following description by those skilled in the art to which the present disclosure pertains.
[Technical Solution]
[13] To solve the above-mentioned problems, an electrode terminal assembly for a liquid quality meter apparatus according to an embodiment of the present disclosure includes a pair of electrode tettninals brought into contact with a liquid to be measured, when liquid quality is measured and a fixing body including a pair of electrode through-holes through which the pair of electrode tettninals pass, in which each of the electrode terminals including a body having an overall rod shape and a protrusion formed on a predetettnined portion Date Recue/Date Received 2021-08-09 between opposite ends of the body.
[14] When the electrode teitninals are inserted into the electrode through-holes of the fixing body by a predetermined length, the protrusions are stopped by the fixing body, and the electrode teitninals are not inserted any more.
[15] To solve the above-mentioned problems, a liquid quality meter apparatus according to an embodiment of the present disclosure includes an electrode teitninal assembly and a controller that applies power to the electrode terminal assembly.
[16] The electrode teitninal assembly includes a pair of electrode teitninals and a fixing body including a pair of electrode through-holes through which the pair of electrode terminals pass, in which each of the electrode terminals includes a body having an overall rod shape and a protrusion protruding from the body to a side.
[17] When the electrode teitninals are inserted into the electrode through-holes of the fixing body by a predetermined length, the protrusions are stopped by the fixing body, and the electrode teitninals are not inserted any more.
[ Advantageous Effects]
[18] According to the embodiments of the present disclosure, at least the following effects are achieved.
[19] The electrode teitninal assembly includes the pair of electrode teitninals including the electrode teitninal protrusions and the fixing body including the pair of electrode through-holes through which the pair of electrode terminals Date Recue/Date Received 2021-08-09 pass. Accordingly, even though the electrode terminal assembly is used in a high-temperature and high-pressure condition, the electrode tettninals may be effectively prevented from being pushed into the fixing body.
[20] In addition, as the electrode tettninals are prevented from being pushed into the fixing body, occurrence of water leakage between the electrode tettninals and the fixing body may be prevented, and thus the durability of the electrode tettninal assembly may be improved.
[21] Effects of the present disclosure are not limited to the aforementioned effects, and any other effects not mentioned herein will be clearly understood from the accompanying claims by those skilled in the art to which the present disclosure pertains.
[ Description of Drawings]
[22] FIG. 1 is a view illustrating part of an electrode tettninal assembly for an exemplary liquid quality meter apparatus.
[23] FIG. 2 is a view illustrating an electrode terminal assembly for a liquid quality meter apparatus according to an embodiment of the present disclosure.
[24] FIG. 3 is an exploded perspective view of the electrode tettninal assembly of FIG. 2.
[25] FIG. 4 is a vertical sectional view of the electrode terminal assembly of FIG. 2.
[ Mode for Invention]
[26] Hereinafter, some embodiments of the present disclosure will be Date Recue/Date Received 2021-08-09 described in detail with reference to the exemplary drawings. In adding the reference numerals to the components of each drawing, it should be noted that the identical or equivalent component is designated by the identical numeral even when they are displayed on other drawings. Further, in describing the embodiment of the present disclosure, a detailed description of well-known features or functions will be ruled out in order not to unnecessarily obscure the gist of the present disclosure.
[27] In describing the components of the embodiment according to the present disclosure, terms such as first, second, "A", "B", (a), (b), and the like may be used. These teinis are merely intended to distinguish one component from another component, and the Wails do not limit the nature, sequence or order of the components. When a component is described as "connected", "coupled", or "linked" to another component, this may mean the components are not only directly "connected", "coupled", or "linked" but also are indirectly "connected", "coupled", or "linked" via a third component.
[28] This application claims the benefit of priority to Korean Patent Application Nos. 10-2019-0026327 and 10-2019-0165584, filed in the Korean Intellectual Property Office on March 07, 2019 and December 12, 2019, respectively, the entire contents of which are incorporated herein by reference.
[29] FIG. 1 is a view illustrating part of an electrode teiminal assembly for an exemplary liquid quality meter apparatus. FIG. 2 is a view illustrating an electrode teiminal assembly for a liquid quality meter apparatus according to an embodiment of the present disclosure. FIG. 3 is an exploded perspective view Date Recue/Date Received 2021-08-09 of the electrode terminal assembly of FIG. 2. FIG. 4 is a vertical sectional view of the electrode teitninal assembly of FIG. 2.
[30] The electrode teitninal assembly 100 according to this embodiment may be applied to a liquid quality meter apparatus for measuring the quality of a liquid, based on the electrical resistance of the liquid to be measured.
[31] A total dissolved solids or total dissolved slats (TDS) sensor may exemplify the liquid quality meter apparatus for measuring the quality of the liquid, based on the electrical resistance of the liquid.
[32] Here, a total dissolved solids or total dissolved salts (TDS) value refers to the total amount of solids dissolved in water and generally refers to the total amount of ions including positive ions and negative ions dissolved in water.
[33] A liquid quality meter apparatus, such as a TDS sensor, for measuring the quality of a liquid based on the electrical resistance of the liquid includes an electrode body assembly including electrode teitninals brought into contact with the liquid to be measured, when the liquid quality is measured and a controller for controlling power applied to the electrode teitninals.
[34] The electrode teitninal assembly 100 according to this embodiment includes a pair of electrode teitninals 110 and a fixing body 120.
[35] The pair of electrode teitninals 110 are brought into contact with the liquid to be measured, when the quality of the liquid is measured.
[36] The pair of electrode teitninals 110 may each include an electrode teitninal body 111 having an overall rod shape and an electrode teitninal protrusion 112 foitned on a predeteitnined portion between opposite ends of the Date Recue/Date Received 2021-08-09 electrode teitninal body 111.
[37] The fixing body 120 includes a pair of electrode through-holes 123 through which the pair of electrode terminals 110 pass.
[38] When the pair of electrode terminals 110 are inserted into the electrode through-holes 123 of the fixing body 120 by a predetermined length, the electrode teitninal protrusions 112 are stopped by the fixing body 120, and thus the pair of electrode terminals 110 are not inserted any more.
[39] The electrode teitninal assembly 100 may further include first and second housings 130 and 140 for receiving the fixing body 120 and the pair of electrode tei tninals 110.
[40] The first and second housings 130 and 140 may be coupled to foitn an interior space in which the fixing body 120 and the pair of electrode terminals 110 are received. The fixing body 120 and the pair of electrode teitninals 110 are supported by the first and second housings 130 and 140 in the direction in which the pair of electrode terminals 110 are inserted toward the fixing body 120. Accordingly, the fixing body 120 and the pair of electrode teitninals 110 are prevented from being separated from each other.
[41] The above-configured electrode teitninal assembly 100 according to this embodiment is a structure provided by coupling the pair of electrode teitninals 110, the fixing body 120, the first housing 130, and the second housing 140 that are separately prepared.
[42] The positions of the pair of electrode teitninals 110 relative to the fixing body 120 and the first housing 130 are limited by the electrode teitninal Date Recue/Date Received 2021-08-09 protrusions 112 of the pair of electrode terminals 110. That is, the electrode tettninal protrusions 112 fottned on the pair of electrode tettninals 110 prevent the pair of electrode terminals 110 from being further inserted toward the fixing body 120 and prevent the pair of electrode terminals 110 from being extracted outside the first housing 130.
[43] An electrode terminal assembly for a liquid quality meter apparatus in the related art is generally manufactured by a method (generally referred to as an injection-molding method) of locating electrode tettninals at predetermined positions in a mold and fot __ ming a fixing body by filling the mold with a molding liquid. In the electrode terminal assembly in the related art, the electrode tettninals are simply fottned in a rod shape.
[44] The electrode terminal assembly in the related art has a problem in that the electrode terminals are pushed into the fixing body when used in a high-temperature and high-pressure condition. In this case, a liquid may infiltrate between the electrode terminals and the fixing body, and water leakage may occur inside a liquid quality meter apparatus, which may lead to deterioration in durability.
[45] Furthermore, when the electrode terminal assembly is used in a liquid at high temperature (about 80 C or more), the molding that forms the fixing body may be dissolved, and therefore the electrode terminals may not be fixed.
[46] Accordingly, the exemplary electrode tettninal assembly 200 that, as illustrated in FIG. 1, has electrode tettninals 202 that have a plate-shaped body 2021extending in one direction and have, on one region thereof, a protrusion Date Recue/Date Received 2021-08-09 2022 protruding from the body 2021 in a direction not parallel to the extension direction may be considered. A stopper 204 may be foitned inside a housing 201 such that the protrusions 2022 are stopped by the stopper 204 and prevented from escaping from the housing 201, and a molding 203 surrounding the electrode teitninals may be foitned inside the housing for sealing, by a method of filling the housing with a molding liquid and solidifying the molding liquid.
[47] However, even in this case, although the electrode terminals 202 are prevented from being pushed by high-temperature and high-pressure, the molding 203 foitned for sealing may be dissolved by high temperature, or may be cracked, to cause water leakage, and the electrode teitninals 202 may be electrically connected and short-circuited.
[48] Although a different structure rather than the molding 203, particularly, a watertight member such as an 0-ring (not illustrated) that is foitned of an elastic member and that blocks a boundary is disposed to overcome this problem on a portion where water leakage is likely to occur, it may be difficult to effectively maintain water tightness because the electrode teitninals 202 are foitned in a plate shape.
[49] The electrode terminal assembly 100 according to this embodiment is aimed at improving durability by preventing a movement of the electrode teitninals 110 due to an operating environment or condition of the electrode teitninal assembly 100 (e.g., voltage applied to the electrode terminals or the temperature of the electrode terminals) and preventing water leakage of the electrode WI ___ tninal assembly 100.
Date Recue/Date Received 2021-08-09
[50] To this end, the electrode teitninal assembly 100 according to this embodiment is characterized in that the electrode teitninal assembly 100 includes the pair of electrode terminals 110 including the electrode teitninal protrusion 112 and having an overall rod shape and the fixing body 120 including the pair of electrode through-holes 123 through which the pair of electrode teitninals 110 pass, and when the electrode terminals 110 are inserted into the electrode through-holes 123 of the fixing body 120 by the predeteitnined length, the electrode terminal protrusions 112 are stopped by the fixing body 120, and thus the electrode terminals 110 are not inserted any more.
[51] Hereinafter, features of the electrode terminal assembly 100 according to this embodiment will be described in more detail.
[52] Referring to FIG. 2, the first and second housings 130 and 140 may be coupled with each other in an up/down direction.
[53] The first housing 130 may include a first housing body 131 and a first housing extension 122 extending from the first housing body 131 in a downward direction in which the pair of electrode teitninals 110 extend.
[54] The first housing 130 may include a pair of first housing through-holes 130h through which the pair of electrode teitninals 110 pass.
[55] The first housing through-holes 130h may extend in the up/down direction in which the pair of electrode teitninals 110 extend and may be foitned through the first housing extension 122, and the pair of electrode teitninals may be exposed outside the first housing 130 through the pair of first housing through-holes 130h.

Date Recue/Date Received 2021-08-09
[56] The second housing 140 may include a second housing body 141 coupled with the first housing body 131 and a second housing extension 142 extending from the second housing body 141 in an upward direction.
[57] The second housing 140 may have a receiving space 143 formed therein in which a pair of terminals 10 are received. The second housing 140 may have a shape including a center hole to provide the receiving space 143 in which the pair of terminals 10 are received.
[58] The pair of teitninals 10 may be connected with the pair of electrode teitninals 110, respectively, and may be connected with a controller (not illustrated) to apply power to the pair of electrode teitninals 110. That is, the pair of terminals 10 may serve as a medium through which power is applied from the controller or a power supply device to the pair of electrode terminals 110.
[59] Referring to FIG. 3, the pair of electrode teitninals 110 may each include the electrode teitninal body 111 having an overall rod shape and the electrode teitninal protrusion 112 foitned on the predeteitnined portion between the upper and lower ends of the electrode terminal body 111.
[60] The electrode teitninal protrusion 112 may be formed by a method of pressing the electrode terminal body 111 with a press.
[61] In an embodiment, the electrode terminal protrusion 112 may be foitned in a ring shape along a circumferential surface of the electrode teitninal body 111.
[62] The fixing body 120 may include a main body 121 and a pair of fixing Date Recue/Date Received 2021-08-09 body extensions 122 extending downward from the main body 121 of the fixing body 120.
[63] The fixing body 120 may include the pair of electrode through-holes 123 through which upper ends of the pair of electrode terminals 110 pass.
[64] The pair of electrode through-holes 123 may be foitned through the main body 121 of the fixing body 120 and may be foitned through the pair of fixing body extensions 122, respectively.
[65] Accordingly, the upper ends of the pair of electrode teitninals 110 may pass through the fixing body 120 and may be connected with the pair of tei tninals 10.
[66] Meanwhile, unlike that illustrated in FIG. 3, one fixing body extension may be provided, and a pair of electrode through-holes may be foitned through a main body of a fixing body and the fixing body extension.
[67] Referring to FIG. 4, to receive the electrode teitninal protrusions 112, the fixing body 120 may have a shape in which portions making contact with the electrode teitninal protrusions 112 of the pair of electrode teitninals 110 are inwardly concave.
[68] The fixing body extensions 122 may have, in distal end portions thereof, protrusion receiving recesses 124 having a shape in which edge portions of the electrode through-holes 123 are recessed to a predetermined depth toward the insides of the fixing body extensions 122.
[69] When the pair of electrode terminals 110 are inserted toward the fixing body 120, the electrode teitninal protrusions 112 may be inserted into the Date Recue/Date Received 2021-08-09 protrusion receiving recesses 124, and the pair of electrode teitninals 110 and the fixing body 120 may be firmly coupled together. That is, the pair of electrode teitninals 110 may be more finnly fixed by the fixing body 120. This structure may prevent a situation in which the electrode teitninals 110 are pushed and separated from the original positions even in a high-temperature and high-pressure environment.
[70] Furthei _____ more, the fixing body 120 may include the fixing body extensions 122 extending in the up/down direction in which the electrode teitninals 110 extend, thereby increasing the contact surface between the electrode teitninals 110 and the fixing body 120, which in turn raises the coupling force of the fixing body 120 and the pair of electrode teitninals 110.
[71] Referring to FIGS. 3 and 4, the first housing 130 may have a fixing body receiving recess 133 in which the fixing body 120 is received. The fixing body receiving recess 133 may be foitned in the first housing body 131.
[72] The pair of first housing through-holes 130h may be foitned in a bottom surface 133a of the fixing body receiving recess 133 so as to be open toward the outside of the first housing 130. That is, referring to FIG. 4, the pair of first housing through-holes 130h may extend downward from the bottom surface 133a of the fixing body receiving recess 133 and may be open toward the outside of the first housing 130.
[73] The first housing through-holes 130h may be formed in a predeteitnined size such that lower ends of the pair of electrode teitninals 110 pass through the first housing through-holes 130h, but the electrode terminal protrusions 112 do Date Recue/Date Received 2021-08-09 not pass through the first housing through-holes 130h and are stopped by the bottom surface 133a of the fixing body receiving recess 133.
[74] For example, when the electrode tettninal bodies 111 have a cylindrical rod shape and the electrode terminal protrusions 112 have a ring shape with a predetettnined diameter, the first housing through-holes 130h may be circular holes having a diameter that is greater than the diameter of the electrode tettninal bodies 111 and is smaller than the diameter of the electrode terminal protrusions 112.
[75] Accordingly, the lower ends of the pair of electrode tettninals 110 may be exposed outside the first housing 130 by a predetettnined length through the first housing through-holes 130h, but the pair of electrode terminals 110 may be prevented from being separated from the fixing body 120 and exposed outside the first housing 130 by more than the predetettnined length.
[76] One of the first and second housings 130 and 140 may have a female thread, and the other may have a male thread. The first and second housings and 140 may be screw-coupled with each other.
[77] In an embodiment, the first housing 130 may have a female thread 134, and the second housing 140 may have a male thread 144.
[78] Accordingly, the first and second housings 130 and 140 may be fittnly coupled without being easily separated from each other by vertical forces. The electrode tettninals 110 may be supported upward by the first housing 130, the fixing body 120 may be supported downward by the second housing 140, and thus the coupling of the electrode tettninals 110 and the fixing body 120 may Date Recue/Date Received 2021-08-09 be firmly maintained.
[79] Furthermore, because the second housing 140 and the fixing body 120 are not directly coupled, but make contact with each other, the second housing 140 may press the fixing body 120 downward when coupled to the first housing 130. Due to this structure, the second housing 140 may press the fixing body 120 against the first housing 130, thereby uniformly pressing the electrode tettninal protrusions 112 disposed between the fixing body 120 and the first housing 130 and inner 0-rings 150 that will be described below.
[80] To prevent infiltration of a fluid into the fixing body receiving recess through the first housing through-holes 130h, the electrode tettninal assembly 100 may further include a pair of inner 0-rings 150 interposed between inside ends of the first housing through-holes 130h (or, the bottom surface 133a of the fixing body receiving recess 133) and the pair of electrode tettninal protrusions 112. That is, a structure for fixing the electrode tettninals 110 and a structure for sealing the electrode tettninals 110 may be provided separately from each other.
[81] The inner 0-rings 150 may be fottned of an elastic material and may be deformed by being pressed by the electrode tettninal protrusions 112 or the fixing body 120 on an upper side thereof and the bottom surface 133a of the fixing body receiving recess 133 on a lower side thereof. The inner 0-rings may form a seal between the electrode tettninal protrusions 112 or the fixing body 120 and the bottom surface 133a of the fixing body receiving recess 133.
Because the electrode terminal bodies 111 are formed in a cylindrical rod shape Date Recue/Date Received 2021-08-09 and the electrode tettninal protrusions 112 are formed in a ring shape, unifottn sealing may be achieved when the inner 0-rings 150 having a ring shape are disposed.
[82] For example, the inner 0-rings 150 may be fottned of a rubber material or a material containing rubber.
[83] Accordingly, a fluid may be prevented from infiltrating into the fixing body receiving recess 133 through the first housing through-holes 130h, and thus deterioration in the durability of the electrode tettninal assembly 100 due to water leakage may be effectively prevented.
[84] The electrode tettninal assembly 100 according to this embodiment may be installed in a casing in which a liquid to be measured is stored. The first housing body 131 may include a fastening part 135 through which the electrode tettninal assembly 100 is able to be coupled with the casing in which the liquid to be measured is stored.
[85] The electrode terminal assembly 100 may further include an outer 0-ring 160 that forms a seal between the casing and the electrode tettninal assembly 100 when the electrode terminal assembly 100 is coupled with the casing in which the liquid to be measured is stored.
[86] Hereinabove, although the present disclosure has been described with reference to the exemplary embodiments and the accompanying drawings, the present disclosure is not limited thereto, but may be variously modified and altered by those skilled in the art to which the present disclosure pertains without departing from the spirit and scope of the present disclosure claimed in the Date Recue/Date Received 2021-08-09 following claims.

Date Recue/Date Received 2021-08-09

Claims (9)

    [CLAIMS]
  1. [Claim 1] An electrode teiminal assembly for a liquid quality meter apparatus for measuring liquid quality based on electrical resistance of a liquid to be measured, the electrode terminal assembly comprising:
    a pair of electrode terminals brought into contact with the liquid to be measured, when the liquid quality is measured, wherein each of the electrode terminals includes a body having an overall rod shape and a protrusion formed on a predetermined portion between opposite ends of the body; and a fixing body including a pair of electrode through-holes through which the pair of electrode terminals pass, wherein when the electrode terminals are inserted into the electrode through-holes of the fixing body by a predetermined length, the protrusions are stopped by the fixing body, and the electrode terminals are not inserted any more.
  2. [Claim 2] The electrode terminal assembly of claim 1, wherein each of the pair of electrode terminals includes one end configured to pass through the fixing body and an opposite end opposite to the one end, wherein the fixing body includes a main body and a pair of fixing body extensions, each of which extends from the main body of the fixing body toward the opposite end of a corresponding one of the electrode terminals, and wherein the pair of electrode through-holes are formed through the main body of the fixing body and the respective fixing body extensions.

    Date Recue/Date Received 2021-08-09
  3. [Claim 3] The electrode teiminal assembly of claim 1, wherein to receive the protrusions, the fixing body has a shape in which portions configured to make contact with the protrusions of the pair of electrode teiminals are inwardly concave.
  4. [Claim 4] The electrode teiminal assembly of claim 1, further comprising:
    first and second housings configured to receive the fixing body and the pair of electrode teiminals, 1 0 wherein each of the pair of electrode teiminals includes one end configured to pass through the fixing body and an opposite end opposite to the one end, wherein the first housing includes a fixing body receiving recess in which the fixing body is received, 1 5 wherein a pair of first housing through-holes are folined in a bottom surface of the fixing body receiving recess so as to be open toward the outside of the first housing, wherein to prevent the pair of electrode teiminals from being separated from the fixing body, the opposite end of each of the pair of electrode teiminals 20 passes through a corresponding one of the first housing through-holes, and the protrusion of the electrode terminal does not pass through the corresponding one of the first housing through-holes and is stopped by the bottom surface of the fixing body receiving recess, and Date Recue/Date Received 2021-08-09 wherein the opposite end of the electrode teiminal is exposed outside the first housing through the corresponding one of the first housing through-holes.
  5. [Claim 5] The electrode teiminal assembly of claim 4, further comprising:
    a pair of inner 0-rings interposed between inside ends of the first housing through-holes and the protrusions of the pair of electrode terminals to prevent infiltration of a fluid into the fixing body receiving recess through the first housing through-holes.
  6. [Claim 6] The electrode terminal assembly of claim 4, wherein the second housing has a shape including a center hole to provide a space in which a pair of terminals are received, each of which is connected with the one end of a corresponding one of the electrode teiminals, the one end being configured to pass through the fixing body.
    [ Claim 7 ] The electrode teiminal assembly of claim 4, wherein the first housing includes a first housing body having the fixing body receiving recess folined thereon and a first housing extension extending from the first housing body in an extension direction of the pair of electrode teiminals, and wherein the first housing through-holes extend in the extension direction of the pair of electrode terminals and are fonned through the first housing extension.
  7. 21 Date Recue/Date Received 2021-08-09
  8. [Claim 8] The electrode teiminal assembly of claim 1, further comprising:
    first and second housings configured to receive the fixing body and the pair of electrode teiminals, wherein one of the first and second housings includes a female thread, the other includes a male thread, and the first and second housings are screw-coupled with each other.
  9. [Claim 9] A liquid quality meter apparatus for measuring liquid quality based on electrical resistance of a liquid to be measured, the liquid quality meter apparatus comprising:
    an electrode teiminal assembly; and a controller configured to apply power to the electrode teiminal assembly, wherein the electrode terminal assembly includes:
    a pair of electrode terminals, each of which includes a body having an overall rod shape and a protrusion protruding from the body to a side; and a fixing body including a pair of electrode through-holes through which the pair of electrode terminals pass, and wherein when the electrode terminals are inserted into the electrode through-holes of the fixing body by a predetermined length, the protrusions are stopped by the fixing body, and the electrode teiminals are not inserted any more.

    Date Recue/Date Received 2021-08-09
CA3129588A 2019-03-07 2019-12-13 Electrode terminal assembly for liquid quality meter apparatus and liquid quality meter apparatus comprising same Pending CA3129588A1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
KR10-2019-0026327 2019-03-07
KR20190026327 2019-03-07
KR1020190165584A KR102580325B1 (en) 2019-03-07 2019-12-12 Electrode-terminal assembly for liquid quality meter apparatus and liquid quality meter apparatus including the same
KR10-2019-0165584 2019-12-12
PCT/KR2019/017685 WO2020179991A1 (en) 2019-03-07 2019-12-13 Electrode terminal assembly for liquid quality meter apparatus and liquid quality meter apparatus comprising same

Publications (1)

Publication Number Publication Date
CA3129588A1 true CA3129588A1 (en) 2020-09-10

Family

ID=72669570

Family Applications (1)

Application Number Title Priority Date Filing Date
CA3129588A Pending CA3129588A1 (en) 2019-03-07 2019-12-13 Electrode terminal assembly for liquid quality meter apparatus and liquid quality meter apparatus comprising same

Country Status (3)

Country Link
KR (1) KR102580325B1 (en)
CN (1) CN113366304B (en)
CA (1) CA3129588A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220099612A1 (en) * 2019-03-07 2022-03-31 Kyungdong Navien Co., Ltd. Electrode terminal assembly for liquid quality meter apparatus and liquid quality meter apparatus comprising same

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000171826A (en) * 1998-12-09 2000-06-23 Sharp Corp Liquid crystal device
JP2001056309A (en) * 1999-08-20 2001-02-27 Tic Keisokuki Kogyo Kk Conductivity detection electrode and conductivity measuring apparatus using the same
AU1820001A (en) * 1999-10-12 2001-04-23 M. Michael Pitts Jr. Electrostatic enhancement for membrane-separation systems
JP2002286738A (en) * 2001-03-23 2002-10-03 Omron Corp Speed sensor
KR100408162B1 (en) * 2001-04-25 2003-12-03 (주)바이오텔 Fabrication of dual sensor with the multi functional and the stage and system of application thereof
JP4173332B2 (en) * 2002-08-09 2008-10-29 三菱電機株式会社 Display device, pixel repair method for display device, and method for manufacturing display device
KR100452385B1 (en) * 2002-11-29 2004-10-12 엘지전자 주식회사 A water hardness sensing apparatus for washing machine
JP2008134219A (en) * 2006-10-30 2008-06-12 Denso Corp Gas sensor and related manufacturing method
US20090123340A1 (en) * 2007-05-04 2009-05-14 H2Observe, Llc Water quality monitoring device and method
EP2212940B1 (en) * 2007-11-23 2015-02-25 LG Chem, Ltd. Secondary battery pack providing excellent productivity and structural stability
JP4562764B2 (en) * 2007-12-27 2010-10-13 キヤノンアネルバ株式会社 Sputtering equipment
KR101041992B1 (en) * 2009-03-25 2011-06-16 주식회사 과학기술분석센타 A Sensor Probe for Measured of Mercury, Fabricating Method Thereof and a Sensor for Measured of Mercury Using the Same
US8951663B2 (en) * 2010-11-15 2015-02-10 Samsung Sdi Co., Ltd. Secondary battery
KR101415889B1 (en) * 2012-12-11 2014-07-04 엘에스엠트론 주식회사 Ultra capacitor having improved resistance characteristics
JP6033100B2 (en) * 2013-01-23 2016-11-30 木谷電器株式会社 Terminal block device and electrical equipment including the terminal block device
US11067563B2 (en) * 2014-01-22 2021-07-20 Molecular Devices, Llc Replaceable ground electrode for electrophysiology, electrode rejuvenating apparatus, and related methods and systems
CN203910556U (en) * 2014-05-15 2014-10-29 宁波新容电器科技有限公司 Anti-explosion cover fixing frame of capacitor
JP2017026359A (en) * 2015-07-16 2017-02-02 テクノ・モリオカ株式会社 Water quality sensor
US10262965B2 (en) * 2016-07-15 2019-04-16 Samsung Display Co., Ltd. Display device and manufacturing method thereof
KR101935666B1 (en) * 2017-05-15 2019-01-04 서울대학교산학협력단 Detachable needle electrode and multi-channel wireless intraoperative neuromonitoring system having the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220099612A1 (en) * 2019-03-07 2022-03-31 Kyungdong Navien Co., Ltd. Electrode terminal assembly for liquid quality meter apparatus and liquid quality meter apparatus comprising same
US11852601B2 (en) * 2019-03-07 2023-12-26 Kyungdong Navien Co., Ltd. Electrode terminal assembly for liquid quality meter apparatus and liquid quality meter apparatus comprising same

Also Published As

Publication number Publication date
KR102580325B1 (en) 2023-09-20
KR20200107759A (en) 2020-09-16
CN113366304A (en) 2021-09-07
CN113366304B (en) 2024-03-01

Similar Documents

Publication Publication Date Title
US4085993A (en) Sealed connector with barriers to contact bridging
US5899765A (en) Dual bladder connector
JP6488308B2 (en) Electrical assembly with leak-free connection
US11852601B2 (en) Electrode terminal assembly for liquid quality meter apparatus and liquid quality meter apparatus comprising same
CA3129588A1 (en) Electrode terminal assembly for liquid quality meter apparatus and liquid quality meter apparatus comprising same
US3693133A (en) Fluid tight electric connector
ATE295233T1 (en) DEVICE FOR DETERMINING AND/OR MONITORING A PREDETERMINED FILL LEVEL IN A CONTAINER
RU2002123292A (en) VOLTAGE PROTECTION DEVICE
US20110259084A1 (en) Gas sensor unit
US11865479B2 (en) Filter base for electronic connection to mating filter housing assembly
EP1846653A1 (en) Non-locking switch for filter monitoring
EP3741441A1 (en) Filtration device
CA3108851A1 (en) Safety outlet
US4010101A (en) Liquid trap
KR20160089389A (en) Valve device
US9857327B2 (en) Electrochemical sensor
CN210196442U (en) Sealing assembly for mating with an electrical equipment housing
US20230145088A1 (en) Filter base for electronic connection to mating filter housing assembly
KR101958717B1 (en) Reusable leak detection sensor
US11502448B2 (en) Spring-loaded connector
US7471177B2 (en) Actuating device
JP2017084742A (en) Power storage device manufacturing method
CN209745993U (en) Sensor with a sensor element
JP2015049139A (en) Water quality measurement device
JP4731673B2 (en) Water detection electrode

Legal Events

Date Code Title Description
EEER Examination request

Effective date: 20210809

EEER Examination request

Effective date: 20210809

EEER Examination request

Effective date: 20210809

EEER Examination request

Effective date: 20210809

EEER Examination request

Effective date: 20210809

EEER Examination request

Effective date: 20210809

EEER Examination request

Effective date: 20210809

EEER Examination request

Effective date: 20210809

EEER Examination request

Effective date: 20210809