CA3125733C - Inorganic fiber-formed article, mat for exhaust gas cleaning apparatus, and exhaust gas cleaning apparatus - Google Patents
Inorganic fiber-formed article, mat for exhaust gas cleaning apparatus, and exhaust gas cleaning apparatus Download PDFInfo
- Publication number
- CA3125733C CA3125733C CA3125733A CA3125733A CA3125733C CA 3125733 C CA3125733 C CA 3125733C CA 3125733 A CA3125733 A CA 3125733A CA 3125733 A CA3125733 A CA 3125733A CA 3125733 C CA3125733 C CA 3125733C
- Authority
- CA
- Canada
- Prior art keywords
- inorganic fiber
- formed article
- mat
- exhaust gas
- fibers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004140 cleaning Methods 0.000 title claims description 39
- 239000012784 inorganic fiber Substances 0.000 claims abstract description 41
- 238000012360 testing method Methods 0.000 claims abstract description 35
- 239000000835 fiber Substances 0.000 claims description 66
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 62
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 31
- 239000000377 silicon dioxide Substances 0.000 claims description 30
- 239000003054 catalyst Substances 0.000 claims description 24
- 238000009864 tensile test Methods 0.000 claims description 4
- 238000007373 indentation Methods 0.000 abstract 3
- 238000000746 purification Methods 0.000 abstract 2
- 239000007789 gas Substances 0.000 description 39
- 238000009987 spinning Methods 0.000 description 37
- 239000000243 solution Substances 0.000 description 32
- 239000012701 inorganic fiber precursor Substances 0.000 description 16
- 238000000034 method Methods 0.000 description 16
- 239000010410 layer Substances 0.000 description 15
- 239000011230 binding agent Substances 0.000 description 14
- 239000011248 coating agent Substances 0.000 description 13
- 239000002243 precursor Substances 0.000 description 13
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 12
- 238000000576 coating method Methods 0.000 description 11
- 238000010304 firing Methods 0.000 description 11
- 239000000463 material Substances 0.000 description 10
- 229910052782 aluminium Inorganic materials 0.000 description 9
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 229920000620 organic polymer Polymers 0.000 description 8
- 238000005259 measurement Methods 0.000 description 7
- 150000003377 silicon compounds Chemical class 0.000 description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- 238000007664 blowing Methods 0.000 description 6
- 239000000969 carrier Substances 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 239000003638 chemical reducing agent Substances 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 230000000704 physical effect Effects 0.000 description 5
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 4
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 229920000058 polyacrylate Polymers 0.000 description 4
- 229920002451 polyvinyl alcohol Polymers 0.000 description 4
- 235000019422 polyvinyl alcohol Nutrition 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 229920000800 acrylic rubber Polymers 0.000 description 3
- 239000006227 byproduct Substances 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 239000012212 insulator Substances 0.000 description 3
- 238000005507 spraying Methods 0.000 description 3
- 229920003169 water-soluble polymer Polymers 0.000 description 3
- VZSRBBMJRBPUNF-UHFFFAOYSA-N 2-(2,3-dihydro-1H-inden-2-ylamino)-N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]pyrimidine-5-carboxamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C(=O)NCCC(N1CC2=C(CC1)NN=N2)=O VZSRBBMJRBPUNF-UHFFFAOYSA-N 0.000 description 2
- 229920000178 Acrylic resin Polymers 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 2
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 229920000459 Nitrile rubber Polymers 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 239000012790 adhesive layer Substances 0.000 description 2
- 239000001768 carboxy methyl cellulose Substances 0.000 description 2
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 2
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000032798 delamination Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 238000012856 packing Methods 0.000 description 2
- 238000007719 peel strength test Methods 0.000 description 2
- 238000004080 punching Methods 0.000 description 2
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 2
- 238000003980 solgel method Methods 0.000 description 2
- 229910052596 spinel Inorganic materials 0.000 description 2
- 239000011029 spinel Substances 0.000 description 2
- 238000005728 strengthening Methods 0.000 description 2
- 229910018626 Al(OH) Inorganic materials 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 1
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- -1 latexes Substances 0.000 description 1
- 229910052863 mullite Inorganic materials 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000011819 refractory material Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 229920003051 synthetic elastomer Polymers 0.000 description 1
- 239000005061 synthetic rubber Substances 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
Classifications
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/44—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling
- D04H1/46—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/24—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
- F01N3/28—Construction of catalytic reactors
- F01N3/2839—Arrangements for mounting catalyst support in housing, e.g. with means for compensating thermal expansion or vibration
- F01N3/2853—Arrangements for mounting catalyst support in housing, e.g. with means for compensating thermal expansion or vibration using mats or gaskets between catalyst body and housing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/86—Catalytic processes
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/62227—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres
- C04B35/62231—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres based on oxide ceramics
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/62227—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres
- C04B35/62231—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres based on oxide ceramics
- C04B35/62236—Fibres based on aluminium oxide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/62227—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres
- C04B35/62231—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres based on oxide ceramics
- C04B35/6224—Fibres based on silica
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/62227—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres
- C04B35/62231—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres based on oxide ceramics
- C04B35/6225—Fibres based on zirconium oxide, e.g. zirconates such as PZT
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/62227—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres
- C04B35/62231—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres based on oxide ceramics
- C04B35/62259—Fibres based on titanium oxide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/624—Sol-gel processing
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/42—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
- D04H1/4209—Inorganic fibres
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N13/00—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
- F01N13/16—Selection of particular materials
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/24—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
- F01N3/28—Construction of catalytic reactors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/24—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
- F01N3/28—Construction of catalytic reactors
- F01N3/2803—Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support
- F01N3/2835—Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support fibrous
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D65/00—Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
- B01D65/10—Testing of membranes or membrane apparatus; Detecting or repairing leaks
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/34—Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3418—Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/44—Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
- C04B2235/444—Halide containing anions, e.g. bromide, iodate, chlorite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/48—Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
- C04B2235/483—Si-containing organic compounds, e.g. silicone resins, (poly)silanes, (poly)siloxanes or (poly)silazanes
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H3/00—Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
- D04H3/08—Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
- D04H3/10—Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between yarns or filaments made mechanically
- D04H3/105—Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between yarns or filaments made mechanically by needling
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H5/00—Non woven fabrics formed of mixtures of relatively short fibres and yarns or like filamentary material of substantial length
- D04H5/02—Non woven fabrics formed of mixtures of relatively short fibres and yarns or like filamentary material of substantial length strengthened or consolidated by mechanical methods, e.g. needling
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2101/00—Inorganic fibres
- D10B2101/02—Inorganic fibres based on oxides or oxide ceramics, e.g. silicates
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2101/00—Inorganic fibres
- D10B2101/02—Inorganic fibres based on oxides or oxide ceramics, e.g. silicates
- D10B2101/06—Glass
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2101/00—Inorganic fibres
- D10B2101/02—Inorganic fibres based on oxides or oxide ceramics, e.g. silicates
- D10B2101/08—Ceramic
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N13/00—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
- F01N13/14—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having thermal insulation
- F01N13/148—Multiple layers of insulating material
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2310/00—Selection of sound absorbing or insulating material
- F01N2310/04—Metallic wool, e.g. steel wool, copper wool or the like
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2330/00—Structure of catalyst support or particle filter
- F01N2330/06—Ceramic, e.g. monoliths
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2330/00—Structure of catalyst support or particle filter
- F01N2330/10—Fibrous material, e.g. mineral or metallic wool
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2330/00—Structure of catalyst support or particle filter
- F01N2330/10—Fibrous material, e.g. mineral or metallic wool
- F01N2330/101—Fibrous material, e.g. mineral or metallic wool using binders, e.g. to form a permeable mat, paper or the like
- F01N2330/102—Fibrous material, e.g. mineral or metallic wool using binders, e.g. to form a permeable mat, paper or the like fibrous material being fiber reinforced polymer made of plastic matrix reinforced by fine glass or in the form of a loose mass of filaments or fibers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2330/00—Structure of catalyst support or particle filter
- F01N2330/12—Metallic wire mesh fabric or knitting
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2340/00—Dimensional characteristics of the exhaust system, e.g. length, diameter or volume of the apparatus; Spatial arrangements of exhaust apparatuses
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2530/00—Selection of materials for tubes, chambers or housings
- F01N2530/18—Plastics material, e.g. polyester resin
- F01N2530/20—Plastics material, e.g. polyester resin reinforced with mineral or metallic fibres
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/24—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
- F01N3/28—Construction of catalytic reactors
- F01N3/2839—Arrangements for mounting catalyst support in housing, e.g. with means for compensating thermal expansion or vibration
- F01N3/285—Arrangements for mounting catalyst support in housing, e.g. with means for compensating thermal expansion or vibration specially adapted for fibrous supports, e.g. held in place by screens
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/24—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
- F01N3/28—Construction of catalytic reactors
- F01N3/2839—Arrangements for mounting catalyst support in housing, e.g. with means for compensating thermal expansion or vibration
- F01N3/2853—Arrangements for mounting catalyst support in housing, e.g. with means for compensating thermal expansion or vibration using mats or gaskets between catalyst body and housing
- F01N3/2857—Arrangements for mounting catalyst support in housing, e.g. with means for compensating thermal expansion or vibration using mats or gaskets between catalyst body and housing the mats or gaskets being at least partially made of intumescent material, e.g. unexpanded vermiculite
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/24—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
- F01N3/28—Construction of catalytic reactors
- F01N3/2839—Arrangements for mounting catalyst support in housing, e.g. with means for compensating thermal expansion or vibration
- F01N3/2853—Arrangements for mounting catalyst support in housing, e.g. with means for compensating thermal expansion or vibration using mats or gaskets between catalyst body and housing
- F01N3/2864—Arrangements for mounting catalyst support in housing, e.g. with means for compensating thermal expansion or vibration using mats or gaskets between catalyst body and housing the mats or gaskets comprising two or more insulation layers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/24—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
- F01N3/28—Construction of catalytic reactors
- F01N3/2839—Arrangements for mounting catalyst support in housing, e.g. with means for compensating thermal expansion or vibration
- F01N3/2853—Arrangements for mounting catalyst support in housing, e.g. with means for compensating thermal expansion or vibration using mats or gaskets between catalyst body and housing
- F01N3/2867—Arrangements for mounting catalyst support in housing, e.g. with means for compensating thermal expansion or vibration using mats or gaskets between catalyst body and housing the mats or gaskets being placed at the front or end face of catalyst body
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/20—Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Manufacturing & Machinery (AREA)
- Ceramic Engineering (AREA)
- Mechanical Engineering (AREA)
- Inorganic Chemistry (AREA)
- Textile Engineering (AREA)
- Combustion & Propulsion (AREA)
- General Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Structural Engineering (AREA)
- Materials Engineering (AREA)
- Toxicology (AREA)
- Environmental & Geological Engineering (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- General Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biomedical Technology (AREA)
- Dispersion Chemistry (AREA)
- Nonwoven Fabrics (AREA)
- Exhaust Gas After Treatment (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Treating Waste Gases (AREA)
- Inorganic Fibers (AREA)
- Catalysts (AREA)
- Chemical Or Physical Treatment Of Fibers (AREA)
Abstract
Provided are: an inorganic fiber formed body in which high basis weight and excellent peeling strength are balanced; a mat for an exhaust gas purification device using the inorganic fiber formed body; and the exhaust gas purification device. An inorganic fiber formed body constituted from inorganic fibers, having needle indentations extended in the thickness direction, vertical strands comprising the inorganic fibers extended in the thickness direction being present in the needle indentations, wherein the inorganic fiber formed body is characterized in that the basis weight is 1800 g/m2 or more, and the average volume of the vertical strands per needle indentation, measured using a specified peel test, is 0.5 mm3 or more, or the average volume per vertical strand is 1.0 mm3 or more.
Description
DESCRIPTION
Title of Invention: INORGANIC FIBER-FORMED ARTICLE, MAT FOR
EXHAUST GAS CLEANING APPARATUS, AND EXHAUST GAS CLEANING
APPARATUS
Technical Field [0001]
The present invention relates to an inorganic fiber-formed article subjected to needling. The present invention also relates to a mat formed of the inorganic fiber-formed article for an exhaust gas cleaning apparatus, that is, a holding member for a catalyst carrier of an exhaust gas cleaning apparatus, and an exhaust gas cleaning apparatus including the mat for an exhaust gas cleaning apparatus.
Background Art
Title of Invention: INORGANIC FIBER-FORMED ARTICLE, MAT FOR
EXHAUST GAS CLEANING APPARATUS, AND EXHAUST GAS CLEANING
APPARATUS
Technical Field [0001]
The present invention relates to an inorganic fiber-formed article subjected to needling. The present invention also relates to a mat formed of the inorganic fiber-formed article for an exhaust gas cleaning apparatus, that is, a holding member for a catalyst carrier of an exhaust gas cleaning apparatus, and an exhaust gas cleaning apparatus including the mat for an exhaust gas cleaning apparatus.
Background Art
[0002]
Formed articles of inorganic fibers typified by ceramic fibers have been used for applications exposed to high temperatures, for example, industrial heat insulators, refractory materials, and packing materials. Additionally, formed articles of inorganic fibers are used as mats (catalyst-holding materials) for automotive exhaust gas cleaning apparatuses. Catalyst-holding materials are cushioning materials for exhaust gas cleaning apparatuses, cushioning materials being wrapped around catalyst carriers and interposed (in gaps) between catalyst carriers and metal Date Recue/Date Received 2021-07-05 casings when catalyst carriers are housed in metal casings.
To improve catalytic efficiency, there has recently been a tendency to dispose exhaust gas cleaning apparatuses in high-temperature sections immediately below engines. Thus, in order to cope with gap extension at higher temperatures and prevent leakage of exhaust gases and damage to catalyst carriers, inorganic fiber-formed articles are required to have high basis weight.
Formed articles of inorganic fibers typified by ceramic fibers have been used for applications exposed to high temperatures, for example, industrial heat insulators, refractory materials, and packing materials. Additionally, formed articles of inorganic fibers are used as mats (catalyst-holding materials) for automotive exhaust gas cleaning apparatuses. Catalyst-holding materials are cushioning materials for exhaust gas cleaning apparatuses, cushioning materials being wrapped around catalyst carriers and interposed (in gaps) between catalyst carriers and metal Date Recue/Date Received 2021-07-05 casings when catalyst carriers are housed in metal casings.
To improve catalytic efficiency, there has recently been a tendency to dispose exhaust gas cleaning apparatuses in high-temperature sections immediately below engines. Thus, in order to cope with gap extension at higher temperatures and prevent leakage of exhaust gases and damage to catalyst carriers, inorganic fiber-formed articles are required to have high basis weight.
[0003]
Patent Literature 1 describes a mat material containing an inorganic fiber and having multiple needle marks formed by needling , the needle marks extending from a first surface toward a second surface and extending from the second surface toward the first surface, in which the needle marks are formed so as not to penetrate therethrough in the thickness direction, and substantially no protruding portion of an inorganic fiber bundle is present. Claim 3 of Patent Literature 1 states that the mat material preferably has a basis weight of 1,500 g/m2 to 2,800 g/m2. However, there have been increasing demands for inorganic fiber-formed articles. An inorganic fiber-formed article subjected to needling by a method described in Patent Literature 1 had insufficient peel strength in the thickness direction.
Patent Literature 1 describes a mat material containing an inorganic fiber and having multiple needle marks formed by needling , the needle marks extending from a first surface toward a second surface and extending from the second surface toward the first surface, in which the needle marks are formed so as not to penetrate therethrough in the thickness direction, and substantially no protruding portion of an inorganic fiber bundle is present. Claim 3 of Patent Literature 1 states that the mat material preferably has a basis weight of 1,500 g/m2 to 2,800 g/m2. However, there have been increasing demands for inorganic fiber-formed articles. An inorganic fiber-formed article subjected to needling by a method described in Patent Literature 1 had insufficient peel strength in the thickness direction.
[0004]
Patent Literature 2 describes a multilayer mat in which Date Recue/Date Received 2021-07-05 multiple mat elements composed of fired inorganic fibers are bonded together. An adhesive layer that bonds the mat elements together is disposed between the mat elements.
Multiple holes are arranged on main surfaces of the mat elements facing each other. The insides of the holes are filled with an adhesive included in the adhesive layer. An example of Patent Literature 2 discloses a multilayer mat in which two fired sheet-like articles each having a basis weight of 1,050 g/m2 and being composed of inorganic fibers are bonded together. However, the multilayer mat in which the fired sheet-like articles composed of inorganic fibers are bonded together with an adhesive may peel off between bonded layers.
Citation List Patent Literature
Patent Literature 2 describes a multilayer mat in which Date Recue/Date Received 2021-07-05 multiple mat elements composed of fired inorganic fibers are bonded together. An adhesive layer that bonds the mat elements together is disposed between the mat elements.
Multiple holes are arranged on main surfaces of the mat elements facing each other. The insides of the holes are filled with an adhesive included in the adhesive layer. An example of Patent Literature 2 discloses a multilayer mat in which two fired sheet-like articles each having a basis weight of 1,050 g/m2 and being composed of inorganic fibers are bonded together. However, the multilayer mat in which the fired sheet-like articles composed of inorganic fibers are bonded together with an adhesive may peel off between bonded layers.
Citation List Patent Literature
[0005]
PTL 1: Japanese Unexamined Patent Application Publication No. 2009-085091 PTL 2: Japanese Unexamined Patent Application Publication No. 2019-116076
PTL 1: Japanese Unexamined Patent Application Publication No. 2009-085091 PTL 2: Japanese Unexamined Patent Application Publication No. 2019-116076
[0006]
As described above, in the past, there has been no inorganic fiber-formed article that has undergone needling and that has both high basis weight and excellent peel strength.
Date Recue/Date Received 2021-07-05 Summary of Invention Technical Problem
As described above, in the past, there has been no inorganic fiber-formed article that has undergone needling and that has both high basis weight and excellent peel strength.
Date Recue/Date Received 2021-07-05 Summary of Invention Technical Problem
[0007]
The present invention aims to provide an inorganic fiber-formed article having both high basis weight and excellent peel strength and a mat for an exhaust gas cleaning apparatus and an exhaust gas cleaning apparatus including the inorganic fiber-formed article.
Solution to Problem
The present invention aims to provide an inorganic fiber-formed article having both high basis weight and excellent peel strength and a mat for an exhaust gas cleaning apparatus and an exhaust gas cleaning apparatus including the inorganic fiber-formed article.
Solution to Problem
[0008]
The inventors have focused on the form of vertical bundles that are composed of inorganic fibers and that extend in the thickness direction of an inorganic fiber-formed article. Hitherto, vertical bundles in inorganic fiber-formed articles having high basis weight have an average volume of about 0.01 to about 0.2 mm3 per needle mark. Additionally, the volume of each effective vertical bundle is about 0.02 to about 0.9 mm3 on average. The inventors have found that in the case of an inorganic fiber-formed article in which the average volume of vertical bundles is within a specific range, the vertical bundles are firmly formed to enable the achievement of both high basis weight and peel strength, which are conflicting physical properties.
The inventors have focused on the form of vertical bundles that are composed of inorganic fibers and that extend in the thickness direction of an inorganic fiber-formed article. Hitherto, vertical bundles in inorganic fiber-formed articles having high basis weight have an average volume of about 0.01 to about 0.2 mm3 per needle mark. Additionally, the volume of each effective vertical bundle is about 0.02 to about 0.9 mm3 on average. The inventors have found that in the case of an inorganic fiber-formed article in which the average volume of vertical bundles is within a specific range, the vertical bundles are firmly formed to enable the achievement of both high basis weight and peel strength, which are conflicting physical properties.
[0009]
Date Recue/Date Received 2021-07-05 The gist of an inorganic fiber-formed article of the present invention is described below.
Date Recue/Date Received 2021-07-05 The gist of an inorganic fiber-formed article of the present invention is described below.
[0010]
An inorganic fiber-formed article, comprising:
inorganic fibers; and needle marks extending in a thickness direction and including vertical bundles composed of the inorganic fibers extending in the thickness direction, wherein the inorganic fiber-formed article has a basis weight of 1,800 g/m2 or more, in the case where a peel test described below is performed, when the vertical bundles having a diameter of 100 lam or more and a protruding length of 2 mm or more among all the vertical bundles protruding from a first peeled surface and a second peeled surface in a region measuring 50 mm x 50 mm are expressed as effective vertical bundles, at least one of characteristics (I) and (II) described below is satisfied, (I) an average volume of the effective vertical bundles per needle mark determined by dividing a total volume of portions of the effective vertical bundles protruding from the peeled surfaces in the region by the number of the needle marks in the region is 0.5 mm3 or more, and (II) an average volume of a portion of each of the effective vertical bundles protruding from the peeled surfaces in the Date Recue/Date Received 2021-07-05 region is 1.0 mm3 or more, and
An inorganic fiber-formed article, comprising:
inorganic fibers; and needle marks extending in a thickness direction and including vertical bundles composed of the inorganic fibers extending in the thickness direction, wherein the inorganic fiber-formed article has a basis weight of 1,800 g/m2 or more, in the case where a peel test described below is performed, when the vertical bundles having a diameter of 100 lam or more and a protruding length of 2 mm or more among all the vertical bundles protruding from a first peeled surface and a second peeled surface in a region measuring 50 mm x 50 mm are expressed as effective vertical bundles, at least one of characteristics (I) and (II) described below is satisfied, (I) an average volume of the effective vertical bundles per needle mark determined by dividing a total volume of portions of the effective vertical bundles protruding from the peeled surfaces in the region by the number of the needle marks in the region is 0.5 mm3 or more, and (II) an average volume of a portion of each of the effective vertical bundles protruding from the peeled surfaces in the Date Recue/Date Received 2021-07-05 region is 1.0 mm3 or more, and
[0011]
<Peel Test>
A test specimen having a width of 50 mm and a length of 150 mm is cut out from the inorganic fiber-formed article, a cut having a depth of 30 mm is made in a middle of a thickness of an end face of the test specimen, and both ends formed by the cut are held by gripping jigs, mounted on a tensile testing machine, and pulled in opposite thickness directions at a speed of 500 mm/min into two pieces.
<Peel Test>
A test specimen having a width of 50 mm and a length of 150 mm is cut out from the inorganic fiber-formed article, a cut having a depth of 30 mm is made in a middle of a thickness of an end face of the test specimen, and both ends formed by the cut are held by gripping jigs, mounted on a tensile testing machine, and pulled in opposite thickness directions at a speed of 500 mm/min into two pieces.
[0012]
In one embodiment of the present invention, the needle mark density is 1 to 100 marks/cm2.
In one embodiment of the present invention, the needle mark density is 1 to 100 marks/cm2.
[0013]
In one embodiment of the present invention, the maximum peel strength determined as a peak load (N) in the peel test is 5.0 N or more.
In one embodiment of the present invention, the maximum peel strength determined as a peak load (N) in the peel test is 5.0 N or more.
[0014]
In one embodiment of the present invention, the inorganic fibers are alumina/silica-based fibers.
In one embodiment of the present invention, the inorganic fibers are alumina/silica-based fibers.
[0015]
A mat for an exhaust gas cleaning apparatus of the present invention includes the inorganic fiber-formed article of the present invention.
A mat for an exhaust gas cleaning apparatus of the present invention includes the inorganic fiber-formed article of the present invention.
[0016]
Date Recue/Date Received 2021-07-05 An exhaust gas cleaning apparatus includes a catalyst carrier, a casing that covers the outside of the catalyst carrier, and a mat interposed between the catalyst carrier and the casing, in which the mat is the mat for an exhaust gas cleaning apparatus of the present invention.
Advantageous Effects of Invention
Date Recue/Date Received 2021-07-05 An exhaust gas cleaning apparatus includes a catalyst carrier, a casing that covers the outside of the catalyst carrier, and a mat interposed between the catalyst carrier and the casing, in which the mat is the mat for an exhaust gas cleaning apparatus of the present invention.
Advantageous Effects of Invention
[0017]
The inorganic fiber-formed article of the present invention satisfies at least one of characteristics (I) and (II); thus, the fibers in the substantially thickness direction are firmly entangled with each other inside the inorganic fiber-formed article to enable the inorganic fiber-formed article to have high basis weight and excellent peel strength.
Brief Description of Drawings
The inorganic fiber-formed article of the present invention satisfies at least one of characteristics (I) and (II); thus, the fibers in the substantially thickness direction are firmly entangled with each other inside the inorganic fiber-formed article to enable the inorganic fiber-formed article to have high basis weight and excellent peel strength.
Brief Description of Drawings
[0018]
[Fig. 1] Fig. 1 is an explanatory drawing of a peel strength test.
[Fig. 2] Fig. 2 is an explanatory drawing of a test specimen for a peel strength test.
Description of Embodiments
[Fig. 1] Fig. 1 is an explanatory drawing of a peel strength test.
[Fig. 2] Fig. 2 is an explanatory drawing of a test specimen for a peel strength test.
Description of Embodiments
[0019]
Embodiments of the present invention will be described in detail below.
Embodiments of the present invention will be described in detail below.
[0020]
Date Recue/Date Received 2021-07-05 The expression "a to b" in a numerical range indicates "a or more and b or less".
Date Recue/Date Received 2021-07-05 The expression "a to b" in a numerical range indicates "a or more and b or less".
[0021]
Even when the upper and lower limits of a numerical range in the present specification are slightly beyond the numerical range specified by the present invention, they are included within the equivalent scope of the present invention as long as the same effects as those in the numerical range specified by the present invention are provided.
Even when the upper and lower limits of a numerical range in the present specification are slightly beyond the numerical range specified by the present invention, they are included within the equivalent scope of the present invention as long as the same effects as those in the numerical range specified by the present invention are provided.
[0022]
[Inorganic Fiber-Formed Article]
The inorganic fiber-formed article of the present invention comprises:
inorganic fibers; and needle marks extending in a thickness direction and including vertical bundles composed of the inorganic fibers extending in the thickness direction, wherein the inorganic fiber-formed article has a basis weight of 1,800 g/m2 or more, in the case where a peel test described below is performed, when the vertical bundles having a diameter of 100 pm or more and a protruding length of 2 mm or more among all the vertical bundles protruding from a first peeled surface and a second peeled surface in a region measuring 50 Date Recue/Date Received 2021-07-05 mm x 50 mm are expressed as effective vertical bundles, at least one of characteristics (I) and (II) described below is satisfied.
(I) An average volume of the effective vertical bundles per needle mark determined by dividing a total volume of portions of the effective vertical bundles protruding from the peeled surfaces in the region by the number of the needle marks in the region is 0.5 mm3 or more.
(II) An average volume of a portion of each of the effective vertical bundles protruding from the peeled surfaces in the region is 1.0 mm3 or more.
[Inorganic Fiber-Formed Article]
The inorganic fiber-formed article of the present invention comprises:
inorganic fibers; and needle marks extending in a thickness direction and including vertical bundles composed of the inorganic fibers extending in the thickness direction, wherein the inorganic fiber-formed article has a basis weight of 1,800 g/m2 or more, in the case where a peel test described below is performed, when the vertical bundles having a diameter of 100 pm or more and a protruding length of 2 mm or more among all the vertical bundles protruding from a first peeled surface and a second peeled surface in a region measuring 50 Date Recue/Date Received 2021-07-05 mm x 50 mm are expressed as effective vertical bundles, at least one of characteristics (I) and (II) described below is satisfied.
(I) An average volume of the effective vertical bundles per needle mark determined by dividing a total volume of portions of the effective vertical bundles protruding from the peeled surfaces in the region by the number of the needle marks in the region is 0.5 mm3 or more.
(II) An average volume of a portion of each of the effective vertical bundles protruding from the peeled surfaces in the region is 1.0 mm3 or more.
[0023]
The inorganic fiber-formed article of the present invention is formed of inorganic fibers and subjected to needling . The inorganic fiber-formed article has a mat shape having a predetermined thickness. Hereinafter, a surface of the inorganic fiber-formed article perpendicular to the thickness direction may also be referred to as a "mat surface". A side face (a face extending in the thickness direction) of the inorganic fiber-formed article perpendicular to the mat surface may also be referred to as an "end face".
The inorganic fiber-formed article of the present invention is formed of inorganic fibers and subjected to needling . The inorganic fiber-formed article has a mat shape having a predetermined thickness. Hereinafter, a surface of the inorganic fiber-formed article perpendicular to the thickness direction may also be referred to as a "mat surface". A side face (a face extending in the thickness direction) of the inorganic fiber-formed article perpendicular to the mat surface may also be referred to as an "end face".
[0024]
[Method for Producing Inorganic Fiber-Formed Article]
The inorganic fiber-formed article of the present Date Recue/Date Received 2021-07-05 invention can be produced by a method including a step of forming a mat-like aggregate of an inorganic fiber precursor by a sol-gel method, a step of subjecting the resulting mat-like aggregate of the inorganic fiber precursor to needling , and a firing step of firing the mat-like aggregate of the inorganic fiber precursor subjected to the needling into an inorganic fiber-formed article. However, the inorganic fiber-formed article of the present invention may be produced by another method.
[Method for Producing Inorganic Fiber-Formed Article]
The inorganic fiber-formed article of the present Date Recue/Date Received 2021-07-05 invention can be produced by a method including a step of forming a mat-like aggregate of an inorganic fiber precursor by a sol-gel method, a step of subjecting the resulting mat-like aggregate of the inorganic fiber precursor to needling , and a firing step of firing the mat-like aggregate of the inorganic fiber precursor subjected to the needling into an inorganic fiber-formed article. However, the inorganic fiber-formed article of the present invention may be produced by another method.
[0025]
While an example of the method for producing an inorganic fiber formed article will be described below by taking a method for producing an alumina/silica-based fiber formed article as an example, the inorganic fiber-formed article of the present invention is not limited to the alumina/silica-based fiber formed article. As described above, the inorganic fiber-formed article may be a formed article formed of fibers of silica, zirconia, spinel, or titania, or composite fibers thereof.
While an example of the method for producing an inorganic fiber formed article will be described below by taking a method for producing an alumina/silica-based fiber formed article as an example, the inorganic fiber-formed article of the present invention is not limited to the alumina/silica-based fiber formed article. As described above, the inorganic fiber-formed article may be a formed article formed of fibers of silica, zirconia, spinel, or titania, or composite fibers thereof.
[0026]
<Spinning Step>
To produce a mat-like aggregate of alumina/silica-based fibers by a sol-gel method, fibers are spun from a spinning solution containing basic aluminum chloride, a silicon compound, an organic polymer serving as a thickener, and Date Recue/Date Received 2021-07-05 water by a blowing method into an alumina/silica fiber precursor aggregate.
<Spinning Step>
To produce a mat-like aggregate of alumina/silica-based fibers by a sol-gel method, fibers are spun from a spinning solution containing basic aluminum chloride, a silicon compound, an organic polymer serving as a thickener, and Date Recue/Date Received 2021-07-05 water by a blowing method into an alumina/silica fiber precursor aggregate.
[0027]
<<Preparation of Spinning Solution>>
Basic aluminum chloride Al(OH)3-Cl x can be prepared by, for example, dissolving metal aluminum in hydrochloric acid or an aqueous solution of aluminum chloride. In the chemical formula described above, the value of x is usually in the range of 0.45 to 0.54 and preferably 0.5 to 0.53. As the silicon compound, a silica sol is preferably used.
Tetraethyl silicate or a water-soluble silicon compound, such as a water-soluble siloxane derivative, may also be used. As the organic polymer, for example, a water-soluble polymer compound, such as polyvinyl alcohol, polyethylene glycol, or polyacrylamide, is preferably used. They usually have a degree of polymerization of 1,000 to 3,000.
<<Preparation of Spinning Solution>>
Basic aluminum chloride Al(OH)3-Cl x can be prepared by, for example, dissolving metal aluminum in hydrochloric acid or an aqueous solution of aluminum chloride. In the chemical formula described above, the value of x is usually in the range of 0.45 to 0.54 and preferably 0.5 to 0.53. As the silicon compound, a silica sol is preferably used.
Tetraethyl silicate or a water-soluble silicon compound, such as a water-soluble siloxane derivative, may also be used. As the organic polymer, for example, a water-soluble polymer compound, such as polyvinyl alcohol, polyethylene glycol, or polyacrylamide, is preferably used. They usually have a degree of polymerization of 1,000 to 3,000.
[0028]
With respect to the spinning solution, the ratio of aluminum originating from basic aluminum chloride to silicon originating from the silicon compound is usually 99:1 to 65:35 and preferably 99:1 to 70:30 in terms of A1203 and 5i02 on a weight basis. The spinning solution preferably has an aluminum concentration of 170 to 210 g/L and an organic polymer concentration of 20 to 50 g/L.
With respect to the spinning solution, the ratio of aluminum originating from basic aluminum chloride to silicon originating from the silicon compound is usually 99:1 to 65:35 and preferably 99:1 to 70:30 in terms of A1203 and 5i02 on a weight basis. The spinning solution preferably has an aluminum concentration of 170 to 210 g/L and an organic polymer concentration of 20 to 50 g/L.
[0029]
Date Recue/Date Received 2021-07-05 In the case where the amount of the silicon compound in the spinning solution is smaller than the above range, alumina contained in short fibers is easily transformed into a-alumina. Furthermore, alumina particles coarsen, thereby easily causing embrittlement of the short fibers. In the case where the amount of the silicon compound in the spinning solution is larger than the above range, the amount of silica (SiO2) formed together with mullite (3A1203.2Si02) is increased, thereby easily causing a decrease in heat resistance.
Date Recue/Date Received 2021-07-05 In the case where the amount of the silicon compound in the spinning solution is smaller than the above range, alumina contained in short fibers is easily transformed into a-alumina. Furthermore, alumina particles coarsen, thereby easily causing embrittlement of the short fibers. In the case where the amount of the silicon compound in the spinning solution is larger than the above range, the amount of silica (SiO2) formed together with mullite (3A1203.2Si02) is increased, thereby easily causing a decrease in heat resistance.
[0030]
In the case where the spinning solution has an aluminum concentration of less than 170 g/L or an organic polymer concentration of less than 20 g/L, the spinning solution does not have an appropriate viscosity, thereby causing the resulting alumina/silica-based fibers to have a smaller fiber diameter. That is, the excessively large amount of free water in the spinning solution results in a low drying rate during the spinning by the blowing method to lead to excessive extension. This causes the spun precursor fibers to have varying diameters, failing to produce short fibers having a predetermined average fiber diameter and a sharp fiber diameter distribution. Furthermore, an aluminum concentration of less than 170 g/L results in a decrease in productivity. At an aluminum concentration of more than 210 Date Recue/Date Received 2021-07-05 g/L or an organic polymer concentration of more than 50 g/L, an excessively high viscosity is obtained in either case;
thus, the solution cannot be used as a spinning solution.
The spinning solution preferably has an aluminum concentration of 180 to 200 g/L and an organic polymer concentration of 30 to 40 g/L.
In the case where the spinning solution has an aluminum concentration of less than 170 g/L or an organic polymer concentration of less than 20 g/L, the spinning solution does not have an appropriate viscosity, thereby causing the resulting alumina/silica-based fibers to have a smaller fiber diameter. That is, the excessively large amount of free water in the spinning solution results in a low drying rate during the spinning by the blowing method to lead to excessive extension. This causes the spun precursor fibers to have varying diameters, failing to produce short fibers having a predetermined average fiber diameter and a sharp fiber diameter distribution. Furthermore, an aluminum concentration of less than 170 g/L results in a decrease in productivity. At an aluminum concentration of more than 210 Date Recue/Date Received 2021-07-05 g/L or an organic polymer concentration of more than 50 g/L, an excessively high viscosity is obtained in either case;
thus, the solution cannot be used as a spinning solution.
The spinning solution preferably has an aluminum concentration of 180 to 200 g/L and an organic polymer concentration of 30 to 40 g/L.
[0031]
The foregoing spinning solution is prepared by adding the silicon compound and the organic polymer to an aqueous solution of basic aluminum chloride in amounts to satisfy the foregoing ratio of A1203:Si02 and concentrating the mixture in such a manner that the aluminum concentration and the concentration of the organic polymer are within the above ranges.
The foregoing spinning solution is prepared by adding the silicon compound and the organic polymer to an aqueous solution of basic aluminum chloride in amounts to satisfy the foregoing ratio of A1203:Si02 and concentrating the mixture in such a manner that the aluminum concentration and the concentration of the organic polymer are within the above ranges.
[0032]
<<Blowing>>
Spinning (the formation of fibers from the spinning solution) is usually performed by a blowing method in which a spinning solution is fed into a high-velocity spinning gas flow, thereby producing a short-fiber alumina precursor.
The structure of a spinning nozzle used in the spinning described above is not particularly limited. For example, as described in Japanese Patent No. 2602460, a structure is preferred in which an airflow emerging from an air nozzle and the flow of a spinning solution emerging from a spinning Date Recue/Date Received 2021-07-05 solution supply nozzle are parallel to each other and in which the parallel flow of air is sufficiently rectified and comes into contact with the spinning solution.
<<Blowing>>
Spinning (the formation of fibers from the spinning solution) is usually performed by a blowing method in which a spinning solution is fed into a high-velocity spinning gas flow, thereby producing a short-fiber alumina precursor.
The structure of a spinning nozzle used in the spinning described above is not particularly limited. For example, as described in Japanese Patent No. 2602460, a structure is preferred in which an airflow emerging from an air nozzle and the flow of a spinning solution emerging from a spinning Date Recue/Date Received 2021-07-05 solution supply nozzle are parallel to each other and in which the parallel flow of air is sufficiently rectified and comes into contact with the spinning solution.
[0033]
With respect to spinning, preferably, fibers sufficiently drawn from the spinning solution are formed under conditions in which the evaporation of water and the decomposition of the spinning solution are prevented, and then the resulting fibers are rapidly dried. To this end, the atmosphere is preferably changed from a state in which the evaporation of water is suppressed to a state in which the evaporation of water is promoted, in the course from the formation of the fibers from the spinning solution to the arrival of the fibers at a fiber collecting device.
With respect to spinning, preferably, fibers sufficiently drawn from the spinning solution are formed under conditions in which the evaporation of water and the decomposition of the spinning solution are prevented, and then the resulting fibers are rapidly dried. To this end, the atmosphere is preferably changed from a state in which the evaporation of water is suppressed to a state in which the evaporation of water is promoted, in the course from the formation of the fibers from the spinning solution to the arrival of the fibers at a fiber collecting device.
[0034]
The alumina/silica-based fiber precursor can be collected, accumulated, and recovered in the form of a continuous sheet-like aggregate (thin-layer sheet) composed of the alumina/silica-based fiber precursor with an accumulating device having a structure in which a wire-mesh endless belt is disposed so as to be substantially perpendicular to the spinning airflow and in which the spinning airflow containing the alumina/silica-based fiber precursor impinges on the belt while the endless belt is rotated.
Date Recue/Date Received 2021-07-05
The alumina/silica-based fiber precursor can be collected, accumulated, and recovered in the form of a continuous sheet-like aggregate (thin-layer sheet) composed of the alumina/silica-based fiber precursor with an accumulating device having a structure in which a wire-mesh endless belt is disposed so as to be substantially perpendicular to the spinning airflow and in which the spinning airflow containing the alumina/silica-based fiber precursor impinges on the belt while the endless belt is rotated.
Date Recue/Date Received 2021-07-05
[0035]
The thin-layer sheet preferably, but not necessarily, has a basis weight of about 10 to about 200 g/m2, particularly preferably about 30 to about 100 g/m2.
The thin-layer sheet preferably, but not necessarily, has a basis weight of about 10 to about 200 g/m2, particularly preferably about 30 to about 100 g/m2.
[0036]
The thin-layer sheet recovered by the accumulating device can then be stacked. Specifically, for example, the inorganic fiber precursor aggregate (thin-layer sheet) is continuously unwound and fed to a folding device. The thin-layer sheet is folded to a predetermined width and stacked.
Simultaneously, the folded sheet is continuously transferred in a direction perpendicular to a folding direction to form a laminated aggregate (laminated sheet) composed of the inorganic fiber precursor. The stacking of the thin-layer sheet in this manner provides the laminated sheet having a uniform basis weight (weight per unit area) across the entire sheet. As the foregoing folding device, a device described in Japanese Unexamined Patent Application Publication No. 2000-80547 may be used.
The thin-layer sheet recovered by the accumulating device can then be stacked. Specifically, for example, the inorganic fiber precursor aggregate (thin-layer sheet) is continuously unwound and fed to a folding device. The thin-layer sheet is folded to a predetermined width and stacked.
Simultaneously, the folded sheet is continuously transferred in a direction perpendicular to a folding direction to form a laminated aggregate (laminated sheet) composed of the inorganic fiber precursor. The stacking of the thin-layer sheet in this manner provides the laminated sheet having a uniform basis weight (weight per unit area) across the entire sheet. As the foregoing folding device, a device described in Japanese Unexamined Patent Application Publication No. 2000-80547 may be used.
[0037]
The laminated sheet is preferably formed by stacking five or more layers, more preferably eight or more layers, particularly preferably 10 to 80 layers of the thin-layer sheet. However, the number of layers stacked is not limited thereto.
Date Recue/Date Received 2021-07-05
The laminated sheet is preferably formed by stacking five or more layers, more preferably eight or more layers, particularly preferably 10 to 80 layers of the thin-layer sheet. However, the number of layers stacked is not limited thereto.
Date Recue/Date Received 2021-07-05
[0038]
<Needling Aid Coating Step>
A needling aid is coated to the laminated sheet of the alumina/silica-based fiber precursor or a sheet surface of the laminated sheet obtained by spinning, as needed. The needling aid is preferably coated to both surfaces of the sheet.
<Needling Aid Coating Step>
A needling aid is coated to the laminated sheet of the alumina/silica-based fiber precursor or a sheet surface of the laminated sheet obtained by spinning, as needed. The needling aid is preferably coated to both surfaces of the sheet.
[0039]
Any agent effective in strengthening filaments near a mat surface of the inorganic fiber precursor aggregate can be used as the needling aid. Various coating agents, such as acrylic polymer coating agents, may be used.
Any agent effective in strengthening filaments near a mat surface of the inorganic fiber precursor aggregate can be used as the needling aid. Various coating agents, such as acrylic polymer coating agents, may be used.
[0040]
After the attachment of the needling aid, the mat-shaped inorganic fiber precursor aggregate may be dried. In other words, the needling aid is preferably attached by dry coating. The needling aid may be attached when the inorganic fiber precursor is accumulated.
After the attachment of the needling aid, the mat-shaped inorganic fiber precursor aggregate may be dried. In other words, the needling aid is preferably attached by dry coating. The needling aid may be attached when the inorganic fiber precursor is accumulated.
[0041]
A friction-reducing agent (surfactant or emulsion) effective in reducing the friction between needles and the fibers may be used in combination with the needling aid. In that case, the order of use of the needling aid and the friction-reducing agent is not particularly limited. For example, after the attachment of a solution of the needling Date Recue/Date Received 2021-07-05 aid, a solution or dispersion of the friction-reducing agent in a solvent is preferably applied by coating (wet coating).
A friction-reducing agent (surfactant or emulsion) effective in reducing the friction between needles and the fibers may be used in combination with the needling aid. In that case, the order of use of the needling aid and the friction-reducing agent is not particularly limited. For example, after the attachment of a solution of the needling Date Recue/Date Received 2021-07-05 aid, a solution or dispersion of the friction-reducing agent in a solvent is preferably applied by coating (wet coating).
[0042]
<Needling Process>
The needling aid is coated to the laminated sheet of the alumina/silica-based fiber precursor obtained by spinning, as needed, and then the laminated sheet is subjected to needling in which barbed needles are inserted and withdrawn from the laminated sheet. The needling may be performed from one or both of the surfaces, preferably both of the surfaces.
<Needling Process>
The needling aid is coated to the laminated sheet of the alumina/silica-based fiber precursor obtained by spinning, as needed, and then the laminated sheet is subjected to needling in which barbed needles are inserted and withdrawn from the laminated sheet. The needling may be performed from one or both of the surfaces, preferably both of the surfaces.
[0043]
The insertion and withdrawal of the needles are preferably performed in the direction perpendicular to the sheet surface of the laminated sheet. The needles are inserted deeper than the center of the laminated sheet in the thickness direction. The needles may be inserted so as to penetrate through the laminated sheet in the thickness direction.
The insertion and withdrawal of the needles are preferably performed in the direction perpendicular to the sheet surface of the laminated sheet. The needles are inserted deeper than the center of the laminated sheet in the thickness direction. The needles may be inserted so as to penetrate through the laminated sheet in the thickness direction.
[0044]
By the needling in this way, needle marks are formed on the inorganic fiber-formed article. That is, when the needling is performed in which the barbed needles are inserted and withdrawn from the inorganic fiber aggregate, the needles allow at least some of the fibers to extend in Date Recue/Date Received 2021-07-05 the substantially thickness direction in positions where the needles are inserted and withdrawn. This forms the needle marks on the surface of the inorganic fiber-formed article.
The filaments of the inorganic fibers extending in the substantially thickness direction inside the inorganic fiber-formed article subjected to needling are referred to as "vertical bundles".
By the needling in this way, needle marks are formed on the inorganic fiber-formed article. That is, when the needling is performed in which the barbed needles are inserted and withdrawn from the inorganic fiber aggregate, the needles allow at least some of the fibers to extend in Date Recue/Date Received 2021-07-05 the substantially thickness direction in positions where the needles are inserted and withdrawn. This forms the needle marks on the surface of the inorganic fiber-formed article.
The filaments of the inorganic fibers extending in the substantially thickness direction inside the inorganic fiber-formed article subjected to needling are referred to as "vertical bundles".
[0045]
The needling is performed in order to adjust the bulk density, the peel strength, the surface pressure (surface pressure after a high-temperature cycle), and the durability of resilience (surface pressure retention after the high-temperature cycle) of the inorganic fiber-formed article by forming the vertical bundles.
The needling is performed in order to adjust the bulk density, the peel strength, the surface pressure (surface pressure after a high-temperature cycle), and the durability of resilience (surface pressure retention after the high-temperature cycle) of the inorganic fiber-formed article by forming the vertical bundles.
[0046]
The needle marks may penetrate through the inorganic fiber-formed article. Alternatively, the needle marks may extend from one mat surface so as not to reach the other mat surface.
The needle marks may penetrate through the inorganic fiber-formed article. Alternatively, the needle marks may extend from one mat surface so as not to reach the other mat surface.
[0047]
<Firing Step>
The inorganic fiber-formed article of the present invention is preferably a fired inorganic fiber-formed article obtained by firing the inorganic fiber precursor subjected to needling. Firing after the needling is usually Date Recue/Date Received 2021-07-05 performed at 900 C or higher, preferably 1,000 C to 1,300 C.
A firing temperature of 900 C or higher results in sufficiently crystallized alumina/silica-based fibers having excellent strength and thus is preferred. A firing temperature of 1,300 C or lower results in alumina/silica-based fibers having appropriate strength because the grain growth of the fibers does not proceed excessively, which is preferred.
<Firing Step>
The inorganic fiber-formed article of the present invention is preferably a fired inorganic fiber-formed article obtained by firing the inorganic fiber precursor subjected to needling. Firing after the needling is usually Date Recue/Date Received 2021-07-05 performed at 900 C or higher, preferably 1,000 C to 1,300 C.
A firing temperature of 900 C or higher results in sufficiently crystallized alumina/silica-based fibers having excellent strength and thus is preferred. A firing temperature of 1,300 C or lower results in alumina/silica-based fibers having appropriate strength because the grain growth of the fibers does not proceed excessively, which is preferred.
[0048]
[Preferred Structure of Inorganic Fiber-Formed Article]
<Inorganic Fiber>
Examples of the inorganic fibers included in the inorganic fiber-formed article of the present invention include, but are not particularly limited to, single-component fibers composed of, for example, silica, alumina/silica, silica or alumina/silica-containing zirconia, spinel, or titania; and composite fibers containing these fibers. In particular, alumina/silica-based fibers are preferred, and crystalline alumina/silica-based fibers are particularly preferred. The composition ratio (by weight) of alumina/silica of the alumina/silica-based fibers is preferably in the range of 60 to 95/40 to 5, more preferably 70 to 84/30 to 16, particularly preferably 70 to 76/30 to 24.
[Preferred Structure of Inorganic Fiber-Formed Article]
<Inorganic Fiber>
Examples of the inorganic fibers included in the inorganic fiber-formed article of the present invention include, but are not particularly limited to, single-component fibers composed of, for example, silica, alumina/silica, silica or alumina/silica-containing zirconia, spinel, or titania; and composite fibers containing these fibers. In particular, alumina/silica-based fibers are preferred, and crystalline alumina/silica-based fibers are particularly preferred. The composition ratio (by weight) of alumina/silica of the alumina/silica-based fibers is preferably in the range of 60 to 95/40 to 5, more preferably 70 to 84/30 to 16, particularly preferably 70 to 76/30 to 24.
[0049]
The inorganic fibers are preferably short fibers. The Date Recue/Date Received 2021-07-05 inorganic fibers preferably have an average fiber diameter of 3 to 10 m, particularly preferably 5 to 8 m. When the upper limit of the average fiber diameter of the inorganic fibers is within the above range, the inorganic fiber-formed article has appropriate resilience, which is preferred.
When the average fiber diameter of the inorganic fibers is within the above range, the amount of dust emitted into the air can be reduced, which is preferred.
The inorganic fibers are preferably short fibers. The Date Recue/Date Received 2021-07-05 inorganic fibers preferably have an average fiber diameter of 3 to 10 m, particularly preferably 5 to 8 m. When the upper limit of the average fiber diameter of the inorganic fibers is within the above range, the inorganic fiber-formed article has appropriate resilience, which is preferred.
When the average fiber diameter of the inorganic fibers is within the above range, the amount of dust emitted into the air can be reduced, which is preferred.
[0050]
<Needle Mark Density>
<<Method for measuring Needle Mark Density>>
In an embodiment of the present invention, the inorganic fiber-formed article is a fired article. In this case, the needle mark density indicates the number of needle marks per unit area (1 cm2) of a mat surface of the inorganic fiber-formed article after firing.
<Needle Mark Density>
<<Method for measuring Needle Mark Density>>
In an embodiment of the present invention, the inorganic fiber-formed article is a fired article. In this case, the needle mark density indicates the number of needle marks per unit area (1 cm2) of a mat surface of the inorganic fiber-formed article after firing.
[0051]
When a mat surface of the inorganic fiber-formed article is irradiated with visible light, transmitted light is observed as spots of light on a peeled surface because the amount of light transmitted through the needle marks is larger than the amount of light transmitted through a region other than the needle marks. The number of needle marks is determined by counting the numbers of the vertical bundles and the spots of light transmitted to the peeled surface.
Date Recue/Date Received 2021-07-05
When a mat surface of the inorganic fiber-formed article is irradiated with visible light, transmitted light is observed as spots of light on a peeled surface because the amount of light transmitted through the needle marks is larger than the amount of light transmitted through a region other than the needle marks. The number of needle marks is determined by counting the numbers of the vertical bundles and the spots of light transmitted to the peeled surface.
Date Recue/Date Received 2021-07-05
[0052]
That is, the number of needle marks is determined by irradiating one surface of the inorganic fiber-formed article with visible light and counting the numbers of the spots of light transmitted to the peeled surface and the vertical bundles.
That is, the number of needle marks is determined by irradiating one surface of the inorganic fiber-formed article with visible light and counting the numbers of the spots of light transmitted to the peeled surface and the vertical bundles.
[0053]
<<Preferred Range of Needle Mark Density>>
In the present invention, the number of the needle marks per unit area (1 cm2) (needle mark density) of a mat surface of the inorganic fiber-formed article is preferably 1 mark/cm2 or more, more preferably 3 marks/cm2 or more, even more preferably 5 marks/cm2 or more, particularly preferably 8 marks/cm2 or more, and preferably 100 marks/cm2 or less, more preferably 50 marks/cm2 or less, even more preferably 40 marks/cm2 or less, particularly preferably 30 marks/cm2 or less on the average of the entire mat surface. When the number of the needle marks is within the above range, the surface pressure of the inorganic fiber-formed article is kept high. Thus, the inorganic fiber-formed article is particularly preferably used in applications that require satisfactory durability of resilience, such as mats for exhaust gas cleaning apparatuses.
<<Preferred Range of Needle Mark Density>>
In the present invention, the number of the needle marks per unit area (1 cm2) (needle mark density) of a mat surface of the inorganic fiber-formed article is preferably 1 mark/cm2 or more, more preferably 3 marks/cm2 or more, even more preferably 5 marks/cm2 or more, particularly preferably 8 marks/cm2 or more, and preferably 100 marks/cm2 or less, more preferably 50 marks/cm2 or less, even more preferably 40 marks/cm2 or less, particularly preferably 30 marks/cm2 or less on the average of the entire mat surface. When the number of the needle marks is within the above range, the surface pressure of the inorganic fiber-formed article is kept high. Thus, the inorganic fiber-formed article is particularly preferably used in applications that require satisfactory durability of resilience, such as mats for exhaust gas cleaning apparatuses.
[0054]
<Basis Weight and Thickness of Inorganic Fiber-Formed Date Recue/Date Received 2021-07-05 Article>
The basis weight (mass per unit area) of the inorganic fiber-formed article of the present invention is appropriately determined in accordance with applications and is 1,800 g/m2 or more, preferably more than 2,000 g/m2, more preferably more than 2,200 g/m2, even more preferably more than 2,400 g/m2, particularly preferably more than 2,600 g/m2.
The basis weight of the inorganic fiber-formed article of the present invention is preferably, but not necessarily, 5,000 g/m2 or less, more preferably 4,500 g/m2 or less, particularly preferably 4,000 g/m2 or less.
<Basis Weight and Thickness of Inorganic Fiber-Formed Date Recue/Date Received 2021-07-05 Article>
The basis weight (mass per unit area) of the inorganic fiber-formed article of the present invention is appropriately determined in accordance with applications and is 1,800 g/m2 or more, preferably more than 2,000 g/m2, more preferably more than 2,200 g/m2, even more preferably more than 2,400 g/m2, particularly preferably more than 2,600 g/m2.
The basis weight of the inorganic fiber-formed article of the present invention is preferably, but not necessarily, 5,000 g/m2 or less, more preferably 4,500 g/m2 or less, particularly preferably 4,000 g/m2 or less.
[0055]
The inorganic fiber-formed article of the present invention preferably has a thickness of 10 mm or more, more preferably 11 mm or more, particularly preferably 12 mm or more. The inorganic fiber-formed article of the present invention preferably has a thickness of 40 mm or less, more preferably 30 mm or less, more preferably 25 mm or less, particularly preferably 23 mm or less.
The inorganic fiber-formed article of the present invention preferably has a thickness of 10 mm or more, more preferably 11 mm or more, particularly preferably 12 mm or more. The inorganic fiber-formed article of the present invention preferably has a thickness of 40 mm or less, more preferably 30 mm or less, more preferably 25 mm or less, particularly preferably 23 mm or less.
[0056]
When the inorganic fiber-formed article of the present invention has a larger basis weight per unit area and a larger thickness, the inorganic fiber-formed article can have better heat retention and insulation effects. A larger basis weight per unit area and a larger thickness commonly Date Recue/Date Received 2021-07-05 result in a tendency to lead to lower delamination strength.
A larger volume of the effective vertical bundles results in greater effects of the present invention.
When the inorganic fiber-formed article of the present invention has a larger basis weight per unit area and a larger thickness, the inorganic fiber-formed article can have better heat retention and insulation effects. A larger basis weight per unit area and a larger thickness commonly Date Recue/Date Received 2021-07-05 result in a tendency to lead to lower delamination strength.
A larger volume of the effective vertical bundles results in greater effects of the present invention.
[0057]
The basis weight per unit area and the thickness of the inorganic fiber-formed article can be adjusted to the above ranges by adjusting the amount of fibers per unit area when the inorganic fiber aggregate included in the inorganic fiber-formed article is stacked with a folding machine. The inorganic fiber-formed article of the present invention may have a structure in which multiple inorganic fiber-formed articles are bonded together or a single structure. From the viewpoints of handleability and peel strength at a bonding interface, the single structure is preferred.
The basis weight per unit area and the thickness of the inorganic fiber-formed article can be adjusted to the above ranges by adjusting the amount of fibers per unit area when the inorganic fiber aggregate included in the inorganic fiber-formed article is stacked with a folding machine. The inorganic fiber-formed article of the present invention may have a structure in which multiple inorganic fiber-formed articles are bonded together or a single structure. From the viewpoints of handleability and peel strength at a bonding interface, the single structure is preferred.
[0058]
<Vertical Bundle>
The inorganic fiber-formed article of the present invention includes the needle marks formed by the needling.
As described above, when the needling is performed in which the barbed needles are inserted and withdrawn from the inorganic fiber aggregate, the needles allow at least some of the fibers to extend in the substantially thickness direction in positions where the needles are inserted and withdrawn. The filaments of the inorganic fibers that are formed by the needling, that are present inside the Date Recue/Date Received 2021-07-05 inorganic fiber-formed article, and that are formed in the substantially thickness direction are referred to as "vertical bundles".
<Vertical Bundle>
The inorganic fiber-formed article of the present invention includes the needle marks formed by the needling.
As described above, when the needling is performed in which the barbed needles are inserted and withdrawn from the inorganic fiber aggregate, the needles allow at least some of the fibers to extend in the substantially thickness direction in positions where the needles are inserted and withdrawn. The filaments of the inorganic fibers that are formed by the needling, that are present inside the Date Recue/Date Received 2021-07-05 inorganic fiber-formed article, and that are formed in the substantially thickness direction are referred to as "vertical bundles".
[0059]
<Effective Vertical Bundle>
In the present invention, among the vertical bundles present inside the inorganic fiber-formed article, the vertical bundles having a specific diameter and a specific length are defined as "effective vertical bundles"
Specifically, in the case where a peel test described below is performed, the vertical bundles having a diameter of 100 m or more and a protruding length of 2 mm or more among all the vertical bundles F (Fig. 1) protruding from both peeled surfaces (a first peeled surface la and a second peeled surface lb) in a unit area (50 mm x 50 mm) are defined as "effective vertical bundles". The unit area (50 mm x 50 mm) where numerical values regarding the vertical bundles are measured is a freely-selected region of a test specimen (150 mm x 50 mm), excluding a portion where a cut having a depth of 30 mm is made in the middle of the thickness.
<Effective Vertical Bundle>
In the present invention, among the vertical bundles present inside the inorganic fiber-formed article, the vertical bundles having a specific diameter and a specific length are defined as "effective vertical bundles"
Specifically, in the case where a peel test described below is performed, the vertical bundles having a diameter of 100 m or more and a protruding length of 2 mm or more among all the vertical bundles F (Fig. 1) protruding from both peeled surfaces (a first peeled surface la and a second peeled surface lb) in a unit area (50 mm x 50 mm) are defined as "effective vertical bundles". The unit area (50 mm x 50 mm) where numerical values regarding the vertical bundles are measured is a freely-selected region of a test specimen (150 mm x 50 mm), excluding a portion where a cut having a depth of 30 mm is made in the middle of the thickness.
[0060]
Among the vertical bundles present in the substantially thickness direction inside the inorganic fiber-formed article, the effective vertical bundles have a diameter and a length that act to adjust the bulk density, the peel Date Recue/Date Received 2021-07-05 strength, and the durability of resilience (surface pressure retention after the high-temperature cycle) of the inorganic fiber-formed article.
Among the vertical bundles present in the substantially thickness direction inside the inorganic fiber-formed article, the effective vertical bundles have a diameter and a length that act to adjust the bulk density, the peel Date Recue/Date Received 2021-07-05 strength, and the durability of resilience (surface pressure retention after the high-temperature cycle) of the inorganic fiber-formed article.
[0061]
[Explanation of Characteristics I and II]
<Peel Test>
A test specimen 1 having a width of 50 mm and a length of 150 mm is cut out from the inorganic fiber-formed article.
A cut having a depth of 30 mm is made in the middle of the thickness of an end face le of the test specimen 1 as illustrated in Fig. 2. The cut is formed so as to extend from one end to the other end in the width direction. As illustrated in Fig. 1, both ends formed by the cut are held by gripping jigs 2, mounted on a tensile testing machine, and pulled in opposite directions perpendicular to a mat surface (upward and downward directions in Fig. 1) at a speed of 500 mm/min into two pieces.
[Explanation of Characteristics I and II]
<Peel Test>
A test specimen 1 having a width of 50 mm and a length of 150 mm is cut out from the inorganic fiber-formed article.
A cut having a depth of 30 mm is made in the middle of the thickness of an end face le of the test specimen 1 as illustrated in Fig. 2. The cut is formed so as to extend from one end to the other end in the width direction. As illustrated in Fig. 1, both ends formed by the cut are held by gripping jigs 2, mounted on a tensile testing machine, and pulled in opposite directions perpendicular to a mat surface (upward and downward directions in Fig. 1) at a speed of 500 mm/min into two pieces.
[0062]
<maximum Peel Strength>
As illustrated in Fig. 1, when the test specimen 1 is pulled in the opposite directions perpendicular to the mat surface at a speed of 500 mm/min into two pieces, the maximum value (N) of the peak load is defined as maximum peel strength.
<maximum Peel Strength>
As illustrated in Fig. 1, when the test specimen 1 is pulled in the opposite directions perpendicular to the mat surface at a speed of 500 mm/min into two pieces, the maximum value (N) of the peak load is defined as maximum peel strength.
[0063]
Date Recue/Date Received 2021-07-05 In the inorganic fiber-formed article of the present invention, the maximum peel strength determined as a peak load (N) in the peel test described above is preferably 5.0 N or more, more preferably 6.0 N or more, particularly preferably 6.5 N or more. Although higher peel strength of the inorganic fiber-formed article is more advantageous, the maximum peel strength is preferably 50.0 N or less, more preferably 45.0 N or less, particularly preferably 40.0 N or less.
Date Recue/Date Received 2021-07-05 In the inorganic fiber-formed article of the present invention, the maximum peel strength determined as a peak load (N) in the peel test described above is preferably 5.0 N or more, more preferably 6.0 N or more, particularly preferably 6.5 N or more. Although higher peel strength of the inorganic fiber-formed article is more advantageous, the maximum peel strength is preferably 50.0 N or less, more preferably 45.0 N or less, particularly preferably 40.0 N or less.
[0064]
The inorganic fiber-formed article of the present invention is preferably excellent in peel strength in order to minimize a decrease in workability and minimize a difference in density distribution during the formation when processed into a heat insulator. Additionally, the article is preferably excellent in peel strength in order not to cause the interlayer displacement of the mat when the article in the form of a mat for an exhaust gas cleaning apparatus used for automobiles is wrapped around a catalyst carrier and assembled in a metal casing.
The inorganic fiber-formed article of the present invention is preferably excellent in peel strength in order to minimize a decrease in workability and minimize a difference in density distribution during the formation when processed into a heat insulator. Additionally, the article is preferably excellent in peel strength in order not to cause the interlayer displacement of the mat when the article in the form of a mat for an exhaust gas cleaning apparatus used for automobiles is wrapped around a catalyst carrier and assembled in a metal casing.
[0065]
<Total Volume V of Portion of Effective Vertical bundle Protruding from Peeled Surface>
After the peel test described above is performed, the number (filament number) N, the diameter (thickness) D, and Date Recue/Date Received 2021-07-05 the length (length protruding from the peeled surface la or lb) L of the effective vertical bundles protruding from the peeled surfaces la and lb are measured with a digital microscope. The measurement magnification of the digital microscope is preferably x10 to x20. The length L is the length of portions protruding from the peeled surface la or lb and having a diameter of 100 m or more are measured.
The diameter D is a value measured in the middle, in the longitudinal direction, of each portion protruding from the peeled surface la or lb.
<Total Volume V of Portion of Effective Vertical bundle Protruding from Peeled Surface>
After the peel test described above is performed, the number (filament number) N, the diameter (thickness) D, and Date Recue/Date Received 2021-07-05 the length (length protruding from the peeled surface la or lb) L of the effective vertical bundles protruding from the peeled surfaces la and lb are measured with a digital microscope. The measurement magnification of the digital microscope is preferably x10 to x20. The length L is the length of portions protruding from the peeled surface la or lb and having a diameter of 100 m or more are measured.
The diameter D is a value measured in the middle, in the longitudinal direction, of each portion protruding from the peeled surface la or lb.
[0066]
The total volume V of the portions of the effective vertical bundles protruding from the peeled surfaces in the region measuring 50 mm x 50 mm is a value obtained by calculating the volume (7rD2.L/4) of each of the portions of the N effective vertical bundles protruding from the peeled surface la or lb and calculating the total volume.
The total volume V of the portions of the effective vertical bundles protruding from the peeled surfaces in the region measuring 50 mm x 50 mm is a value obtained by calculating the volume (7rD2.L/4) of each of the portions of the N effective vertical bundles protruding from the peeled surface la or lb and calculating the total volume.
[0067]
In the inorganic fiber-formed article of the present invention, the total volume (the sum of the volumes) V of the portions of the effective vertical bundles protruding the peeled surfaces is preferably 2.0 mm3/cm2 or more, more preferably 4.0 mm3/cm2 or more, even more preferably 8.0 mm3/cm2 or more, particularly preferably 12.0 mm3/cm2 or more.
When the total volume of the effective vertical bundles is Date Recue/Date Received 2021-07-05 within the above range, the vertical bundles are more firmly present inside the inorganic fiber-formed article. Thus, the delamination strength in the substantially thickness direction can be further improved.
In the inorganic fiber-formed article of the present invention, the total volume (the sum of the volumes) V of the portions of the effective vertical bundles protruding the peeled surfaces is preferably 2.0 mm3/cm2 or more, more preferably 4.0 mm3/cm2 or more, even more preferably 8.0 mm3/cm2 or more, particularly preferably 12.0 mm3/cm2 or more.
When the total volume of the effective vertical bundles is Date Recue/Date Received 2021-07-05 within the above range, the vertical bundles are more firmly present inside the inorganic fiber-formed article. Thus, the delamination strength in the substantially thickness direction can be further improved.
[0068]
The value of the total volume (the sum of the volumes) V is preferably 50 mm3 or more, more preferably 100 mm3 or more, even more preferably 200 mm3 or more, particularly preferably 300 mm3 or more when converted into a value per unit area (50 mm x 50 mm).
The value of the total volume (the sum of the volumes) V is preferably 50 mm3 or more, more preferably 100 mm3 or more, even more preferably 200 mm3 or more, particularly preferably 300 mm3 or more when converted into a value per unit area (50 mm x 50 mm).
[0069]
<Average Volume of Portion of Effective Vertical Bundle Protruding from Peeled Surface per Needle Mark (Characteristic I)>
The number n of the needle marks in the region measuring 50 mm x 50 mm is measured by the measurement method described above. The total volume V determined by performing the peel test is divided by n to determine the average volume of the portions of the effective vertical bundles protruding from the peeled surfaces per needle mark (hereinafter, also referred to as an "average volume of the effective vertical bundles per needle mark").
<Average Volume of Portion of Effective Vertical Bundle Protruding from Peeled Surface per Needle Mark (Characteristic I)>
The number n of the needle marks in the region measuring 50 mm x 50 mm is measured by the measurement method described above. The total volume V determined by performing the peel test is divided by n to determine the average volume of the portions of the effective vertical bundles protruding from the peeled surfaces per needle mark (hereinafter, also referred to as an "average volume of the effective vertical bundles per needle mark").
[0070]
That is, the average volume of the effective vertical bundles per needle mark is a value V/n obtained by dividing Date Recue/Date Received 2021-07-05 the sum of the volumes (total volume) V of all the portions of the effective vertical bundles that protrude from the peeled surfaces and that are present on both peeled surfaces (the first peeled surface and the second peeled surface) per unit area (50 mm x 50 mm) by the number n of the needle marks per unit area when the peel test is performed. In the case of a larger average volume V/n of the effective vertical bundles per needle mark, the needling is effectively performed, thereby forming stronger effective vertical bundles.
That is, the average volume of the effective vertical bundles per needle mark is a value V/n obtained by dividing Date Recue/Date Received 2021-07-05 the sum of the volumes (total volume) V of all the portions of the effective vertical bundles that protrude from the peeled surfaces and that are present on both peeled surfaces (the first peeled surface and the second peeled surface) per unit area (50 mm x 50 mm) by the number n of the needle marks per unit area when the peel test is performed. In the case of a larger average volume V/n of the effective vertical bundles per needle mark, the needling is effectively performed, thereby forming stronger effective vertical bundles.
[0071]
In the inorganic fiber-formed article according to a first embodiment, the average volume V/n of the effective vertical bundles per needle mark is 0.5 mm3 or more, more preferably 1.0 mm3 or more, even more preferably 2.0 mm3 or more, particularly preferably 2.5 mm3 or more. When the average volume of the effective vertical bundles per needle mark is within the above range, the peel strength can be improved. The peeling of the mat can be prevented when a catalyst carrier for an exhaust gas cleaning apparatus and a holding member therefor (a mat for an exhaust gas cleaning apparatus) are press-fit into a metal casing. The average volume V/n of the effective vertical bundles per needle mark in the inorganic fiber-formed article according to the first embodiment is preferably 50 mm3 or less, more preferably 30 Date Recue/Date Received 2021-07-05 mm3 or less, particularly preferably 20 mm3 or less.
In the inorganic fiber-formed article according to a first embodiment, the average volume V/n of the effective vertical bundles per needle mark is 0.5 mm3 or more, more preferably 1.0 mm3 or more, even more preferably 2.0 mm3 or more, particularly preferably 2.5 mm3 or more. When the average volume of the effective vertical bundles per needle mark is within the above range, the peel strength can be improved. The peeling of the mat can be prevented when a catalyst carrier for an exhaust gas cleaning apparatus and a holding member therefor (a mat for an exhaust gas cleaning apparatus) are press-fit into a metal casing. The average volume V/n of the effective vertical bundles per needle mark in the inorganic fiber-formed article according to the first embodiment is preferably 50 mm3 or less, more preferably 30 Date Recue/Date Received 2021-07-05 mm3 or less, particularly preferably 20 mm3 or less.
[0072]
<Average Volume of Portion of Each Effective Vertical Bundle Protruding from Peeled Surface (Characteristic II)>
The average volume of a portion of each of the effective vertical bundles protruding from the peeled surfaces (hereinafter, also referred to as an "average volume per effective vertical bundle") is determined by dividing the total volume V described above by the number N
of the effective vertical bundles.
<Average Volume of Portion of Each Effective Vertical Bundle Protruding from Peeled Surface (Characteristic II)>
The average volume of a portion of each of the effective vertical bundles protruding from the peeled surfaces (hereinafter, also referred to as an "average volume per effective vertical bundle") is determined by dividing the total volume V described above by the number N
of the effective vertical bundles.
[0073]
That is, the average volume per effective vertical bundle is a value V/N obtained by dividing the sum of the volumes (total volume) V of all the portions of the effective vertical bundles that protrude from the peeled surfaces and that are present on both peeled surfaces (the first peeled surface and the second peeled surface) per unit area (50 mm x 50 mm) by the number N of the effective vertical bundles per unit area when the peel test is performed. In the case of a larger average volume V/N per effective vertical bundle in the inorganic fiber-formed article, the needling is effectively performed, thereby forming stronger effective vertical bundles.
That is, the average volume per effective vertical bundle is a value V/N obtained by dividing the sum of the volumes (total volume) V of all the portions of the effective vertical bundles that protrude from the peeled surfaces and that are present on both peeled surfaces (the first peeled surface and the second peeled surface) per unit area (50 mm x 50 mm) by the number N of the effective vertical bundles per unit area when the peel test is performed. In the case of a larger average volume V/N per effective vertical bundle in the inorganic fiber-formed article, the needling is effectively performed, thereby forming stronger effective vertical bundles.
[0074]
In the inorganic fiber-formed article according to a Date Recue/Date Received 2021-07-05 second embodiment, the average volume V/N per effective vertical bundle is 1.0 mm3 or more, more preferably 2.0 mm3 or more, even more preferably 3.0 mm3 or more, particularly preferably 4.0 mm3 or more. When the average volume V/N per effective vertical bundle is within the above range, the peel strength can be improved. The peeling of the mat can be prevented when a catalyst carrier for an exhaust gas cleaning apparatus and a holding member therefor (a mat for an exhaust gas cleaning apparatus) are press-fit into a metal casing. The average volume V/N of each effective vertical bundle per effective vertical bundle is preferably 100 mm3 or less, more preferably 50 mm3 or less, particularly preferably 40 mm3 or less.
In the inorganic fiber-formed article according to a Date Recue/Date Received 2021-07-05 second embodiment, the average volume V/N per effective vertical bundle is 1.0 mm3 or more, more preferably 2.0 mm3 or more, even more preferably 3.0 mm3 or more, particularly preferably 4.0 mm3 or more. When the average volume V/N per effective vertical bundle is within the above range, the peel strength can be improved. The peeling of the mat can be prevented when a catalyst carrier for an exhaust gas cleaning apparatus and a holding member therefor (a mat for an exhaust gas cleaning apparatus) are press-fit into a metal casing. The average volume V/N of each effective vertical bundle per effective vertical bundle is preferably 100 mm3 or less, more preferably 50 mm3 or less, particularly preferably 40 mm3 or less.
[0075]
In the case of an inorganic fiber-formed article having a low basis weight, it is conceivable to employ a method for increasing the entanglement of the fibers in the substantially thickness direction by increasing the needle mark density in order to improve the peel strength of the inorganic fiber-formed article. In the case of an inorganic fiber-formed article having high basis weight, however, an increase in needle mark density may deteriorate other physical properties, and there was no method to improve the peel strength. To improve the peel strength while other physical properties are maintained, in the first embodiment, Date Recue/Date Received 2021-07-05 the average volume V/n of the effective vertical bundles per needle mark is 0.5 mm3 or more. In the second embodiment, the average volume V/N per effective vertical bundle is 1.0 mm3 or more. Thereby, the vertical bundles are formed more firmly.
In the case of an inorganic fiber-formed article having a low basis weight, it is conceivable to employ a method for increasing the entanglement of the fibers in the substantially thickness direction by increasing the needle mark density in order to improve the peel strength of the inorganic fiber-formed article. In the case of an inorganic fiber-formed article having high basis weight, however, an increase in needle mark density may deteriorate other physical properties, and there was no method to improve the peel strength. To improve the peel strength while other physical properties are maintained, in the first embodiment, Date Recue/Date Received 2021-07-05 the average volume V/n of the effective vertical bundles per needle mark is 0.5 mm3 or more. In the second embodiment, the average volume V/N per effective vertical bundle is 1.0 mm3 or more. Thereby, the vertical bundles are formed more firmly.
[0076]
In the case of satisfying at least one of characteristics (I) and (II) in the present invention, the vertical bundles formed by the needling are strengthened, thus reducing filament breakage.
In the case of satisfying at least one of characteristics (I) and (II) in the present invention, the vertical bundles formed by the needling are strengthened, thus reducing filament breakage.
[0077]
Examples of a method for strengthening the vertical bundles include, but are not particularly limited to, specific methods (i) and (ii) described below.
Examples of a method for strengthening the vertical bundles include, but are not particularly limited to, specific methods (i) and (ii) described below.
[0078]
(i) Thick filaments composed of the inorganic fiber precursor are arranged on a surface of the inorganic fiber precursor aggregate and pushed into the inorganic fiber precursor aggregate with needles during the needling to form the vertical bundles.
(i) Thick filaments composed of the inorganic fiber precursor are arranged on a surface of the inorganic fiber precursor aggregate and pushed into the inorganic fiber precursor aggregate with needles during the needling to form the vertical bundles.
[0079]
The type of needle for needling the thick filaments is preferably, but not necessarily, a fork needle. The thick filaments are preferably composed of the same material as the inorganic fiber precursor. In particular, the thick Date Recue/Date Received 2021-07-05 filaments are preferably thick string-like filaments that are formed of precursor fibers aligned in one direction and that are formed as a by-product formed in the accumulating device when the inorganic fiber precursor aggregate is formed. Additionally, the thick string-like filaments are preferably formed of a short-fiber aggregate. The average diameter of the thick string-like filaments is preferably 1.2 or more times, particularly preferably 1.5 or more times, and preferably 4 or less times, particularly preferably 3 or less times the average diameter of the effective vertical bundles.
The type of needle for needling the thick filaments is preferably, but not necessarily, a fork needle. The thick filaments are preferably composed of the same material as the inorganic fiber precursor. In particular, the thick Date Recue/Date Received 2021-07-05 filaments are preferably thick string-like filaments that are formed of precursor fibers aligned in one direction and that are formed as a by-product formed in the accumulating device when the inorganic fiber precursor aggregate is formed. Additionally, the thick string-like filaments are preferably formed of a short-fiber aggregate. The average diameter of the thick string-like filaments is preferably 1.2 or more times, particularly preferably 1.5 or more times, and preferably 4 or less times, particularly preferably 3 or less times the average diameter of the effective vertical bundles.
[0080]
(ii) Prior to the needling, a solution of a needling aid is adhered (coated) to a surface of the inorganic fiber precursor aggregate by spraying or the like, thereby improving the physical properties of the inorganic fiber precursor to be formed into the vertical bundles. Preferred needling aids are as described above.
(ii) Prior to the needling, a solution of a needling aid is adhered (coated) to a surface of the inorganic fiber precursor aggregate by spraying or the like, thereby improving the physical properties of the inorganic fiber precursor to be formed into the vertical bundles. Preferred needling aids are as described above.
[0081]
<Average Thickness of Effective Vertical Bundle>
In the present invention, the effective vertical bundles preferably have an average thickness (diameter) of 550 pm or more, more preferably 600 m or more, particularly preferably 700 m or more. The effective vertical bundles preferably have an average thickness of 3,000 m or less, Date Recue/Date Received 2021-07-05 more preferably 2,800 m or less, particularly preferably 2,500 m or less. When the average thickness of the effective vertical bundles is within the above range, a blanket (an inorganic fiber-formed article) being less likely to break at the time of the application of an external force to the effective vertical bundles and having high peel strength is obtained.
<Average Thickness of Effective Vertical Bundle>
In the present invention, the effective vertical bundles preferably have an average thickness (diameter) of 550 pm or more, more preferably 600 m or more, particularly preferably 700 m or more. The effective vertical bundles preferably have an average thickness of 3,000 m or less, Date Recue/Date Received 2021-07-05 more preferably 2,800 m or less, particularly preferably 2,500 m or less. When the average thickness of the effective vertical bundles is within the above range, a blanket (an inorganic fiber-formed article) being less likely to break at the time of the application of an external force to the effective vertical bundles and having high peel strength is obtained.
[0082]
<Average Length of Effective Vertical Bundle>
Regarding the vertical bundles of the inorganic fiber-formed article of the present invention, the average length L of the effective vertical bundles on the first peeled surface is preferably within a specific percentage range with respect to the thickness z of the second peeled surface (that is, 1/2 of the total thickness of the inorganic fiber-formed article). That is, when the peel test is performed, the percentage (L'/z) .100 (%) obtained by dividing the average length L' of the effective vertical bundles on the first peeled surface per unit area (50 mm x 50 mm) by the thickness z of the second peeled surface is preferably 50%
or more, more preferably 60% or more, particularly preferably 70% or more. When the percentage (L'/z) .100 (%) is within the above range, the peel strength can be further improved, which is preferred. The percentage (L'/z) .100 (%) is preferably 200% or less, more preferably 150% or less.
Date Recue/Date Received 2021-07-05 When the percentage (L'/z) .100 (%) is within the above range, the protrusion of closed loops can be suppressed to a small size to reduce troubles in the process.
<Average Length of Effective Vertical Bundle>
Regarding the vertical bundles of the inorganic fiber-formed article of the present invention, the average length L of the effective vertical bundles on the first peeled surface is preferably within a specific percentage range with respect to the thickness z of the second peeled surface (that is, 1/2 of the total thickness of the inorganic fiber-formed article). That is, when the peel test is performed, the percentage (L'/z) .100 (%) obtained by dividing the average length L' of the effective vertical bundles on the first peeled surface per unit area (50 mm x 50 mm) by the thickness z of the second peeled surface is preferably 50%
or more, more preferably 60% or more, particularly preferably 70% or more. When the percentage (L'/z) .100 (%) is within the above range, the peel strength can be further improved, which is preferred. The percentage (L'/z) .100 (%) is preferably 200% or less, more preferably 150% or less.
Date Recue/Date Received 2021-07-05 When the percentage (L'/z) .100 (%) is within the above range, the protrusion of closed loops can be suppressed to a small size to reduce troubles in the process.
[0083]
<Number of Effective Vertical Bundle per Unit Area>
In the inorganic fiber-formed article of the present invention, the total number of the effective vertical bundles present on both peeled surfaces per unit area (50 mm x 50 mm) is preferably 20 or more, more preferably 40 or more, particularly preferably 60 or more. When the number of the effective vertical bundles is within the above range, the peel strength can be further improved, which is preferred. The number of the effective vertical bundles per unit area is preferably 500 or less, more preferably 400 or less, particularly preferably 250 or less. When the upper limit of the number of the effective vertical bundles is within the above range, the peel strength can be improved without decreasing the surface pressure of the inorganic fiber-formed article, which is preferred particularly for, for example, applications that require a satisfactory surface pressure.
<Number of Effective Vertical Bundle per Unit Area>
In the inorganic fiber-formed article of the present invention, the total number of the effective vertical bundles present on both peeled surfaces per unit area (50 mm x 50 mm) is preferably 20 or more, more preferably 40 or more, particularly preferably 60 or more. When the number of the effective vertical bundles is within the above range, the peel strength can be further improved, which is preferred. The number of the effective vertical bundles per unit area is preferably 500 or less, more preferably 400 or less, particularly preferably 250 or less. When the upper limit of the number of the effective vertical bundles is within the above range, the peel strength can be improved without decreasing the surface pressure of the inorganic fiber-formed article, which is preferred particularly for, for example, applications that require a satisfactory surface pressure.
[0084]
[Application of Inorganic Fiber-Formed Article]
Examples of applications of the inorganic fiber formed article of the present invention include, but are not Date Recue/Date Received 2021-07-05 particularly limited to, various heat insulators and packing.
In particular, the inorganic fiber-formed article is useful as a mat for an exhaust gas cleaning apparatus.
[Application of Inorganic Fiber-Formed Article]
Examples of applications of the inorganic fiber formed article of the present invention include, but are not Date Recue/Date Received 2021-07-05 particularly limited to, various heat insulators and packing.
In particular, the inorganic fiber-formed article is useful as a mat for an exhaust gas cleaning apparatus.
[0085]
<Mat for Exhaust Gas Cleaning Apparatus>
A mat for an exhaust gas cleaning apparatus is a holding member for a catalyst carrier of the exhaust gas cleaning apparatus and is a cushioning material for the exhaust gas cleaning apparatus, the cushioning material being wrapped around the catalyst carrier and interposed (in the gap) between the catalyst carrier and a metal casing when the catalyst carrier is housed in the metal casing.
The mat for an exhaust gas cleaning apparatus of the present invention is formed of the inorganic fiber-formed article of the present invention. Specifically, the inorganic fiber-formed article of the present invention is subjected to shape processing, such as cutting, to produce a mat for an exhaust gas cleaning apparatus. The inorganic fiber-formed article included in the mat for an exhaust gas cleaning apparatus of the present invention may contain an organic binder. The organic binder content is preferably less than 10% by weight, more preferably less than 5% by weight, particularly preferably less than 2.5% by weight.
<Mat for Exhaust Gas Cleaning Apparatus>
A mat for an exhaust gas cleaning apparatus is a holding member for a catalyst carrier of the exhaust gas cleaning apparatus and is a cushioning material for the exhaust gas cleaning apparatus, the cushioning material being wrapped around the catalyst carrier and interposed (in the gap) between the catalyst carrier and a metal casing when the catalyst carrier is housed in the metal casing.
The mat for an exhaust gas cleaning apparatus of the present invention is formed of the inorganic fiber-formed article of the present invention. Specifically, the inorganic fiber-formed article of the present invention is subjected to shape processing, such as cutting, to produce a mat for an exhaust gas cleaning apparatus. The inorganic fiber-formed article included in the mat for an exhaust gas cleaning apparatus of the present invention may contain an organic binder. The organic binder content is preferably less than 10% by weight, more preferably less than 5% by weight, particularly preferably less than 2.5% by weight.
[0086]
When the organic binder content of the mat is 10% by Date Recue/Date Received 2021-07-05 weight or more, the problem of the formation of decomposition gases, such as NOR, CO, and HC, by the decomposition of the organic binder due to the high temperature of an exhaust gas at the time of engine combustion may grow.
When the organic binder content of the mat is 10% by Date Recue/Date Received 2021-07-05 weight or more, the problem of the formation of decomposition gases, such as NOR, CO, and HC, by the decomposition of the organic binder due to the high temperature of an exhaust gas at the time of engine combustion may grow.
[0087]
Examples of the organic binder that can be used include various rubbers, water-soluble polymers, thermoplastic resins, and thermosetting resins.
Examples of the organic binder that can be used include various rubbers, water-soluble polymers, thermoplastic resins, and thermosetting resins.
[0088]
Aqueous solutions, water-dispersible emulsions, latexes, and organic solvent solutions, each of which contains the foregoing organic binder serving as an active component, are commercially available. These organic binder liquids can be used as it is or diluted with, for example, water before use.
Thus they can be suitably used to incorporate the organic binder into the mat. The organic binder contained in the mat may not necessarily be a single type and may be a mixture of two or more types.
Aqueous solutions, water-dispersible emulsions, latexes, and organic solvent solutions, each of which contains the foregoing organic binder serving as an active component, are commercially available. These organic binder liquids can be used as it is or diluted with, for example, water before use.
Thus they can be suitably used to incorporate the organic binder into the mat. The organic binder contained in the mat may not necessarily be a single type and may be a mixture of two or more types.
[0089]
Among the foregoing organic binders, preferred are synthetic rubbers, such as acrylic rubbers and nitrile rubbers; water-soluble polymers, such as carboxymethyl cellulose and polyvinyl alcohols; and acrylic resins. Among these compounds, particularly preferred are acrylic rubbers, Date Recue/Date Received 2021-07-05 nitrile rubbers, carboxymethyl cellulose, polyvinyl alcohols, and acrylic resins that are not included in acrylic rubbers.
These binders can be preferably used because the organic binder liquids are easily prepared or available, an impregnation operation of the mat is easily performed, a sufficient binding force is exerted even at a relatively low binder content, the resulting formed article is flexible with excellent strength, and the organic binders are easily decomposed or eliminated under operating temperature conditions.
Among the foregoing organic binders, preferred are synthetic rubbers, such as acrylic rubbers and nitrile rubbers; water-soluble polymers, such as carboxymethyl cellulose and polyvinyl alcohols; and acrylic resins. Among these compounds, particularly preferred are acrylic rubbers, Date Recue/Date Received 2021-07-05 nitrile rubbers, carboxymethyl cellulose, polyvinyl alcohols, and acrylic resins that are not included in acrylic rubbers.
These binders can be preferably used because the organic binder liquids are easily prepared or available, an impregnation operation of the mat is easily performed, a sufficient binding force is exerted even at a relatively low binder content, the resulting formed article is flexible with excellent strength, and the organic binders are easily decomposed or eliminated under operating temperature conditions.
[0090]
[Exhaust Gas Cleaning Apparatus]
An exhaust gas cleaning apparatus includes a catalyst carrier, a casing that covers the outside of the catalyst carrier, and a mat arranged between the catalyst carrier and the casing. In the exhaust gas cleaning apparatus of the present invention, the mat for an exhaust gas cleaning apparatus of the present invention is used as the mat. The mat has high peel strength. Thus, the mat has excellent handleability and workability in assembling the exhaust gas cleaning apparatus, and has the ability to satisfactorily hold the catalyst carrier after the assembly.
[Exhaust Gas Cleaning Apparatus]
An exhaust gas cleaning apparatus includes a catalyst carrier, a casing that covers the outside of the catalyst carrier, and a mat arranged between the catalyst carrier and the casing. In the exhaust gas cleaning apparatus of the present invention, the mat for an exhaust gas cleaning apparatus of the present invention is used as the mat. The mat has high peel strength. Thus, the mat has excellent handleability and workability in assembling the exhaust gas cleaning apparatus, and has the ability to satisfactorily hold the catalyst carrier after the assembly.
[0091]
The configuration of the exhaust gas cleaning apparatus is not particularly limited. The present invention can be Date Recue/Date Received 2021-07-05 applied to various exhaust gas cleaning apparatuses including catalyst carriers, casings, and mats for holding catalyst carriers.
EXAMPLES
The configuration of the exhaust gas cleaning apparatus is not particularly limited. The present invention can be Date Recue/Date Received 2021-07-05 applied to various exhaust gas cleaning apparatuses including catalyst carriers, casings, and mats for holding catalyst carriers.
EXAMPLES
[0092]
While the present invention will be described more specifically below by examples and comparative examples, the present invention is not limited to these examples as long as it does not depart from the gist thereof.
While the present invention will be described more specifically below by examples and comparative examples, the present invention is not limited to these examples as long as it does not depart from the gist thereof.
[0093]
Measurement and evaluation methods of various physical properties and characteristics of the resulting inorganic fiber-formed article are described below.
Measurement and evaluation methods of various physical properties and characteristics of the resulting inorganic fiber-formed article are described below.
[0094]
<Peel Test>
A test specimen having a width of 50 mm and a length of 150 mm was cut out from the inorganic fiber-formed article.
A cut having a depth of 30 mm was made in the middle of the thickness of an end face le of the test specimen. As illustrated in Fig. 1, both ends formed by the cut were held by the respective gripping jigs 2, mounted on a tensile testing machine, and pulled in opposite directions perpendicular to the mat surface at a speed of 500 mm/min into two pieces. When the test specimen 1 was pulled into two pieces, the maximum value (N) of the peak load was Date Recue/Date Received 2021-07-05 measured.
<Peel Test>
A test specimen having a width of 50 mm and a length of 150 mm was cut out from the inorganic fiber-formed article.
A cut having a depth of 30 mm was made in the middle of the thickness of an end face le of the test specimen. As illustrated in Fig. 1, both ends formed by the cut were held by the respective gripping jigs 2, mounted on a tensile testing machine, and pulled in opposite directions perpendicular to the mat surface at a speed of 500 mm/min into two pieces. When the test specimen 1 was pulled into two pieces, the maximum value (N) of the peak load was Date Recue/Date Received 2021-07-05 measured.
[0095]
<Total Volume V of Effective Vertical Bundle>
After the peel test described above was performed, among all the vertical bundles protruding from both peeled surfaces (the first peeled surface la and the second peeled surface lb) per unit area (50 mm x 50 mm), the vertical bundles having a diameter of 100 m or more and a protruding length of 2 mm or more were defined as effective vertical bundles in the region. The number (filament number), the diameter (thickness), and the length were measured, and the total volume of the effective vertical bundles was determined. The diameter, the length, the number, and so forth of the effective vertical bundles were measured by observing the peeled surfaces with a digital microscope (VHX-5000, available from Keyence Corporation), at a magnification of x10).
<Total Volume V of Effective Vertical Bundle>
After the peel test described above was performed, among all the vertical bundles protruding from both peeled surfaces (the first peeled surface la and the second peeled surface lb) per unit area (50 mm x 50 mm), the vertical bundles having a diameter of 100 m or more and a protruding length of 2 mm or more were defined as effective vertical bundles in the region. The number (filament number), the diameter (thickness), and the length were measured, and the total volume of the effective vertical bundles was determined. The diameter, the length, the number, and so forth of the effective vertical bundles were measured by observing the peeled surfaces with a digital microscope (VHX-5000, available from Keyence Corporation), at a magnification of x10).
[0096]
<Percentage (LT/z) .100% of Average Length of Effective Vertical Bundle>
After the peel test was performed, the percentage of the average length of the effective vertical bundles per unit area (50 mm x 50 mm) is determined by dividing the average length L of the effective vertical bundles on the first peeled surface by the thickness z of the second peeled Date Recue/Date Received 2021-07-05 surface (1/2 of the thickness of the inorganic fiber-formed article subjected to the test).
<Percentage (LT/z) .100% of Average Length of Effective Vertical Bundle>
After the peel test was performed, the percentage of the average length of the effective vertical bundles per unit area (50 mm x 50 mm) is determined by dividing the average length L of the effective vertical bundles on the first peeled surface by the thickness z of the second peeled Date Recue/Date Received 2021-07-05 surface (1/2 of the thickness of the inorganic fiber-formed article subjected to the test).
[0097]
<Method for Measuring Number of Needle Marks>
The inorganic fiber-formed article was cut into a square having a size of 50 mm x 50 mm to obtain a sample.
One surface of the sample was irradiated with visible light.
The number of all needle marks per unit area was counted by counting the numbers of the spots of light transmitted to the peeled surface and the vertical bundles.
<Method for Measuring Number of Needle Marks>
The inorganic fiber-formed article was cut into a square having a size of 50 mm x 50 mm to obtain a sample.
One surface of the sample was irradiated with visible light.
The number of all needle marks per unit area was counted by counting the numbers of the spots of light transmitted to the peeled surface and the vertical bundles.
[0098]
[Comparative Example 1]
A silica sol was added to an aqueous solution of basic aluminum chloride (aluminum content: 165 g/L, Al/C1 = 1.8 (atomic ratio)) in such a manner that an ultimately obtained alumina fiber composition satisfied A1203:Si02 = 72:28 (ratio by weight). A polyvinyl alcohol was added thereto, and then the mixture was concentrated to prepare a spinning solution having a viscosity of 70 poise (25 C) and an alumina-silica content of about 35% by weight. Fibers were spun from the spinning solution by a blowing method. The resulting fibers were collected to form an aggregate of an alumina/silica-based fiber precursor.
[Comparative Example 1]
A silica sol was added to an aqueous solution of basic aluminum chloride (aluminum content: 165 g/L, Al/C1 = 1.8 (atomic ratio)) in such a manner that an ultimately obtained alumina fiber composition satisfied A1203:Si02 = 72:28 (ratio by weight). A polyvinyl alcohol was added thereto, and then the mixture was concentrated to prepare a spinning solution having a viscosity of 70 poise (25 C) and an alumina-silica content of about 35% by weight. Fibers were spun from the spinning solution by a blowing method. The resulting fibers were collected to form an aggregate of an alumina/silica-based fiber precursor.
[0099]
The fibers were spun from the spinning solution by the Date Recue/Date Received 2021-07-05 blowing method. A spinning nozzle having the same structure as illustrated in Fig. 6 of Japanese Patent No. 2602460 was used. The fibers were collected in the form of a continuous sheet (thin-layer sheet) with an accumulating device having a structure in which a wire-mesh endless belt was disposed so as to be substantially perpendicular to the spinning airflow and in which the spinning airflow containing the alumina/silica-based fiber precursor impinges on the belt while the endless belt was rotated.
The fibers were spun from the spinning solution by the Date Recue/Date Received 2021-07-05 blowing method. A spinning nozzle having the same structure as illustrated in Fig. 6 of Japanese Patent No. 2602460 was used. The fibers were collected in the form of a continuous sheet (thin-layer sheet) with an accumulating device having a structure in which a wire-mesh endless belt was disposed so as to be substantially perpendicular to the spinning airflow and in which the spinning airflow containing the alumina/silica-based fiber precursor impinges on the belt while the endless belt was rotated.
[0100]
The thin-layer sheet recovered by the accumulating device was subjected to the application of a friction-reducing agent by spraying, continuously unwound, and fed to a folding device. The thin-layer sheet was folded to a predetermined width and stacked. Simultaneously, the folded sheet was continuously transferred in a direction perpendicular to a folding direction to form a laminated sheet (inorganic fiber aggregate). As the foregoing folding device, a folding device having the same structure as described in Japanese Unexamined Patent Application Publication No. 2000-80547 was used.
The thin-layer sheet recovered by the accumulating device was subjected to the application of a friction-reducing agent by spraying, continuously unwound, and fed to a folding device. The thin-layer sheet was folded to a predetermined width and stacked. Simultaneously, the folded sheet was continuously transferred in a direction perpendicular to a folding direction to form a laminated sheet (inorganic fiber aggregate). As the foregoing folding device, a folding device having the same structure as described in Japanese Unexamined Patent Application Publication No. 2000-80547 was used.
[0101]
Needling was performed by punching with a needle punching machine.
Needling was performed by punching with a needle punching machine.
[0102]
Date Recue/Date Received 2021-07-05 Then firing was performed at 1,200 C to form an inorganic fiber-formed article (fired fibers) having a basis weight of 2,800 g/m2 and being formed of crystalline alumina/silica-based fibers. The firing was performed with an electric furnace by heating to 1,200 C at a rate of temperature increase of 5 C/min, holding at 1,200 C for 30 minutes, and then natural cooling.
Date Recue/Date Received 2021-07-05 Then firing was performed at 1,200 C to form an inorganic fiber-formed article (fired fibers) having a basis weight of 2,800 g/m2 and being formed of crystalline alumina/silica-based fibers. The firing was performed with an electric furnace by heating to 1,200 C at a rate of temperature increase of 5 C/min, holding at 1,200 C for 30 minutes, and then natural cooling.
[0103]
The composition ratio of the resulting crystalline alumina/silica-based fibers was alumina/silica = 72/28 (ratio by weight). The average fiber diameter (average value of 100 fibers) of the crystalline alumina/silica-based fibers was measured by the observation of the inorganic fiber-formed article with a microscope and found to be 5.5 m.
The composition ratio of the resulting crystalline alumina/silica-based fibers was alumina/silica = 72/28 (ratio by weight). The average fiber diameter (average value of 100 fibers) of the crystalline alumina/silica-based fibers was measured by the observation of the inorganic fiber-formed article with a microscope and found to be 5.5 m.
[0104]
Tables 1 and 2 present the measurement results of the peel strength and so forth of the resulting inorganic fiber-formed article.
Tables 1 and 2 present the measurement results of the peel strength and so forth of the resulting inorganic fiber-formed article.
[0105]
[Example 1]
An inorganic fiber-formed article of Example 1 was produced as in Comparative example 1, except that a needling aid was coated before the needling. Specifically, after the friction-reducing agent was attached to the inorganic fiber Date Recue/Date Received 2021-07-05 aggregate, a 10% solution of "Yukaformer (registered trademark) 301", available from Mitsubishi Chemical Corporation, in ethanol was coated as a needling aid in an amount of 32 g/m2 by spraying, and then the needling was performed. After the coating of the needling aid, the inorganic fiber aggregate was not dried. The term "WET" in Table 1 refers to wet coating. Tables 1 and 2 present the measurement results of the peel strength and so forth of the inorganic fiber-formed article of Example 1.
[Example 1]
An inorganic fiber-formed article of Example 1 was produced as in Comparative example 1, except that a needling aid was coated before the needling. Specifically, after the friction-reducing agent was attached to the inorganic fiber Date Recue/Date Received 2021-07-05 aggregate, a 10% solution of "Yukaformer (registered trademark) 301", available from Mitsubishi Chemical Corporation, in ethanol was coated as a needling aid in an amount of 32 g/m2 by spraying, and then the needling was performed. After the coating of the needling aid, the inorganic fiber aggregate was not dried. The term "WET" in Table 1 refers to wet coating. Tables 1 and 2 present the measurement results of the peel strength and so forth of the inorganic fiber-formed article of Example 1.
[0106]
[Example 2]
An inorganic fiber-formed article of Example 2 was produced as in Example 1, except for coating of a needling aid. Regarding the coating of the needling aid, specifically, a 5% solution of "Diaformer (registered trademark) Z-631", available from Mitsubishi Chemical Corporation, in ethanol was coated as a needling aid in an amount of 34 g/m2 and dried at 50 C for 60 minutes. Then the needling was performed. Tables 1 and 2 present the measurement results of the peel strength and so forth. The term "DRY" in Table 1 refers to dry coating.
[Example 2]
An inorganic fiber-formed article of Example 2 was produced as in Example 1, except for coating of a needling aid. Regarding the coating of the needling aid, specifically, a 5% solution of "Diaformer (registered trademark) Z-631", available from Mitsubishi Chemical Corporation, in ethanol was coated as a needling aid in an amount of 34 g/m2 and dried at 50 C for 60 minutes. Then the needling was performed. Tables 1 and 2 present the measurement results of the peel strength and so forth. The term "DRY" in Table 1 refers to dry coating.
[0107]
[Example 3]
An inorganic fiber-formed article of Example 3 was produced as in Example 2, except that after the coating of Date Recue/Date Received 2021-07-05 the needling aid, the drying step was not performed (wet coating was performed). Specifically, a 5% solution of "Diaformer (registered trademark) Z-631", available from Mitsubishi Chemical Corporation, in ethanol was coated as a needling aid in an amount of 34 g/m2. Tables 1 and 2 present the measurement results of the peel strength and so forth.
[Example 3]
An inorganic fiber-formed article of Example 3 was produced as in Example 2, except that after the coating of Date Recue/Date Received 2021-07-05 the needling aid, the drying step was not performed (wet coating was performed). Specifically, a 5% solution of "Diaformer (registered trademark) Z-631", available from Mitsubishi Chemical Corporation, in ethanol was coated as a needling aid in an amount of 34 g/m2. Tables 1 and 2 present the measurement results of the peel strength and so forth.
[0108]
[Example 4]
Needling was performed in the same manner as in Comparative example 1. Precursor fiber filaments (by-product formed during the production of the aggregate) having an average diameter of 1,300 pm and an average length of 80 mm were arranged on the resulting inorganic fiber aggregate at 5.7 filaments/cm2. The substantially middle portions of the filaments were pushed into the aggregate with a fork needle, and the needling was performed again.
The firing and the subsequent steps were performed in the same manner as in Comparative example 1 to produce an inorganic fiber-formed article of Example 4. Tables 1 and 2 present the measurement results of the peel strength and so forth.
[Example 4]
Needling was performed in the same manner as in Comparative example 1. Precursor fiber filaments (by-product formed during the production of the aggregate) having an average diameter of 1,300 pm and an average length of 80 mm were arranged on the resulting inorganic fiber aggregate at 5.7 filaments/cm2. The substantially middle portions of the filaments were pushed into the aggregate with a fork needle, and the needling was performed again.
The firing and the subsequent steps were performed in the same manner as in Comparative example 1 to produce an inorganic fiber-formed article of Example 4. Tables 1 and 2 present the measurement results of the peel strength and so forth.
[0109]
[Example 5]
An inorganic fiber-formed article of Example 5 was produced as in Example 4, except that as the filaments Date Recue/Date Received 2021-07-05 arranged on the inorganic fiber aggregate, precursor fiber filaments (by-product during the production of the aggregate) having an average diameter of 1,000 m and an average length of 80 mm were arranged at 1.1 filaments/cm2.
Tables 1 and 2 present the measurement results of the peel strength and so forth.
Date Recue/Date Received 2021-07-05 [ 0 110 ]
[Table 1]
Comparative Example Example Example Example Example example 1 1 2 3 4 5 Basis weight (g/m2) 2800 2800 2800 2800 2800 Total volume of effective 1.8 23.9 24.0 16.3 92.3 37.3 vertical bundle (mm3/cm2) Needle mark density 8.2 10.2 9.3 9.3 9.9 10.5 (marks/cm') Average volume of effective vertical bundle per needle 0.2 2.3 2.6 1.7 9.3 3.6 mark (mm3/mark) Number of effective vertical Configuration of bundle (filaments/cm2) 2.1 5.1 4.7 3.9 7.6 6.8 inorganic fiber- Average volume per formed article effective vertical bundle 0.87 4.71 5.09 4.19 12.14 5.52 (mm3/filament) Coated state of WET DRY WET
needling aid Amount of (-) (-) (-) Needling needling aid 0.17 0.08 0.07 condition coated (wt%) Number of thick filament arranged (-) (-) (-) (-) 5.7 1.1 (filaments/cm2) Evaluation Peel strength (N) 2.6 7.3 7.6 5.2 31.1 11.0 [0111]
[Table 2]
Comparative Example Example Example Example Example example 1 1 2 3 4 5 Average thickness per 533 875 949 885 1282 965 filament (jm) Effective vertical bundle Percentage of length per 36.3 78.3 73.6 77.5 111.2 .. 70.1 filament (c/o) Number of effective vertical 0.26 0.50 0.51 0.42 0.77 0.64 bundle/number of needle mark [0112]
Date Recue/Date Received 2021-07-05 As presented in Table 1, the inorganic fiber-formed articles of Examples 1 to 5 had high peel strength even though they had large weights per unit area (basis weight).
In Comparative example 1, although the article produced by a conventional method was formed to have high basis weight, the average volume of the effective vertical bundles per needle mark was small, and the peel strength was insufficient. As described above, the needling was efficiently performed by, for example, subjecting the filaments strengthened with the needling aid to the needling or by performing the needling using the thick filaments, thereby increasing the average volume of the effective vertical bundles per needle mark. In the first embodiment, it was found that since the average volume of the effective vertical bundles per needle mark, which is determined by the peel test, is increased, the inorganic fiber-formed article having both high basis weight and excellent peel strength can be obtained.
[0113]
As presented in Table 1, it was found that the average volume per effective vertical bundle can be increased by, for example, subjecting the filaments strengthened with the needling aid to the needling or by performing the needling using the thick filaments. In the second embodiment, it was found that since the average volume per effective vertical Date Recue/Date Received 2021-07-05 bundle, which is determined by the peel test, is increased, the inorganic fiber-formed article having both high basis weight and excellent peel strength can be obtained.
[0114]
While the present invention has been described by the specific embodiments, it will be obvious to those skilled in the art that various changes may be made without departing from the purpose and scope of the invention.
This application is based on Japanese Patent Application No. 2019-144390 filed August 6, 2019, and Japanese Patent Application No. 2020-092409 filed May 27, 2020.
Reference Signs List [0115]
1 test specimen of inorganic fiber-formed article 2 gripping jig Date Recue/Date Received 2022-01-18
[Example 5]
An inorganic fiber-formed article of Example 5 was produced as in Example 4, except that as the filaments Date Recue/Date Received 2021-07-05 arranged on the inorganic fiber aggregate, precursor fiber filaments (by-product during the production of the aggregate) having an average diameter of 1,000 m and an average length of 80 mm were arranged at 1.1 filaments/cm2.
Tables 1 and 2 present the measurement results of the peel strength and so forth.
Date Recue/Date Received 2021-07-05 [ 0 110 ]
[Table 1]
Comparative Example Example Example Example Example example 1 1 2 3 4 5 Basis weight (g/m2) 2800 2800 2800 2800 2800 Total volume of effective 1.8 23.9 24.0 16.3 92.3 37.3 vertical bundle (mm3/cm2) Needle mark density 8.2 10.2 9.3 9.3 9.9 10.5 (marks/cm') Average volume of effective vertical bundle per needle 0.2 2.3 2.6 1.7 9.3 3.6 mark (mm3/mark) Number of effective vertical Configuration of bundle (filaments/cm2) 2.1 5.1 4.7 3.9 7.6 6.8 inorganic fiber- Average volume per formed article effective vertical bundle 0.87 4.71 5.09 4.19 12.14 5.52 (mm3/filament) Coated state of WET DRY WET
needling aid Amount of (-) (-) (-) Needling needling aid 0.17 0.08 0.07 condition coated (wt%) Number of thick filament arranged (-) (-) (-) (-) 5.7 1.1 (filaments/cm2) Evaluation Peel strength (N) 2.6 7.3 7.6 5.2 31.1 11.0 [0111]
[Table 2]
Comparative Example Example Example Example Example example 1 1 2 3 4 5 Average thickness per 533 875 949 885 1282 965 filament (jm) Effective vertical bundle Percentage of length per 36.3 78.3 73.6 77.5 111.2 .. 70.1 filament (c/o) Number of effective vertical 0.26 0.50 0.51 0.42 0.77 0.64 bundle/number of needle mark [0112]
Date Recue/Date Received 2021-07-05 As presented in Table 1, the inorganic fiber-formed articles of Examples 1 to 5 had high peel strength even though they had large weights per unit area (basis weight).
In Comparative example 1, although the article produced by a conventional method was formed to have high basis weight, the average volume of the effective vertical bundles per needle mark was small, and the peel strength was insufficient. As described above, the needling was efficiently performed by, for example, subjecting the filaments strengthened with the needling aid to the needling or by performing the needling using the thick filaments, thereby increasing the average volume of the effective vertical bundles per needle mark. In the first embodiment, it was found that since the average volume of the effective vertical bundles per needle mark, which is determined by the peel test, is increased, the inorganic fiber-formed article having both high basis weight and excellent peel strength can be obtained.
[0113]
As presented in Table 1, it was found that the average volume per effective vertical bundle can be increased by, for example, subjecting the filaments strengthened with the needling aid to the needling or by performing the needling using the thick filaments. In the second embodiment, it was found that since the average volume per effective vertical Date Recue/Date Received 2021-07-05 bundle, which is determined by the peel test, is increased, the inorganic fiber-formed article having both high basis weight and excellent peel strength can be obtained.
[0114]
While the present invention has been described by the specific embodiments, it will be obvious to those skilled in the art that various changes may be made without departing from the purpose and scope of the invention.
This application is based on Japanese Patent Application No. 2019-144390 filed August 6, 2019, and Japanese Patent Application No. 2020-092409 filed May 27, 2020.
Reference Signs List [0115]
1 test specimen of inorganic fiber-formed article 2 gripping jig Date Recue/Date Received 2022-01-18
Claims (6)
- [Claim 1]
An inorganic fiber-formed article, comprising:
inorganic fibers; and needle marks extending in a thickness direction and including vertical bundles composed of the inorganic fibers extending in the thickness direction, wherein the inorganic fiber-formed article has a basis weight of 1,800 g/m2 or more, in the case where a peel test described below is performed, when the vertical bundles having a diameter of 100 pm or more and a protruding length of 2 mm or more among all the vertical bundles protruding from a first peeled surface and a second peeled surface in a region measuring 50 mm x 50 mm are expressed as effective vertical bundles, at least one of characteristics (I) and (II) described below is satisfied, (I) an average volume of the effective vertical bundles per needle mark determined by dividing a total volume of portions of the effective vertical bundles protruding from the peeled surfaces in the region by the number of the needle marks in the region is 0.5 mm3 or more, and (II) an average volume of a portion of each of the effective vertical bundles protruding from the peeled surfaces in the region is 1.0 mm3 or more, and Date Recue/Date Received 2021-07-05 wherein the <peel test> is performed as follows:
a test specimen having a width of 50 mm and a length of 150 mm is cut out from the inorganic fiber-formed article, a cut having a depth of 30 mm is made in a middle of a thickness of an end face of the test specimen, and both ends formed by the cut are held by gripping jigs, mounted on a tensile testing machine, and pulled in opposite thickness directions at a speed of 500 mm/min into two pieces. - [Claim 2]
The inorganic fiber-formed article according to Claim 1, wherein a needle mark density is 1 to 100 marks/cm2. - [Claim 3]
The inorganic fiber-formed article according to Claim 1 or 2, wherein a maximum peel strength determined as a peak load (N) in the peel test is 5.0 N or more. - [Claim 4]
The inorganic fiber-formed article according to any one of Claims 1 to 3, wherein the inorganic fibers are alumina/silica-based fibers. - [Claim 5]
A mat for an exhaust gas cleaning apparatus, comprising the inorganic fiber-formed article according to any one of Claims 1 to 4. - [Claim 6]
An exhaust gas cleaning apparatus, comprising a Date Recue/Date Received 2021-07-05 catalyst carrier, a casing that covers an outside of the catalyst carrier, and a mat interposed between the catalyst carrier and the casing, wherein the mat is the mat according to Claim 5.
Date Recue/Date Received 2021-07-05
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-144390 | 2019-08-06 | ||
JP2019144390 | 2019-08-06 | ||
JP2020092409 | 2020-05-27 | ||
JP2020-092409 | 2020-05-27 | ||
PCT/JP2020/029992 WO2021025057A1 (en) | 2019-08-06 | 2020-08-05 | Inorganic fiber formed body, mat for exhaust gas purification device, and exhaust gas purification device |
Publications (2)
Publication Number | Publication Date |
---|---|
CA3125733A1 CA3125733A1 (en) | 2021-02-11 |
CA3125733C true CA3125733C (en) | 2022-09-06 |
Family
ID=74502970
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA3129766A Active CA3129766C (en) | 2019-08-06 | 2020-08-05 | Inorganic fiber-formed article, mat for exhaust gas cleaning apparatus, and exhaust gas cleaning apparatus |
CA3125733A Active CA3125733C (en) | 2019-08-06 | 2020-08-05 | Inorganic fiber-formed article, mat for exhaust gas cleaning apparatus, and exhaust gas cleaning apparatus |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA3129766A Active CA3129766C (en) | 2019-08-06 | 2020-08-05 | Inorganic fiber-formed article, mat for exhaust gas cleaning apparatus, and exhaust gas cleaning apparatus |
Country Status (11)
Country | Link |
---|---|
US (2) | US12110622B2 (en) |
EP (2) | EP3892765B1 (en) |
JP (5) | JP6870788B1 (en) |
KR (2) | KR20220044236A (en) |
CN (2) | CN113646475B (en) |
BR (2) | BR112021013267B8 (en) |
CA (2) | CA3129766C (en) |
HU (2) | HUE060894T2 (en) |
PL (2) | PL4012085T3 (en) |
WO (2) | WO2021025057A1 (en) |
ZA (2) | ZA202104571B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021025057A1 (en) | 2019-08-06 | 2021-02-11 | 三菱ケミカル株式会社 | Inorganic fiber formed body, mat for exhaust gas purification device, and exhaust gas purification device |
JP7394905B2 (en) | 2022-03-29 | 2023-12-08 | マフテック株式会社 | Binder-containing inorganic fiber molded article, holding material for exhaust gas purification device, and method for producing binder-containing inorganic fiber molded article |
JP7352759B1 (en) * | 2023-04-03 | 2023-09-28 | イビデン株式会社 | Paper-made mat, wrapped body, and method for producing paper-made mat |
Family Cites Families (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4752515A (en) * | 1985-06-17 | 1988-06-21 | Mitsubishi Chemical Industries | Alumina fiber structure |
JP2602460B2 (en) | 1991-01-17 | 1997-04-23 | 三菱化学株式会社 | Spinning nozzle, method for producing metal compound fiber precursor and method for producing inorganic oxide fiber using the spinning nozzle |
DE4201868C2 (en) | 1992-01-24 | 1994-11-24 | Gruenzweig & Hartmann | Needle aids for the production of needle felt, needle felt produced therewith, and method for the production thereof |
JPH06299450A (en) * | 1993-04-13 | 1994-10-25 | Mitsubishi Kasei Corp | Ceramic fiber blanket and its production |
WO1997002219A1 (en) * | 1995-06-30 | 1997-01-23 | Minnesota Mining And Manufacturing Company | Intumescent sheet material |
JPH1061433A (en) * | 1996-08-14 | 1998-03-03 | Denso Corp | Ceramic catalyst converter |
JP2000080547A (en) | 1998-07-07 | 2000-03-21 | Mitsubishi Chemicals Corp | Production of laminated sheet composed of alumina fiber precursor |
KR100658121B1 (en) * | 1999-01-22 | 2006-12-14 | 미쓰이 가가쿠 가부시키가이샤 | Nonwoven fabric laminates |
JP4730495B2 (en) * | 2001-05-25 | 2011-07-20 | イビデン株式会社 | Holding seal material for catalytic converter and method for manufacturing the same, catalytic converter |
CN100359071C (en) | 2002-06-28 | 2008-01-02 | 电气化学工业株式会社 | Inorganic staple fiber accumulation for holding material, process for producing the same and holding material |
US6946013B2 (en) * | 2002-10-28 | 2005-09-20 | Geo2 Technologies, Inc. | Ceramic exhaust filter |
JP4663341B2 (en) * | 2005-01-25 | 2011-04-06 | イビデン株式会社 | Heat insulation material for end cone part of exhaust gas purifier |
JP4885649B2 (en) * | 2006-03-10 | 2012-02-29 | イビデン株式会社 | Sheet material and exhaust gas purification device |
JP4268182B2 (en) * | 2006-09-29 | 2009-05-27 | イビデン株式会社 | Exhaust gas treatment device and manufacturing method thereof |
JP5014113B2 (en) * | 2007-01-26 | 2012-08-29 | イビデン株式会社 | Sheet material, method for manufacturing the same, exhaust gas treatment device, and silencer |
CN101046033B (en) * | 2007-04-24 | 2010-05-19 | 江苏中联地毯有限公司 | Composite knitted automobile carpet and its making process |
JP5046829B2 (en) * | 2007-09-26 | 2012-10-10 | イビデン株式会社 | Holding sealing material and manufacturing method of holding sealing material |
JP2009085091A (en) | 2007-09-28 | 2009-04-23 | Ibiden Co Ltd | Mat material, exhaust gas treating device, and muffler |
WO2009133613A1 (en) * | 2008-04-30 | 2009-11-05 | イビデン株式会社 | Mat material, process for producing the same, muffler and process for manufacturing muffler |
JP2010131580A (en) * | 2008-10-30 | 2010-06-17 | Duskin Co Ltd | Filter, exhauster using the same, manufacturing method of filter and filter manufacturing device |
JP5499644B2 (en) * | 2009-11-06 | 2014-05-21 | 三菱樹脂株式会社 | Inorganic fiber molded body and method for producing the same |
JP2011214194A (en) * | 2010-03-31 | 2011-10-27 | Ibiden Co Ltd | Holding sealing material |
JP2011236526A (en) * | 2010-05-11 | 2011-11-24 | Ibiden Co Ltd | Mat, manufacturing method of mat and exhaust gas purification apparatus |
CN101899748B (en) * | 2010-05-28 | 2012-02-08 | 上海鼎炘实业有限公司 | High-temperature resistant carbon fiber heat insulation felt |
PL2655817T3 (en) * | 2010-12-22 | 2019-04-30 | 3M Innovative Properties Co | Mounting mat with lower friction surface for assembling and higher friction surface for mounting |
JP2013083154A (en) * | 2011-10-05 | 2013-05-09 | Ibiden Co Ltd | Holding sealing material, method for manufacturing holding sealing material, exhaust gas purification device, and method for manufacturing exhaust gas purification device |
CN104338376A (en) * | 2013-08-08 | 2015-02-11 | 扬州伏尔特工业滤材有限公司 | Production technology for continuous basalt fiber needled felt |
JP6161485B2 (en) * | 2013-09-20 | 2017-07-12 | イビデン株式会社 | Holding sealing material, manufacturing method of holding sealing material, manufacturing method of exhaust gas purification device, and exhaust gas purification device |
JP6218529B2 (en) * | 2013-09-24 | 2017-10-25 | イビデン株式会社 | Holding sealing material, manufacturing method of holding sealing material, manufacturing method of exhaust gas purification device, and exhaust gas purification device |
JP6370192B2 (en) * | 2014-10-28 | 2018-08-08 | イビデン株式会社 | Electric heating type catalytic converter |
KR101973883B1 (en) * | 2015-03-23 | 2019-04-29 | 미쯔비시 케미컬 주식회사 | An inorganic fiber molded article, a mat for an exhaust gas cleaning device, and an exhaust gas cleaning device |
CN105398106A (en) * | 2015-11-25 | 2016-03-16 | 青岛金智高新技术有限公司 | Multi-layered mat and waste gas treatment device |
JP6608692B2 (en) | 2015-12-16 | 2019-11-20 | イビデン株式会社 | Manufacturing method of holding sealing material |
CN109196031B (en) * | 2016-05-25 | 2022-01-28 | 巴斯夫欧洲公司 | Fiber reinforced reactive foams made by a molded foaming process |
JP2018009262A (en) * | 2016-07-15 | 2018-01-18 | 三菱ケミカル株式会社 | Inorganic fiber compact and production process and apparatus thereof, and mat for exhaust gas rinsing apparatus and exhaust gas rinsing apparatus |
JP6683057B2 (en) * | 2016-08-03 | 2020-04-15 | 三菱ケミカル株式会社 | Inorganic fiber molded body, exhaust gas purification device mat, and exhaust gas purification device |
CN106635212A (en) * | 2016-12-28 | 2017-05-10 | 宁波兴光新能源投资有限公司 | Pretreatment method of landfill gas |
JP7216475B2 (en) | 2017-12-27 | 2023-02-01 | イビデン株式会社 | Multilayer mat and method for manufacturing multilayer mat |
JP6554571B1 (en) | 2018-02-20 | 2019-07-31 | 沖電気工業株式会社 | Optical wavelength filter |
US11503423B2 (en) | 2018-10-25 | 2022-11-15 | Creative Technology Ltd | Systems and methods for modifying room characteristics for spatial audio rendering over headphones |
WO2021025057A1 (en) | 2019-08-06 | 2021-02-11 | 三菱ケミカル株式会社 | Inorganic fiber formed body, mat for exhaust gas purification device, and exhaust gas purification device |
-
2020
- 2020-08-05 WO PCT/JP2020/029992 patent/WO2021025057A1/en unknown
- 2020-08-05 CA CA3129766A patent/CA3129766C/en active Active
- 2020-08-05 HU HUE20850960A patent/HUE060894T2/en unknown
- 2020-08-05 BR BR112021013267A patent/BR112021013267B8/en active IP Right Grant
- 2020-08-05 PL PL20849154.8T patent/PL4012085T3/en unknown
- 2020-08-05 HU HUE20849154A patent/HUE062035T2/en unknown
- 2020-08-05 WO PCT/JP2020/029993 patent/WO2021025058A1/en unknown
- 2020-08-05 JP JP2020561092A patent/JP6870788B1/en active Active
- 2020-08-05 EP EP20850960.4A patent/EP3892765B1/en active Active
- 2020-08-05 JP JP2020561091A patent/JP6870787B1/en active Active
- 2020-08-05 EP EP20849154.8A patent/EP4012085B1/en active Active
- 2020-08-05 JP JP2020133174A patent/JP2021185310A/en active Pending
- 2020-08-05 KR KR1020217024227A patent/KR20220044236A/en unknown
- 2020-08-05 CN CN202080022509.XA patent/CN113646475B/en active Active
- 2020-08-05 KR KR1020217028164A patent/KR20220038580A/en unknown
- 2020-08-05 PL PL20850960.4T patent/PL3892765T3/en unknown
- 2020-08-05 BR BR112021013428-0A patent/BR112021013428B1/en active IP Right Grant
- 2020-08-05 CN CN202080022176.0A patent/CN113614300B/en active Active
- 2020-08-05 CA CA3125733A patent/CA3125733C/en active Active
-
2021
- 2021-04-05 JP JP2021064213A patent/JP2021185279A/en active Pending
- 2021-04-05 JP JP2021064214A patent/JP2021185280A/en active Pending
- 2021-06-30 ZA ZA2021/04571A patent/ZA202104571B/en unknown
- 2021-07-09 ZA ZA2021/04816A patent/ZA202104816B/en unknown
- 2021-09-24 US US17/484,292 patent/US12110622B2/en active Active
-
2022
- 2022-01-10 US US17/571,950 patent/US20220170404A1/en active Pending
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA3125733C (en) | Inorganic fiber-formed article, mat for exhaust gas cleaning apparatus, and exhaust gas cleaning apparatus | |
US8999251B2 (en) | Inorganic fiber formed article and method for producing the same | |
EP2113642B1 (en) | Mat member, method for manufacturing the mat member, muffler and method for manufacturing the muffler | |
US8974570B2 (en) | Retaining seal material and exhaust gas purifying apparatus | |
JP2007127112A (en) | Holding seal material and exhaust gas treating device | |
US9056440B2 (en) | Holding seal material, exhaust gas purifying apparatus and method of manufacturing holding seal material | |
US9200391B2 (en) | Mat, method for manufacturing the mat, and apparatus for purifying exhaust gas | |
EP2730760A1 (en) | Holding seal material, method of manufacturing holding seal material, and exhaust gas purifying device | |
JP2015017344A (en) | Inorganic fiber, method for producing inorganic fiber assembly, holding seal material, and exhaust gas purification apparatus | |
EP3276063B1 (en) | Inorganic fiber formed article, mat for exhaust gas cleaning device, and exhaust gas cleaning device | |
JP2011190811A (en) | Holding sealer and exhaust gas processing device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EEER | Examination request |
Effective date: 20210705 |
|
EEER | Examination request |
Effective date: 20210705 |
|
EEER | Examination request |
Effective date: 20210705 |
|
EEER | Examination request |
Effective date: 20210705 |