CA3046501A1 - Methods and compositions for treating parkinson's disease - Google Patents
Methods and compositions for treating parkinson's disease Download PDFInfo
- Publication number
- CA3046501A1 CA3046501A1 CA3046501A CA3046501A CA3046501A1 CA 3046501 A1 CA3046501 A1 CA 3046501A1 CA 3046501 A CA3046501 A CA 3046501A CA 3046501 A CA3046501 A CA 3046501A CA 3046501 A1 CA3046501 A1 CA 3046501A1
- Authority
- CA
- Canada
- Prior art keywords
- malassezial
- agent
- disease
- parkinson
- subject
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 208000018737 Parkinson disease Diseases 0.000 title claims abstract description 141
- 239000000203 mixture Substances 0.000 title claims abstract description 83
- 238000000034 method Methods 0.000 title claims abstract description 59
- 230000000116 mitigating effect Effects 0.000 claims abstract description 37
- 239000003795 chemical substances by application Substances 0.000 claims description 139
- 150000001875 compounds Chemical class 0.000 claims description 88
- 238000011282 treatment Methods 0.000 claims description 58
- 239000008194 pharmaceutical composition Substances 0.000 claims description 45
- 208000024891 symptom Diseases 0.000 claims description 45
- 241000555676 Malassezia Species 0.000 claims description 38
- 230000002265 prevention Effects 0.000 claims description 33
- 230000000843 anti-fungal effect Effects 0.000 claims description 24
- 229940121375 antifungal agent Drugs 0.000 claims description 24
- APKFDSVGJQXUKY-INPOYWNPSA-N amphotericin B Chemical compound O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1/C=C/C=C/C=C/C=C/C=C/C=C/C=C/[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 APKFDSVGJQXUKY-INPOYWNPSA-N 0.000 claims description 21
- 230000000699 topical effect Effects 0.000 claims description 19
- 229960004884 fluconazole Drugs 0.000 claims description 18
- 229960003942 amphotericin b Drugs 0.000 claims description 17
- 239000003937 drug carrier Substances 0.000 claims description 17
- 229940043810 zinc pyrithione Drugs 0.000 claims description 17
- PICXIOQBANWBIZ-UHFFFAOYSA-N zinc;1-oxidopyridine-2-thione Chemical compound [Zn+2].[O-]N1C=CC=CC1=S.[O-]N1C=CC=CC1=S PICXIOQBANWBIZ-UHFFFAOYSA-N 0.000 claims description 17
- APKFDSVGJQXUKY-KKGHZKTASA-N Amphotericin-B Natural products O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1C=CC=CC=CC=CC=CC=CC=C[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 APKFDSVGJQXUKY-KKGHZKTASA-N 0.000 claims description 16
- 239000003814 drug Substances 0.000 claims description 16
- RFHAOTPXVQNOHP-UHFFFAOYSA-N fluconazole Chemical compound C1=NC=NN1CC(C=1C(=CC(F)=CC=1)F)(O)CN1C=NC=N1 RFHAOTPXVQNOHP-UHFFFAOYSA-N 0.000 claims description 16
- 238000001126 phototherapy Methods 0.000 claims description 16
- 230000003110 anti-inflammatory effect Effects 0.000 claims description 14
- 230000002421 anti-septic effect Effects 0.000 claims description 10
- 229960004125 ketoconazole Drugs 0.000 claims description 9
- 230000001225 therapeutic effect Effects 0.000 claims description 9
- VVJKKWFAADXIJK-UHFFFAOYSA-N Allylamine Chemical compound NCC=C VVJKKWFAADXIJK-UHFFFAOYSA-N 0.000 claims description 8
- 238000002347 injection Methods 0.000 claims description 7
- 239000007924 injection Substances 0.000 claims description 7
- 238000001990 intravenous administration Methods 0.000 claims description 7
- 229940021182 non-steroidal anti-inflammatory drug Drugs 0.000 claims description 7
- DOMXUEMWDBAQBQ-WEVVVXLNSA-N terbinafine Chemical group C1=CC=C2C(CN(C\C=C\C#CC(C)(C)C)C)=CC=CC2=C1 DOMXUEMWDBAQBQ-WEVVVXLNSA-N 0.000 claims description 7
- 238000011200 topical administration Methods 0.000 claims description 7
- 229940086609 Lipase inhibitor Drugs 0.000 claims description 6
- YNAVUWVOSKDBBP-UHFFFAOYSA-N Morpholine Chemical compound C1COCCN1 YNAVUWVOSKDBBP-UHFFFAOYSA-N 0.000 claims description 6
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 claims description 6
- 239000003429 antifungal agent Substances 0.000 claims description 6
- 229960002722 terbinafine Drugs 0.000 claims description 6
- VHVPQPYKVGDNFY-DFMJLFEVSA-N 2-[(2r)-butan-2-yl]-4-[4-[4-[4-[[(2r,4s)-2-(2,4-dichlorophenyl)-2-(1,2,4-triazol-1-ylmethyl)-1,3-dioxolan-4-yl]methoxy]phenyl]piperazin-1-yl]phenyl]-1,2,4-triazol-3-one Chemical compound O=C1N([C@H](C)CC)N=CN1C1=CC=C(N2CCN(CC2)C=2C=CC(OC[C@@H]3O[C@](CN4N=CN=C4)(OC3)C=3C(=CC(Cl)=CC=3)Cl)=CC=2)C=C1 VHVPQPYKVGDNFY-DFMJLFEVSA-N 0.000 claims description 5
- MVCQKIKWYUURMU-UHFFFAOYSA-N cetilistat Chemical compound C1=C(C)C=C2C(=O)OC(OCCCCCCCCCCCCCCCC)=NC2=C1 MVCQKIKWYUURMU-UHFFFAOYSA-N 0.000 claims description 5
- 229950002397 cetilistat Drugs 0.000 claims description 5
- 229960004130 itraconazole Drugs 0.000 claims description 5
- 238000004519 manufacturing process Methods 0.000 claims description 5
- AHLBNYSZXLDEJQ-FWEHEUNISA-N orlistat Chemical group CCCCCCCCCCC[C@H](OC(=O)[C@H](CC(C)C)NC=O)C[C@@H]1OC(=O)[C@H]1CCCCCC AHLBNYSZXLDEJQ-FWEHEUNISA-N 0.000 claims description 5
- 229960001243 orlistat Drugs 0.000 claims description 5
- 239000000546 pharmaceutical excipient Substances 0.000 claims description 5
- 238000007920 subcutaneous administration Methods 0.000 claims description 5
- 229960004740 voriconazole Drugs 0.000 claims description 5
- BCEHBSKCWLPMDN-MGPLVRAMSA-N voriconazole Chemical compound C1([C@H](C)[C@](O)(CN2N=CN=C2)C=2C(=CC(F)=CC=2)F)=NC=NC=C1F BCEHBSKCWLPMDN-MGPLVRAMSA-N 0.000 claims description 5
- MQHLMHIZUIDKOO-OKZBNKHCSA-N (2R,6S)-2,6-dimethyl-4-[(2S)-2-methyl-3-[4-(2-methylbutan-2-yl)phenyl]propyl]morpholine Chemical group C1=CC(C(C)(C)CC)=CC=C1C[C@H](C)CN1C[C@@H](C)O[C@@H](C)C1 MQHLMHIZUIDKOO-OKZBNKHCSA-N 0.000 claims description 4
- MBRHNTMUYWQHMR-UHFFFAOYSA-N 2-aminoethanol;6-cyclohexyl-1-hydroxy-4-methylpyridin-2-one Chemical compound NCCO.ON1C(=O)C=C(C)C=C1C1CCCCC1 MBRHNTMUYWQHMR-UHFFFAOYSA-N 0.000 claims description 4
- HEFNNWSXXWATRW-UHFFFAOYSA-N Ibuprofen Chemical compound CC(C)CC1=CC=C(C(C)C(O)=O)C=C1 HEFNNWSXXWATRW-UHFFFAOYSA-N 0.000 claims description 4
- 229960003204 amorolfine Drugs 0.000 claims description 4
- 229940124599 anti-inflammatory drug Drugs 0.000 claims description 4
- 229960002537 betamethasone Drugs 0.000 claims description 4
- UREBDLICKHMUKA-DVTGEIKXSA-N betamethasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)C[C@@H]2O UREBDLICKHMUKA-DVTGEIKXSA-N 0.000 claims description 4
- 229960004375 ciclopirox olamine Drugs 0.000 claims description 4
- 229960001680 ibuprofen Drugs 0.000 claims description 4
- 150000004291 polyenes Chemical class 0.000 claims description 4
- 230000003637 steroidlike Effects 0.000 claims description 4
- 239000002260 anti-inflammatory agent Substances 0.000 claims description 3
- 210000005064 dopaminergic neuron Anatomy 0.000 claims description 3
- 238000002360 preparation method Methods 0.000 claims description 3
- 229940124530 sulfonamide Drugs 0.000 claims description 3
- 150000003456 sulfonamides Chemical class 0.000 claims description 3
- 229920001503 Glucan Polymers 0.000 claims description 2
- QJJXYPPXXYFBGM-LFZNUXCKSA-N Tacrolimus Chemical compound C1C[C@@H](O)[C@H](OC)C[C@@H]1\C=C(/C)[C@@H]1[C@H](C)[C@@H](O)CC(=O)[C@H](CC=C)/C=C(C)/C[C@H](C)C[C@H](OC)[C@H]([C@H](C[C@H]2C)OC)O[C@@]2(O)C(=O)C(=O)N2CCCC[C@H]2C(=O)O1 QJJXYPPXXYFBGM-LFZNUXCKSA-N 0.000 claims description 2
- 230000015572 biosynthetic process Effects 0.000 claims description 2
- 239000003112 inhibitor Substances 0.000 claims description 2
- KASDHRXLYQOAKZ-ZPSXYTITSA-N pimecrolimus Chemical compound C/C([C@H]1OC(=O)[C@@H]2CCCCN2C(=O)C(=O)[C@]2(O)O[C@@H]([C@H](C[C@H]2C)OC)[C@@H](OC)C[C@@H](C)C/C(C)=C/[C@H](C(C[C@H](O)[C@H]1C)=O)CC)=C\[C@@H]1CC[C@@H](Cl)[C@H](OC)C1 KASDHRXLYQOAKZ-ZPSXYTITSA-N 0.000 claims description 2
- 229960005330 pimecrolimus Drugs 0.000 claims description 2
- 229960002673 sulfacetamide Drugs 0.000 claims description 2
- SKIVFJLNDNKQPD-UHFFFAOYSA-N sulfacetamide Chemical group CC(=O)NS(=O)(=O)C1=CC=C(N)C=C1 SKIVFJLNDNKQPD-UHFFFAOYSA-N 0.000 claims description 2
- 238000003786 synthesis reaction Methods 0.000 claims description 2
- 229960001967 tacrolimus Drugs 0.000 claims description 2
- QJJXYPPXXYFBGM-SHYZHZOCSA-N tacrolimus Natural products CO[C@H]1C[C@H](CC[C@@H]1O)C=C(C)[C@H]2OC(=O)[C@H]3CCCCN3C(=O)C(=O)[C@@]4(O)O[C@@H]([C@H](C[C@H]4C)OC)[C@@H](C[C@H](C)CC(=C[C@@H](CC=C)C(=O)C[C@H](O)[C@H]2C)C)OC QJJXYPPXXYFBGM-SHYZHZOCSA-N 0.000 claims description 2
- UFTFJSFQGQCHQW-UHFFFAOYSA-N triformin Chemical compound O=COCC(OC=O)COC=O UFTFJSFQGQCHQW-UHFFFAOYSA-N 0.000 claims description 2
- 229940122739 Calcineurin inhibitor Drugs 0.000 claims 2
- 102100024123 Calcineurin-binding protein cabin-1 Human genes 0.000 claims 2
- 101710192106 Calcineurin-binding protein cabin-1 Proteins 0.000 claims 2
- 239000000041 non-steroidal anti-inflammatory agent Substances 0.000 claims 2
- 150000003626 triacylglycerols Chemical class 0.000 claims 2
- XMAYWYJOQHXEEK-OZXSUGGESA-N (2R,4S)-ketoconazole Chemical compound C1CN(C(=O)C)CCN1C(C=C1)=CC=C1OC[C@@H]1O[C@@](CN2C=NC=C2)(C=2C(=CC(Cl)=CC=2)Cl)OC1 XMAYWYJOQHXEEK-OZXSUGGESA-N 0.000 claims 1
- 230000006378 damage Effects 0.000 claims 1
- 230000000050 nutritive effect Effects 0.000 claims 1
- 239000000243 solution Substances 0.000 description 31
- -1 amphotericin B) Chemical class 0.000 description 27
- 239000006071 cream Substances 0.000 description 22
- 239000002453 shampoo Substances 0.000 description 21
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 20
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 20
- 210000003491 skin Anatomy 0.000 description 19
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 18
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 17
- 201000010099 disease Diseases 0.000 description 17
- 208000008742 seborrheic dermatitis Diseases 0.000 description 17
- 208000015181 infectious disease Diseases 0.000 description 16
- 231100000678 Mycotoxin Toxicity 0.000 description 14
- 206010056131 Tinea versicolour Diseases 0.000 description 14
- 239000002636 mycotoxin Substances 0.000 description 14
- 239000000047 product Substances 0.000 description 14
- 241000352021 Malasseziales Species 0.000 description 13
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 13
- 238000009472 formulation Methods 0.000 description 13
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 12
- 239000000499 gel Substances 0.000 description 12
- 206010039793 Seborrhoeic dermatitis Diseases 0.000 description 11
- 239000002775 capsule Substances 0.000 description 11
- 229940079593 drug Drugs 0.000 description 10
- 239000006210 lotion Substances 0.000 description 10
- 239000002674 ointment Substances 0.000 description 10
- XMAYWYJOQHXEEK-ZEQKJWHPSA-N (2S,4R)-ketoconazole Chemical compound C1CN(C(=O)C)CCN1C(C=C1)=CC=C1OC[C@H]1O[C@](CN2C=NC=C2)(C=2C(=CC(Cl)=CC=2)Cl)OC1 XMAYWYJOQHXEEK-ZEQKJWHPSA-N 0.000 description 9
- VNFPBHJOKIVQEB-UHFFFAOYSA-N clotrimazole Chemical compound ClC1=CC=CC=C1C(N1C=NC=C1)(C=1C=CC=CC=1)C1=CC=CC=C1 VNFPBHJOKIVQEB-UHFFFAOYSA-N 0.000 description 9
- 239000003974 emollient agent Substances 0.000 description 9
- 108090000623 proteins and genes Proteins 0.000 description 9
- 239000000126 substance Substances 0.000 description 9
- 101000941879 Homo sapiens Leucine-rich repeat serine/threonine-protein kinase 2 Proteins 0.000 description 8
- 206010044565 Tremor Diseases 0.000 description 8
- 230000003115 biocidal effect Effects 0.000 description 8
- 230000002599 biostatic effect Effects 0.000 description 8
- 230000003247 decreasing effect Effects 0.000 description 8
- 230000004064 dysfunction Effects 0.000 description 8
- 239000000839 emulsion Substances 0.000 description 8
- 239000012049 topical pharmaceutical composition Substances 0.000 description 8
- 241000282414 Homo sapiens Species 0.000 description 7
- 108090000364 Ligases Proteins 0.000 description 7
- 229960004022 clotrimazole Drugs 0.000 description 7
- 238000001804 debridement Methods 0.000 description 7
- 239000003995 emulsifying agent Substances 0.000 description 7
- 235000019441 ethanol Nutrition 0.000 description 7
- 239000006260 foam Substances 0.000 description 7
- 230000006870 function Effects 0.000 description 7
- 230000006872 improvement Effects 0.000 description 7
- 230000002401 inhibitory effect Effects 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 239000002609 medium Substances 0.000 description 7
- 229930001119 polyketide Natural products 0.000 description 7
- 150000003881 polyketide derivatives Chemical class 0.000 description 7
- 239000000843 powder Substances 0.000 description 7
- 239000003755 preservative agent Substances 0.000 description 7
- 230000003442 weekly effect Effects 0.000 description 7
- 206010002653 Anosmia Diseases 0.000 description 6
- 108090000790 Enzymes Proteins 0.000 description 6
- 102100032693 Leucine-rich repeat serine/threonine-protein kinase 2 Human genes 0.000 description 6
- 102000003960 Ligases Human genes 0.000 description 6
- 206010039792 Seborrhoea Diseases 0.000 description 6
- 235000019558 anosmia Nutrition 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 235000011187 glycerol Nutrition 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 210000001331 nose Anatomy 0.000 description 6
- 239000003921 oil Substances 0.000 description 6
- 229960004063 propylene glycol Drugs 0.000 description 6
- 150000003839 salts Chemical class 0.000 description 6
- 210000004761 scalp Anatomy 0.000 description 6
- 239000011780 sodium chloride Substances 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- 239000002904 solvent Substances 0.000 description 6
- 238000002560 therapeutic procedure Methods 0.000 description 6
- 206010006100 Bradykinesia Diseases 0.000 description 5
- 102000004190 Enzymes Human genes 0.000 description 5
- 241000233866 Fungi Species 0.000 description 5
- 208000006083 Hypokinesia Diseases 0.000 description 5
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 5
- BYBLEWFAAKGYCD-UHFFFAOYSA-N Miconazole Chemical compound ClC1=CC(Cl)=CC=C1COC(C=1C(=CC(Cl)=CC=1)Cl)CN1C=NC=C1 BYBLEWFAAKGYCD-UHFFFAOYSA-N 0.000 description 5
- 239000003125 aqueous solvent Substances 0.000 description 5
- 239000002537 cosmetic Substances 0.000 description 5
- 210000000613 ear canal Anatomy 0.000 description 5
- 229940088598 enzyme Drugs 0.000 description 5
- 230000012010 growth Effects 0.000 description 5
- 230000002262 irrigation Effects 0.000 description 5
- 238000003973 irrigation Methods 0.000 description 5
- 210000002569 neuron Anatomy 0.000 description 5
- 238000011321 prophylaxis Methods 0.000 description 5
- 230000005855 radiation Effects 0.000 description 5
- 239000003826 tablet Substances 0.000 description 5
- IVTMXOXVAHXCHI-YXLMWLKOSA-N (2s)-2-amino-3-(3,4-dihydroxyphenyl)propanoic acid;(2s)-3-(3,4-dihydroxyphenyl)-2-hydrazinyl-2-methylpropanoic acid Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C(O)=C1.NN[C@@](C(O)=O)(C)CC1=CC=C(O)C(O)=C1 IVTMXOXVAHXCHI-YXLMWLKOSA-N 0.000 description 4
- 206010050013 Abulia Diseases 0.000 description 4
- 108700028369 Alleles Proteins 0.000 description 4
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 4
- 108010010803 Gelatin Proteins 0.000 description 4
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 4
- 108010030975 Polyketide Synthases Proteins 0.000 description 4
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 4
- 239000002250 absorbent Substances 0.000 description 4
- 230000002745 absorbent Effects 0.000 description 4
- 239000000443 aerosol Substances 0.000 description 4
- 238000004891 communication Methods 0.000 description 4
- 206010016256 fatigue Diseases 0.000 description 4
- 239000000945 filler Substances 0.000 description 4
- 239000008273 gelatin Substances 0.000 description 4
- 229920000159 gelatin Polymers 0.000 description 4
- 235000019322 gelatine Nutrition 0.000 description 4
- 235000011852 gelatine desserts Nutrition 0.000 description 4
- 230000002068 genetic effect Effects 0.000 description 4
- 210000004209 hair Anatomy 0.000 description 4
- 210000004901 leucine-rich repeat Anatomy 0.000 description 4
- 230000000670 limiting effect Effects 0.000 description 4
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 4
- 210000002752 melanocyte Anatomy 0.000 description 4
- 229960002509 miconazole Drugs 0.000 description 4
- 210000004877 mucosa Anatomy 0.000 description 4
- 210000004400 mucous membrane Anatomy 0.000 description 4
- 230000035772 mutation Effects 0.000 description 4
- 239000003960 organic solvent Substances 0.000 description 4
- 239000006187 pill Substances 0.000 description 4
- 229920001223 polyethylene glycol Polymers 0.000 description 4
- 230000000069 prophylactic effect Effects 0.000 description 4
- 235000018102 proteins Nutrition 0.000 description 4
- 102000004169 proteins and genes Human genes 0.000 description 4
- 239000007921 spray Substances 0.000 description 4
- 239000000725 suspension Substances 0.000 description 4
- 230000009885 systemic effect Effects 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 238000011269 treatment regimen Methods 0.000 description 4
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 3
- QWOJMRHUQHTCJG-UHFFFAOYSA-N CC([CH2-])=O Chemical compound CC([CH2-])=O QWOJMRHUQHTCJG-UHFFFAOYSA-N 0.000 description 3
- LUEYTMPPCOCKBX-UHFFFAOYSA-N Curacin A Natural products C=CCC(OC)CCC(C)=CC=CCCC=CC1CSC(C2C(C2)C)=N1 LUEYTMPPCOCKBX-UHFFFAOYSA-N 0.000 description 3
- LUEYTMPPCOCKBX-KWYHTCOPSA-N Curacin A Chemical compound C=CC[C@H](OC)CC\C(C)=C\C=C\CC\C=C/[C@@H]1CSC([C@H]2[C@H](C2)C)=N1 LUEYTMPPCOCKBX-KWYHTCOPSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- GHJWNRRCRIGGIO-UHFFFAOYSA-N Fosfluconazole Chemical compound C1=NC=NN1CC(C=1C(=CC(F)=CC=1)F)(OP(O)(=O)O)CN1C=NC=N1 GHJWNRRCRIGGIO-UHFFFAOYSA-N 0.000 description 3
- 241000282412 Homo Species 0.000 description 3
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 3
- 108010020246 Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 Proteins 0.000 description 3
- 102220577899 Leucine-rich repeat serine/threonine-protein kinase 2_G2019S_mutation Human genes 0.000 description 3
- 229940127470 Lipase Inhibitors Drugs 0.000 description 3
- 241001291474 Malassezia globosa Species 0.000 description 3
- 102000029749 Microtubule Human genes 0.000 description 3
- 108091022875 Microtubule Proteins 0.000 description 3
- 208000016285 Movement disease Diseases 0.000 description 3
- 208000002740 Muscle Rigidity Diseases 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 3
- 229930006000 Sucrose Natural products 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 208000026935 allergic disease Diseases 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 239000000969 carrier Substances 0.000 description 3
- 230000030833 cell death Effects 0.000 description 3
- 210000003169 central nervous system Anatomy 0.000 description 3
- SCKYRAXSEDYPSA-UHFFFAOYSA-N ciclopirox Chemical compound ON1C(=O)C=C(C)C=C1C1CCCCC1 SCKYRAXSEDYPSA-UHFFFAOYSA-N 0.000 description 3
- 238000011260 co-administration Methods 0.000 description 3
- 239000003086 colorant Substances 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 235000014113 dietary fatty acids Nutrition 0.000 description 3
- 239000003085 diluting agent Substances 0.000 description 3
- 208000035475 disorder Diseases 0.000 description 3
- 239000002552 dosage form Substances 0.000 description 3
- 150000002148 esters Chemical class 0.000 description 3
- 239000000194 fatty acid Substances 0.000 description 3
- 229930195729 fatty acid Natural products 0.000 description 3
- 229950008518 fosfluconazole Drugs 0.000 description 3
- 210000001035 gastrointestinal tract Anatomy 0.000 description 3
- 239000008187 granular material Substances 0.000 description 3
- 230000036541 health Effects 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- 239000003701 inert diluent Substances 0.000 description 3
- 239000004615 ingredient Substances 0.000 description 3
- 239000008101 lactose Substances 0.000 description 3
- ZOTSUVWAEYHZRI-JJKGCWMISA-M lithium;(2r,3s,4r,5r)-2,3,4,5,6-pentahydroxyhexanoate Chemical compound [Li+].OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O ZOTSUVWAEYHZRI-JJKGCWMISA-M 0.000 description 3
- 239000000314 lubricant Substances 0.000 description 3
- 238000007726 management method Methods 0.000 description 3
- 210000004688 microtubule Anatomy 0.000 description 3
- 230000036651 mood Effects 0.000 description 3
- 229960000988 nystatin Drugs 0.000 description 3
- VQOXZBDYSJBXMA-NQTDYLQESA-N nystatin A1 Chemical compound O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1/C=C/C=C/C=C/C=C/CC/C=C/C=C/[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 VQOXZBDYSJBXMA-NQTDYLQESA-N 0.000 description 3
- 235000019198 oils Nutrition 0.000 description 3
- WVDDGKGOMKODPV-ZQBYOMGUSA-N phenyl(114C)methanol Chemical compound O[14CH2]C1=CC=CC=C1 WVDDGKGOMKODPV-ZQBYOMGUSA-N 0.000 description 3
- RAGOYPUPXAKGKH-XAKZXMRKSA-N posaconazole Chemical compound O=C1N([C@H]([C@H](C)O)CC)N=CN1C1=CC=C(N2CCN(CC2)C=2C=CC(OC[C@H]3C[C@@](CN4N=CN=C4)(OC3)C=3C(=CC(F)=CC=3)F)=CC=2)C=C1 RAGOYPUPXAKGKH-XAKZXMRKSA-N 0.000 description 3
- 230000002335 preservative effect Effects 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- UHSKFQJFRQCDBE-UHFFFAOYSA-N ropinirole Chemical compound CCCN(CCC)CCC1=CC=CC2=C1CC(=O)N2 UHSKFQJFRQCDBE-UHFFFAOYSA-N 0.000 description 3
- 230000008786 sensory perception of smell Effects 0.000 description 3
- 229960004029 silicic acid Drugs 0.000 description 3
- 239000007909 solid dosage form Substances 0.000 description 3
- 239000008247 solid mixture Substances 0.000 description 3
- 239000005720 sucrose Substances 0.000 description 3
- 239000002562 thickening agent Substances 0.000 description 3
- 229960004880 tolnaftate Drugs 0.000 description 3
- FUSNMLFNXJSCDI-UHFFFAOYSA-N tolnaftate Chemical compound C=1C=C2C=CC=CC2=CC=1OC(=S)N(C)C1=CC=CC(C)=C1 FUSNMLFNXJSCDI-UHFFFAOYSA-N 0.000 description 3
- 239000003981 vehicle Substances 0.000 description 3
- 239000000080 wetting agent Substances 0.000 description 3
- BLSQLHNBWJLIBQ-OZXSUGGESA-N (2R,4S)-terconazole Chemical compound C1CN(C(C)C)CCN1C(C=C1)=CC=C1OC[C@@H]1O[C@@](CN2N=CN=C2)(C=2C(=CC(Cl)=CC=2)Cl)OC1 BLSQLHNBWJLIBQ-OZXSUGGESA-N 0.000 description 2
- JNYAEWCLZODPBN-JGWLITMVSA-N (2r,3r,4s)-2-[(1r)-1,2-dihydroxyethyl]oxolane-3,4-diol Chemical compound OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O JNYAEWCLZODPBN-JGWLITMVSA-N 0.000 description 2
- MPIPASJGOJYODL-SFHVURJKSA-N (R)-isoconazole Chemical compound ClC1=CC(Cl)=CC=C1[C@@H](OCC=1C(=CC=CC=1Cl)Cl)CN1C=NC=C1 MPIPASJGOJYODL-SFHVURJKSA-N 0.000 description 2
- IAKHMKGGTNLKSZ-INIZCTEOSA-N (S)-colchicine Chemical compound C1([C@@H](NC(C)=O)CC2)=CC(=O)C(OC)=CC=C1C1=C2C=C(OC)C(OC)=C1OC IAKHMKGGTNLKSZ-INIZCTEOSA-N 0.000 description 2
- AFNXATANNDIXLG-SFHVURJKSA-N 1-[(2r)-2-[(4-chlorophenyl)methylsulfanyl]-2-(2,4-dichlorophenyl)ethyl]imidazole Chemical compound C1=CC(Cl)=CC=C1CS[C@H](C=1C(=CC(Cl)=CC=1)Cl)CN1C=NC=C1 AFNXATANNDIXLG-SFHVURJKSA-N 0.000 description 2
- ZCJYUTQZBAIHBS-UHFFFAOYSA-N 1-[2-(2,4-dichlorophenyl)-2-{[4-(phenylsulfanyl)benzyl]oxy}ethyl]imidazole Chemical compound ClC1=CC(Cl)=CC=C1C(OCC=1C=CC(SC=2C=CC=CC=2)=CC=1)CN1C=NC=C1 ZCJYUTQZBAIHBS-UHFFFAOYSA-N 0.000 description 2
- OCAPBUJLXMYKEJ-UHFFFAOYSA-N 1-[biphenyl-4-yl(phenyl)methyl]imidazole Chemical compound C1=NC=CN1C(C=1C=CC(=CC=1)C=1C=CC=CC=1)C1=CC=CC=C1 OCAPBUJLXMYKEJ-UHFFFAOYSA-N 0.000 description 2
- LEZWWPYKPKIXLL-UHFFFAOYSA-N 1-{2-(4-chlorobenzyloxy)-2-(2,4-dichlorophenyl)ethyl}imidazole Chemical compound C1=CC(Cl)=CC=C1COC(C=1C(=CC(Cl)=CC=1)Cl)CN1C=NC=C1 LEZWWPYKPKIXLL-UHFFFAOYSA-N 0.000 description 2
- QXHHHPZILQDDPS-UHFFFAOYSA-N 1-{2-[(2-chloro-3-thienyl)methoxy]-2-(2,4-dichlorophenyl)ethyl}imidazole Chemical compound S1C=CC(COC(CN2C=NC=C2)C=2C(=CC(Cl)=CC=2)Cl)=C1Cl QXHHHPZILQDDPS-UHFFFAOYSA-N 0.000 description 2
- JLGKQTAYUIMGRK-UHFFFAOYSA-N 1-{2-[(7-chloro-1-benzothiophen-3-yl)methoxy]-2-(2,4-dichlorophenyl)ethyl}imidazole Chemical compound ClC1=CC(Cl)=CC=C1C(OCC=1C2=CC=CC(Cl)=C2SC=1)CN1C=NC=C1 JLGKQTAYUIMGRK-UHFFFAOYSA-N 0.000 description 2
- 229920001817 Agar Polymers 0.000 description 2
- 102100036475 Alanine aminotransferase 1 Human genes 0.000 description 2
- 108010082126 Alanine transaminase Proteins 0.000 description 2
- 108010003415 Aspartate Aminotransferases Proteins 0.000 description 2
- 102000004625 Aspartate Aminotransferases Human genes 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 241000751139 Beauveria bassiana Species 0.000 description 2
- 206010007559 Cardiac failure congestive Diseases 0.000 description 2
- 241000288673 Chiroptera Species 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 2
- 208000001840 Dandruff Diseases 0.000 description 2
- 206010012289 Dementia Diseases 0.000 description 2
- XOZIUKBZLSUILX-SDMHVBBESA-N Epothilone D Natural products O=C1[C@H](C)[C@@H](O)[C@@H](C)CCC/C(/C)=C/C[C@@H](/C(=C\c2nc(C)sc2)/C)OC(=O)C[C@H](O)C1(C)C XOZIUKBZLSUILX-SDMHVBBESA-N 0.000 description 2
- POPFMWWJOGLOIF-XWCQMRHXSA-N Flurandrenolide Chemical compound C1([C@@H](F)C2)=CC(=O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2C[C@H]3OC(C)(C)O[C@@]3(C(=O)CO)[C@@]2(C)C[C@@H]1O POPFMWWJOGLOIF-XWCQMRHXSA-N 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- 239000004471 Glycine Substances 0.000 description 2
- 229930195098 Hamycin Natural products 0.000 description 2
- 206010019280 Heart failures Diseases 0.000 description 2
- 241000238631 Hexapoda Species 0.000 description 2
- 206010020751 Hypersensitivity Diseases 0.000 description 2
- 206010020772 Hypertension Diseases 0.000 description 2
- 240000007472 Leucaena leucocephala Species 0.000 description 2
- 235000010643 Leucaena leucocephala Nutrition 0.000 description 2
- 108010006444 Leucine-Rich Repeat Proteins Proteins 0.000 description 2
- 241001291478 Malassezia sympodialis Species 0.000 description 2
- 229930195725 Mannitol Natural products 0.000 description 2
- 208000032443 Masked facies Diseases 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- MITFXPHMIHQXPI-UHFFFAOYSA-N Oraflex Chemical compound N=1C2=CC(C(C(O)=O)C)=CC=C2OC=1C1=CC=C(Cl)C=C1 MITFXPHMIHQXPI-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 108091000080 Phosphotransferase Proteins 0.000 description 2
- 241000225527 Pseudogymnoascus destructans Species 0.000 description 2
- 206010037213 Psychomotor retardation Diseases 0.000 description 2
- 206010039424 Salivary hypersecretion Diseases 0.000 description 2
- 208000008630 Sialorrhea Diseases 0.000 description 2
- 208000013738 Sleep Initiation and Maintenance disease Diseases 0.000 description 2
- 229920002472 Starch Polymers 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- RACDDTQBAFEERP-PLTZVPCUSA-N [2-[(6s,8s,9s,10r,13s,14s,17r)-6-chloro-17-hydroxy-10,13-dimethyl-3,11-dioxo-6,7,8,9,12,14,15,16-octahydrocyclopenta[a]phenanthren-17-yl]-2-oxoethyl] acetate Chemical compound C1([C@@H](Cl)C2)=CC(=O)C=C[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@@](C(=O)COC(=O)C)(O)[C@@]2(C)CC1=O RACDDTQBAFEERP-PLTZVPCUSA-N 0.000 description 2
- TYBHXIFFPVFXQW-UHFFFAOYSA-N abafungin Chemical compound CC1=CC(C)=CC=C1OC1=CC=CC=C1C1=CSC(NC=2NCCCN=2)=N1 TYBHXIFFPVFXQW-UHFFFAOYSA-N 0.000 description 2
- 229950006373 abafungin Drugs 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 239000004480 active ingredient Substances 0.000 description 2
- 239000002671 adjuvant Substances 0.000 description 2
- 235000010419 agar Nutrition 0.000 description 2
- UHIXWHUVLCAJQL-MPBGBICISA-N albaconazole Chemical compound C([C@@](O)([C@H](N1C(C2=CC=C(Cl)C=C2N=C1)=O)C)C=1C(=CC(F)=CC=1)F)N1C=NC=N1 UHIXWHUVLCAJQL-MPBGBICISA-N 0.000 description 2
- 229950006816 albaconazole Drugs 0.000 description 2
- 230000007815 allergy Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000003963 antioxidant agent Substances 0.000 description 2
- 235000006708 antioxidants Nutrition 0.000 description 2
- VMWNQDUVQKEIOC-CYBMUJFWSA-N apomorphine Chemical compound C([C@H]1N(C)CC2)C3=CC=C(O)C(O)=C3C3=C1C2=CC=C3 VMWNQDUVQKEIOC-CYBMUJFWSA-N 0.000 description 2
- 230000006907 apoptotic process Effects 0.000 description 2
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 2
- SESFRYSPDFLNCH-UHFFFAOYSA-N benzyl benzoate Chemical compound C=1C=CC=CC=1C(=O)OCC1=CC=CC=C1 SESFRYSPDFLNCH-UHFFFAOYSA-N 0.000 description 2
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 2
- 229960002206 bifonazole Drugs 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 210000004556 brain Anatomy 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 229960002962 butenafine Drugs 0.000 description 2
- ABJKWBDEJIDSJZ-UHFFFAOYSA-N butenafine Chemical compound C=1C=CC2=CC=CC=C2C=1CN(C)CC1=CC=C(C(C)(C)C)C=C1 ABJKWBDEJIDSJZ-UHFFFAOYSA-N 0.000 description 2
- 229960005074 butoconazole Drugs 0.000 description 2
- SWLMUYACZKCSHZ-UHFFFAOYSA-N butoconazole Chemical compound C1=CC(Cl)=CC=C1CCC(SC=1C(=CC=CC=1Cl)Cl)CN1C=NC=C1 SWLMUYACZKCSHZ-UHFFFAOYSA-N 0.000 description 2
- 229940046731 calcineurin inhibitors Drugs 0.000 description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 description 2
- 235000010216 calcium carbonate Nutrition 0.000 description 2
- 210000004027 cell Anatomy 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 229960003749 ciclopirox Drugs 0.000 description 2
- 239000011280 coal tar Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000003920 cognitive function Effects 0.000 description 2
- 238000004040 coloring Methods 0.000 description 2
- 238000002648 combination therapy Methods 0.000 description 2
- 235000008504 concentrate Nutrition 0.000 description 2
- 239000012141 concentrate Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000006735 deficit Effects 0.000 description 2
- 239000002274 desiccant Substances 0.000 description 2
- XOZIUKBZLSUILX-UHFFFAOYSA-N desoxyepothilone B Natural products O1C(=O)CC(O)C(C)(C)C(=O)C(C)C(O)C(C)CCCC(C)=CCC1C(C)=CC1=CSC(C)=N1 XOZIUKBZLSUILX-UHFFFAOYSA-N 0.000 description 2
- 239000003599 detergent Substances 0.000 description 2
- 229960003957 dexamethasone Drugs 0.000 description 2
- 229950009888 dichlorisone Drugs 0.000 description 2
- YNNURTVKPVJVEI-GSLJADNHSA-N dichlorisone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(Cl)[C@@H]1[C@@H]1CC[C@@](C(=O)COC(=O)C)(O)[C@@]1(C)C[C@@H]2Cl YNNURTVKPVJVEI-GSLJADNHSA-N 0.000 description 2
- VYFYYTLLBUKUHU-UHFFFAOYSA-N dopamine Chemical compound NCCC1=CC=C(O)C(O)=C1 VYFYYTLLBUKUHU-UHFFFAOYSA-N 0.000 description 2
- 239000008298 dragée Substances 0.000 description 2
- 239000006196 drop Substances 0.000 description 2
- 229960003913 econazole Drugs 0.000 description 2
- JRURYQJSLYLRLN-BJMVGYQFSA-N entacapone Chemical compound CCN(CC)C(=O)C(\C#N)=C\C1=CC(O)=C(O)C([N+]([O-])=O)=C1 JRURYQJSLYLRLN-BJMVGYQFSA-N 0.000 description 2
- XOZIUKBZLSUILX-GIQCAXHBSA-N epothilone D Chemical compound O1C(=O)C[C@H](O)C(C)(C)C(=O)[C@H](C)[C@@H](O)[C@@H](C)CCC\C(C)=C/C[C@H]1C(\C)=C\C1=CSC(C)=N1 XOZIUKBZLSUILX-GIQCAXHBSA-N 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 210000004709 eyebrow Anatomy 0.000 description 2
- 210000000720 eyelash Anatomy 0.000 description 2
- 210000000744 eyelid Anatomy 0.000 description 2
- 229960001274 fenticonazole Drugs 0.000 description 2
- 239000000796 flavoring agent Substances 0.000 description 2
- 229960002011 fludrocortisone Drugs 0.000 description 2
- AAXVEMMRQDVLJB-BULBTXNYSA-N fludrocortisone Chemical compound O=C1CC[C@]2(C)[C@@]3(F)[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 AAXVEMMRQDVLJB-BULBTXNYSA-N 0.000 description 2
- 229960004511 fludroxycortide Drugs 0.000 description 2
- 229940042902 flumethasone pivalate Drugs 0.000 description 2
- JWRMHDSINXPDHB-OJAGFMMFSA-N flumethasone pivalate Chemical compound C1([C@@H](F)C2)=CC(=O)C=C[C@]1(C)[C@]1(F)[C@@H]2[C@@H]2C[C@@H](C)[C@@](C(=O)COC(=O)C(C)(C)C)(O)[C@@]2(C)C[C@@H]1O JWRMHDSINXPDHB-OJAGFMMFSA-N 0.000 description 2
- 230000002496 gastric effect Effects 0.000 description 2
- 229950006942 hamycin Drugs 0.000 description 2
- 210000003128 head Anatomy 0.000 description 2
- BXWNKGSJHAJOGX-UHFFFAOYSA-N hexadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCO BXWNKGSJHAJOGX-UHFFFAOYSA-N 0.000 description 2
- 210000005260 human cell Anatomy 0.000 description 2
- 239000003906 humectant Substances 0.000 description 2
- JYGXADMDTFJGBT-VWUMJDOOSA-N hydrocortisone Chemical compound O=C1CC[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 JYGXADMDTFJGBT-VWUMJDOOSA-N 0.000 description 2
- 239000000017 hydrogel Substances 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 238000001802 infusion Methods 0.000 description 2
- 206010022437 insomnia Diseases 0.000 description 2
- 230000007794 irritation Effects 0.000 description 2
- DDFOUSQFMYRUQK-RCDICMHDSA-N isavuconazole Chemical compound C=1SC([C@H](C)[C@](O)(CN2N=CN=C2)C=2C(=CC=C(F)C=2)F)=NC=1C1=CC=C(C#N)C=C1 DDFOUSQFMYRUQK-RCDICMHDSA-N 0.000 description 2
- 229960000788 isavuconazole Drugs 0.000 description 2
- 229960004849 isoconazole Drugs 0.000 description 2
- FABUFPQFXZVHFB-PVYNADRNSA-N ixabepilone Chemical compound C/C([C@@H]1C[C@@H]2O[C@]2(C)CCC[C@@H]([C@@H]([C@@H](C)C(=O)C(C)(C)[C@@H](O)CC(=O)N1)O)C)=C\C1=CSC(C)=N1 FABUFPQFXZVHFB-PVYNADRNSA-N 0.000 description 2
- XMGQYMWWDOXHJM-UHFFFAOYSA-N limonene Chemical compound CC(=C)C1CCC(C)=CC1 XMGQYMWWDOXHJM-UHFFFAOYSA-N 0.000 description 2
- 239000002502 liposome Substances 0.000 description 2
- 239000008297 liquid dosage form Substances 0.000 description 2
- 229940071260 lithium gluconate Drugs 0.000 description 2
- WAHQBNXSPALNEA-UHFFFAOYSA-L lithium succinate Chemical compound [Li+].[Li+].[O-]C(=O)CCC([O-])=O WAHQBNXSPALNEA-UHFFFAOYSA-L 0.000 description 2
- 229960004254 lithium succinate Drugs 0.000 description 2
- 208000019423 liver disease Diseases 0.000 description 2
- 235000019359 magnesium stearate Nutrition 0.000 description 2
- 239000000594 mannitol Substances 0.000 description 2
- 235000010355 mannitol Nutrition 0.000 description 2
- 210000004379 membrane Anatomy 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 210000001259 mesencephalon Anatomy 0.000 description 2
- OSWPMRLSEDHDFF-UHFFFAOYSA-N methyl salicylate Chemical compound COC(=O)C1=CC=CC=C1O OSWPMRLSEDHDFF-UHFFFAOYSA-N 0.000 description 2
- LXCFILQKKLGQFO-UHFFFAOYSA-N methylparaben Chemical compound COC(=O)C1=CC=C(O)C=C1 LXCFILQKKLGQFO-UHFFFAOYSA-N 0.000 description 2
- 239000004530 micro-emulsion Substances 0.000 description 2
- 239000004005 microsphere Substances 0.000 description 2
- 230000007659 motor function Effects 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 239000002324 mouth wash Substances 0.000 description 2
- 229960004313 naftifine Drugs 0.000 description 2
- OZGNYLLQHRPOBR-DHZHZOJOSA-N naftifine Chemical compound C=1C=CC2=CC=CC=C2C=1CN(C)C\C=C\C1=CC=CC=C1 OZGNYLLQHRPOBR-DHZHZOJOSA-N 0.000 description 2
- 210000003928 nasal cavity Anatomy 0.000 description 2
- 229960003255 natamycin Drugs 0.000 description 2
- 235000010298 natamycin Nutrition 0.000 description 2
- 239000004311 natamycin Substances 0.000 description 2
- NCXMLFZGDNKEPB-FFPOYIOWSA-N natamycin Chemical compound O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1/C=C/C=C/C=C/C=C/C[C@@H](C)OC(=O)/C=C/[C@H]2O[C@@H]2C[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 NCXMLFZGDNKEPB-FFPOYIOWSA-N 0.000 description 2
- 229960004031 omoconazole Drugs 0.000 description 2
- JMFOSJNGKJCTMJ-ZHZULCJRSA-N omoconazole Chemical compound C1=CN=CN1C(/C)=C(C=1C(=CC(Cl)=CC=1)Cl)\OCCOC1=CC=C(Cl)C=C1 JMFOSJNGKJCTMJ-ZHZULCJRSA-N 0.000 description 2
- 229960003483 oxiconazole Drugs 0.000 description 2
- QRJJEGAJXVEBNE-MOHJPFBDSA-N oxiconazole Chemical compound ClC1=CC(Cl)=CC=C1CO\N=C(C=1C(=CC(Cl)=CC=1)Cl)\CN1C=NC=C1 QRJJEGAJXVEBNE-MOHJPFBDSA-N 0.000 description 2
- 239000012188 paraffin wax Substances 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 230000001717 pathogenic effect Effects 0.000 description 2
- 239000002304 perfume Substances 0.000 description 2
- 239000000825 pharmaceutical preparation Substances 0.000 description 2
- 229940127557 pharmaceutical product Drugs 0.000 description 2
- 210000003800 pharynx Anatomy 0.000 description 2
- 102000020233 phosphotransferase Human genes 0.000 description 2
- 229960001589 posaconazole Drugs 0.000 description 2
- FASDKYOPVNHBLU-ZETCQYMHSA-N pramipexole Chemical compound C1[C@@H](NCCC)CCC2=C1SC(N)=N2 FASDKYOPVNHBLU-ZETCQYMHSA-N 0.000 description 2
- QELSKZZBTMNZEB-UHFFFAOYSA-N propylparaben Chemical compound CCCOC(=O)C1=CC=C(O)C=C1 QELSKZZBTMNZEB-UHFFFAOYSA-N 0.000 description 2
- 239000008213 purified water Substances 0.000 description 2
- RUOKEQAAGRXIBM-GFCCVEGCSA-N rasagiline Chemical compound C1=CC=C2[C@H](NCC#C)CCC2=C1 RUOKEQAAGRXIBM-GFCCVEGCSA-N 0.000 description 2
- OPAHEYNNJWPQPX-RCDICMHDSA-N ravuconazole Chemical compound C=1SC([C@H](C)[C@](O)(CN2N=CN=C2)C=2C(=CC(F)=CC=2)F)=NC=1C1=CC=C(C#N)C=C1 OPAHEYNNJWPQPX-RCDICMHDSA-N 0.000 description 2
- 229950004154 ravuconazole Drugs 0.000 description 2
- 230000027756 respiratory electron transport chain Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- KFQYTPMOWPVWEJ-INIZCTEOSA-N rotigotine Chemical compound CCCN([C@@H]1CC2=CC=CC(O)=C2CC1)CCC1=CC=CS1 KFQYTPMOWPVWEJ-INIZCTEOSA-N 0.000 description 2
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 2
- MEZLKOACVSPNER-GFCCVEGCSA-N selegiline Chemical compound C#CCN(C)[C@H](C)CC1=CC=CC=C1 MEZLKOACVSPNER-GFCCVEGCSA-N 0.000 description 2
- VIDTVPHHDGRGAF-UHFFFAOYSA-N selenium sulfide Chemical compound [Se]=S VIDTVPHHDGRGAF-UHFFFAOYSA-N 0.000 description 2
- 229960005265 selenium sulfide Drugs 0.000 description 2
- 230000001953 sensory effect Effects 0.000 description 2
- 229960005429 sertaconazole Drugs 0.000 description 2
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 239000000344 soap Substances 0.000 description 2
- 235000017557 sodium bicarbonate Nutrition 0.000 description 2
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 2
- FHHPUSMSKHSNKW-SMOYURAASA-M sodium deoxycholate Chemical compound [Na+].C([C@H]1CC2)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC([O-])=O)C)[C@@]2(C)[C@@H](O)C1 FHHPUSMSKHSNKW-SMOYURAASA-M 0.000 description 2
- 235000019698 starch Nutrition 0.000 description 2
- 210000003523 substantia nigra Anatomy 0.000 description 2
- 229960002607 sulconazole Drugs 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- 239000006188 syrup Substances 0.000 description 2
- 235000020357 syrup Nutrition 0.000 description 2
- 239000000454 talc Substances 0.000 description 2
- 229910052623 talc Inorganic materials 0.000 description 2
- 235000012222 talc Nutrition 0.000 description 2
- 229960000580 terconazole Drugs 0.000 description 2
- 229960004214 tioconazole Drugs 0.000 description 2
- 231100000419 toxicity Toxicity 0.000 description 2
- 230000001988 toxicity Effects 0.000 description 2
- 235000015112 vegetable and seed oil Nutrition 0.000 description 2
- 239000008158 vegetable oil Substances 0.000 description 2
- 235000012431 wafers Nutrition 0.000 description 2
- 239000001993 wax Substances 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 235000016804 zinc Nutrition 0.000 description 2
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 1
- NGGMYCMLYOUNGM-UHFFFAOYSA-N (-)-fumagillin Natural products O1C(CC=C(C)C)C1(C)C1C(OC)C(OC(=O)C=CC=CC=CC=CC(O)=O)CCC21CO2 NGGMYCMLYOUNGM-UHFFFAOYSA-N 0.000 description 1
- YKSVGLFNJPQDJE-YDMQLZBCSA-N (19E,21E,23E,25E,27E,29E,31E)-33-[(2R,3S,4R,5S,6R)-4-amino-3,5-dihydroxy-6-methyloxan-2-yl]oxy-17-[7-(4-aminophenyl)-5-hydroxy-4-methyl-7-oxoheptan-2-yl]-1,3,5,7,37-pentahydroxy-18-methyl-9,13,15-trioxo-16,39-dioxabicyclo[33.3.1]nonatriaconta-19,21,23,25,27,29,31-heptaene-36-carboxylic acid Chemical compound CC(CC(C)C1OC(=O)CC(=O)CCCC(=O)CC(O)CC(O)CC(O)CC2(O)CC(O)C(C(CC(O[C@@H]3O[C@H](C)[C@@H](O)[C@@H](N)[C@@H]3O)\C=C\C=C\C=C\C=C\C=C\C=C\C=C\C1C)O2)C(O)=O)C(O)CC(=O)C1=CC=C(N)C=C1 YKSVGLFNJPQDJE-YDMQLZBCSA-N 0.000 description 1
- DSSYKIVIOFKYAU-XCBNKYQSSA-N (R)-camphor Chemical compound C1C[C@@]2(C)C(=O)C[C@@H]1C2(C)C DSSYKIVIOFKYAU-XCBNKYQSSA-N 0.000 description 1
- OWEGWHBOCFMBLP-UHFFFAOYSA-N 1-(4-chlorophenoxy)-1-(1H-imidazol-1-yl)-3,3-dimethylbutan-2-one Chemical compound C1=CN=CN1C(C(=O)C(C)(C)C)OC1=CC=C(Cl)C=C1 OWEGWHBOCFMBLP-UHFFFAOYSA-N 0.000 description 1
- MCCACAIVAXEFAL-UHFFFAOYSA-N 1-[2-(2,4-dichlorophenyl)-2-[(2,4-dichlorophenyl)methoxy]ethyl]imidazole;nitric acid Chemical compound O[N+]([O-])=O.ClC1=CC(Cl)=CC=C1COC(C=1C(=CC(Cl)=CC=1)Cl)CN1C=NC=C1 MCCACAIVAXEFAL-UHFFFAOYSA-N 0.000 description 1
- PZBPKYOVPCNPJY-UHFFFAOYSA-N 1-[2-(allyloxy)-2-(2,4-dichlorophenyl)ethyl]imidazole Chemical compound ClC1=CC(Cl)=CC=C1C(OCC=C)CN1C=NC=C1 PZBPKYOVPCNPJY-UHFFFAOYSA-N 0.000 description 1
- RZRNAYUHWVFMIP-KTKRTIGZSA-N 1-oleoylglycerol Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC(O)CO RZRNAYUHWVFMIP-KTKRTIGZSA-N 0.000 description 1
- FUFLCEKSBBHCMO-UHFFFAOYSA-N 11-dehydrocorticosterone Natural products O=C1CCC2(C)C3C(=O)CC(C)(C(CC4)C(=O)CO)C4C3CCC2=C1 FUFLCEKSBBHCMO-UHFFFAOYSA-N 0.000 description 1
- CTPDSKVQLSDPLC-UHFFFAOYSA-N 2-(oxolan-2-ylmethoxy)ethanol Chemical compound OCCOCC1CCCO1 CTPDSKVQLSDPLC-UHFFFAOYSA-N 0.000 description 1
- RFVNOJDQRGSOEL-UHFFFAOYSA-N 2-hydroxyethyl octadecanoate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCCO RFVNOJDQRGSOEL-UHFFFAOYSA-N 0.000 description 1
- BHIZVZJETFVJMJ-UHFFFAOYSA-N 2-hydroxypropyl dodecanoate Chemical compound CCCCCCCCCCCC(=O)OCC(C)O BHIZVZJETFVJMJ-UHFFFAOYSA-N 0.000 description 1
- JNODDICFTDYODH-UHFFFAOYSA-N 2-hydroxytetrahydrofuran Chemical compound OC1CCCO1 JNODDICFTDYODH-UHFFFAOYSA-N 0.000 description 1
- BSYNRYMUTXBXSQ-FOQJRBATSA-N 59096-14-9 Chemical compound CC(=O)OC1=CC=CC=C1[14C](O)=O BSYNRYMUTXBXSQ-FOQJRBATSA-N 0.000 description 1
- MYYIMZRZXIQBGI-HVIRSNARSA-N 6alpha-Fluoroprednisolone Chemical compound O=C1C=C[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3C[C@H](F)C2=C1 MYYIMZRZXIQBGI-HVIRSNARSA-N 0.000 description 1
- HCKFPALGXKOOBK-NRYMJLQJSA-N 7332-27-6 Chemical compound C1([C@]2(O[C@]3([C@@]4(C)C[C@H](O)[C@]5(F)[C@@]6(C)C=CC(=O)C=C6CC[C@H]5[C@@H]4C[C@H]3O2)C(=O)CO)C)=CC=CC=C1 HCKFPALGXKOOBK-NRYMJLQJSA-N 0.000 description 1
- JDLKFOPOAOFWQN-VIFPVBQESA-N Allicin Natural products C=CCS[S@](=O)CC=C JDLKFOPOAOFWQN-VIFPVBQESA-N 0.000 description 1
- 244000291564 Allium cepa Species 0.000 description 1
- 235000005255 Allium cepa Nutrition 0.000 description 1
- 240000002234 Allium sativum Species 0.000 description 1
- 244000144927 Aloe barbadensis Species 0.000 description 1
- 235000002961 Aloe barbadensis Nutrition 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- 229930183010 Amphotericin Natural products 0.000 description 1
- QGGFZZLFKABGNL-UHFFFAOYSA-N Amphotericin A Natural products OC1C(N)C(O)C(C)OC1OC1C=CC=CC=CC=CCCC=CC=CC(C)C(O)C(C)C(C)OC(=O)CC(O)CC(O)CCC(O)C(O)CC(O)CC(O)(CC(O)C2C(O)=O)OC2C1 QGGFZZLFKABGNL-UHFFFAOYSA-N 0.000 description 1
- 229920000856 Amylose Polymers 0.000 description 1
- 108010064760 Anidulafungin Proteins 0.000 description 1
- 208000019901 Anxiety disease Diseases 0.000 description 1
- 206010003062 Apraxia Diseases 0.000 description 1
- 241000203069 Archaea Species 0.000 description 1
- 208000006096 Attention Deficit Disorder with Hyperactivity Diseases 0.000 description 1
- 208000036864 Attention deficit/hyperactivity disease Diseases 0.000 description 1
- 206010003840 Autonomic nervous system imbalance Diseases 0.000 description 1
- 240000005343 Azadirachta indica Species 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 241000223679 Beauveria Species 0.000 description 1
- KUVIULQEHSCUHY-XYWKZLDCSA-N Beclometasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(Cl)[C@@H]1[C@@H]1C[C@H](C)[C@@](C(=O)COC(=O)CC)(OC(=O)CC)[C@@]1(C)C[C@@H]2O KUVIULQEHSCUHY-XYWKZLDCSA-N 0.000 description 1
- 239000005711 Benzoic acid Substances 0.000 description 1
- 241001474374 Blennius Species 0.000 description 1
- 201000004569 Blindness Diseases 0.000 description 1
- 206010006187 Breast cancer Diseases 0.000 description 1
- 208000026310 Breast neoplasm Diseases 0.000 description 1
- 241000195940 Bryophyta Species 0.000 description 1
- VOVIALXJUBGFJZ-KWVAZRHASA-N Budesonide Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@@H]2[C@@H]1[C@@H]1C[C@H]3OC(CCC)O[C@@]3(C(=O)CO)[C@@]1(C)C[C@@H]2O VOVIALXJUBGFJZ-KWVAZRHASA-N 0.000 description 1
- 208000004894 Camptocormia Diseases 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 108010020326 Caspofungin Proteins 0.000 description 1
- 206010050337 Cerumen impaction Diseases 0.000 description 1
- GHXZTYHSJHQHIJ-UHFFFAOYSA-N Chlorhexidine Chemical compound C=1C=C(Cl)C=CC=1NC(N)=NC(N)=NCCCCCCN=C(N)N=C(N)NC1=CC=C(Cl)C=C1 GHXZTYHSJHQHIJ-UHFFFAOYSA-N 0.000 description 1
- UDKCHVLMFQVBAA-UHFFFAOYSA-M Choline salicylate Chemical compound C[N+](C)(C)CCO.OC1=CC=CC=C1C([O-])=O UDKCHVLMFQVBAA-UHFFFAOYSA-M 0.000 description 1
- 241000723346 Cinnamomum camphora Species 0.000 description 1
- 244000223760 Cinnamomum zeylanicum Species 0.000 description 1
- 235000005979 Citrus limon Nutrition 0.000 description 1
- 244000131522 Citrus pyriformis Species 0.000 description 1
- QCDFBFJGMNKBDO-UHFFFAOYSA-N Clioquinol Chemical compound C1=CN=C2C(O)=C(I)C=C(Cl)C2=C1 QCDFBFJGMNKBDO-UHFFFAOYSA-N 0.000 description 1
- 244000060011 Cocos nucifera Species 0.000 description 1
- 235000013162 Cocos nucifera Nutrition 0.000 description 1
- 206010009848 Cogwheel rigidity Diseases 0.000 description 1
- 102000029816 Collagenase Human genes 0.000 description 1
- 108060005980 Collagenase Proteins 0.000 description 1
- 206010010774 Constipation Diseases 0.000 description 1
- MFYSYFVPBJMHGN-ZPOLXVRWSA-N Cortisone Chemical compound O=C1CC[C@]2(C)[C@H]3C(=O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 MFYSYFVPBJMHGN-ZPOLXVRWSA-N 0.000 description 1
- MFYSYFVPBJMHGN-UHFFFAOYSA-N Cortisone Natural products O=C1CCC2(C)C3C(=O)CC(C)(C(CC4)(O)C(=O)CO)C4C3CCC2=C1 MFYSYFVPBJMHGN-UHFFFAOYSA-N 0.000 description 1
- 244000301850 Cupressus sempervirens Species 0.000 description 1
- 235000003392 Curcuma domestica Nutrition 0.000 description 1
- 244000008991 Curcuma longa Species 0.000 description 1
- 229920000858 Cyclodextrin Polymers 0.000 description 1
- 240000004784 Cymbopogon citratus Species 0.000 description 1
- 235000017897 Cymbopogon citratus Nutrition 0.000 description 1
- 244000166675 Cymbopogon nardus Species 0.000 description 1
- 235000018791 Cymbopogon nardus Nutrition 0.000 description 1
- 208000019505 Deglutition disease Diseases 0.000 description 1
- 206010012239 Delusion Diseases 0.000 description 1
- VPGRYOFKCNULNK-ACXQXYJUSA-N Deoxycorticosterone acetate Chemical compound C1CC2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H](C(=O)COC(=O)C)[C@@]1(C)CC2 VPGRYOFKCNULNK-ACXQXYJUSA-N 0.000 description 1
- 235000019739 Dicalciumphosphate Nutrition 0.000 description 1
- HHJIUUAMYGBVSD-YTFFSALGSA-N Diflucortolone valerate Chemical compound C1([C@@H](F)C2)=CC(=O)C=C[C@]1(C)[C@]1(F)[C@@H]2[C@@H]2C[C@@H](C)[C@H](C(=O)COC(=O)CCCC)[C@@]2(C)C[C@@H]1O HHJIUUAMYGBVSD-YTFFSALGSA-N 0.000 description 1
- WYQPLTPSGFELIB-JTQPXKBDSA-N Difluprednate Chemical compound C1([C@@H](F)C2)=CC(=O)C=C[C@]1(C)[C@]1(F)[C@@H]2[C@@H]2CC[C@@](C(=O)COC(C)=O)(OC(=O)CCC)[C@@]2(C)C[C@@H]1O WYQPLTPSGFELIB-JTQPXKBDSA-N 0.000 description 1
- 206010052804 Drug tolerance Diseases 0.000 description 1
- 206010013887 Dysarthria Diseases 0.000 description 1
- 206010013952 Dysphonia Diseases 0.000 description 1
- 208000014094 Dystonic disease Diseases 0.000 description 1
- 108010049047 Echinocandins Proteins 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 206010070246 Executive dysfunction Diseases 0.000 description 1
- 239000001116 FEMA 4028 Substances 0.000 description 1
- 229930183931 Filipin Natural products 0.000 description 1
- 239000004606 Fillers/Extenders Substances 0.000 description 1
- WJOHZNCJWYWUJD-IUGZLZTKSA-N Fluocinonide Chemical compound C1([C@@H](F)C2)=CC(=O)C=C[C@]1(C)[C@]1(F)[C@@H]2[C@@H]2C[C@H]3OC(C)(C)O[C@@]3(C(=O)COC(=O)C)[C@@]2(C)C[C@@H]1O WJOHZNCJWYWUJD-IUGZLZTKSA-N 0.000 description 1
- 206010017533 Fungal infection Diseases 0.000 description 1
- 241000206672 Gelidium Species 0.000 description 1
- 206010064571 Gene mutation Diseases 0.000 description 1
- MUQNGPZZQDCDFT-JNQJZLCISA-N Halcinonide Chemical compound C1CC2=CC(=O)CC[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@H]3OC(C)(C)O[C@@]3(C(=O)CCl)[C@@]1(C)C[C@@H]2O MUQNGPZZQDCDFT-JNQJZLCISA-N 0.000 description 1
- 208000004547 Hallucinations Diseases 0.000 description 1
- 239000004705 High-molecular-weight polyethylene Substances 0.000 description 1
- 101100021877 Homo sapiens LRRK2 gene Proteins 0.000 description 1
- DLVOSEUFIRPIRM-KAQKJVHQSA-N Hydrocortisone cypionate Chemical compound O=C([C@@]1(O)CC[C@H]2[C@H]3[C@@H]([C@]4(CCC(=O)C=C4CC3)C)[C@@H](O)C[C@@]21C)COC(=O)CCC1CCCC1 DLVOSEUFIRPIRM-KAQKJVHQSA-N 0.000 description 1
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 1
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 1
- 239000005795 Imazalil Substances 0.000 description 1
- 206010021639 Incontinence Diseases 0.000 description 1
- 206010023509 Kyphosis Diseases 0.000 description 1
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 1
- 101150081013 LRRK2 gene Proteins 0.000 description 1
- ZRTQSJFIDWNVJW-WYMLVPIESA-N Lanoconazole Chemical compound ClC1=CC=CC=C1C(CS\1)SC/1=C(\C#N)N1C=NC=C1 ZRTQSJFIDWNVJW-WYMLVPIESA-N 0.000 description 1
- 235000017858 Laurus nobilis Nutrition 0.000 description 1
- 244000165082 Lavanda vera Species 0.000 description 1
- 235000010663 Lavandula angustifolia Nutrition 0.000 description 1
- 102220578200 Leucine-rich repeat serine/threonine-protein kinase 2_G2385R_mutation Human genes 0.000 description 1
- 102220577984 Leucine-rich repeat serine/threonine-protein kinase 2_I2020T_mutation Human genes 0.000 description 1
- 102220579336 Leucine-rich repeat serine/threonine-protein kinase 2_R1441G_mutation Human genes 0.000 description 1
- 102220596659 Leucine-rich repeat serine/threonine-protein kinase 2_R1441H_mutation Human genes 0.000 description 1
- 102220577884 Leucine-rich repeat serine/threonine-protein kinase 2_Y1699C_mutation Human genes 0.000 description 1
- 208000009829 Lewy Body Disease Diseases 0.000 description 1
- 201000002832 Lewy body dementia Diseases 0.000 description 1
- YTAOBBFIOAEMLL-REQDGWNSSA-N Luliconazole Chemical compound ClC1=CC(Cl)=CC=C1[C@H](CS\1)SC/1=C(\C#N)N1C=NC=C1 YTAOBBFIOAEMLL-REQDGWNSSA-N 0.000 description 1
- 241000042870 Lyngbya majuscula Species 0.000 description 1
- MQHWFIOJQSCFNM-UHFFFAOYSA-L Magnesium salicylate Chemical compound [Mg+2].OC1=CC=CC=C1C([O-])=O.OC1=CC=CC=C1C([O-])=O MQHWFIOJQSCFNM-UHFFFAOYSA-L 0.000 description 1
- 240000003183 Manihot esculenta Species 0.000 description 1
- 235000016735 Manihot esculenta subsp esculenta Nutrition 0.000 description 1
- GZENKSODFLBBHQ-ILSZZQPISA-N Medrysone Chemical compound C([C@@]12C)CC(=O)C=C1[C@@H](C)C[C@@H]1[C@@H]2[C@@H](O)C[C@]2(C)[C@@H](C(C)=O)CC[C@H]21 GZENKSODFLBBHQ-ILSZZQPISA-N 0.000 description 1
- 235000013500 Melia azadirachta Nutrition 0.000 description 1
- 208000019914 Mental Fatigue Diseases 0.000 description 1
- FQISKWAFAHGMGT-SGJOWKDISA-M Methylprednisolone sodium succinate Chemical compound [Na+].C([C@@]12C)=CC(=O)C=C1[C@@H](C)C[C@@H]1[C@@H]2[C@@H](O)C[C@]2(C)[C@@](O)(C(=O)COC(=O)CCC([O-])=O)CC[C@H]21 FQISKWAFAHGMGT-SGJOWKDISA-M 0.000 description 1
- 108010021062 Micafungin Proteins 0.000 description 1
- 206010057333 Micrographia Diseases 0.000 description 1
- 241001112258 Moca Species 0.000 description 1
- 208000031888 Mycoses Diseases 0.000 description 1
- 208000002033 Myoclonus Diseases 0.000 description 1
- 240000005125 Myrtus communis Species 0.000 description 1
- 235000013418 Myrtus communis Nutrition 0.000 description 1
- 241000863434 Myxococcales Species 0.000 description 1
- CMWTZPSULFXXJA-UHFFFAOYSA-N Naproxen Natural products C1=C(C(C)C(O)=O)C=CC2=CC(OC)=CC=C21 CMWTZPSULFXXJA-UHFFFAOYSA-N 0.000 description 1
- 206010028813 Nausea Diseases 0.000 description 1
- 208000011644 Neurologic Gait disease Diseases 0.000 description 1
- MXRIRQGCELJRSN-UHFFFAOYSA-N O.O.O.[Al] Chemical compound O.O.O.[Al] MXRIRQGCELJRSN-UHFFFAOYSA-N 0.000 description 1
- 235000019502 Orange oil Nutrition 0.000 description 1
- 102000016387 Pancreatic elastase Human genes 0.000 description 1
- 108010067372 Pancreatic elastase Proteins 0.000 description 1
- 206010033799 Paralysis Diseases 0.000 description 1
- MKPDWECBUAZOHP-AFYJWTTESA-N Paramethasone Chemical compound C1([C@@H](F)C2)=CC(=O)C=C[C@]1(C)[C@@H]1[C@@H]2[C@@H]2C[C@@H](C)[C@@](C(=O)CO)(O)[C@@]2(C)C[C@@H]1O MKPDWECBUAZOHP-AFYJWTTESA-N 0.000 description 1
- 102000057297 Pepsin A Human genes 0.000 description 1
- 108090000284 Pepsin A Proteins 0.000 description 1
- 102000035195 Peptidases Human genes 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 206010034719 Personality change Diseases 0.000 description 1
- 206010035628 Pleurothotonus Diseases 0.000 description 1
- LRJOMUJRLNCICJ-JZYPGELDSA-N Prednisolone acetate Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@@](C(=O)COC(=O)C)(O)[C@@]1(C)C[C@@H]2O LRJOMUJRLNCICJ-JZYPGELDSA-N 0.000 description 1
- 208000028017 Psychotic disease Diseases 0.000 description 1
- 206010038583 Repetitive speech Diseases 0.000 description 1
- 206010038687 Respiratory distress Diseases 0.000 description 1
- 208000005793 Restless legs syndrome Diseases 0.000 description 1
- 208000036071 Rhinorrhea Diseases 0.000 description 1
- 206010039101 Rhinorrhoea Diseases 0.000 description 1
- AWGBZRVEGDNLDZ-UHFFFAOYSA-N Rimocidin Natural products C1C(C(C(O)C2)C(O)=O)OC2(O)CC(O)CCCC(=O)CC(O)C(CC)C(=O)OC(CCC)CC=CC=CC=CC=CC1OC1OC(C)C(O)C(N)C1O AWGBZRVEGDNLDZ-UHFFFAOYSA-N 0.000 description 1
- AWGBZRVEGDNLDZ-JCUCCFEFSA-N Rimocidine Chemical compound O([C@H]1/C=C/C=C/C=C/C=C/C[C@H](OC(=O)[C@@H](CC)[C@H](O)CC(=O)CCC[C@H](O)C[C@@]2(O)O[C@H]([C@@H]([C@@H](O)C2)C(O)=O)C1)CCC)[C@@H]1O[C@H](C)[C@@H](O)[C@H](N)[C@@H]1O AWGBZRVEGDNLDZ-JCUCCFEFSA-N 0.000 description 1
- SKZKKFZAGNVIMN-UHFFFAOYSA-N Salicilamide Chemical compound NC(=O)C1=CC=CC=C1O SKZKKFZAGNVIMN-UHFFFAOYSA-N 0.000 description 1
- 206010070834 Sensitisation Diseases 0.000 description 1
- 206010040026 Sensory disturbance Diseases 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 206010041243 Social avoidant behaviour Diseases 0.000 description 1
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 1
- 241000862997 Sorangium cellulosum Species 0.000 description 1
- 238000000692 Student's t-test Methods 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 244000125380 Terminalia tomentosa Species 0.000 description 1
- 235000005212 Terminalia tomentosa Nutrition 0.000 description 1
- FZWLAAWBMGSTSO-UHFFFAOYSA-N Thiazole Chemical compound C1=CSC=N1 FZWLAAWBMGSTSO-UHFFFAOYSA-N 0.000 description 1
- GNVMUORYQLCPJZ-UHFFFAOYSA-M Thiocarbamate Chemical compound NC([S-])=O GNVMUORYQLCPJZ-UHFFFAOYSA-M 0.000 description 1
- HWHLPVGTWGOCJO-UHFFFAOYSA-N Trihexyphenidyl Chemical group C1CCCCC1C(C=1C=CC=CC=1)(O)CCN1CCCCC1 HWHLPVGTWGOCJO-UHFFFAOYSA-N 0.000 description 1
- 102000004142 Trypsin Human genes 0.000 description 1
- 108090000631 Trypsin Proteins 0.000 description 1
- 102000004243 Tubulin Human genes 0.000 description 1
- 108090000704 Tubulin Proteins 0.000 description 1
- 235000009499 Vanilla fragrans Nutrition 0.000 description 1
- 244000263375 Vanilla tahitensis Species 0.000 description 1
- 235000012036 Vanilla tahitensis Nutrition 0.000 description 1
- 206010047513 Vision blurred Diseases 0.000 description 1
- 229930003316 Vitamin D Natural products 0.000 description 1
- QYSXJUFSXHHAJI-XFEUOLMDSA-N Vitamin D3 Natural products C1(/[C@@H]2CC[C@@H]([C@]2(CCC1)C)[C@H](C)CCCC(C)C)=C/C=C1\C[C@@H](O)CCC1=C QYSXJUFSXHHAJI-XFEUOLMDSA-N 0.000 description 1
- FMRLDPWIRHBCCC-UHFFFAOYSA-L Zinc carbonate Chemical compound [Zn+2].[O-]C([O-])=O FMRLDPWIRHBCCC-UHFFFAOYSA-L 0.000 description 1
- 230000001594 aberrant effect Effects 0.000 description 1
- 239000003082 abrasive agent Substances 0.000 description 1
- 239000003655 absorption accelerator Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- HDYRYUINDGQKMC-UHFFFAOYSA-M acetyloxyaluminum;dihydrate Chemical compound O.O.CC(=O)O[Al] HDYRYUINDGQKMC-UHFFFAOYSA-M 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- SHGAZHPCJJPHSC-YCNIQYBTSA-N all-trans-retinoic acid Chemical compound OC(=O)\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C SHGAZHPCJJPHSC-YCNIQYBTSA-N 0.000 description 1
- JDLKFOPOAOFWQN-UHFFFAOYSA-N allicin Chemical compound C=CCSS(=O)CC=C JDLKFOPOAOFWQN-UHFFFAOYSA-N 0.000 description 1
- 235000010081 allicin Nutrition 0.000 description 1
- 229960004663 alminoprofen Drugs 0.000 description 1
- FPHLBGOJWPEVME-UHFFFAOYSA-N alminoprofen Chemical compound OC(=O)C(C)C1=CC=C(NCC(C)=C)C=C1 FPHLBGOJWPEVME-UHFFFAOYSA-N 0.000 description 1
- 235000011399 aloe vera Nutrition 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 229940009827 aluminum acetate Drugs 0.000 description 1
- DKNWSYNQZKUICI-UHFFFAOYSA-N amantadine Chemical compound C1C(C2)CC3CC2CC1(N)C3 DKNWSYNQZKUICI-UHFFFAOYSA-N 0.000 description 1
- 229960003805 amantadine Drugs 0.000 description 1
- 229950003408 amcinafide Drugs 0.000 description 1
- 229940009444 amphotericin Drugs 0.000 description 1
- 229940021050 amphotericin b colloidal dispersion Drugs 0.000 description 1
- 229940016823 amphotericin b oral suspension Drugs 0.000 description 1
- JHVAMHSQVVQIOT-MFAJLEFUSA-N anidulafungin Chemical compound C1=CC(OCCCCC)=CC=C1C1=CC=C(C=2C=CC(=CC=2)C(=O)N[C@@H]2C(N[C@H](C(=O)N3C[C@H](O)C[C@H]3C(=O)N[C@H](C(=O)N[C@H](C(=O)N3C[C@H](C)[C@H](O)[C@H]3C(=O)N[C@H](O)[C@H](O)C2)[C@@H](C)O)[C@H](O)[C@@H](O)C=2C=CC(O)=CC=2)[C@@H](C)O)=O)C=C1 JHVAMHSQVVQIOT-MFAJLEFUSA-N 0.000 description 1
- 229960003348 anidulafungin Drugs 0.000 description 1
- 239000010775 animal oil Substances 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 229940121363 anti-inflammatory agent Drugs 0.000 description 1
- 230000000340 anti-metabolite Effects 0.000 description 1
- 230000000118 anti-neoplastic effect Effects 0.000 description 1
- 230000001028 anti-proliverative effect Effects 0.000 description 1
- 229940111133 antiinflammatory and antirheumatic drug oxicams Drugs 0.000 description 1
- 229940100197 antimetabolite Drugs 0.000 description 1
- 239000002256 antimetabolite Substances 0.000 description 1
- 239000002246 antineoplastic agent Substances 0.000 description 1
- 229940041181 antineoplastic drug Drugs 0.000 description 1
- 210000000436 anus Anatomy 0.000 description 1
- 230000036506 anxiety Effects 0.000 description 1
- 229940070343 apokyn Drugs 0.000 description 1
- 229960004046 apomorphine Drugs 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000012062 aqueous buffer Substances 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 208000015802 attention deficit-hyperactivity disease Diseases 0.000 description 1
- 229940031774 azilect Drugs 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 229950000210 beclometasone dipropionate Drugs 0.000 description 1
- 229940092705 beclomethasone Drugs 0.000 description 1
- NBMKJKDGKREAPL-DVTGEIKXSA-N beclomethasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(Cl)[C@@H]1[C@@H]1C[C@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)C[C@@H]2O NBMKJKDGKREAPL-DVTGEIKXSA-N 0.000 description 1
- 235000013871 bee wax Nutrition 0.000 description 1
- 239000012166 beeswax Substances 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229960005430 benoxaprofen Drugs 0.000 description 1
- 229960000686 benzalkonium chloride Drugs 0.000 description 1
- 229960001081 benzatropine Drugs 0.000 description 1
- GIJXKZJWITVLHI-PMOLBWCYSA-N benzatropine Chemical compound O([C@H]1C[C@H]2CC[C@@H](C1)N2C)C(C=1C=CC=CC=1)C1=CC=CC=C1 GIJXKZJWITVLHI-PMOLBWCYSA-N 0.000 description 1
- CPFJLLXFNPCTDW-BWSPSPBFSA-N benzatropine mesylate Chemical compound CS([O-])(=O)=O.O([C@H]1C[C@H]2CC[C@@H](C1)[NH+]2C)C(C=1C=CC=CC=1)C1=CC=CC=C1 CPFJLLXFNPCTDW-BWSPSPBFSA-N 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- 229960002903 benzyl benzoate Drugs 0.000 description 1
- CADWTSSKOVRVJC-UHFFFAOYSA-N benzyl(dimethyl)azanium;chloride Chemical compound [Cl-].C[NH+](C)CC1=CC=CC=C1 CADWTSSKOVRVJC-UHFFFAOYSA-N 0.000 description 1
- WHGYBXFWUBPSRW-FOUAGVGXSA-N beta-cyclodextrin Chemical compound OC[C@H]([C@H]([C@@H]([C@H]1O)O)O[C@H]2O[C@@H]([C@@H](O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O3)[C@H](O)[C@H]2O)CO)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@@H]3O[C@@H]1CO WHGYBXFWUBPSRW-FOUAGVGXSA-N 0.000 description 1
- 235000011175 beta-cyclodextrine Nutrition 0.000 description 1
- 229960004853 betadex Drugs 0.000 description 1
- 239000000227 bioadhesive Substances 0.000 description 1
- 239000007844 bleaching agent Substances 0.000 description 1
- 230000000740 bleeding effect Effects 0.000 description 1
- 230000037396 body weight Effects 0.000 description 1
- 229960002802 bromocriptine Drugs 0.000 description 1
- OZVBMTJYIDMWIL-AYFBDAFISA-N bromocriptine Chemical compound C1=CC(C=2[C@H](N(C)C[C@@H](C=2)C(=O)N[C@]2(C(=O)N3[C@H](C(N4CCC[C@H]4[C@]3(O)O2)=O)CC(C)C)C(C)C)C2)=C3C2=C(Br)NC3=C1 OZVBMTJYIDMWIL-AYFBDAFISA-N 0.000 description 1
- 210000000621 bronchi Anatomy 0.000 description 1
- 229960004436 budesonide Drugs 0.000 description 1
- 239000006172 buffering agent Substances 0.000 description 1
- 239000004067 bulking agent Substances 0.000 description 1
- CDQSJQSWAWPGKG-UHFFFAOYSA-N butane-1,1-diol Chemical compound CCCC(O)O CDQSJQSWAWPGKG-UHFFFAOYSA-N 0.000 description 1
- 102200004938 c.340C>T Human genes 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229960000846 camphor Drugs 0.000 description 1
- 229930008380 camphor Natural products 0.000 description 1
- 229960004348 candicidin Drugs 0.000 description 1
- PTOJXIKSKSASRB-UHFFFAOYSA-O candicine Chemical compound C[N+](C)(C)CCC1=CC=C(O)C=C1 PTOJXIKSKSASRB-UHFFFAOYSA-O 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 229960003184 carprofen Drugs 0.000 description 1
- IVUMCTKHWDRRMH-UHFFFAOYSA-N carprofen Chemical compound C1=CC(Cl)=C[C]2C3=CC=C(C(C(O)=O)C)C=C3N=C21 IVUMCTKHWDRRMH-UHFFFAOYSA-N 0.000 description 1
- JYIKNQVWKBUSNH-WVDDFWQHSA-N caspofungin Chemical compound C1([C@H](O)[C@@H](O)[C@H]2C(=O)N[C@H](C(=O)N3CC[C@H](O)[C@H]3C(=O)N[C@H](NCCN)[C@H](O)C[C@@H](C(N[C@H](C(=O)N3C[C@H](O)C[C@H]3C(=O)N2)[C@@H](C)O)=O)NC(=O)CCCCCCCC[C@@H](C)C[C@@H](C)CC)[C@H](O)CCN)=CC=C(O)C=C1 JYIKNQVWKBUSNH-WVDDFWQHSA-N 0.000 description 1
- 229960003034 caspofungin Drugs 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- RZEKVGVHFLEQIL-UHFFFAOYSA-N celecoxib Chemical compound C1=CC(C)=CC=C1C1=CC(C(F)(F)F)=NN1C1=CC=C(S(N)(=O)=O)C=C1 RZEKVGVHFLEQIL-UHFFFAOYSA-N 0.000 description 1
- 229960000590 celecoxib Drugs 0.000 description 1
- 230000032823 cell division Effects 0.000 description 1
- 230000004663 cell proliferation Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000007541 cellular toxicity Effects 0.000 description 1
- 210000002939 cerumen Anatomy 0.000 description 1
- 229960000541 cetyl alcohol Drugs 0.000 description 1
- 238000002512 chemotherapy Methods 0.000 description 1
- 229960003260 chlorhexidine Drugs 0.000 description 1
- 229950006229 chloroprednisone Drugs 0.000 description 1
- 229960002688 choline salicylate Drugs 0.000 description 1
- 235000017803 cinnamon Nutrition 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 229960003344 climbazole Drugs 0.000 description 1
- 238000003759 clinical diagnosis Methods 0.000 description 1
- 229960005228 clioquinol Drugs 0.000 description 1
- 229960002842 clobetasol Drugs 0.000 description 1
- CBGUOGMQLZIXBE-XGQKBEPLSA-N clobetasol propionate Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@H](C)[C@@](C(=O)CCl)(OC(=O)CC)[C@@]1(C)C[C@@H]2O CBGUOGMQLZIXBE-XGQKBEPLSA-N 0.000 description 1
- 230000035602 clotting Effects 0.000 description 1
- 229940097480 cogentin Drugs 0.000 description 1
- 230000001149 cognitive effect Effects 0.000 description 1
- 229960001338 colchicine Drugs 0.000 description 1
- 229960002424 collagenase Drugs 0.000 description 1
- 238000001246 colloidal dispersion Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000007891 compressed tablet Substances 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 229940087613 comtan Drugs 0.000 description 1
- 238000011970 concomitant therapy Methods 0.000 description 1
- 210000000795 conjunctiva Anatomy 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000013270 controlled release Methods 0.000 description 1
- 239000003246 corticosteroid Substances 0.000 description 1
- 229960001334 corticosteroids Drugs 0.000 description 1
- BMCQMVFGOVHVNG-TUFAYURCSA-N cortisol 17-butyrate Chemical compound C1CC2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@@](C(=O)CO)(OC(=O)CCC)[C@@]1(C)C[C@@H]2O BMCQMVFGOVHVNG-TUFAYURCSA-N 0.000 description 1
- FZCHYNWYXKICIO-FZNHGJLXSA-N cortisol 17-valerate Chemical compound C1CC2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@@](C(=O)CO)(OC(=O)CCCC)[C@@]1(C)C[C@@H]2O FZCHYNWYXKICIO-FZNHGJLXSA-N 0.000 description 1
- ALEXXDVDDISNDU-JZYPGELDSA-N cortisol 21-acetate Chemical compound C1CC2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@@](C(=O)COC(=O)C)(O)[C@@]1(C)C[C@@H]2O ALEXXDVDDISNDU-JZYPGELDSA-N 0.000 description 1
- 229960004544 cortisone Drugs 0.000 description 1
- 235000003373 curcuma longa Nutrition 0.000 description 1
- 239000003255 cyclooxygenase 2 inhibitor Substances 0.000 description 1
- 239000001939 cymbopogon martini roxb. stapf. oil Substances 0.000 description 1
- 231100000433 cytotoxic Toxicity 0.000 description 1
- 230000001472 cytotoxic effect Effects 0.000 description 1
- 230000034994 death Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 231100000868 delusion Toxicity 0.000 description 1
- 239000002781 deodorant agent Substances 0.000 description 1
- 229940009976 deoxycholate Drugs 0.000 description 1
- KXGVEGMKQFWNSR-LLQZFEROSA-N deoxycholic acid Chemical compound C([C@H]1CC2)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(O)=O)C)[C@@]2(C)[C@@H](O)C1 KXGVEGMKQFWNSR-LLQZFEROSA-N 0.000 description 1
- 229960003662 desonide Drugs 0.000 description 1
- WBGKWQHBNHJJPZ-LECWWXJVSA-N desonide Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@@H]2[C@@H]1[C@@H]1C[C@H]3OC(C)(C)O[C@@]3(C(=O)CO)[C@@]1(C)C[C@@H]2O WBGKWQHBNHJJPZ-LECWWXJVSA-N 0.000 description 1
- 229960002593 desoximetasone Drugs 0.000 description 1
- VWVSBHGCDBMOOT-IIEHVVJPSA-N desoximetasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@@H](C)[C@H](C(=O)CO)[C@@]1(C)C[C@@H]2O VWVSBHGCDBMOOT-IIEHVVJPSA-N 0.000 description 1
- 229960004486 desoxycorticosterone acetate Drugs 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- UREBDLICKHMUKA-CXSFZGCWSA-N dexamethasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)C[C@@H]2O UREBDLICKHMUKA-CXSFZGCWSA-N 0.000 description 1
- 229960004833 dexamethasone phosphate Drugs 0.000 description 1
- VQODGRNSFPNSQE-CXSFZGCWSA-N dexamethasone phosphate Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)COP(O)(O)=O)(O)[C@@]1(C)C[C@@H]2O VQODGRNSFPNSQE-CXSFZGCWSA-N 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- 229940061607 dibasic sodium phosphate Drugs 0.000 description 1
- NEFBYIFKOOEVPA-UHFFFAOYSA-K dicalcium phosphate Chemical compound [Ca+2].[Ca+2].[O-]P([O-])([O-])=O NEFBYIFKOOEVPA-UHFFFAOYSA-K 0.000 description 1
- 229940038472 dicalcium phosphate Drugs 0.000 description 1
- 229910000390 dicalcium phosphate Inorganic materials 0.000 description 1
- 229960001259 diclofenac Drugs 0.000 description 1
- DCOPUUMXTXDBNB-UHFFFAOYSA-N diclofenac Chemical compound OC(=O)CC1=CC=CC=C1NC1=C(Cl)C=CC=C1Cl DCOPUUMXTXDBNB-UHFFFAOYSA-N 0.000 description 1
- 229960002124 diflorasone diacetate Drugs 0.000 description 1
- BOBLHFUVNSFZPJ-JOYXJVLSSA-N diflorasone diacetate Chemical compound C1([C@@H](F)C2)=CC(=O)C=C[C@]1(C)[C@]1(F)[C@@H]2[C@@H]2C[C@H](C)[C@@](C(=O)COC(C)=O)(OC(C)=O)[C@@]2(C)C[C@@H]1O BOBLHFUVNSFZPJ-JOYXJVLSSA-N 0.000 description 1
- 229960003970 diflucortolone valerate Drugs 0.000 description 1
- 229960004875 difluprednate Drugs 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-M dihydrogenphosphate Chemical compound OP(O)([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-M 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 229940008099 dimethicone Drugs 0.000 description 1
- 239000004205 dimethyl polysiloxane Substances 0.000 description 1
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 1
- LRCFXGAMWKDGLA-UHFFFAOYSA-N dioxosilane;hydrate Chemical compound O.O=[Si]=O LRCFXGAMWKDGLA-UHFFFAOYSA-N 0.000 description 1
- 239000007884 disintegrant Substances 0.000 description 1
- BNIILDVGGAEEIG-UHFFFAOYSA-L disodium hydrogen phosphate Chemical compound [Na+].[Na+].OP([O-])([O-])=O BNIILDVGGAEEIG-UHFFFAOYSA-L 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 229960003638 dopamine Drugs 0.000 description 1
- 230000006739 dopaminergic cell death Effects 0.000 description 1
- 230000003291 dopaminomimetic effect Effects 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 229940009579 duopa Drugs 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 208000010118 dystonia Diseases 0.000 description 1
- 210000003027 ear inner Anatomy 0.000 description 1
- 230000005670 electromagnetic radiation Effects 0.000 description 1
- 230000001804 emulsifying effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229960002125 enilconazole Drugs 0.000 description 1
- 229960003337 entacapone Drugs 0.000 description 1
- 239000002702 enteric coating Substances 0.000 description 1
- 238000009505 enteric coating Methods 0.000 description 1
- 230000000967 entomopathogenic effect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 210000002615 epidermis Anatomy 0.000 description 1
- 229930013356 epothilone Natural products 0.000 description 1
- 150000003883 epothilone derivatives Chemical class 0.000 description 1
- 230000008029 eradication Effects 0.000 description 1
- 210000003238 esophagus Anatomy 0.000 description 1
- 210000001031 ethmoid bone Anatomy 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000000193 eyeblink Effects 0.000 description 1
- 229950000152 filipin Drugs 0.000 description 1
- IMQSIXYSKPIGPD-NKYUYKLDSA-N filipin Chemical compound CCCCC[C@H](O)[C@@H]1[C@@H](O)C[C@@H](O)C[C@@H](O)C[C@@H](O)C[C@@H](O)C[C@@H](O)C[C@H](O)\C(C)=C\C=C\C=C\C=C\C=C\[C@H](O)[C@@H](C)OC1=O IMQSIXYSKPIGPD-NKYUYKLDSA-N 0.000 description 1
- IMQSIXYSKPIGPD-UHFFFAOYSA-N filipin III Natural products CCCCCC(O)C1C(O)CC(O)CC(O)CC(O)CC(O)CC(O)CC(O)C(C)=CC=CC=CC=CC=CC(O)C(C)OC1=O IMQSIXYSKPIGPD-UHFFFAOYSA-N 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 229960001440 fluclorolone Drugs 0.000 description 1
- VTWKPILBIUBMDS-OTJLYDAYSA-N fluclorolone Chemical compound O=C1C=C[C@]2(C)[C@@]3(Cl)[C@@H](Cl)C[C@](C)([C@@]([C@H](O)C4)(O)C(=O)CO)[C@@H]4[C@@H]3C[C@H](F)C2=C1 VTWKPILBIUBMDS-OTJLYDAYSA-N 0.000 description 1
- NJNWEGFJCGYWQT-VSXGLTOVSA-N fluclorolone acetonide Chemical compound C1([C@@H](F)C2)=CC(=O)C=C[C@]1(C)[C@]1(Cl)[C@@H]2[C@@H]2C[C@H]3OC(C)(C)O[C@@]3(C(=O)CO)[C@@]2(C)C[C@@H]1Cl NJNWEGFJCGYWQT-VSXGLTOVSA-N 0.000 description 1
- 229940094766 flucloronide Drugs 0.000 description 1
- 229940083665 fluconazole 100 mg Drugs 0.000 description 1
- 229960000676 flunisolide Drugs 0.000 description 1
- 229960000785 fluocinonide Drugs 0.000 description 1
- 229960003973 fluocortolone Drugs 0.000 description 1
- GAKMQHDJQHZUTJ-ULHLPKEOSA-N fluocortolone Chemical compound C1([C@@H](F)C2)=CC(=O)C=C[C@]1(C)[C@@H]1[C@@H]2[C@@H]2C[C@@H](C)[C@H](C(=O)CO)[C@@]2(C)C[C@@H]1O GAKMQHDJQHZUTJ-ULHLPKEOSA-N 0.000 description 1
- FAOZLTXFLGPHNG-KNAQIMQKSA-N fluorometholone Chemical compound C([C@@]12C)=CC(=O)C=C1[C@@H](C)C[C@@H]1[C@]2(F)[C@@H](O)C[C@]2(C)[C@@](O)(C(C)=O)CC[C@H]21 FAOZLTXFLGPHNG-KNAQIMQKSA-N 0.000 description 1
- 229960003590 fluperolone Drugs 0.000 description 1
- HHPZZKDXAFJLOH-QZIXMDIESA-N fluperolone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1CC[C@@](C(=O)[C@@H](OC(C)=O)C)(O)[C@@]1(C)C[C@@H]2O HHPZZKDXAFJLOH-QZIXMDIESA-N 0.000 description 1
- 229960000618 fluprednisolone Drugs 0.000 description 1
- 229960000289 fluticasone propionate Drugs 0.000 description 1
- WMWTYOKRWGGJOA-CENSZEJFSA-N fluticasone propionate Chemical compound C1([C@@H](F)C2)=CC(=O)C=C[C@]1(C)[C@]1(F)[C@@H]2[C@@H]2C[C@@H](C)[C@@](C(=O)SCF)(OC(=O)CC)[C@@]2(C)C[C@@H]1O WMWTYOKRWGGJOA-CENSZEJFSA-N 0.000 description 1
- 235000013355 food flavoring agent Nutrition 0.000 description 1
- 210000001061 forehead Anatomy 0.000 description 1
- 239000003205 fragrance Substances 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- NGGMYCMLYOUNGM-CSDLUJIJSA-N fumagillin Chemical compound C([C@H]([C@H]([C@@H]1[C@]2(C)[C@H](O2)CC=C(C)C)OC)OC(=O)\C=C\C=C\C=C\C=C\C(O)=O)C[C@@]21CO2 NGGMYCMLYOUNGM-CSDLUJIJSA-N 0.000 description 1
- 229960000936 fumagillin Drugs 0.000 description 1
- 230000002538 fungal effect Effects 0.000 description 1
- 208000024386 fungal infectious disease Diseases 0.000 description 1
- ZZUFCTLCJUWOSV-UHFFFAOYSA-N furosemide Chemical compound C1=C(Cl)C(S(=O)(=O)N)=CC(C(O)=O)=C1NCC1=CC=CO1 ZZUFCTLCJUWOSV-UHFFFAOYSA-N 0.000 description 1
- 230000005021 gait Effects 0.000 description 1
- 235000004611 garlic Nutrition 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000007160 gastrointestinal dysfunction Effects 0.000 description 1
- 239000003349 gelling agent Substances 0.000 description 1
- 210000004392 genitalia Anatomy 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- RZRNAYUHWVFMIP-HXUWFJFHSA-N glycerol monolinoleate Natural products CCCCCCCCC=CCCCCCCCC(=O)OC[C@H](O)CO RZRNAYUHWVFMIP-HXUWFJFHSA-N 0.000 description 1
- 229940100242 glycol stearate Drugs 0.000 description 1
- NESRXFGQJARQNM-OWYFMNJBSA-N graphinone Chemical compound O=C([C@H]([C@]1(O)[C@]2(C)[C@H](O2)CC=C(C)C)OC)CC[C@@]21CO2 NESRXFGQJARQNM-OWYFMNJBSA-N 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 210000004013 groin Anatomy 0.000 description 1
- 229960002383 halcinonide Drugs 0.000 description 1
- 229940086207 head & shoulders Drugs 0.000 description 1
- 235000012907 honey Nutrition 0.000 description 1
- 102000056111 human LRRK2 Human genes 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 229950000208 hydrocortamate Drugs 0.000 description 1
- FWFVLWGEFDIZMJ-FOMYWIRZSA-N hydrocortamate Chemical compound C1CC2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@@](C(=O)COC(=O)CN(CC)CC)(O)[C@@]1(C)C[C@@H]2O FWFVLWGEFDIZMJ-FOMYWIRZSA-N 0.000 description 1
- 229960000890 hydrocortisone Drugs 0.000 description 1
- 229960001067 hydrocortisone acetate Drugs 0.000 description 1
- 229960001524 hydrocortisone butyrate Drugs 0.000 description 1
- 229960003331 hydrocortisone cypionate Drugs 0.000 description 1
- 229960000631 hydrocortisone valerate Drugs 0.000 description 1
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 1
- 229920003063 hydroxymethyl cellulose Polymers 0.000 description 1
- 229940031574 hydroxymethyl cellulose Drugs 0.000 description 1
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 1
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 1
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 1
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 description 1
- 239000000076 hypertonic saline solution Substances 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 230000005032 impulse control Effects 0.000 description 1
- 208000035231 inattentive type attention deficit hyperactivity disease Diseases 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 239000007972 injectable composition Substances 0.000 description 1
- 230000000266 injurious effect Effects 0.000 description 1
- 238000001361 intraarterial administration Methods 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000007912 intraperitoneal administration Methods 0.000 description 1
- 238000007913 intrathecal administration Methods 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 229960002014 ixabepilone Drugs 0.000 description 1
- 229940111707 ixempra Drugs 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 230000002147 killing effect Effects 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 229940089474 lamisil Drugs 0.000 description 1
- 229950010163 lanoconazole Drugs 0.000 description 1
- 210000000867 larynx Anatomy 0.000 description 1
- 239000001102 lavandula vera Substances 0.000 description 1
- 235000018219 lavender Nutrition 0.000 description 1
- 230000013016 learning Effects 0.000 description 1
- 229940087305 limonene Drugs 0.000 description 1
- 235000001510 limonene Nutrition 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 239000003589 local anesthetic agent Substances 0.000 description 1
- 229940028976 loprox Drugs 0.000 description 1
- DMKSVUSAATWOCU-HROMYWEYSA-N loteprednol etabonate Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@@](C(=O)OCCl)(OC(=O)OCC)[C@@]1(C)C[C@@H]2O DMKSVUSAATWOCU-HROMYWEYSA-N 0.000 description 1
- 229960003744 loteprednol etabonate Drugs 0.000 description 1
- 229940063175 lotrimin Drugs 0.000 description 1
- 239000007937 lozenge Substances 0.000 description 1
- 229960000570 luliconazole Drugs 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 238000007403 mPCR Methods 0.000 description 1
- 229940072082 magnesium salicylate Drugs 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 238000000816 matrix-assisted laser desorption--ionisation Methods 0.000 description 1
- 210000002050 maxilla Anatomy 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 238000002483 medication Methods 0.000 description 1
- 229960001011 medrysone Drugs 0.000 description 1
- 229960001810 meprednisone Drugs 0.000 description 1
- PIDANAQULIKBQS-RNUIGHNZSA-N meprednisone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@@H]2[C@@H]1[C@@H]1C[C@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)CC2=O PIDANAQULIKBQS-RNUIGHNZSA-N 0.000 description 1
- 235000010270 methyl p-hydroxybenzoate Nutrition 0.000 description 1
- 239000004292 methyl p-hydroxybenzoate Substances 0.000 description 1
- 229960001047 methyl salicylate Drugs 0.000 description 1
- 229960002216 methylparaben Drugs 0.000 description 1
- 229960004584 methylprednisolone Drugs 0.000 description 1
- 229960002159 micafungin Drugs 0.000 description 1
- PIEUQSKUWLMALL-YABMTYFHSA-N micafungin Chemical compound C1=CC(OCCCCC)=CC=C1C1=CC(C=2C=CC(=CC=2)C(=O)N[C@@H]2C(N[C@H](C(=O)N3C[C@H](O)C[C@H]3C(=O)N[C@H](C(=O)N[C@H](C(=O)N3C[C@H](C)[C@H](O)[C@H]3C(=O)N[C@H](O)[C@H](O)C2)[C@H](O)CC(N)=O)[C@H](O)[C@@H](O)C=2C=C(OS(O)(=O)=O)C(O)=CC=2)[C@@H](C)O)=O)=NO1 PIEUQSKUWLMALL-YABMTYFHSA-N 0.000 description 1
- 239000000693 micelle Substances 0.000 description 1
- 229960005040 miconazole nitrate Drugs 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 238000000386 microscopy Methods 0.000 description 1
- 230000029115 microtubule polymerization Effects 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 230000003278 mimic effect Effects 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 229940101972 mirapex Drugs 0.000 description 1
- 239000003595 mist Substances 0.000 description 1
- 210000003470 mitochondria Anatomy 0.000 description 1
- 230000002438 mitochondrial effect Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000007932 molded tablet Substances 0.000 description 1
- 229960002744 mometasone furoate Drugs 0.000 description 1
- WOFMFGQZHJDGCX-ZULDAHANSA-N mometasone furoate Chemical compound O([C@]1([C@@]2(C)C[C@H](O)[C@]3(Cl)[C@@]4(C)C=CC(=O)C=C4CC[C@H]3[C@@H]2C[C@H]1C)C(=O)CCl)C(=O)C1=CC=CO1 WOFMFGQZHJDGCX-ZULDAHANSA-N 0.000 description 1
- 229940000973 monistat Drugs 0.000 description 1
- 229940045641 monobasic sodium phosphate Drugs 0.000 description 1
- CQDGTJPVBWZJAZ-UHFFFAOYSA-N monoethyl carbonate Chemical compound CCOC(O)=O CQDGTJPVBWZJAZ-UHFFFAOYSA-N 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 235000011929 mousse Nutrition 0.000 description 1
- 229940051866 mouthwash Drugs 0.000 description 1
- 230000004118 muscle contraction Effects 0.000 description 1
- 229960002009 naproxen Drugs 0.000 description 1
- CMWTZPSULFXXJA-VIFPVBQESA-N naproxen Chemical compound C1=C([C@H](C)C(O)=O)C=CC2=CC(OC)=CC=C21 CMWTZPSULFXXJA-VIFPVBQESA-N 0.000 description 1
- 239000007923 nasal drop Substances 0.000 description 1
- 229940100662 nasal drops Drugs 0.000 description 1
- 239000007922 nasal spray Substances 0.000 description 1
- 229940097496 nasal spray Drugs 0.000 description 1
- 230000008693 nausea Effects 0.000 description 1
- 229940020452 neupro Drugs 0.000 description 1
- 210000001982 neural crest cell Anatomy 0.000 description 1
- 230000000926 neurological effect Effects 0.000 description 1
- 229960000965 nimesulide Drugs 0.000 description 1
- HYWYRSMBCFDLJT-UHFFFAOYSA-N nimesulide Chemical compound CS(=O)(=O)NC1=CC=C([N+]([O-])=O)C=C1OC1=CC=CC=C1 HYWYRSMBCFDLJT-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229940064438 nizoral Drugs 0.000 description 1
- 229940099075 noxafil Drugs 0.000 description 1
- 239000002773 nucleotide Substances 0.000 description 1
- 125000003729 nucleotide group Chemical group 0.000 description 1
- 239000003883 ointment base Substances 0.000 description 1
- 210000000956 olfactory bulb Anatomy 0.000 description 1
- 229940114496 olive leaf extract Drugs 0.000 description 1
- 239000004006 olive oil Substances 0.000 description 1
- 235000008390 olive oil Nutrition 0.000 description 1
- 239000003605 opacifier Substances 0.000 description 1
- 239000010502 orange oil Substances 0.000 description 1
- 230000003204 osmotic effect Effects 0.000 description 1
- 239000003002 pH adjusting agent Substances 0.000 description 1
- 239000006179 pH buffering agent Substances 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 1
- 229960002858 paramethasone Drugs 0.000 description 1
- 210000003695 paranasal sinus Anatomy 0.000 description 1
- 239000006072 paste Substances 0.000 description 1
- 235000010603 pastilles Nutrition 0.000 description 1
- 210000003899 penis Anatomy 0.000 description 1
- 229940111202 pepsin Drugs 0.000 description 1
- 229940124531 pharmaceutical excipient Drugs 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 1
- 229960002895 phenylbutazone Drugs 0.000 description 1
- VYMDGNCVAMGZFE-UHFFFAOYSA-N phenylbutazonum Chemical compound O=C1C(CCCC)C(=O)N(C=2C=CC=CC=2)N1C1=CC=CC=C1 VYMDGNCVAMGZFE-UHFFFAOYSA-N 0.000 description 1
- RGCLLPNLLBQHPF-HJWRWDBZSA-N phosphamidon Chemical compound CCN(CC)C(=O)C(\Cl)=C(/C)OP(=O)(OC)OC RGCLLPNLLBQHPF-HJWRWDBZSA-N 0.000 description 1
- 229960004838 phosphoric acid Drugs 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229940081510 piroctone olamine Drugs 0.000 description 1
- BTSZTGGZJQFALU-UHFFFAOYSA-N piroctone olamine Chemical compound NCCO.CC(C)(C)CC(C)CC1=CC(C)=CC(=O)N1O BTSZTGGZJQFALU-UHFFFAOYSA-N 0.000 description 1
- 239000011505 plaster Substances 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 239000001738 pogostemon cablin oil Substances 0.000 description 1
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 1
- 229920000059 polyethylene glycol stearate Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 229920002503 polyoxyethylene-polyoxypropylene Polymers 0.000 description 1
- 229920001184 polypeptide Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 229940096324 posaconazole 40 mg/ml oral suspension Drugs 0.000 description 1
- 230000001144 postural effect Effects 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 229960003089 pramipexole Drugs 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 229960005205 prednisolone Drugs 0.000 description 1
- OIGNJSKKLXVSLS-VWUMJDOOSA-N prednisolone Chemical compound O=C1C=C[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 OIGNJSKKLXVSLS-VWUMJDOOSA-N 0.000 description 1
- 229960002800 prednisolone acetate Drugs 0.000 description 1
- 229960004618 prednisone Drugs 0.000 description 1
- XOFYZVNMUHMLCC-ZPOLXVRWSA-N prednisone Chemical compound O=C1C=C[C@]2(C)[C@H]3C(=O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 XOFYZVNMUHMLCC-ZPOLXVRWSA-N 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 239000003380 propellant Substances 0.000 description 1
- 235000010232 propyl p-hydroxybenzoate Nutrition 0.000 description 1
- 239000004405 propyl p-hydroxybenzoate Substances 0.000 description 1
- 235000013772 propylene glycol Nutrition 0.000 description 1
- 229940026235 propylene glycol monolaurate Drugs 0.000 description 1
- 229960003415 propylparaben Drugs 0.000 description 1
- 208000018299 prostration Diseases 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 229940024999 proteolytic enzymes for treatment of wounds and ulcers Drugs 0.000 description 1
- 230000002685 pulmonary effect Effects 0.000 description 1
- 150000003218 pyrazolidines Chemical class 0.000 description 1
- GGOZGYRTNQBSSA-UHFFFAOYSA-N pyridine-2,3-diol Chemical class OC1=CC=CN=C1O GGOZGYRTNQBSSA-UHFFFAOYSA-N 0.000 description 1
- MIXMJCQRHVAJIO-TZHJZOAOSA-N qk4dys664x Chemical compound O.C1([C@@H](F)C2)=CC(=O)C=C[C@]1(C)[C@@H]1[C@@H]2[C@@H]2C[C@H]3OC(C)(C)O[C@@]3(C(=O)CO)[C@@]2(C)C[C@@H]1O.C1([C@@H](F)C2)=CC(=O)C=C[C@]1(C)[C@@H]1[C@@H]2[C@@H]2C[C@H]3OC(C)(C)O[C@@]3(C(=O)CO)[C@@]2(C)C[C@@H]1O MIXMJCQRHVAJIO-TZHJZOAOSA-N 0.000 description 1
- 229960000245 rasagiline Drugs 0.000 description 1
- 238000013102 re-test Methods 0.000 description 1
- 230000007115 recruitment Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 229940113775 requip Drugs 0.000 description 1
- 210000002345 respiratory system Anatomy 0.000 description 1
- 239000003340 retarding agent Substances 0.000 description 1
- 229960001487 rimexolone Drugs 0.000 description 1
- QTTRZHGPGKRAFB-OOKHYKNYSA-N rimexolone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@@H]2[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)CC)(C)[C@@]1(C)C[C@@H]2O QTTRZHGPGKRAFB-OOKHYKNYSA-N 0.000 description 1
- 229960001879 ropinirole Drugs 0.000 description 1
- 229960003179 rotigotine Drugs 0.000 description 1
- 239000012449 sabouraud dextrose agar Substances 0.000 description 1
- 230000004434 saccadic eye movement Effects 0.000 description 1
- 229960000581 salicylamide Drugs 0.000 description 1
- 229960004889 salicylic acid Drugs 0.000 description 1
- 150000003902 salicylic acid esters Chemical class 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 238000011012 sanitization Methods 0.000 description 1
- 206010039722 scoliosis Diseases 0.000 description 1
- DCKVNWZUADLDEH-UHFFFAOYSA-N sec-butyl acetate Chemical compound CCC(C)OC(C)=O DCKVNWZUADLDEH-UHFFFAOYSA-N 0.000 description 1
- 229960003946 selegiline Drugs 0.000 description 1
- 229910000338 selenium disulfide Inorganic materials 0.000 description 1
- JNMWHTHYDQTDQZ-UHFFFAOYSA-N selenium sulfide Chemical compound S=[Se]=S JNMWHTHYDQTDQZ-UHFFFAOYSA-N 0.000 description 1
- 229940115131 selsun blue Drugs 0.000 description 1
- 230000008313 sensitization Effects 0.000 description 1
- 201000009890 sinusitis Diseases 0.000 description 1
- 230000036620 skin dryness Effects 0.000 description 1
- 201000002859 sleep apnea Diseases 0.000 description 1
- 208000019116 sleep disease Diseases 0.000 description 1
- 208000022925 sleep disturbance Diseases 0.000 description 1
- 210000002460 smooth muscle Anatomy 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 229960002668 sodium chloride Drugs 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 1
- AJPJDKMHJJGVTQ-UHFFFAOYSA-M sodium dihydrogen phosphate Chemical compound [Na+].OP(O)([O-])=O AJPJDKMHJJGVTQ-UHFFFAOYSA-M 0.000 description 1
- 229940083608 sodium hydroxide Drugs 0.000 description 1
- 229940057950 sodium laureth sulfate Drugs 0.000 description 1
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 1
- 239000001488 sodium phosphate Substances 0.000 description 1
- 235000011008 sodium phosphates Nutrition 0.000 description 1
- SXHLENDCVBIJFO-UHFFFAOYSA-M sodium;2-[2-(2-dodecoxyethoxy)ethoxy]ethyl sulfate Chemical compound [Na+].CCCCCCCCCCCCOCCOCCOCCOS([O-])(=O)=O SXHLENDCVBIJFO-UHFFFAOYSA-M 0.000 description 1
- 210000001584 soft palate Anatomy 0.000 description 1
- 239000002195 soluble material Substances 0.000 description 1
- 235000015096 spirit Nutrition 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 239000008174 sterile solution Substances 0.000 description 1
- 239000008223 sterile water Substances 0.000 description 1
- 239000003206 sterilizing agent Substances 0.000 description 1
- 230000002739 subcortical effect Effects 0.000 description 1
- 229960005349 sulfur Drugs 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- 238000013268 sustained release Methods 0.000 description 1
- 239000012730 sustained-release form Substances 0.000 description 1
- 239000003765 sweetening agent Substances 0.000 description 1
- 208000011580 syndromic disease Diseases 0.000 description 1
- 238000007910 systemic administration Methods 0.000 description 1
- 239000010677 tea tree oil Substances 0.000 description 1
- 229940111630 tea tree oil Drugs 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 210000003371 toe Anatomy 0.000 description 1
- 229960004603 tolcapone Drugs 0.000 description 1
- MIQPIUSUKVNLNT-UHFFFAOYSA-N tolcapone Chemical compound C1=CC(C)=CC=C1C(=O)C1=CC(O)=C(O)C([N+]([O-])=O)=C1 MIQPIUSUKVNLNT-UHFFFAOYSA-N 0.000 description 1
- 239000003860 topical agent Substances 0.000 description 1
- 210000003437 trachea Anatomy 0.000 description 1
- ODLHGICHYURWBS-LKONHMLTSA-N trappsol cyclo Chemical compound CC(O)COC[C@H]([C@H]([C@@H]([C@H]1O)O)O[C@H]2O[C@@H]([C@@H](O[C@H]3O[C@H](COCC(C)O)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](COCC(C)O)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](COCC(C)O)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](COCC(C)O)[C@H]([C@@H]([C@H]3O)O)O3)[C@H](O)[C@H]2O)COCC(O)C)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@@H]3O[C@@H]1COCC(C)O ODLHGICHYURWBS-LKONHMLTSA-N 0.000 description 1
- 238000011277 treatment modality Methods 0.000 description 1
- 229960001727 tretinoin Drugs 0.000 description 1
- 229960002117 triamcinolone acetonide Drugs 0.000 description 1
- YNDXUCZADRHECN-JNQJZLCISA-N triamcinolone acetonide Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@H]3OC(C)(C)O[C@@]3(C(=O)CO)[C@@]1(C)C[C@@H]2O YNDXUCZADRHECN-JNQJZLCISA-N 0.000 description 1
- 150000003852 triazoles Chemical class 0.000 description 1
- 229960001032 trihexyphenidyl Drugs 0.000 description 1
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical class [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 1
- 239000012588 trypsin Substances 0.000 description 1
- 235000013976 turmeric Nutrition 0.000 description 1
- 238000009192 ultraviolet light therapy Methods 0.000 description 1
- 210000003708 urethra Anatomy 0.000 description 1
- 210000001215 vagina Anatomy 0.000 description 1
- 229940070710 valerate Drugs 0.000 description 1
- NQPDZGIKBAWPEJ-UHFFFAOYSA-N valeric acid Chemical compound CCCCC(O)=O NQPDZGIKBAWPEJ-UHFFFAOYSA-N 0.000 description 1
- MWOOGOJBHIARFG-UHFFFAOYSA-N vanillin Chemical compound COC1=CC(C=O)=CC=C1O MWOOGOJBHIARFG-UHFFFAOYSA-N 0.000 description 1
- FGQOOHJZONJGDT-UHFFFAOYSA-N vanillin Natural products COC1=CC(O)=CC(C=O)=C1 FGQOOHJZONJGDT-UHFFFAOYSA-N 0.000 description 1
- 235000012141 vanillin Nutrition 0.000 description 1
- 230000004462 vestibulo-ocular reflex Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 230000004393 visual impairment Effects 0.000 description 1
- 235000019166 vitamin D Nutrition 0.000 description 1
- 239000011710 vitamin D Substances 0.000 description 1
- 150000003710 vitamin D derivatives Chemical class 0.000 description 1
- 229940046008 vitamin d Drugs 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 230000029663 wound healing Effects 0.000 description 1
- 235000013618 yogurt Nutrition 0.000 description 1
- 229940068543 zelapar Drugs 0.000 description 1
- 239000011667 zinc carbonate Substances 0.000 description 1
- 235000004416 zinc carbonate Nutrition 0.000 description 1
- 229910000010 zinc carbonate Inorganic materials 0.000 description 1
- 229940043825 zinc carbonate Drugs 0.000 description 1
- NWONKYPBYAMBJT-UHFFFAOYSA-L zinc sulfate Chemical compound [Zn+2].[O-]S([O-])(=O)=O NWONKYPBYAMBJT-UHFFFAOYSA-L 0.000 description 1
- 229960001763 zinc sulfate Drugs 0.000 description 1
- 229910000368 zinc sulfate Inorganic materials 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/14—Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
- A61P25/16—Anti-Parkinson drugs
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/185—Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
- A61K31/19—Carboxylic acids, e.g. valproic acid
- A61K31/20—Carboxylic acids, e.g. valproic acid having a carboxyl group bound to a chain of seven or more carbon atoms, e.g. stearic, palmitic, arachidic acids
- A61K31/203—Retinoic acids ; Salts thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/41—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
- A61K31/4164—1,3-Diazoles
- A61K31/4174—Arylalkylimidazoles, e.g. oxymetazolin, naphazoline, miconazole
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/41—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
- A61K31/4196—1,2,4-Triazoles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/555—Heterocyclic compounds containing heavy metals, e.g. hemin, hematin, melarsoprol
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7042—Compounds having saccharide radicals and heterocyclic rings
- A61K31/7048—Compounds having saccharide radicals and heterocyclic rings having oxygen as a ring hetero atom, e.g. leucoglucosan, hesperidin, erythromycin, nystatin, digitoxin or digoxin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K33/00—Medicinal preparations containing inorganic active ingredients
- A61K33/14—Alkali metal chlorides; Alkaline earth metal chlorides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K45/00—Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
- A61K45/06—Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Veterinary Medicine (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Epidemiology (AREA)
- Engineering & Computer Science (AREA)
- Neurology (AREA)
- Neurosurgery (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biomedical Technology (AREA)
- Psychology (AREA)
- Molecular Biology (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Organic Chemistry (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
Provided herein are methods and compositions for treating, mitigating, or preventing Parkinson's disease by administration of an anti-malassezial agent.
Description
METHODS AND COMPOSITIONS FOR TREATING PARKINSON'S DISEASE
RELATED APPLICATIONS
This application claims the benefits of U.S. Provisional Application No.
62/433,324, filed on December 13, 2016, and U.S. Provisional Application No. 62/504,898, filed on May 11, 2017. The entire teachings of the above applications are incorporated herein by reference.
TECHNICAL FIELD
The present invention is directed to the fields of pharmaceutical science and clinical medicine. Various embodiments relate generally to methods and compositions for the prevention, mitigation, or treatment of Parkinson's disease.
SUMMARY OF THE INVENTION
Disclosed herein are methods and compositions for diagnosing, treating, mitigating, or preventing Parkinson's disease based on the unexpected discovery that Malassezia infection is a cause of Parkinson's disease. In particular, provided herein are methods and compositions for preventing, mitigating, or treating Parkinson's disease by administering to a subject in need thereof an effective amount of an anti-malassezial agent.
Also provided are methods and compositions for killing or inhibiting the growth of Malassezia fungi to treat, mitigate, or prevent Parkinson's disease.
In some embodiments, the anti-malassezial agent may be any substance that has a biocidal and/or biostatic activity for Malassezia fungi.
In some embodiments, the anti-malassezial agent is an antifungal compound selected from the group consisting of zinc pyrithione, ciclopirox olamine, a polyene (e.g., amphotericin B), an azole (e.g., ketoconazole, itraconazole, fluconazole, and voriconazole), an allylamine (e.g., terbinafine), a morpholine (e.g., amorolfine), a sulfonamide (e.g., sulfacetamide), a glucan synthesis inhibitor or any combination thereof The antifungal agent is preferably a lipase inhibitor. Preferably the lipase inhibitor is orlistat or cetilistat, or any combination thereof The antifungal compound may be in the form of a topical agent, an intranasal agent, an oral agent, a systemic agent, an antimetabolite and mixtures thereof In some embodiments, the anti-malassezial agent is a debridement compound, such as a wash solution. Preferably the debridement compound is a hypertonic saline solution.
In some embodiments, the anti-malassezial agent is an anti-inflammatory compound.
Preferably the anti-inflammatory agent is ibuprofen or betamethasone.
In some embodiments, the anti-malassezial agent is an antiseptic compound. In further embodiments, the antiseptic compound is a laundry composition.
In some embodiments, the anti-malassezial agent is a UV light therapy.
In one aspect, the present invention relates to pharmaceutical compositions for the treatment, mitigation, or prevention of Parkinson's disease comprising an anti-malassezial agent.
In another aspect, the present invention relates to methods for treatment, mitigation, or prevention of Parkinson's disease, comprising administering to a patient in need thereof a pharmaceutical composition of the invention. Some preferred embodiments comprise pharmaceutical compositions for treating Parkinson's disease, comprising a therapeutically effective amount of an anti-malassezial agent and a pharmaceutically acceptable carrier.
It is understood that aspects and embodiments of the invention described herein include "consisting" and/or "consisting essentially of' aspects and embodiments. Further aspects and embodiments of the invention are set forth below. These and other aspects will be readily apparent to the skilled artisan in light of disclosure as a whole.
The foregoing summary is illustrative only and is not intended to be in any way limiting. In addition to the illustrative aspects, embodiments, and features described above, further aspects, embodiments, and features will become apparent by reference to the drawings and the following detailed description.
BRIEF DESCRIPTION OF THE FIGURES
The foregoing and following information as well as other features of this disclosure will become more fully apparent from the following description and appended claims, taken in conjunction with the accompanying drawings. Understanding that these drawings depict only several embodiments in accordance with the disclosure and are, therefore, not to be considered limiting of its scope, the disclosure will be described with additional specificity and detail through use of the accompanying drawings.
RELATED APPLICATIONS
This application claims the benefits of U.S. Provisional Application No.
62/433,324, filed on December 13, 2016, and U.S. Provisional Application No. 62/504,898, filed on May 11, 2017. The entire teachings of the above applications are incorporated herein by reference.
TECHNICAL FIELD
The present invention is directed to the fields of pharmaceutical science and clinical medicine. Various embodiments relate generally to methods and compositions for the prevention, mitigation, or treatment of Parkinson's disease.
SUMMARY OF THE INVENTION
Disclosed herein are methods and compositions for diagnosing, treating, mitigating, or preventing Parkinson's disease based on the unexpected discovery that Malassezia infection is a cause of Parkinson's disease. In particular, provided herein are methods and compositions for preventing, mitigating, or treating Parkinson's disease by administering to a subject in need thereof an effective amount of an anti-malassezial agent.
Also provided are methods and compositions for killing or inhibiting the growth of Malassezia fungi to treat, mitigate, or prevent Parkinson's disease.
In some embodiments, the anti-malassezial agent may be any substance that has a biocidal and/or biostatic activity for Malassezia fungi.
In some embodiments, the anti-malassezial agent is an antifungal compound selected from the group consisting of zinc pyrithione, ciclopirox olamine, a polyene (e.g., amphotericin B), an azole (e.g., ketoconazole, itraconazole, fluconazole, and voriconazole), an allylamine (e.g., terbinafine), a morpholine (e.g., amorolfine), a sulfonamide (e.g., sulfacetamide), a glucan synthesis inhibitor or any combination thereof The antifungal agent is preferably a lipase inhibitor. Preferably the lipase inhibitor is orlistat or cetilistat, or any combination thereof The antifungal compound may be in the form of a topical agent, an intranasal agent, an oral agent, a systemic agent, an antimetabolite and mixtures thereof In some embodiments, the anti-malassezial agent is a debridement compound, such as a wash solution. Preferably the debridement compound is a hypertonic saline solution.
In some embodiments, the anti-malassezial agent is an anti-inflammatory compound.
Preferably the anti-inflammatory agent is ibuprofen or betamethasone.
In some embodiments, the anti-malassezial agent is an antiseptic compound. In further embodiments, the antiseptic compound is a laundry composition.
In some embodiments, the anti-malassezial agent is a UV light therapy.
In one aspect, the present invention relates to pharmaceutical compositions for the treatment, mitigation, or prevention of Parkinson's disease comprising an anti-malassezial agent.
In another aspect, the present invention relates to methods for treatment, mitigation, or prevention of Parkinson's disease, comprising administering to a patient in need thereof a pharmaceutical composition of the invention. Some preferred embodiments comprise pharmaceutical compositions for treating Parkinson's disease, comprising a therapeutically effective amount of an anti-malassezial agent and a pharmaceutically acceptable carrier.
It is understood that aspects and embodiments of the invention described herein include "consisting" and/or "consisting essentially of' aspects and embodiments. Further aspects and embodiments of the invention are set forth below. These and other aspects will be readily apparent to the skilled artisan in light of disclosure as a whole.
The foregoing summary is illustrative only and is not intended to be in any way limiting. In addition to the illustrative aspects, embodiments, and features described above, further aspects, embodiments, and features will become apparent by reference to the drawings and the following detailed description.
BRIEF DESCRIPTION OF THE FIGURES
The foregoing and following information as well as other features of this disclosure will become more fully apparent from the following description and appended claims, taken in conjunction with the accompanying drawings. Understanding that these drawings depict only several embodiments in accordance with the disclosure and are, therefore, not to be considered limiting of its scope, the disclosure will be described with additional specificity and detail through use of the accompanying drawings.
2 Figure 1 shows a graphical depiction of homology of leucine-rich repeats between Malassezia and the human LRRK2.
Figure 2 shows a graphical depiction of the Malassezial enzyme gene sequences for myxalamid polyketide synthase MxaB and epothilone polyketide synthase D.
Figure 3 shows a graphical depiction of the homology of polyketide synthetase genes between Malassezia and Beauveria.
Figure 4 Shows a graphical depiction of the phylogenetic tree of relative evolutionary branching among various fungi discussed in the present disclosure.
DETAILED DESCRIPTION OF THE INVENTION
Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which the present disclosure belongs.
It is understood that the present disclosure is not limited by the particular embodiments disclosed herein, and any methods, components, materials, etc., similar or equivalent to those described herein can be used in the testing or practice of embodiments of the present disclosure.
Where a range of values is disclosed herein, it is understood that numeric ranges are inclusive of the numbers defining the range and that each intervening value, to the tenth of the unit of the lower limit unless the context clearly dictates otherwise, between the upper and lower limits of that range is also specifically disclosed. It is also understood that each smaller range between any stated value or intervening value in a stated range and any other stated or intervening value in the stated range is encompassed within the present disclosure.
As used herein, the singular forms "a", "an", and "the" include plural referents unless the context clearly dictates otherwise. The term "and/or" includes any and all combinations of one or more of the associated listed items.
I. Scientific Discovery The present invention is based on the inventors surprising and unexpected discovery that Malassezia is a cause of Parkinson's disease.
While not wishing to be bound by theory it is believed that Malassezia produce brain penetrant mycotoxins that cause apoptosis and cell death of the nigral dopaminergic neurons (nigral melanocytes) located in the substantia nigra of the midbrain.
Reduction
Figure 2 shows a graphical depiction of the Malassezial enzyme gene sequences for myxalamid polyketide synthase MxaB and epothilone polyketide synthase D.
Figure 3 shows a graphical depiction of the homology of polyketide synthetase genes between Malassezia and Beauveria.
Figure 4 Shows a graphical depiction of the phylogenetic tree of relative evolutionary branching among various fungi discussed in the present disclosure.
DETAILED DESCRIPTION OF THE INVENTION
Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which the present disclosure belongs.
It is understood that the present disclosure is not limited by the particular embodiments disclosed herein, and any methods, components, materials, etc., similar or equivalent to those described herein can be used in the testing or practice of embodiments of the present disclosure.
Where a range of values is disclosed herein, it is understood that numeric ranges are inclusive of the numbers defining the range and that each intervening value, to the tenth of the unit of the lower limit unless the context clearly dictates otherwise, between the upper and lower limits of that range is also specifically disclosed. It is also understood that each smaller range between any stated value or intervening value in a stated range and any other stated or intervening value in the stated range is encompassed within the present disclosure.
As used herein, the singular forms "a", "an", and "the" include plural referents unless the context clearly dictates otherwise. The term "and/or" includes any and all combinations of one or more of the associated listed items.
I. Scientific Discovery The present invention is based on the inventors surprising and unexpected discovery that Malassezia is a cause of Parkinson's disease.
While not wishing to be bound by theory it is believed that Malassezia produce brain penetrant mycotoxins that cause apoptosis and cell death of the nigral dopaminergic neurons (nigral melanocytes) located in the substantia nigra of the midbrain.
Reduction
3 of these neurons is a known cause of attenuation in striatal dopamine efflux correlating positively with increased severity of Parkinson's disease. The inventors performed comparative genomic analyses of Malassezia species and other sources of human fungal infection. Careful examination of the results of their analyses led to their astonishing discovery that Malassezial enzymes that produce Malassezial brain-penetrant mycotoxins are encoded and expressed in the genomes of Malassezia known to infect the human skin (epidermis) as well as the human gastrointestinal tract (endodermis). For example, the genomes of Malassezia globosa, Malassezia pachyderma, and Malassezia sympodialis have been discovered by the inventors to each contain the genes for myxalamid polyketide synthase MxaB and epothilone polyketide synthase D
(Figure 2), enzymes that produce brain-penetrant mycotoxins epothilone D and myxalamid.
The brain-penetrant mycotoxin epothilone D destabilizes cellular microtubule function of neurons. Reduced microtubule stability in nigral neurons is known to be associated with Parkinson's disease. The brain-penetrant mycotoxin myxalamid inhibits respiratory electron transport chain function at mitochondrial complex 1. Inhibition of respiratory electron transport chain function at mitochondria complex 1 in nigral neurons is a known to be associated with Parkinson's disease. Malassezia produces and secretes malassezin, which is a brain-penetrant mycotoxin known to cause apoptosis and cell death in human primary epidermal melanocytes. Nigral melanocytes share the same embryological precursor origin (i.e., neural crest cells) as these epidermal melanocytes.
Parkinson's disease has a known positive correlation between severity of disease and cell death of the pigmented nigral neurons in the midbrain. Myxobacteria are known to produce and secrete mycotoxins that have human cell toxicity. For example, Sorangium cellulosum produces and secretes Ixabepilone, an epothilone analog that is commercially manufactured and sold under the brand name IXEMPRA by Bristol-Myers Squibb (New York, New York) for use as an anti-neoplastic drug (chemotherapy) for breast cancer cells Leucine-rich repeat kinase 2 (LRRK2) is an enzyme that in humans is encoded by the PARK8 gene and is a member of the leucine-rich-repeat kinase family of genes.
Variants of the human LRRK2 gene are associated with an increased risk of acquiring Parkinson's disease. People with pathogenic LRRK2 mutations (e.g., G20195, R1441G, Y1699C, R114C, R1441H, and I2020T) are at increased risk of acquiring Parkinson's disease as compared to the general population. The inventors have discovered that Malassezia genes encode homologous leucine-rich repeats in malassezial proteins as found in the human LRRK2 gene (Figure 1).
(Figure 2), enzymes that produce brain-penetrant mycotoxins epothilone D and myxalamid.
The brain-penetrant mycotoxin epothilone D destabilizes cellular microtubule function of neurons. Reduced microtubule stability in nigral neurons is known to be associated with Parkinson's disease. The brain-penetrant mycotoxin myxalamid inhibits respiratory electron transport chain function at mitochondrial complex 1. Inhibition of respiratory electron transport chain function at mitochondria complex 1 in nigral neurons is a known to be associated with Parkinson's disease. Malassezia produces and secretes malassezin, which is a brain-penetrant mycotoxin known to cause apoptosis and cell death in human primary epidermal melanocytes. Nigral melanocytes share the same embryological precursor origin (i.e., neural crest cells) as these epidermal melanocytes.
Parkinson's disease has a known positive correlation between severity of disease and cell death of the pigmented nigral neurons in the midbrain. Myxobacteria are known to produce and secrete mycotoxins that have human cell toxicity. For example, Sorangium cellulosum produces and secretes Ixabepilone, an epothilone analog that is commercially manufactured and sold under the brand name IXEMPRA by Bristol-Myers Squibb (New York, New York) for use as an anti-neoplastic drug (chemotherapy) for breast cancer cells Leucine-rich repeat kinase 2 (LRRK2) is an enzyme that in humans is encoded by the PARK8 gene and is a member of the leucine-rich-repeat kinase family of genes.
Variants of the human LRRK2 gene are associated with an increased risk of acquiring Parkinson's disease. People with pathogenic LRRK2 mutations (e.g., G20195, R1441G, Y1699C, R114C, R1441H, and I2020T) are at increased risk of acquiring Parkinson's disease as compared to the general population. The inventors have discovered that Malassezia genes encode homologous leucine-rich repeats in malassezial proteins as found in the human LRRK2 gene (Figure 1).
4 The inventors have discovered that entomopathogenic fungus Beauveria bassiana encodes polyketide synthetase enzymes that share homology with polyketide synthetase enzymes encoded in Malassezia globosa, Malassezia pachyderma (Figure 3) and Malassezia sympodialis genomes. Beauveria bassiana is known to infect insects and produces mycotoxins that enter the central nervous system of the insects to cause symptoms similar to Parkinson's disease, namely involuntary muscle contractions, prostration with tremors, and eventually paralysis followed by death.
The inventors have discovered that chiropteratopathogenic fungus Pseudogymnoascus destructans encodes polyketide synthetase enzymes that share homology with polyketide synthetase enzymes encoded in the Malassezia globosa genome. Pseudogymnoascus destructans is known to infect bats and produces mycotoxins that enter the central nervous system of the bats to cause symptoms similar to Parkinson's disease.
The inventors have discovered that cyanobacteria Lyngbya majuscula genes encoding polyketide synthetase enzymes that produce the mycotoxin curacin A
share homology with Malassezia genes encoding polyketide synthetase enzymes. Curacin A is known to interact with colchicine binding sites on tubulin, which inhibits microtubule polymerization, an essential process for cell division and proliferation of microtubules.
Curacin A has also been characterized as a potent antiproliferative cytotoxic compound with known anti-neoplastic activity for several human cell lines.
Seborrhea and seborrheic dermatitis are common early symptoms of Parkinson's disease. Accordingly, the Malassezia responsible for the seborrhea and seborrheic dermatitis may cause the susceptibility, onset, development or progression in the Parkinson's disease state and symptoms. Mycotoxins produced by Malassezia are known to cause the redness and scaling symptoms of seborrheic dermatitis. It has been discovered through clinical observation coupled with deductive reasoning that increased seborrhea and worsening seborrheic dermatitis in patients with Parkinson's disease has a significant positive correlation with higher frequency of relapse or acceleration in progression of active Parkinson's disease. Thereby, detecting the mycotoxins produced by microorganisms responsible for the seborrhea and seborrheic dermatitis can be used to detect the susceptibility, onset, development or progression in the Parkinson's disease state and symptoms. Accordingly, the mycotoxins responsible for the seborrhea and seborrheic dermatitis may cause the susceptibility, onset, development or progression in the Parkinson's disease state and symptoms.
The inventors have discovered that chiropteratopathogenic fungus Pseudogymnoascus destructans encodes polyketide synthetase enzymes that share homology with polyketide synthetase enzymes encoded in the Malassezia globosa genome. Pseudogymnoascus destructans is known to infect bats and produces mycotoxins that enter the central nervous system of the bats to cause symptoms similar to Parkinson's disease.
The inventors have discovered that cyanobacteria Lyngbya majuscula genes encoding polyketide synthetase enzymes that produce the mycotoxin curacin A
share homology with Malassezia genes encoding polyketide synthetase enzymes. Curacin A is known to interact with colchicine binding sites on tubulin, which inhibits microtubule polymerization, an essential process for cell division and proliferation of microtubules.
Curacin A has also been characterized as a potent antiproliferative cytotoxic compound with known anti-neoplastic activity for several human cell lines.
Seborrhea and seborrheic dermatitis are common early symptoms of Parkinson's disease. Accordingly, the Malassezia responsible for the seborrhea and seborrheic dermatitis may cause the susceptibility, onset, development or progression in the Parkinson's disease state and symptoms. Mycotoxins produced by Malassezia are known to cause the redness and scaling symptoms of seborrheic dermatitis. It has been discovered through clinical observation coupled with deductive reasoning that increased seborrhea and worsening seborrheic dermatitis in patients with Parkinson's disease has a significant positive correlation with higher frequency of relapse or acceleration in progression of active Parkinson's disease. Thereby, detecting the mycotoxins produced by microorganisms responsible for the seborrhea and seborrheic dermatitis can be used to detect the susceptibility, onset, development or progression in the Parkinson's disease state and symptoms. Accordingly, the mycotoxins responsible for the seborrhea and seborrheic dermatitis may cause the susceptibility, onset, development or progression in the Parkinson's disease state and symptoms.
5
6 Intranasal Malassezia infection is a point of entry for Malassezial brain penetrant mycotoxins to access the central nervous system through the olfactory system.
The presence of intranasal Malassezial infection correlates with olfactory dysfunction, such as decreased odor detection, identification, and discrimination, which is a common early symptom of Parkinson's disease.
II. Therapeutic Methods The present invention pertains, at least in part, to a method for treating a subject for Parkinson's disease by administering to the subject an effective amount of at least one compound or pharmaceutical composition of the invention. In one aspect, the compound(s) or pharmaceutical composition(s) may also be useful for treating a Malassezia infection. Accordingly, the present invention provides for simultaneously treating Parkinson's disease and Malassezia infection, which includes prophylactic measures to inhibit susceptibility and onset as well as curative measures to reduce or cure an ongoing or established Parkinson's disease or Malassezia infection.
The present invention provides a method for the prevention and/or treatment and/or mitigation of Parkinson's disease in a subject in need thereof including the step of administering to the subject therapeutically effective amount of a compound or pharmaceutical composition, comprising an anti-malassezial agent. Such a subject in need of a compound or pharmaceutical composition comprising an anti-malassezial agent may suffer from motor symptoms and dysfunctions that include one or more of bradykinesia, rest tremor (such as pill-rolling tremor), rigidity, postural instability, gait difficult (e.g., shuffling gait), hypomimia (masked facies), hypokinetic dysarthria, hypophonia, palilalia, dysphagia, sialorrhea, decreased spontaneous eye blink rate, eyelid opening apraxia, hypometric saccades, impaired vestibuloocular reflex, impaired upward gaze and convergence, respiratory distress, micrographia, incontinence, restless legs syndrome, sleep apnea, dystonia, myoclonus, forward-flexed posture, camptocormia (bent spine syndrome), Pisa syndrome, kyphosis, scoliosis, psychomotor retardation, freezing (motor block), and festination. Such patients in need of a compound or pharmaceutical composition comprising an anti-malassezial agent may also suffer from non-motor symptoms or dysfunctions that include one or more of cognitive and/or sensory dysfunction or impairment that include one or more of subcortical dementia, Lewy body dementia, psychomotor retardation, memory difficulty, learning and executive dysfunction (e.g., attention deficit disorder), language impairment, altered personality, impulse control dysfunction (e.g. obsessive behaviors), psychosis, hallucinations, delusions, depression, anxiety, social withdrawal, abulia, sleep disturbances (e.g., insomnia), fatigue, nausea, visual-spatial disturbances, blurred vision, visual contrast insensitivity, vision loss, autonomic dysfunction, olfactory dysfunction (e.g., anosmia), gastrointestinal dysfunction (e.g., constipation), sensory pain, sensory disturbances, dermatological dysfunction (e.g., seborrhea), seborrheic dermatitis (e.g., dandruff), and rhinorrhea.
In some embodiments, administration of the compound or pharmaceutical composition comprising an anti-malassezial agent treats one or more of the motor and/or non-motor symptoms of PD.
In some embodiments, subject improvement is measured by methods known in the art (e.g., ADAS-cog, MDRS, MoCA, CDR, FAB, D-KEFS VF, HVLT, TPCT, MMSE, QTCS, VMI, BTA, NPI, CSDD, BPRS, ADCS-ADL, QOL-AD, DAD, SE-ADL, PDQ-39, UPDRS, MDS-UPDRS, UPDRS-ADL, CGI, ADC-CGIC, CIBC-PLUS, and ZBD
and the response is statistically significant (e.g. test-retest reliability, Student's t-test, or the like).
In some embodiments, the improvement (e.g., amelioration or mitigation of Parkinson's disease and/or symptoms of Parkinson's disease) is measured with a subject's personal self-assessment and/or with the improvement measured by of the subject's caregiver or caregivers and/or with the improvement measured by the subject's healthcare provider or providers.
As used herein, the terms "subject" and "patient" are used interchangeably and include humans capable of suffering from, suffering from, or having symptoms of Parkinson's disease. For example, a subject can be an otherwise healthy individual who is at increased risk of acquiring Parkinson's disease because the person's genome contains a copy of the rs34637584(A) allele, a single nucleotide polymorphism (SNP) commonly referred to as the G20195 variant that is a well-known Parkinson's disease associated mutation rarely found in healthy, elderly people without Parkinson's disease and found with higher frequency in people with both the sporadic and familial types of Parkinson's disease. A person with a copy of the allele possesses a greatly increased chance of acquiring Parkinson's disease. "G20195" refers to the change from glycine (encoded by rs34637584(G) allele) to serine (encoded by rs34637584(A) allele) at position 2019 of the leucine-rich repeat kinase 2 (LRRK2) protein (also known as dardarin), an enzyme that in humans is encoded by the PARK8 gene and is a member of the leucine-rich repeat kinase family of proteins.
The presence of intranasal Malassezial infection correlates with olfactory dysfunction, such as decreased odor detection, identification, and discrimination, which is a common early symptom of Parkinson's disease.
II. Therapeutic Methods The present invention pertains, at least in part, to a method for treating a subject for Parkinson's disease by administering to the subject an effective amount of at least one compound or pharmaceutical composition of the invention. In one aspect, the compound(s) or pharmaceutical composition(s) may also be useful for treating a Malassezia infection. Accordingly, the present invention provides for simultaneously treating Parkinson's disease and Malassezia infection, which includes prophylactic measures to inhibit susceptibility and onset as well as curative measures to reduce or cure an ongoing or established Parkinson's disease or Malassezia infection.
The present invention provides a method for the prevention and/or treatment and/or mitigation of Parkinson's disease in a subject in need thereof including the step of administering to the subject therapeutically effective amount of a compound or pharmaceutical composition, comprising an anti-malassezial agent. Such a subject in need of a compound or pharmaceutical composition comprising an anti-malassezial agent may suffer from motor symptoms and dysfunctions that include one or more of bradykinesia, rest tremor (such as pill-rolling tremor), rigidity, postural instability, gait difficult (e.g., shuffling gait), hypomimia (masked facies), hypokinetic dysarthria, hypophonia, palilalia, dysphagia, sialorrhea, decreased spontaneous eye blink rate, eyelid opening apraxia, hypometric saccades, impaired vestibuloocular reflex, impaired upward gaze and convergence, respiratory distress, micrographia, incontinence, restless legs syndrome, sleep apnea, dystonia, myoclonus, forward-flexed posture, camptocormia (bent spine syndrome), Pisa syndrome, kyphosis, scoliosis, psychomotor retardation, freezing (motor block), and festination. Such patients in need of a compound or pharmaceutical composition comprising an anti-malassezial agent may also suffer from non-motor symptoms or dysfunctions that include one or more of cognitive and/or sensory dysfunction or impairment that include one or more of subcortical dementia, Lewy body dementia, psychomotor retardation, memory difficulty, learning and executive dysfunction (e.g., attention deficit disorder), language impairment, altered personality, impulse control dysfunction (e.g. obsessive behaviors), psychosis, hallucinations, delusions, depression, anxiety, social withdrawal, abulia, sleep disturbances (e.g., insomnia), fatigue, nausea, visual-spatial disturbances, blurred vision, visual contrast insensitivity, vision loss, autonomic dysfunction, olfactory dysfunction (e.g., anosmia), gastrointestinal dysfunction (e.g., constipation), sensory pain, sensory disturbances, dermatological dysfunction (e.g., seborrhea), seborrheic dermatitis (e.g., dandruff), and rhinorrhea.
In some embodiments, administration of the compound or pharmaceutical composition comprising an anti-malassezial agent treats one or more of the motor and/or non-motor symptoms of PD.
In some embodiments, subject improvement is measured by methods known in the art (e.g., ADAS-cog, MDRS, MoCA, CDR, FAB, D-KEFS VF, HVLT, TPCT, MMSE, QTCS, VMI, BTA, NPI, CSDD, BPRS, ADCS-ADL, QOL-AD, DAD, SE-ADL, PDQ-39, UPDRS, MDS-UPDRS, UPDRS-ADL, CGI, ADC-CGIC, CIBC-PLUS, and ZBD
and the response is statistically significant (e.g. test-retest reliability, Student's t-test, or the like).
In some embodiments, the improvement (e.g., amelioration or mitigation of Parkinson's disease and/or symptoms of Parkinson's disease) is measured with a subject's personal self-assessment and/or with the improvement measured by of the subject's caregiver or caregivers and/or with the improvement measured by the subject's healthcare provider or providers.
As used herein, the terms "subject" and "patient" are used interchangeably and include humans capable of suffering from, suffering from, or having symptoms of Parkinson's disease. For example, a subject can be an otherwise healthy individual who is at increased risk of acquiring Parkinson's disease because the person's genome contains a copy of the rs34637584(A) allele, a single nucleotide polymorphism (SNP) commonly referred to as the G20195 variant that is a well-known Parkinson's disease associated mutation rarely found in healthy, elderly people without Parkinson's disease and found with higher frequency in people with both the sporadic and familial types of Parkinson's disease. A person with a copy of the allele possesses a greatly increased chance of acquiring Parkinson's disease. "G20195" refers to the change from glycine (encoded by rs34637584(G) allele) to serine (encoded by rs34637584(A) allele) at position 2019 of the leucine-rich repeat kinase 2 (LRRK2) protein (also known as dardarin), an enzyme that in humans is encoded by the PARK8 gene and is a member of the leucine-rich repeat kinase family of proteins.
7 Examples of other known Parkinson's disease associated mutations include variants rs112176450, rs35095275, rs34778348, rs3892097, rs287235, rs838552, rs283413, rs11868035, rs1057217, and rs6812193. In some embodiments, the invention provides methods of prophylactic treatment of Parkinson's disease by administering an effective amount of an anti-malassezial agent to a person with one or more mutations associated with increased risk of Parkinson's disease who has not acquired Parkinson's disease.
As used herein, the term "treat" or "treated" or "treating" or "treatment"
refer to any type of action that imparts a modulating effect, which, for example, can be a beneficial effect, to a subject afflicted with a disorder, disease, or condition (e.g., Parkinson's disease), including improvement in the condition of the subject (e.g., in one or more symptoms), delay or reduction in the progression of the condition, and/or change in clinical parameters, disease or illness, etc., as would be well known in the art. The term "treatment" includes therapeutic and/or prophylactic treatment of Parkinson's disease, the diminishment or alleviation of at least one symptom associated with Parkinson's disease (e.g., bradykinesia, rest tremor, rigidity, insomnia, dementia, abulia, anosmia, and sialorrhea), and the eradication of one or more symptoms of Parkinson's disease.
In some embodiments, treatment can be a remission or cure of the condition of having Parkinson's disease. In one aspect, such treatment can provide simultaneous remission or cure for a Malassezial infection.
In some embodiments, treatment includes the arresting or slowing of progression of Parkinson's disease. In further embodiments, the stopping or slowing of the progression Parkinson's disease can be a decreased rate of increase in symptoms. The decreased rate of increase in symptoms can be measured, for example, by the Movement Disorder Society - Unified Parkinson's Disease Rating Scale (MDS-UPDRS) scores over time.
The MDS-UPDRS is a commonly used clinical neurological rating scale that quantitatively measures longitudinal course of Parkinson's disease severity.
As used herein, "prevent" or "prevented" or "preventing" or "prevention" refer to prevention or delay of the onset of a disorder, disease, or condition (e.g., Parkinson's disease) and/or a decrease in the symptoms of Parkinson's disease in a subject relative to the symptoms of Parkinson's disease that would develop in the absence of the methods of the invention. The prevention can be complete, for example, the total absence of Parkinson's disease in a subject. The prevention can also be partial, such that the Parkinson's disease in a subject has reduced symptoms from that which would have occurred without the present invention. The terms "prevention", "prophylactic
As used herein, the term "treat" or "treated" or "treating" or "treatment"
refer to any type of action that imparts a modulating effect, which, for example, can be a beneficial effect, to a subject afflicted with a disorder, disease, or condition (e.g., Parkinson's disease), including improvement in the condition of the subject (e.g., in one or more symptoms), delay or reduction in the progression of the condition, and/or change in clinical parameters, disease or illness, etc., as would be well known in the art. The term "treatment" includes therapeutic and/or prophylactic treatment of Parkinson's disease, the diminishment or alleviation of at least one symptom associated with Parkinson's disease (e.g., bradykinesia, rest tremor, rigidity, insomnia, dementia, abulia, anosmia, and sialorrhea), and the eradication of one or more symptoms of Parkinson's disease.
In some embodiments, treatment can be a remission or cure of the condition of having Parkinson's disease. In one aspect, such treatment can provide simultaneous remission or cure for a Malassezial infection.
In some embodiments, treatment includes the arresting or slowing of progression of Parkinson's disease. In further embodiments, the stopping or slowing of the progression Parkinson's disease can be a decreased rate of increase in symptoms. The decreased rate of increase in symptoms can be measured, for example, by the Movement Disorder Society - Unified Parkinson's Disease Rating Scale (MDS-UPDRS) scores over time.
The MDS-UPDRS is a commonly used clinical neurological rating scale that quantitatively measures longitudinal course of Parkinson's disease severity.
As used herein, "prevent" or "prevented" or "preventing" or "prevention" refer to prevention or delay of the onset of a disorder, disease, or condition (e.g., Parkinson's disease) and/or a decrease in the symptoms of Parkinson's disease in a subject relative to the symptoms of Parkinson's disease that would develop in the absence of the methods of the invention. The prevention can be complete, for example, the total absence of Parkinson's disease in a subject. The prevention can also be partial, such that the Parkinson's disease in a subject has reduced symptoms from that which would have occurred without the present invention. The terms "prevention", "prophylactic
8 treatment", and "prophylaxis" may be used interchangeable and are intended to refer to prevention.
In some embodiments, the prophylactic treatment of Parkinson's disease in a subject comprises applying to the subject a composition comprising an anti-malassezial agent effective to prevent Malassezia fungi from infecting the subject, and/or to inhibit and/or kill a Malassezia fungi infection, so as to protect the subject from acquiring Parkinson's disease.
In some embodiments, treating Parkinson's disease may include a preceding step of identifying a subject as being infected, suspected of being infected, or at risk of infection, with Malassezia fungi.
In some embodiments, treating Parkinson's disease may include a preceding step of diagnosing a subject as being infected or at risk of infection, with a Malassezia fungi.
In some embodiments, treating Parkinson's disease may include a preceding step of identifying a site of a subject (e.g., the human nose cavity) as being colonized, suspected of being colonized, or at risk of colonization, with a Malassezia fungi. As used herein, "colonization" is the presence or establishment of a fungus organism or population of fungi at a particular site or location (e.g., the scalp) and/or the expansion of the numbers of the fungus organism by replication or recruitment of additional fungi.
As used herein, the term "infection" is encompassed by the term "colonization"
and includes disease associated colonization and/or undesirable colonization.
In some embodiments the treatment, mitigation, or prevention for Parkinson's disease in a subject in need thereof comprises physical removal or reduction (e.g.
debridement) of the Malassezia infection.
The physical removal of Malassezia at the location of infection can be carried out with any suitable surgical, mechanical or chemical means. In some embodiments, the means can be the use of a liquid, foam, gel, gel-solid, semi-solid compositions or gas applied at pressure to the location undergoing therapy. Following complete, partial, or attempted infection removal, the location may be contacted with an anti-malassezial agent. A composition used in the physical removal of the Malassezial infection or used as a wash solution before, during or after the removal may contain an anti-malassezial agent. Accordingly, some embodiments provide a debridement composition, for use in the treatments and methods of the invention. Such a debridement composition will typically be an aqueous sterile solution, and may additionally contain one or more abrasives (e.g., calcium carbonate, hydrated silica, hydrated aluminum oxide), detergents
In some embodiments, the prophylactic treatment of Parkinson's disease in a subject comprises applying to the subject a composition comprising an anti-malassezial agent effective to prevent Malassezia fungi from infecting the subject, and/or to inhibit and/or kill a Malassezia fungi infection, so as to protect the subject from acquiring Parkinson's disease.
In some embodiments, treating Parkinson's disease may include a preceding step of identifying a subject as being infected, suspected of being infected, or at risk of infection, with Malassezia fungi.
In some embodiments, treating Parkinson's disease may include a preceding step of diagnosing a subject as being infected or at risk of infection, with a Malassezia fungi.
In some embodiments, treating Parkinson's disease may include a preceding step of identifying a site of a subject (e.g., the human nose cavity) as being colonized, suspected of being colonized, or at risk of colonization, with a Malassezia fungi. As used herein, "colonization" is the presence or establishment of a fungus organism or population of fungi at a particular site or location (e.g., the scalp) and/or the expansion of the numbers of the fungus organism by replication or recruitment of additional fungi.
As used herein, the term "infection" is encompassed by the term "colonization"
and includes disease associated colonization and/or undesirable colonization.
In some embodiments the treatment, mitigation, or prevention for Parkinson's disease in a subject in need thereof comprises physical removal or reduction (e.g.
debridement) of the Malassezia infection.
The physical removal of Malassezia at the location of infection can be carried out with any suitable surgical, mechanical or chemical means. In some embodiments, the means can be the use of a liquid, foam, gel, gel-solid, semi-solid compositions or gas applied at pressure to the location undergoing therapy. Following complete, partial, or attempted infection removal, the location may be contacted with an anti-malassezial agent. A composition used in the physical removal of the Malassezial infection or used as a wash solution before, during or after the removal may contain an anti-malassezial agent. Accordingly, some embodiments provide a debridement composition, for use in the treatments and methods of the invention. Such a debridement composition will typically be an aqueous sterile solution, and may additionally contain one or more abrasives (e.g., calcium carbonate, hydrated silica, hydrated aluminum oxide), detergents
9 (e.g., nonoxyno1-9, castile soap), and/or proteolytic enzymes (e.g.
collagenase, elastase, pepsin, and trypsin).
In some embodiments, the debridement composition is an aqueous solution comprising a mixture of non-iodized sodium chloride and purified or filtered water warmed to about 98 degrees Fahrenheit (37 degrees Celsius). The aqueous solution may be hypertonic (e.g., 3% sodium chloride), isotonic (e.g., 0.9% sodium chloride) or hypotonic (e.g., 0.65% sodium chloride). The aqueous solution may have other components including, for example, pH modifiers, buffers (e.g., sodium bicarbonate), local anesthetic agents, preservatives, flavoring agents, coloring agents, agents that promote wound healing, agents that stop bleeding and/or promote clot formation, and other therapeutic and non-therapeutic components.
The term "administered," "administering" or "administration" includes routes of administration which allow the anti-malassezial agents to perform their intended function(s) of preventing, mitigating, or treating Parkinson disease in a subject.
Examples of routes of administration include parenteral (e.g., subcutaneous, intramuscular, intraorbital, intracapsular, intraspinal, intrasternal, intravenous, intradermal, intra-aurally, intraperitoneal, intraportal, intra-arterial, intrathecal, transmucosal, intra-articular, and intrapleural,), transdermal, topical, epidural, and mucosal injection or infusion, as well as oral, intranasal, inhalation, insufflation, pulmonary, and rectal administration Examples of preferred routes of administration which may be used include injection, topical, oral, intranasal, intra-aural, subcutaneous, intravenous, inhalation and transdermal.
In some embodiments, the anti-malassezial agent is administered in combination with a pharmaceutically acceptable carrier. Examples of such carriers include those suitable for injection, topical, oral, intranasal, subcutaneous, intravenous, inhalation and/or transdermal administration.
Depending on the route of administration, an anti-malassezial agent may be coated with or contained within a material to protect it from natural conditions which may detrimentally affect the ability of the anti-malassezial agent to perform its intended function. For example, a sustained-release formulation may be designed to release the one or more anti-malassezial agents in a targeted part of the intestinal tract, mucosa (e.g., nasal passages), scalp, or respiratory tract, possibly over a period of time.
The administration of the anti-malassezial agent is done at dosages and for periods of time effective to prevent, mitigate, or treat Parkinson's disease or to reduce or obviate the risk of Parkinson's disease. In some embodiments, the daily dosage of the anti-malassezial agent is about 50 mg, 100 mg, 150 mg, 200 mg, 250 mg, 300 mg, 350 mg, 400 mg, or higher. In a preferred embodiment the anti-malassezial agent is fluconazole and the daily dosage is 100 or 200 mg per day. In other embodiments, the anti-malassezial agent is administered daily for a period of at least four weeks, three months, at least four months, at least five months, at least six months, or longer. In a more preferred embodiment, the anti-malassezial agent is fluconazole, the daily dosage is 100 mg or 200 mg per day, and the period of administration is at least 4 weeks, two months, or three months.
In other embodiments, the anti-malassezial agent is given once a week for at least three, four, eight, twelve, or more weeks. In a preferred embodiment, the anti-malassezial agent is fluconazole and is administered at 300 mg once weekly for at least three, four or eight weeks. In a preferred embodiment the daily or weekly dosages of the anti-malassezial agent is administered orally. In a more preferred embodiment, fluconazole is administered orally at a daily dosage of 100 mg or 200 mg for at least four weeks, or at a weekly oral dosage of 300 mg for at least three, four or eight weeks. Dosage regimes may be adjusted for purposes of improving the therapeutic or prophylactic response of the anti-malassezial agent. For example, several divided doses may be administered daily or the dose may be proportionally reduced as indicated by the exigencies of the therapeutic situation. In one embodiment, the first dose of the anti-malassezial agent given on day one of treatment is about 100 mg, 200 mg, 300 mg, 400 mg, 500 mg or higher, followed by a daily dose of about 50 mg, 100 mg, 150 mg, 200 mg, 250 mg, 300 mg, 350 mg, 400 mg, or higher for at least three months. In a preferred embodiment, the anti-malassezial agent is fluconazole, the starting dosage on day one of treatment is 400 mg given orally, the subsequent daily dosage is 200 mg per day given orally, and the period of administration is at least three months. Suitable pharmaceutical vehicles or dosage forms for injectable compositions, implants, and systemic administration are known.
The anti-malassezial agent may be administered intra-nasally and can be formulated into a variety of intranasal administrable compositions of the invention, such as washes, foams, gels, powders, and the like.
In some embodiments, the intranasal administration comprises irrigating the nasal passages with an anti-malassezial agent. In some embodiments, the anti-malassezial agent is administered to a patient by exposing the deeper reaches of the nasal cavity to effective amounts of an anti-malassezial agent, orally (e.g., gargling with an anti-malassezial agent formulated as a mouthwash), by inhalation (including nasal inhalation) and/or by nasal spray or drops.
The anti-malassezial agent may be administered in the intra-aurally (i.e., the ear canal) and can be formulated into a variety of intra-aural administrable compositions of the invention, such as washes, foams, gels, powders, and the like.
In some embodiments, the intra-aural administration comprises irrigating the ear canal with an anti-malassezial agent. In some embodiments, the anti-malassezial agent is administered to a patient by exposing the deeper reaches of the ear canal to effective amounts of an anti-malassezial agent, via swab stick application (e.g., Q-Tip containing an anti-malassezial agent formulated as a powder or gel), by ear wick (e.g., an ear wick impregnated with clotrimazole cream inserted into ear of patient by a physician in clinic and changed every third day for nine days), and/or by aural spray or drops. In some embodiments, the anti-malassezial agent is administered to a patient in conjunction with a drying agent. In some embodiments, the anti-malassezial agent is administered to a patient in conjunction with debridement of ear wax such as, for example, mechanical suctioning of the ear canal and/or application of Burow's solution or 5%
aluminum acetate solution.
In some embodiments, some examples of drops for use in treating Malassezia present in the ear include clotrimazole (e.g., in a 1 percent solution) or flumetasone pivalate (e.g.
in a 0.02 percent solution) plus clioquinol (e.g., in a I percent solution).
In some embodiments, an example of anti-malassezial cream for use in treating Malassezia present in the ear includes clotrimazole 1 percent cream. In some embodiments, the cream formulation suitable for treating Malassezia present in the ear is comprised of an anti-malassezial antifungal agent combined with bonzyl alcohol, cetostearyi alcohol, cowl esters wax, 2-octy1dodecanol, poiysorbate 60, purified water, and/or sorbitan ntonostearate.
In some embodiments, an anti-malassezial agent is administered to a patient by a liquid stream lavage (also referred to as a "neti pot"). In this approach, the anti-malassezial agent formulated as a solution is fed by gravity or slight pressure into one nostril and the composition exits the other nostril. An artificial pressure may also be used to feed the solution. An example of a device that creates artificial pressure to feed the solution is a pulsating irrigation device. An example of a pulsating irrigation device is the Grossan HydroPulse manufactured by Hydro Med, Inc. (Los Angeles, California).
In some embodiments, a water vapor (mist) and/or other vapor based composition is administered into the nose and onto the nasal sinus and/or contiguous/adjacent nasal structures (e.g., olfactory fossa, olfactory bulb, and cribriform plate).
Some examples of descriptions of intranasal administration suitable for antifungal compounds and pharmaceutical formulations thereof are disclosed in U.S., Pat.
No.
6,291,500 (to Ponikau) and U.S., Pat. No. 6,647,980 (to Gizurarson), which are incorporated herein by reference in their entirety.
The anti-malassezial agent may be administered topically to the skin and can be formulated into a variety of topically administrable compositions, such as lotions, solutions, suspensions, shampoos, foams, gels or ointments.
In some embodiments, the anti-malassezial agent may be administered in combination with a medication used to treat the symptoms of Parkinson's disease. The medication may be any medication known to the art to treat the symptoms of Parkinson's disease and is preferably selected from the group consisting of carbidopa-levodopa (e.g., Duopa), pramipexole (e.g., Mirapex), ropinirole (e.g., Requip) and rotigotine (e.g.
Neupro), apomorphine (e.g., Apokyn), selegiline (e.g., Zelapar), rasagiline (e.g., Azilect), entacapone (e.g., Comtan), tolcapone, bromocriptine, benztropine (e.g., Cogentin), trihexyphenidyl, and amantadine.
In some embodiments, the co-administration of the anti-malassezial agent with another compound includes administration of the anti-malassezial agent first, followed by the compound and administration of the compound.
In some embodiments, the co-administration of the anti-malassezial agent with another compound includes administration of the compound first, followed by the anti-malassezial agent.
In some embodiments, the co-administration of the anti-malassezial agent with another compound includes administration of the anti-malassezial agent at the same time as the other compound.
When used herein, the term "therapeutically effective amount" or "effective amount"
includes an amount of the therapeutic or treatment composition that provides a prophylactic or therapeutic benefit in the treatment, prevention, or management of a disease or a symptom of a disease. The therapeutically effective amount may treat a disease or condition, a symptom of disease, or a predisposition toward a disease, with the purpose to cure, heal, alleviate, relieve, alter, remedy, ameliorate, improve, or affect the disease, the symptoms of disease, or the predisposition toward disease. The term "therapeutically effective amount" or "effective amount" of the anti-malassezial agent includes an amount of the anti-malassezial agent that is sufficient in treating, mitigating, or preventing Parkinson's disease. Alternatively an "effective amount" of the anti-malassezial agent means an amount of the anti-malassezial agent to be administered necessary to treat or prevent a disease or disorder mediated by deficiency in nigral dopaminergic neurons. Alternatively "effective amount" of the anti-malassezial agent means the amount necessary to improve cognitive and/or motor function in a subject, or reduce a decline in cognitive and/or motor function. Alternatively, "effective amount" of the anti-malassezial agent is the amount of the anti-malassezial agent required to prevent dopaminergic neuronal cell death in the substantia nigra. Alternatively, "effective amount" is the amount of the anti-malassezial agent with sufficient biostatic or biocidal activity against Malassezia infection to diminish or alleviate a symptom of Parkinson's disease.
A therapeutically effective amount can be readily determined on an individual basis and will be based, in part, on the severity of Malassezia infection and the activity of the specific anti-malassezial agent. Thus, a therapeutically effective amount of an anti-malassezial agent can be determined by one of ordinary skill in the art using no more than routine experimentation in clinical management of a subject. For example, the specific amount that is therapeutically effective may be readily determined by ordinary medical practitioner, and may vary depending on factors known in the art, such as, e.g.
the type and location of infection, the patient's history (including genetic and medical history), sex, age, the patient's family history (including genetic and medical history), the patient's history of previous treatment modalities of Parkinson's disease and/or Malassezia infection, the patient's history of progression of Parkinson's disease, the stage of Parkinson's disease, genetic risk of Parkinson's disease, and the current administration of other therapeutic agents. Another factor influencing clinical management of a subject is the patient's side effect profile history. For example, previous gastro-intestinal (GI) upset and/or elevated liver enzyme levels (e.g., Alanine transaminase (ALT) and Aspartate transaminase (AST)) in relation to a patient's previous antifungal compound use may influence the determination of a specific treatment regimen of a subject in need of treatment, mitigation, or prevention of Parkinson's disease.
The dosage ranges for the administration of are those that produce the desired effect.
Generally, the dosage will vary with the age, weight, condition, and sex of the patient, and the extent of disease. A person of ordinary skill in the art, given the teachings of the present specification. may readily determine suitable dosage ranges.
In some embodiments, a therapeutically effective amount of the anti-malassezial agent includes a precise dosage level determined by an attending physician or other health care provider and will depend upon well-known factors, including route of administration, and the age, body weight, sex, concomitant therapies, patient medical history including previous drug tolerances, general health of the patient; the nature, severity and clinical stage of Malassezia infection, and/or other clinical dosing factors known in the art.
III. Anti-Malassezial Agents As used herein, the term "anti-malassezial agent" is any substance that has a significant biocidal and/or biostatic activity against Malassezia fungi for use in the treatment, mitigation, or prevention of Parkinson's disease. In some embodiments, the anti-malassezial agent inhibits the growth of one or more Malassezia organisms in a subject receiving said agent. In some embodiments, the anti-malassezial agent kills one or more Malassezia organisms in a subject receiving said agent.
In some embodiments, the anti-malassezial agent is a substance that that has a biocidal and/or biostatic activity for Malassezia fungi. In further embodiments, the anti-malassezial agent is a substance that that has a biocidal and/or biostatic activity that is relatively specific and selective for Malassezia fungi.
In some embodiments, anti-malassezial comprise anti-fungal compounds that have biocidal and/or biostatic activity for Malassezia fungi.
Examples of anti-fungal compounds include polyene antifungal drugs (e.g.
amphotericin B, natamycin, rimocidin, nystatin, candicidin, hamycin, filipin, perimycin), imidazole antifungals (e.g., miconazole, ketoconazole, climbazole, clotrimazole, econazole, enilconazole, omoconazole, bifonazole, butoconazole, fenticonazole, isoconazole, lanoconazole, luliconazole, oxiconazole, sertaconazole, sulconazole, tioconazole), triazole antifungals (e.g., fluconazole, fosfluconazole, itraconazole, isavuconazole, ravuconazole, posaconazole, voriconazole, terconazole, albaconazole), thiazole antifungals (e.g., abafungin), allylamine antifungals (e.g.
terbinafine, naftifine, butenafine, amorolfine), echinocandin antifungals (e.g. anidulafungin, caspofungin, micafungin), hydroxypyridones (e.g., ciclopirox, piroctone olamine), tolnaftate, chlovalicin, ovalicin, fumagillin, sulfur, lithium gluconate, lithium succinate, zinc carbonate, polytar (e.g., coal tar), a thiocarbamate (e.g., tolnaftate), Whitfields ointment, and zinc pyrithione.
Preferred anti-fungal compounds include lipase inhibitors. Preferred lipase inhibitors include, but are not limited to, orlistat and cetilistat. Preferably, lipase inhibitors are topically administered to a patient to treat disease in accordance with the invention.
In some embodiments, amphotericin B is formulated as a liposomal amphotericin B, amphotericin B colloidal dispersion, amphotericin B lipid complex, deoxycholate amphotericin B, or amphotericin B oral suspension.
In some embodiments, the anti-malassezial agent may be an antifungal drug that is administered via systemic routes of administration (e.g., amphotericin B, ketoconazole, fluconazole, fosfluconazole, itraconazole, posaconazole, voriconazole, and terbinafine).
In some embodiments, the anti-malassezial agents will be an antifungal drug that is commonly administered as a non-systemic treatment (e.g., a topical treatment).
Representative examples of such antifungal drugs include amphotericin B, natamycin, nystatin, candicin, hamycin, perimycin, miconazole, ketoconazole, clotrimazole, econazole, omoconazole, bifonazole, butoconazole, fenticonazole, isoconazole, oxiconazole, sertaconazole, sulconazole, tioconazole, fluconazole, fosfluconazole, isavuconazole, ravuconazole, terconazole, albaconazole, abafungin, terbinafine, naftifine, butenafine, amorolfine, tolnaftate, ciclopirox, zinc pyrithione; sulfur;
salicylic acid, benzoic acid, coal tar (polytar), and tretinoic acid.
Examples of preferred anti-malassezial agents that are antifungal drugs, useful in the present invention, include ciclopirox olamine, zinc pyrithione, amphotericin B, nystatin, ketoconazole, miconazole, fluconazole, itraconazole, and voriconazole.
The antifungal drug may be used in any convenient form, including any pharmaceutically acceptable salt or hydrate. References to disclosed antifungal drugs extends to any analogs thereof, compounds which mimic their activity, and/or isomeric form in which the compound may exist as well as mixtures of two or more isomers, e.g.
racemic mixtures. The invention contemplates compounds that inhibit fungal growth through an increase in copper at the location of the Malassezia infection.
In accordance with the invention, anti-inflammatory compounds and antiseptic compounds may also be considered to be anti-malassezial agents to the extent that these compounds have biocidal and/or biostatic activity for Malassezia fungi and to the extent that administration of these compounds is not deleterious to the subject, even though anti-inflammatory compounds and antiseptic compounds have a broad spectrum of biocidal and/or biostatic activity that do not display appreciable specificity or selectivity for Malassezia fungi over other cell types (e.g. bacteria, archaea, protists, plants, and animals).
In some embodiments, the antiseptic compound mitigates, treats, or prevents Parkinson's disease by decreasing or preventing Malassezia from coming in contact with the subject in need of mitigation, treatment, or prevention of Parkinson's disease.
In some embodiments, the antiseptic compound is formulated as a laundry composition comprising at least one antiseptic compound, the composition preferably being a laundry detergent or laundry conditioner. In some preferred embodiments, the antiseptic compound of the laundry composition comprises a bleach solution.
The varieties of anti-fungal compounds encompassed by the group of laundry compositions are well-known to those skilled in the art. For example, antifungal compounds for use in laundry compositions useful in the present invention and formulations thereof are disclosed in U.S. Pat. No. 7,987,539 (to Pestell et al.), U.S. Pat.
No. 4,235,599 (to Davis et al.), and U.S. Pat. No. 6,228,127(to Reinehr et al.), which are incorporated herein by reference in their entirety.
Anti-inflammatory compounds useful in the methods and compositions of the present invention include, but are not limited to, steroidal anti-inflammatory drugs and non-steroidal anti-inflammatory drugs (NSAIDs). Examples of preferred anti-inflammatory compounds, useful in the present invention, include ibuprofen and betamethasone.
In some embodiments, a safe and effective amount of an anti-inflammatory compounds may be added to a composition of the present invention, preferably from about 0.1% to about 25%, more preferably from about 0.5% to about 20%, of the composition. The exact amount of anti-inflammatory compound to be used in the methods and compositions will depend on the particular anti-inflammatory compounds utilized since such compounds vary widely in potency and toxicity.
Steroidal anti-inflammatory drugs, include corticosteroids such as, alpha-methyl dexamethasone, dexamethasone-phosphate, hydrocortisone, hydroxyltriamcinolone clobetasol valerate, desonide, desoxymethasone, diflorasone diacetate, diflucortolone valerate, fluadrenolone, flumethasone pivalate, fluclorolone desoxycorticosterone acetate, fluosinolone acetonide, fluocinonide, flucortine butylester, fluocortolone, paramethasone, prednisolone dexamethasone, dichlorisone, acetonide, fludrocortisone, prednisolone acetate, loteprednol etabonate, medrysone, amcinafel, amcinafide, betamethasone, chloroprednisone, chloroprednisone acetate, clocortelone, prednisone, beclomethasone dipropionate, budesonide, flurandrenolone, halcinonide, dichlorisone, difluprednate hydrocortisone acetate, hydrocortisone butyrate, methylprednisolone, triamcinolone acetonide, cortisone, fludrocortisone, difluorosone diacetate, fluradrenolone acetonide, clescinoloneõ flucloronide, flunisolide, fluoromethalone, fluperolone, fluprednisolone, hydrocortisone valerate, hydrocortisone cyclopentylpropionate, hydrocortamate, meprednisone, fluticasone propionate, rimexolone, and mometasone furoate.
A second class of anti-inflammatory compounds which is useful includes the non-steroidal anti-inflammatory drugs (NSAIDs). Suitable NSAIDs include, but are not limited to salicylates (e.g., acetylsalicylic acid, amoxiprin, methyl salicylate, choline salicylate, magnesium salicylate, and salicylamide), arylalkanoic acids (e.g., diclofenac), profens (e.g., ibuprofen, alminoprofen, benoxaprofen, carprofen, and naproxen), N-arylanthranilic acids, pyrazolidine derivatives (e.g., phenylbutazone), oxicams, cyclooxygenase-2 inhibitors (e.g., celecoxib) and sulphonanilides (e.g., nimesulide).
A third class of anti-inflammatory compounds which is useful includes the topical calcineurin inhibitors. Suitable topical calcineurin inhibitors include, but are not limited to tacrolimus and pimecrolimus.
The varieties of compounds encompassed by the group of anti-inflammatory compounds are well-known to those skilled in the art. Mixtures and admixtures of anti-inflammatory compounds may also be employed, as well as the pharmaceutically-acceptable salts and esters of these compounds.
Finally, so-called "naturopathic" anti-malassezial agents are useful in the methods and compositions of the present invention. Examples of naturopathic compounds, useful in the present invention, include but are not limited to cinnamics (e.g.
cinnamon), vanilla (e.g. vanillin), tea tree oil, citronella, camphor, coconut (e.g., SEBCO), antioxidants (e.g., vitamin D), turmeric, cypress extracts, lavender, colloidal silver, colloidal copper, colloidal zinc, limonene, lemon myrtle, lemongrass, neem seed, olive leaf extract, orange oil, palmarosa oil, patchouli oil, beeswax, honey, aloe vera, yoghurt-acidophilus-milk (YAM), acidophilus, yoghurt, phenylalanine, methylated spirits, seaweed, Allium cepa, and Allium sativum (e.g. allicin).
The varieties of compounds encompassed by the group of naturopathic agents are known to those skilled in the art. Mixtures and admixtures of naturopathic agents may also be employed, as well as the pharmaceutically-acceptable derivatives, extracts, oils, salts and esters of these agents.
The present invention encompasses the use of a single anti-malassezial agent or a plurality (e.g., mixture) of different anti-malassezial agents. Thus, for example, one anti-malassezial agent or a combination of different anti-malassezial agents (e.g.
two or more) may be used.
IV. Anti-Malassezial Phototherapy In some embodiments, the present invention provides anti-malassezial phototherapeutics to mitigate, treat, or prevent Parkinson's disease in a subject in need thereof comprising irradiating a location with a Malassezia infection with sufficient electromagnetic radiation to inhibit the growth of or kill the Malassezia, wherein the radiation is administered from a minimum wavelength of about 350 nanometers (nm) to a maximum wavelength of about 450 nm. Preferably the radiation is a wavelength of about 375, 380, 385, 390, 395, or 400 nm. More preferably the radiation is a wavelength of about 378, 379, 380, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395 nm. Even more preferably still the radiation is a wavelength of about 391.5 391.6, 391.7, 391.8, 391.9, 392, 392.1, 492.2, 392.3, 392.4, 392.5, 392.6, 392.7, 392.8, 392.9, 393, 393.1, 393.2, 393.3, 393.4, or 393.5 nm.
As used herein the term "anti-malassezial phototherapy", "anti-malassezial phototherapeutics", or "UV light therapy" refers to an artificial source of light of the frequencies of the present invention for use in mitigation, treatment, or prevention of Parkinson's disease. The frequency or frequencies of a given light source of the present invention can be across the entire range, a portion of the range or can be limited to a single frequency or band of frequencies within the range.
Examples of anti-malassezial phototherapy useful in the present invention include ultraviolet light therapy (phototherapy) comprising PUVA (psoralens plus ultraviolet A
radiation), broadband UVA, broadband UVB, combined UVA and UVB, narrow-band UVB, or UVA1. In some embodiments, the phototherapy is administered as a medium dose of UVA1 in combination with a medium dose of narrow-band UVB. In a preferred embodiment, the phototherapy is administered as a medium dose of UVA1 in combination with a medium dose of narrow-band UVB administered within the range of 30 to 60 J/cm2 (joules divided by centimeters squared).
In some embodiments, anti-malassezial phototherapy is a photo/antifungal combination therapy that is administered in combination with an anti-malassezial agent.
In a preferred embodiment of the photo/antifungal combination therapy, phototherapy is administered in combination with a topical anti-fungal compound such as selenium sulfide, ketoconazole, or miconazole. Topical emollients (e.g., propylene glycol) may be useful in phototherapy since phototherapy may increase skin dryness.
In some embodiments, a location is treated with separate light sources simultaneously. In some embodiments, a single dose exposure to light is from about 1 to 30 minutes. More preferably the exposure is from 6 to 15 minutes. Most preferably the exposure is 10 to 12 minutes. In some embodiments, the subject is administered a dose exposure 2 to 5 times daily, once a day, 1 to 3 times weekly, or monthly. In a preferred embodiment, the phototherapy is administered between four to six times per week. In some embodiments, the light source may be positioned very close or in contact with the body of the subject. In some embodiments, the light source is one that does not generate large amounts of heat when in use. In some embodiments, the light source is a light emitting diode (LED). In some embodiments, the light source is an LED light bulb having a light output of about 0.7 lumens at between 3 and 4 volts. In some embodiments, the light source is generated by a device that is hands-free, battery powered, and/or portable.
In some embodiments, the light source is encompassed in a tanning lamp or bed well known in the art. In some embodiments, the anti-malassezial phototherapy mitigates, treats, or prevents Parkinson's disease by preventing Malassezia from coming in contact with a subject in need of mitigation, treatment, or prevention of Parkinson's disease.
Descriptions of phototherapy suitable for use in preventing Malassezia from coming in contact with the subject are disclosed in U.S. Pat. No. 5,664,340 (to Brown) and U.S.
Pat. No. 8,109,981 (to Gertner et al.), which are incorporated herein by reference in their entirety.
V. Pharmaceutical Compositions The present invention pertains, at least in part, to compositions for treating Parkinson's disease in a subject comprising an effective amount of an anti-malassezial agent or salt thereof and a pharmaceutically acceptable carrier.
Compounds disclosed herein may be formulated with one or more pharmaceutically acceptable excipients, diluents, carriers, etc. to produce pharmaceutical compositions for administration to a subject, by any of various pharmaceutically approved routes, for the prevention, treatment or mitigation of Parkinson's disease.
Pharmaceutical compositions of the present invention may be made into a wide variety of product types. Product types include, but are not limited to solutions, lotions, creams, beach products, gels, hydrogels, sticks, sprays, nebulizers, pads, plasters, ointments, pastes, mousses, foams, and cosmetics. These product types may comprise several types of carrier systems including, but not limited to solutions, emulsions, gels, foams, and solids. The topical pharmaceutical compositions of the present invention formulated as solutions typically include a pharmaceutically-acceptable aqueous or organic solvent.
Pharmaceutical compositions of the present invention may be prepared as a concentrate form, so that consumer products can be produced therefrom by simple dilution, without necessarily blending in of other formulating components. In some embodiments, the concentrate form is an article of commerce.
The pharmaceutical compositions of the present invention may be suitable for any route of administration which allows an anti-malassezial agent to perform the intended function of the anti-malassezial agent; namely preventing, mitigating, or treating Parkinson's disease in a subject in need thereof Non-limiting examples of routes of administration of pharmaceutical compositions of the present invention include topical, intranasal, systemic, or oral administration.
In some embodiments, the pharmaceutical composition comprises an anti-malassezial agent and a pharmaceutically-acceptable carrier for use in the treatment, prevention, or mitigation of Parkinson's disease.
In some embodiments, the pharmaceutical composition comprises an anti-malassezial agent and a pharmaceutically-acceptable carrier for use in the treatment, prevention, or mitigation of fatigue, particularly mental fatigue, associated with Parkinson's disease.
The pharmaceutical compositions of the present invention further comprise packaged pharmaceutical compositions to treat, mitigate, or prevent Parkinson's disease. A
packaged pharmaceutical composition (also referred to as a "kit") is intended to include at least one anti-malassezial agent, packaged with instructions (e.g., instructions for once a day administration, twice a day administration, etc.) for administering the anti-malassezial agent(s) as a treatment, mitigation, or prevention of Parkinson's disease. The package can contain one or more containers filled with one or more of the ingredients of the pharmaceutical compositions of the invention.
In some embodiments, the packaged pharmaceutical compositions include one or more containers holding one or more anti-malassezial agents, alone or in combination with one or more pharmaceutically acceptable carriers, along with instructions for use for the treatment, mitigation, and/or prevention of Parkinson's disease.
In some embodiments, the packaged pharmaceutical composition may also include one or more medications known in the art to treat the symptoms of Parkinson's disease.
In some embodiments, an anti-malassezial agent of the packaged pharmaceutical composition is a member of one of the preferred antifungal compounds described herein.
In some embodiments, the packaged pharmaceutical compositions include a notice in a form prescribed by a governmental agency regulating the manufacture, use or sale of a pharmaceutical product or products, which notice reflects approval by the agency of manufacture, use or sale for human administration of a pharmaceutical composition of the present invention.
In some embodiments, the packaged pharmaceutical compositions include package labeling identifying an anti-malassezial agent along with instructions for use of the anti-malassezial agent for the treatment, mitigation, and/or prevention of Parkinson's disease.
In some embodiments, a pharmaceutical composition and/or packaged pharmaceutical composition of the present invention is sterilized.
The phrase "pharmaceutically acceptable" refers to those compounds, dosage forms, materials, and/or compositions which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of human beings without excessive toxicity, irritation, allergic response, or other problem or complication, commensurate with a reasonable benefit/risk ratio.
The phrase "pharmaceutically acceptable carrier" includes a pharmaceutically acceptable material, composition or vehicle, such as a liquid or solid filler, diluent, excipient, solvent or encapsulating material, involved in carrying or transporting the anti-malassezial agent within or to the subject such that the anti-malassezial agent can perform the anti-malassezial agent's intended function, e.g. to treat Parkinson's disease.
Each carrier must be "acceptable" in the sense of being compatible with the other ingredients of the formulation and not injurious to the subject.
Pharmaceutically acceptable carriers that may be useful in formulating pharmaceutical compositions of the present invention include but are not limited to lubricants, preservatives, stabilizers, solubilizers, penetrants, wetting agents, drying agents, bulking agents, fillers, emulsifiers, salts for influencing osmotic pressure, tonicity contributors (e.g., dextrose, mannitol, glycine and sodium chloride), buffers, antioxidants, colorings, flavorings and/or aromatic substances and the like which do not deleteriously react with the active compounds of the invention or each other.
Clearly, the skilled person can use other pharmaceutical formulations of the present invention containing anti-fungal compounds and pharmaceutically acceptable carriers.
Examples of pharmaceutically acceptable carriers known in the art that may be useful in formulating pharmaceutical compositions of the present invention, and methods of forming such compositions, are described in detail by reference to standard textbooks such as Remington: The Science and Practice of Pharmacy, Twenty-Second Edition (Lippincott Williams & Wilkins, 2012); Handbook of Pharmaceutical Excipients, Seventh Edition (Pharmaceutical Press, 2012); Ansel's Pharmaceutical Dosage Forms and Drug Delivery Systems, Tenth Edition (Lippincott Williams & Wilkins, 2013);
Modern Pharmaceutics, Fifth Edition (CRC Press, 2009); and in Harry's Cosmeticology, Ninth Edition (Chemical Publishing Company, 2015). Said standard textbooks are incorporated herein by reference in their entirety.
Examples of suitable pharmaceutically acceptable carriers include water, salt solutions, alcohol, vegetable oils, polyethylene glycols, gelatin, lactose, amylose, magnesium stearate, talc, silicic acid, viscous paraffin, perfume oil, fatty acid monoglycerides and diglycerides, petroethral fatty acid esters, hydroxymethyl-cellulose, polyvinylpyrrolidone, and the like.
In some embodiments, the pharmaceutical composition comprising an anti-malassezial agent and a pharmaceutically acceptable carrier has a pH of greater than 4Ø
In some embodiments, the pharmaceutical composition of the invention comprises an anti-malassezial agent, a pharmaceutically acceptable carrier, and a medication to treat the symptoms of Parkinson's disease.
When used herein, the term "topical" includes references to formulations that are adapted for application to a body surface or body surfaces (e.g. the skin and mucous membranes). Mucous membranes that may be mentioned in this respect include the mucosa of the vagina, the penis, the urethra, the bladder, the anus, the mouth (including the mucosa of the cheek, the soft palate, the under surface of tongue, the ceiling and floor of the mouth), the nose (including the nasal cavity, olfactory fossa, and cribiform plate), the throat (including the mucosa of the pharynx, the larynx, the trachea and the esophagus), the bronchi, the lungs, the eye (including the lacrimal duct and conjunctiva), the ear (including the inner ear canal), and the like. Skin includes groin region (e.g.
external genitals, anogenital area), scalp, scalp margin, neck, neckline, eyelids, eyebrow region, eyelashes, auricles, hairy areas of the head (e.g., eyelashes, eyebrows, mustache, beard), forehead, chin, cheeks, nail-beds (including fingers and toes), nasolabial folds, external ear canals, auricular areas, post-auricular creases, shoulders, elbows, back, sternal area, supra-sternal notch, supra-mammary area, mammary area (including areolar area), infra-mammary area, axillae, navel, and the like. Body surfaces include areas that are defined based on standard clinical/medical descriptions known in the art.
For example, the so-called "danger triangle" of the face (i.e., the area bounded by each lateral corner of the mouth to the bridge of the nose, including the nose and maxilla) is considered a body surface.
When used herein, the term "topical administration" includes methods of delivery to a body surface or body surfaces (e.g. the skin or mucous membranes). Topical administration involves any form of administration which involves a body surface or body surfaces (e.g. the skin or mucous membranes). Topical administration includes laying on or spreading a compound of the present invention on the skin (e.g.
the scalp) of a subject.
One of ordinary skill may readily determine the optimum amount of the topical formulation to be administered, administration methodologies and repetition rates. In general, it is contemplated that the topical formulations of the present invention will be applied in the range of once or twice or three or four or five times weekly up to once or twice or three or four or five times daily.
The topical formulation for use in the present invention may be in any form suitable for application to the body surface, such as a cream, lotion, sprays, solution, gel, hydrogel, foam, powder, ointment, paste, plaster, paint, shampoos, bio-adhesive, suspensions, aerosols, solids (e.g., bar soaps, deodorant), cosmetic formulations, and skin cleansing formulations, or the like, and/or may be prepared so as to contain liposomes, micelles, and/or microspheres. Such a formulation may be used in combination with an occlusive over-layer. In some embodiments, the occlusive over-layer allows moisture evaporating from the body surface to be maintained within the formulation upon application to the body surface and thereafter. In some embodiments, the occlusive over-layer provides the skin or mucosal membrane of the subject with a protective barrier from the eternal environment.
Topical formulations include any formulation suitable for topical delivery of a composition of the invention. Topical formulations may include those in which an active compound of the present invention is dissolved or dispersed in a dermatological vehicle known in the art (e.g. aqueous or non-aqueous gels, ointments, water-in-oil and oil-in-water emulsions). For example, constituents of such vehicles may comprise water, aqueous buffer solutions, non-aqueous solvents (e.g., ethanol, isopropanol, benzyl alcohol, propylene glycol, propylene glycol monolaurate, glycofurol and glycerol), oils (e.g. mineral oil, triglyceride, and dimethicone), a solubilising agent or solvent (e.g. a beta-cyclodextrin, such as hydroxypropyl beta-cyclodextrin, an alcohol, a polyol (such as ethanol, propylene glycol or glycerol); a thickening agent (e.g.
hydroxyethylcellulose); a gelling agent (e.g. a polyoxyethylene-polyoxypropylene copolymer); a preservative (e.g.
benzyl alcohol, benzalkonium chloride, and chlorhexidine); and a pH buffering agent (e.g. such as a mixture of dihydrogen phosphate and hydrogen phosphate salts).
The terms "pharmaceutically-acceptable aqueous solvent" and "pharmaceutically-acceptable organic solvent" refer to a solvent, which is capable of having dispersed (or dissolved therein) the active compound, and possesses acceptable safety properties (e.g., desired irritation and sensitization characteristics). Water is a typical aqueous solvent.
Non-limiting examples of suitable organic solvents include: propylene glycol, butylene glycol, glycerol, butanediol, and mixtures thereof Preferably, these solutions contain from about 0.01% to about 50% of the active compound, more preferably from about 0.1% to about 20%, and, for example, between about 0.1% and 10% of the active compound; and from about 1% to about 80% of an acceptable aqueous or organic solvent, more preferably from about 1% to about 30%.
In some embodiments, the topical pharmaceutical compositions of the present invention are formulated as an aerosol for administration to the subject as a spray. In further embodiments, a propellant is added to the solution composition of the aerosol to improve the desired activity of the aerosol.
Topical pharmaceutical compositions of the present invention may be formulated as a solution comprising an emollient. As used herein, "emollients" refer to materials used for the prevention or relief of dryness, as well as for the protection of the skin. Preferably, such compositions contain from about 0.1% to about 50% of the active compound and from about 2% to about 50% of a topical pharmaceutically-acceptable emollient.
A lotion can be made from a solution carrier system. Lotions preferably comprise from about 0.1% to about 20%, more preferably from about 1% to about 5%, of the active compound; from about 1% to about 20%, preferably from about 5% to about
collagenase, elastase, pepsin, and trypsin).
In some embodiments, the debridement composition is an aqueous solution comprising a mixture of non-iodized sodium chloride and purified or filtered water warmed to about 98 degrees Fahrenheit (37 degrees Celsius). The aqueous solution may be hypertonic (e.g., 3% sodium chloride), isotonic (e.g., 0.9% sodium chloride) or hypotonic (e.g., 0.65% sodium chloride). The aqueous solution may have other components including, for example, pH modifiers, buffers (e.g., sodium bicarbonate), local anesthetic agents, preservatives, flavoring agents, coloring agents, agents that promote wound healing, agents that stop bleeding and/or promote clot formation, and other therapeutic and non-therapeutic components.
The term "administered," "administering" or "administration" includes routes of administration which allow the anti-malassezial agents to perform their intended function(s) of preventing, mitigating, or treating Parkinson disease in a subject.
Examples of routes of administration include parenteral (e.g., subcutaneous, intramuscular, intraorbital, intracapsular, intraspinal, intrasternal, intravenous, intradermal, intra-aurally, intraperitoneal, intraportal, intra-arterial, intrathecal, transmucosal, intra-articular, and intrapleural,), transdermal, topical, epidural, and mucosal injection or infusion, as well as oral, intranasal, inhalation, insufflation, pulmonary, and rectal administration Examples of preferred routes of administration which may be used include injection, topical, oral, intranasal, intra-aural, subcutaneous, intravenous, inhalation and transdermal.
In some embodiments, the anti-malassezial agent is administered in combination with a pharmaceutically acceptable carrier. Examples of such carriers include those suitable for injection, topical, oral, intranasal, subcutaneous, intravenous, inhalation and/or transdermal administration.
Depending on the route of administration, an anti-malassezial agent may be coated with or contained within a material to protect it from natural conditions which may detrimentally affect the ability of the anti-malassezial agent to perform its intended function. For example, a sustained-release formulation may be designed to release the one or more anti-malassezial agents in a targeted part of the intestinal tract, mucosa (e.g., nasal passages), scalp, or respiratory tract, possibly over a period of time.
The administration of the anti-malassezial agent is done at dosages and for periods of time effective to prevent, mitigate, or treat Parkinson's disease or to reduce or obviate the risk of Parkinson's disease. In some embodiments, the daily dosage of the anti-malassezial agent is about 50 mg, 100 mg, 150 mg, 200 mg, 250 mg, 300 mg, 350 mg, 400 mg, or higher. In a preferred embodiment the anti-malassezial agent is fluconazole and the daily dosage is 100 or 200 mg per day. In other embodiments, the anti-malassezial agent is administered daily for a period of at least four weeks, three months, at least four months, at least five months, at least six months, or longer. In a more preferred embodiment, the anti-malassezial agent is fluconazole, the daily dosage is 100 mg or 200 mg per day, and the period of administration is at least 4 weeks, two months, or three months.
In other embodiments, the anti-malassezial agent is given once a week for at least three, four, eight, twelve, or more weeks. In a preferred embodiment, the anti-malassezial agent is fluconazole and is administered at 300 mg once weekly for at least three, four or eight weeks. In a preferred embodiment the daily or weekly dosages of the anti-malassezial agent is administered orally. In a more preferred embodiment, fluconazole is administered orally at a daily dosage of 100 mg or 200 mg for at least four weeks, or at a weekly oral dosage of 300 mg for at least three, four or eight weeks. Dosage regimes may be adjusted for purposes of improving the therapeutic or prophylactic response of the anti-malassezial agent. For example, several divided doses may be administered daily or the dose may be proportionally reduced as indicated by the exigencies of the therapeutic situation. In one embodiment, the first dose of the anti-malassezial agent given on day one of treatment is about 100 mg, 200 mg, 300 mg, 400 mg, 500 mg or higher, followed by a daily dose of about 50 mg, 100 mg, 150 mg, 200 mg, 250 mg, 300 mg, 350 mg, 400 mg, or higher for at least three months. In a preferred embodiment, the anti-malassezial agent is fluconazole, the starting dosage on day one of treatment is 400 mg given orally, the subsequent daily dosage is 200 mg per day given orally, and the period of administration is at least three months. Suitable pharmaceutical vehicles or dosage forms for injectable compositions, implants, and systemic administration are known.
The anti-malassezial agent may be administered intra-nasally and can be formulated into a variety of intranasal administrable compositions of the invention, such as washes, foams, gels, powders, and the like.
In some embodiments, the intranasal administration comprises irrigating the nasal passages with an anti-malassezial agent. In some embodiments, the anti-malassezial agent is administered to a patient by exposing the deeper reaches of the nasal cavity to effective amounts of an anti-malassezial agent, orally (e.g., gargling with an anti-malassezial agent formulated as a mouthwash), by inhalation (including nasal inhalation) and/or by nasal spray or drops.
The anti-malassezial agent may be administered in the intra-aurally (i.e., the ear canal) and can be formulated into a variety of intra-aural administrable compositions of the invention, such as washes, foams, gels, powders, and the like.
In some embodiments, the intra-aural administration comprises irrigating the ear canal with an anti-malassezial agent. In some embodiments, the anti-malassezial agent is administered to a patient by exposing the deeper reaches of the ear canal to effective amounts of an anti-malassezial agent, via swab stick application (e.g., Q-Tip containing an anti-malassezial agent formulated as a powder or gel), by ear wick (e.g., an ear wick impregnated with clotrimazole cream inserted into ear of patient by a physician in clinic and changed every third day for nine days), and/or by aural spray or drops. In some embodiments, the anti-malassezial agent is administered to a patient in conjunction with a drying agent. In some embodiments, the anti-malassezial agent is administered to a patient in conjunction with debridement of ear wax such as, for example, mechanical suctioning of the ear canal and/or application of Burow's solution or 5%
aluminum acetate solution.
In some embodiments, some examples of drops for use in treating Malassezia present in the ear include clotrimazole (e.g., in a 1 percent solution) or flumetasone pivalate (e.g.
in a 0.02 percent solution) plus clioquinol (e.g., in a I percent solution).
In some embodiments, an example of anti-malassezial cream for use in treating Malassezia present in the ear includes clotrimazole 1 percent cream. In some embodiments, the cream formulation suitable for treating Malassezia present in the ear is comprised of an anti-malassezial antifungal agent combined with bonzyl alcohol, cetostearyi alcohol, cowl esters wax, 2-octy1dodecanol, poiysorbate 60, purified water, and/or sorbitan ntonostearate.
In some embodiments, an anti-malassezial agent is administered to a patient by a liquid stream lavage (also referred to as a "neti pot"). In this approach, the anti-malassezial agent formulated as a solution is fed by gravity or slight pressure into one nostril and the composition exits the other nostril. An artificial pressure may also be used to feed the solution. An example of a device that creates artificial pressure to feed the solution is a pulsating irrigation device. An example of a pulsating irrigation device is the Grossan HydroPulse manufactured by Hydro Med, Inc. (Los Angeles, California).
In some embodiments, a water vapor (mist) and/or other vapor based composition is administered into the nose and onto the nasal sinus and/or contiguous/adjacent nasal structures (e.g., olfactory fossa, olfactory bulb, and cribriform plate).
Some examples of descriptions of intranasal administration suitable for antifungal compounds and pharmaceutical formulations thereof are disclosed in U.S., Pat.
No.
6,291,500 (to Ponikau) and U.S., Pat. No. 6,647,980 (to Gizurarson), which are incorporated herein by reference in their entirety.
The anti-malassezial agent may be administered topically to the skin and can be formulated into a variety of topically administrable compositions, such as lotions, solutions, suspensions, shampoos, foams, gels or ointments.
In some embodiments, the anti-malassezial agent may be administered in combination with a medication used to treat the symptoms of Parkinson's disease. The medication may be any medication known to the art to treat the symptoms of Parkinson's disease and is preferably selected from the group consisting of carbidopa-levodopa (e.g., Duopa), pramipexole (e.g., Mirapex), ropinirole (e.g., Requip) and rotigotine (e.g.
Neupro), apomorphine (e.g., Apokyn), selegiline (e.g., Zelapar), rasagiline (e.g., Azilect), entacapone (e.g., Comtan), tolcapone, bromocriptine, benztropine (e.g., Cogentin), trihexyphenidyl, and amantadine.
In some embodiments, the co-administration of the anti-malassezial agent with another compound includes administration of the anti-malassezial agent first, followed by the compound and administration of the compound.
In some embodiments, the co-administration of the anti-malassezial agent with another compound includes administration of the compound first, followed by the anti-malassezial agent.
In some embodiments, the co-administration of the anti-malassezial agent with another compound includes administration of the anti-malassezial agent at the same time as the other compound.
When used herein, the term "therapeutically effective amount" or "effective amount"
includes an amount of the therapeutic or treatment composition that provides a prophylactic or therapeutic benefit in the treatment, prevention, or management of a disease or a symptom of a disease. The therapeutically effective amount may treat a disease or condition, a symptom of disease, or a predisposition toward a disease, with the purpose to cure, heal, alleviate, relieve, alter, remedy, ameliorate, improve, or affect the disease, the symptoms of disease, or the predisposition toward disease. The term "therapeutically effective amount" or "effective amount" of the anti-malassezial agent includes an amount of the anti-malassezial agent that is sufficient in treating, mitigating, or preventing Parkinson's disease. Alternatively an "effective amount" of the anti-malassezial agent means an amount of the anti-malassezial agent to be administered necessary to treat or prevent a disease or disorder mediated by deficiency in nigral dopaminergic neurons. Alternatively "effective amount" of the anti-malassezial agent means the amount necessary to improve cognitive and/or motor function in a subject, or reduce a decline in cognitive and/or motor function. Alternatively, "effective amount" of the anti-malassezial agent is the amount of the anti-malassezial agent required to prevent dopaminergic neuronal cell death in the substantia nigra. Alternatively, "effective amount" is the amount of the anti-malassezial agent with sufficient biostatic or biocidal activity against Malassezia infection to diminish or alleviate a symptom of Parkinson's disease.
A therapeutically effective amount can be readily determined on an individual basis and will be based, in part, on the severity of Malassezia infection and the activity of the specific anti-malassezial agent. Thus, a therapeutically effective amount of an anti-malassezial agent can be determined by one of ordinary skill in the art using no more than routine experimentation in clinical management of a subject. For example, the specific amount that is therapeutically effective may be readily determined by ordinary medical practitioner, and may vary depending on factors known in the art, such as, e.g.
the type and location of infection, the patient's history (including genetic and medical history), sex, age, the patient's family history (including genetic and medical history), the patient's history of previous treatment modalities of Parkinson's disease and/or Malassezia infection, the patient's history of progression of Parkinson's disease, the stage of Parkinson's disease, genetic risk of Parkinson's disease, and the current administration of other therapeutic agents. Another factor influencing clinical management of a subject is the patient's side effect profile history. For example, previous gastro-intestinal (GI) upset and/or elevated liver enzyme levels (e.g., Alanine transaminase (ALT) and Aspartate transaminase (AST)) in relation to a patient's previous antifungal compound use may influence the determination of a specific treatment regimen of a subject in need of treatment, mitigation, or prevention of Parkinson's disease.
The dosage ranges for the administration of are those that produce the desired effect.
Generally, the dosage will vary with the age, weight, condition, and sex of the patient, and the extent of disease. A person of ordinary skill in the art, given the teachings of the present specification. may readily determine suitable dosage ranges.
In some embodiments, a therapeutically effective amount of the anti-malassezial agent includes a precise dosage level determined by an attending physician or other health care provider and will depend upon well-known factors, including route of administration, and the age, body weight, sex, concomitant therapies, patient medical history including previous drug tolerances, general health of the patient; the nature, severity and clinical stage of Malassezia infection, and/or other clinical dosing factors known in the art.
III. Anti-Malassezial Agents As used herein, the term "anti-malassezial agent" is any substance that has a significant biocidal and/or biostatic activity against Malassezia fungi for use in the treatment, mitigation, or prevention of Parkinson's disease. In some embodiments, the anti-malassezial agent inhibits the growth of one or more Malassezia organisms in a subject receiving said agent. In some embodiments, the anti-malassezial agent kills one or more Malassezia organisms in a subject receiving said agent.
In some embodiments, the anti-malassezial agent is a substance that that has a biocidal and/or biostatic activity for Malassezia fungi. In further embodiments, the anti-malassezial agent is a substance that that has a biocidal and/or biostatic activity that is relatively specific and selective for Malassezia fungi.
In some embodiments, anti-malassezial comprise anti-fungal compounds that have biocidal and/or biostatic activity for Malassezia fungi.
Examples of anti-fungal compounds include polyene antifungal drugs (e.g.
amphotericin B, natamycin, rimocidin, nystatin, candicidin, hamycin, filipin, perimycin), imidazole antifungals (e.g., miconazole, ketoconazole, climbazole, clotrimazole, econazole, enilconazole, omoconazole, bifonazole, butoconazole, fenticonazole, isoconazole, lanoconazole, luliconazole, oxiconazole, sertaconazole, sulconazole, tioconazole), triazole antifungals (e.g., fluconazole, fosfluconazole, itraconazole, isavuconazole, ravuconazole, posaconazole, voriconazole, terconazole, albaconazole), thiazole antifungals (e.g., abafungin), allylamine antifungals (e.g.
terbinafine, naftifine, butenafine, amorolfine), echinocandin antifungals (e.g. anidulafungin, caspofungin, micafungin), hydroxypyridones (e.g., ciclopirox, piroctone olamine), tolnaftate, chlovalicin, ovalicin, fumagillin, sulfur, lithium gluconate, lithium succinate, zinc carbonate, polytar (e.g., coal tar), a thiocarbamate (e.g., tolnaftate), Whitfields ointment, and zinc pyrithione.
Preferred anti-fungal compounds include lipase inhibitors. Preferred lipase inhibitors include, but are not limited to, orlistat and cetilistat. Preferably, lipase inhibitors are topically administered to a patient to treat disease in accordance with the invention.
In some embodiments, amphotericin B is formulated as a liposomal amphotericin B, amphotericin B colloidal dispersion, amphotericin B lipid complex, deoxycholate amphotericin B, or amphotericin B oral suspension.
In some embodiments, the anti-malassezial agent may be an antifungal drug that is administered via systemic routes of administration (e.g., amphotericin B, ketoconazole, fluconazole, fosfluconazole, itraconazole, posaconazole, voriconazole, and terbinafine).
In some embodiments, the anti-malassezial agents will be an antifungal drug that is commonly administered as a non-systemic treatment (e.g., a topical treatment).
Representative examples of such antifungal drugs include amphotericin B, natamycin, nystatin, candicin, hamycin, perimycin, miconazole, ketoconazole, clotrimazole, econazole, omoconazole, bifonazole, butoconazole, fenticonazole, isoconazole, oxiconazole, sertaconazole, sulconazole, tioconazole, fluconazole, fosfluconazole, isavuconazole, ravuconazole, terconazole, albaconazole, abafungin, terbinafine, naftifine, butenafine, amorolfine, tolnaftate, ciclopirox, zinc pyrithione; sulfur;
salicylic acid, benzoic acid, coal tar (polytar), and tretinoic acid.
Examples of preferred anti-malassezial agents that are antifungal drugs, useful in the present invention, include ciclopirox olamine, zinc pyrithione, amphotericin B, nystatin, ketoconazole, miconazole, fluconazole, itraconazole, and voriconazole.
The antifungal drug may be used in any convenient form, including any pharmaceutically acceptable salt or hydrate. References to disclosed antifungal drugs extends to any analogs thereof, compounds which mimic their activity, and/or isomeric form in which the compound may exist as well as mixtures of two or more isomers, e.g.
racemic mixtures. The invention contemplates compounds that inhibit fungal growth through an increase in copper at the location of the Malassezia infection.
In accordance with the invention, anti-inflammatory compounds and antiseptic compounds may also be considered to be anti-malassezial agents to the extent that these compounds have biocidal and/or biostatic activity for Malassezia fungi and to the extent that administration of these compounds is not deleterious to the subject, even though anti-inflammatory compounds and antiseptic compounds have a broad spectrum of biocidal and/or biostatic activity that do not display appreciable specificity or selectivity for Malassezia fungi over other cell types (e.g. bacteria, archaea, protists, plants, and animals).
In some embodiments, the antiseptic compound mitigates, treats, or prevents Parkinson's disease by decreasing or preventing Malassezia from coming in contact with the subject in need of mitigation, treatment, or prevention of Parkinson's disease.
In some embodiments, the antiseptic compound is formulated as a laundry composition comprising at least one antiseptic compound, the composition preferably being a laundry detergent or laundry conditioner. In some preferred embodiments, the antiseptic compound of the laundry composition comprises a bleach solution.
The varieties of anti-fungal compounds encompassed by the group of laundry compositions are well-known to those skilled in the art. For example, antifungal compounds for use in laundry compositions useful in the present invention and formulations thereof are disclosed in U.S. Pat. No. 7,987,539 (to Pestell et al.), U.S. Pat.
No. 4,235,599 (to Davis et al.), and U.S. Pat. No. 6,228,127(to Reinehr et al.), which are incorporated herein by reference in their entirety.
Anti-inflammatory compounds useful in the methods and compositions of the present invention include, but are not limited to, steroidal anti-inflammatory drugs and non-steroidal anti-inflammatory drugs (NSAIDs). Examples of preferred anti-inflammatory compounds, useful in the present invention, include ibuprofen and betamethasone.
In some embodiments, a safe and effective amount of an anti-inflammatory compounds may be added to a composition of the present invention, preferably from about 0.1% to about 25%, more preferably from about 0.5% to about 20%, of the composition. The exact amount of anti-inflammatory compound to be used in the methods and compositions will depend on the particular anti-inflammatory compounds utilized since such compounds vary widely in potency and toxicity.
Steroidal anti-inflammatory drugs, include corticosteroids such as, alpha-methyl dexamethasone, dexamethasone-phosphate, hydrocortisone, hydroxyltriamcinolone clobetasol valerate, desonide, desoxymethasone, diflorasone diacetate, diflucortolone valerate, fluadrenolone, flumethasone pivalate, fluclorolone desoxycorticosterone acetate, fluosinolone acetonide, fluocinonide, flucortine butylester, fluocortolone, paramethasone, prednisolone dexamethasone, dichlorisone, acetonide, fludrocortisone, prednisolone acetate, loteprednol etabonate, medrysone, amcinafel, amcinafide, betamethasone, chloroprednisone, chloroprednisone acetate, clocortelone, prednisone, beclomethasone dipropionate, budesonide, flurandrenolone, halcinonide, dichlorisone, difluprednate hydrocortisone acetate, hydrocortisone butyrate, methylprednisolone, triamcinolone acetonide, cortisone, fludrocortisone, difluorosone diacetate, fluradrenolone acetonide, clescinoloneõ flucloronide, flunisolide, fluoromethalone, fluperolone, fluprednisolone, hydrocortisone valerate, hydrocortisone cyclopentylpropionate, hydrocortamate, meprednisone, fluticasone propionate, rimexolone, and mometasone furoate.
A second class of anti-inflammatory compounds which is useful includes the non-steroidal anti-inflammatory drugs (NSAIDs). Suitable NSAIDs include, but are not limited to salicylates (e.g., acetylsalicylic acid, amoxiprin, methyl salicylate, choline salicylate, magnesium salicylate, and salicylamide), arylalkanoic acids (e.g., diclofenac), profens (e.g., ibuprofen, alminoprofen, benoxaprofen, carprofen, and naproxen), N-arylanthranilic acids, pyrazolidine derivatives (e.g., phenylbutazone), oxicams, cyclooxygenase-2 inhibitors (e.g., celecoxib) and sulphonanilides (e.g., nimesulide).
A third class of anti-inflammatory compounds which is useful includes the topical calcineurin inhibitors. Suitable topical calcineurin inhibitors include, but are not limited to tacrolimus and pimecrolimus.
The varieties of compounds encompassed by the group of anti-inflammatory compounds are well-known to those skilled in the art. Mixtures and admixtures of anti-inflammatory compounds may also be employed, as well as the pharmaceutically-acceptable salts and esters of these compounds.
Finally, so-called "naturopathic" anti-malassezial agents are useful in the methods and compositions of the present invention. Examples of naturopathic compounds, useful in the present invention, include but are not limited to cinnamics (e.g.
cinnamon), vanilla (e.g. vanillin), tea tree oil, citronella, camphor, coconut (e.g., SEBCO), antioxidants (e.g., vitamin D), turmeric, cypress extracts, lavender, colloidal silver, colloidal copper, colloidal zinc, limonene, lemon myrtle, lemongrass, neem seed, olive leaf extract, orange oil, palmarosa oil, patchouli oil, beeswax, honey, aloe vera, yoghurt-acidophilus-milk (YAM), acidophilus, yoghurt, phenylalanine, methylated spirits, seaweed, Allium cepa, and Allium sativum (e.g. allicin).
The varieties of compounds encompassed by the group of naturopathic agents are known to those skilled in the art. Mixtures and admixtures of naturopathic agents may also be employed, as well as the pharmaceutically-acceptable derivatives, extracts, oils, salts and esters of these agents.
The present invention encompasses the use of a single anti-malassezial agent or a plurality (e.g., mixture) of different anti-malassezial agents. Thus, for example, one anti-malassezial agent or a combination of different anti-malassezial agents (e.g.
two or more) may be used.
IV. Anti-Malassezial Phototherapy In some embodiments, the present invention provides anti-malassezial phototherapeutics to mitigate, treat, or prevent Parkinson's disease in a subject in need thereof comprising irradiating a location with a Malassezia infection with sufficient electromagnetic radiation to inhibit the growth of or kill the Malassezia, wherein the radiation is administered from a minimum wavelength of about 350 nanometers (nm) to a maximum wavelength of about 450 nm. Preferably the radiation is a wavelength of about 375, 380, 385, 390, 395, or 400 nm. More preferably the radiation is a wavelength of about 378, 379, 380, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395 nm. Even more preferably still the radiation is a wavelength of about 391.5 391.6, 391.7, 391.8, 391.9, 392, 392.1, 492.2, 392.3, 392.4, 392.5, 392.6, 392.7, 392.8, 392.9, 393, 393.1, 393.2, 393.3, 393.4, or 393.5 nm.
As used herein the term "anti-malassezial phototherapy", "anti-malassezial phototherapeutics", or "UV light therapy" refers to an artificial source of light of the frequencies of the present invention for use in mitigation, treatment, or prevention of Parkinson's disease. The frequency or frequencies of a given light source of the present invention can be across the entire range, a portion of the range or can be limited to a single frequency or band of frequencies within the range.
Examples of anti-malassezial phototherapy useful in the present invention include ultraviolet light therapy (phototherapy) comprising PUVA (psoralens plus ultraviolet A
radiation), broadband UVA, broadband UVB, combined UVA and UVB, narrow-band UVB, or UVA1. In some embodiments, the phototherapy is administered as a medium dose of UVA1 in combination with a medium dose of narrow-band UVB. In a preferred embodiment, the phototherapy is administered as a medium dose of UVA1 in combination with a medium dose of narrow-band UVB administered within the range of 30 to 60 J/cm2 (joules divided by centimeters squared).
In some embodiments, anti-malassezial phototherapy is a photo/antifungal combination therapy that is administered in combination with an anti-malassezial agent.
In a preferred embodiment of the photo/antifungal combination therapy, phototherapy is administered in combination with a topical anti-fungal compound such as selenium sulfide, ketoconazole, or miconazole. Topical emollients (e.g., propylene glycol) may be useful in phototherapy since phototherapy may increase skin dryness.
In some embodiments, a location is treated with separate light sources simultaneously. In some embodiments, a single dose exposure to light is from about 1 to 30 minutes. More preferably the exposure is from 6 to 15 minutes. Most preferably the exposure is 10 to 12 minutes. In some embodiments, the subject is administered a dose exposure 2 to 5 times daily, once a day, 1 to 3 times weekly, or monthly. In a preferred embodiment, the phototherapy is administered between four to six times per week. In some embodiments, the light source may be positioned very close or in contact with the body of the subject. In some embodiments, the light source is one that does not generate large amounts of heat when in use. In some embodiments, the light source is a light emitting diode (LED). In some embodiments, the light source is an LED light bulb having a light output of about 0.7 lumens at between 3 and 4 volts. In some embodiments, the light source is generated by a device that is hands-free, battery powered, and/or portable.
In some embodiments, the light source is encompassed in a tanning lamp or bed well known in the art. In some embodiments, the anti-malassezial phototherapy mitigates, treats, or prevents Parkinson's disease by preventing Malassezia from coming in contact with a subject in need of mitigation, treatment, or prevention of Parkinson's disease.
Descriptions of phototherapy suitable for use in preventing Malassezia from coming in contact with the subject are disclosed in U.S. Pat. No. 5,664,340 (to Brown) and U.S.
Pat. No. 8,109,981 (to Gertner et al.), which are incorporated herein by reference in their entirety.
V. Pharmaceutical Compositions The present invention pertains, at least in part, to compositions for treating Parkinson's disease in a subject comprising an effective amount of an anti-malassezial agent or salt thereof and a pharmaceutically acceptable carrier.
Compounds disclosed herein may be formulated with one or more pharmaceutically acceptable excipients, diluents, carriers, etc. to produce pharmaceutical compositions for administration to a subject, by any of various pharmaceutically approved routes, for the prevention, treatment or mitigation of Parkinson's disease.
Pharmaceutical compositions of the present invention may be made into a wide variety of product types. Product types include, but are not limited to solutions, lotions, creams, beach products, gels, hydrogels, sticks, sprays, nebulizers, pads, plasters, ointments, pastes, mousses, foams, and cosmetics. These product types may comprise several types of carrier systems including, but not limited to solutions, emulsions, gels, foams, and solids. The topical pharmaceutical compositions of the present invention formulated as solutions typically include a pharmaceutically-acceptable aqueous or organic solvent.
Pharmaceutical compositions of the present invention may be prepared as a concentrate form, so that consumer products can be produced therefrom by simple dilution, without necessarily blending in of other formulating components. In some embodiments, the concentrate form is an article of commerce.
The pharmaceutical compositions of the present invention may be suitable for any route of administration which allows an anti-malassezial agent to perform the intended function of the anti-malassezial agent; namely preventing, mitigating, or treating Parkinson's disease in a subject in need thereof Non-limiting examples of routes of administration of pharmaceutical compositions of the present invention include topical, intranasal, systemic, or oral administration.
In some embodiments, the pharmaceutical composition comprises an anti-malassezial agent and a pharmaceutically-acceptable carrier for use in the treatment, prevention, or mitigation of Parkinson's disease.
In some embodiments, the pharmaceutical composition comprises an anti-malassezial agent and a pharmaceutically-acceptable carrier for use in the treatment, prevention, or mitigation of fatigue, particularly mental fatigue, associated with Parkinson's disease.
The pharmaceutical compositions of the present invention further comprise packaged pharmaceutical compositions to treat, mitigate, or prevent Parkinson's disease. A
packaged pharmaceutical composition (also referred to as a "kit") is intended to include at least one anti-malassezial agent, packaged with instructions (e.g., instructions for once a day administration, twice a day administration, etc.) for administering the anti-malassezial agent(s) as a treatment, mitigation, or prevention of Parkinson's disease. The package can contain one or more containers filled with one or more of the ingredients of the pharmaceutical compositions of the invention.
In some embodiments, the packaged pharmaceutical compositions include one or more containers holding one or more anti-malassezial agents, alone or in combination with one or more pharmaceutically acceptable carriers, along with instructions for use for the treatment, mitigation, and/or prevention of Parkinson's disease.
In some embodiments, the packaged pharmaceutical composition may also include one or more medications known in the art to treat the symptoms of Parkinson's disease.
In some embodiments, an anti-malassezial agent of the packaged pharmaceutical composition is a member of one of the preferred antifungal compounds described herein.
In some embodiments, the packaged pharmaceutical compositions include a notice in a form prescribed by a governmental agency regulating the manufacture, use or sale of a pharmaceutical product or products, which notice reflects approval by the agency of manufacture, use or sale for human administration of a pharmaceutical composition of the present invention.
In some embodiments, the packaged pharmaceutical compositions include package labeling identifying an anti-malassezial agent along with instructions for use of the anti-malassezial agent for the treatment, mitigation, and/or prevention of Parkinson's disease.
In some embodiments, a pharmaceutical composition and/or packaged pharmaceutical composition of the present invention is sterilized.
The phrase "pharmaceutically acceptable" refers to those compounds, dosage forms, materials, and/or compositions which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of human beings without excessive toxicity, irritation, allergic response, or other problem or complication, commensurate with a reasonable benefit/risk ratio.
The phrase "pharmaceutically acceptable carrier" includes a pharmaceutically acceptable material, composition or vehicle, such as a liquid or solid filler, diluent, excipient, solvent or encapsulating material, involved in carrying or transporting the anti-malassezial agent within or to the subject such that the anti-malassezial agent can perform the anti-malassezial agent's intended function, e.g. to treat Parkinson's disease.
Each carrier must be "acceptable" in the sense of being compatible with the other ingredients of the formulation and not injurious to the subject.
Pharmaceutically acceptable carriers that may be useful in formulating pharmaceutical compositions of the present invention include but are not limited to lubricants, preservatives, stabilizers, solubilizers, penetrants, wetting agents, drying agents, bulking agents, fillers, emulsifiers, salts for influencing osmotic pressure, tonicity contributors (e.g., dextrose, mannitol, glycine and sodium chloride), buffers, antioxidants, colorings, flavorings and/or aromatic substances and the like which do not deleteriously react with the active compounds of the invention or each other.
Clearly, the skilled person can use other pharmaceutical formulations of the present invention containing anti-fungal compounds and pharmaceutically acceptable carriers.
Examples of pharmaceutically acceptable carriers known in the art that may be useful in formulating pharmaceutical compositions of the present invention, and methods of forming such compositions, are described in detail by reference to standard textbooks such as Remington: The Science and Practice of Pharmacy, Twenty-Second Edition (Lippincott Williams & Wilkins, 2012); Handbook of Pharmaceutical Excipients, Seventh Edition (Pharmaceutical Press, 2012); Ansel's Pharmaceutical Dosage Forms and Drug Delivery Systems, Tenth Edition (Lippincott Williams & Wilkins, 2013);
Modern Pharmaceutics, Fifth Edition (CRC Press, 2009); and in Harry's Cosmeticology, Ninth Edition (Chemical Publishing Company, 2015). Said standard textbooks are incorporated herein by reference in their entirety.
Examples of suitable pharmaceutically acceptable carriers include water, salt solutions, alcohol, vegetable oils, polyethylene glycols, gelatin, lactose, amylose, magnesium stearate, talc, silicic acid, viscous paraffin, perfume oil, fatty acid monoglycerides and diglycerides, petroethral fatty acid esters, hydroxymethyl-cellulose, polyvinylpyrrolidone, and the like.
In some embodiments, the pharmaceutical composition comprising an anti-malassezial agent and a pharmaceutically acceptable carrier has a pH of greater than 4Ø
In some embodiments, the pharmaceutical composition of the invention comprises an anti-malassezial agent, a pharmaceutically acceptable carrier, and a medication to treat the symptoms of Parkinson's disease.
When used herein, the term "topical" includes references to formulations that are adapted for application to a body surface or body surfaces (e.g. the skin and mucous membranes). Mucous membranes that may be mentioned in this respect include the mucosa of the vagina, the penis, the urethra, the bladder, the anus, the mouth (including the mucosa of the cheek, the soft palate, the under surface of tongue, the ceiling and floor of the mouth), the nose (including the nasal cavity, olfactory fossa, and cribiform plate), the throat (including the mucosa of the pharynx, the larynx, the trachea and the esophagus), the bronchi, the lungs, the eye (including the lacrimal duct and conjunctiva), the ear (including the inner ear canal), and the like. Skin includes groin region (e.g.
external genitals, anogenital area), scalp, scalp margin, neck, neckline, eyelids, eyebrow region, eyelashes, auricles, hairy areas of the head (e.g., eyelashes, eyebrows, mustache, beard), forehead, chin, cheeks, nail-beds (including fingers and toes), nasolabial folds, external ear canals, auricular areas, post-auricular creases, shoulders, elbows, back, sternal area, supra-sternal notch, supra-mammary area, mammary area (including areolar area), infra-mammary area, axillae, navel, and the like. Body surfaces include areas that are defined based on standard clinical/medical descriptions known in the art.
For example, the so-called "danger triangle" of the face (i.e., the area bounded by each lateral corner of the mouth to the bridge of the nose, including the nose and maxilla) is considered a body surface.
When used herein, the term "topical administration" includes methods of delivery to a body surface or body surfaces (e.g. the skin or mucous membranes). Topical administration involves any form of administration which involves a body surface or body surfaces (e.g. the skin or mucous membranes). Topical administration includes laying on or spreading a compound of the present invention on the skin (e.g.
the scalp) of a subject.
One of ordinary skill may readily determine the optimum amount of the topical formulation to be administered, administration methodologies and repetition rates. In general, it is contemplated that the topical formulations of the present invention will be applied in the range of once or twice or three or four or five times weekly up to once or twice or three or four or five times daily.
The topical formulation for use in the present invention may be in any form suitable for application to the body surface, such as a cream, lotion, sprays, solution, gel, hydrogel, foam, powder, ointment, paste, plaster, paint, shampoos, bio-adhesive, suspensions, aerosols, solids (e.g., bar soaps, deodorant), cosmetic formulations, and skin cleansing formulations, or the like, and/or may be prepared so as to contain liposomes, micelles, and/or microspheres. Such a formulation may be used in combination with an occlusive over-layer. In some embodiments, the occlusive over-layer allows moisture evaporating from the body surface to be maintained within the formulation upon application to the body surface and thereafter. In some embodiments, the occlusive over-layer provides the skin or mucosal membrane of the subject with a protective barrier from the eternal environment.
Topical formulations include any formulation suitable for topical delivery of a composition of the invention. Topical formulations may include those in which an active compound of the present invention is dissolved or dispersed in a dermatological vehicle known in the art (e.g. aqueous or non-aqueous gels, ointments, water-in-oil and oil-in-water emulsions). For example, constituents of such vehicles may comprise water, aqueous buffer solutions, non-aqueous solvents (e.g., ethanol, isopropanol, benzyl alcohol, propylene glycol, propylene glycol monolaurate, glycofurol and glycerol), oils (e.g. mineral oil, triglyceride, and dimethicone), a solubilising agent or solvent (e.g. a beta-cyclodextrin, such as hydroxypropyl beta-cyclodextrin, an alcohol, a polyol (such as ethanol, propylene glycol or glycerol); a thickening agent (e.g.
hydroxyethylcellulose); a gelling agent (e.g. a polyoxyethylene-polyoxypropylene copolymer); a preservative (e.g.
benzyl alcohol, benzalkonium chloride, and chlorhexidine); and a pH buffering agent (e.g. such as a mixture of dihydrogen phosphate and hydrogen phosphate salts).
The terms "pharmaceutically-acceptable aqueous solvent" and "pharmaceutically-acceptable organic solvent" refer to a solvent, which is capable of having dispersed (or dissolved therein) the active compound, and possesses acceptable safety properties (e.g., desired irritation and sensitization characteristics). Water is a typical aqueous solvent.
Non-limiting examples of suitable organic solvents include: propylene glycol, butylene glycol, glycerol, butanediol, and mixtures thereof Preferably, these solutions contain from about 0.01% to about 50% of the active compound, more preferably from about 0.1% to about 20%, and, for example, between about 0.1% and 10% of the active compound; and from about 1% to about 80% of an acceptable aqueous or organic solvent, more preferably from about 1% to about 30%.
In some embodiments, the topical pharmaceutical compositions of the present invention are formulated as an aerosol for administration to the subject as a spray. In further embodiments, a propellant is added to the solution composition of the aerosol to improve the desired activity of the aerosol.
Topical pharmaceutical compositions of the present invention may be formulated as a solution comprising an emollient. As used herein, "emollients" refer to materials used for the prevention or relief of dryness, as well as for the protection of the skin. Preferably, such compositions contain from about 0.1% to about 50% of the active compound and from about 2% to about 50% of a topical pharmaceutically-acceptable emollient.
A lotion can be made from a solution carrier system. Lotions preferably comprise from about 0.1% to about 20%, more preferably from about 1% to about 5%, of the active compound; from about 1% to about 20%, preferably from about 5% to about
10%, of an emollient; and from about 50% to about 90%, preferably from about 60% to about 80%, water.
Another type of product that may be formulated from a solution carrier system is a cream. A cream of the present invention would preferably comprise from about 0.1% to about 20%, more preferably from about 1% to about 5%, of the active compound;
from about 5% to about 50%, preferably from about 10% to about 20%, of an emollient, and from about 45% to about 85%, preferably from about 50% to about 75%, water.
Yet another type of product that may be formulated from a solution carrier system is an ointment. An ointment may comprise a simple base of animal or vegetable oils or semi-solid hydrocarbons (oleaginous). Ointments may also comprise absorption ointment bases which absorb water to form emulsions. Ointment carriers may also be water soluble. Typically, an ointment may also comprise from about 2% to about 10%
of an emollient plus from about 0.1% to about 2% of a thickening agent.
If the carrier is formulated as an emulsion, from about 1% to about 10%, preferably from about 2% to about 5%, of the carrier system comprises an emulsifier.
Emulsifiers may be nonionic, anionic or cationic.
Lotions and creams can be formulated as emulsions as well as solutions.
Preferably such lotions comprise from about 0.1% to about 20%, more preferably from about 1% to about 5%, of the active compound; from about 1% to about 20%, preferably from about 5% to about 10%, of an emollient; from about 25% to about 75%, preferably from about 45% to about 95%, water; and from about 0.1% to about 10%, preferably from about 0.5% to about 5%, of an emulsifier. Such creams would preferably comprise from about 0.1% to about 20%, more preferably from about 1% to about 5%, of the active compound; from about 1% to about 20%, preferably from about 5% to about 10%, of an emollient; from about 20% to about 80%, preferably from about 30% to about 70%, water; and from about 1% to about 10%, preferably from about 2% to about 5%, of an emulsifier. Single emulsion topical preparations, such as lotions and creams, of the oil-in- water type and water-in-oil type are known in the cosmetic art and are useful in the present invention. Micro-emulsion carrier systems are also useful in the present invention. These carrier systems are preferably combined with from about 1% to about 10% of the active compound. A method of formulating a gel or a cosmetic stick is by adding a suitable amount of a thickening agent to a cream or lotion formulation.
Various water-soluble materials may also be present in the compositions of this invention. These include humectants, proteins and polypeptides, preservatives and an alkaline agent. In addition, the topical compositions herein can contain conventional cosmetic adjuvants, such as dyes, opacifiers (e.g., titanium dioxide), pigments, and fragrances. Formulations of the invention suitable for oral administration may be in the form of capsules, pills, wafers, tablets, lozenges, cachets, powders, granules, or as a solution or a suspension in an aqueous or non-aqueous liquid, or as an oil-in-water or water-in-oil liquid emulsion, or as an elixir or syrup, or as pastilles (using an inert base, such as gelatin and glycerin, or sucrose and acacia) and/or as mouth washes and the like, each containing a predetermined amount of a compound of the invention as an active ingredient. A compound of the present invention may also be administered as an electuary, bolus, or paste.
In solid dosage forms of the invention for oral administration (capsules, tablets, wafers, pills, dragees, powders, granules and the like), the active ingredient is mixed with one or more pharmaceutically acceptable carriers (e.g., sodium citrate, dicalcium phosphate), and/or any of the following: fillers or extenders, such as starches, lactose, sucrose, glucose, mannitol, and/or silicic acid; binders, (e.g., carboxymethylcellulose, gelatin, sucrose and acacia); humectants (e.g. glycerol); disintegrating agents (e.g. agar-agar, calcium carbonate, tapioca starch); solution-retarding agents (e.g.
paraffin);
absorption accelerators; wetting agents (e.g. cetyl alcohol); absorbents (e.g.
kaolin);
lubricants (e.g., talc, magnesium stearate, solid polyethylene glycols, sodium lauryl sulfate); and coloring agents). In the case of capsules, tablets and pills, the pharmaceutical compositions may also comprise suitable buffering agents. Solid compositions of a similar type may also be employed as fillers in soft and hard-filled gelatin or gelatin-type capsules (e.g., employing such excipients as lactose, high molecular weight polyethylene glycols, and the like).
A tablet may be made by compression or molding, optionally with one or more accessory ingredients. Compressed tablets may be prepared using binder, lubricant, inert diluent, preservative, disintegrant, and/or surface- active or dispersing agent. Molded tablets may be made, for example, by molding in a suitable machine a mixture of the powdered compound moistened with an inert liquid diluent.
The tablets, and other solid dosage forms of the pharmaceutical compositions of the invention, such as dragees, capsules, pills, and granules, may optionally be scored or prepared with coatings and shells, such as enteric coatings and other coatings well known in the pharmaceutical-formulating art. They may also be formulated so as to provide slow or controlled release of the pharmaceutical compositions of the invention therein using, for example, hydroxypropylmethyl cellulose in varying proportions to provide the desired release profile, other polymer matrices, liposomes and/or microspheres. The solid dosage forms may be sterilized by, for example, filtration through a bacteria-retaining filter, or by incorporating sterilizing agents in the form of sterile solid compositions which can be dissolved in sterile water, or some other sterile injectable medium immediately before use. These compositions may also optionally contain opacifying agents and may be of a composition that they release the pharmaceutical compositions of the invention only, or preferentially, in a certain portion of the gastrointestinal tract, optionally, in a delayed manner. Examples of embedding compositions suitable for use include polymeric substances and waxes. The active compound may also be formulated in a micro-encapsulated form.
Liquid dosage forms for oral administration of an active compound include pharmaceutically acceptable emulsions, micro-emulsions, solutions, suspensions, syrups and elixirs. In addition to an active compound, the liquid dosage forms may contain inert diluents commonly used in the art, such as, for example, water or other solvents, solubilizing agents and emulsifiers (e.g., ethyl alcohol, isopropyl alcohol, ethyl carbonate, ethyl acetate, benzyl alcohol, benzyl benzoate, propylene glycol, glycerol, tetrahydrofuryl alcohol, polyethylene glycols and fatty acid esters of sorbitan, and mixtures thereof). Besides inert diluents, oral, intranasal, or ophthalmic compositions can also include adjuvants such as wetting agents, emulsifying and suspending agents, sweetening, flavoring, coloring, perfuming and preservative agents.
A wide variety of antifungal pharmaceutical formulations suitable for use in the present inventions are well known in the art. For example, descriptions of a variety of antifungal pharmaceutical formulations known in the art are found in: U.S.
Pat. No.
7,101,889 (to Kaczvinsky, Jr. et al.), U.S. Pat No. 6897033 (to Dawson et al.) U.S. Pat.
No. 6,656,928 (to McAdden), U.S. Pat. No. 6,046,176 (to Segal et al.), U.S.
Pat. No.
6,558,710 (to Godfrey), U.S. Pat. No. 7,820,720 (to Cevc et al.), U.S. Pat.
No. 4,006,222 (to Metzger), U.S. Pat. No. 7,732,450 (to Whitfield et al.), U.S. Pat No.
5,536,742 (to Mason), U.S. Pat. No. 5,730,965 (to Rapaport), U.S. Pat. No. 4,950,477 (to Schmitt), U.S. Pat. Appl. No. 11/671,416 (Lawyer et al.), U.S. Pat. No. 7,193,084 (to Werling et al), U.S. Pat. Appl. No. 12/446,166 (Schmaus et al.), U.S. Pat. Appl. No.
14/004,344 (0' Neil, et al.), U.S. Pat. Appl. No. US 12/663,766 (Hernandez et al.), and U.S.
Pat. No.
4,902,789 (to Michel, et al.), which are incorporated herein by reference in their entirety.
Examples of commercially available antifungal pharmaceutical formulations suitable for use in the present invention include: NIZORAL (ketoconazole 2% cream or shampoo), KENOZOLE-B (ketoconazole 2% & Beclomethasone 0.025% cream), MONISTAT (miconazole nitrate 2% cream), LAMISIL (terbinafine 1% solution or cream), ABELCET (amphotericin B 5mg/mL lipid complex injection), LITHIODERM
(lithium gluconate 8% gel), EFALITH (lithium succinate 8%/zinc sulfate 0.05%
cream), LOTRIMIN (clotrimazolel% cream, lotion, or solution), NOXAFIL (posaconazole 40 mg/mL oral suspension) and LOPROX (ciclopirox olamine 1% shampoo, gel, or cream), CANESTEN (clotrimazole 1% cream), HEAD&SHOULDERS (Zinc Pyrithione 1%
shampoo), SELSUN BLUE (Selenium sulfide 1% shampoo).
In some embodiments, amphotericin B for the treatment, mitigation, or prevention of Parkinson's disease is formulated as amphotericin B for injection which is a sterile, nonpyrogenic, lyophilized cake (which may partially reduce to powder following manufacture) providing 50 mg amphotericin B and 41 mg sodium desoxycholate buffered with 20.2 mg sodium phosphates (consisting of mono and dibasic sodium phosphate, phosphoric acid and sodium hydroxide). Crystalline amphotericin B
is insoluble in water; therefore, the active compound is solubilized by the addition of sodium desoxycholate to form a mixture which provides a colloidal dispersion for intravenous infusion following reconstitution. At the time of manufacture the air in the vial is replaced by nitrogen as a preservative.
The following examples and figures herein are disclosed for illustrative purposes only, to provide non-limiting illustrations and details of certain aspects of the present invention and are not intended to limit the scope of the invention.
VI. Therapeutic Kits The present technology can include kits that can be used for preventing, inhibiting, treating, or otherwise providing a therapy for inhibiting Parkinson's disease.
The kit may be useful for subjects diagnosed as being susceptible to or having Parkinson's disease.
The kits can include components described herein and/or in the claims.
In some embodiments, a kit can include an absorbent medium having an anti-malassezial agent. In some further embodiments, a kit can include a shower glove having the anti-malassezial agent in an absorbent region. In some yet further embodiments, the absorbent medium can be a sponge having the anti-malassezial agent.
In another aspect, the kit can provide articles of commerce and methods of marketing hair care compositions that can be used for a therapy for Parkinson's disease.
In some embodiments, the article of commerce comprises: (1) a container; (2) a skin care composition contained within said container, wherein said skin care composition comprises an anti-malassezial agent; and, optionally, (3) a communication, wherein said communication communicates that use of said skin care composition can reduce the chance of becoming susceptible to Parkinson's disease or of developing Parkinson's disease. The communication can provide information of the link between a malassezial infection and becoming susceptible to Parkinson's disease or becoming diagnosed with Parkinson's disease.
In another aspect, the present invention provides methods of marketing skin care compositions that can be used to reduce the chance of becoming susceptible to Parkinson's disease or of developing Parkinson's disease by inhibiting, preventing, or treating a malassezial infection.
In some embodiments, the method comprises: (a) offering for sale a skin care composition comprising an anti-malassezial agent; (b) communicating that said composition can be used to reduce the chance of becoming susceptible to Parkinson's disease or of developing Parkinson's disease by inhibiting, preventing, or treating a malassezial infection.
In some embodiments, the skin care composition contains an antifungal for treating a malassezial infection for the purposes of inhibiting, preventing, or treating someone susceptible to or having Parkinson's disease and dandruff Any container from which the skin care composition can be stored and/or contained can be used herein. Suitable containers can include, but are not limited to, bottles, tattles, tubes, pouches, blister packs, boxes, tubs, jars, and cans. Furthermore, containers can include primary containers, which contain the hair care composition itself, or secondary containers, which contain at least one primary container that contains the composition.
As used herein, "set of graphics" or "graphics" refers to the text and/or pictorial images that are disposed on a container. As used herein, "disposed on" means integral with and/or located on the container and can include, but is not limited to, disposed directly thereon (e.g., printed directly on the container), disposed indirectly thereon (e.g., printed on a sticker that is affixed to the outer portion of the container), and/or applied to the container by any other suitable means (e.g., sprayed, bonded, drawn, painted, printed, or molded). As used herein, "communication" means a message, and can include but is not limited to a printed (e.g., printed material attached directly or indirectly to the container), electronic, or broadcast message.
In one embodiment, the marketing described herein for a skin care product can be applied to any product that includes an anti-malassezial agent for treating a malassezial infection for the purpose of inhibiting, preventing, or treating someone susceptible to Parkinson's disease or someone having Parkinson's disease. Such products may be nasal products, hair products, ear products, cleaning products for nasal, skin, hair, ear, or other location, or the like. Additional information can be found in US 20120258185 and/or U520080059313, which both are incorporated herein by specific reference in their entirety.
Examples Example 1. A 55-year old female patient visits her physician complaining seborrheic dermatitis of the scalp, neck, shoulders, and face. Patient suffers from Parkinson's disease that was diagnosed about 7 months ago presenting with initial presenting symptoms of anosmia, tremor, and bradykinesia. Patient is administered oral fluconazole 100mg daily, topical clotrimazole 1% cream applied to the location of the seborrheic dermatitis twice daily, and tretinoin 0.04% cream applied to the location daily. This treatment regimen is continued for three months. At this time, patient examination demonstrates the seborrheic dermatitis infection is completely eradicated. At a 3-month follow-up from successful treatment of seborrheic dermatitis infection patient reports anosmia, has resolved. In addition, the Parkinson's disease symptoms of tremor and bradykinesia have decreased significantly.
Example 2. A 30-year old male subject is determined by genetic testing to possess LRRK2 gene mutation G20195 which is associated with an increased risk of Parkinson's disease. Subject is administered zinc pyrithione formulated as a shampoo once daily.
The zinc pyrithione shampoo is applied to the entire surface of the body excluding mucosal membranes. The shampoo is the commercially available Noble Formula Zinc Shampoo manufactured by Ontos, Inc (Chehalis, Washington). The shampoo comprises zinc pyrithione 2% prepared with purified water, sodium laureth sulfate, sodium laurel sulfate, glycol stearate, propylene glycol, sodium chloride, methyl paraben, hydroxyethelcellulose, and propyl paraben. The shampoo is applied to the subject daily as prophylactic treatment for the prevention of Parkinson's disease. The subject is followed up with clinical exam visits semi-annually over 7 years with no symptoms of Parkinson disease present on examination for the duration of follow-up.
Example 3. A 49-year old male patient is clinically evaluated by a physician for deterioration of health because of his progression of symptoms of Parkinson's disease which include tremor, speech dysfunction, aberrant personality changes, abulia, and difficulties with mentation. Patient has no overt symptoms of Malassezia infection.
However, clinical examination reveals that patient has anosmia and nasal sinusitis.
Clinical laboratory testing is performed with results positive for Malassezia infection demonstrated by microscopy morphologic findings and positive growth on Dixon agar media plating (glycerol mono-oleate, or Sabouraud dextrose agar, covered with a layer of olive oil and incubated at 37 C), with identification further confirmed by matrix-assisted laser desorption ionization¨time of flight mass spectrometry and multiplex polymerase chain reaction. Patient is treated with an intravenous administration of a commercially available amphotericin formulation of amphotericin B deoxycholate at 1.0 mg/kg/day in combination with a twice daily treatment regimen of intranasal aqueous saline solution.
The solution comprises a mixture of 1 teaspoon of baking soda, 1.5 teaspoons of salt, and 1 quart sterilized distilled water. The solution is administered intranasally using a pulsating irrigation device. The pulsating irrigation device sends a gentle pulse of the solution into the nose via a nasal irrigation tip that can reach into and contact with the upper nasal passages. The amphotericin B treatment regimen is discontinued after 3 weeks. The total amount of amphotericin B administered to the patient over the course of treatment is about 1.8 grams. The nasal wash is continued to be administered to the patient indefinitely on a once daily basis. Routine follow-up is conducted by the physician 6 months after completion of the amphotericin B treatment course.
Progression of Parkinson's disease is halted in the patient as measurement with the MDS-UPDRS.
Patient's caregiver reports that patient has "returned to being his normal self again" with improved mood, improved affect, decreased fatigue, decreased abulia, and improved mentation. Patient self-reporting of amelioration of symptoms is consistent with caregiver reports.
Example 4. Case Study The subject of the case study was a genotypic male, approximately age 50, who received a formal clinical diagnosis of idiopathic Parkinson disease approximately 5 years ago. The subject displayed classical signs and symptoms of Parkinson disease including masked facies, cogwheel rigidity, pill-rolling tremor, and bradykinesia. The subject described a complete anosmia (i.e. the inability to perceive odor or a lack of functioning olfaction). The subject had no known uncontrolled medical conditions (e.g., known active hepatic disease, inadequately treated hypertension, congestive heart failure).
The subject was not taking carbidopa-levodopa therapy or any other dopaminergic replacement pharmacologics. The subject had no known contraindication or allergy to fluconazole or zinc pyrithione in any form. On Day 1, the subject orally ingested fluconazole 400 mg (2 capsules); subsequently, the subject orally ingested 200 mg (1 capsule) a day for the remainder of a 3-month treatment period. The subject also washed his head, neck, and shoulders every third day with a shampoo containing 1% zinc pyrithione for the entire 3-month treatment period.
Results: The subject reported complete restoration of his sense of smell during week 4 of treatment. The restoration of his sense of smell continued for duration of treatment. The subject reported no worsening of symptoms as measured by the Movement Disorder Society ¨ Unified Parkinson's Disease Rating Scale (MDS-UPDRS) over the 3 month treatment duration. Further treatment for an additional 1 month beyond the 3 month treatment period resulted in improved mood during week 4 of treatment. The improved mood continued for the duration of treatment.
Example 5. Randomized Double-Blind Placebo-Controlled Pilot Study of Fluconazole Plus Zinc Pyrithione in Patients with Parkinson's Disease.
This study tests whether 3 months of treatment with combination of fluconazole and zinc pyrithione alters disease symptoms in patients with Parkinson's Disease.
The patient population is comprised of patients of either sex, ages 30 to 80, with idiopathic Parkinson's Disease with a modified Hoehn and Yahr stage 3 or less. Patients may be on stable doses of carbidopa-levodopa therapy for at least 1 month prior to baseline and expected to maintain a stable dose for the duration of the study. Patients with uncontrolled medical conditions (e.g., known active hepatic disease, inadequately treated hypertension, congestive heart failure) are excluded. Patients with known contraindication or allergy to fluconazole or zinc pyrithione in any form are excluded.
Each treatment group is comprised of 12 subjects.
Optionally, the environment is sanitized by removing any humidifiers. In addition, further environmental sanitation is performed by replacing (preferred) or washing pillow(s), pillow-case(s), bed sheets, blankets, towels, undergarments, socks, hats, etc. at least twice weekly. An air purifier with HEPA filter is present in the bedroom (e.g., GERMGUARDIANO AC4825 Purifier).
Patients are assigned treatment from a predetermined randomization schedule.
Half the patients are instructed to shampoo every third day with a shampoo containing 1% zinc pyrithione from an unlabeled bottle and avoid all other shampoos. These same patients also take active fluconazole that has been over-encapsulated. The other half of patients are instructed to shampoo every third day with a shampoo not containing 1%
zinc pyrithione in an unlabeled bottle and avoid all other shampoos. These same patients also take a capsule containing an inert substance.
Fluconazole capsules contain 200 mg of drug each. On Day 1, subjects take 400 mg (2 capsules); subsequently, they take 200 mg (1 capsule) a day for the remainder of the 3-month treatment period. The shampoo contains zinc pyrithione 1%. Subjects are instructed to shampoo every third day (or at least twice weekly) for entire 3-month treatment period.
Outcome measures are determined using The Movement Disorder Society ¨ Unified Parkinson's Disease Rating Scale (MDS-UPDRS) which is administered at baseline and then monthly for the 3-month treatment period. All parts of the MDS-UPDRS
assessed.
All data is summarized and depicted graphically. Simple descriptive statistics (e.g., mean, standard deviation) may be calculated.
Results. Patient examination at the end of the 3-month treatment period demonstrates an MDS-UPDRS score that is improved or maintained as same. Of significant note is that no further worsening of patient's symptoms occurs, even over much longer periods of time. Improvement or further improvement in MDS-UPDRS score may occur over a much longer period of time, such as between 1 and 2 years. After the 3 months of protocol treatment, however, the pathogenic version of the Malassezia is fully eradicated.
These examples are intended to provide non-limiting examples that may occur in relation to the present invention.
Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, numerous equivalents to the specific embodiments of the invention described herein. Such equivalents are intended to be encompassed by the present disclosure.
The entire contents of all references, patents, and patent applications cited herein are expressly incorporated by reference.
While this invention has been particularly shown and described with references to preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the scope of the invention encompassed by the appended claims.
Another type of product that may be formulated from a solution carrier system is a cream. A cream of the present invention would preferably comprise from about 0.1% to about 20%, more preferably from about 1% to about 5%, of the active compound;
from about 5% to about 50%, preferably from about 10% to about 20%, of an emollient, and from about 45% to about 85%, preferably from about 50% to about 75%, water.
Yet another type of product that may be formulated from a solution carrier system is an ointment. An ointment may comprise a simple base of animal or vegetable oils or semi-solid hydrocarbons (oleaginous). Ointments may also comprise absorption ointment bases which absorb water to form emulsions. Ointment carriers may also be water soluble. Typically, an ointment may also comprise from about 2% to about 10%
of an emollient plus from about 0.1% to about 2% of a thickening agent.
If the carrier is formulated as an emulsion, from about 1% to about 10%, preferably from about 2% to about 5%, of the carrier system comprises an emulsifier.
Emulsifiers may be nonionic, anionic or cationic.
Lotions and creams can be formulated as emulsions as well as solutions.
Preferably such lotions comprise from about 0.1% to about 20%, more preferably from about 1% to about 5%, of the active compound; from about 1% to about 20%, preferably from about 5% to about 10%, of an emollient; from about 25% to about 75%, preferably from about 45% to about 95%, water; and from about 0.1% to about 10%, preferably from about 0.5% to about 5%, of an emulsifier. Such creams would preferably comprise from about 0.1% to about 20%, more preferably from about 1% to about 5%, of the active compound; from about 1% to about 20%, preferably from about 5% to about 10%, of an emollient; from about 20% to about 80%, preferably from about 30% to about 70%, water; and from about 1% to about 10%, preferably from about 2% to about 5%, of an emulsifier. Single emulsion topical preparations, such as lotions and creams, of the oil-in- water type and water-in-oil type are known in the cosmetic art and are useful in the present invention. Micro-emulsion carrier systems are also useful in the present invention. These carrier systems are preferably combined with from about 1% to about 10% of the active compound. A method of formulating a gel or a cosmetic stick is by adding a suitable amount of a thickening agent to a cream or lotion formulation.
Various water-soluble materials may also be present in the compositions of this invention. These include humectants, proteins and polypeptides, preservatives and an alkaline agent. In addition, the topical compositions herein can contain conventional cosmetic adjuvants, such as dyes, opacifiers (e.g., titanium dioxide), pigments, and fragrances. Formulations of the invention suitable for oral administration may be in the form of capsules, pills, wafers, tablets, lozenges, cachets, powders, granules, or as a solution or a suspension in an aqueous or non-aqueous liquid, or as an oil-in-water or water-in-oil liquid emulsion, or as an elixir or syrup, or as pastilles (using an inert base, such as gelatin and glycerin, or sucrose and acacia) and/or as mouth washes and the like, each containing a predetermined amount of a compound of the invention as an active ingredient. A compound of the present invention may also be administered as an electuary, bolus, or paste.
In solid dosage forms of the invention for oral administration (capsules, tablets, wafers, pills, dragees, powders, granules and the like), the active ingredient is mixed with one or more pharmaceutically acceptable carriers (e.g., sodium citrate, dicalcium phosphate), and/or any of the following: fillers or extenders, such as starches, lactose, sucrose, glucose, mannitol, and/or silicic acid; binders, (e.g., carboxymethylcellulose, gelatin, sucrose and acacia); humectants (e.g. glycerol); disintegrating agents (e.g. agar-agar, calcium carbonate, tapioca starch); solution-retarding agents (e.g.
paraffin);
absorption accelerators; wetting agents (e.g. cetyl alcohol); absorbents (e.g.
kaolin);
lubricants (e.g., talc, magnesium stearate, solid polyethylene glycols, sodium lauryl sulfate); and coloring agents). In the case of capsules, tablets and pills, the pharmaceutical compositions may also comprise suitable buffering agents. Solid compositions of a similar type may also be employed as fillers in soft and hard-filled gelatin or gelatin-type capsules (e.g., employing such excipients as lactose, high molecular weight polyethylene glycols, and the like).
A tablet may be made by compression or molding, optionally with one or more accessory ingredients. Compressed tablets may be prepared using binder, lubricant, inert diluent, preservative, disintegrant, and/or surface- active or dispersing agent. Molded tablets may be made, for example, by molding in a suitable machine a mixture of the powdered compound moistened with an inert liquid diluent.
The tablets, and other solid dosage forms of the pharmaceutical compositions of the invention, such as dragees, capsules, pills, and granules, may optionally be scored or prepared with coatings and shells, such as enteric coatings and other coatings well known in the pharmaceutical-formulating art. They may also be formulated so as to provide slow or controlled release of the pharmaceutical compositions of the invention therein using, for example, hydroxypropylmethyl cellulose in varying proportions to provide the desired release profile, other polymer matrices, liposomes and/or microspheres. The solid dosage forms may be sterilized by, for example, filtration through a bacteria-retaining filter, or by incorporating sterilizing agents in the form of sterile solid compositions which can be dissolved in sterile water, or some other sterile injectable medium immediately before use. These compositions may also optionally contain opacifying agents and may be of a composition that they release the pharmaceutical compositions of the invention only, or preferentially, in a certain portion of the gastrointestinal tract, optionally, in a delayed manner. Examples of embedding compositions suitable for use include polymeric substances and waxes. The active compound may also be formulated in a micro-encapsulated form.
Liquid dosage forms for oral administration of an active compound include pharmaceutically acceptable emulsions, micro-emulsions, solutions, suspensions, syrups and elixirs. In addition to an active compound, the liquid dosage forms may contain inert diluents commonly used in the art, such as, for example, water or other solvents, solubilizing agents and emulsifiers (e.g., ethyl alcohol, isopropyl alcohol, ethyl carbonate, ethyl acetate, benzyl alcohol, benzyl benzoate, propylene glycol, glycerol, tetrahydrofuryl alcohol, polyethylene glycols and fatty acid esters of sorbitan, and mixtures thereof). Besides inert diluents, oral, intranasal, or ophthalmic compositions can also include adjuvants such as wetting agents, emulsifying and suspending agents, sweetening, flavoring, coloring, perfuming and preservative agents.
A wide variety of antifungal pharmaceutical formulations suitable for use in the present inventions are well known in the art. For example, descriptions of a variety of antifungal pharmaceutical formulations known in the art are found in: U.S.
Pat. No.
7,101,889 (to Kaczvinsky, Jr. et al.), U.S. Pat No. 6897033 (to Dawson et al.) U.S. Pat.
No. 6,656,928 (to McAdden), U.S. Pat. No. 6,046,176 (to Segal et al.), U.S.
Pat. No.
6,558,710 (to Godfrey), U.S. Pat. No. 7,820,720 (to Cevc et al.), U.S. Pat.
No. 4,006,222 (to Metzger), U.S. Pat. No. 7,732,450 (to Whitfield et al.), U.S. Pat No.
5,536,742 (to Mason), U.S. Pat. No. 5,730,965 (to Rapaport), U.S. Pat. No. 4,950,477 (to Schmitt), U.S. Pat. Appl. No. 11/671,416 (Lawyer et al.), U.S. Pat. No. 7,193,084 (to Werling et al), U.S. Pat. Appl. No. 12/446,166 (Schmaus et al.), U.S. Pat. Appl. No.
14/004,344 (0' Neil, et al.), U.S. Pat. Appl. No. US 12/663,766 (Hernandez et al.), and U.S.
Pat. No.
4,902,789 (to Michel, et al.), which are incorporated herein by reference in their entirety.
Examples of commercially available antifungal pharmaceutical formulations suitable for use in the present invention include: NIZORAL (ketoconazole 2% cream or shampoo), KENOZOLE-B (ketoconazole 2% & Beclomethasone 0.025% cream), MONISTAT (miconazole nitrate 2% cream), LAMISIL (terbinafine 1% solution or cream), ABELCET (amphotericin B 5mg/mL lipid complex injection), LITHIODERM
(lithium gluconate 8% gel), EFALITH (lithium succinate 8%/zinc sulfate 0.05%
cream), LOTRIMIN (clotrimazolel% cream, lotion, or solution), NOXAFIL (posaconazole 40 mg/mL oral suspension) and LOPROX (ciclopirox olamine 1% shampoo, gel, or cream), CANESTEN (clotrimazole 1% cream), HEAD&SHOULDERS (Zinc Pyrithione 1%
shampoo), SELSUN BLUE (Selenium sulfide 1% shampoo).
In some embodiments, amphotericin B for the treatment, mitigation, or prevention of Parkinson's disease is formulated as amphotericin B for injection which is a sterile, nonpyrogenic, lyophilized cake (which may partially reduce to powder following manufacture) providing 50 mg amphotericin B and 41 mg sodium desoxycholate buffered with 20.2 mg sodium phosphates (consisting of mono and dibasic sodium phosphate, phosphoric acid and sodium hydroxide). Crystalline amphotericin B
is insoluble in water; therefore, the active compound is solubilized by the addition of sodium desoxycholate to form a mixture which provides a colloidal dispersion for intravenous infusion following reconstitution. At the time of manufacture the air in the vial is replaced by nitrogen as a preservative.
The following examples and figures herein are disclosed for illustrative purposes only, to provide non-limiting illustrations and details of certain aspects of the present invention and are not intended to limit the scope of the invention.
VI. Therapeutic Kits The present technology can include kits that can be used for preventing, inhibiting, treating, or otherwise providing a therapy for inhibiting Parkinson's disease.
The kit may be useful for subjects diagnosed as being susceptible to or having Parkinson's disease.
The kits can include components described herein and/or in the claims.
In some embodiments, a kit can include an absorbent medium having an anti-malassezial agent. In some further embodiments, a kit can include a shower glove having the anti-malassezial agent in an absorbent region. In some yet further embodiments, the absorbent medium can be a sponge having the anti-malassezial agent.
In another aspect, the kit can provide articles of commerce and methods of marketing hair care compositions that can be used for a therapy for Parkinson's disease.
In some embodiments, the article of commerce comprises: (1) a container; (2) a skin care composition contained within said container, wherein said skin care composition comprises an anti-malassezial agent; and, optionally, (3) a communication, wherein said communication communicates that use of said skin care composition can reduce the chance of becoming susceptible to Parkinson's disease or of developing Parkinson's disease. The communication can provide information of the link between a malassezial infection and becoming susceptible to Parkinson's disease or becoming diagnosed with Parkinson's disease.
In another aspect, the present invention provides methods of marketing skin care compositions that can be used to reduce the chance of becoming susceptible to Parkinson's disease or of developing Parkinson's disease by inhibiting, preventing, or treating a malassezial infection.
In some embodiments, the method comprises: (a) offering for sale a skin care composition comprising an anti-malassezial agent; (b) communicating that said composition can be used to reduce the chance of becoming susceptible to Parkinson's disease or of developing Parkinson's disease by inhibiting, preventing, or treating a malassezial infection.
In some embodiments, the skin care composition contains an antifungal for treating a malassezial infection for the purposes of inhibiting, preventing, or treating someone susceptible to or having Parkinson's disease and dandruff Any container from which the skin care composition can be stored and/or contained can be used herein. Suitable containers can include, but are not limited to, bottles, tattles, tubes, pouches, blister packs, boxes, tubs, jars, and cans. Furthermore, containers can include primary containers, which contain the hair care composition itself, or secondary containers, which contain at least one primary container that contains the composition.
As used herein, "set of graphics" or "graphics" refers to the text and/or pictorial images that are disposed on a container. As used herein, "disposed on" means integral with and/or located on the container and can include, but is not limited to, disposed directly thereon (e.g., printed directly on the container), disposed indirectly thereon (e.g., printed on a sticker that is affixed to the outer portion of the container), and/or applied to the container by any other suitable means (e.g., sprayed, bonded, drawn, painted, printed, or molded). As used herein, "communication" means a message, and can include but is not limited to a printed (e.g., printed material attached directly or indirectly to the container), electronic, or broadcast message.
In one embodiment, the marketing described herein for a skin care product can be applied to any product that includes an anti-malassezial agent for treating a malassezial infection for the purpose of inhibiting, preventing, or treating someone susceptible to Parkinson's disease or someone having Parkinson's disease. Such products may be nasal products, hair products, ear products, cleaning products for nasal, skin, hair, ear, or other location, or the like. Additional information can be found in US 20120258185 and/or U520080059313, which both are incorporated herein by specific reference in their entirety.
Examples Example 1. A 55-year old female patient visits her physician complaining seborrheic dermatitis of the scalp, neck, shoulders, and face. Patient suffers from Parkinson's disease that was diagnosed about 7 months ago presenting with initial presenting symptoms of anosmia, tremor, and bradykinesia. Patient is administered oral fluconazole 100mg daily, topical clotrimazole 1% cream applied to the location of the seborrheic dermatitis twice daily, and tretinoin 0.04% cream applied to the location daily. This treatment regimen is continued for three months. At this time, patient examination demonstrates the seborrheic dermatitis infection is completely eradicated. At a 3-month follow-up from successful treatment of seborrheic dermatitis infection patient reports anosmia, has resolved. In addition, the Parkinson's disease symptoms of tremor and bradykinesia have decreased significantly.
Example 2. A 30-year old male subject is determined by genetic testing to possess LRRK2 gene mutation G20195 which is associated with an increased risk of Parkinson's disease. Subject is administered zinc pyrithione formulated as a shampoo once daily.
The zinc pyrithione shampoo is applied to the entire surface of the body excluding mucosal membranes. The shampoo is the commercially available Noble Formula Zinc Shampoo manufactured by Ontos, Inc (Chehalis, Washington). The shampoo comprises zinc pyrithione 2% prepared with purified water, sodium laureth sulfate, sodium laurel sulfate, glycol stearate, propylene glycol, sodium chloride, methyl paraben, hydroxyethelcellulose, and propyl paraben. The shampoo is applied to the subject daily as prophylactic treatment for the prevention of Parkinson's disease. The subject is followed up with clinical exam visits semi-annually over 7 years with no symptoms of Parkinson disease present on examination for the duration of follow-up.
Example 3. A 49-year old male patient is clinically evaluated by a physician for deterioration of health because of his progression of symptoms of Parkinson's disease which include tremor, speech dysfunction, aberrant personality changes, abulia, and difficulties with mentation. Patient has no overt symptoms of Malassezia infection.
However, clinical examination reveals that patient has anosmia and nasal sinusitis.
Clinical laboratory testing is performed with results positive for Malassezia infection demonstrated by microscopy morphologic findings and positive growth on Dixon agar media plating (glycerol mono-oleate, or Sabouraud dextrose agar, covered with a layer of olive oil and incubated at 37 C), with identification further confirmed by matrix-assisted laser desorption ionization¨time of flight mass spectrometry and multiplex polymerase chain reaction. Patient is treated with an intravenous administration of a commercially available amphotericin formulation of amphotericin B deoxycholate at 1.0 mg/kg/day in combination with a twice daily treatment regimen of intranasal aqueous saline solution.
The solution comprises a mixture of 1 teaspoon of baking soda, 1.5 teaspoons of salt, and 1 quart sterilized distilled water. The solution is administered intranasally using a pulsating irrigation device. The pulsating irrigation device sends a gentle pulse of the solution into the nose via a nasal irrigation tip that can reach into and contact with the upper nasal passages. The amphotericin B treatment regimen is discontinued after 3 weeks. The total amount of amphotericin B administered to the patient over the course of treatment is about 1.8 grams. The nasal wash is continued to be administered to the patient indefinitely on a once daily basis. Routine follow-up is conducted by the physician 6 months after completion of the amphotericin B treatment course.
Progression of Parkinson's disease is halted in the patient as measurement with the MDS-UPDRS.
Patient's caregiver reports that patient has "returned to being his normal self again" with improved mood, improved affect, decreased fatigue, decreased abulia, and improved mentation. Patient self-reporting of amelioration of symptoms is consistent with caregiver reports.
Example 4. Case Study The subject of the case study was a genotypic male, approximately age 50, who received a formal clinical diagnosis of idiopathic Parkinson disease approximately 5 years ago. The subject displayed classical signs and symptoms of Parkinson disease including masked facies, cogwheel rigidity, pill-rolling tremor, and bradykinesia. The subject described a complete anosmia (i.e. the inability to perceive odor or a lack of functioning olfaction). The subject had no known uncontrolled medical conditions (e.g., known active hepatic disease, inadequately treated hypertension, congestive heart failure).
The subject was not taking carbidopa-levodopa therapy or any other dopaminergic replacement pharmacologics. The subject had no known contraindication or allergy to fluconazole or zinc pyrithione in any form. On Day 1, the subject orally ingested fluconazole 400 mg (2 capsules); subsequently, the subject orally ingested 200 mg (1 capsule) a day for the remainder of a 3-month treatment period. The subject also washed his head, neck, and shoulders every third day with a shampoo containing 1% zinc pyrithione for the entire 3-month treatment period.
Results: The subject reported complete restoration of his sense of smell during week 4 of treatment. The restoration of his sense of smell continued for duration of treatment. The subject reported no worsening of symptoms as measured by the Movement Disorder Society ¨ Unified Parkinson's Disease Rating Scale (MDS-UPDRS) over the 3 month treatment duration. Further treatment for an additional 1 month beyond the 3 month treatment period resulted in improved mood during week 4 of treatment. The improved mood continued for the duration of treatment.
Example 5. Randomized Double-Blind Placebo-Controlled Pilot Study of Fluconazole Plus Zinc Pyrithione in Patients with Parkinson's Disease.
This study tests whether 3 months of treatment with combination of fluconazole and zinc pyrithione alters disease symptoms in patients with Parkinson's Disease.
The patient population is comprised of patients of either sex, ages 30 to 80, with idiopathic Parkinson's Disease with a modified Hoehn and Yahr stage 3 or less. Patients may be on stable doses of carbidopa-levodopa therapy for at least 1 month prior to baseline and expected to maintain a stable dose for the duration of the study. Patients with uncontrolled medical conditions (e.g., known active hepatic disease, inadequately treated hypertension, congestive heart failure) are excluded. Patients with known contraindication or allergy to fluconazole or zinc pyrithione in any form are excluded.
Each treatment group is comprised of 12 subjects.
Optionally, the environment is sanitized by removing any humidifiers. In addition, further environmental sanitation is performed by replacing (preferred) or washing pillow(s), pillow-case(s), bed sheets, blankets, towels, undergarments, socks, hats, etc. at least twice weekly. An air purifier with HEPA filter is present in the bedroom (e.g., GERMGUARDIANO AC4825 Purifier).
Patients are assigned treatment from a predetermined randomization schedule.
Half the patients are instructed to shampoo every third day with a shampoo containing 1% zinc pyrithione from an unlabeled bottle and avoid all other shampoos. These same patients also take active fluconazole that has been over-encapsulated. The other half of patients are instructed to shampoo every third day with a shampoo not containing 1%
zinc pyrithione in an unlabeled bottle and avoid all other shampoos. These same patients also take a capsule containing an inert substance.
Fluconazole capsules contain 200 mg of drug each. On Day 1, subjects take 400 mg (2 capsules); subsequently, they take 200 mg (1 capsule) a day for the remainder of the 3-month treatment period. The shampoo contains zinc pyrithione 1%. Subjects are instructed to shampoo every third day (or at least twice weekly) for entire 3-month treatment period.
Outcome measures are determined using The Movement Disorder Society ¨ Unified Parkinson's Disease Rating Scale (MDS-UPDRS) which is administered at baseline and then monthly for the 3-month treatment period. All parts of the MDS-UPDRS
assessed.
All data is summarized and depicted graphically. Simple descriptive statistics (e.g., mean, standard deviation) may be calculated.
Results. Patient examination at the end of the 3-month treatment period demonstrates an MDS-UPDRS score that is improved or maintained as same. Of significant note is that no further worsening of patient's symptoms occurs, even over much longer periods of time. Improvement or further improvement in MDS-UPDRS score may occur over a much longer period of time, such as between 1 and 2 years. After the 3 months of protocol treatment, however, the pathogenic version of the Malassezia is fully eradicated.
These examples are intended to provide non-limiting examples that may occur in relation to the present invention.
Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, numerous equivalents to the specific embodiments of the invention described herein. Such equivalents are intended to be encompassed by the present disclosure.
The entire contents of all references, patents, and patent applications cited herein are expressly incorporated by reference.
While this invention has been particularly shown and described with references to preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the scope of the invention encompassed by the appended claims.
Claims (35)
1. A method for preventing, treating or mitigating Parkinson's disease in a subject that is in need of such prevention, treatment or mitigation, the method comprising administering to the subject an anti-malassezial agent.
2. The method according to claim 1, wherein the method comprises administering to the subject an anti-malassezial agent containing an anti-fungal compound.
3. The method according to claim 2, wherein the anti-fungal compound is selected from the group consisting of zinc pyrithione, ciclopirox olamine, a polyene, an azole, an allylamine, a morpholine, a sulfonamide, a glucan synthesis inhibitor, and mixtures thereof
4. The method according to claim 3, wherein the polyene is amphotericin B.
5. The method according to claim 3, wherein the azole is selected from the group consisting of ketoconazole, itraconazole, fluconazole, and voriconazole.
6. The method according to claim 3, wherein the allylamine is terbinafine.
7. The method according to claim 3, wherein the morpholine is amorolfine.
8. The method according to claim 3, wherein the sulfonamide is sulfacetamide.
9. The method according to claim 1, wherein the method comprises administering to the subject an anti-malassezial agent containing an anti-inflammatory compound.
10. The method according to claim 9, wherein the anti-inflammatory compound is selected from the group consisting of a steroidal anti-inflammatory drug, a non-steroidal anti-inflammatory drug, and a topical calcineurin inhibitor.
11. The method according to claim 10, wherein the steroidal anti-inflammatory drug is betamethasone.
12. The method according to claim 10, wherein the non-steroidal anti-inflammatory drug is ibuprofen.
13. The method according to claim 10, wherein the topical calcineurin inhibitor is tacrolimus or pimecrolimus.
14. The method according to claim 1, wherein the method comprises administering to the subject an anti-malassezial agent containing an antiseptic compound.
15. The method according to claim 14, wherein the antiseptic compound is formulated as a laundry composition.
16. A method for preventing, treating or mitigating Parkinson's disease in a subject that is in need of such prevention, treatment or mitigation, the method comprising administering to the subject UV light phototherapy.
17. A therapeutic composition comprising an anti-malassezial agent for use in preventing, treating or mitigating Parkinson's disease in a subject that is in need of such prevention, treatment or mitigation.
18. A pharmaceutical composition comprising an anti-malassezial agent and a pharmaceutically-acceptable carrier for use in preventing, treating or mitigating Parkinson's disease in a subject that is in need of such prevention, treatment or mitigation.
19. A packaged pharmaceutical composition that is suitable for use in the treatment, prevention or mitigation of Parkinson's disease in a subject, comprising an anti-malassezial agent in a therapeutically effective amount for the treatment, prevention, or mitigation of Parkinson's disease, packaged with instructions for administering the anti-malassezial agent as a treatment, mitigation, or prevention of Parkinson's disease.
20. A method for reducing the destruction of nigral dopaminergic neurons in a subject, the method comprising administering to the subject a compound containing an anti-malassezial agent.
21. Use of an anti-malassezial agent for the preparation of a medicament for preventing, treating or mitigating Parkinson's disease in a subject.
22. Use of an anti-malassezial agent for the preparation of a medicament for preventing, treating or mitigating Parkinson's disease in a subject.
23. The method of claim 1, wherein the anti-malassezial agent is administered by any one or more of the following routes of administration: injection, topical, oral, intranasal, intra-aural, subcutaneous, intravenous, inhalation and transdermal.
24. A method of treating Parkinson's disease (PD) comprising administering to a patient with PD an anti-malassezial agent wherein at least one motor symptom of PD is treated or at least one non-motor symptom of PD is treated.
25. The method of claim 24, wherein the anti-malassezial agent is formulated for topical administration in the absence of compounds comprising triglycerides.
26. The method of claim 24, wherein the anti-malassezial agent is formulated for topical administration in the absence of compounds that are nutritive for Malassezia.
27. A pharmaceutical composition formulated for topical administration comprising an anti-malassezial agent and a pharmaceutically acceptable carrier or excipient with the proviso that the composition does not comprise a triglyceride.
28. Use of an anti-malassezial agent for treating at least one motor symptom of PD or at least one non-motor symptom of PD.
29. Use of an anti-malassezial agent in the manufacture of a medicament for the treatment of at least one motor symptom of PD or at least one non-motor symptom of PD wherein the medicament is formulated for topical administration in the absence of triglycerides.
30. The method of claim 2, wherein the anti-fungal agent is a lipase inhibitor.
31. The method of claim 30, wherein the lipase inhibitor is orlistat or cetilistat.
32. The method of claim 24, wherein the anti-malassezial agent is a lipase inhibitor.
33. The method of claim 32, wherein the lipase inhibitor is orlistat or cetilistat.
34. The method of claim 24, wherein the anti-malassezial agent is administered by any one or more of the following routes of administration: injection, topical, oral, intranasal, intra-aural, subcutaneous, intravenous, inhalation and transdermal.
35. The method of claim 26, wherein the anti-malassezial agent is orlistat or cetilistat.
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201662433324P | 2016-12-13 | 2016-12-13 | |
US62/433,324 | 2016-12-13 | ||
US201762504898P | 2017-05-11 | 2017-05-11 | |
US62/504,898 | 2017-05-11 | ||
PCT/US2017/066218 WO2018112106A1 (en) | 2016-12-13 | 2017-12-13 | Methods and compositions for treating parkinson's disease |
Publications (1)
Publication Number | Publication Date |
---|---|
CA3046501A1 true CA3046501A1 (en) | 2018-06-21 |
Family
ID=62559231
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA3046501A Abandoned CA3046501A1 (en) | 2016-12-13 | 2017-12-13 | Methods and compositions for treating parkinson's disease |
Country Status (7)
Country | Link |
---|---|
EP (1) | EP3554496A4 (en) |
JP (1) | JP2020502269A (en) |
CN (1) | CN110753543A (en) |
AU (1) | AU2017376458A1 (en) |
CA (1) | CA3046501A1 (en) |
MX (1) | MX2019007041A (en) |
WO (1) | WO2018112106A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113905715A (en) * | 2019-06-28 | 2022-01-07 | 宝洁公司 | Light enhancement processing method |
CN113005086B (en) * | 2021-02-01 | 2022-10-28 | 中国科学院遗传与发育生物学研究所 | Application of epothilone D and Apol8 in regulation and control of neural stem cell directional neuron differentiation |
CN115813841B (en) * | 2023-01-10 | 2023-09-05 | 广东迪美新材料科技有限公司 | Anti-dandruff itching-relieving composition, preparation method and application thereof, shampoo and preparation method |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6495538B2 (en) * | 1999-06-23 | 2002-12-17 | Zinc Therapeutics, Canada Inc. | Zinc ionophores as therapeutic agents |
WO2008021970A2 (en) * | 2006-08-09 | 2008-02-21 | Reid William K | Treatment of motor neuron disease, including certain neurological disorders, motor neuropathies and chronic inflammatory diseases |
EP1923041A1 (en) * | 2006-10-20 | 2008-05-21 | Symrise GmbH & Co. KG | Use of C10-C14 alkane diols for the preparation of a composition for the prophylaxis and/or treatment of Malassezia-induced dandruff, and compositions comprising C10-C14 alkane diols |
WO2008124131A1 (en) * | 2007-04-05 | 2008-10-16 | The John Hopkins University | Antifungal agents as neuroprotectants |
US20110111014A1 (en) * | 2007-06-26 | 2011-05-12 | Parkinson's Institute | Methods and compositions for treatment of neurological disorders |
US20090062244A1 (en) * | 2007-09-04 | 2009-03-05 | Joseph Schwarz | Pharmaceutical composition |
US20140243350A1 (en) * | 2011-07-05 | 2014-08-28 | Contera Pharma Aps | Use of serotonin receptor agonists for treatment of movement disorders |
EP3220901B1 (en) * | 2014-11-20 | 2020-02-19 | VIB vzw | Means and methods for treatment of early-onset parkinson's disease |
-
2017
- 2017-12-13 EP EP17880499.3A patent/EP3554496A4/en not_active Withdrawn
- 2017-12-13 CN CN201780086331.3A patent/CN110753543A/en active Pending
- 2017-12-13 JP JP2019551927A patent/JP2020502269A/en active Pending
- 2017-12-13 CA CA3046501A patent/CA3046501A1/en not_active Abandoned
- 2017-12-13 AU AU2017376458A patent/AU2017376458A1/en not_active Abandoned
- 2017-12-13 MX MX2019007041A patent/MX2019007041A/en unknown
- 2017-12-13 WO PCT/US2017/066218 patent/WO2018112106A1/en unknown
Also Published As
Publication number | Publication date |
---|---|
AU2017376458A2 (en) | 2019-08-01 |
JP2020502269A (en) | 2020-01-23 |
MX2019007041A (en) | 2022-09-09 |
CN110753543A (en) | 2020-02-04 |
EP3554496A4 (en) | 2020-05-13 |
EP3554496A1 (en) | 2019-10-23 |
AU2017376458A1 (en) | 2019-06-27 |
WO2018112106A1 (en) | 2018-06-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20200061018A1 (en) | Methods and compositions for treating parkinson's disease | |
JP6762931B2 (en) | Improvement of nasal composition and usage of the nasal composition | |
CN104940943A (en) | Sprayable gel-type skin/mucosa-adhesive preparation and administration system using the preparation | |
KR20140004186A (en) | Surfactant compositions | |
US20230172998A1 (en) | Ammonia oxidizing microorganisms for use and delivery to the intranasal system | |
ES2970059T3 (en) | Prader-Willi syndrome treatment method | |
CA3046501A1 (en) | Methods and compositions for treating parkinson's disease | |
US10251822B2 (en) | Methods and compositions for treating cutaneous fungal infections | |
BR112020003025A2 (en) | methods of treating osteoarthritis with cannabidiol transdermal gel | |
JP2021119208A (en) | Strontium based compositions and formulations for pain, pruritus and inflammation | |
US20240277955A1 (en) | Devices for storage and delivery of nonpathogenic microorganisms | |
US20130108714A1 (en) | Method of treating sinusitis, including chronic sinusitis | |
JP2005526841A (en) | Therapeutic 1,2,3,6-tetrahydropyrimidin-2-one composition and method using the same | |
US20060210482A1 (en) | Chemical composition and method for cold and sinus relief | |
US20090258946A1 (en) | Electrostatically charged nasal application multipurpose products and method | |
WO2019190503A1 (en) | Methods and compositions for treating parkinson's disease | |
RU2762506C1 (en) | Agent for applying oral and nasal cavities and method for its use as part of complex therapy of infectious and inflammatory diseases of nasal and oral cavities | |
TW202227104A (en) | Compositions for preventing infection | |
JP2012193159A (en) | Nasal spray | |
WO2021202332A1 (en) | Aqueous formulations containing povidone iodine for effective treatment and prevention of virus infections | |
JP2002241310A (en) | Locally applying composition | |
EA044553B1 (en) | DRUG FOR APPLICATION OF THE ORAL AND NOSE CAVITY AND METHOD OF ITS APPLICATION AS COMPOSITION OF COMPLEX THERAPY OF INFECTIOUS AND INFLAMMATORY DISEASES OF THE NASAL AND ORAL CAVITY | |
WO2022162254A1 (en) | Composition for use as an antiviral in the form of nasal drops and in nebulisers | |
CN115697346A (en) | Treatment of accommodation disorders | |
Whittaker | Chronic sinusitis: OTC management |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EEER | Examination request |
Effective date: 20190607 |
|
FZDE | Discontinued |
Effective date: 20211130 |