CA3026340A1 - Fusion protein for improving protein expression level from target mrna - Google Patents

Fusion protein for improving protein expression level from target mrna Download PDF

Info

Publication number
CA3026340A1
CA3026340A1 CA3026340A CA3026340A CA3026340A1 CA 3026340 A1 CA3026340 A1 CA 3026340A1 CA 3026340 A CA3026340 A CA 3026340A CA 3026340 A CA3026340 A CA 3026340A CA 3026340 A1 CA3026340 A1 CA 3026340A1
Authority
CA
Canada
Prior art keywords
asparagine
ppr
aspartic acid
binding
mrna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CA3026340A
Other languages
French (fr)
Inventor
Takahiro Nakamura
Yusuke Yagi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu University NUC
Original Assignee
Kyushu University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu University NUC filed Critical Kyushu University NUC
Publication of CA3026340A1 publication Critical patent/CA3026340A1/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K19/00Hybrid peptides, i.e. peptides covalently bound to nucleic acids, or non-covalently bound protein-protein complexes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif

Abstract

[Problem] The present invention addresses the problem of developing a method for controlling a target RNA. [Solution] Provided is a fusion protein containing: a functional domain that improves the protein expression from mRNA; and a PPR protein capable of selectively binding RNA bases or specifically binding an RNA base sequence, with respect to a target mRNA.

Description

Description [Title of Invention] FUSION PROTEIN FOR IMPROVING PROTEIN
EXPRESSION LEVEL FROM TARGET mRNA
[Technical Field]
[0001]
The present invention relates to fusion proteins for improving protein expression levels from target mRNAs.
[Background Art]
[0002]
Techniques of binding nucleic acid-binding protein factors revealed by a variety of analyses to sequences of interest are established and used in recent years. Use of this sequence-specific binding enables removal of a target DNA sequence or regulation (activation or inactivation) of expression of a protein coding gene present downstream of the target DNA sequence in some extent.
[0003]
While zinc finger nuclease (ZFN), TAL effector nuclease (TALEN), Crispr-ca59, and the like are known as techniques using protein factors which act on DNA, the development of techniques using protein factors which act specifically to RNA is still limited.
[0004]

The present inventors have proposed a method of designing a protein which can specifically bind to a target RNA sequence using the properties of PPR proteins (protein having one or more pentatricopeptide repeat (PPR) motifs), which are proteins mainly found in plants (Patent Literature 1).
[Citation List]
[Patent Literature]
[0005]
[Patent Literature 1]

[Summary of Invention]
[Technical Problem]
[0006]
In the disclosure according to Patent Literature 1, the amino acids which function when a PPR motif demonstrates RNA-binding properties were identified, and the relation between the structure of the PPR motif and the target base was revealed, thereby enabling the construction of proteins which have one or more PPR
motifs and can bind to RNAs having any sequence and length. However, no method has ever been found which actually regulates target RNAs using the techniques according to Patent Literature 1.

[Solution to Problem]
[0007]
As a result of extensive research on a method of improving a protein expression level from a target mRNA
using a PPR protein, the present inventors have found that a fusion protein of a predetermined functional domain and a PPR protein improves the protein expression level from the target mRNA, and have completed the present invention.
[0008]
Specifically, an embodiment of the present invention relates to a fusion protein for improving a protein expression level from a target mRNA, the fusion protein comprising:
(A) one or more functional domains which improve a protein expression level from an mRNA; and (B) a polypeptide moiety which can bind to a target mRNA in an RNA base-selective or RNA base sequence-specific manner, wherein polypeptide moiety (B) is a polypeptide moiety comprising one or more PPR motifs, each PPR motif comprising a polypeptide consisting of 30 to 38 amino acids in length and being represented by Formula 1:
[Formula 1]
(Helix A)-X-(Helix B)-!. (Formula 1) where Helix A is a moiety which consists of 12 amino acids in length and can form an a-helix structure, and is represented by Formula 2:
[Formula 2]
A1-A2-A3-A4-A6-A8-k-A8-A94110-Ai1-Al2 (Formula 2) where Ai to Al2 each independently represent an amino acid;
X is not present, or is a moiety consisting of 1 to
9 amino acids in length;
Helix B is a moiety which consists of 11 to 13 amino acids in length and can form an a-helix structure;
L is a moiety consisting of 2 to 7 amino acids in length and represented by Formula 3:
[Formula 3]
LVIrLVis-LwatiV"Liiie*Lirti (Formula 3) where the amino acids are numbered from the C-terminal as "i" (-1), "ii" (-2), ... and Li,, to Lvi, may not be present, and a combination of three amino acids Ai, A4, and Li, or a combination of two amino acids A4 and Lii corresponds to a base or base sequence of the target mRNA.
[0009]
In an embodiment according to the present invention, polypeptide moiety (B) comprises 2 to 30 PPR motifs, and the plurality of PPR motifs is arranged so as to specifically bind to the base sequence of the target mRNA.
[0010]
Moreover, in an embodiment according to the present invention, polypeptide moiety (B) comprises 5 to 25 PPR
motifs.
[0011]
Moreover, in an embodiment according to the present invention, one or more functional domains (A) each bind to an N-terminal side and/or a C-terminal side of polypeptide moiety (B).
[0012]
Moreover, in an embodiment according to the present invention, one or more functional domains (A) are selected from the group consisting of a domain which guides ribosome to the mRNA, a domain associated with initiation or promotion of translation of the mRNA, a domain associated with nuclear export of the mRNA, a domain associated with binding to an endoplasmic reticulum membrane, a domain containing an endoplasmic reticulum retention signal (ER retention signal) sequence, and a domain containing an endoplasmic reticulum signal sequence.
[0013]
Moreover, in an embodiment according to the present invention, the domain which guides ribosome to the mRNA
is a domain containing all or functional part of a polypeptide selected from the group consisting of DENR
(Density-regulated protein), MCT-1 (Malignant T-cell amplified sequence 1), TPT1 (Translationally-controlled tumor protein), and Lerepo4 (Zinc finger CCCH-domain), the domain associated with initiation or promotion of translation of the mRNA is a domain containing all or functional part of a polypeptide selected from the group consisting of eIF4E and eIF4G, the domain associated with nuclear export of the mRNA is a domain containing all or functional part of SLBP (Stem-loop binding protein), the domain associated with binding to an endoplasmic reticulum membrane is a domain containing all or functional part of a polypeptide selected from the group consisting of SEC61B, TRAP-alpha (Translocon associated protein alpha), SR-alpha, Dial (Cytochrome b5 reductase 3), and p180, the endoplasmic reticulum retention signal (ER
retention signal) sequence is a signal sequence containing a KDEL (KEEL) sequence, or the endoplasmic reticulum signal sequence is a signal sequence containing MGWSCIILFLVATATGAHS (SEQ ID
NO: 22).
[0014]
Moreover, in an embodiment according to the present invention, the combination of the three amino acids AI, A4, and Li, in each of the PPR motifs is:

(valine, threonine, asparagine), (phenylalanine, serine, asparagine), (phenylalanine, threonine, asparagine), (isoleucine, asparagine, aspartic acid), or (threonine, threonine, asparagine) in order of (Au A4, Lli) if a target base for the PPR motif is A (adenine);
(glutamic acid, glycine, aspartic acid), (valine, threonine, aspartic acid), (lysine, threonine, aspartic acid), or (leucine, threonine, aspartic acid) in order of (Au AA, Lil) if the target base for the PPR motif is G
(guanine);
(valine, asparagine, aspartic acid), (isoleucine, asparagine, asparagine), (isoleucine, asparagine, aspartic acid), (isoleucine, methionine, aspartic acid), (phenylalanine, proline, aspartic acid), or (tyrosine, proline, aspartic acid) in order of (Au ALI, L11) if the target base for the PPR motif is U (uracil); or (valine, asparagine, asparagine), (isoleucine, asparagine, asparagine), (valine, asparagine, serine), or (isoleucine, methionine, aspartic acid) in order of (Au if the target base for the PPR motif is C
(cytosine).
[0015]
Moreover, in an embodiment according to the present invention, the combination of the two amino acids A4 and in each of the PPR motifs is:

(threonine, asparagine), (serine, asparagine), or (glycine, asparagine) in order of (A4, Lii) if a target base for the PPR motif is A (adenine);
(threonine, aspartic acid) or (glycine, aspartic acid) in order of (A4, Lid if the target base for the PPR
motif is G (guanine);
(asparagine, aspartic acid), (proline, aspartic acid), (methionine, aspartic acid), or (valine, threonine) in order of (A4, Lii) if the target base for the PPR motif is U (uracil); or (asparagine, asparagine), (asparagine, serine), or (leucine, aspartic acid) in order of (A4, Lid if the target base for the PPR motif is C (cytosine).
[0016]
Another embodiment according to the present invention relates to a nucleic acid which encodes the fusion protein according to the present invention.
[0017]
Still another embodiment according to the present invention relates to a vector (preferably an expression vector) comprising the nucleic acid according to the present invention.
[0018]
Further still another embodiment according to the present invention relates to a method of improving a protein expression level from a target mRNA within a cell, the method comprising:

a step of providing the fusion protein according to the present invention or the vector according to the present invention; and a step of introducing the fusion protein or the vector into the cell.
[0019]
Moreover, in an embodiment according to the present invention, the cell is a eukaryotic cell.
[0020]
Moreover, in an embodiment according to the present invention, the cell is an animal cell.
[0021]
Moreover, in an embodiment according to the present invention, the animal cell is a human cell.
[0022]
Inventions having any combination of one or more features of the present invention described above are also included in the scope of the present invention.
[Brief Description of Drawings]
[0023]
[Figure 1] Figure 1 illustrates a schematic view of an effector plasmid and a reporter plasmid used in Examples, and a schematic view of an experimental outline.
Figure 1A illustrates a schematic view of the effector plasmid and the reporter plasmid used in Examples. A
fusion protein of PPR motifs and eIF4G expresses from the effector plasmid. In Examples, a CRR4 protein was used, whose target sequence is well researched. From the reporter plasmid, renilla luciferase (RLuc) and firefly luciferase (FLuc) are transcribed in the form of a dicistronic mRNA. A PPR-binding sequence (here, CRR4-binding sequence) was inserted into a site on the 5' end of FLuc. Figure 1B illustrates a schematic view of an experimental outline of Examples. Irrespective of the presence/absence of the PPR-binding sequence, RLuc is translated at a similar level. For this reason, the activity value of RLuc can be treated as a control in transfection in this reporter system. The translation of Fluc is started only when PPR-eIF4G binds to the PPR-binding sequence and translation factors can be attracted by the effects of eIF4G. In contrast, the translation of FLuc remains at a low level if the PPR-binding sequence is not present and thus, PPR-eIF4G cannot bind to the PPR-binding sequence.
[Figure 2] Figure 2 illustrates an experimental procedure of a reporter assay using HEK293T cells.
[Figure 3] Figure 3 shows the experimental results of Example 1. The activation of sequence-specific translation depends on CRR4-eIF4G and the PPR-binding sequence. This experiment was performed using an effector plasmid, into which CRR4-Flag (without translation activating factor, in white) or CRR4-eIF4G
(with translation activating factor, in gray) was inserted, and a reporter vector with or without an inserted PPR-binding sequence. From the results, it was verified that specific translation activity increased 2.75 times in the presence of both PPR-eIF4G and the PPR-binding sequence. The value represents the average and the standard deviation (N = 3).
[Figure 4] Figure 4 illustrates an outline of the experiment in Example 2.
[Figure 5] Figure 5 illustrates the experimental results in Example 2 and the functions of the domains.
[Figure 6] Figure 6 illustrates the experimental results in Example 2 and the functions of the domains.
[Description of Embodiment]
[0024]
[PPR motifs and PPR proteins]
Unless otherwise specified, the term "PPR motif"
used in the present invention indicates a polypeptide which is composed of 30 to 38 amino acids and has an amino acid sequence having an E value equal to or less than a predetermined value (desirably E-03), the E value being obtained at PF01535 in Pfam and PS51375 at Prosite during the analysis of the amino acid sequence with a protein domain search program on the Web. The position number of an amino acid forming the PPR motif defined in the present invention is substantially as defined as PF01535 while it corresponds to the number obtained by subtracting 2 from the location of the amino acid in PS51375 (for example, position 1 in the present invention corresponds to position 3 in PS51375). Note that the term "ii" (-2)-th amino acid refers to the second amino acid from the tail end (C-terminal side) of the amino acids forming one PPR motif or the amino acid close to the N-terminal by two amino acids from the first amino acid of the next PPR motif (that is, -2 amino acid). If the next PPR motif is not clearly identified, the forward amino acid by two amino acids from the first amino acid of the next helix structure is defined as "ii". See http://pfam.sanger.ac.uk/ for Pfam and http://www.expasy.org/prosite/ for Prosite.
[0025]
Although the conserved amino acid sequence of the PPR motif has low conservation properties at the amino acid level, two a-helices are well conserved on the secondary structure. Although a typical PPR motif is composed of 35 amino acids, its length is variable from 30 to 38 amino acids.
[0026]
More specifically, the term PPR motif used in the present invention is composed of a polypeptide having 30 to 38 amino acids in length and being represented by Formula 1:
[0027]

[Formula 411 (Helix A)-X-(Helix B)-1_ (Formula 1) where Helix A is a moiety which consists of 12 amino acids in length and can form an a-helix structure, and is represented by Formula 2:
[0028]
[Formula 511 ArA2-k-A4-A5-A6-A7-A8-A9AIVA11-Al2 (Formula 2) where Ai to Al2 each independently represent an amino acid;
X is not present, or is a moiety consisting of 1 to 9 amino acids in length;
Helix B is a moiety which consists of 11 to 13 amino acids in length and can form the a-helix structure; and L is a moiety consisting of 2 to 7 amino acids in length and represented by Formula 3:
[0029]
[Formula 6]
(Formula 3) where the amino acids are numbered from the C-terminal side as "i" (-1), "ii" (-2), ... and Lill to Lvii may not be present.
[0030]

Unless otherwise specified, the term "PPR protein"
used in the present invention indicates a PPR protein comprising one or more PPR motifs described above, preferably two or more PPR motifs described above.
Unless otherwise specified, the term "protein" used herein generally indicates substances consisting of polypeptides (chains of several amino acids bound through peptide bond), also including those consisting of relatively low molecular weight polypeptides. The term "amino acid" used in the present invention may indicates a usual amino acid molecule, or otherwise may indicate an amino acid residue forming a peptide chain in some cases.
Persons skilled in the art clearly understand from contexts which case the term indicates.
[0031]
Unless otherwise specified, the "selective" used in the present invention about the binding properties of the PPR motif to the RNA bases indicates that the binding activity of a PPR motif to one of the RNA bases is higher than the binding activity thereof to other bases.
Persons skilled in the art can plan the experiment for this selectivity and verify it, and can also determine through calculation.
[0032]
Unless otherwise specified, the term "RNA base" used in the present invention indicates a base of a ribonucleotide forming an RNA, specifically adenine (A), guanine (G), cytosine (C), or uracil (U). Note that although the PPR protein can have selectivity to the base in the RNA, it does not bind to a nucleic acid monomer.
[0033]
PPR protein is present in many plants, and 500 proteins, about 5000 motifs can be found in Arabidopsis thaliana. PPR motifs and PPR proteins having a variety of amino acid sequences are also present in many land plants such as Oryza, Populus, and Selaginella tamariscina. In the present invention, PPR motifs and PPR proteins present in the natural world may be used, or PPR motifs and PPR proteins designed based on the method disclosed in W02013/058404, for example, may be used.
Specifically, desired PPR motifs and PPR proteins can be designed based on the following information disclosed in W02013/058404.
[0034]
(I) Information on the position of the amino acid essential for selective binding The combination (Al, A4, Lii) of three, i.e., 1st, 4th, and "ii" (-1)-th amino acids of a PPR motif or the combination (A4, Lii) of two, i.e., 4th and "ii" (-1)-th amino acids is essential for selective binding to the RNA
base, and the target RNA base for binding can be determined by these combinations.
[0035]

The present invention can use the findings about the combination of three amino acids Al, A4, and Lii, and/or the combination of two amino acids A4 and Lii disclosed in W02013/058404.
[0036]
(II) Information about the correspondence of the combination of three amino acids Al, A4, and Lii to RNA
bases (3-1) If the combination of three amino acids Al, A4, and Lii is valine, asparagine, and aspartic acid in this order, the PPR motif has a selective RNA base binding ability as follows: binding to U is the strongest, and binding to C is the second strongest, followed by binding to A or G.
(3-2) If the combination of three amino acids Al, A4, and Lii is valine, threonine, and asparagine in this order, the PPR motif has a selective RNA base binding ability as follows: binding to A is the strongest, and binding to G
is the second strongest, followed by binding to C without binding to U.
(3-3) If the combination of three amino acids Al, A4, and Lii is valine, asparagine, and asparagine in this order, the PPR motif has a selective RNA base binding ability as follows: binding to C is the strongest and binding to A
or U is the second strongest, without binding to G.
(3-4) If the combination of three amino acids Al, A4, and Lii is glutamic acid, glycine, and aspartic acid in this order, the PPR motif has a selective RNA base binding ability as follows: binding to G is strong, without binding to A, U, or C.
(3-5) If the combination of three amino acids Al, A4, and Lii is isoleucine, asparagine, and asparagine in this order, the PPR motif has a selective RNA base binding ability as follows: binding to C is the strongest, and binding to U is the second strongest, followed by binding to A, without binding to G.
(3-6) If the combination of three amino acids Al, A4, and Lii is valine, threonine, and aspartic acid in this order, the PPR motif has a selective RNA base binding ability as follows: binding to G is the strongest and binding to U
is the second strongest, without binding to A or C.
(3-7) If the combination of three amino acids Al, A4, and Lii is lysine, threonine, and aspartic acid in this order, the PPR motif has a selective RNA base binding ability as follows: binding to G is the strongest and binding to A
is the second strongest, without binding to U or C.
(3-8) If the combination of three amino acids Al, A4, and Lii is phenylalanine, serine, and asparagine in this order, the PPR motif has a selective RNA base binding ability as follows: binding to A is the strongest, and binding to C is the second strongest, followed by binding to G and U.
(3-9) If the combination of three amino acids Al, A4, and Lii is valine, asparagine, and serine in this order, the PPR motif has a selective RNA base binding ability as follows: binding to C is the strongest and binding to U
is the second strongest, without binding to A or G.
(3-10) If the combination of three amino acids Al, A4, and Lii is phenylalanine, threonine, and asparagine in this order, the PPR motif has a selective RNA base binding ability as follows: binding to A is strong, without binding to G, U, or C.
(3-11) If the combination of three amino acids Al, A4, and Lii is isoleucine, asparagine, aspartic acid in this order, the PPR motif has a selective RNA base binding ability as follows: binding to U is the strongest and binding to A is the second strongest, without binding to G or C.
(3-12) If the combination of three amino acids Al, A4, and Lii is threonine, threonine, and asparagine in this order, the PPR motif has a selective RNA base binding ability as follows: binding to A is strong, without binding to G, U, or C.
(3-13) If the combination of three amino acids Al, A4, and Lii is isoleucine, methionine, and aspartic acid in this order, the PPR motif has a selective RNA base binding ability as follows: binding to U is the strongest and binding to C is the second strongest, without binding to A or G.
(3-14) If the combination of three amino acids Al, A4, and Lii is phenylalanine, proline, and aspartic acid in this order, the PPR motif has a selective RNA base binding ability as follows: binding to U is the strongest and binding to C is the second strongest, without binding to A or G.
(3-15) If the combination of three amino acids Al, A4, and Lii is tyrosine, proline, and aspartic acid in this order, the PPR motif has a selective RNA base binding ability as follows: binding to U is strong, without binding to A, G, or C.
(3-16) If the combination of three amino acids Al, A4, and Lii is leucine, threonine, and aspartic acid in this order, the PPR motif has a selective RNA base binding ability as follows: binding to G is strong, without binding to A, U, or C.
[0037]
(II) Information about the correspondence of the combination of two amino acids A4 and Lii to the RNA
bases (2-1) If A4 and Lii in this order are asparagine and aspartic acid, the PPR motif has a selective RNA base binding ability as follows: binding to U is the strongest, and binding to C is the second strongest, followed by binding to A and G.
(2-2) If A4 and Lii in this order are asparagine and asparagine, the PPR motif has a selective RNA base binding ability as follows: binding to C is the strongest, binding to U is the second strongest, followed by binding to A and G.
(2-3) If A4 and Lii in this order are threonine and asparagine, the PPR motif has a selective RNA base binding ability with strong binding to A and weak binding to G, U, and C.
(2-4) If A4 and Lii in this order are threonine and aspartic acid, the PPR motif has a selective RNA base binding ability with strong binding to G and weak binding to A, U, and C.
(2-5) If A4 and Lii in this order are serine and asparagine, the PPR motif has a selective RNA base binding ability as follows: binding to A is the strongest and binding to G, U, and C is the second strongest.
(2-6) If A4 and Lii in this order are glycine and aspartic acid, the PPR motif has a selective RNA base binding ability as follows: binding to G is the strongest, and binding to U is the second strongest, followed by binding to A, without binding to C.
(2-7) If A4 and Lii in this order are asparagine and serine, the PPR motif has a selective RNA base binding ability as follows: binding to C is the strongest, and binding to U is the second strongest, followed by binding to A and G.
(2-8) If A4 and Lii in this order are proline and aspartic acid, the PPR motif has a selective RNA base binding ability as follows: binding to U is the strongest, and binding to G, C, and C is the second strongest, without binding to A.
(2-9) If A4 and Lii in this order are glycine and asparagine, the PPR motif has a selective RNA base binding ability as follows: binding to A is the strongest, and binding to G is the second strongest, without binding to C or U.
(2-10) If A4 and Lii in this order are methionine and aspartic acid, the PPR motif has a selective RNA base binding ability with strong binding to U and weak binding to A, G, and C.
(2-11) If A4 and Lii in this order are leucine and aspartic acid, the PPR motif has a selective RNA base binding ability as follows: binding to C is the strongest, and binding to U is the second strongest, without binding to A or G.
(2-12) If A4 and Lii in this order are valine and threonine, the PPR motif has a selective RNA base binding ability as follows: binding to U is the strongest, and binding to A is the second strongest, without binding to G or C.
[0038]
[Use of PPR motifs and PPR proteins]
Identification and design:
One PPR motif can recognize a specific base of an RNA. According to the present invention, PPR motifs selective to A, U, G, or C can be selected or designed by disposing appropriate amino acids in specific positions of a PPR motif. Furthermore, a protein containing an appropriate series of such PPR motifs can recognize its corresponding specific sequence. Moreover, according to the findings described above, a PPR motif which can selectively bind to a desired RNA base and a protein having a plurality of PPR motifs which can sequence-specifically bind to a desired RNA can be designed. In design, the sequence information of a naturally occurring PPR motif may be referred with respect to moieties other than the amino acids disposed in the important positions of the PPR motif. Alternatively, a PPR motif may be designed by using a naturally occurring PPR motif as a whole and replacing only the amino acids in the important positions with other amino acids. The repetition number of the PPR motif can be appropriately determined according to the target sequence; for example, the repetition number can be 2 or more, or 2 to 30.
[0039]
The PPR motif or PPR protein thus designed can be prepared by a method well known to persons skilled in the art. For example, a nucleic acid sequence encoding an amino acid sequence of the designed PPR motif or PPR
protein can be determined from the amino acid sequence, and may be cloned to prepare a transformant (such as an expression vector) which produces a desired PPR motif or PPR protein.
[0040]
Preparation and use of fusion protein:
The present invention relates to a fusion protein of the PPR motif or PPR protein described above (i.e., a polypeptide which can bind RNA base-selectively or RNA
base sequence-specifically to the target mRNA) and one or more functional domains which improve a protein expression level from an mRNA.
[0041]
The "functional domain which improves a protein expression level from an mRNA" which can be used in the present invention may be all or functional part of a functional domain of a known protein which directly or indirectly promotes the translation of the mRNA, for example. More specifically, the functional domain which can be used in the present invention may be a domain which guides ribosome to the mRNA, a domain associated with initiation or promotion of translation of the mRNA, a domain associated with nuclear export of the mRNA, a domain associated with binding to an endoplasmic reticulum membrane, a domain containing an endoplasmic reticulum retention signal (ER retention signal) sequence, or a domain containing an endoplasmic reticulum signal sequence, for example.
[0042]
More specifically, the domain which guides ribosome to the mRNA may be a domain containing all or functional part of a polypeptide selected from the group consisting of DENR (Density-regulated protein), NOT-1 (Malignant T-cell amplified sequence 1), TPT1 (Translationally-controlled tumor protein), and Lerepo4 (Zinc finger CCCH-domain). The domain associated with initiation or promotion of translation of the mRNA may be a domain containing all or functional part of a polypeptide selected from the group consisting of eIF4E and eIF4G.
The domain associated with nuclear export of the mRNA may be a domain containing all or functional part of SLBP
(Stem-loop binding protein). The domain associated with binding to an endoplasmic reticulum membrane may be a domain containing all or functional part of a polypeptide selected from the group consisting of SE061B, TRAP-alpha (Translocon associated protein alpha), SR-alpha, Dial (Cytochrome b5 reductase 3), and p180. The endoplasmic reticulum retention signal (ER retention signal) sequence may be a signal sequence containing a KDEL (KEEL) sequence. The endoplasmic reticulum signal sequence may be a signal sequence containing MGWSCIILFLVATATGAHS (SEQ
ID NO: 22).
[0043]
In the fusion protein according to the present invention, the functional domain may be fused to the N-terminal side of the PPR protein, may be fused to the C-terminal side of the PPR protein, or may be fused to both of the N-terminal side and the C-terminal side thereof.

Moreover, the fusion protein according to the present invention may include several functional domains (for example, 2 to 5 functional domains). Furthermore, in the fusion protein according to the present invention, the functional domain and the PPR protein may be indirectly fused via a linker, for example.
[0044]
The present invention also relates to a nucleic acid encoding the fusion protein described above, and a vector (such as an expression vector) comprising the nucleic acid. The expression vector herein refers to, for example, a vector comprising a DNA having a promoter sequence, a DNA encoding a desired protein, and a DNA
having a terminator sequence, in this order from upstream.
The expression vector may not have these DNAs in this order as long as it demonstrates desired functions. A
variety of expression vectors which can be usually used by persons skilled in the art can be used in the present invention.
[0045]
Because the fusion protein according to the present invention uses the RNA translation mechanism of eukaryotes, it can function in cells of eukaryotes (such as animals, plants, microorganisms (e.g., yeasts), and protists). The fusion protein according to the present invention can function within animal cells (in vitro or in vivo) in particular. Examples of animal cells into which the fusion protein according to the present invention or a vector which expresses the fusion protein according to the present invention can be introduced can include cells derived from human, monkey, pig, cow, horse, dog, cat, mouse, and rat. Examples of cultured cells into which the fusion protein according to the present invention or a vector which expresses the fusion protein according to the present invention can be introduced can include, but should not be limited to, Chinese hamster ovarian (CHO) cells, COS-1 cells, COS-7 cells, VERO (ATCC
CCL-81) cells, BHK cells, dog kidney-derived MDCK cells, hamster AV-12-664 cells, HeLa cells, WI38 cells, 293 cells, 293T cells, and PER.C6 cells.
[0046]
The terms used herein excluding those particularly defined are used for illustration of the specific embodiments, and are not intended to be limitative to the invention.
[0047]
The term "comprise" used herein, unless contexts clearly require different understandings, is intended to express that a described entry (such as a member, a step, a component, or a number) is present, and is intended not to exclude the presence of other entries (such as a member, a step, a component, or a number).
[0048]

Unless otherwise defined, all the terms used herein (including technical terms and scientific terms) have the same meanings as those broadly understood by persons skilled in the art to which the present invention belongs.
Unless otherwise clearly defined, the terms used herein should be interpreted as having the meanings consistent to those herein and its related technical field, and should not be interpreted as idealized or excessively formal meanings.
[0049]
Hereinafter, the present invention will be described more in detail with reference to Examples. However, the present invention can be implemented with a variety of aspects, and should not be construed as limitative to Examples described below.
[Examples]
[0050]
Example 1: Improvement in protein expression level from target mRNA by fusion protein of PPR motif and eIF4G
[0051]
Materials (Equipment) - Basic facility for molecular biological experiment (for construction of plasmids, for example) - Inverted microscope (DM IL S40, Leica Microsystems, Wetzlar, Germany) - CO2 incubator (KM-CC17RH2, Panasonic Healthcare, Tokyo, Japan) - Clean bench (MHE-S1300A2, Panasonic Healthcare, Tokyo, Japan) - Aspirator (SP-30, Air Liquide Medical Systems, Bovezzo BS, Italy) - Centrifuge (swing rotor) (LC-200, Tomy Seiko, Tokyo, Japan) - Ultra-low temperature freezer (-80 C) (MDF-C8V, Panasonic Healthcare, Tokyo, Japan) - plate reader (EnSight Kaleido, PerkinElmer, Waltham, MA, USA)
[0052]
(Cell culturing) - HEK293T cell line (see note 1) - Dulbecco's modified Eagle's culture medium (DMEM, glucose-rich) (see note 2) - 100x penicillin-streptomycin solution - Fetal bovine serum (FBS) (see note 3) - EDTA-NaCl solution: 10 mM EDTA and 0.85% (w/v) NaCl, pH adjusted to 7.2 to 7.4, autoclave sterilized, stored at room temperature - 100 x 20 mm cell culture petri dish (Greiner bio one, Frickenhausen, Germany) - 10 mL disposable sterilized pipette - 15 mL and 50 mL plastic centrifuge tubes - 1.8 mL cryotube (Nunc; Thermo Fisher Scientific, Waltham, MA, USA) - Freeze container (Nalgene; Thermo Fisher Scientific, Waltham, MA, USA) - Bambanker (Lymphotec, Tokyo, Japan)
[0053]
(Transfection) - Effector plasmid: pcDNA3.1 (Thermo Fisher Scientific, Waltham, MA, USA) was used as a basic vector.
A fusion gene of PPR and eIF4G is inserted into an expression cassette (100 ng/ L) (see note 4).
- Reporter plasmid: pcDNA3.1 (Thermo Fisher Scientific, Waltham, MA, USA) was used as a basic vector.
Luciferase genes are inserted into an expression cassette, and a PPR-binding sequence is inserted into its 5'-UTR
(100 ng/ L).
- 96-well plate coated with poly-L-lysine (AGC
Techno glass, Shizuoka, Japan) - lx phosphate-buffered saline, PBS(-): 1.47 mM
KH2PO4, 8.1 mM Na2HPO4, 137 mM NaCl, and 2.7 mM KC1. pH
adjusted to 7.4, autoclave sterilized, stored at room temperature - Hemocytometer (for counting the number of cells) (Improved Neubauer Type Cell counter plate, Watson, Hyogo, Japan) - Transfection reagent (HilyMax, Dojindo Molecular Technologies, Kumamoto, Japan)
[0054]
(Luciferase assay) - Dual-Glo Luciferase Assay System (Promega, Madison, WI, USA.) - 96-well luminometer plate (PerkinElmer, Waltham, MA, USA).
[0055]
Experimental method (Construction of vector) The reporter assay requires an effector plasmid and a reporter plasmid. These two plasmids both are constructed based on pcDNA3.1. The effector plasmid includes a fusion gene encoding a PPR protein and a partial domain of human eIF4G (SEQ ID NO: 1) (Figure 1A).
The PPR protein moiety used was CRR4 (SEQ ID NO: 2). The reporter plasmid includes two open reading frames (ORFs), specifically, renilla luciferase (RLuc) and firefly luciferase (FLuc), which are dicistronically transcribed (Figure 1A). The RLuc gene is located on the side of the 5'-end of the FLuc gene, and was used as a control of gene expression. The PPR-binding region is inserted into the 5'-UTR of the ORE of FLuc, and consists of three repetitions of a CRR4-recognizing sequence (5V-UAUCUUGUCUUUA-3') (SEQ ID NO: 3) interrupted with four-base sequences (ATCG and GATC). To express both of the fused effector gene and the reporter gene, a cytomegalovirus promoter (CMV) and a bovine growth hormone gene-derived polyadenylation signal were used.
For a control experiment, an effector plasmid having no eIF4G was constructed by fusing a FLAG epitope tag to the PPR. A control reporter plasmid without a PPR-binding region was also constructed.
[0056]
The outline of the procedures from cell culturing to the reporter assay in Examples is shown in Figure 2.
[0057]
(Cell culturing from frozen stock) This step is aseptically performed. All the tools are preliminarily antisepticized with 70% ethanol.
1. A 9 mL DMEM culture medium is placed into a 15 mL
centrifuge tube (sterilized).
2. 1 mL of frozen HEK293T cells in a cryotube is incubated within a water bath at 37 C to quickly melt the cells.
3. The cells are placed into the 15 mL centrifuge tube containing 9 mL DMEM.
4. The centrifuge tube is centrifuged at room temperature and 1100 xg for two minutes, and the supernatant is removed.
5. The cells are resuspended in 10 mL DMEM (FBS is added such that the final concentration is 10%).
6. The suspended cells are transferred into a 100 mm petri dish. The petri dish was left to stand in an incubator at 37 C and under a 5% CO2 condition. If the culturing was started from the frozen stock, the cultured cells were subcultured after 24 hours.
[0058]
To keep the cells healthy (see note 5), the cell density on the surface of the petri dish is maintained between 10% and 80%. The passage is basically performed every three days (two times a week), or is performed according to the growth rate of the cells. Furthermore, to keep the number of passages small, cells are freshly cultured from the frozen stock once a month. Keeping the number of passages small and thus keeping the cells healthy are important for efficient DNA transfection.
[0059]
(Passages to maintain cells) 1. New 100 mm petri dishes are provided as required.
8 mL DMEM and 1 mL FBS are preliminarily placed onto each of the petri dishes.
2. The culture medium on a petri dish containing the cultured cells is removed with an aspirator (see note 6).
3. 2 mL EDTA-NaCl solution is gently added onto adhering cells on the surface of the petri dish so as not to peel off the cells. The petri dish is turned around to evenly distribute the solution across the entire surface of the petri dish. The EDTA-NaCl solution is removed with an aspirator. The petri dish is tapped to peel off the cells.

4. 10 mL DMEM is added to the cells in the petri dish, and the cells are suspended by gently pipetting.
5. 1 mL suspended cells (10% cultured cells) are added to the petri dishes preliminarily provided and each containing 9 mL culture medium. Each of the petri dishes is turned around to distribute the cells across the entire surface thereof.
[0060]
(Freeze storage of cells) A frozen stock is prepared with Bambanker reagent and cultured cells in a logarithmic growth phase at a cell density up to 50%. Use of Bambanker provides a high recovery rate and facilitates long-term storage.
1. The cells on the second day since the passage are peeled off according to the procedure for passage. 5 to mL DMEM is added, and the cells are recovered in a 50 mL centrifuge tube.
2. The centrifuge tube is centrifuged at room temperature and 1100 xg for two minutes, and the supernatant is removed.
3. 1 mL Bambanker per petri dish is added to suspend the cells.
4. The suspended cells are quickly dispensed into cryotubes, and the cryotubes are covered with their lids.
5. The cryotubes are placed in a dedicated freeze container, and are left to stand at -80 C for 12 hours (see note 7).

6. The cryotubes are transferred into a standard sample box, and are stored at -80 C or in liquid nitrogen.
[0061]
(Transient gene introduction (transfection)) 1. Before starting transfection, petri dishes each containing the cells on the second day since the passage are provided as required, and the cells are checked whether they are healthy (normal) or not (see note 8).
About 96 assays can be performed with one petri dish as an estimate.
2. The cells on the second day since the passage are peeled off according to the procedure for passage, and the suspended cells are transferred into a 50 mL
centrifuge tube.
3. The centrifuge tube is centrifuged at room temperature and 1100 xg for two minutes, and the supernatant is removed.
4. Cell clusters are completely dispersed in 10 mL
DMEM (FBS is added such that the final concentration is 10%).
5. The number of cells is counted with a hemocytometer and an inverted microscope. The cells are suspended in an appropriate amount of DMEM (FBS is added such that the final concentration is 10%) such that the number of cells is 1 to 2 x 105 cells/mL.
6. A 96-well plate is provided. 200 L (2 to 4 x 104 cells/mL) per well of suspended cultured cells is placed into each well, and the plate is left to stand overnight in an incubator at 37 C under a 5% CO2 condition. One well is used for one assay.
7. On the next day, the culture medium is carefully removed from each well, and is replaced with 100 L of new DMEM (FBS is added such that the final concentration is 10%).
8. 400 ng effector plasmid (4 L of 100 ng/ L) and 100 ng reporter plasmid (1 L of 100 ng/ L) are placed into a single well on a new 96-well PCR plate (or a 0.2 mL tube).
9. For one assay, 1 L HilyMAX is diluted with 10 L
serum-free DMEM.
10. 11 L diluted solution is placed into each of the wells containing the plasmids. The solution is well mixed with the plasmids by pipetting.
11. The solution is left to stand at room temperature for 15 minutes. The total amount of the mixture is placed into the wells containing the cultured cells. The plate is left to stand in an incubator at 37 C under a 5% CO2 condition for 24 hours.
[0062]
(Luciferase assay) The dual luciferase assay is performed using Dual-Glo Luciferase Assay System according to the usage instruction from the manufacturer except for a few modifications.

1. After 24 hours from the transfection, the culture medium of each well is replaced with 40 L lx PBS(-).
2. 40 L of Dual-Glo luciferase reagent is placed into each well, and is well mixed with the culture medium by pipetting.
3. The mixture is left to stand at room temperature for 10 minutes, and the total amount thereof is transferred into a 96-well luminometer plate.
4. The light emission from firefly luciferase related with expression of FLuc gene is measured with a plate reader.
5. A Stop & Glo substrate is 100-fold diluted with a Dual-Glo Stop & Glo buffer. 40 L of the diluted solution is added into each well.
6. The plate is left to stand at least at room temperature for 10 minutes, and then the light emission from renilla luciferase related with expression of RLuc gene is measured.
[0063]
(Data analysis) 1. The value of FLuc/RLuc is calculated to correct a difference in transfection efficiency between the assays or experimental errors.
2. An increase in activity of reporter gene expression is determined in the presence of the PPR-binding region and in the absence thereof by dividing an experimental value obtained using the plasmid according to the present invention (plasmid encoding a fusion protein of CRR4 and a translation activation domain eIF4G) by an experimental value obtained using a control plasmid (plasmid encoding a fusion protein of CRR4 and FLAG-tag).
[0064]
Experimental results The results of the luciferase assay are shown in Figure 3. As shown in Figure 3, 2.75-fold translation activity was specifically verified in the presence of both of the PPR-eIF4G and the PPR-binding sequence. That is, it is demonstrated that the fusion protein of the PER
protein and the functional domain which improve a protein expression level from an mRNA improves the protein expression level from the target mRNA.
[0065]
Notes (Note 1) HEK293T is a human fetus-derived kidney cell line which expresses an SV40 large T antigen. The cell line is readily cultured, and can be transfected with high efficiency by a variety of methods. HEK293T cells are available from RIKEN BRC (ja.brc.riken.jp) or ATCC
(www.atcc.org).
(Note 2) lx penicillin-streptomycin solution is added to DMEM to avoid contamination with microorganisms.
(Note 3) Before use, FBS is inactivated at 56 C for 30 minutes, and is stored at 4 C.

(Note 4) The purity of the plasmid is significantly important to the transfection efficiency. The plasmid should be isolated using a kit of a transfection grade.
(Note 5) A daily growth rate is an index indicating that the cells are healthy. To avoid suppression of cell growth, the cells should be always cultured in a sufficient space under a sufficient nutritional condition.
(Note 6) HEK293T cells should be gently treated when the culture medium is replaced because the cells are readily peeled off from the culturing petri dish.
(Note 7) The dedicated freeze container is a box whose freezing speed can be adjusted (about -1 C per minute at -80 C), and enables the cells to be freeze stored in a non-programmable -80 C freezer.
(Note 8) In transfection, cells are used at a culture density of 50 to 80%. However, an appropriate cell density depends on the transfection reagent.
Additionally, the ratio of the transfection reagent ( L) to the plasmid DNA ( g) should be also optimized according to the usage instructions from the manufacturer.
The procedure described herein is optimized for a condition where a 96-well plate, HEK293T cells, and HilyMAX as a transfection reagent are used.
[0066]
Example 2: Improvement in protein expression level from target mRNA by fusion protein of PPR and another functional domain
[0067]
In the case where useful substances are produced using cells, the amounts of protein synthesized by endogenous genes and exogenous genes should be precisely controlled. The final amount of the synthesized protein is determined by the insertion positions of genes, the mRNA transcription amount, post-transcriptional regulation (regulation at an RNA level), post-translational modification, and the like. For these reasons, the present inventors have devised a method of enhancing the translation of mRNAs taking advantage of the fact that a PPR protein sequence-specifically binds to a target RNA molecule (Figure 4). In the translation of mRNAs in eukaryotes, an mRNA undergoes action of a translation initiation factor (eukaryotic initiation factor; eIF). As a result, the ribosome is recruited near the translation starting point, and then the translation of the mRNA is started. In other words, the present inventors have considered that the translation of the mRNA can be artificially enhanced if the ribosome can only be recruited onto the mRNA. Moreover, the translation of an mRNA into a protein is usually performed in the ER. For this reason, the present inventors have considered that the translation of the mRNA can be enhanced by intentionally localizing the target mRNA into the ER.
[0068]

Verification by experiment To verify the idea above, a reporter assay system using animal cultured cells (HEK293T) was prepared (the experiment was performed by the same method as that in Example 1 except that different functional domains were used). The system was constructed using CRR4 protein (one of Arabidopsis thaliana PPR proteins), which is known to bind to a specific RNA sequence (UAUCUUGUCUUUA) (SEQ ID NO: 3). First, a fusion protein expression vector (effector plasmid) of CRR4 and a candidate protein functional domain was prepared. The selected candidate domains were (a) eIF proteins (eIF4E and eIF4G), (b) ribosome-bound proteins (DENR, MCT-1, TPT1, and Lerepo4), (c) translational regulation factors (SLBPs) of Histone which promote transport of the transcribed mRNA from the nucleus to the cytoplasm, (d) ER anchor proteins (SEC61B, TRAP-alpha, SR-alpha, Dial, and p180), (e) ER retention signal (KDEL), and (f) ER signal peptide. The fusion proteins were cloned so as to express in the form of HA-CRR4-XX or XX-CRR4-HA (HA: epitope tag (SEQ ID NO: 4);
XX: candidate domain).
[0069]
The reporter plasmid included an expression cassette where renilla luciferase (RLuc) and firefly luciferase (FLuc) are transcribed in the form of a dicistronic mRNA
under the control of a CMV promoter. Three PPR-binding sequences (UAUCUUGUCUUUA) (SEQ ID NO: 3) are inserted into a site on the 5'-end of Fluc.
[0070]
The effector plasmid and the reporter plasmid were transfected into HEK293T cells, and the intensities of light emission from RLUC and FLUC were measured. The intensity of light emission from RLUC was treated as a transfection control, and the value of the intensity of light emission from FLUC/the intensity of light emission from RLUC was treated as a translation activity amount.
[0071]
Results The results shown in Figures 5 and 6 were examined using the following indices (A) and (B).
(A) Comparison between the absence of and the presence of the target The comparison shows an amount of sequence-specific change in translation.
(B) Comparison to the presence of the target and the absence of the effector (empty) (black dashed line) The comparison shows an amount of change in translation caused by addition of the domain.
[0072]
1. eIF4E was fused to the C-terminal side of CRR4.
(A) 2.7 times (B) 1.6 times 2. eIF4G was fused to the C-terminal side of CRR4.

(A) 4.5 times (B) 3.3 times 3. DENR was fused to the N-terminal side of CRR4.
(A) 1.7 times (B) 1.3 times 4. DENR was fused to the C-terminal side of CRR4.
(A) 2.4 times (B) 1.7 times 5. MCT-1 was fused to the N-terminal side of CRR4.
(A) 1.3 times (B) 1.0 time 6. MCT-1 was fused to the C-terminal side of CRR4.
(A) 2.0 times (B) 1.2 times 7. TPT-1 was fused to the N-terminal side of CRR4.
(A) 1.4 times (B) 1.0 time 8. TPT-1 was fused to the C-terminal side of CRR4.
(A) 2.4 times (B) 1.9 times 9. Lerepo4 was fused to the N-terminal side of CRR4.
(A) 3.0 times (B) 1.8 times 10. Lerepo4 was fused to the C-terminal side of CRR4.
(A) 3.3 times (B) 2.6 times 11. SLBP was fused to the C-terminal side of CRR4.

(A) 4.1 times (B) 3.3 times 12. Sec61B was fused to the C-terminal side of CRR4.
(A) 1.6 times (B) 1.6 times 13. Sec61BTM was fused to the C-terminal side of CRR4.
(A) 2.4 times (B) 1.9 times 14. TRAP-alpha was fused to the C-terminal side of CRR4.
(A) 3.5 times (B) 4.5 times 15. TRAPTM was fused to the C-terminal side of CRR4.
(A) 2.3 times (B) 1.6 times 16. SR-alpha was fused to the N-terminal side of CRR4.
(A) 1.7 times (B) 1.5 times 17. Dia1TM was fused to the N-terminal side of CRR4.
(A) 1.8 times (B) 1.2 times 18. P180TM2R was fused to the N-terminal side of CRR4.
(A) 2.1 times (B) 1.5 times 19. P180TMH was fused to the N-terminal side of CRR4.
(A) 2.3 times (B) 2.5 times 20. P180TM2 was fused to the N-terminal side of CRR4.

(A) 3.0 times (B) 2.1 times 21. KDEL was fused to the C-terminal side of CRR4.
(A) 1.8 times (B) 1.4 times 22. KEEL was fused to the C-terminal side of CRR4.
(A) 2.3 times (B) 2.1 times 23. Signal peptide (SP) was fused to the N-terminal side of CRR4.
(A) 1.4 times (B) 2.0 times
[0073]
As shown above, an increase in translation was found in all the functional domains in both of the indices (A) and the targets (B). Namely, it was clearly shown that the fusion protein according to the present invention can enhance the translation of the target mRNA.
[0074]
The amino acid sequences of the functional domains used in Examples are listed below:

[Table 1-1]
Domain Sequence eIF4E
MATVEPETTPTPNETTTEEEKTESNOEVANPEHYIKHPLORWALW
FTKNDKSKTWQANLRLISKFDTVEDFWALYNHIQLSSNLMPGCDYS
LEKDGIEMLEDEKNKRGGRWLITLNKOORRSDLDRFSILETLE.CLI
GESFDDYSDDVC,GAVVNVRAKGDKIAIWTTECENREAVTHIGRVYK
ERLGLPPKIVIGYQSHADTATKSGSTIKNRFINGRI (SEQ ID NO: 5) eING
EEKKRYDREFLLGFQFIFASMOKPEGLPHISDVVLDKANKTPLRPL
DPTRLQGINCGPDFTPSFANLGRTTLSTRGPPRGGPGGELPRGPQA
GLGPRRSQQGPRKEPRKIIATVLMTEDIKLNKAEKAWKPSSKRTAA
DKDRGEEDADGSKTQDLFRRVRSILNKLTPQMFQQLMKQVTQLAID
TEERLKGVIDLIFEKAISEPNFSVAYANMCRCLMALKVPTTEKPTV
TVNFRKLLLNRCQKEFEKDYMDDEVFEKKQKEMDEAATAEERGFILK
EELEEARDIARRRSLGNIKFIGELFKLKMLTEAIMHDCVVKLLKNH
DEESLECLCRLLTTIGKDLDFEKAKPRMDQYFNQMEKIIKEKKTSS
RIRFMLODVLDLRGSNWVPRRGDQGPKTIDOIHKEAEMEEHREHIK
VQQLMAKGSDKRRGGPPGPPISRGLPLVDDGGWNTVPISKGSRPID
TSRLTKITKPGSIDSNNQLFAPGGRLSWGKGSSGGSGAKPSDAASE
AARPATSTLNRFSALQQAVPTESTDNRRVVQRSSLSRERGEKAGDR
GDRLERSERGGDRGDRLDRARTPATKRSFSKEVEERSRERPSQPEG
LRKAASLTEDRDRGRDAVKREAALPPVSPLKAALSEEELEKKSKAI
TEMAILNIDMKEAVQCVQELASPSLIZIFVRHGVESTLERSATARE
HMGQLLHQLLCAGHLSTAQYYQGLYEILELAEDMEIDIPHVWLYLA
ELVTPILOEGGVPMGELFREITKPLRPLGKAASULEILGLLCKSM
GPKKVGTLWREAGLSWKEFLPEGQDIGAFVAEQKVEYTLGEESEAP
GQRALPSEELNRQLEKLLKEGSSNQRVFDWIEANLSEQQIVSNTLV
RALMTAVCYSAIIFETPLRVDVAVLKARAKLLOKYLCDEOKELOAL
YALQALVVTLEQPPNLLRMFFDALYDEDVVKEDAFYSWESSKDPAE
QQGKGVALKSVTAFFKWLREAEEESDH (SEQ ID NO: I) DENR MAADISESSGADCKGDPRNSAKLDADYPLRVLYCGVCSLPTEYCEY
MPDVAKCRQWLEKNFPNEFAKLTVENSPKQEAGISEGQGTAGEEEE
KKKQKRGGRGQIKQKKKTVPQKVTIAKIPRAKKKYVTRVCGLATFE
IDLKEAQRFFAQKFSCGASVTGEDEIIIQGDFTDDIIDVIQEKWPE
,VDDDSIEDLGEVKK (Sc ID NO: 6) MCT-1, MFKKFDEKENVSNCIQLKTSVIKGIKNQLIEQFPGIEPWLNQIMPK
KDPVKIVRCHEHIEILTVNGELLFFRQREGPFYPTLRLLHKYFFIL
PHQQVDKGAIKFVLSGANIMCPGLTSPGAKLYPAAVDTIVAIMAEG

[Table 1-2]
KONA LCVGVMKNSAEDIEKVNKGIGI ENI HYLNDGLWIIMKTYK
(SEQ ID NO: 7) LIGGNASAEGPEGEGTESTVI TGVD I VIINHH WETS FTKEAYKICY I
KDYMKSI KGKLEEQR PERVKPFMTGAAEQ I ICH I LANFKNYQFPIGE
NMNPDGMVALLDYREDGVTPYNI FFKDGLEMEKC ( SEC ID NO: B) Le repo 4 P PKKQAQAGGS ICKAKKKKEIC I I EDKT FGL KNIUCGAKQQKF I KAVT
HQVKFGQQNPRQVAQS EAEIU(LKKDDICKKELQELNE LFKPVVAAQK
I SKGADPKSVVCAFFKQGQCTKGDK.CKFSHDLTLERKCEKRSVYID
ARDEELEKDTMDNWDEKICLEEVVNKKHGEAEICIU(PKTQIVCKHFLE
A I ENNKYGWFWVC PGGGDI CMYRHALP PG FVLKKDKKKEEKEDE I S
LEDLI ERERSALGPNVTKITLESPLAWKICRKRQEKIDKLEQDMERR
KADF KAG KALV I SGREVF EF'R PELVNDDDE EADDTRYTQGTGGDEV
DDS VSVNDI DLS LY I PRD'VDETGITVASLERESTYTSDICDENKLSE
ASGGRAENGERSDLEEDNEREGTENGA I DAVPVDEKS FHWRGFG
(SEC ID NO: 9) SL BP ACRPRSP PRHQSRCDGDAS PPSPARWS LGR ICRRADGRRWRPEDAEE
AEHRGAERRPESFTTPEGPKPRSRCSDWASAVEEDEMRTRVNKEMA
RYK.RKLL I NDFGRER KSSSGSSDSKESMSTVPADPETDESVLMRRQ
KQ I NYG KNT I AYDRY I KEV PRIILRQPG I HP KTPNKFKKYS RRSWDQ
Q I KLW KVALH PIMP PAEEGCDLQE I HPVDLESAESSSEPQTSSQDD
FDVYSGTPTKVRIIMDSQVEDEFDLEACLTE PLRDFSAMS
(SEQ ID NO: 10) Sec6 1B PG PT PSGTNVGS SCRS PSKAVAARAAGSTVRORKNAS CGTR SAGRT
TSAGTGGMVIR PYTEDS PGLKVGPVPVLVMSLLF I ASVPMLH IWGKY
TRS (SEQ ID NO: 11) Sec6113-TM VGPVPVLVNSLLFIASVFICH I W (SEQ ID NO: 12) TRAP-alpha RLLPRLLLLLLLVFPATVLFRGGPRGLLAVAQDLTEDEETVEDS II
EDEDDEPLEVEEDEPTDLVEDKEEEDVSGEPEA.SPSADTT I LPVKGE
DPPANNIVKFLVGPTNICGTEDFIVESLDASPRYPQDYQPYIQNP'rA
LPLNTVVPPQRQATFEYSP I PAEPMGGRPPGLVINLNYKDLNGNVF
()DAV FNQTVTV I EREDGLDG ET I FMYMFLAGLGLLV I VGLHQLLES
RKR,KRPIQKVENGTSSQNDVDMSW I PQEI'LNQ I NKASPRRLPRKRA
QKRSVGSDE (SEC ID NO: 13) TRAP-TM T I FMYMPLAGLGLLVIVGLHQLL ( SEQ ID NO: 14) SR-alpha LDFFT I FS KGG LVLWCFQGVSDS CTG PVNAL I RS VL LQVG FQKI LT

[Table 1-3]
L'I'YvDKLIDDVERLFRDKYRTErQQQSALELLNGTFDFQNDFLELL
REAEESEKI RAPITMKKFEDS EKAXXIIVREM ETRGEKPKEKAKNS
KKKGAKKEGSDOPLATS KPVPAEKSOLPVGPENGvELSKEEL I PAK
REEPIQKHGRGMEK$NKETKEDAPKEKGKKAPRINELGOCANKEVL
DYSTPTTNGTPEAALSEDINLX RGTOSGGOLQDLDCSSEDDEGAAQ
NETKPSATXGTLMMFGMLKGLVGEKELSREDMESVLDKMRDEL
KNVAADIAVQLCEEVANKLEGKVMGTFSTVTETVKQALQBELVQIL
QPQRRVDMLEDIMDAORRORPYVVTFCGVNGVGKSTNLAKISPWLL
ENGFEVLIAACDTFRAGAVEQLRTHTERLSALEPPEKHGGRTMVQL

AKLITIMTPDLVLFVGEALVONEAvDOLVKFIMALADEEMAQTPRL
IDGIVLICKFDTIDDKVGAAXEMTYITSKPIVFVGTGOTYCDLESLN
AXAVVAALMKA ( SEQ ID NO: 15) Diant STLGIMLETVWFLYSLL ( SEQ ID NO: 16) EmAKTEHQKVEKXXXEKTVEKKOKIKKKEEKPNGKI PDXDPAPNyr VLLREPVEAPAVAVAPTPVQPII I VAPVATVPAMKEKLASEPKDK
KICKEKKVAKVEPAVESVVNE IQVLTEKAA LETA PKEGRETDVAQE
PEAPKQEAPAKKILEGSIUUCGP PDADGPLYLPYKTLVSTVGSMVPNE
GEAQRL I E I LSEICAGI IQDTWEKATQKGDPV ( SEG ID NO: 17 P 8 Onsti LaVVVFGOPMVVEAIGIFLVETP(sEQ ID NO: 18) P1801142 DIYDTOTLGVWPGGFMWSAIGIFINSTF ( SEQ ID NO: 1)) KDEL KDEL (SEQ ID NO: 20) KEEL KEEL (SEQ ID NO: 21) Ert signal peptide MGWECIILFLVATATGAHS(sE4 ID NO: 22)

Claims (15)

    Claims
  1. [Claim 1]
    A fusion protein for improving a protein expression level from a target mRNA, the fusion protein comprising:
    (A) one or more functional domains which improve a protein expression level from an mRNA; and (B) a polypeptide moiety which can bind to a target mRNA in an RNA base-selective or RNA base sequence-specific manner, wherein polypeptide moiety (B) is a polypeptide moiety comprising one or more PPR motifs, each PPR motif comprising a polypeptide consisting of 30 to 38 amino acids in length and being represented by Formula 1:
    [Formula 1]
    (Helix A)-X-(Helix B)-L (Formula 1) where Helix A is a moiety which consists of 12 amino acids in length and can form an a-helix structure, and is represented by Formula 2:
    [Formula 2]
    A1-A2-A3-A4-A5A6-A7-A8-A9-A10-A11-A12 (Formula 2) where A1 to A12 each independently represent an amino acid;

    X is not present, or is a moiety consisting of 1 to 9 amino acids in length;
    Helix B is a moiety which consists of 11 to 13 amino acids in length and can form an a-helix structure;
    L is a moiety consisting of 2 to 7 amino acids in length and represented by Formula 3:
    [Formula 3]
    (Formula 3) where the amino acids are numbered from the C-terminal as "i" (-1), "ii" (-2), ... and to L,1 may not be present, and a combination of three amino acids A1, A4, and L ii or a combination of two amino acids A4 and L ii corresponds to a base or base sequence of the target mRNA.
  2. [Claim 2]
    The fusion protein according to claim 1, wherein polypeptide moiety (B) comprises 2 to 30 PPR motifs, and the plurality of PPR motifs is arranged so as to specifically bind to the base sequence of the target mRNA.
  3. [Claim 3]
    The fusion protein according to claim 2, polypeptide moiety (B) comprises 5 to 25 PPR motifs.
  4. [Claim 4]
    The fusion protein according to any one of claims 1 to 3, wherein one or more functional domains (A) each bind to an N-terminal and/or a C-terminal of polypeptide moiety (B).
  5. [Claim 5]
    The fusion protein according to any one of claims 1 to 4, wherein one or more functional domains (A) are selected from the group consisting of a domain which guides ribosome to the mRNA, a domain associated with initiation or promotion of translation of the mRNA, a domain associated with nuclear export of the mRNA, a domain associated with binding to an endoplasmic reticulum membrane, a domain containing an endoplasmic reticulum retention signal (ER retention signal) sequence, and a domain containing an endoplasmic reticulum signal sequence.
  6. [Claim 6]
    The fusion protein according to claim 5, wherein the domain which guides ribosome to the mRNA
    is a domain containing all or functional part of a polypeptide selected from the group consisting of DENR
    (Density-regulated protein), MCT-1 (Malignant T-cell amplified sequence 1), TPT1 (Translationally-controlled tumor protein), and Lerepo4 (Zinc finger CCCH-domain), the domain associated with initiation or promotion of translation of the mRNA is a domain containing all or functional part of a polypeptide selected from the group consisting of eIF4E and eIF4G, the domain associated with nuclear export of the mRNA is a domain containing all or functional part of SLBP (Stem-loop binding protein), the domain associated with binding to an endoplasmic reticulum membrane is a domain containing all or functional part of a polypeptide selected from the group consisting of SEC61B, TRAP-alpha (Translocon associated protein alpha), SR-alpha, Dial (Cytochrome b5 reductase 3), and p180, the endoplasmic reticulum retention signal (ER
    retention signal) sequence is a signal sequence containing a KDEL (KEEL) sequence, or the endoplasmic reticulum signal sequence is a signal sequence containing MGWSCIILFLVATATGAHS.
  7. [Claim 7]
    The fusion protein according to any one of claims 1 to 6, wherein the combination of the three amino acids A1, A4, and Lii in each of the PPR motifs is:
    (valine, threonine, asparagine), (phenylalanine, serine, asparagine), (phenylalanine, threonine, asparagine), (isoleucine, asparagine, aspartic acid), or (threonine, threonine, asparagine) in order of (A1, A4, Lii) if a target base for the PPR motif is A (adenine);
    (glutamic acid, glycine, aspartic acid), (valine, threonine, aspartic acid), (lysine, threonine, aspartic acid), or (leucine, threonine, aspartic acid) in order of (A1, A4, Lii) if the target base for the PPR motif is G
    (guanine);
    (valine, asparagine, aspartic acid), (isoleucine, asparagine, asparagine), (isoleucine, asparagine, aspartic acid), (isoleucine, methionine, aspartic acid), (phenylalanine, proline, aspartic acid), or (tyrosine, proline, aspartic acid) in order of (A1, A4, Lii) if the target base for the PPR motif is U (uracil); or (valine, asparagine, asparagine), (isoleucine, asparagine, asparagine), (valine, asparagine, serine), or (isoleucine, methionine, aspartic acid) in order of (A1, A4, Lii) if the target base for the PPR motif is C
    (cytosine).
  8. [Claim 8]
    The fusion protein according to any one of claims 1 to 6, wherein the combination of the two amino acids A4 and Lii in each of the PPR motifs is:
    (threonine, asparagine), (serine, asparagine), or (glycine, asparagine) in order of (A4, Lii) if a target base for the PPR motif is A (adenine);
    (threonine, aspartic acid) or (glycine, aspartic acid) in order of (A4, Lii) if the target base for the PPR
    motif is G (guanine);
    (asparagine, aspartic acid), (proline, aspartic acid), (methionine, aspartic acid), or (valine, threonine) in order of (A4, L11) if the target base for the PPR motif is U (uracil); or (asparagine, asparagine), (asparagine, serine), or (leucine, aspartic acid) in order of (A4, Lii) if the target base for the PPR motif is C (cytosine).
  9. [Claim 9]
    A nucleic acid encoding the fusion protein according to any one of claims 1 to 8.
  10. [Claim 10]
    A vector comprising the nucleic acid according to claim 9.
  11. [Claim 11]
    The vector according to claim 10, wherein the vector is an expression vector.
  12. [Claim 12]
    A method of improving a protein expression level from a target mRNA within a cell, the method comprising:
    a step of providing the fusion protein according to any one of claims 1 to 8 or the vector according to claim or 11; and a step of introducing the fusion protein or the vector into a cell.
  13. [Claim 13]
    The method according to claim 12, wherein the cell is a eukaryotic cell.
  14. [Claim 14]
    The method according to claim 13, wherein the cell is an animal cell.
  15. [Claim 15]

    The method according to claim 14, wherein the animal cell is a human cell.
CA3026340A 2016-06-03 2017-05-30 Fusion protein for improving protein expression level from target mrna Pending CA3026340A1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201662345252P 2016-06-03 2016-06-03
US62/345,252 2016-06-03
JP2016120524 2016-06-17
JP2016-120524 2016-06-17
PCT/JP2017/020076 WO2017209122A1 (en) 2016-06-03 2017-05-30 FUSION PROTEIN FOR IMPROVING PROTEIN EXPRESSION FROM TARGET mRNA

Publications (1)

Publication Number Publication Date
CA3026340A1 true CA3026340A1 (en) 2017-12-07

Family

ID=60478518

Family Applications (1)

Application Number Title Priority Date Filing Date
CA3026340A Pending CA3026340A1 (en) 2016-06-03 2017-05-30 Fusion protein for improving protein expression level from target mrna

Country Status (5)

Country Link
KR (1) KR102407776B1 (en)
AU (1) AU2017275184B2 (en)
CA (1) CA3026340A1 (en)
SG (1) SG11201810606TA (en)
WO (1) WO2017209122A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3978513A4 (en) 2019-05-29 2023-06-28 Editforce, Inc. Efficient ppr protein production method and use thereof
AU2020283367A1 (en) 2019-05-29 2022-01-06 Editforce, Inc. Ppr protein causing less aggregation and use of the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4665190B2 (en) * 2005-02-10 2011-04-06 学校法人東京理科大学 Gene transcription regulation method
EP2049565B1 (en) * 2006-07-21 2015-01-28 Centre National De La Recherche Scientifique (Cnrs) Positive cytomodulines to improve bioreactor productivity.
JP2013128413A (en) 2010-03-11 2013-07-04 Kyushu Univ Method for modifying rna-binding protein using ppr motif
JP6164488B2 (en) 2011-10-21 2017-07-19 国立大学法人九州大学 Method for designing RNA-binding protein using PPR motif and use thereof
NZ714264A (en) 2013-04-22 2020-10-30 Univ Kyushu Nat Univ Corp Dna-binding protein using ppr motif, and use thereof
JP2015221026A (en) * 2014-05-23 2015-12-10 公立大学法人名古屋市立大学 METHOD OF IMPROVING TRANSLATIONAL EFFICIENCY OF ARTIFICIAL SYNTHETIC mRNA

Also Published As

Publication number Publication date
AU2017275184B2 (en) 2021-05-06
WO2017209122A1 (en) 2017-12-07
KR20190015374A (en) 2019-02-13
KR102407776B1 (en) 2022-06-10
SG11201810606TA (en) 2018-12-28
AU2017275184A1 (en) 2018-12-13

Similar Documents

Publication Publication Date Title
Budiman et al. Eukaryotic initiation factor 4a3 is a selenium-regulated RNA-binding protein that selectively inhibits selenocysteine incorporation
Michlewski et al. The splicing factor SF2/ASF regulates translation initiation by enhancing phosphorylation of 4E-BP1
Cho et al. Polypyrimidine tract-binding protein enhances the internal ribosomal entry site-dependent translation of p27Kip1 mRNA and modulates transition from G1 to S phase
Kim et al. hnRNP Q and PTB modulate the circadian oscillation of mouse Rev-erb α via IRES-mediated translation
US20150093433A1 (en) Targeted and modular exosome loading system
Bubunenko et al. A consensus RNA signal that directs germ layer determinants to the vegetal cortex of Xenopus oocytes
Cianetti et al. Expression of alternative transcripts of ferroportin-1 during human erythroid differentiation
AU2017275184B2 (en) Fusion protein for improving protein expression from target mRNA
Heiner et al. HnRNP L-mediated regulation of mammalian alternative splicing by interference with splice site recognition
Roder et al. NF-Y binds to the inverted CCAAT box, an essential element for cAMP-dependent regulation of the rat fatty acid synthase (FAS) gene
Shi et al. Novel insight into Y-box binding protein 1 in the regulation of vascular smooth muscle cell proliferation through targeting GC box-dependent genes
US11136361B2 (en) Fusion protein for improving protein expression from target mRNA
Kim et al. Proline-rich transcript in brain protein induces stress granule formation
Zhang et al. Troponin T3 regulates nuclear localization of the calcium channel Cavβ1a subunit in skeletal muscle
CN109172597B (en) Substance for regulating methylation level of rDNA gene chromatin histone and application thereof
EP2275567A1 (en) Nucleic acid expression construct and its use as a cell proliferation marker
JP5858393B2 (en) Novel gene expression control method using variable region of antibody
US20120208233A1 (en) Enhancement of protein production in eukaryotic cells
Liu et al. Mitochondrially Targeted Bcl-2 and Bcl-xL chimeras elicit different apoptotic responses
Tsuge et al. CSN1 inhibits c-Jun phosphorylation and down-regulates ectopic expression of JNK1
Zhai et al. Characterization of a novel isoform of murine interferon regulatory factor 3
EP1007664B1 (en) Uses of the mutated heat shock transcription factor
Głodowicz et al. Mitochondrial transport of catalytic RNAs and targeting of the organellar transcriptome in human cells
Lowe Mini Spindles TOG1 Maintains Microtubule Polymerization Rates and Mitotic Spindle Formation
CN115607675A (en) Nav1.9 interacting protein PRMT7 and application of down regulator thereof in preparation of analgesic drugs

Legal Events

Date Code Title Description
EEER Examination request

Effective date: 20220406

EEER Examination request

Effective date: 20220406

EEER Examination request

Effective date: 20220406

EEER Examination request

Effective date: 20220406

EEER Examination request

Effective date: 20220406