CA2988223A1 - Procede de fabrication d'un reseau ordonne de canaux acoustiques en materiau abradable - Google Patents
Procede de fabrication d'un reseau ordonne de canaux acoustiques en materiau abradable Download PDFInfo
- Publication number
- CA2988223A1 CA2988223A1 CA2988223A CA2988223A CA2988223A1 CA 2988223 A1 CA2988223 A1 CA 2988223A1 CA 2988223 A CA2988223 A CA 2988223A CA 2988223 A CA2988223 A CA 2988223A CA 2988223 A1 CA2988223 A1 CA 2988223A1
- Authority
- CA
- Canada
- Prior art keywords
- filaments
- filament
- manufacturing process
- process according
- manufacturing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000463 material Substances 0.000 title claims abstract description 39
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 19
- 238000000034 method Methods 0.000 title claims abstract description 15
- 230000008569 process Effects 0.000 title description 7
- 238000000151 deposition Methods 0.000 claims abstract description 18
- 230000008021 deposition Effects 0.000 claims abstract description 15
- 239000000758 substrate Substances 0.000 claims abstract description 15
- 239000000203 mixture Substances 0.000 claims abstract description 10
- 230000009974 thixotropic effect Effects 0.000 claims abstract description 10
- 229920001187 thermosetting polymer Polymers 0.000 claims abstract description 8
- 239000003431 cross linking reagent Substances 0.000 claims abstract description 7
- 229920000642 polymer Polymers 0.000 claims abstract description 6
- 238000006073 displacement reaction Methods 0.000 claims abstract description 5
- 238000007711 solidification Methods 0.000 claims abstract description 5
- 230000008023 solidification Effects 0.000 claims abstract description 5
- 238000001125 extrusion Methods 0.000 claims description 9
- 235000015110 jellies Nutrition 0.000 claims description 3
- 239000008274 jelly Substances 0.000 claims description 3
- 239000002904 solvent Substances 0.000 claims description 3
- 235000019271 petrolatum Nutrition 0.000 abstract description 4
- 238000000576 coating method Methods 0.000 description 7
- 238000007639 printing Methods 0.000 description 6
- 239000000654 additive Substances 0.000 description 4
- 230000000996 additive effect Effects 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000004927 clay Substances 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 239000011166 3D woven composite Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000009863 impact test Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 229910002109 metal ceramic alloy Inorganic materials 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 239000004005 microsphere Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 235000011837 pasties Nutrition 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 230000005180 public health Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/10—Processes of additive manufacturing
- B29C64/106—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y10/00—Processes of additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y30/00—Apparatus for additive manufacturing; Details thereof or accessories therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y70/00—Materials specially adapted for additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y80/00—Products made by additive manufacturing
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Optics & Photonics (AREA)
Abstract
Procédé de fabrication d'un réseau (10) ordonné de canaux acoustiques, le procédé consistant à déposer sur une surface de substrat (12) un filament d'un matériau thermodurcissable tout en assurant à la fois un déplacement relatif entre le substrat et le filament selon une trajectoire de dépôt déterminée et une solidification du filament afin de créer un échafaudage tridimensionnel de filaments, le matériau thermodurcissable étant un mélange thixotrope dépourvu de solvant et constitué d'une base polymère et d'un agent de réticulation dans un rapport pondéral de la base polymère à l'agent de réticulation compris entre 1 :1 et 2 :1, et d'un composant de facilitation de l'écoulement, typiquement une gelée de pétrole présente entre 5 et 15% en poids du poids total dudit mélange thixotrope.
Description
Procédé de fabrication d'un réseau ordonné de canaux acoustiques en matériau abradable Arrière-plan de l'invention La présente invention se rapporte au domaine général de la fabrication de pièces en matériaux polymères, notamment thermodurcissables, de pièces métalliques, en alliage métallique ou en céramique par fabrication additive et elle concerne plus particulièrement, mais non exclusivement, la fabrication d'un revêtement abradable de paroi de turbomachine telle qu'un turboréacteur d'avion.
Le contrôle des nuisances sonores dues aux avions aux alentours des aéroports est devenu en enjeu de santé public. Des normes et règlements de plus en plus sévères sont imposés aux fabricants d'avions et aux gestionnaires d'aéroports. Par conséquent, construire un avion silencieux est devenu au fil des années un argument de vente marquant. Actuellement, le bruit généré par les moteurs d'avions est atténué par des revêtements acoustiques à réaction localisée qui permettent de diminuer l'intensité sonore du moteur sur un ou deux octaves sur le principe des résonateurs de Helmholtz, ces revêtements se présentant classiquement sous la forme de panneaux composites composés d'une plaque rigide associée à une âme nid d'abeille recouverte d'une peau perforée et disposés au niveau de la nacelle ou des conduits de propagation amont et aval. Toutefois, dans les moteurs de nouvelle génération (par exemple dans les turbosoufflantes), les zones disponibles pour les revêtements acoustiques sont amenées à se réduire considérablement comme dans la .. technologie UHBR (Ultra-High-Bypass-Ratio).
Il est donc important de proposer des nouveaux procédés et/ou de nouveaux matériaux (notamment des matériaux poreux) permettant d'éliminer ou de réduire de façon significative le niveau de bruit produit généré par les moteurs d'avion surtout dans les phases de décollage et d'atterrissage et sur une gamme fréquentielle plus large qu'actuellement incluant les basses fréquences tout en conservant les performances du moteur. C'est la raison pour laquelle on
Le contrôle des nuisances sonores dues aux avions aux alentours des aéroports est devenu en enjeu de santé public. Des normes et règlements de plus en plus sévères sont imposés aux fabricants d'avions et aux gestionnaires d'aéroports. Par conséquent, construire un avion silencieux est devenu au fil des années un argument de vente marquant. Actuellement, le bruit généré par les moteurs d'avions est atténué par des revêtements acoustiques à réaction localisée qui permettent de diminuer l'intensité sonore du moteur sur un ou deux octaves sur le principe des résonateurs de Helmholtz, ces revêtements se présentant classiquement sous la forme de panneaux composites composés d'une plaque rigide associée à une âme nid d'abeille recouverte d'une peau perforée et disposés au niveau de la nacelle ou des conduits de propagation amont et aval. Toutefois, dans les moteurs de nouvelle génération (par exemple dans les turbosoufflantes), les zones disponibles pour les revêtements acoustiques sont amenées à se réduire considérablement comme dans la .. technologie UHBR (Ultra-High-Bypass-Ratio).
Il est donc important de proposer des nouveaux procédés et/ou de nouveaux matériaux (notamment des matériaux poreux) permettant d'éliminer ou de réduire de façon significative le niveau de bruit produit généré par les moteurs d'avion surtout dans les phases de décollage et d'atterrissage et sur une gamme fréquentielle plus large qu'actuellement incluant les basses fréquences tout en conservant les performances du moteur. C'est la raison pour laquelle on
2 cherche aujourd'hui de nouvelles surfaces de traitements acoustiques et ceci avec un impact minimal sur les autres fonctionnalités du moteur comme la consommation spécifique de carburant qui constitue un avantage commercial important.
Par ailleurs, il est aujourd'hui courant et avantageux d'avoir recours à
des procédés de fabrication additive en lieu et place des procédés traditionnels de fonderie, de forge ou d'usinage dans la masse pour réaliser facilement, rapidement et à moindre coût des pièces tridimensionnelles complexes. Le domaine aéronautique se prête d'ailleurs particulièrement bien à l'utilisation de ces procédés. Parmi ceux-ci, on peut citer notamment le procédé de dépôt énergétique direct par fil (Wire Beam Deposition).
Objet et résumé de l'invention La présente invention a donc pour but de proposer une méthode de mise en forme d'un nouveau matériau, pouvant réduire de manière significative le bruit généré par les turboréacteurs d'avion. Le contrôle des paramètres du matériau permet une réduction du bruit sur une gamme allant des basses à des hautes fréquences. Les produits issus de cette méthode sont destinés à être montés sur une paroi d'un turboréacteur en contact avec un écoulement fluidique et plus particulièrement en lieu et place d'un cartouche d'abradable de carter de soufflante.
A cet effet, il est prévu un procédé de fabrication d'un réseau ordonné
de canaux acoustiques, le procédé consistant à déposer sur une surface de substrat un filament d'un matériau thermodurcissable tout en assurant à la fois un déplacement relatif entre ledit substrat et ledit filament selon une trajectoire de dépôt déterminée et une solidification dudit filament afin de créer un échafaudage tridimensionnel de filaments, caractérisé en ce que ledit matériau thermodurcissable est un mélange thixotrope dépourvu de solvant et constitué
d'une base polymère et d'un agent de réticulation dans un rapport pondéral de ladite base polymère à ledit agent de réticulation compris entre 1 :1 et 2 :1, et
Par ailleurs, il est aujourd'hui courant et avantageux d'avoir recours à
des procédés de fabrication additive en lieu et place des procédés traditionnels de fonderie, de forge ou d'usinage dans la masse pour réaliser facilement, rapidement et à moindre coût des pièces tridimensionnelles complexes. Le domaine aéronautique se prête d'ailleurs particulièrement bien à l'utilisation de ces procédés. Parmi ceux-ci, on peut citer notamment le procédé de dépôt énergétique direct par fil (Wire Beam Deposition).
Objet et résumé de l'invention La présente invention a donc pour but de proposer une méthode de mise en forme d'un nouveau matériau, pouvant réduire de manière significative le bruit généré par les turboréacteurs d'avion. Le contrôle des paramètres du matériau permet une réduction du bruit sur une gamme allant des basses à des hautes fréquences. Les produits issus de cette méthode sont destinés à être montés sur une paroi d'un turboréacteur en contact avec un écoulement fluidique et plus particulièrement en lieu et place d'un cartouche d'abradable de carter de soufflante.
A cet effet, il est prévu un procédé de fabrication d'un réseau ordonné
de canaux acoustiques, le procédé consistant à déposer sur une surface de substrat un filament d'un matériau thermodurcissable tout en assurant à la fois un déplacement relatif entre ledit substrat et ledit filament selon une trajectoire de dépôt déterminée et une solidification dudit filament afin de créer un échafaudage tridimensionnel de filaments, caractérisé en ce que ledit matériau thermodurcissable est un mélange thixotrope dépourvu de solvant et constitué
d'une base polymère et d'un agent de réticulation dans un rapport pondéral de ladite base polymère à ledit agent de réticulation compris entre 1 :1 et 2 :1, et
3 d'un composant de facilitation de l'écoulement, typiquement une gelée de pétrole présente entre 5 et 15% en poids du poids total dudit mélange thixotrope.
Ainsi, on obtient une microstructure poreuse à porosité régulière et ordonnée qui assure une absorption importante des ondes acoustiques par dissipation visco-thermique au sein des canaux tout en gardant sa nature abradable de par le matériau la constituant.
De préférence, ledit mélange thixotrope est obtenu par co-extrusion desdits composants dans une vis d'extrusion conique et déposé sur ladite surface de substrat au moyen d'une buse d'éjection de forme et dimension calibrées dont la section de sortie présente une plus grande largeur inférieure à 250 microns.
Avantageusement, le déplacement relatif entre ledit substrat et ledit filament cylindrique est assuré par une machine trois axes au moins ou un robot commandé depuis un calculateur et la solidification dudit filament cylindrique est assurée par un élément de chauffage monté en sortie de ladite buse d'éjection calibrée.
Selon le mode de réalisation envisagé, ledit échafaudage tridimensionnel peut-être constitué :
= de couches superposées dont les filaments d'une couche donnée sont orientés alternativement à 00 ou à 900 sans décalage dans la superposition des filaments d'une même direction ;
= de couches superposées dont les filaments d'une couche donnée sont orientés alternativement à 00 ou à 900 présentant un décalage dans la superposition des filaments d'une même direction ;
= de couches superposées présentant des directions d'orientation des filaments Di décalées d'un même écart angulaire, compris entre 20 et 40 , typiquement de 30 , à chaque couche i ;
= ou encore de couches superposées de filaments présentant, pour chacune des couches, à la fois une orientation de filaments à 00 et une orientation de filaments à 90 , de façon à former des perforations verticales de sections carrées entre les filaments.
Ainsi, on obtient une microstructure poreuse à porosité régulière et ordonnée qui assure une absorption importante des ondes acoustiques par dissipation visco-thermique au sein des canaux tout en gardant sa nature abradable de par le matériau la constituant.
De préférence, ledit mélange thixotrope est obtenu par co-extrusion desdits composants dans une vis d'extrusion conique et déposé sur ladite surface de substrat au moyen d'une buse d'éjection de forme et dimension calibrées dont la section de sortie présente une plus grande largeur inférieure à 250 microns.
Avantageusement, le déplacement relatif entre ledit substrat et ledit filament cylindrique est assuré par une machine trois axes au moins ou un robot commandé depuis un calculateur et la solidification dudit filament cylindrique est assurée par un élément de chauffage monté en sortie de ladite buse d'éjection calibrée.
Selon le mode de réalisation envisagé, ledit échafaudage tridimensionnel peut-être constitué :
= de couches superposées dont les filaments d'une couche donnée sont orientés alternativement à 00 ou à 900 sans décalage dans la superposition des filaments d'une même direction ;
= de couches superposées dont les filaments d'une couche donnée sont orientés alternativement à 00 ou à 900 présentant un décalage dans la superposition des filaments d'une même direction ;
= de couches superposées présentant des directions d'orientation des filaments Di décalées d'un même écart angulaire, compris entre 20 et 40 , typiquement de 30 , à chaque couche i ;
= ou encore de couches superposées de filaments présentant, pour chacune des couches, à la fois une orientation de filaments à 00 et une orientation de filaments à 90 , de façon à former des perforations verticales de sections carrées entre les filaments.
4 L'invention se rapporte également au réseau ordonné de canaux acoustiques obtenu à partir du procédé précité et au revêtement abradable de paroi de turbomachine comportant ce réseau.
Brève description des dessins D'autres caractéristiques et avantages de la présente invention ressortiront de la description détaillée faite ci-dessous, en référence aux figures suivantes dépourvues de tout caractère limitatif et sur lesquelles :
- La figure 1 illustre en perspective éclatée le montage d'un échafaudage tridimensionnel de filaments de matériau abradable conforme à l'invention, - La figure 2 illustre le système de dépôt de filaments pour la réalisation de l'échafaudage tridimensionnel de la figure 1, et - Les figures 3A à 3D montrent quatre exemples d'échafaudages tridimensionnels ayant des propriétés acoustiques.
Description détaillée de l'invention Le procédé selon l'invention permet l'impression d'un matériau abradable sur un substrat dans le but de réaliser un échafaudage tridimensionnel de filaments formant entre eux un réseau ordonné de canaux ayant des propriétés acoustiques.
Par matériau abradable, on entend la capacité du matériau à se disloquer (ou s'éroder) en fonctionnement au contact d'une pièce en regard (faible résistance au cisaillement) et sa résistance à l'usure suite aux impacts de particules ou corps étrangers qu'il est amené à ingérer en fonctionnement (compromis avec abradabilité). Un tel matériau doit en outre garder voire favoriser de bonnes propriétés aérodynamiques (critère de rugosité : Ra sur état de surface), présenter des résistances à l'oxydation et à la corrosion suffisantes et un coefficient de dilatation thermique du même ordre que la couche ou le substrat sur lequel il est déposé.
La figure 1 illustre en perspective éclatée une partie d'un échafaudage tridimensionnel 10 de filaments 100, 200, 300, avantageusement cylindriques,
Brève description des dessins D'autres caractéristiques et avantages de la présente invention ressortiront de la description détaillée faite ci-dessous, en référence aux figures suivantes dépourvues de tout caractère limitatif et sur lesquelles :
- La figure 1 illustre en perspective éclatée le montage d'un échafaudage tridimensionnel de filaments de matériau abradable conforme à l'invention, - La figure 2 illustre le système de dépôt de filaments pour la réalisation de l'échafaudage tridimensionnel de la figure 1, et - Les figures 3A à 3D montrent quatre exemples d'échafaudages tridimensionnels ayant des propriétés acoustiques.
Description détaillée de l'invention Le procédé selon l'invention permet l'impression d'un matériau abradable sur un substrat dans le but de réaliser un échafaudage tridimensionnel de filaments formant entre eux un réseau ordonné de canaux ayant des propriétés acoustiques.
Par matériau abradable, on entend la capacité du matériau à se disloquer (ou s'éroder) en fonctionnement au contact d'une pièce en regard (faible résistance au cisaillement) et sa résistance à l'usure suite aux impacts de particules ou corps étrangers qu'il est amené à ingérer en fonctionnement (compromis avec abradabilité). Un tel matériau doit en outre garder voire favoriser de bonnes propriétés aérodynamiques (critère de rugosité : Ra sur état de surface), présenter des résistances à l'oxydation et à la corrosion suffisantes et un coefficient de dilatation thermique du même ordre que la couche ou le substrat sur lequel il est déposé.
La figure 1 illustre en perspective éclatée une partie d'un échafaudage tridimensionnel 10 de filaments 100, 200, 300, avantageusement cylindriques,
5 d'un matériau abradable permettant, conformément à l'invention, la réalisation d'un revêtement sous la forme d'un réseau ordonné de canaux de nature à
conférer des propriétés acoustiques à une paroi (le substrat) 12 destinée à
recevoir ce revêtement. Selon la configuration de réseau envisagé, des interconnections entre les canaux peuvent exister de manière régulière lors de la superposition des différentes couches du matériau abradable destinées à
générer ces différents canaux. Cette paroi est préférentiellement, sans que cela ne soit limitatif, une paroi d'une turbomachine telle qu'un turboréacteur d'avion et plus particulièrement un carter composite tissé 3D disposé en périphérie des aubes de soufflante et habituellement destiné à recevoir une cartouche d'abradable.
L'impression d'un tel réseau ordonné de canaux est effectuée par fabrication additive selon le procédé décrit ci-après en regard de la figure 2.
Cette impression requiert des équipements de précision permettant de contrôler le dépôt du matériau abradable et assurer ainsi le tolérancement dimensionnel final. Il faut pour cela disposer au moins d'une machine 3 axes du type ABG10000 de Aerotech Incorporation ou d'un robot possédant des axes numériques de précision (positionnement de l'ordre de 5 microns) permettant via un logiciel approprié de commander l'impression selon une trajectoire de dépôt définie par l'utilisateur. Grâce à ces équipements, il est donc possible de garantir un dépôt précis de filaments dans un espace tridimensionnel déterminé, en contrôlant les paramètres d'impression tels que la vitesse d'écoulement du matériau, la position et vitesse de déplacement de l'impression.
Comme le montre la figure 2, un système de dépôt filamentaire, une machine 3 axes au moins ou un robot 20, vient déposer de préférence en liaison avec un circuit de contrôle en pression et température interne au système, le matériau abradable par extrusion via une buse d'éjection 22 de forme et dimension calibrées tout d'abord sur le substrat 12 puis successivement sur les différentes couches superposées créées à la suite jusqu'à l'obtention de l'épaisseur désirée. Le système de dépôt filamentaire suit une trajectoire de dépôt contrôlée par un calculateur (ordinateur ou microcontrôleur 24) auquel il est relié assurant la commande du système de dépôt filamentaire et contrôlant
conférer des propriétés acoustiques à une paroi (le substrat) 12 destinée à
recevoir ce revêtement. Selon la configuration de réseau envisagé, des interconnections entre les canaux peuvent exister de manière régulière lors de la superposition des différentes couches du matériau abradable destinées à
générer ces différents canaux. Cette paroi est préférentiellement, sans que cela ne soit limitatif, une paroi d'une turbomachine telle qu'un turboréacteur d'avion et plus particulièrement un carter composite tissé 3D disposé en périphérie des aubes de soufflante et habituellement destiné à recevoir une cartouche d'abradable.
L'impression d'un tel réseau ordonné de canaux est effectuée par fabrication additive selon le procédé décrit ci-après en regard de la figure 2.
Cette impression requiert des équipements de précision permettant de contrôler le dépôt du matériau abradable et assurer ainsi le tolérancement dimensionnel final. Il faut pour cela disposer au moins d'une machine 3 axes du type ABG10000 de Aerotech Incorporation ou d'un robot possédant des axes numériques de précision (positionnement de l'ordre de 5 microns) permettant via un logiciel approprié de commander l'impression selon une trajectoire de dépôt définie par l'utilisateur. Grâce à ces équipements, il est donc possible de garantir un dépôt précis de filaments dans un espace tridimensionnel déterminé, en contrôlant les paramètres d'impression tels que la vitesse d'écoulement du matériau, la position et vitesse de déplacement de l'impression.
Comme le montre la figure 2, un système de dépôt filamentaire, une machine 3 axes au moins ou un robot 20, vient déposer de préférence en liaison avec un circuit de contrôle en pression et température interne au système, le matériau abradable par extrusion via une buse d'éjection 22 de forme et dimension calibrées tout d'abord sur le substrat 12 puis successivement sur les différentes couches superposées créées à la suite jusqu'à l'obtention de l'épaisseur désirée. Le système de dépôt filamentaire suit une trajectoire de dépôt contrôlée par un calculateur (ordinateur ou microcontrôleur 24) auquel il est relié assurant la commande du système de dépôt filamentaire et contrôlant
6 en tout point de la surface traitée à la fois l'arrangement filamentaire et la porosité du milieu nécessaires pour garantir l'abradabilité souhaitée.
L'alimentation en matériau abradable est assurée à partir d'une vis à
extrusion conique 26 permettant de mélanger plusieurs composants pour former un mélange thixotrope ayant l'aspect d'une pâte. La vis d'extrusion conique qui comporte au moins deux entrées séparées 26A, 26B pour l'introduction simultanée d'au moins deux composants permet d'assurer un mélange adéquat et homogène des composants tout au long de l'opération de dépôt, pour obtenir in fine un matériau fluide à haute viscosité qui va être déposé par la buse d'éjection calibrée 22 dont la section de sortie dans sa plus grande largeur est inférieure à 250 microns. Durant cette opération, il faut éviter la génération de bulles d'air qui forment autant de défaut dans le filament lors de l'impression et il est donc nécessaire de pousser le matériau de manière très progressive tout en contrôlant la pression dans la buse d'éjection et sa vitesse de déplacement, de façon à obtenir un filament dont la section est uniforme et la position conforme.
On notera que par un contrôle des composants introduits dans la vis à
extrusion conique, il est possible de changer la constitution du matériau déposé.
Une lampe de chauffage 28 ou tout dispositif analogue peut être montée en sortie de la buse d'éjection 22 pour stabiliser le matériau déposé
et éviter le fluage au cours du dépôt. Le dépôt du matériau abradable s'effectue jusqu'à une épaisseur spécifiée. Pour accélérer le dépôt du matériau, le système de dépôt filamentaire 20 peut comporter plusieurs buses ajustables de façon indépendante ou comporter une multi-buse de diamètre calibrée telle que celle décrite dans la demande US 2017/203566.
On obtient ainsi un dépôt contrôlé de matériau abradable dans l'épaisseur et en surface permettant de fonctionnaliser l'abradable notamment en vue de lui conférer des propriétés acoustiques.
Pour cela, le réseau ordonné de canaux présente avantageusement un échafaudage ayant l'une des configurations illustrées aux figures 3A, 3B, 3C
et 3D, à savoir :
L'alimentation en matériau abradable est assurée à partir d'une vis à
extrusion conique 26 permettant de mélanger plusieurs composants pour former un mélange thixotrope ayant l'aspect d'une pâte. La vis d'extrusion conique qui comporte au moins deux entrées séparées 26A, 26B pour l'introduction simultanée d'au moins deux composants permet d'assurer un mélange adéquat et homogène des composants tout au long de l'opération de dépôt, pour obtenir in fine un matériau fluide à haute viscosité qui va être déposé par la buse d'éjection calibrée 22 dont la section de sortie dans sa plus grande largeur est inférieure à 250 microns. Durant cette opération, il faut éviter la génération de bulles d'air qui forment autant de défaut dans le filament lors de l'impression et il est donc nécessaire de pousser le matériau de manière très progressive tout en contrôlant la pression dans la buse d'éjection et sa vitesse de déplacement, de façon à obtenir un filament dont la section est uniforme et la position conforme.
On notera que par un contrôle des composants introduits dans la vis à
extrusion conique, il est possible de changer la constitution du matériau déposé.
Une lampe de chauffage 28 ou tout dispositif analogue peut être montée en sortie de la buse d'éjection 22 pour stabiliser le matériau déposé
et éviter le fluage au cours du dépôt. Le dépôt du matériau abradable s'effectue jusqu'à une épaisseur spécifiée. Pour accélérer le dépôt du matériau, le système de dépôt filamentaire 20 peut comporter plusieurs buses ajustables de façon indépendante ou comporter une multi-buse de diamètre calibrée telle que celle décrite dans la demande US 2017/203566.
On obtient ainsi un dépôt contrôlé de matériau abradable dans l'épaisseur et en surface permettant de fonctionnaliser l'abradable notamment en vue de lui conférer des propriétés acoustiques.
Pour cela, le réseau ordonné de canaux présente avantageusement un échafaudage ayant l'une des configurations illustrées aux figures 3A, 3B, 3C
et 3D, à savoir :
7 Sur la figure 3A, un échafaudage tridimensionnel de filaments 100, 200 est constitué de couches superposées dont les filaments d'une couche donnée sont orientés alternativement à 0 ou à 900 sans décalage dans la superposition des filaments d'une même direction.
Sur la figure 3B, un échafaudage tridimensionnel de filaments 100, 200 est constitué de couches superposées dont les filaments d'une couche donnée sont orientés alternativement à 00 ou à 900 et présentent un décalage dans la superposition des filaments d'une même direction. Ce décalage est comme illustré de préférence égal à la moitié de la distance entre deux filaments.
On notera que pour ces deux configurations l'écart angulaire entre les deux directions de filaments peut être différent et inférieur à 900, par exemple 45 .
Sur la figure 3C, un échafaudage tridimensionnel de filaments 100, 200, 300, 400, 500, 600 est constitué de couches superposées présentant des directions d'orientation des filaments Di décalées d'un même écart angulaire, compris entre 20 et 40 , typiquement de 30 , à chaque couche i (i compris entre 1 et 6 pour un écart angulaire de 30 ).
Et sur la figure 3D, un échafaudage tridimensionnel de filaments 100, 200 est constitué de couches superposées de filaments présentant, pour chacune des couches, à la fois une orientation de filaments à 0 et une orientation de filaments à 90 , de façon à former des perforations verticales 700 de sections carrées entre les filaments.
Une impression sur un secteur de carter avec ces différentes structures a montré la faisabilité d'un tel dépôt robotisé de matériau abradable selon le procédé précité de fabrication additive. Des tests de comportement mécanique en compression et flexion ont aussi été réalisés ainsi que des échantillons destinés à un test d'impact basse énergie ou à une caractérisation de l'impédance acoustique en incidence normale.
Notamment, il a été constaté une transmission de l'énergie acoustique au travers de l'échafaudage et une absorption d'une partie de cette énergie
Sur la figure 3B, un échafaudage tridimensionnel de filaments 100, 200 est constitué de couches superposées dont les filaments d'une couche donnée sont orientés alternativement à 00 ou à 900 et présentent un décalage dans la superposition des filaments d'une même direction. Ce décalage est comme illustré de préférence égal à la moitié de la distance entre deux filaments.
On notera que pour ces deux configurations l'écart angulaire entre les deux directions de filaments peut être différent et inférieur à 900, par exemple 45 .
Sur la figure 3C, un échafaudage tridimensionnel de filaments 100, 200, 300, 400, 500, 600 est constitué de couches superposées présentant des directions d'orientation des filaments Di décalées d'un même écart angulaire, compris entre 20 et 40 , typiquement de 30 , à chaque couche i (i compris entre 1 et 6 pour un écart angulaire de 30 ).
Et sur la figure 3D, un échafaudage tridimensionnel de filaments 100, 200 est constitué de couches superposées de filaments présentant, pour chacune des couches, à la fois une orientation de filaments à 0 et une orientation de filaments à 90 , de façon à former des perforations verticales 700 de sections carrées entre les filaments.
Une impression sur un secteur de carter avec ces différentes structures a montré la faisabilité d'un tel dépôt robotisé de matériau abradable selon le procédé précité de fabrication additive. Des tests de comportement mécanique en compression et flexion ont aussi été réalisés ainsi que des échantillons destinés à un test d'impact basse énergie ou à une caractérisation de l'impédance acoustique en incidence normale.
Notamment, il a été constaté une transmission de l'énergie acoustique au travers de l'échafaudage et une absorption d'une partie de cette énergie
8 acoustique par modification des sources aéro-acoustique ou absorption des ondes sonores propagatrices.
Le matériau abardable extrudé par la ou les buses calibrées est avantageusement un matériau thermodurcissable à haute viscosité (dit aussi fluide) qui est dépourvu de solvant dont l'évaporation génère comme il est connu un fort retrait. Ce matériau est de préférence une résine à cinétique de polymérisation lente et écoulement filamentaire stable se présentant sous la forme d'un mélange thixotrope qui présente donc l'avantage d'un retrait beaucoup plus faible entre l'impression sur le substrat (juste après extrusion du matériau) et la structure finale (une fois chauffée et la polymérisation complète).
Un exemple de matériau abradable utilisé dans le cadre du procédé est un matériau se présentant sous forme pâteuse et constitué de trois composants à savoir une base polymère, par exemple une résine époxyde (se présentant comme une pâte à modeler bleue), un agent de réticulation ou accélérateur (se présentant comme une pâte à modeler blanche) et une gelée de pétrole de couleur translucide (par exemple de la vaselineTm). Les composants accélérateur/base sont répartis selon un rapport pondéral de la base à
l'accélérateur compris entre 1:1 et 2 :1 et la gelée de pétrole présente entre 5 et 15% (typiquement 10%) en poids du poids total du matériau. La base peut en outre comporter des microsphères de verres creuses d'un diamètre déterminé
pour assurer la porosité désirée tout en permettant d'accroitre les performances mécaniques de l'échafaudage imprimé. L'intérêt de l'introduction de la gelée de pétrole réside dans la réduction de la viscosité de la résine ainsi que de la cinétique de réaction de l'abradable, ce qui rend sa viscosité plus stable durant le temps de l'impression. (La viscosité est directement liée à la pression d'extrusion nécessaire pour assurer la vitesse d'extrusion adéquate pour conserver la qualité
de l'impression).
A titre d'exemple, un tel rapport de 2 :1 donne un matériau abradable comprenant 0.7g d'accélérateur et 1.4g de base, auquel il convient d'ajouter 0.2g .. de gelée de pétrole.
Le matériau abardable extrudé par la ou les buses calibrées est avantageusement un matériau thermodurcissable à haute viscosité (dit aussi fluide) qui est dépourvu de solvant dont l'évaporation génère comme il est connu un fort retrait. Ce matériau est de préférence une résine à cinétique de polymérisation lente et écoulement filamentaire stable se présentant sous la forme d'un mélange thixotrope qui présente donc l'avantage d'un retrait beaucoup plus faible entre l'impression sur le substrat (juste après extrusion du matériau) et la structure finale (une fois chauffée et la polymérisation complète).
Un exemple de matériau abradable utilisé dans le cadre du procédé est un matériau se présentant sous forme pâteuse et constitué de trois composants à savoir une base polymère, par exemple une résine époxyde (se présentant comme une pâte à modeler bleue), un agent de réticulation ou accélérateur (se présentant comme une pâte à modeler blanche) et une gelée de pétrole de couleur translucide (par exemple de la vaselineTm). Les composants accélérateur/base sont répartis selon un rapport pondéral de la base à
l'accélérateur compris entre 1:1 et 2 :1 et la gelée de pétrole présente entre 5 et 15% (typiquement 10%) en poids du poids total du matériau. La base peut en outre comporter des microsphères de verres creuses d'un diamètre déterminé
pour assurer la porosité désirée tout en permettant d'accroitre les performances mécaniques de l'échafaudage imprimé. L'intérêt de l'introduction de la gelée de pétrole réside dans la réduction de la viscosité de la résine ainsi que de la cinétique de réaction de l'abradable, ce qui rend sa viscosité plus stable durant le temps de l'impression. (La viscosité est directement liée à la pression d'extrusion nécessaire pour assurer la vitesse d'extrusion adéquate pour conserver la qualité
de l'impression).
A titre d'exemple, un tel rapport de 2 :1 donne un matériau abradable comprenant 0.7g d'accélérateur et 1.4g de base, auquel il convient d'ajouter 0.2g .. de gelée de pétrole.
9 Ainsi la présente invention permet une impression rapide (30mm/s) et stable permettant de reproduire efficacement des structures acoustiques performantes contrôlées (rugosité, aspect, taux d'ouverture) ayant une faible taille de filament (<250 microns de diamètre) et un faible poids (taux de porosité
amélioré > 70%) particulièrement intéressantes aux vues des contraintes fortes rencontrées en aéronautique.
amélioré > 70%) particulièrement intéressantes aux vues des contraintes fortes rencontrées en aéronautique.
Claims (10)
1. Procédé de fabrication d'un réseau (10) ordonné de canaux acoustiques, le procédé consistant à déposer sur une surface de substrat (12) un filament (100, 200, 300) d'un matériau thermodurcissable tout en assurant à la fois un déplacement relatif entre ledit substrat et ledit filament selon une trajectoire de dépôt déterminée et une solidification dudit filament afin de créer un échafaudage tridimensionnel de filaments, caractérisé en ce que ledit matériau thermodurcissable est un mélange thixotrope dépourvu de solvant et constitué
d'une base polymère et d'un agent de réticulation dans un rapport pondéral de ladite base polymère à ledit agent de réticulation compris entre 1 :1 et 2 :1, et d'un composant de facilitation de l'écoulement, typiquement une gelée de pétrole présente entre 5 et 15% en poids du poids total dudit mélange thixotrope.
d'une base polymère et d'un agent de réticulation dans un rapport pondéral de ladite base polymère à ledit agent de réticulation compris entre 1 :1 et 2 :1, et d'un composant de facilitation de l'écoulement, typiquement une gelée de pétrole présente entre 5 et 15% en poids du poids total dudit mélange thixotrope.
2. Procédé de fabrication selon la revendication 1, caractérisé en ce que ledit mélange thixotrope est obtenu par co-extrusion desdits composants dans une vis d'extrusion conique (26) et déposé sur ladite surface de substrat (12) au moyen d'une buse d'éjection de forme et dimension calibrées (22) dont la section de sortie présente une plus grande largeur inférieure à 250 microns.
3. Procédé de fabrication selon la revendication 1 ou la revendication 2, caractérisé en ce que le déplacement relatif entre ledit substrat et ledit filament est assuré par une machine trois axes au moins ou un robot (20) commandé
depuis un calculateur (24).
depuis un calculateur (24).
4. Procédé de fabrication selon l'une quelconque des revendications 1 à 3, caractérisé en ce que la solidification dudit filament est assurée par un élément de chauffage (28) monté en sortie de ladite buse d'éjection calibrée.
5. Procédé de fabrication selon l'une quelconque des revendications 1 à 4, caractérisé en ce que ledit échafaudage tridimensionnel de filaments est constitué de couches superposées dont les filaments d'une couche donnée (100, 200) sont orientés alternativement à 00 ou à 900 sans décalage dans la superposition des filaments d'une même direction.
6. Procédé de fabrication selon l'une quelconque des revendications 1 à 4, caractérisé en ce que ledit échafaudage tridimensionnel de filaments est constitué de couches superposées dont les filaments d'une couche donnée (100, 200) sont orientés alternativement à 00 ou à 900 et présentent un décalage dans la superposition des filaments d'une même direction.
7. Procédé de fabrication selon l'une quelconque des revendications 1 à 4, caractérisé en ce que ledit échafaudage tridimensionnel de filaments est constitué de couches superposées de filaments (100, 200, 300, 400, 500, 600) présentant des directions d'orientation des filaments Di décalées d'un même écart angulaire, compris entre 20° et 40°, typiquement de 30°, à chaque couche i.
8. Procédé de fabrication selon l'une quelconque des revendications 1 à 4, caractérisé en ce que ledit échafaudage tridimensionnel de filaments est constitué de couches superposées de filaments (100, 200) présentant, pour chacune des couches, à la fois une orientation de filaments à 0° et une orientation de filaments à 90°, de façon à former des perforations verticales (700) de sections carrées entre les filaments.
9. Réseau ordonné de canaux acoustiques obtenu à partir du procédé de fabrication selon l'une quelconque des revendications 1 à 8.
10. Revêtement abradable de paroi de turbomachine comportant un réseau ordonné de canaux acoustiques selon la revendication 9.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA2988223A CA2988223A1 (fr) | 2017-12-06 | 2017-12-06 | Procede de fabrication d'un reseau ordonne de canaux acoustiques en materiau abradable |
JP2020531084A JP7304858B2 (ja) | 2017-12-06 | 2018-12-06 | アブレイダブル材料で作られた吸音チャネルの規則正しい網状組織を製造する方法 |
CN201880087183.1A CN111655452B (zh) | 2017-12-06 | 2018-12-06 | 用耐磨材料制造声学通道的有序网络的方法 |
US16/770,323 US11478981B2 (en) | 2017-12-06 | 2018-12-06 | Method for manufacturing an ordered network of acoustic channels made of abradable material |
EP18825764.6A EP3721067B1 (fr) | 2017-12-06 | 2018-12-06 | Procédé de fabrication d'un réseau ordonne de canaux acoustiques en matériau abradable |
PCT/FR2018/053134 WO2019110939A1 (fr) | 2017-12-06 | 2018-12-06 | Procédé de fabrication d'un réseau ordonne de canaux acoustiques en matériau abradable |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA2988223A CA2988223A1 (fr) | 2017-12-06 | 2017-12-06 | Procede de fabrication d'un reseau ordonne de canaux acoustiques en materiau abradable |
Publications (1)
Publication Number | Publication Date |
---|---|
CA2988223A1 true CA2988223A1 (fr) | 2019-06-06 |
Family
ID=66700628
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA2988223A Pending CA2988223A1 (fr) | 2017-12-06 | 2017-12-06 | Procede de fabrication d'un reseau ordonne de canaux acoustiques en materiau abradable |
Country Status (1)
Country | Link |
---|---|
CA (1) | CA2988223A1 (fr) |
-
2017
- 2017-12-06 CA CA2988223A patent/CA2988223A1/fr active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3721067B1 (fr) | Procédé de fabrication d'un réseau ordonne de canaux acoustiques en matériau abradable | |
CA3084429A1 (fr) | Procede de fabrication additive in situ d'un revetement sur un carter de turbomachine | |
WO2019110940A1 (fr) | Procede de fabrication d'un reseau ordonne de micro-canaux acoustiques interconnectes | |
CA2917068C (fr) | Procede de preparation a la depose d'un revetement metallique par projection thermique sur un substrat | |
US20160319678A1 (en) | A workpiece manufactured from an additive manufacturing system having a particle separator and method of operation | |
EP3720698B1 (fr) | Revêtement a gradient de propriété pour paroi interne de turbomachine | |
CA2988223A1 (fr) | Procede de fabrication d'un reseau ordonne de canaux acoustiques en materiau abradable | |
FR3074444A1 (fr) | Procede de fabrication d'un reseau ordonne de canaux acoustiques en materiau abradable | |
FR3074445A1 (fr) | Procede de fabrication additive in situ d'un revetement sur un carter de turbomachine | |
CA2988224A1 (fr) | Revetement a gradient de propriete pour paroi interne de turbomachine | |
EP4334931A2 (fr) | Meta-materiau acoustique et procede pour sa fabrication additive | |
FR3074448A1 (fr) | Revetement a gradient de propriete pour paroi interne de turbomachine | |
CA2988229A1 (fr) | Procede de fabrication additive in situ d'un revetement sur un carter de turbomachine | |
EP4051444B1 (fr) | Equipement et procédé de dépôt de particules par ondes de choc laser | |
CA2988222A1 (fr) | Procede de fabrication d'un reseau ordonne de micro-canaux acoustiques interconnectes | |
FR3074443A1 (fr) | Procede de fabrication d'un reseau ordonne de micro-canaux acoustiques interconnectes | |
FR3028883B1 (fr) | Arbre de rotor de turbomachine comportant une surface d'echange thermique perfectionnee | |
CA3117010A1 (fr) | Procede de fabrication d'un meta-materiau acoustique et meta-materiau acoustique obtenu par ce procede | |
RU2780516C2 (ru) | Способ аддитивного изготовления на месте покрытия на корпусе турбомашины | |
CA3117015A1 (fr) | Meta-materiau acoustique et procede pour sa fabrication additive | |
FR3105553A1 (fr) | Système de traitement acoustique à au moins deux degrés de liberté comportant un revêtement quart d’onde permettant le passage d’ondes acoustiques dans un résonateur à mode de cavité | |
CA3155206A1 (fr) | Absorbant acoustique et son procede de production |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EEER | Examination request |
Effective date: 20221108 |
|
EEER | Examination request |
Effective date: 20221108 |
|
EEER | Examination request |
Effective date: 20221108 |