CA2983727A1 - N-substituted noribogaine prodrugs - Google Patents

N-substituted noribogaine prodrugs

Info

Publication number
CA2983727A1
CA2983727A1 CA2983727A CA2983727A CA2983727A1 CA 2983727 A1 CA2983727 A1 CA 2983727A1 CA 2983727 A CA2983727 A CA 2983727A CA 2983727 A CA2983727 A CA 2983727A CA 2983727 A1 CA2983727 A1 CA 2983727A1
Authority
CA
Canada
Prior art keywords
substituted
compound
alkyl
group
heterocyclic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA2983727A
Other languages
French (fr)
Inventor
Deborah C. Mash
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DemeRx Inc
Original Assignee
DemeRx Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DemeRx Inc filed Critical DemeRx Inc
Publication of CA2983727A1 publication Critical patent/CA2983727A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/12Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains three hetero rings
    • C07D487/18Bridged systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0087Galenical forms not covered by A61K9/02 - A61K9/7023
    • A61K9/0095Drinks; Beverages; Syrups; Compositions for reconstitution thereof, e.g. powders or tablets to be dispersed in a glass of water; Veterinary drenches
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/02Suppositories; Bougies; Bases therefor; Ovules
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2022Organic macromolecular compounds
    • A61K9/205Polysaccharides, e.g. alginate, gums; Cyclodextrin
    • A61K9/2059Starch, including chemically or physically modified derivatives; Amylose; Amylopectin; Dextrin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/4841Filling excipients; Inactive ingredients
    • A61K9/4866Organic macromolecular compounds

Abstract

This invention relates generally to prodrugs of noribogaine. This invention also relates to pharmaceutical compositions comprising the prodrugs of noribogaine as well as method of treating pain, addiction and/or stress using such compounds and/or pharmaceutical compositions.

Description

N-SUBSTITUTED NOM BOGAINE PRODRUGS
Field of the Invention [0001] This invention relates generally to prodrugs of noribogaine or noribogaine derivatives. This invention also relates to pharmaceutical compositions comprising the prodrugs of noribogaine or noribogaine derivatives as well as methods of treating pain, addiction and/or stress using such compounds and/or pharmaceutical compositions.
State of the Art
[0002] Noribogaine is a metabolite of ibogaine and is sometimes referred to as hydroxyibogamine. US Patent No. 2,813,873 claims noribogaine albeit as "12-0-demethylibogaine" while providing an incorrect structural formula for ibogaine. The structure of noribogaine has now been thoroughly evaluated and is found to combine the features of tryptamine, tetrahydrohavaine and indolazepines. Noribogaine can be depicted by the following formula:
HO r.
[0003] Noribogaine and its pharmaceutically acceptable salts have recently received significant attention as a non-addictive alkaloid useful in treating drug dependency (U.S.
Patent No. 6,348,456) and as a potent analgesic (U.S. Patent No. 7,220,737).
100041 Certain noribogaine derivatives and their uses are described in, for example, U.S.
Patent No. 8,362,007 which is incorporated herein by reference in its entirety.
[0005] Noribogaine is typically administered orally or intravenously and becomes systemically available to the treated patient. While noribogaine allosterically binds tightly to the u and K receptors, the systemic circulation of noribogaine increases the likelihood of undesirable side effects while the availability of noribogaine is limited by the efficiency of its passage across the blood brain barrier.
[0006] Accordingly, there is a need to reduce the systemic circulation of noribogaine while maintaining or increasing its concentration in the brain particularly at the g and x receptors.
4 Summary of the Invention (00071 This invention relates, in part, to a class of noribogaine prodrugs which, after administration, release noribogaine in vivo. The prodrug moiety is selected to be readily cleavable either by a cleavable linking arm or by cleavage of the prodrug entity that binds to noribogaine such that noribogaine is generated in vivo. In one preferred embodiment, the prodrug moiety is selected to facilitate binding to the and/or ic receptors in the brain either by facilitating passage across the blood brain barrier or by targeting brain receptors other than the fa and/or K receptors. This invention also relates, in part, to a class of prodrugs of noribogaine derivatives.
[00081 Accordingly, in one embodiment, this invention is directed to compounds which are represented by Formula I or II below:
Rio Rii 110 N\
Li N
L.
Ri wherein L is selected from the group consisting of a covalent bond and a cleavable linker group;
R is selected from the group consisting of hydrogen, a hydrolysable group selected from the group consisting of-C(0)R2, -C(0)NR3R4 and -C(0)0R5, where R2 is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl and substituted alkynyl, R3 and R4 are independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl. substituted alkenyl, alkynyl, substituted alkynyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic and substituted heterocyclic, R5 is selected from the group consisting of alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic and substituted heterocyclic provided that R is not a saccharide or an oligosaccharide;

RI is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, aryl, substituted aryl.
cycloalkyl, substituted cycloalkyl, heteroaryl, substituted heteroaryl, heterocyclic, and substituted heterocyclic provided that RI is not a saccharide or an oligosacchatide;
RI is hydrogen or ¨OR;
RI I is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkoxy, substituted alkoxy, (CH2)m0C(0)alkyl, (CH2)m0H, (CH2)mOalkyl, C112-X-CH3 or (CH2).0(CH2)p0(C1-12),10(CH2),CII3, where each of m, p and q is I, 2 or 3; and r is 0. 1 or 2, X is 0 or NH;
or a pharmaceutically acceptable salt and/or solvate thereof, provided that when L is a covalent bond and RI is hydrogen, then either R is selected from the group consisting of -C(0)NR3R4 and -C(0)0R5 or R'1 is not alkyl; and further provided that when R is hydrogen or -C(0)R2 and L is a covalent bond, then RI is not hydrogen.
100091 In one embodiment, R11 is selected from the group consisting of hydrogen, C1-C3 alkyl, substituted C1-C3 alkyl, C1-C3 alkoxy and substituted C1-C3 alkoxy.
100101 In one embodiment, R11 is H. In one embodiment, R" is C1-C3 alkyl, such as ethyl.
In one embodiment, is CH2CH2OH. In one embodiment, R" is CH2CH2OCH3. In one embodiment, R" is CH2CH2OCH2Ph. Ph represents a phenyl group. In one embodiment, R'1 is CH2CH20C(0)alkyl, such as CH2CH20C(0)(CH2)10CH3. In one embodiment, R"
is CH2C1-120(CH2)p0(CH2)0(CH2),CH3.
100111 In one embodiment, R11 is C1-C3 alkyl optionally substituted with YII, YRI2, YC(0)R.12, C(0)YR12, C(0)NH2, C(0)NHR12, C(0)NR12R13, NH2, NHR12, NR12R13, NHC(0)R12, or NR12C(0)R13, where Y is 0 or S, R12 and R13 are independently C1-C3 alkyl.
100121 In one embodiment, R11 is C1-C3 alkoxy optionally substituted with YfI, YRI2, YC(0)R12, C(0)YR12, C(0)NH2, C(0)NHR12, C(0)NR12R13, NH2, NHRI2, NR12R13, NFIC(0)R12, or NRI2C(0)R13, where Y is 0 or S, R12 and R13 are independently C1-C3 alkyl.
100131 In one embodiment, R is hydrogen and L is a cleavable group.
100141 In one embodiment, R is hydrogen, L is a -C(0)-, -C(0)0-, or -C(0)NH-, and RI is substituted alkyl. Preferably RI is alkyl substituted with -NR6R7 where R6 and R7 are independently selected from the group consisting of hydrogen, alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, aryl, substituted aryl, cycloalkyl, substituted cycloalkyl, heteroaryl, substituted heteroaryl, heterocyclic, and substituted heterocyclic.
[00151 In one embodiment, R is selected from the group consisting of -C(0)NR3R4 and -C(0)01t5 and RI is hydrogen.
[00161 In one embodiment, provided is a compound of Formula H which is selected from those as set forth in Table 1 below or a pharmaceutically acceptable salt and/or solvate thereof:
Table I
, _____________________________________________________________________ Compound It L RI 1 No. :
_______________________________________________ ¨ .................
1 -q0)CH2CH2N(CH3)2 -C(0) -CH2CH2N(CII3)2 -I I
2 H -C(0) -CH2CFI2N(CH3)2 I
3 j..... -C(0 )CH2CH2N(C, F13)2 bond H
4 i= 4:::-(b)CH2CH2N(CH3)2 _____________ bond -C1-12N(C1-13k H bond -C11.2N CI13)2 6 -C(0)NHCH2CH2N(CH3)2 -C(0) II
7 -C(0)NHCH2CH2N(CH3)2 -C(0)NH 1 ___________ -CII2CH2N(C1113)2 ,---- 8 H -C(0)NH I -CH2CH2N(CH3)2 9 -COINHCH2CH2N(CH3)2 -C(0)NH H
-C(0)NHCII2CH2N(CH3)2 I -C(0) -CH3 , \....0 -C(0) -CH2CH2N(CH3)2 ______________________________________________________________________ :
12 -C(0)NIICH2CH2N(C113)2 -C(0) -CH2CH2N(CH3)2 13 -C(0)NHCH2CH2N(CH3)2 -C(0)0 -CI-13 14 -C(0)NHCH2CH2N(CH3)2 -C(0)0 -CH2CH2N(C143)2 H -C(0)0 -CH2CH2N(CH3)2 16 ----e-(-656-13 -C(0)NH -CH2CH2N(CF13)2 17 -C(2)CH3 -C(0)NH H
18 -C(0)C113 -C(0)NH -CH3 19 -C(0)00-13 -C(0)NH -CH2C112N(CH3)2 _ -C(0)0(21:13 -C(0)NH H ________ 1 I
21 -C(0)NHCH2CH2N(CH3)2 -C(0)NH ' i---1---\\O
22 H i -C(0)NH
.7---N\ 7 23 -C(0)NHCH2CH2N(CH02 -C(0)NH MOM
24 -C(0)NHCH2CH2N(CH3)2 -C(0) /-----\
7--N\ /0 -... ___________________________________________________ H -C(0) j ¨\\
I . , 7¨CH3 , __________________________ Compound R L R.1 No.
26 -C(0)NFICH2C112N(CH3)2 -C(0) /--\
¨N 1N-CH3 \.....
27 -C(0)NUICH2CH2N(CH3)2 -C(0)0 ¨7\
______________________________________________________________ .,_./
, 28 -C(0)NHCH3 -C(.0) i ¨N N-C1-13 29 H -C(0) [. ..... --,-- _____________________________________ ¨N N-CH3 30 0 r--\ -C(0)NUI -CH2CH2N(CF13)2 µ¨N N-CH3 / \____/
31 -C(0)CH3, -C(0)0 , -CH3 32 0 7---\ -C(0)0 -CH2CH3 )\¨N N-CH3 33 -C(0)CH3 , -P(0)(011)-0- H --, 34 -C(0)CH3 I -P(0)(OCH3)-0- -CH2CH2N(CH3)2 35 H ...... ..1 -P(9)(OH)-0- H
36 H i -P(0)(OCH3)-0- -CH3 +-37 -C(0)NHCH2CH2N(C1-13)2 1 -P(0)(OCH3)-I 38 H __________________ -C(0)NH -CH3 1 ___ 39 H -C(0)0 -C112C1-13 1"---\
I 40 H -C(0) -N N-CH3 41 /---,, \\
)¨N N-CH -P(0)(00-13)-0- -CH3 , \....../ !
...................................................................... a [00171 In one embodiment, the compound of Formula I is a compound wherein R1 is H. L
and R1 are as defined in Table I above, and R11 is C1-C3 alkyl optionally substituted with YH, YR12, YC(0)R.12, C(0)YR12, C(0)N112, C(0)NHR12, C(0)NRI2R13, NH2, NHR12, NTIC(0)R12, or NR12C(0)R13, where Y is 0 or S. R12 and It" are independently CI-C3 alkyl, or a pharmaceutically acceptable salt and/or solvate thereof 100181 In one embodiment, the compound of Formula I is a compound wherein R1t) is -OR, R, L and R1 are as defined in Table I above, and R11 is CI-C3 alkyl optionally substituted with YH, 'YR12, YC(0)R12, C(0)YR12, C(0)NH2, C(0)NHR12, C(0)NR121e3, NH2, NHR12, NR12R13, NHC(0)R12, or NR12C(0)R13, where Y is 0 or S. R12 and Ri3 are independently C --C3 alkyl, or a pharmaceutically acceptable salt and/or solvate thereof.
[0019] In one of its composition aspects, this invention is directed to a pharmaceutical composition comprising a pharmaceutically acceptable excipient and a therapeutically effective amount of a compound of Formula I or II or Table I above.

f00201 In one of its method aspects, this invention is directed to a method for treating addiction in a patient which method comprises administering to the patient a pharmaceutical composition comprising a pharmaceutically acceptable excipient and a therapeutically effective amount of a compound of Formula I or II or Table I above.
[0021] In another of its method aspects, this invention is directed to a method for treating pain, addition and/or stress in a patient which method comprises administering to the patient a pharmaceutical composition comprising a pharmaceutically acceptable excipient and a therapeutically effective amount of a compound of Formula I or II or Table I
above.
Detailed Description 100221 This invention is directed to noribogaine prodrugs, pharmaceutical compositions of such prodrugs and methods for their use. However, prior to describing this invention in greater detail, the following terms will first be defined.
100231 It is to be understood that this invention is not limited to particular embodiments described, as such may, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting, since the scope of the present invention will be limited only by the appended claims.
[0024] It must be noted that as used herein and in the appended claims, the singular forms "a", "an", and "the" include plural referents unless the context clearly dictates otherwise.
Thus, for example, reference to "a pharmaceutically acceptable excipient"
includes a plurality of such excipients.
1. Definitions 100251 Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. As used herein the following terms have the following meanings.
100261 As used herein, the term "comprising" or "comprises" is intended to mean that the compositions and methods include the recited elements, but not excluding others.
"Consisting essentially of' when used to define compositions and methods, shall mean excluding other elements of any essential significance to the combination for the stated purpose. Thus, a composition consisting essentially of the elements as defmed herein would not exclude other materials or steps that do not materially affect the basic and novel characteristic(s) of the claimed invention. "Consisting or shall mean excluding more than trace elements of other ingredients and substantial method steps. Embodiments defined by each of these transition terms are within the scope of this invention.
100271 The term "about" when used before a numerical designation, e.g., temperature, time, amount, and concentration, including range, indicates approximations which may vary by ( )or(-) 10 %, 5 %or %.
[0028] In some embodiments, the invention is directed to compositions comprising the procirtms described herein and an excipient to facilitate transport across the blood brain barrier.
[0029] "Alkyl" refers to monovalent saturated aliphatic hydrocarbyl groups having from 1 to 10 carbon atoms and preferably 1 to 6 carbon atoms. This term includes, by way of example, linear and branched hydrocarbyl groups such as methyl (CH3-), ethyl (CH3CH2-), n-propyl (CI-I3CH2CH2-), isopropyl ((CH3)2CH-), n-butyl (CH3CH2CH2C1-12-), isobutyl KII3)20-1C12-), sec-butyl OCH3)(CH3CH2)CH-), ((CH3)3C-), n-pentyl (CH3CH2CH2CH2CH2-), and neopentyl ((CH3)3CCH2-).
100301 "Alkenyl" refers to straight or branched hydrocarbyl groups having from 2 to 6 carbon atoms and preferably 2 to 4 carbon atoms and having at least I and preferably from l to 2 sites of vinyl (>C=C<) unsaturation. Such groups are exemplified, for example, by vinyl, allyl, and but-3-en-l-yl. Included within this term are the cis and trans isomers or mixtures of these isomers.
[00311 "Alkynyl" refers to straight or branched monovalent hydrocarbyl groups having from 2 to 6 carbon atoms and preferably 2 to 3 carbon atoms and having at least 1 and preferably from 1 to 2 sites of acetylenic (-CC-) unsaturation. Examples of such alkynyl groups include acetylenyl (-CHECK and propargyl (-CH2CEECH).
100321 "Substituted alkyl" refers to an alkyl group having from 1 to 5, preferably 1 to 3, or more preferably 1 to 2 substituents selected from the group consisting of alkoxy, substituted alkoxy, acyl, acylamino, acyloxy, amino, substituted amino, aminocarbonyl, antinothiocarbonyl, aminocarbonylamino, aminothiocarbonylamino, aminocarbonyloxy, aminosulfonyl, aminosulfonyloxy, aminosulfonylamino, amidino, aryl, substituted aryl, aryloxy, substituted aryloxy, arylthio, substituted arylthio, carboxyl, carboxyl ester, (carboxyl ester)amino, (carboxyl ester)oxy, cyano, cycloalkyl, substituted cycloalkyl, cycloalkyloxy, substituted cycloalkyloxy, cycloalkylthio, substituted cycloalkylthio, cycloalkenyl, substituted cycloalkenyl, cycloalkenyloxy, substituted cycloalkenyloxy, cycloalkenylthio, substituted cycloalkenylthio, guanidino, substituted guanidino, halo, hydroxy, heteroaryl, substituted heteroaryl, heteroaryloxy, substituted heteroaryloxy, heteroarylthio, substituted heteroarylthio, heterocyclic, substituted heterocyclic, heterocyclyloxy, substituted heterocyclyloxy, heterocyclylthio, substituted heterocyclylthio, nitro, SO3H, substituted sulfonyl, sultbnyloxy, thioacyl, thiol, alkylthio, and substituted alkylthio, wherein said substituents are defined herein.
[00331 "Substituted alkenyl" refers to alkenyl groups having from 1 to 3 substituents, and preferably 1 to 2 substituents, selected from the group consisting of alkoxy, substituted alkoxy, acyl, acylamino, acyloxy, amino, substituted amino, aminocarbonyl, aminothiocarbonyl, aminocarbonylamino, aminothiocarbonylamino, arninocarbonyloxy, aminosulfonyl, aminosulfonyloxy, aminosulfbnylamino, amidino, aryl, substituted aryl, aryloxy, substituted aryloxy, arylthio, substituted arylthio, carboxyl, carboxyl ester, (carboxyl ester)amino, (carboxyl ester)oxy, cyano, cycloalkyl, substituted cycloalkyl, cycloalkyloxy, substituted cycloalkyloxy, cycloalkylthio, substituted cycloalkylthio, cycloalkenyl, substituted cycloalkenyl, cycloalkenyloxy, substituted cycloalkenyloxy, cycloalkenylthio, substituted cycloalkenylthio, guanidino, substituted guanidino, halo, hydroxy, heteroaryl, substituted heteroaryl, heteroaryloxy, substituted heteroaryloxy, heteroarylthio, substituted heteroarylthio, heterocyclic, substituted heterocyclic, heterocyclyloxy, substituted heterocyclyloxy, heterocyclylthio, substituted heterocyclylthio, nitro, SO3H, substituted sulfonyl, sulfonyloxy, thioacyl, thiol, alkylthio, and substituted alkylthio, wherein said substituents are defined herein and with the proviso that any hydroxy or thiol substitution is not attached to a vinyl (unsaturated) carbon atom.
[00341 "Substituted alkynyl" refers to alkynyl groups having from 1 to 3 substituents, and preferably 1 to 2 substituents, selected from the group consisting of alkoxy, substituted alkoxy, acyl, acylamino, acyloxy, amino, substituted amino, aminocarbonyl, aminothiocarbonyl, aminocarbonylarnino, aminothiocarbonylamino, aminocarbonyloxy, aminosulfonyl, aminosulfonyloxy, aminosulfonylamino, amidino, aryl, substituted aryl, aryloxy, substituted aryloxy, arylthio, substituted arylthio, carboxyl, carboxyl ester, (carboxyl ester)amino, (carboxyl ester)oxy, cyano, cycloalkyl, substituted cycloalkyl, cycloalkyloxy, substituted cycloalkyloxy, cycloalkylthio, substituted cycloalkylthio, cycloalkenyl, substituted cycloalkenyl, cycloalkenyloxy, substituted cycloalkenyloxy, cycloalkenylthio, substituted cycloalkenylthio, guanidino, substituted guanidino, halo, hydroxy, heteroaryl, substituted heteroaryl, heteroaryloxy, substituted heteroaryloxy.
heteroarylthio, substituted heteroarylthio, heterocyclic, substituted heterocyclic, heterocyclyloxy, substituted heterocyclyloxy, heterocyclylthio, substituted hewmcyclylthio, nitro, SO3H, substituted sulfonyl, sulfonyloxy, tbioacyl, thiol, alkylthio, and substituted alkylthio, wherein said substituents are defined herein and with the proviso that any hydroxy or thiol substitution is not attached to an acetylenic carbon atom.
[00351 "Alkoxy" refers to the group -0-alkyl wherein alkyl is defined herein.
Alkoxy includes, by way of example, methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, 1-butoxy, sec-butoxy, and n-pentoxy.
100361 "Substituted alkoxy" refers to the group -0-(substituted alkyl) wherein substituted alkyl is defined herein.
[00371 "Acyl" refers to the groups H-C(0)-, alkyl-C(0)-, substituted alkyl-C(0)-, alkenyl-C(0)-, substituted alkenyl-C(0)., alkynyl-C(0)-, substituted alkynyl-C(0)-, cycloalkyl-C(0)-, substituted cycloalkyl-C(0)-, cycloalkenyl-C(0)-, substituted cycloalkenyl-C(0)-, aryl-C(0)-, substituted aryl-C(0)-, heteroaryl-C(0)-, substituted heteroaryl-C(0)-, heterocyclic-C(0)-, and substituted heterocyclic-C(0)-, wherein alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic, and substituted heterocyclic are as defined herein. Acyl includes the "acetyl" group CH3C(0)-.
[0038) "Acylamino" refers to the groups -NR' 7C(0)alkyl, -NR' 7C(0)substituted alkyl, -NR
'7C(0)cycloalkyl, -NR' 7C(0)substituted cycloalkyl, -NR17C(0)cycloalkenyl, -NR' 'C(0)substituted cycloalkenyl, -NR17C(0)alkenyl, -NR' 7C(0)substituted alkenyl, -NR 17C(0)alkynyl, -NR 7C(0)substituted alkynyl, -NR' 7C(0)aryl, -NR' 7C(0)substituted aryl, -NR17C(0)heteroaryl, -NR' 7C(0)substituted heteroaryl, -NR17C(0)heterocyclic, and -NR' 7C(0)substituted heterocyclic wherein R17 is hydrogen or alkyl and wherein alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic, and substituted heterocyclic are as defined herein.
[0039) "Acyloxy" refers to the groups alkyl-C(0)O-, substituted alkyl-C(0)O-, alkenyl-C(0)O-, substituted alkenyl-C(0)O-, alkynyl-C(0)O-, substituted alkynyl-C(0)O-, aryl-C(0)O-, substituted aryl-C(0)O-, cycloalkyl-C(0)0-, substituted cycloalkyl-C(0)0-, cycloalkenyl-C(0)O-, substituted cycloalkenyl-C(0)O-, heteroaryl-C(0)O-, substituted heteroaryl-C(0)O-, heterocyclic-C(0)O-, and substituted heterocyclic-C(0)0-wherein alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic, and substituted heterocyclic are as defined herein.
[00401 "Amino" refers to the group -141-12.
[00411 "Substituted amino" refers to the group -NR18R19 where R18 and R19 are independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, aryl, substituted aryl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, heteroaryl, substituted heteroaryl, heterocyclic, substituted heterocyclic, -S02-alkyl, -S02-substituted -S02-alkenyl, -S02-substituted alkenyl, -S02-cycloalkyl, -S02-substituted cylcoalkyl, -S02-cycloalkenyl, -S02-substituted cylcoalkeny1,-S02-aryl, -S02-substituted aryl, -S02-heteroaryl, -S02-substituted heteroaryl, -S02-heterocyclic, and -S02-substituted heterocyclic and wherein R18 and R19 are optionally joined, together with the nitrogen bound thereto to form a heterocyclic or substituted heterocyclic group, provided that R18 and R19 are both not hydrogen, and wherein alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl.
substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic, and substituted heterocyclic are as defined herein. When R18 is hydrogen and R19 is alkyl, the substituted amino group is sometimes referred to herein as allcylamino. When R18 and R19 are alkyl, the substituted amino group is sometimes referred to herein as dialkylamino. When referring to a monosubstituted amino, it is meant that either R18 or R19 is hydrogen but not both. When referring to a disubstituted amino, it is meant that neither R18 nor R19 are hydrogen.
[00421 "Aminocarbonyl" refers to the group -C(0)NR20R2i where R2 and R21 are independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, aryl, substituted aryl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, heteroaryl, substituted heteroaryl, heterocyclic, and substituted heterocyclic and where R2 and R21 are optionally joined together with the nitrogen bound thereto to form a heterocyclic or substituted heterocyclic group, and wherein alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic, and substituted heterocyclic are as defined herein.
[00431 "Arninothiocarbonyl" refers to the group -C(S)NR20R21 where R2 and R21 are independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, aryl, substituted aryl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, heteroaryl, substituted heteroaryl, heterocyclic, and substituted heterocyclic and where R2 and R21 are optionally joined together with the nitrogen bound thereto to form a heterocyclic or substituted heterocyclic group, and wherein alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic, and substituted heterocyclic are as defined herein.
[0044] "Aminocarbonylamino" refers to the group -NR17C(0)NR20R21 where R17 is hydrogen or alkyl and R2 and R2I are independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, aryl, substituted aryl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, heteroaryl, substituted heteroaryl, heterocyclic, and substituted heterocyclic and where R2 and R21 are optionally joined together with the nitrogen bound thereto to form a heterocyclic or substituted heterocyclic group, and wherein alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic, and substituted heterocyclic are as defined herein.
[00451 "Aminothiocarbonylamino" refers to the group -NRI7C(S) NR2o¨ 21 K where R17 is hydrogen or alkyl and R2 and R21 are independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, aryl, substituted aryl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, heteroaryl, substituted heteroaryl, heterocyclic, and substituted heterocyclic and where R2 and R2I are optionally joined together with the nitrogen bound thereto to form a heterocyclic or substituted heterocyclic group, and wherein alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic, and substituted heterocyclic are as defined herein.

100461 "Aminocarbonyloxy" refers to the group -O-C(0)NR20R21 where R2 and R21 are independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, aryl, substituted aryl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, heteroaryl, substituted heteroaryl, heterocyclic, and substituted heterocyclic and where R2 and R21 are optionally joined together with the nitrogen bound thereto to form a heterocyclic or substituted heterocyclic group, and wherein alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic, and substituted heterocyclic are as defined herein.
[00471 "Aminosulfonyl" refers to the group -S02NR20R21 where RN) and R21 are independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, aryl, substituted aryl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, heteroaryl, substituted heteroaryl, heterocyclic, and substituted heterocyclic and where R2 and R21 are optionally joined together with the nitrogen bound thereto to form a heterocyclic or substituted heterocyclic group, and wherein alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic, and substituted heterocyclic are as defined herein.
[00481 "Aminosulfonyloxy" refers to the group -0-S02NR20'-'21 where R2 and R2I are independently selected from the group consisting of hydrogen. alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, aryl, substituted aryl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, heteroaryl, substituted heteroaryl, heterocyclic, and substituted heterocyclic and where R2 and R21 are optionally joined together with the nitrogen bound thereto to form a heterocyclic or substituted heterocyclic group, and wherein alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic, and substituted heterocyclic are as defined herein.
[00491 "Aminosulfonylamino" refers to the group -NR'7-SO2NR2 R21 where R17 is hydrogen or alkyl and R2 and R21 are independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyh substituted alkynyl, aryl, substituted aryl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, heteroaryl, substituted heteroaryl, heterocyclic, and substituted heterocyclic and where R2 and R2I are optionally joined together with the nitrogen bound thereto to form a heterocyclic or substituted heterocyclic group, and wherein alkyl, substituted alkyl, alkeny1, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic, and substituted heterocyclic are as defined herein.
[00501 "Arnidino" refers to the group -C(=NR22)NR20R2I where R20, R2I, and R22 are independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, aryl, substituted aryl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, heteroaryl, substituted heteroaryl, heterocyclic, and substituted heterocyclic and where R2 and R2I
are optionally joined together with the nitrogen bound thereto to form a heterocyclic or substituted heterocyclic group, and wherein alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic, and substituted heterocyclic are as defined herein.
[00511 "Aryl" or "Ar" refers to a monovalent aromatic carbocyclic group of from 6 to 14 carbon atoms having a single ring (e.g., phenyl) or multiple condensed rings (e.g., naphthyl or anthryl) which condensed rings may or may not be aromatic (e.g., 2-benzoxazolinone, 2H-1,4-benzoxazin-3(4H)-one-7-yl, and the like) provided that the point of attachment is at an aromatic carbon atom. Preferred aryl groups include phenyl and naphthyl.
100521 "Substituted aryl" refers to aryl groups which are substituted with I
to 5, preferably 1 to 3, or more preferably 1 to 2 substituents selected from the group consisting of alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, alkoxy, substituted alkoxy, acyl, acylamino, acyloxy, amino, substituted amino, aminocarbonyl, aminothiocarbonyl, aminocarbonylamino, aminothiocarbonylamino, aminocarbonyloxy, aminosulfonyl, aminosulfonyloxy, aminosulfonylamino, amidino, aryl, substituted aryl, aryloxy, substituted aryloxy, arylthio, substituted arylthio, carboxyl, carboxyl ester, (carboxyl ester)atnino, (carboxyl ester)oxy, cyano, cycloalkyl, substituted cycloalkyl, cycloalkyloxy, substituted cycloalkyloxy, cycloalkylthio, substituted cycloalkylthio, cycloalkenyl, substituted cycloalkenyl, cycloalkenyloxy, substituted cycloalkenyloxy, cycloalkenylthio, substituted cycloalkenylthio, guanidino, substituted guanidino, halo, hydroxy, heteroaryl, substituted heteroaryl, heteroaryloxy, substituted heteroaryloxy, heteroarylthio, substituted heteroarylthio, heterocyclic, substituted heterocyclic, heterocyclyloxy, substituted heterocyclyloxy, heterocyclylthio, substituted heterocyclylthio, nitro, SO3H, substituted sulfonyl, sulfonyloxy, thioacyl, thiol, alkylthio, and substituted alkylthio, wherein said substituents are defined herein.
100531 "Aryloxy" refers to the group -0-aryl, where aryl is as defined herein, that includes, by way of example, phenoxy and naphthoxy.
100541 "Substituted aryloxy" refers to the group -0-(substituted aryl) where substituted aryl is as defined herein.
100551 "Arylthio" refers to the group -S-aryl, where aryl is as defined herein.
[00561 "Substituted arylthio" refers to the group -S-(substituted aryl), where substituted aryl is as defined herein.
[00571 "Carbonyl" refers to the divalent group -C(0)- which is equivalent to -C(=0)-.
100581 "Carboxy" or "carboxyl" refers to -COOH or salts thereof.
100591 "Carboxyl ester" or "carboxy ester" refers to the groups -C(0)0-alkyl, -C(0)0-substituted alkyl, -C(0)0-alkenyl, -C(0)0-substituted alkenyl, -C(0)0-alkynyl, -C(0)0-substituted alkynyl, -C(0)0-aryl, -C(0)0-substituted aryl, -C(0)0-cycloalkyl, -C(0)0-substituted cycloalkyl, -C(0)0-cycloalkenyl, -C(0)0-substituted cycloalkenyl.
-C(0)0-heteroaryl, -C(0)0-substituted heteroaryl, -C(0)0-heterocyclic, and -C(0)0-substituted heterocyclic wherein alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic, and substituted heterocyclic are as defined herein.
100601 "(Carboxyl ester)amino" refers to the group -NR17-C(0)0-alkyl, -NR17-C(0)0-substituted alkyl, -1.4R17-C(0)0-alkenyl, -NR'7-C(0)0-substituted alkenyl, -NR'7-C(0)0-allcynyl, -NR'7-C(0)0-substituted alkynyl, -NR'7-C(0)0-aryl, -NR 17-C(0)0-substituted aryl, -NR'7-C(0)0-cycloalkyl, -NR'7-C(0)0-substituted cycloalkyl, -NR'7-C(0)0-cycloalkenyl, -NR17-C(0)0-substituted cycloalkenyl, -NR'7-C(0)0-heteroaryl, -NR17-C(0)0-substituted heteroaryl, -NR17-C(0)0-heterocyclic, and -NR'7-C(0)0-substituted heterocyclic wherein R17 is alkyl or hydrogen, and wherein alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic, and substituted heterocyclic are as defined herein.
100611 "(Carboxyl ester)oxy" refers to the group -0-C(0)0-alkyl, substituted -0-C(0)0-alkyl, -0-C(0)0-alkenyl, -0-C(0)0-substituted alkenyl, -0-C(0)0-alkynyl, -0-C(0)0-substituted alkynyl, -0-C(0)0-aryl, -0-C(0)0-substituted aryl, -0-C(0)0-cycloalkyl, -0-C(0)0-substituted cycloalkyl, -0-C(0)0-cycloalkenyl, -0-C(0)0-substituted cycloalkenyl, -0-C(0)0-heteroaryl, -0-C(0)0-substituted heteroaryl, -0-C(0)0-heterocyclic, and -0-C(0)0-substituted heterocyclic wherein alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic, and substituted heterocyclic are as defined herein.
100621 "Cyano" refers to the group -CN.
100631 "Cycloalkyl" refers to cyclic alkyl groups of from 3 to 10 carbon atoms having single or multiple cyclic rings including fused, bridged, and Spiro ring systems. One or more of the rings can be aryl, heteroaryl, or heterocyclic provided that the point of attachment is through the non-aromatic, non-heterocyclic ring carbocyclic ring. Examples of suitable cycloalkyl groups include, for instance, adamantyl, cyclopropyl, cyclobutyl, cyclopentyl, and cyclooctyl. Other examples of cycloalkyl groups include bicycle[2,2,2Joetanyl, norbomyl, and spirobicyclo groups such as spiro[4.5]dec-8-yl:
100641 "Cycloalkenyl" refers to non-aromatic cyclic alkyl groups of from 3 to 10 carbon atoms having single or multiple cyclic rings and having at least one >0=C<
ring unsaturation and preferably from I to 2 sites of >C=C ring unsaturation.
{00651 "Substituted cycloalkyl" and "substituted cycloalkenyl" refers to a cycloalkyl or cycloalkenyl group having from 1 to 5 or preferably 1 to 3 substituents selected from the group consisting of oxo, thione, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, alkoxy, substituted alkoxy, acyl, acylamino, acyloxy, amino, substituted amino, aminocarbonyl, aminothiocarbonyl, atninocarbonylarnino, aminothiocarbonylamino, aminocarbonyloxy, aminosulfonyl, aminosulfonyloxy, aminosulfonylarnino, antidino, aryl, substituted aryl, aryloxy, substituted aryloxy, arylthio, substituted arylthio, carboxyl, carboxyl ester, (carboxyl ester)amino, (carboxyl ester)oxy, cyano, cycloalkyl, substituted cycloalkyl, cycloalkyloxy, substituted cycloalkyloxy, cycloalkylthio, substituted cycloalkylthio, cycloalkenyl, substituted cycloalkenyl, cycloalkenyloxy, substituted cycloalkenyloxy, cycloalkenylthio, substituted cycloalkenylthio, guanidino, substituted guanidino, halo, hydroxy, heteroaryl, substituted heteroaryl, heteroaryloxy, substituted heteroaryloxy, heteroarylthio, substituted heteroarylthio, heterocyclic, substituted heterocyclic, heterocyclyloxy, substituted heterocyclyloxy, heterocyclylthio, substituted heterocyclylthio, nitro, SO3H, substituted sulfonyl, sulfonyloxy, thioacyl, thiol, alkylthio, and substituted alkylthio, wherein said substituents are defmed herein.
100661 "Cycloalkyloxy" refers to -0-cycloalkyl.
100671 'Substituted cycloalkyloxy" refers to -0-(substituted cycloalkyl).
100681 "Cycloalkylthio" refers to -S-cycloalkyl.
100691 "Substituted cycloalkylthio" refers to -S-(substituted cycloalkyl).
[00701 "Cycloalkenyloxy" refers to -0-cycloalkenyl.
100711 "Substituted cycloalkenyloxy" refers to -0-(substituted cycloalkenyl).
100721 "Cycloalkenylthio" refers to -S-cycloalkenyl.
100731 "Substituted cycloalkenylthio" refers to -S-(substituted cycloalkenyl).

[00741 "Guanidino" refers to the group -NHC(=NH)NH2.
[00751 "Substituted guanidino" refers to -NR23C(=NR23)N(R23)2 where each R23 is independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, aryl, substituted aryl. heteroaryl, substituted heteroaryl, heterocyclic, and substituted heterocyclic and two R23 groups attached to a common guanidino nitrogen atom are optionally joined together with the nitrogen bound thereto to form a heterocyclic or substituted heterocyclic group, provided that at least one R23 is not hydrogen, and wherein said substituents are as defined herein.
(0076) "Halo" or "halogen" refers to fluoro, chloro, bromo and iodo and preferably is fluor or chloro.
100771 "Haloalkyl" refers to alkyl groups substituted with 1 to 5, 1 to 3, or 1 to 2 halo groups, wherein alkyl and halo are as defined herein.

[00781 "Haloalkoxy" refers to alkoxy groups substituted with 1 to 5, 1 to 3, or 1 to 2 halo groups, wherein alkoxy and halo are as defmed herein.
[00791 "Haloalkylthio" refers to alkylthio groups substituted with 1 to 5, 1 to 3, or 1 to 2 halo groups, wherein alkylthio and halo are as defined herein.
[00801 "Hydroxy" or "hydroxyl" refers to the group -OH.
[00811 "Heteroaryl" refers to an aromatic group of from I to 10 carbon atoms and I to 4 heteroatoms selected from the group consisting of oxygen, nitrogen and sulfur within the ring. Such heteroaryl groups can have a single ring (e.g., pyridinyl or furyl) or multiple condensed rings (e.g., indolizinyl or benzothienyl) wherein the condensed rings may or may not be aromatic and/or contain a heteroatom provided that the point of attachment is through an atom of the aromatic heteroaryl group. In one embodiment, the nitrogen and/or the sulfur ring atom(s) of the heteroaryl group are optionally oxidized to provide for the N-oxide (N--40), sulfinyl, and/or sulfonyl moieties. Preferred heteroaryls include pyridinyl, pyrrolyl, indolyl, thiophenyl, and furanyl.
100821 "Substituted heteroaryl" refers to heteroaryl groups that are substituted with from I
to 5, preferably 1 to 3, or more preferably 1 to 2 substituents selected from the group consisting of the same group of substituents defined for substituted aryl.
[00831 "Heteroaryloxy" refers to -0-heteroaryl.
100841 "Substituted heteroaryloxy" refers to the group -0-(substituted heteroaryl).
100851 "Heteroarylthio" refers to the group -S-heteroaryl.
[00861 "Substituted heteroarylthio" refers to the group -S-(substituted heteroaryl ).
100871 "Heterocycle' or "heterocyclic" or "heterocycloalkyl" or "heterocycly1"
refers to a saturated or partially saturated, but not aromatic, group having from 1 to 10 ring carbon atoms and from 1 to 4 ring heteroatoins selected from the group consisting of nitrogen, sulfur, or oxygen. Heterocycle encompasses single ring or multiple condensed rings, including fused bridged and spiro ring systems. In fused ring systems, one or more the rings can be cycloalkyl, aryl, or heteroaryl provided that the point of attachment is through the non-aromatic heterocyclic ring. In one embodiment, the nitrogen and/or sulfur atom(s) of the heterocyclic group are optionally oxidized to provide for the N-oxide, sulfinyl, and/or sulfonyl moieties.

100881 "Substituted heterocyclic" or "substituted heterocycloalkyl" or "substituted heterocycly1" refers to heterocyclyl groups that are substituted with from 1 to 5 or preferably 1 to 3 of the same substituents as defined for substituted cycloalkyl.
100891 "Heterocyclyloxy" refers to the group -0-heterocycyl.
100901 "Substituted heterocyclyloxy" refers to the group -0-(substituted heterocycyl).
100911 "Heterocyclylthie refers to the group -S-heterocycyl.
100921 "Substituted heterocyclylthie refers to the group -S-(substituted heterocycyl).
100931 Examples of heterocycle and heteroaryls include, but are not limited to, azetidine, pyrrole, imidazole, pyrazole, pyridine, pymzine, pyrimidine, pyridazine, indolizine, isoindole, indole, dihydroindole, indazole, purine, quinolizine, isoquinoline, quinoline, phthalazine, naphthylpyridine, quinoxaline, quinazoline, cinnoline, pteridine, carbazole, carboline, phenanthridine, acridine, phenanthroline, isothiazole, phenazine, isoxazole, phenoxazine, phenothiazine, imidazolidine, imidazoline, piperidine, piperazine, indoline, phthalimide, 1,2,3,4-tetrahydroisoquinoline, 4,5,6,7-tetrahydrobenzo[b]thiophene, thiazole, thiazolidine, thiophene, benzo[b]thiophene, morpholinyl, thiommpholinyl (also referred to as thiamorpholinyl), 1,1-dioxothiomorpholinyl, piperidinyl, pyrrolidine, and tetrahydrofuranyl.
100941 "Nitro" refers to the group -NO2. =
100951 "Oxo" refers to the atom (=0) or (-0).
100961 "Spiro ring systems" refers to bicyclic ring systems that have a single ring carbon atom common to both rings.
[00971 "Sulfon.y1" refers to the divalent group -S(0)2-.
100981 "Substituted sulfonyl" refers to the group -S02-alkyl, -S02-substituted alkyl, -S02-alkenyl, -S02-substituted alkenyl, -S02-cycloalkyl, -S02-substituted cylcoalkyl, -S02-cycloalkenyl, -S02-substituted cylcoalkenyl, -S02-aryl, -S02-substituted aryl, -S02-heteroaryl, -S02-substituted heteroaryl, -S02-heterocyclic, -S02-substituted heterocyclic, wherein alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alleynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic, and substituted heterocyclic are as defined herein. Substituted sulfonyl includes groups such as methyl-S02-.
phenyl-S02-, and 4-methylphenyl-S02-. The term "alkylsulfonyl" refers to -S02-alkyl. The term lialoalkylsulfonyl" refers to -S02-haloalkyl where haloalkyl is defined herein. The term "(substituted sulfonyl)amino" refers to -NH(substituted sulfonyl), and the term "(substituted sulfonyl)aminocarbonyl" refers to -C(0)NH(substituted sulfonyl), wherein substituted sulfonyl is as defined herein.
[00991 "Sulfonyloxy" refers to the group -0S02-alkyl, -0S02-substituted alkyl, -0S02-alkenyl, -0S02-substituted alkenyl, -0S02-cycloalkyl, -0S02-substituted cylcoalkyl, -0S02-cycloalkenyl, -0S02-substituted cylcoalkeny1,-0S02-aryl, -0S02-substituted aryl, -0S02-heteroaryl, -0S02-substituted heteroaryl, -0S02-heterocyclic, -0S02-substituted heterocyclic, wherein alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic, and substituted heterocyclic are as defined herein.
10100) "Thioacyl" refers to the groups H-C(S)-, alkyl-C(S)-, substituted alkyl-C(S)-, alkenyl-C(S)-, substituted alkenyl-C(S)-, alkynyl-C(S)-, substituted alkynyl-C(S)-, cycloalkyl-C(S)-, substituted cycloalkyl-C(S)-, cycloalkenyl-C(S)-, substituted cycloalkenyl-C(S)-, aryl-C(S)-, substituted aryl-C(S)-, heteroaryl-C(S)-, substituted heteroaryl-C(S)-, heterocyclic-C(S)-, and substituted heterocyclic-C(S)-, wherein alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic, and substituted heterocyclic are as defined herein.
[01011 "Thiol" refers to the group -SH.
[01021 "Thiocarbonyl" refers to the divalent group -C(S)- which is equivalent to -C(=S)-.
101031 "Thione" refers to the atom (=S).
[01041 "Alkylthio" refers to the group -S-alkyl wherein alkyl is as defined herein.
101051 "Substituted alkylthio" refers to the group -S-(substituted alkyl) wherein substituted alkyl is as defined herein.
[01061 "Compound" or "compounds" as used herein is meant to include the stereoiosmers and tautomers of the indicated formulas.
[01071 "Stereoisomer" or "stereoisomers" refer to compounds that differ in the chirality of one or more stereocenters. Stereoisomers include enantiomers and diastereomers.

101081 "Tautomer" refer to alternate forms of a compound that differ in the position of a proton, such as enol-keto and imine-enamine tautomers, or the tautomeric forms of heteroaryl groups containing a ring atom attached to both a ring -NH- moiety and a ring =N- moiety such as pyrazoles, imidazoles, benzimidazoles, triazoles, and tetrazoles.
[0109i As used herein, the term "noribogaine" refers to the compound:
HO
N
as well as its pharmaceutically acceptable salts and/or solvates thereof.
Conventionally, noribogaine is prepared by demethylation of naturally occurring ibogaine:

N
which is isolated from Tabernanth iboga, a shrub of West Africa. Demethylation may be accomplished by conventional techniques such as by reaction with boron tribromide/methylene chloride at room temperature followed by conventional purification.
Methods for the synthesis and purification of noribogaine are disclosed in US
Patent Application No. 61/333,476, entitled Methods and Compositions for Preparing and Purifying Noribogaine, filed on May 11, 2010, which is hereby incorporated by reference in its entirety.
This invention is not limited to any particular chemical form of noribogaine and the drug may be given to patients either as a free base or as a pharmaceutically acceptable addition salt or a pharmaceutically acceptable solvate of noribogaine or the salt.
[01101 As used herein, the term "pharmaceutically acceptable salt" refers to salts derived from organic or inorganic acids. Examples of such acids include, without limitation, hydrochloric acid, hydrobromic acid, phosphoric acid, sulfitric acid, methane sulfbnic acid, phosphorous acid, nitric acid, perchloric acid, acetic acid, tartaric acid, lactic acid, succinic acid, citric acid, malic acid, maleic acid, aconitic acid, salicylic acid, thalic acid, embonic acid, enanthic acid, and the like.
101111 As used herein, the term solvate refers to a solid form of a compound that crystallizes with solvent molecules trapped inside and includes, but is not limited to, complexes of a compound of the invention with less than one, one or more solvent molecules, or from about 0.1 to about 100, or about 1 to about 10, or about 0.5, 1, 2, 3 or 4 solvent molecules. A "pharmaceutically acceptable solvate" of a compound of the invention refers to a solvate complex that is pharmaceutically acceptable and that possesses the desired pharmacological activity of the parent compound. A few examples of solvents that can be used to create solvates, such as pharmaceutically acceptable solvates, include, but are certainly not limited to, water, methanol, ethanol, isopropanol, butanol, Cl -C6 alcohols in general (and optionally substituted), tetrahydrofuran, acetone, ethylene glycol, propylene glycol, acetic acid, formic acid, water, and solvent mixtures thereof. Other biocompatible solvents which may aid in making a pharmaceutically acceptable solvate are well known in the art and applicable to the present invention. Additionally, various organic and inorganic acids and bases can be added or used alone as the solvent to create a desired solvate. Such acids and bases are known in the art. When the solvent is water, the solvate is referred to as hydrate, such as hemihydrate (two compound molecules are complexed with one water molecule), monohydrate (one compound molecule is complexed with one water molecule) or dehydrate (one compound molecule is complexed with two water molecules).
101121 As used herein, the term "therapeutically effective amount" refers to the amount of a composition of this invention that is sufficient to effect treatment, as defined herein, when administered to a subject in need of such treatment. The therapeutically effective amount will vary depending upon the subject and condition being treated, the weight and age of the subject, the severity of the condition, the particular composition or excipient chosen, the dosing regimen to be followed, timing of administration, the manner of administration and the like, all of which can be determined readily by one of ordinary skill in the art.
[01131 As used herein, the term "treatment" or "treating" means any treatment of a disease or condition in a patient, including:
= preventing or protecting against the disease or condition, that is, causing the clinical symptoms not to develop, for example, in a subject at risk of suffering from such a disease or condition, thereby substantially averting onset of the disease or condition;
= inhibiting the disease or condition, that is, arresting or suppressing the development of clinical symptoms; and/or = relieving the disease or condition that is, causing the regression of clinical symptoms.
101141 As used herein, the term "pain" refers to all types of pain, including neuropathic and nociceptive pain. It is also contemplated that the compositions disclosed herein can be used to treat other types of pain such as phantom pain which is the sensation of pain from a limb or organ that has been lost or from which a person no longer receives physical signals, and is an experience almost universally reported by amputees and quadriplegics.
[0115] As used herein, the term "addiction" refers to a persistent behavioral pattern marked by physical and/or psychological dependency to a substance, particularly drugs such as narcotics, stimulants, and sedatives, including but not limited to heroin, cocaine, alcohol, nicotine, caffeine, amphetamine, desoxyephedrine, methadone and combinations thereof. As used herein, the "treatment of addiction in a patient" refers to reducing the withdrawal symptoms associated with drug dependency as well as alleviating drug cravings in addicts.
Such symptoms include nausea, vomiting, anxiety, abdominal cramps, muscle pain, chills and headache.
101161 As used herein, the terms "blood-brain barrier" or "BBB" refer to the barrier between the peripheral circulation and the brain and spinal cord which is formed by tight junctions within the brain capillary endothelial plasma membranes, creating an extremely tight barrier that restricts the transport of molecules into the brain. The blood-brain barrier within the brain, the blood-spinal cord barrier within the spinal cord, and the blood-retinal barrier within the retina, are contiguous capillary barriers within the central nervous system (CNS), and are collectively referred to herein as the blood-brain barrier or BBB.
[0117] As used herein, the term "cleavable linking group" refers to a linking group that can be attached to noribogaine or a derivative at any possible position.
Preferably, the linker is biocompatible (i.e. does not produce undesired side effects or have an intolerable toxicity), is readily cleaved in the body (preferably in the brain), and does not inhibit or alter the desired physiological effect of noribogaine or derivative. Specifically, the linking group is preferably sufficiently stable in the circulatory system (serum or blood), but is cleaved to release the noribogaine or derivative upon entry into the brain. Suitable biocompatible, cleavable linking groups comprise from 1 to 20 atoms selected from carbon, nitrogen, oxygen, sulfur, and phosphorus, and are, in general, susceptible to cleavage conditions or agents in the brain (i.e.
pH, redox potential or the presence of degradative molecules such as enzymes).
The biocompatible, cleavable linking group can be an ester-based cleavable linking group (-C(0)0- or -0C(0)-), an amide-based cleavable linking group (-C(0)NR9- or -NR9C(0)-), or a phosphate-based cleavable linking group (-P(0)(0R9)-0-, -0-P(S)(0R9)-0-, -0-P(S)(SR)-0-, -S-P(0)(0R9)-0-, -0-P(0)(0R9)-S-, -S-P(0)(0R9)-S-, -0-P(SX0R9)-S-, -S-P(S)(0R9)-0-, -0-P(0)(R9)-0-, -0-P(S)(R9)-0-, -S-P(0)(R9)-0-, -S-P(S)(R9)-0-, -S-P(0)(R9)-S-, or -0-P(S)(R9)-S-) where R9 can be hydrogen or alkyl.
[0 I 181 As used herein, the term "saccharide" or "monosaccharide" refers to a saccharide or derivative thereof, having at least 6 carbon atoms (which may be linear, branched or cyclic) with an oxygen, nitrogen or sulfur atom bonded to each carbon atom. The term "oligosa.ccharides" includes oligosaccharides containing from about 2-9 monosaccharide units. Specific monosaccharides include C5 and above (preferably Cs-Cs) saccharides such as ethritol, zylitol, galactose, lactose, xylose, dulcitol, myo-insoitol, fructose, mannitol, sorbitol, glucose, arabinose, arabinose, celloboise, maltose, raffinose, rhamnose, melibiose, ribose, adonitol, arabitol, arabitol, fitcose, lyxose, lyxose, lyxose, glucosamine, mannosamine, and galactosamine; di- and trisaccharides include saccharides having two or three monosaccharide units.
101191 As used herein, the term "patient" refers to mammals and includes humans and non-human mammals.
2. Compounds [01.201 Accordingly, in one embodiment, this invention is directed to compounds which are represented by Formula I below:

-N
L,W
wherein L is selected from the group consisting of a covalent bond and a cleavable linker group;
RI is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, aryl, substituted aryl, cycloalkyl, substituted cycloalkyl, heteroaryl, substituted heteroaryl, heterocyclic, and substituted heterocyclic provided that RI is not a saccharide or an oligosaccharide;
RI is hydrogen or --OR;
RI I is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkoxy, substituted alkoxy, (CH2).0C(0)alkyl, (CH2).0H, (CH2),õ0alkyl, CH2-X-alkyl or (CH2),n0(CH2)p0(CH2)0(CH2),CH3, where each of m, p and q is I, 2 or 3: and r is 0, 1 or 2, X is 0 or NH;

R is selected from the group consisting of hydrogen, a hydrolysable group selected from the group consisting of -C(0)R2, -C(0)NR3R4 and -C(0)0R5, where R2 is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl and substituted alkynyl, R3 and R4 are independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic and substituted heterocyclic, and R5 is selected from the group consisting of alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic and substituted heterocyclic provided that R is not a saccharide or an oligosaccharide;
or a pharmaceutically acceptable salt and/or solvate thereof, provided that when L is a covalent bond and R1 is hydrogen, then R is selected from the group consisting of -C(0)NR3R4 and -C(0)0R5; and further provided that when R is hydrogen or -COW and L is a covalent bond, then R1 is not hydrogen.
[01211 In one embodiment, R" is selected from the group consisting of hydrogen, C1-C3 alkyl, substituted C1-C3 alkyl, CI-C3 alkoxy and substituted CI-C3 alkoxy.
[01221 In one embodiment, R11 is H. In one embodiment, R" is C1-C3 alkyl, such as ethyl.
In one embodiment, R" is CH2CH2011. In one embodiment, R11 is CH2CH2OCH3. In one embodiment, R11 is CH2CH2OCH2Ph. In one embodiment, R11 is CH2CH20C(0)alkyl, such as CH2CH20C(0)(C112)30CH3. In one embodiment, R" is CH2-X-CH3. In one embodiment, R11 is CH2CH20(CH2)p0(CH2),10(CH2),CH3.
101231 In one embodiment, R11 is C1-C3 alkyl optionally substituted with YH, YR12, YC(0)R12, C(0)Y11.12, C(0)NH2, C(0)NHR12, C(0)NRI2R", NH2, NHR12, NR12R13.
NHC(0)R12, or NR12C(0)R13, where Y is 0 or S, R12 and R13 are independently C1-C3 alkyl.
[01241 In one embodiment, R11 is C1-C3 alkoxy optionally substituted with YH, YR12, YgO)R12, C(0)YR12, C(0)NH2, C(0)NHR12, C(0)NR12R13, NH2, NHRI2, NR12R13, NHC(0)R12, or NR12C(0)R13, where Y is 0 or S, R12 and R13 are independently C1-C3 alkyl.
101251 In one embodiment, L is a suitable biocompatible, cleavable linking group described herein.

101261 In one embodiment, L is -C(0)-. In another embodiment, L is -C(0)0-. In still another embodiment, L is -C(0)NR-, where R is hydrogen or alkyl.
101271 In one embodiment, L is selected from the group consisting of -P(0)(0R9)-0-, -0-P(S)(0R9)-0-, -0-P(S)(SR9)-0-, -S-P(0)(0R9)-0-, -0-P(0)(0R9)-S-, -S-P(OX0R9)-S-, -0-P(S)(0R9)-S-, -S-P(S)(0R9)-0-, -0-P(0)(R9)-0-, -0-P(S)(R9)-0-, -S-P(0)(R9)-0-, -S-P(S)(R9)-0-, -S-P(0)(R9)-S-, and -0-P(S)(R9)-S-, where R9 is hydrogen or alkyl.
101281 In one embodiment, R is hydrogen, L is a covalent bond or -C(0)-, and RI is substituted alkyl. In one embodiment, RI is alkyl substituted with -NR6R7 where R6 and R7 are independently selected from the group consisting of hydrogen, alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, aryl, substituted aryl, cycloalkyl, substituted cycloalkyl, heteroaryl, substituted heteroaryl, heterocyclic, and substituted heterocyclic.
[0129] In one embodiment, R is selected from the group consisting of -C(0)NR3R4 and -C(0)0R5 and RI is hydrogen.
101301 In one embodiment, the compound of Formula! is a compound wherein RI
is H, L
and RI are as defined in Table II below, and R11 is C1-C3 alkyl optionally substituted with YH, YR12, YC(0)R12, C(0)YR12, C(0)NH2, C(0)NHR12, C(0)NRI2R13, NH2, NHR 12, NR12-- 13, K NHC(0)R12, or NRI2C(0)R13, where Y is 0 or S, R12 and R13 are independently C1-C3 alkyl, or a pharmaceutically acceptable salt and/or solvate thereof.
101311 In one embodiment, the compound of Formula I is a compound wherein RI
is H, L
and RI are as defined in Table II below, and R11 is selected from H, CH2C1-1201-1, CH2CH2OCH3, CH2CH2OCH2Ph, CH2CH20C(0)alkyl, and CH2CH20(CH2)p0(CH2),P(CH2),CH3, or a pharmaceutically acceptable salt and/or solvate thereof.
101321 In one embodiment, the compound of Formula I is a compound wherein RI
is -OR, R, L and RI are as defined in Table II below, and R11 is C1-C3 alkyl optionally substituted with YH, YR12, YC(0)R12, C(0)YR12, C(0)NH2, C(0)NHR12, C(0)NR12R13, NH2, NHR12, NR12R13, NHC(0)R12, or NR12C(0)R13, where Y is 0 or S, R12 and R13 are independently C1-C3 alkyl, or a pharmaceutically acceptable salt and/or solvate thereof.
[0133] In one embodiment, the compound of Formula I is a compound wherein RI
is -0R, R, L and R1 are as defined in Table ll below, and R" is selected from H, CH2CH2OH, CH2CH2OCH3, CH2CH2OCH2Pli, CH2CH20C(0)alkyl, and CH2CH20(0-12)p0(CH2)0(CH2)rCH3, or a pharmaceutically acceptable salt and/or solvate thereof.
[0134] In one embodiment, the compound of Formula I is a compound wherein RI
is -OR, R, L and RI are as defined in Table II below, and RI' is selected from H, CH2CH2OH, CH2CH2OCH3, CH2CH2OCH2Ph, CH2CH20C(0)alkyl, and CH2CH20(CH2)p0(CH2)(10(CH2)rCH3, or a pharmaceutically acceptable salt and/or solvate thereof.
[01351 In one embodiment, the compound of Formula I is a compound wherein RI
is -OR, R, L and RI are as defined in Table II below, and R" is H, or a pharmaceutically acceptable salt and/or solvate thereof.
101361 In one embodiment, the compound of Formula I is a compound wherein RI
is -OR, R. L and RI are as defined in Table II below, and R" is CH2CH2OH, or a pharmaceutically acceptable salt and/or solvate thereof.
101371 In one embodiment, the compound of Formula I is a compound wherein RI
is -OR, R, L and RI are as defined in Table II below, and R" is CH2CH2OCH3, or a pharmaceutically acceptable salt and/or solvate thereof.
[01381 In one embodiment, the compound of Formula I is a compound wherein RI
is -OR, R, L and RI are as defined in Table II below, and RI I is CH2OCH3, or a pharmaceutically acceptable salt and/or solvate thereof.
[0139) In one embodiment, the compound of Formula I is a compound wherein R is -OR, R, L and R1 are as defined in Table II below, and R" is CH2CH2OCH2Ph, or a pharmaceutically acceptable salt and/or solvate thereof.
101401 In one embodiment, the compound of Formula I is a compound wherein RI
is -OR, R, L and RI are as defined in Table II below, and R" is CH2CH20C(0)alkyl, such as C12 alkyl, or a pharmaceutically acceptable salt and/or solvate thereof.
[0141) In one embodiment, the compound of Formula I is a compound wherein RI
is -OR, R. L and RI are as defined in Table II below, and R" is CH2CH20(CH2)p0(CH2)Q0(CH2)rCH3, or a pharmaceutically acceptable salt and/or solvate thereof.

[01421 In one embodiment, the compound of Formula I is a compound wherein RI
is -OR, R. Land RI are as defined in Table H below, and RH is methyl, or a pharmaceutically acceptable salt and/or solvate thereof 101431 In one embodiment, the compound of Formula I is a compound wherein RI
is -OR, R, L and RI are as defined in Table II below, and RH is C3 alkyl, or a pharmaceutically acceptable salt and/or solvate thereof.
Table H
1 _______________________________________________________________ ............1 -c(o)cH2cH2N(cH3)2 -cm -a-2cH2N(cH02 , .....
H -C(0) -CH2CH2N(CH3 -C(0)CH2CH2N(CH3)2 bond H
-C(0)CI-I2CH2N(CH3)2 bond -CH2N(C'õ1-13)2__ , H bond 1-CH2N(CH3)2 -C(0)NHCH2CH2N(CH3)2 -C(0) l H
...._..............___.
-C(0)NHCH2CH2N(CH3)2 -C(0)NH -CH2CH2N(CH3)2 .
H -C(0)NH -CH2C1:12K(d43)2 1 -C(0)NHCH2CH2N(CH3)2 -C(0)NH H ......... __ -C(0)NHCH2CH2N(CH3)2 -C(0) , -CH3 .....
\ 0 -C(0) -CH2CH2N(CH3)2 -C(0)NHCH2CH2N(CH3)2 -C(0) -CH2CH2N(C'.H3)2 -C(0)NHCH2CH2N(CH3)2 -C(0)0 -CH3 .._ I -C(0)NHCH2CH2N(CH3)2 1 -C(0)0 -CH2CH2N(CH3)2 ¨1 : H ' -C(0)0 -CH2CH2N(CH3)2 -C(0)CH3, -C(0)NH -CH2CH2N(CI-13)2 -C(0)CH3, -C(0)NH H
-C(0)CH3, -C(0)NH -CH3 -C(0)0CH3, -C(0)NH . -CH2CH2k-c-113)2 ..........
-C(0)0CH3, -C(0)NH I H ________ -C(0)NHCH2CH2N(CH3)2 -C(0)NH r"."\

/ \ /
H -C(0)NH 7------" \ \
/--N \ /0 -C(0)NFICH2CH2N(C143)2 -C(0)NH

-C(0)NHCH2CH2N(CH3)2 -C(0) i \c.) H -C(0) ir---\
/----tqv ii¨cH3 -C(0)NHCH2CH2N(C1-13)2 -C(0) i"-=c ¨N N-C H3 \---i ________________________________________________________ -C(0)N11C1-12C1-12N(C 1-13 )2 -C(0)0 ---D--- I

R L R' ...
-C(0)NHCH3 -C(0) ¨N N- CH3 H -C(0) /¨\
¨N N-CH3 \_.1 q 1--N -C(0)NH -CH2CH2N(CH3)2 )1-N\ N-CH3 -C(0)CH3, -C(0)0 1 -CH3 0 õ,-----\ -C(0)0 -CH2CH3 "--N N-CH3 -C(0)CH3, -P(0)(OH)-0- H
-C(0)CH3, -P(0)(OCH3)-0- -CH2CII2N(CH3)2 H -P(0)(OH)-0- H .
H -P(0)(OCH3)-0- ....... -CH3 I
i -C(0)NHCII2C112N(CH3)2 -P(OXOCH3)-0- -CH3 --I
H -C(0)NH -CH3 H ................................... -C(0)0 -CH2CH3 H -C(0) ¨N N¨CH3 )\--N N--CH3 -P(0)(H
OC3)-0- -CH3 , 101441 hi one embodiment, provided are compounds represented by Formula II
below:
I \ .
L,R1 II
wherein R is selected from the group consisting of hydrogen, a hydrolysable group selected from the group consisting of -C(0)R2, -C(0)NR3R4 and -C(0)0R5, where R2 is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl and substituted alkynyl, R3 and R4 are independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic and substituted heterocyclic, R5 is selected from the group consisting of alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic and substituted heterocyclic, provided that R is not a saccharide or an oligosaccharide;
L is selected from the group consisting of a covalent bond and a cleavable linker group;
RI is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, aryl, substituted aryl, cycloalkyl, substituted cycloalkyl, heteroaryl, substituted heteroaryl, heterocyclic, and substituted heterocyclic, provided that RI is not a saccharide or an oligosaccharide;
or pharmaceutically acceptable salts thereof, provided that when L is a covalent bond and RI is hydrogen, then R is selected from the group consisting of -C(0)NR3R4 and -C(0)0R5; and further provided that when R is hydrogen or -C(0)R2 and L is a covalent bond, then RI is not hydrogen.
101451 In one embodiment, R is hydrogen and L is a cleavable group.
101.461 In one embodiment, L is a suitable biocompatible, cleavable linking group. Suitable biocompatible, cleavable linking groups comprise a covalent bond and a linking group having from I to 20 atoms selected from carbon, nitrogen, oxygen, sulfur, and phosphorus, and are, in general, susceptible to cleavage conditions or agents in the brain (i.e.
pH, redox potential or the presence of degradative molecules such as enzymes, e.g., proteases, lipases, etc.).
Generally, the cleavage conditions or agents should be more prevalent or found at higher levels or activities in the brain than in serum or blood. Examples of degradative agents include: redox agents which are selected for particular substrates or which have no substrate specificity, including, e.g., oxidative or reductive enzymes or reductive agents such as esterases; enzymes that can hydrolyze or degrade an acid cleavable linking group by acting as a general acid, peptidases (which can be substrate specific), and phosphatases.
[01471 In general, the suitability of a candidate cleavable linking group can be evaluated by testing the ability of a cleaving agent (or condition) to cleave the linking group. It will also be desirable to also test the linking group for the ability to resist cleavage in the serum, blood or when in contact with other non-target tissue. Thus one can determine the relative susceptibility to cleavage between a first and a second condition, where the first is indicative of cleavage in the brain and the second is indicative of cleavage in serum, blood or other non-target tissue. Such evaluations can be carried out in cell-free systems, in cells, in cell culture, in organ or tissue culture, or in whole animals. In preferred embodiments, the cleavable linking group is cleaved at least 2, 4, 10 or 100 times faster in the brain as compared to serum, blood or other non-target tissue.
[01481 In one embodiment, the linking group is an ester-based linking group.
In another embodiment, the linking group is an amide-based linking group. In yet another embodiment, the linking group is a phosphate-based linking group. In another embodiment of the compounds of this invention, L is a covalent bond.
101491 In one embodiment, L is -C(0)-. In another embodiment, L is -C(0)0-. In still another embodiment, L is -C(0)NR-, where R is hydrogen or alkyl.
101501 In one embodiment, L is selected from the group consisting of -P(0)(0R9)-0-, -0-P(S)(0R9)-0-, -0-P(S)(SR9)-0-, -S-P(0)(0R9)-0-, -0-P(0)(0R9)-S-, -S-P(0)(0R9)-S-, -0-P(S)(0R9)-S-, -S-P(S)(0R9)-0-, -0-P(0)(R9)-0-, -0-P(S)(R9)-0-, -S-P(0)(R9)-0-, -S-P(S)(R9)-0-, -S-P(0)(R9)-S-, and -0-P(S)(R9)-S-, where R9 is hydrogen or alkyl.
101511 In one embodiment, R is hydrogen, L is a covalent bond or -C(0)-, and RI is substituted alkyl. Preferably RI is alkyl substituted with -NR6R7 where R6 and R7 are independently selected from the group consisting of hydrogen, alkyl, alkenyl, substituted alkenyl, alkynyl, substituted allcynyl, aryl, substituted aryl, cycloalkyl, substituted cycloalkyl, heteroaryl, substituted heteroaryl, heterocyclic, and substituted heterocyclic.
101521 In one embodiment, R is selected from the group consisting of -C(0)NR3R4 and -C(0)0R5 and RI is hydrogen.
[01531 In one embodiment, the compound of Formula 11 is a compound as set forth in Table I below or a pharmaceutically acceptable salt and/or solvate thereof:
Table I
Compound RI
No. i -C(0)CH2CH2N(CH3)2 -C(0) -CH2CH2N(CIT;)2 -C(0) -CH2CH2N(CI-13)2 I 3 -C(0)CH2CH2N(CH3)2 bond 4 -C(0)CH2CH2N(CH3)2I bond -CH2N(C113)2 bond -CH2N(CH3)2 6 -C(0)NHCH2CH2N(CH3)2 -C(0) 7 -C(0)NHCH2CH2N(CH3)2 -C(0)N1-1 -CH2CH2N(CH3)2 8 H _____________ -C(0)NH -CH2CH2N(CH3)2 .........
9 -C(0)NHCH2CH2N(CH3)2 -C(0)NH H
i------- -E10 -cojmicH20-12N(cH3)2 .... -C(0) I -CI-13 Compound ' R L ¨R1 No.
11 \--0 -C(0) -CH2C H2N(C H3)2 12 . -C(0)NHCH2CH2N(CH3)2 -C(0) -CH2CH2N(CH3)2 13 -C(0)NHCH2CH2N(CH3)2 -C(0)0 -CH3 14 -C(0)NHCH2CH2N(CH3)2 -C(0)0 F -CH2CH2N(CH3)-2 15 Fi -C(0)0 -CH2CH2N(CH3)2 i 16 -C(0)CH3, -C(0)NH -CH2CH2N(CH3)2 , 1 17 -C(0)CH3, -C(0)NH H
r 18 -C(0)CH3, -C(0)NH -CH3 i 19 -C(0)0CH3, -C(0)NH -CH2CH2N(CH3)2 20 -C(0)0CH3, -C(0)NH ' H
21 -C(0)NHCH2CH2N(CH3)2 -C(0)NH F

/ /---- /

\ , 22 H -C(0)NH / \
/ \\____/ i i 23 -C(0)NHCH2CH2N(CH3)2 -C(0)NH I

1 24 -C(0)NHC H2CH2N (CH3)2 -C(0) /------ \
I I ,¨N ,f) / \./
1 25 H 1 -C(0) /--- \
r-N

____/ `N--cH, ..
26 -C(0)NHCH2CH2N(CH3)2 -C(0) --N N ¨ CH3 i _ _____________________________________________________________________ 27 -C(0)NHCH2CH2N(CH3)2 -C(0)0 /-----\
¨ ii¨ ¨ -C(0)NHCH3 -C(0) ,----;
--N/ isi-CH3 \_../
_ _______ 29 H -C(0) /¨\
-- N ft¨CH.1 _______________________________ ¨ r---) ' 30 0 /--- \ ¨C(0)NH -CH2CH2N(CH3)2 \--N N¨CH3 \--/
31 -C(0)0.13, -C(0)0 -C113 ¨I
32 0ra-N -C(0)0 -CH2CH3 "---NN¨cH3 \,......J
33 -C(0)CH3, -P(0)(OH)-0- H
34 -C(0)CH3, -12.(0)(C)CH3)-0- -CH2CH2N(CH3)2 35 H "P(.9).(914.1 - .. ... H
36 H -P(0)(0CF13)-0- -CH3 1 ---I
37 -C(0)/NIFICH2CH2N(CH3)2 -P(0)ç0CFla):0- I -CH3 38 H -C(0)NH -CH3 1 39 H -c(p)s) -cti2oi3 , /-----\
40 H ¨C(0) --N N¨CH3 i Compound 1-No.
0 7"--\
41 )\--N N¨CH3 -P(0)(OCH3)-0- -CH3 3. Methods of Use 101541 Compounds of this invention are contemplated to be useful in treating pain and/or addiction as an active ingredient or a prodrug. In some embodiments, the compounds of this invention are prodrugs whose R and/or -L-R' groups are cleaved in vivo to produce noribogaine or a noribogaine derivative. In a preferred embodiment, the compound is at least 2, 5 or 10 times more stable in serum plasma than in the central nervous system, such as the brain. In a more preferred embodiment, the prodrugs have improved BBB
penetration property as compared with noribogaine or the noribogaine derivative, for example, the compounds of this invention have at least 20 %, 50 % or 100 % more BBB
penetration ability than noribogaine or the noribogaine derivative.
Treatment of Pain [01551 In one of its method aspects, the present invention is directed to a method for treating a pain in a patient which method comprises administering to said patient a compound of this invention or a pharmaceutically acceptable salt and/or solvate thereof or a pharmaceutical composition comprising a compound of this invention and a pharmaceutically acceptable excipient. The pain can be any type of pain including, but not limited to neuropathic or nociceptive pain, and various types thereof including somatic, visceral and phantom pain. The use of noribogaine for treatment of pain is described, for example, in U.S.
Provisional Patent Application Serial No. 61/952,738, filed on March 13, 2014 and titled "USE OF NORIBOGAINE FOR THE TREATMENT OF PAIN", which is incorporated herein by reference in its entirety.
[0156] In another of its method aspects, the present invention is directed to a method for reducing tolerance to opioid analgesics in a patient undergoing treatment for pain. The use of noribogaine for reducing tolerance to opioid analgesics is described, for example, in U.S.
Provisional Patent Application Serial No. 61/952,741, filed on March 13, 2014 and titled "METHODS AND COMPOSITIONS FOR REDUCING TOLERANCE TO OPIO1D
ANALGESICS", which is incorporated herein by reference in its entirety.

Treament of Addiction [0157] In another of its method aspects, the present invention is directed to a method for treating addiction in a patient which method comprises administering to said patient a compound of this invention or a pharmaceutically acceptable salt and/or solvate thereof or a composition comprising a compound of this invention and a pharmaceutically acceptable excipient.
[0158] In certain embodiments, the treatment of addiction in a patient comprises alleviating the symptoms associated with withdrawal from drug dependency. Such symptoms include nausea, vomiting, anxiety, abdominal cramps, muscle pain, chills and headache.
In addition, it is contemplated that treatment with a compound of this invention decreases the drug cravings normally experienced by addicts after cessation of the self-administration of the abused substance. It is contemplated that the compositions disclosed herein are especially useful in the treatment of addiction to opioids such as heroin and methadone.
However, it is also useful in treating patients addicted to other substances, including cocaine, alcohol, amphetamines, tobacco, caffeine, opioid-like drugs, cannabinoids, benzodiazepines, and any other illicit, prescription, or generally available addictive substance, as well as combinations of these drugs.
[01591 The invention is also directed to a method for treating drug addiction (involving drug dependency or drug abuse) during withdrawal therapy by administering a compound of this invention to a patient at a dosage sufficient to reduce or eliminate one or more symptoms associated with withdrawal. Symptoms of acute withdrawal include nausea, vomiting, anxiety, abdominal cramps, muscle pain, chills and headache. In addition, treatment with a compound of this invention is contemplated to decrease the drug cravings normally experienced by addicts after cessation of the self-administration of the abused substance, for example, opioids such as heroin and methadone. However, compounds of this invention are contemplated to be also useful in treating patients addicted to other substances, cocaine, alcohol, amphetamines, tobacco, caffeine, opioid-like drugs, cannabinoids, benzodiazepines, and any other illicit, prescription, or generally available addictive substance, as well as combinations of these drugs. Compounds of this invention may be administered to patients suffering from drug dependence or abuse in conjunction with an opioid antagonist such as naloxone, naltrexone or nalorphine, for example, at a concentration of between 0.15 mg and 0.5 mg for each mg of the compound of this invention administered.

101601 The invention is also directed to a method for preventing relapse to drug use after drug use has been stopped (e.g., after treatment to ameliorate drug abuse), by administering a compound of this invention to a patient at a dosage sufficient to reduce or eliminate one or more symptoms associated with post-acute withdrawal, including cravings. The compound may be administered at a lower (e.g., "maintenance") dose compared to that used for treatment of addiction and acute withdrawal symptoms.
101611 The use of noribogaine for acute and long-term treatment of drug abuse and withdrawal symptoms is described, for example, in U.S. Patent Application Serial Nos.14/214,157, 14/346,655, 14/195,822; and U.S. Provisional Patent Application Serial Nos. 61/941,390, filed February 18, 2014 and titled "LOW DOSE NORIBOGA1NE FOR
TREATING NICOTINE ADDICTION AND PREVENTING RELAPSE OF NICOTINE
USE"; 61/952,731, filed March 13, 2014 and titled "METHODS FOR ACUTE AND LONG-TERM TREATMENT OF ALCOHOL DEPENDENCE"; and 61/952,727, filed March 13, 2014 and titled "METHODS FOR ACUTE AND LONG-TERM TREATMENT OF
SUBSTANCE ABUSE"; each of which is incorporated herein by reference in its entirety.
Treatment of Depression [01621 in another of its method aspects, the present invention is directed to a method for treating depressive disorders in a patient in need of the treatment, which method comprises administering to said patient a compound of this invention or a pharmaceutically acceptable salt and/or solvate thereof or a composition comprising a compound of this invention and a pharmaceutically acceptable excipient. Depressive disorders include major depressive disorder and dysthymic disorder (American Psychiatric Association, 1994a;
American Psychiatric Association, 1994b). Major depressive disorder is characterized by the occurrence of one or more major depressive episodes without manic or hypomanic episodes.
A major depressive episode is defined as a prominent and relatively persistent depressed or dysphoric mood that usually interferes with daily functioning (nearly every day for at least 2 weeks); it can include at least 4 of the following 8 symptoms: change in appetite, change in sleep, psychomotor agitation or retardation, loss of interest in usual activities or decrease in sexual drive, increased fatigue, feelings of guilt or worthlessness, slowed thinking or impaired concentration, and a suicide attempt or suicidal ideation. Dysthymic disorder involves a type of depression that is not severe enough to be called a major depressive episode, but that lasts much longer than major depressive disorder, without high phases. The use of noribogaine for treatment of depression is described, for example, in U.S. Provisional Patent Application Serial No. 61/952,733. tiled on March 13, 2014 and titled "METHODS AND
COMPOSITIONS FOR TREATING DEPRESSION", which is incorporated herein by reference in its entirety.
Treatment of Stress and'Or Anxiety [0163] In another of its method aspects, the present invention is directed to a method for treating stress, such as post-traumatic stress disorder, in a patient in need of the treatment, which method comprises administering to said patient a compound of this invention or a pharmaceutically acceptable salt and/or solvate thereof or a composition comprising a compound of this invention and a pharmaceutically acceptable excipient.
101641 Stress or anxiety refers to the consequence when a patient fails to respond appropriately to emotional or physical threats, which may be actual or imagined. Stress symptoms or conditions may be cognitive, emotional, physical or behavioral, including, but not limited to a state of alarm and adrenaline production, short-term resistance as a coping mechanism, exhaustion, irritability, muscular tension, inability to concentrate, poor judgment, a general negative outlook, excessive worrying, moodiness, irritability, agitation, inability to relax, feeling lonely, isolated or depressed, aches and pains, diarrhea or constipation, nausea, dizziness, chest pain, headache, rapid heartbeat, eating too much or not enough, sleeping too much or not enough, social withdrawal, procrastination or neglect of responsibilities, increased alcohol, nicotine or drug consumption, and nervous habits such as pacing about or nail-biting. Stress can develop into a disabling disorder of excessive and irrational fears, such as obsessive-compulsive disorder, panic disorder, acute stress disorder and post traumatic stress disorder (PTSD).
[0165] PTSD is a severe stress disorder that can develop after exposure to an event which results in psychological trauma. Such events usually involve death of someone else, threat of death to oneself or to someone else, or trauma to the physical, sexual, or psychological integrity of one's own or someone else. PTSD may be an acute stress response or a long term stress response to such an event when it overwhelms one's ability to cope.
10166] Symptoms of PTSD include some or all of the following: recurrent re-experiencing of the trauma, for example, intrusive, upsetting memories of the event, flashbacks of the traumatic events (acting or feeling like the event is happening again), recurring nightmares (either of the event or of other frightening things); feelings of intense distress and/or intense physical reactions when reminded of the trauma; avoidance to the point of having a phobia of places, people, and experiences that remind the sufferer of the trauma and a general numbing of emotional responsiveness; inability to remember important aspects of the trauma; and physical signs of hyperarousal, including sleep problems, trouble concentrating, irritability, anger, poor concentration, blackouts or difficulty remembering things, increased tendency and reaction to being startled, and hypervigilance to threat. Other symptoms include anhedonia, lack of interest in activities that used to be enjoyed, emotional deadness, distancing oneself from people, and/or a sense of a limited future (for example, not being able to think about the future or make future plans, not believing one will live much longer), guilt, shame, self-blame, depression and hopelessness, suicidal thoughts and feelings, feeling alienated and alone, headaches, stomach problems, chest pain and substance abuse.
101671 The use of noribagaine for treatment of PTSD is described, for example, in U.S.
Provisional Patent Application Serial No. 61/952,733, filed on March 13, 2014 and titled "METHODS AND COMPOSITIONS FOR TREATING DEPRESSION", which is incorporated herein by reference in its entirety. Combination therapy [0168] Compounds of this invention maybe used alone or in combination with other compounds to treat the diseases or disorders described above. When administered with another agent, the co-administration can be in any manner in which the pharmacological effects of both are manifest in the patient at the same time. Thus, co-administration does not require that a single pharmaceutical composition, the same dosage form, or even the same route of administration be used for administration of both the compound of this invention and the other agent or that the two agents be administered at precisely the same time. However, co-administration will be accomplished most conveniently by the same dosage form and the same route of administration, at substantially the same time. Obviously, such administration most advantageously proceeds by delivering both active ingredients simultaneously in a novel pharmaceutical composition in accordance with the present invention.
[01691 In some embodiments, a compound of this invention can be used as an adjunct to conventional drug withdrawal therapy, specifically providing for the administration of a compound of this invention with one or more opioid antagonists.
4. Compositions [01701 In another aspect, this invention is also directed to pharmaceutical compositions comprising a pharmaceutically acceptable excipient and a compound of this invention or mixtures of one or more of such compounds.

101711 Although compositions suitable for oral, intravenous or intraarterial delivery will probably be used most frequently, other routes that may be used include peroral, pulmonary, rectal, nasal, vaginal, lingual, intramuscular, intraperitoneal, intracutaneous and subcutaneous routes. In addition, it is contemplated that the composition can be administered transdermally in which drug is applied as part of a cream, gel, or patch (for examples of transdermal formulations, see U.S. Pat. Nos. 4,806,341; 5,149,538; and 4,626,539). Other dosage forms include tablets, capsules, pills, powders, aerosols, suppositories, parenterals, and oral liquids, including suspensions, solutions and emulsions. Sustained release dosage forms may also be used, for example, in a transdermal patch form. All dosage forms may be prepared using methods that are standard in the art (see e.g., Remington's Pharmaceutical Sciences, 16th ed., A. Oslo editor, Easton Pa. 1980). Intranasal administration is an effective method for delivering a therapeutic agent directly to the respiratory tract, where the therapeutic agent may be quickly absorbed.
101721 The compositions are comprised of in general, a compound of this invention or a mixture thereof in combination with at least one pharmaceutically acceptable excipient.
Acceptable excipients are non-toxic, aid administration, and do not adversely affect the therapeutic benefit of the compound of this invention. Such excipients may be any solid, liquid, semi-solid or, in the case of an aerosol composition, gaseous excipient that is generally available to one of skill in the art. Pharmaceutical compositions in accordance with the invention are prepared by conventional means using methods known in the art.
101731 Solid pharmaceutical excipients include starch, cellulose, talc, glucose, lactose, sucrose, gelatin, malt, rice, flour, chalk, silica gel, magnesium stearate, sodium stearate, glycerol monostearate, sodium chloride, dried skim milk and the like. Liquid and semisolid excipients may be selected from glycerol, propylene glycol, water, ethanol and various oils, including those of petroleum, animal, vegetable or synthetic origin, e.g., peanut oil, soybean oil, mineral oil, sesame oil, etc. Preferred liquid carriers, particularly for injectable solutions, include water, saline, aqueous dextrose, and glycols.
[0174] Compressed gases may be used to disperse a compound of this invention in aerosol form. Inert gases suitable for this purpose are nitrogen, carbon dioxide, etc.
Other suitable pharmaceutical excipients and their formulations are described in Remington's Pharmaceutical Sciences, edited by E. W. Martin (Mack Publishing Company, 18th ed., 1990).

[01751 The compositions disclosed herein may be used in conjunction with any of the vehicles and excipients commonly employed in pharmaceutical preparations, e.g., talc, gum arable, lactose, starch, magnesium stearate, cocoa butter, aqueous or non-aqueous solvents, oils, paraffin derivatives, glycols, etc. Coloring and flavoring agents may also be added to preparations, particularly to those for oral administration. Solutions can be prepared using water or physiologically compatible organic solvents such as ethanol, 1,2-propylene glycol, polyglycols, dirnethylsulfoxide, fatty alcohols, triglycerides, partial esters of glycerine and the like. Parenteral compositions containing the compounds described herein may be prepared using conventional techniques that may include sterile isotonic saline, water, 1,3-butanediol, ethanol, 1,2-propylene glycol, polyglycols mixed with water, Ringer's solution, etc.
[01761 The amount of the compound in a formulation can vary within the full range employed by those skilled in the art. Typically, the formulation will contain, on a weight percent (wt %) basis, from about 0.01 to 99.99 wt % of a compound of this invention based on the total formulation, with the balance being one or more suitable pharmaceutical excipients. Preferably, the compound is present at a level of about I to 80 wt %. In a liquid composition, a compound of this invention should generally be present in such compositions at a concentration of between about 0.1 and 20 mg/ml. When either naloxone or naltrexone is combined with a compound of this invention, they should be present at 0.05 to 0.5 mg for each mg of the compound of this invention.
[0177i The choice of formulation depends on various factors such as the mode of drug administration and bioavailability of the drug substance. For delivery via inhalation the compound can be formulated as liquid solution, suspensions, aerosol propellants or dry powder and loaded into a suitable dispenser for administration. There are several types of pharmaceutical inhalation devices-nebulizer inhalers, metered dose inhalers (NMI) and dry powder inhalers (DPI). Nebulizer devices produce a stream of high velocity air that causes the therapeutic agents (which are formulated in a liquid form) to spray as a mist that is carried into the patient's respiratory tract. MDI's typically are formulation packaged with a compressed gas. Upon actuation, the device discharges a measured amount of therapeutic agent by compressed gas, thus affording a reliable method of administering a set amount of agent. DPI dispenses therapeutic agents in the form of a free flowing powder that can be dispersed in the patient's inspiratory air-stream during breathing by the device. In order to achieve a free flowing powder, the therapeutic agent is formulated with an excipient such as lactose. A measured amount of the therapeutic agent is stored in a capsule form and is dispensed with each actuation.
101781 Recently, pharmaceutical formulations have been developed especially for drugs that show poor bioavailability based upon the principle that bioavailability can be increased by increasing the surface area i.e., decreasing particle size. For example, U.S. Patent No.
4,107,288 describes a pharmaceutical formulation having particles in the size range from 10 to 1,000 nm in which the active material is supported on a crosslinked matrix of macromolecules. U.S. Patent No. 5,145,684 describes the production of a pharmaceutical formulation in which the drug substance is pulverized to nanoparticles (average particle size of 400 mn) in the presence of a surface modifier and then dispersed in a liquid medium to give a pharmaceutical formulation that exhibits remarkably high bioavailability.
[0179] In a preferred embodiment, a narrow therapeutic dose of a compound of the invention is administered to a patient such that the patient's QT interval is not prolonged to unacceptable levels. In some embodiments, patients are administered therapeutic doses of the compound in a clinical setting with cardiac monitoring. In some embodiments, the patient will be pre-screened to evaluate tolerance for prolongation of QT interval, e.g., to determine whether the patient has any pre-existing cardiac conditions which would disqualify them from treatment with the compound. In some embodiments, the patient's QT
interval is not prolonged by more than about 50 ms, preferably, not more than about 30 ms, and more preferably, not more than about 20 ms. In some embodiments, the patient's QT
interval does not exceed about 500 ms, preferably, does not exceed about 450 ms, and more preferably does not exceed about 420 ms.
[0180] In some embodiments, the dosage of a compound of this invention that is administered to the patient is sufficient to provide an average serum concentration of about 50 ng/ml, to about 850 ng/mL (area under the curve/24 hours, AUC/24 h), or any subrange or subvalue there between. In a preferred embodiment, the dose of noribogaine, noribogaine derivative, or pharmaceutically acceptable salt and/or solvate thereof administered to the patient provides an average serum concentration of about 50 ng/mL to about 400 nWmL
(AUC/24 h).
101811 Generally, the compound of this invention is administered in an effective amount. It is contemplated that the dosage required for treating pain or addiction, or a combination thereof may differ according to the condition(s) being treated, however, the dosing regimen can be readily determined by the attending clinician based on the desired treatment. It is contemplated that generally, the aggregate dosage of a compound of this invention administered to a patient may be from about I to about 8 mg per kg of body weight per day (mg/kg/day), or from about 1 to about 4 mg/kg/day, preferably, from about 1 to about 3 mg/kg/day. For example, for administration to a 70 kg person, the dosage range would preferably be about 70 to 210 mg per day. In some embodiments, a lower dosage of a compound of this invention is administered, for example from about 50 ng to less than 10 pg per kg of body weight per day. In other embodiments, a maintenance dosage of a compound of this invention is administered, for example approximately 80% or less of the therapeutically effective dose may be effective for prevention of relapse of drug use in an addicted patient treated to ameliorate their substance abuse.
101821 In some embodiments, a patient is pre-screened with a compound of the invention to determine whether the patient is a candidate for treatment with the compound, for example whether the patient's QT interval will be prolonged to an unacceptable level by treatment with the compound. In a preferred embodiment, the patient is treated with a sub-therapeutic dosage of the compound, for example about 50% to about 90% of the therapeutically effective dosage of compound, and the patient's response to the compound is monitored. In an especially preferred embodiment, the patient's QT interval is monitored before and during treatment with the compound. Methods for pre-screening a patient before treatment can be found, for example, in U.S. Provisional Patent Application Serial No.
61/952,744, filed March 13,2014 and titled "METHODS AND COMPOSITIONS FOR PRE-SCREENING
PATIENTS FOR TREATMENT WITH NORIBOGAINE," which is incorporated herein by reference in its entirety.
(0183) In addition to the methods discussed above, the present invention is directed to a pharmaceutical composition, preferably in unit dose form, comprising a compound of this invention. When administered to a patient, one or more unit doses provide an amount of a compound of this invention effective to treat a disease or condition as described above, including pain, depression, stress, and/or addiction.
[0184] The amount of the composition administered will depend on a number of factors, including but not limited to the desired final concentration of the compound, the pharmacokinetic and pharmacodynamic properties of the compound, the size, age, and physiological profile of the patient, and the like. The active compound is effective over a wide dosage range and is generally administered in a pharmaceutically effective amount. It will be understood, however, that the amount of the compound actually administered will be determined by a physician, in the light of the relevant circumstances, including the condition to be treated, the chosen route of administration, the actual compound administered, the age, weight, and response of the individual patient, the severity of the patient's symptoms, and the like.
[0185] Determination of dosages is well within the empiric knowledge of persons skilled in the art; nonetheless, it can be appreciated that estimates of final dosages can be made by approximating the concentration of compound necessary to achieve a desired therapeutic activity, such as treatment of pain and/or addiction. Extrapolation to a specified mammalian dosage range, or more particularly a human dosage range is well within the skill of the practitioner.
101861 In some embodiments, compositions are administered in one dosing of a single formulation and in other embodiments, compositions are administered in multiple dosing of a single formulation within a specified time period. In some embodiments, the time period is between about 3 hours to about 6 hours. In other embodiments, the time period is between about 6 hours and 12 hours. In additional embodiments, the time period is between about 12 hours and 24 hours. In yet further embodiments, the time period is between about 24 hours and 48 hours. The administration of separate formulations can be simultaneous or staged throughout a specified time period, such that all ingredients are administered within the specified time period.
S. Synthetic Methods 101871 The compounds of this invention can be prepared from readily available starting materials using the following general methods and procedures. It will be appreciated that where typical or preferred process conditions (i.e., reaction temperatures, times, mole ratios of reactants, solvents, pressures, etc.) are given, other process conditions can also be used unless otherwise stated. Optimum reaction conditions may vary with the particular reactants or solvent used, but such conditions can be determined by one skilled in the art by routine optimization procedures.
[01881 Additionally, as will be apparent to those skilled in the art, conventional protecting groups may be necessary to prevent certain functional groups from undergoing undesired reactions. Suitable protecting groups for various functional groups as well as suitable conditions for protecting and deprotecting particular functional groups are well known in the art. For example, numerous protecting groups are described in T. W. Greene and G. M.
Wuts, Protecting Groups in Organic Synthesis, Third Edition, Wiley, New York, 1999, and references cited therein.
101891 Furthermore, the compounds of this invention will typically contain one or more chiral centers. Accordingly, if desired, such compounds can be prepared or isolated as pure stereoisomers, i.e., as individual enantiomers or diastereoiners, or as stereoisomer-enriched mixtures. All such stereoisomers (and enriched mixtures) are included within the scope of this invention, unless otherwise indicated. Pure stereoisomers (or enriched mixtures) may be prepared using, for example, optically active starting materials or stereoselective reagents well-known in the art. Alternatively, racemic mixtures of such compounds can be separated using, for example, chiral column chromatography, chiral resolving agents and the like.
101901 Still further, some of the compounds defined herein include vinyl groups which can exist in cis, trans or a mixture of cis and trans forms. All combinations of these forms are within the scope of this invention.
101911 The starting materials for the following reactions are generally known compounds or can be prepared by known procedures or obvious modifications thereof For example, many of the starting materials are available from commercial suppliers such as Aldrich Chemical Co. (Milwaukee, Wis., USA), Bachem (Torrance, Calif., USA), Emka-Chemce or Sigma (St. Louis, Mo., USA). Others may be prepared by procedures, or obvious modifications thereof, described in standard reference texts such as Fieser and Fieser's Reagents for Organic Synthesis, Volumes 115 (John Wiley and Sons, 1991), Rodd's Chemistry of Carbon Compounds, Volumes 1 5 and Supplementals (Elsevier Science Publishers, 1989), Organic Reactions, Volumes 1 40 (John Wiley and Sons, 1991), March's Advanced Organic Chemistry, (John Wiley and Sons, 4th Edition), and Larock's Comprehensive Organic Transformations (VCH Publishers Inc., 1989).
[0192] Compounds of Formula II can be readily prepared from noribogaine by methods described herein and those known to one of skill in the art. A skilled artisan would appreciate that the reactivity of the hydroxy group and the indole nitrogen is different so that selectivity can be achieved by selecting suitable reagents and suitable reaction conditions for one of them to react but leaving the other intact to form the desired product. For example, the hydroxy group is expected to selectively react with an acid R2C(0)0H in the presence of triphenylphosphine (Ph313) and diethyl azodicarboxylate (DEAD) to give compound 1-1 and 1-3. Thus, as shown in Scheme I, noribogaine can react with LG-R where LG is a leaving group such as hydroxy, alkoxy, halo, etc., to give compound 1-1, which may further react with LG-L-R' to form compound 1-2. In other embodiments (i.e. when R is H), the phenol is protected by reaction with a suitable protecting group, PG-LG, where LG is a leaving group such as defined above, such that the indole nitrogen is derivatized with L-R'.
Suitable protecting groups are well known in the art (see T. W. Greene, P. G. M. Wuts, Protective Groups in Organic Synthesis, 4th Edition, Wiley-Interscience, New York, 2006).
In another alternative embodiment (i.e. when L is a bond and RI is H), the indole nitrogen is protected with a suitable protecting group, PG (see Greene et al., supra), such phenol that is derivatized with R.
Scheme 1 I \ 2. LG-R
1. 1.43-1,12' HO, ,C2H6 HO, C2115 protecdon %.,2116 \> 1. LG-L-R
2. denrolecdon ....N
L-R

HOrc2HeHO.., Ho,. C21-is 1.
2. deprotection PG

101931 Alternatively, as shown in Scheme 2, compounds of this invention wherein L-R' is not hydrogen may be prepared by reacting ibogaine with LG-L-R to give compound 2-1.
Compound 2-1 can be demethylated by methods known in the art, such as reaction with boron tribromide/methylene chloride at room temperature to give compound 1-4, which may further react with LG-R to give compound 1-2.

Scheme 2 -14 ../C2H5 - , -/C2H5 1 cle-methylation= C2145 i L-111 2-1 1.4 R-0 4.<2H5 [0194J Compounds described herein can also be prepared as shown in any of Schemes 3-5, wherein R, RI, L, RI and RI are as defined herein, L0 is a leaving group such as hydroxy, alkoxy, halo, etc., and X is iodo (I) or bromo (Br) . Compounds 3-1 and 4-1 can be prepared according to procedures described in, for example, U.S. Patent 6,211,360 or U.S. Patent Publication No. 2013/0165647.
101951 In Scheme 3, Compound 3-1 reacts with LG-L-RI to give compound 3-2.
Compound 3-2 can be de-carboxylated by methods described herein or known in the art, such as using refluxing hydrazine, or hydrolyzing the ¨COOCH3 group to an acid, and reacting the corresponding sodium or lithium salt with aqueous mineral acid to give compound 3-3. An exemplifying decarboxylation procedure for preparing an intermediate 7-3 is illustrated in Scheme 7 below, which includes a procedure for preparing an enantiomerically pure intermediate 7-3 when the starting material 7-1 is a racemic mixture or when racemization occurs during redcution. Intermediate 7-3 can react with LG-L-RI to give compounds of this invention.
[0196i In Scheme 4, Compound 4-1 is halogenated to compound 4-2. When X is iodo, the iodo group can be conveniently incorporated into the indole ring by reacting compound 4-1, e.g. and without limitation, with N-iodosuccinimide (NIS). The iodo group can be also incorporated using a phenyl iodonium intermediate by reaction with PhI(OH)OTs, followed by removal of the phenyl group through reaction with Off. When X is iodo or bromo, the iodo or the bromo group can be incorporated by nitration to form a nitro intermediate, followed by reducing the nitro group to an amino group, diazotizing the amino group to form a diazoniurn group, and reacting the diazonium compound with CuI or CuBr.
Exemplifying halogenation procedures are illustrated in Scheme 6 below. Compound 4-2 is then converted to compound 4-3 by reacting with ROB or RO-, e.g., in presence of a copper catalyst, such as Cut and a ligand, such as tetramethyl phenanthroline (see, for example, "An Improved Cu-Based Catalyst System for the Reactions of Alcohols with Aryl Halides", Altman et al., J.
Org. Chem., 2008, 73, 284-286, incorporated herein by reference), or CuBr (U.S. Patent No.
4,422,955, incorporated herein by reference) useful for incorporating an -OR
group, such as, benzyloxy or substituted benzyloxy group. Compound 4-3 reacts with 1,G-1,-W to give compound 4-4, which is de-carboxylated by methods described herein or known in the art to provide compound 4-5.
[01971 In Scheme 5, compound 4-1 is de-carboxylated by methods described herein or known in the art to provide compound 5-1. Compound 5-1 is halogenated to compound 5-2, which reacts with ROH to provide compound 5-3, followed by reaction with I.,G-L-R1 to give compound 4-5 using methods described herein.
Scheme 3 N =-= oil r-N.
R" R1, , 2. de-carboxylate ................................................. . ) \
1:. RI

H CO2CH3 1:-R' Scheme 4 -1!Ix sc...t. 1.-----.....
il ROH; .0 12-- \.õ.....cr-------N
i \ ii ) R11 1 \ Li R
catayst ,,,, , /\__ õ..,--,.....
NEI,Z..õ..-1,3.
H3C0 H3C0 µ H3C0 µ, b o o R-0r------N R- µ
,r------.N
) R11 LG-L-R1 1 \
. ) 11 decarboxylation ..N /
. _......-.
R c_11 ---..

õ.L. o= L-R, R1 tocH3 Scheme 5 =
N

R11 r------N
x ____... NH halogenation 'NH , NH 1 ---e\
H3C0 v
5-1 5-2 ROH;
--- R"
Copper catayst 1 \ ) R" L.G-L-R1 \ 1---(/' 'NH 1.õ....--....õ:, 1..-R1 Scheme 6 MO' I
Ph--1 (+) .--,...\.2 / \ : R11 , H- \., NH õ.......-L...A NH
H3C0 H3C0 µ.
6-2 6-3 Phi(OH)07s I
rt.-- N, R" 02N -----N H2N
) R11 \ / \ - nitration -=,.i., õ D R1 I NO2 =cti % / \
ITh/ 2 re u on .õ.. .
__________________________ 17,1\ NH ,11.-(..4 H300 H3C0-.. H3C0 \

. 6-1 6-4 6-5 +N2, ..f.,12) . X r----N
.....-N.,--)_.
\ ' diazotization I \ R1 CuX
......õ .."NH /1õ......1Z/
H3C0--", H3C0-0 Scheme 7 R1 Reduction RioR1 ).\ R11 LiAIH4 or 1 1.
NaBH4 c \ ,-.{R Retro aldoi =
,) R11 = \
== NH NH
tõ,...AF13.,A
r.,-v-^(kk HO
7-1 7-2 7-3 Esterification with chiral caroxylic acid I Retro aldol R*COOH, wherein R
is chiral group Rio R1 R _______________________________________________ NH Diastereomer " NH
9 separation HO
Crystallization.
column chromatography, 7.4 etc.
Examples 10198) The present invention is further defined by reference to the following examples. It will be apparent to those skilled in the art that many modifications, both to materials and methods, may be practiced without departing from the scope of the current invention.
Table HI. List of abbreviations and acronyms.
Abbreviation Meaning C Degree Celcius Ac Acetyl bs Broad singlet ca. Approximately CDI N,N7-Carbonyl diimidazole Doublet dd Doublet of doublets DEAD Diethyl azodicarboxylate DIPEA N,N-Diisopropylethylamine DMAP 4-Dimethylaminopyridine DMF Dimethylformamide Et Ethyl Gram Hour HPLC High-performance liquid chromatography Hz Hertz Intravenous Kg Kilogram Molar in Multiplet Abbreviation Meaning M+1 Mass peak Me Methyl mg Milligram MHz Megahertz min Minute mL Milliliter mmol Millimole MS Mass spectrometry Normal NaHDMS Sodium hexamethyldisilazane NMR Nuclear magnetic resonance Ph Phenyl Quartet q.s. Sufficient amount r.t./rt Room temperature Singlet Triplet TBAF Tetra-n-butylammonium fluoride TBS tert-Butyldimethylsily1 TBSCI tert-Butyldimethylsilyl chloride td Triplet of doublets THF Tetrahydrofuran TLC Thin layer chromatography v/v Volume/volume wt% Weight percent
8 Chemical shift AL Microliter [0199] Compounds of the invention can be prepared from readily available starting materials using, for example, the following general methods and procedures. It will be appreciated that where typical or preferred process conditions (i.e., reaction temperatures, times, mole ratios of reactants, solvents, pressures, etc.) are given, other process conditions can also be used unless otherwise stated. Optimum reaction conditions may vary with the particular reactants or solvent used, but such conditions can be determined by one skilled in the art by routine optimization procedures.
[0200] Additionally, as will be apparent to those skilled in the art, conventional protecting groups may be necessary to prevent certain functional groups from undergoing undesired reactions. Suitable protecting groups for various functional groups as well as suitable conditions for protecting and deprotecting particular functional groups are well known in the art. For example, numerous protecting groups are described in T. W. Greene, P.
G. M. Wuts, Protective Groups in Organic Synthesis, 4th Edition, Wiley-Interscience, New York, 2006, and references cited therein. The starting materials for the following reactions are generally known compounds or can be prepared by known procedures or obvious modifications thereof. For example, many of the starting materials are available from commercial suppliers such as Aldrich Chemical Co. (Milwaukee, Wisconsin, USA), Bachem (Torrance, California, USA), Emka-Chemce or Sigma (St. Louis, Missouri, USA). Others may be prepared by procedures, or obvious modifications thereof; described in standard reference texts such as Fieser and Fieser's Reagents for Organic Synthesis, Volumes 1-15 (John Wiley, and Sons, 1991), Rodd's Chemistry of Carbon Compounds, Volumes 1-5, and Supplementals (Elsevier Science Publishers, 1989), Organic Reactions, Volumes 1-40 (John Wiley, and Sons, 1991), March's Advanced Organic Chemistry, (John Wiley, and Sons, 5th Edition, 2001), and Larock's Comprehensive Organic Transformations (VCH Publishers Inc., 1989).
Example 1. Preparation of Compound 1 9H3 'N= c2H5 H3C-N."--Thro-6 \

102011 Compound 1 may be prepared by reacting noribogaine with at least two equivalents of (C1-13)2NCH2CH2C(0)C1 in the presence of a base in a suitable solvent. In one embodiment, the reaction is conducted in a polar solvent. Upon reaction completion, compound 1 can be recovered by conventional techniques such as neutralization, extraction, precipitation, chromatography, filtration and the like; or, alternatively, used without purification and/or isolation.
Example 2. Preparation of Compound 2 HO
\
C2Hs eH3 102021 Compound 2 may prepared by reacting noribogaine with at least one equivalent of (CH3)2NCH2CH2C(0)CI in the presence of a base in a suitable solvent to give an intermediate product. In one embodiment, the reaction is conducted in a polar solvent. The intermediate product can be demethylated by reaction with boron tribromide/methylene chloride at room temperature to give compound 2, Upon reaction completion, compound 2 can be recovered by conventional techniques such as neutralization, extraction, precipitation, chromatography, filtration and the like; or, alternatively, used without purification and/or isolation.
Example 3. Preparation of Compound 3 H3c-L---r _,,C2115 I
(02031 Compound 3 may prepared by reacting noribogaine with one equivalent of (CI-13)2NCH2CII2C(0)C1 in the presence of a base, such as pyridine, in a suitable solvent, or with one equivalent oKI-I3)2NCH2C}12C(0)011 in the presence of triphenylphosphine (P11313) and diethyl azodicarboxylate (DEAD). In one embodiment, the reaction is conducted in a polar solvent. Upon reaction rational completion, compound 3 can be recovered by conventional techniques such as neutralization, extraction, precipitation, chromatography, filtration and the like; or, alternatively, used without purification and/or isolation.
Example 4. Preparation of Compound 8 a y TBSO 0 TBSO, \ \
NaHMDS, THF, -78 C to r.t. N

HO, TBAF, THF N
__________ =

a) Preparation of TBS-Noribogaine 8-A
102041 A suspension of noribogaine hydrochloride (852 mg, 2.56 mmol), TBS-CI
(444 mg.
2.94 mmol) and imidazole (227 mg. 3.33 mmol) in DMF (6 mI,) was stirred at room temperature for 20 h. The resulting clear solution was diluted with 10% 2-propanol/dichloromethane and washed with water and brine. The aqueous phase was extracted with Et0Ac. The combined organic layers were concentrated and purified by column chromatography (Et0Ac/Hexanes, v/v, 2/1) to give compound 8-A (911 mg, 87%) as a white solid.
[0205] MS calculated for (C251-1381\120S1): 410; MS found, (M.1): 411.
b) Preparation of Compound 8-B
[0206] NaHMDS (0.75 mL, 1.0 M solution in THF) was added into a solution of TBS-noribogaine 8-A (205 mg, 0.5 mmol) in THF (10 mL) at -78 C. The resulting solution was stirred for 10 min at -78 C then a solution of 4-nitrophenyl chloroformate (182 mg, 0.9 mmol) in THF (8 mL, pre-cooled to -78 C) was added quickly. The reaction mixture was allow to warm to room temperature and stir for 1 hour, followed by the addition of N,N-dimethylethylenediarnine (0.22 mL, 2.0 mmol). After stirring at room temperature for an additional hour, the reaction mixture was diluted with 10% 2-propanol/dichloromethanc and washed with water and brine. The aqueous phase was extracted with Et0Ac. The combined organic layers were concentrated and purified by column chromatography (Et0Ac/Hexanes.
v/v, 2/1 to 99:1 Et0Ac:triethylamine). The desired product compound 8-B (138 mg, 53%) was obtained as white solid.
102071 MS calculated for (C301148N402SO: 524; MS found, (M+1): 525.
c) Preparation of C'ompound 8 [02081 TBAF (0.68 mL, 1.0 M solution in THF, 0.68 inmol) was added to a solution of compound 8-B (178 mg, 0.34 mmol) in THF (12 mL) at -78 C. The resulting solution was stirred for 40 min at -78 C before it was quenched by addition of IN aqueous HC1 (2 mL).
The reaction mixture was allowed to warm to room temperature and was concentrated. The residue was purified by Preparative-HPLC to give compound 8 as the hydrochloride salt (110 mg, HC1 salt, 72%) as a white solid.
[02091 MS calculated for (C24H34/4402): 410; MS found, (M+1): 411. ill NMR
(300 MHz, CD30D) 8 8.20 (bs, IF!), 7.49 (d, 1H), 6.87 (s, 1H), 6.80 (d, 1H), 3.50 -3.92 (m, 6H), 3.36- 3.58 (m, 4H), 3.00 - 3.36 (m, 2H) , 2.80 - 3.00 (m, 6H), 2.50 (td, 1H), 1.85 - 2.20 (m, 3H), 1.48 - 1.82 (m, 3H), 1.22- 1.46 (m, 1H), 1.04 (t, 3H).

Example 5. Preparation of Compound 15 HCI
DMAP
HO, acetic anhydride 141, N 40 C, overnight 1 NaHMDS NN
4-nitrophenyi chioroforrnate HO 46 THF, -78 C to rt N
=

Na0 N \ N--Na/THF
HON
-a) Preparation of Noribogaine acetate 15-A
102101 A mixture of noribogaine (300 mg, 0.9 mmol) and DMAP (10 mg, 0.09 mmol) in acetic anhydride (6 mL) was heated at 40 C for 16 h. The acetic anhydride was co-evaporated with toluene at 40 C under reduced pressure. The residue was dissolved in ethyl acetate (100 mL), and the resulting solution was stirred with saturated NaHCO3 solution (50 mL) at rt for 2 h. The organic phase was separated and concentrated under reduced pressure.
The crude product was purified by chromatography on silica gel (ethyl acetate/hexane : ¨1/2) to give compound 15-A (280 mg, 90%) as white solid.
102111 MS calculated for (C211126N202)+: 338; MS found, (M+1): 339. 1H NMR
(300 MHz, CD30D) 8 7.18 (d, J=8.4 Hz. 1H), 7.06 (d, J=2.4 Hz, 1H), 6.7 (dd, J=8.4 Hz, J=2.4 Liz, 1H), 3.38 (m, 1H), 3.1 (m, 4H), 2.95 (m, 2H), 2.65 (m, 1H), 2.27 (s, 3H), 2.14 (in, IH), 1.88 (m, 2H), 1.64-1.45 (m, 4H), 1.23 (m, 1H), 0.94 (t, .1=7.5 Hz, 3H).
b) Preparation of Compound 15 [02121 To a solution of N,N-dimethylethanolamine (0.6 mL, 6 mmol) in THF (1.4 mL) was added sodium (46 mg, 2 mmol) at rt. The reaction mixture was stirred at rt until the sodium disappeared. The resulting solution of sodium N,N-dimethylethanolamine was used for the reaction below.
[02131 To a solution of compound 15-A (200 mg, 0.59 mmol) in THF (2 mL) was added dropwise NaHMDS (0.59 mL, 0.59 mmol) at -78 'C. The reaction mixture was stirred at -78 c'e for 10 min, and then the resulting reaction mixture was transferred via a cannula to a solution of 4-nitrophenyl chlorofonnate (143 mg, 0.71 mmol) in THE (1 mL) at -78 "C. The reaction mixture was allowed to warmed to it and stirred for 30 min. The reaction mixture was then cooled to -78 "C, and sodium N,N-dimethylethanolamine solution (1.4 mL, 1.4 mmol, 1 M in THE) was added. The reaction mixture was allowed to warm to rt and stirred for 30 min. Water (5 mL) was added, and the reaction mixture was extracted with ethyl acetate (2 x 20 mL). The combined organic layers were concentrated under reduced pressure, and the crude product was purified by Flash Chromatography (ethyl acetate/methanol/triethylamine : =100/5/1). The resulting yellow oil was further purified by prep-HPLC to give compound 15 (66 mg, 30%) as a white solid.
102141 MS calculated for (C24H33N303)+: 411; MS found, (M-1-1); 412. ill NMR
(300 MHz, CD30D) 8 7.79 (d, J=8.7 Hz, 1H), 6.7 (d, 3=2.4 Hz, 1H), 6.66 (dd, J=2.4 and 8.7 Fiz, 1H), 4.4 (m, 3H), 3.75 (m, 1H), 3.0 (m, 3H), 2.87 (m, 2H), 2.8 (m, 2H), 2.7 (m, 3H), 2.5 (m, 3H), 2.29 (s, 6H), 2.14 (m, 1H), 1.85 (m, 2F1), 1.61-1.23 (m, 5H), 1.1 (m, 1H), 0.94 (t, J=7.2 Hz, 3H).
Example 6. Preparation of Compound 16 1 NaHMDS
4-nitrophenyl ehloroformate /r)72.
THF, -78 C to rt II
-.1(0 2.N,N-dimethyl ethylene-diernine, -78 cC

[0215I To a solution of compound 15-A (310 mg, 0.92 mmol) in THF (3 mL) was added dropwise NaHMDS (0.87 mL, 0.87 mmol) at -78 'C. The reaction mixture was stirred at -78 "C for 10 min, and then the resulting reaction mixture was transferred via a cannula to a solution of 4-nitrophenyl chloroformate (185 mg, 0.92 mmol) in THF (1 mL) at -78 "C. The reaction mixture was allowed to warm to rt and stirred for 30 mm. The reaction mixture was recooled to -78 C, and NõN-dimethyl ethylenediamine (79 mg, 0.9 mmol) was added. The reaction mixture was warmed to rt and stirred for 30 min. Water (5 mL) was added, and the reaction mixture was extracted with ethyl acetate (2 x 20 mL). The combined organic layers were concentrated under reduced pressure, and the crude product was purified by Flash Chromatogaphy (ethyl acetate/methanol/triethylamine : =100/5/1). The resulting yellow oil was further purified by prep-HPLC to give compound 16(50 mg, 14%) as a white solid.

[02161 MS calculated for (C26H36N403)i.: 452; MS found, (M4-1): 453. 1H NMR
(300 MHz, CD30D) 8 7.5 (d, 3=8.7 Hz, 1H), 7.12 (d, .1=2.4 Hz, 1H), 6.8 (dd, 3=2.4 and 8.7 Hz, 1H), 3.5 (m, 3H), 3.4 (m, 1H), 3.2 (m, 2H), 3.0 (m, 3H), 2.8 (m, 1H), 2.6 (m, 3H), 2.3 (s, 6H), 2.27 (s, 3H), 2.14 (m, 1H), 1.85 (m, 2H). 1.61-1.23 (m, 5H), 1.1 (m, 1H), 0.94 (t, 3=6.9 Hz, 3H).
Example 7. Preparation of Compound 38 NaHMDS
N r¨ 4-mtrophenyl chloroformate N r---THF, -78 C to rt ..-0 15-A c?

methylamine or- N

/ \

a) Preparation of Compound 38-A
[02171 To a solution of compound 15-A (42 mg, 012 mmol) in THF (1 mL) was added dropwise NaHMDS (0.14 mL, 0.14 mmol) at -78 C. The reaction mixture was stirred at -78 C for 10 min and then 4-nitrophenyl chloroforrnate (27 mg, 0.14 mmol) was added at -78 'C.
The reaction mixture was allowed to warm to rt and stirred for 1 h. Saturated NaHCO3 solution (5 mL) was added, and the reaction mixture was extracted with ethyl acetate (2 x 10 mL). The combined organic layers were concentrated under reduced pressure. The crude product was purified by chromatography on silica gel (ethyl acetate/hexane=1/1) to give compound 38-A (20 mg) as a yellow oil in 33% yield.
[02181 MS calculated for (C28H29N306)+: 503; MS found, (M4.1): 504.
b) Preparation of Compound 38 [02191 A reaction mixture of compound 2 (150 mg, 0.3 mmol) and methylamine (1 mL, 33 wt% in ethanol) in CH2C12 (5 mL) was stirred at rt for 1 h. The reaction mixture was washed with saturated NaliCO3 solution, and the aqueous layer was extracted with ethyl acetate (2 x 20 mL). The combined organic extracts were concentrated under reduced pressure. The crude product was purified by chromatography on silica gel (ethyl acetate/methanol/triethylamine 100/2/1) to give compound 3 (80 mg) as a yellow oil in 80% yield.
[0220] MS calculated for (C21H27N302)+: 353; MS found, (M+1): 354.
Example 8. Preparation of Compound 18 HO e-Co "'=-=
DMAP
_____________________________________________ oil 1 NN
acetic anhydride 0 ti NH
\

10221) A reaction mixture of compound 38 (80 mg, 0.22 mmol) and DMAP (10 mg, 0.09 mmol) in acetic anhydride (3 mL) was heated at 40 C for 16 h. The acetic anhydride was co-evaporated with toluene at 40 C under reduced pressure. The residue was dissolved in ethyl acetate (50 mL), and the resulting solution was stirred with saturated NaHCO3 solution (50 mL) at rt for 30 min. The organic phase was separated and concentrated under reduced pressure. The crude product was purified by chromatography on silica gel (ethyl acetate/methanol/triethylamine : =100/2/1) to afford a crude residue, which was further purified by preparative HPLC give compound 18 (50 mg, 60%) as a yellow solid.
[02221 MS calculated for (C231429N303)s: 395; MS found, (M+1): 396. ill NMR
(300 MHz, CD30D) 8 7.44 (d, 3=8.7 Hz, 1H), 7.13 (d, 3=2.4 Hz, 1H), 6.7 (dd, J=2.4 and 8.7 Hz, 1H), 3.2 (m, 1H), 3.05 (n, 4H), 2.98 (s, 3H), 2.95 (in, 2H), 2.83 (m, 1H), 2.6 (m, 1H), 2.27 (s, 3H), 2.14 (m, 1H), 1.88 (m, 2H), 1.64-1.45 (m, 4H), 1.23 (n, 1H), 0.92 (t, J=7.2 Hz, 3H).
Example 9. Preparation of Compound 31 NaHMDS
N -- methyl ohloroformate 0 THF, -78 C to rt __________________________________________ - ")r , 15-A 31 v [02231 To a solution of compound 15-A (200 mg, 0.59 mmol) in THF (2 mL) was added dropwise NaHlviDS (0.68 mL, 0.68 mmol) at -78 C. The reaction mixture was stirred at -78 C for 10 min, and then methyl choroformate (78.6 uL, 0.68 mmol) was added at -78 C. The reaction mixture was allowed to warm to rt and stirred for 1 h. Saturated NaHCO3 solution (5 mL) was added, and the reaction mixture was extracted with ethyl acetate (2 x 20 mL). The combined organic extracts were concentrated under reduced pressure to afford a crude product which was purified by preparative-HPLC to give compound 31 (116 mg, 55%) as a white solid.
[02241 MS calculated for (C23H28N204)+: 396; MS found, (M+1): 397. NMR (400 MHz, CD30D) 8 7.95 (d,1=9.2 Hz, 1H), 7.06 (d, .1=1.2Hz, 1H), 6.7 (dd,1=9.2 Hz, J=1.2 Hz, 111), 4.84 (s, 3H), 3.8 (m, 11-1), 3.1 (m, 3H), 2.99 (m, 2H), 2.8 (m, 1H), 2.68 (m, 111), 2.15 (s, 3H), 2.14 (m, 11.1), 1.85 (m, 2H), 1.61 (m, 2H), 1.58 (m, 1H), 1.46 (m, 111), 1.23 (in, 111), 0.94 (t, .1=7.2 Hz, 3H).
Example 10. Preparation of Compound 39 HO. TBSO\ TBSO
N TBSCI. azol!
DMF, r.t. = NaHMDS, THF
HCI
9-A
HO
TBAF, THF
\)- ,<X" - =
- 78 C to r.t. 1,J=

a) Preparation of TBS-Noribogaine 8-A
[02251 A suspension of noribogaine hydrochloride (852 mg, 2.56 mmol), TBS-Cl (444 mg, 2.94 mmol) and imida7ole (227 mg, 3.33 mmol) in DMF (6 mL) was stirred at room temperature for 20 h. The resulting clear solution was diluted with 10% 2-propanol/dichloromethane and washed with water and brine. The aqueous phase was extracted with Et0Ac. The combined organic extracts were concentrated and purified by column chromatography (Et0Ac/Hexanes, v/v, 2/1) to give compound 8-A (911 mg, 87%) as a white solid.
[02261 MS calculated for (C25H38N20Si): 410; MS found, (M+1): 411.
h) Preparation of compound 9-A
[02271 NaHMDS (0.9 mL, 1.0 M solution in THF, 0.9 mmol) was added into the solution of compound 8-A (246 rug, 0.6 mmol) in THF (6 mL) at -78 C. The resulting solution was stirred for 15 min at -78 C before ethyl chloroformate (0.12 mL, 1.2 mmol) was added. The reaction mixture was warmed up to room temperature and stirred for 1 hour, then it was partitioned between Et0Ac and water. The organic layer was washed with brine and dried over Na2SO4. The crude product was obtained as a pale yellow oil after concentration, which was used in the next step without further purification.
102281 MS calculated for (C281-142N203Si): 482; MS found, (M+1): 483.
e,) Preparation of compound 39 102291 Tf3AF (1.5 mL, 1.0 M solution in TI-IF) was added into a solution of compound 9-A
(crude, ca. 0.6 mmol) in THF (12 mL) at -78 C. The resulting solution was stirred for 20 min at -78 C before it was allowed to warm to room temperature. After one hour, the reaction mixture was diluted with 10% 2-propanolidichloromethane and washed with water and brine.
The aqueous phase was extracted with Et0Ac. The combined organic layers were concentrated and purified by column chromatography (dichloromethane/Me0H, viv,
10/1) to give compound 39 (187 mg, 85% over two steps) as a white solid.
102301 MS calculated for (C22H28N203): 368; MS found, (M+ I): 369. IHNMR. (300 MHz, CD30D) 5 7.83 (d, 1H), 6.82 (s, 1H), 6.78 (d, 1H), 4.49 (q, 2H), 4.08 (dd, I H), 3.65 -3,92 (m, 2H), 3.40- 3.62 (m, 2H), 3.15 -3.20 (m, 1H) , 2.95 -3.07 (m, 21-1), 2.42 - 2.62 (m, 1H), 2.20 (bs, 1H), 1.80 - 2.10 (m, 21-1), 1.40- 1.80 (m, 4H), 1.48 (t, 3H), 1.05 U. 311).
Example ii. Preparation of Compound 32 N
/
HO
, CD, THF / N
-N NH

[02311 A solution of compound 39 (137 mg, 0.37 mmol) and CDI (181 mg, 1.12 mol) in THF (10 mL) was stirred at 50 C for two hours. The mixture was then cooled to room temperature, and N-methylpiperizine (0.27 mL, 0.24 mmol) was added. After one hour, the reaction mixture diluted with 10% 2-propanolidichloromethane and washed with water and brine. The aqueous phase was extracted with Et0Ac. The combined organic extracts were concentrated and purified by preparative-IIPLC to give compound 32 as the hydrochloride salt (159 mg, HC1 salt, 81%) as a white solid.
(0232] MS calculated for (C281-138N404): 494; MS found, (M+1): 495. IFINMR
(400 MHz, CD30D) 8 8.07 (d, 1H), 7.35 (s, 1H), 7.09 (d, 1H), 4.57 (q, 2H), 4.40 4.60 (m, 1H), 4.25 - 4.40 (m, 1H), 4.12 (dd, 1H), 3.80- 3.92 (m, 1H), 3.84 (s, 1H), 3.42 --3.62 (m, 5H).
3.16 -3.42 (m, 5H), 2.98 (s, 3H), 2.57(td, 1H), 2.24 (bs, 1H), 1.98 - 2.11 (in, 21-1), 1.50 -1.82 (m, 3H), 1.42- 1.50 (m, 2H), 1.51 (t, 3H), 1.05 (t, 3H).
Example 12. Preparation of Compound 40 rs ,1 NaHMDS k r aish /
methyl chloroformate -rHF -78 C to rt os-Csr (0233) To a solution of compound 15-A (200 mg, 0.59 mmol) in THF (2 mL) was added dropwise NaHMDS (0.68 mL, 0.68 mmol) at -78 'C. The reaction mixture was stirred at -78 C for 10 mm, and then methyl chorofomiate (78.61AL, 0.68 mmol) was added at -78 'C. The reaction mixture was allowed to warm to rt and stirred for 1 h. Saturated NaHCO3 solution (5 mL) was added, and the reaction mixture was extracted with ethyl acetate (2 x 20 mL). The combined organic extracts were concentrated under reduced pressure to afford a crude product which was purified by preparative-HPLC to give compound 40(116 1112, 55%) as a white solid.
102341 MS calculated for (C23H28N204)+: 396; MS found, (M+1): 397. IHNMR (400 MHz, CD30D) 8 7.95 (d, J=9.2 Hz, 111), 7.06 (d, J=1.211z, 1H), 6.7 (dd, J=9.2 Hz, J=1.2 Hz, 1H), 4.84 (s, 311), 3.8 (m, 11-1), 3.1 (m, 311), 2.99 (m, 2H), 2.8 (m, 111), 2.68 (in, 11), 2.15 (s, 3H), 2.14 (m, 111), 1.85 (m, 211), 1.61 (m, 211), 1.58 (m, 111), 1.46 (m, 111), 1.23 (m, 11-1), 0.94 (t, J=7.2 Hz, 3H).

Example 13. Preparation of Compound 36 TBSO TBSO
\ P¨NN TBAF, THF
*
NaHMDS, THF, -78 QC to r.t.

ikOMe N - 78 3C

8-A CI Otvle o HO, a) Preparation of Compound 36-A
102351 NaHMDS (1.05 la, 1.0 M solution in 'rim was added into a solution of TBS-noribogaine 8-A (288 mg, 0.7 rnrnol) in 8 mL of THF at -78 C. The resulting solution was stirred for 10 min at -78 C before a solution of chlorodimethyl phosphate (0.15 mL, 1.4 mmol) in 2 m1, of THF was added dropwise. The reaction mixture was allowed to warm to room temperature and stirred for 1 hour, before it was diluted with 5% 2-propanolidichloromethane and washed with water and brine. The aqueous phase was extracted with Et0Ac. The combined organic extracts were concentrated and purified by column chromatography (Et0Ac/Hexanes, v/v, 2/1 to pure Et0Ac). The desired product compound 36-A (305 mg, 84%) was obtained as a white solid.
102361 MS calculated for (C271-143N204PS1): 518; MS found, (M+1): 519.

b) Preparation of Compound 36 [02371 TBAF (1.1 mL, 1.0 M solution in THF) was added into a solution of compound 36-A (305 mg, 0.59 mmol) in 8 mL of THF at -78 C. The resulting solution was stirred for 40 min at -78 C.: before it was quenched by addition of 2 mL of IN aqueous HC1.
The reaction mixture was diluted with 5% 2-propanol/dichloromethane and washed with water and brine, The aqueous phase was extracted with Et0Ac. The combined organic layers were concentrated and purified by column chromatography (dichloromethane/2-propanol, v/v, 15/1 . to 10/1) and then preparative-HPLC to give pure compound 36 as the hydrochloride salt (220 .
mg, HC1 salt, 85%) as a white solid.
102381 MS calculated for (C211129N204P): 404; MS found, (M+1): 405. Ill NMR
(300 MHz, CDC13) 8 10.38 (bs, 1H), 7.45 (d, 1H), 6.97 (s, 1H), 6.91 (d, 1H), 3.98 -4.15 (m, 1H), 3.40 - 3.85 (m, 10H), 2.70 - 3.20 (m, 3H) , 2.40- 2.60 (m, 1H), 2.18 (bs, 1H), 1.72 -2.05 (in, 4H), 1.38 - 1.50 (m, 1H), 0.95 (t, 3H).
Example 14. Preparation of Compound 41 HO
nsCD!, DEPEA, THF 0 I'll 0 0" 0 Cf;PµstD

102391 A solution of compound 36 (44 mg, 0.11 mmol), CD1 (54 mg, 0.33 mol) and one drop of DIPEA in 2 mL of THY was stirred at 50 C for two hours, before it was cooled down to room temperature. N-methylpiperizine (3 drops) was added. After one hour, the reaction mixture was concentrated and purified by preparative TLC (dichloromethane/
MeOFI/triethylamine, viv, 200/20/1). Pure compound 41 (28 mg, 48%) was obtained as a white solid.
[0240] MS calculated for (C271139N405P): 530; MS found, (M+1): 531. Ili NMR
(300 MHz, CDC13) 67.95 (d, 1H), 7.13 (s, 1H), 6.95 (d, 1H), 3.65 - 3.82 (m, 8H), 3.55 -3.65 (m.
31I), 3.47 (s, 1H), 3.40 - 3.45 (m, 1H) , 2.96 - 3.40 (m, 5H), 2.72 - 2.95 (m, 1H), 2.40 -2.70 (m, 41-1), 2.35 (s, 3H), 2.08 2.25 (m, 1H), 1.78 - 1.95 (m, 2H), 1.38 - 1.70 (m, 211), 1.15 -1.20 (m, 2H), 0.89 (t, 3H).

Example 15 [0241] The following example illustrates how to treat an opioid addicted patient having an immediate craving for the opioid. In particular, a 65 kg cocaine addicted male patient presenting with an immediate craving for a cocaine "fix" is administered a bolus comprising 0.1% weight/volume of a compound of this invention in sterile buffered saline.
The aqueous composition is administered in an i.v. format and the serum concentrations of the compound of Formula II and noribogaine which is produced by in vivo cleavage of the compound of this invention are monitored. A sufficient amount of the compound is administered until a therapeutic serum concentration of the compound and or noribogaine is achieved. The patient is then monitored until the craving is diminished or relieved.
Example 16 [0242] The following example illustrates how to treat severe pain in a patient. In particular, a 80 kg male patient presenting severe trauma due to several gunshots to the chest and legs is administered a bolus comprising l gm of a compound of Formula ll in 10 ml, of sterile buffered saline. The aqueous composition is injected into the patient to provide immediate analgesia for the pain. A transdermal patch is then placed on the patient's back. The patch contains a sufficient amount of the compound in a sustained release form wherein the amount of noribogaine released is sufficient to maintain serum concentration of the compound or noribogaine which is produced by in vivo cleavage of the compound of this invention in the patient for a period of 48 hours.
Example 17: Tablet formulation [0243] The following ingredients are mixed intimately and pressed into single scored tablets.
Ingredient Quantity per tablet, mg Compound of Formula 1 40 Cornstarch 50 Croscarmellose sodium /5 I Lactose 120 ..
1 Mmuesium stearate 1 5 Example 18: Capsule formulation [0244] The following ingredients are mixed intimately and loaded into a hard-shell gelatin capsule.

Ingredient Quantity per capsule, mg Compound of Formula I 20 Lactose, spray-dried 148 Magnesium stearate 2 Example 19: Suspension formulation 102451 The following ingredients are mixed to form a suspension for oral administration (q.s. sufficient amount).
Ingredient Amount Compound of Formula I 1.0 g Fumaric acid 0.5 g Sodium chloride 2.0 g Methyl paraben 0.15g ?rup_yl_paraben 0.05 g Granulated sugar 25.01 ...........
Sorbitol (70% solution) 13.0 Veegum K (Vanderbilt Co) LO &_ flavoring ______________________________ ._2!!L _____________ colorings 0.5 mg distilled water q.s. to 100 mL
Example 20: Injectable formulation 102461 The following ingredients are mixed to form an injectable formulation.
1 Ingredient Quantity per 20 mL
I Compound of Formula I 0.2 mg-20 mg sodium acetate buffer solution, 0.4 M 2.0 mL
HCI (IN) or NaOH (1N) q.s. to suitable pH
water (distilled, sterile) q.s. to 20 mL
Example 21: Suppository formulation [02471 A suppository of total weight 2.5 e is prepared by mixing the compound of the invention with WitepsolOD H-15 (triglycerides of saturated vegetable fatty acid;
Riches-Nelson, Inc., New York), and has the following composition:
Ingredient 1 Quantity Comp_ound of Formula I 500 n Witepsol 11-15 .......................... balance

Claims (26)

What is claimed is:
1. A compound of Formula I or Formula II:
wherein L is selected from the group consisting of a covalent bond and a cleavable linker group;
R1 is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, aryl, substituted aryl, cycloalkyl, substituted cycloalkyl, heteroaryl, substituted heteroaryl, heterocyclic, and substituted heterocyclic provided that R1 is not a saccharide or an oligosaccharide;
R10 is hydrogen or ¨OR;
R11 is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkoxy, substituted alkoxy, (CH2)m OC(O)alkyl, (CH2)m OH, (CH2)m Oalkyl, CH2-X-alkyl or (CH2)m O(CH2)p O(CH2)q O(CH2)r CH3, where each of m, p and q is 1, 2 or 3; and r is 0, 1 or 2, X is O or NH;
R is selected from the group consisting of hydrogen, a hydrolysable group selected from the group consisting of -C(O)R2, -C(O)NR3R4 and -C(O)OR5, where R2 is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl and substituted alkynyl, R3 and R4 are independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic and substituted heterocyclic, R5 is selected from the group consisting of alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic and substituted heterocyclic, provided that R is not a saccharide or an oligosaccharide;
R3 and R4 are independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic and substituted heterocyclic, and R5 is selected from the group consisting of alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic and substituted heterocyclic provided that R is not a saccharide or an oligosaccharide;
or a pharmaceutically acceptable salt and/or solvate thereof, provided that when L is a covalent bond and R1 is hydrogen, then R is selected from the group consisting of -C(O)NR3R4 and -C(O)OR5; and further provided that when R is hydrogen or -C(O)R2 and L is a covalent bond, then R1 is not hydrogen.
2. The compound of claim 1, wherein R11 is selected from the group consisting of hydrogen, C1-C3 alkyl, substituted C1-C3 alkyl, C1-C3 alkoxy and substituted C1-C3 alkoxy.
3. The compound of claim 1, wherein L is hydrogen or a biocompatible, cleavable linking group and R11 is C1-C3 alkoxy optionally substituted with YH, YR12, YC(O)R12, C(O)YR12, C(O)NH2, C(O)NHR12, C(O)NR12R13, NH2, NHR12, NR12R13, NHC(O)R12, or NR12C(O)R13, where Y is O or S, R12 and R13 are independently C1-C3 alkyl.
4. The compound of claim 1, wherein R is hydrogen, L is a covalent bond or -C(O)-, and R1 is alkyl substituted with -NR6R7 where R6 and R7 are independently selected from the group consisting of hydrogen, alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, aryl, substituted aryl, cycloalkyl, substituted cycloalkyl, heteroaryl, substituted heteroaryl, heterocyclic, and substituted heterocyclic.
5. The compound of claim 1, wherein R11 is selected from H, CH2CH2OH, CH2CH2OCH3, CH2CH2OCH2Ph, CH2CH2OC(O)alkyl, and CH2CH2O(CH2)p O(CH2)q O(CH2)r CH3, wherein p, q, and r are independently 0, 1, 2, or 3, or a pharmaceutically acceptable salt and/or solvate thereof.
6. The compound of claim 1, wherein R11 is H, or a pharmaceutically acceptable salt and/or solvate thereof.
7. The compound of claim 1, wherein R1 or R10 is H, or a pharmaceutically acceptable salt and/or solvate thereof.
8. The compound of claim 1, wherein R is hydrogen and L is a cleavable group.
9. The compound of claim 1, wherein L is a biocompatible, cleavable linking group comprising from 1 to 20 atoms selected from carbon, nitrogen, oxygen, sulfur, and phosphorus.
10. The compound of claim 1, wherein L is -C(O)-.
11. The compound of claim 1, wherein L is -C(O)O-,
12. The compound of claim 1, wherein L is -C(O)NR-, where R is hydrogen or alkyl.
13. The compound of claim 1, wherein L is selected from the group consisting of -P(O)(OR9)-O-, -O-P(S)(OR9)-O-, -O-P(S)(SR9)-O-; -S-P(O)(OR9)-O-, -O-P(O)(OR9)-S-, -S-P(O)(OR9)-S-, -O-P(S)(OR9)-S-, -S-P(S)(OR9)-O-, -O-P(O)(R9)-O-, -O-P(S)(R9)-O-, -S-P(O)(R9)-O-, -S-P(S)(R9)-O-, -S-P(O)(R9)-S-, -O-P(S)(R9)-S- where R9 is hydrogen or alkyl.
14. The compound of claim 1, wherein R is hydrogen, L is a covalent bond or ¨C(O), and R1 is substituted alkyl.
15. The compound of claim 14, wherein RI is alkyl substituted with -NR6R7 and where R6 and R7 are independently selected from the group consisting of hydrogen, alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, aryl, substituted aryl, cycloalkyl, substituted cycloalkyl, heteroaryl, substituted heteroaryl, heterocyclic, and substituted heterocyclic.
16. The compound of claim 1, wherein R is selected from the group consisting of -C(O)NR3R4 and -C(O)OR5 and R1 is hydrogen.
17. The compound of claim 1 selected from the group consisting of or a pharmaceutically acceptable salt and/or solvate thereof.
18. A composition comprising a compound of any one of claims 1-11 and a pharmaceutically acceptable recipient.
19. A method for treating a pain in a patient which method comprises administering to said patient a compound of any one of claims 1-11.
20. A method for treating addiction to at least one addictive substance in a patient which method comprises administering to said patient a compound of any one of claims 1-11.
21. The method of claim 20, wherein the at least one addictive substance is chosen from the group consisting of an opioid, an opioid-like drug, cocaine, alcohol, an amphetamine, a methamphetamine, tobacco, caffeine, a cannabinoid, and a benzodiazepine.
22. A method for treating stress in a patient which method comprises administering to said patient a compound of any one of claims 1-11.
23. The method of claim 22, wherein the stress is post traumatic stress disorder.
24. A method for treating depression in a patient which method comprises administering to said patient a compound of any one of claims 1-11.
25. A method for treating anxiety in a patient which method comprises administering to said patient a compound of any one of claims 1-11.
26. A method for screening a patient to determine the patient's tolerance for a therapeutic dose of a compound of any one of claims 1-11, the method comprising:
measuring the patient's pre-administration QT' interval;
administering to the patient a sub-therapeutic dose of the compound; and measuring the patient's post-administration QT interval.
CA2983727A 2014-04-21 2014-04-21 N-substituted noribogaine prodrugs Abandoned CA2983727A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2014/034826 WO2015163844A1 (en) 2014-04-21 2014-04-21 N-substituted noribogaine prodrugs

Publications (1)

Publication Number Publication Date
CA2983727A1 true CA2983727A1 (en) 2015-10-29

Family

ID=54332877

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2983727A Abandoned CA2983727A1 (en) 2014-04-21 2014-04-21 N-substituted noribogaine prodrugs

Country Status (3)

Country Link
EP (1) EP3164402A1 (en)
CA (1) CA2983727A1 (en)
WO (1) WO2015163844A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2942638A1 (en) 2013-03-15 2014-09-18 Demerx, Inc. Method for noribogaine treatment of addiction in patients on methadone
US9561232B2 (en) 2014-02-18 2017-02-07 Demerx, Inc. Low dose noribogaine for treating nicotine addiction and preventing relapse of nicotine use
US9561233B2 (en) * 2014-03-13 2017-02-07 Demerx, Inc. Use of ibogaine for the treatment of pain
US9592239B2 (en) 2014-09-12 2017-03-14 Demerx, Inc. Methods and compositions for ibogaine treatment of impulse control disorder, anxiety-related disorders, violence and/or anger, or regulating food intake
AU2015353414B2 (en) 2014-11-26 2021-04-29 Demerx, Inc. Methods and compositions for potentiating the action of opioid analgesics using iboga alkaloids
WO2017184531A1 (en) * 2016-04-18 2017-10-26 Demerx, Inc. Treatment of movement-related disorders using noribogaine

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7220737B1 (en) * 1997-09-04 2007-05-22 Novoneuron, Inc Noribogaine in the treatment of pain and drug addiction
US20030153552A1 (en) * 2002-02-14 2003-08-14 Mash Deborah C. Method of treating chemical dependency in mammals and a composition therefor
US8362007B1 (en) * 2010-05-11 2013-01-29 Demerx, Inc. Substituted noribogaine
US8741891B1 (en) * 2010-06-22 2014-06-03 Demerx, Inc. N-substituted noribogaine prodrugs
US8637648B1 (en) * 2010-06-22 2014-01-28 Demerx, Inc. Compositions comprising noribogaine and an excipient to facilitate transport across the blood brain barrier
WO2013085922A1 (en) * 2011-12-09 2013-06-13 Demerx, Inc. Phosphate esters of noribogaine
WO2013148572A1 (en) * 2012-03-27 2013-10-03 Albany Medical College Blocking of cue-induced drug reinstatement

Also Published As

Publication number Publication date
EP3164402A1 (en) 2017-05-10
WO2015163844A1 (en) 2015-10-29

Similar Documents

Publication Publication Date Title
US9586954B2 (en) N-substituted noribogaine prodrugs
US8741891B1 (en) N-substituted noribogaine prodrugs
CA2983727A1 (en) N-substituted noribogaine prodrugs
CN101119993B (en) Aminophenyl derivatives as selective androgen receptor modulators
US8362007B1 (en) Substituted noribogaine
KR100655808B1 (en) Colchinol derivatives as vascular damaging agents, their use and method for preparation thereof
ES2329739T3 (en) COCAINA ANALOGS
CN101248069A (en) Androgen receptor modulators and method of treating disease using the same
US5739145A (en) Antitussive agents
JPH0255416B2 (en)
JP2010511717A (en) Prodrugs and how to create and use them
JPH10509167A (en) Derivatives of morphine and codeine for use in therapy
US9133195B2 (en) Quaternary ammonium salt compounds of spirocyclopiperazines, preparation methods and uses thereof
CN112574098B (en) Amide compound, preparation method and application thereof
KR20010072593A (en) Compositions and methods for treating of cough
CN101896183A (en) Be used to strengthen the bicyclic amide of glutamatergic synaptic responses
JP2000212163A (en) Azacyclooxime and aminecholine agonist
US20040019042A1 (en) Fluorenes and anthracenes that inhibit p2x3 and p2x2/3 containing receptors
PT87854B (en) PROCESS FOR THE PREPARATION OF TIO-UREIA DERIVATIVES
CZ20022096A3 (en) Quaternary ammonium compound intended for use when treating and/or prophylaxis of cough of warm-blooded animal and pharmaceutical preparation in which the compound is comprised
US8802734B2 (en) Method of treating or preventing pain
EP2233140A1 (en) Bicyclic amides for enhancing glutamatergic synaptic responses
CN101573325A (en) Aminoalcohol derivatives and their therapeutic use
PT86776B (en) PROCESS FOR THE PREPARATION OF PIPERAZINOCARBOXYLIC ACID AND OF PHARMACEUTICAL COMPOSITIONS CONTAINING IT
WO2020244452A1 (en) HETEROCYCLIC DERIVATIVE HAVING β2 RECEPTOR AGITATION AND M RECEPTOR ANTAGONISTIC ACTIVITY AND MEDICAL USE THEREOF

Legal Events

Date Code Title Description
FZDE Dead

Effective date: 20190423