CA2967846A1 - Centrifugal syringe and method for blood fractionation - Google Patents

Centrifugal syringe and method for blood fractionation Download PDF

Info

Publication number
CA2967846A1
CA2967846A1 CA2967846A CA2967846A CA2967846A1 CA 2967846 A1 CA2967846 A1 CA 2967846A1 CA 2967846 A CA2967846 A CA 2967846A CA 2967846 A CA2967846 A CA 2967846A CA 2967846 A1 CA2967846 A1 CA 2967846A1
Authority
CA
Canada
Prior art keywords
neck
blood
syringe
barrel
bore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CA2967846A
Other languages
French (fr)
Inventor
Herbert A. F. Larsen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CA2967846A1 publication Critical patent/CA2967846A1/en
Pending legal-status Critical Current

Links

Abstract

Disclosed is a centrifugable syringe and syringe components for use in blood fractionation. Also disclosed is a method of blood fractionation using the syringe. The syringe comprises a substantially transparent barrel, a substantially transparent, elongated delineation neck, a plunger for drawing blood into and expelling blood from the barrel, and an adapter attached to the neck for enabling releasable connection of a selected device over an inlet/outlet opening in the neck. The delineation neck extends away from a distal end of the barrel. The barrel and the neck have respective axial bores in fluid flow communication with each other, the cross sectional area of the bore in the delineation neck being substantially less than the cross sectional area of the bore in the barrel. The selected device may be one of various devices including a capping device sealing the inlet/outlet opening of the neck, a needle device used during withdrawal of blood from a subject through the neck, or a hose device used to carry away delineated blood fractions from the syringe through the neck.

Description

CENTRIFUGAL SYRINGE AND METHOD FOR BLOOD FRACTIONATION
BACKGROUND OF THE INVENTION
This invention relates to blood fractionation, devices used for blood fractionation and components of such devices.
Blood platelets contain various growth factors and other cytokines that are known to stimulate the healing of both bone and soft tissue. Accordingly, there is an inherent need for a device that allows for the concentration of such platelets in a blood fraction as well as the ability to remove and separate various blood fractions without cross contaminating a selected fraction with an immediate adjacent fraction.
Since the Platelet Rich Plasma (PRP) process leading to a concentrated source of generally autologous, platelets requires the fractionation of blood into basically three broad fractions: the most dense fraction of the whole blood being erythrocytes (red blood cells) at a volume of roughly 45%; the second most dense fraction being the buffy coat (leukocytes and platelets) at a volume of less than 1%;
and the lightest density fraction being plasma at a volume of 55%, the use of a centrifuge is a preferred method of fractionation. The resulting fractions are shown in FIG. 15 which illustrates a column of blood together with an arrow indicating the direction of centrifugal force.
Once the whole blood is centrifuged into its component fractions, the most critical issue then becomes: how does one classify, or otherwise separate, fraction from an adjacent fraction? As persons skilled in the art will be aware, the sought after fraction in the PRP process (e.g. the platelets fraction shown in FIG. 15) is typically comprised of less than 1% of the entire volume of whole blood. To loose some of that fraction to, or to have that fraction gain volume from, either the erythrocytes fraction shown in FIG. 15 or the plasma fraction shown in FIG. 15 through comingling, is to defeat the process of removing the highest level of platelet concentration available.
Traditionally, when the need arises to extract and separate blood into component parts, such as the segregation of plasma, platelets and erythrocytes, the blood is drawn from an individual into a blood bag which is then centrifuged to stratify the blood into differing fractions based on their bulk densities. From this point, the fractions are either extracted by inserting an object, such as a needle, into the blood bag whereby the fractions then can be withdrawn one at a time or the bag is gently compressed to force the blood out of an exit point in the bag with the extraction process stopped at the best achievable point between each transition from one fraction to another.
Two major problems exist with the foregoing methodology.
1. Since the bag possesses pliable walls, and since the line of delineation between the blood fractions upon centrifuge completion should remain sharp, any movement between the fractions or distortion in the bag wall may cause the points of delineation between fractions to blend and become comingled. When comingling takes place, the need for accurate segregations, as is required when raw platelets are sought, is lost to mechanical disruption. Then, an attempt to segregate can often prove futile.
2. At any point of component blood transfer, whereby either an object is inserted into a holding chamber for the purpose of extraction or an object is fixed to the outlet of the chamber, there exists the possibility of introducing a contaminant or pathogen into the blood reserve. For obvious reasons, blood that has been tainted with an external contaminant may have adverse consequences. Therefore, much effort has been engaged in by medical science to both increase the quality and delineation of segregated blood fractions while at the same time maintaining sterile controls.
In response to the problem of flexible containment as found with blood bags, a number of patents exist wherein a rigid wall containment is used for centrifuging the blood fractionations. One of the more effective solutions to the comingling problem which occurs with blood segregations in a flexible walled containment is to carry out the centrifuge and extraction process within a rigid-walled chamber. The idea is that when blood is moved in a linear fashion in a containment with fixed and rigid sides then there will be considerably less turbulence taking place between blood fractionations. Patent documents such as U.S. Pat. Appin. Pub. No.

(Fojtik); U.S. Pat. Appin. Pub. No. 2010/0025342 - now U.S. Pat. No. 9,050,403 (Morimoto et al.); U.S. Pat. Appin. Pub. No. 2005/0261620 - now U.S. Pat. No.
7,195,606 (Bailin); U.S. Pat. Appin. Pub. No. 2004/0256331 (Arking et al.);
U.S. Pat.
Appin. Pub. No. 2004/0167004 - now U.S. Pat. No. 7,452,344 (Jorgensen et al.);

U.S. Pat. No. 7,976,796 (Smith et al.); U.S. Pat. No. 6,716,187 (also Jorgensen et al.); U.S. Pat. No. 5,577,513 (Van Vlasselaer); U.S. Pat. No. 4,492,634 (Villa-Real);
U.S. Pat. No. 4,459,997 (Sarstedt); U.S. Pat. No. 4,020,831 (Adler); and U.S.
Pat.
No. 3,965,889 (Sachs), disclose the use of rigid wall containment. From the point of view of flexible verses rigid wall containment, these patent documents offer an improved option.
However, other limitations can be found in the prior art. For example, when blood fractions are evacuated, discharged, or otherwise removed from a blood chamber, one of two problems can arise. First, an inherent deficiency exists because the cross sectional area of the delineation between blood fractions is relatively large in relation to the length and volume of the chamber in which the fractions have been centrifuged. The larger the cross sectional area between, for example, the erythrocytes fraction and the platelet fraction, the more difficult it is to either draw off or excrete one fraction from the other. In an attempt to reduce the cross sectional area between fractions, U.S. Pat. Appin. Pub. No. 2014/0371048 (Ra et al.) discloses a narrowed hour glass shaped region between the erythrocytes fraction and the platelets fraction. The hour glass shaped region provides a significantly reduced cross sectional area between the two fractions and with a significantly reduced transition in which to segregate the fractions. Ra et al. further disclose a plunger/sealer device in which the blood fractions can be mechanically separated.
Although the approach taken by Ra et al. can be seen as an advancement over the prior art mentioned above (viz. in terms of creating a better delineation between blood fractions), it lacks in two significant areas:
- 3 -1. it relies on an external extraction process which requires the blood to be injected into a separation chamber from an intermediary device. This extra step creates an added risk of introducing contamination into the blood.
2. it relies on the use of an external device (presumably a needle) to extract each of the blood fractions thus creating further possibilities of contaminating the blood.
Generally, there are two distinct negative issues present in prior art, either:
1. an inability to evacuate, discharge, or otherwise remove one fraction from another with a high degree of accuracy; or, 2. an inherent inability to maintain a low chance of external contaminant introduction through a reduced number of mechanical transitions, such as a plurality of blood chambers, needle exchanges, needle penetrations, etc.
The present invention addresses such issues.
BRIEF SUMMARY OF THE INVENTION
The present invention relates to a multi-purpose syringe which possesses the broad functionality to allow the extraction and containment of blood, the centrifuging of blood into various blood fractions while yet in the syringe, and then, without using external extraction methodologies, the discharge of such blood fractions into finely delineated segregations.
In accordance with the present invention there is provided a centrifugable syringe for use in blood fractionation, the syringe comprising a substantially transparent barrel, a substantially transparent, elongated delineation neck, a plunger for drawing blood into and expelling blood from the barrel, and an adapter attached to the neck for enabling releasable connection of a selected device over an inlet/outlet opening of the neck.
The barrel has an axial bore defined by a bore wall and extends from a mouth opening at a proximal end of the barrel to a distal end opening at a distal end of the
- 4 -barrel. Each of the openings has an associated cross sectional area, the cross sectional area of the distal end opening being substantially less than the cross sectional area of the mouth opening.
The delineation neck extends away from the distal end of the barrel to a distal end of the neck and has an axial bore in fluid flow communication with the axial bore of the barrel. The axial bore of the neck extends lengthwise through the neck to the aforementioned inlet/outlet opening and has a cross sectional area substantially the same as the cross sectional area of the distal end opening of the barrel.
The plunger comprises a fluid sealing member for slidably bearing against the bore wall of the barrel to prevent the flow of blood from the barrel through the barrel mouth and is advanceable and retractable within the axial bore of the barrel.
It further comprises a handle releasably connect to the sealing member for enabling the advancement and retraction of the sealing member within the axial bore of the barrel. Preferably, the handle is releasably attachable to the syringe barrel.
The delineation neck may be formed integrally with the syringe barrel, or be releasably attachable to the syringe barrel, and is an important feature of the present invention. Since the axial bore of the neck has a cross sectional area substantially less than that of the syringe barrel, a much finer delineation can be made between any two blood fractions within the neck as centrifuged blood is slowly discharged from the syringe through the inlet/outlet opening in the neck.
The selected device which is connectable over the inlet/outlet opening of the delineation neck may be one of various devices, including:
- a capping device releasably engageable with the aforementioned adapter to removably cap and seal the inlet/outlet opening in the neck. Such a device would be used to contain blood within the syringe during centrifuge operations;
- a needle device releasably engageable with the aforementioned adapter to enable the withdrawal of blood from a subject into the syringe;
- 5 -s CA 2967846 2017-05-18 , - a hose device releasably engageable with the aforementioned adapter to carry away blood expelled from the syringe.
The adapter and the selected device which is releasably engageable with the adapter obviously require cooperating parts to enable suitable engagement.
Those skilled in art will recognize that cooperative male and female luer fittings may be ideal for this purpose. However, they will also recognize that suitable engagement may be achieved by other (possibly less desirable) means.
Preferably, the fluid sealing member comprises a framework, a flexible seal supported by the framework for slidably bearing against the bore wall of the syringe barrel, and an adapter supported by the framework for enabling releasable connection of the plunger handle to the member.
Advantageously, the flexible seal comprises a flexible side wall for bearing against the bore wall and a flexible conical face projecting from the side wall forward of the framework. The conical face serves to translate axial forces applied to the face to a lateral outward force on the bore wall.
To further advantage, the fluid sealing member further comprises a plurality of flexible locking tabs peripherally supported by the framework, the tabs for slidably bearing outwardly from the framework against the bore wall and for engaging a perimetric locking groove in the bore wall to restrain egress of the sealing member through the mouth of the syringe barrel during centrifuge operations.
To still further advantage, the syringe may include a plunger handle lock for engaging both the handle and a flange extending outwardly from the mouth opening of the barrel to hold the fluid sealing member at a selected position within the barrel during centrifuge operations. This is useful when it is desired to position the fluid sealing member at a location within the barrel where the locking tabs are unable to engage the locking groove.
In another aspect of the present invention, there is provided for use in combination with a syringe barrel having an axial bore for holding blood, the bore itself having an associated cross sectional area measured transverse to the bore:
- 6 -a substantially transparent elongated delineation neck having an axial bore extending therethrough for viewing centrifuged blood fractions following the centrifuge of blood while carried within the bore of the barrel and the bore of the neck, the bore of the neck being in fluid flow communication with the bore of the barrel during centrifuge operations and having an associated cross sectional area measured transverse to the bore of the neck which is substantially less than the cross sectional area of the bore of the barrel.
In yet another aspect of the present invention there is provided a method of blood fractionation, comprising:
(a) providing a syringe described above (b) releasably connecting a needle device to the delineation neck of the syringe;
(c) drawing blood from a subject through a needle device and the delineation neck into the syringe;
(d) disconnecting the needle device from the delineation neck;
(e) capping and sealing the inlet/outlet opening in the delineation neck with a removable capping device;
(f) centrifuging the blood within the syringe to separate the blood into delineable blood fractions;
(g) removing the capping device;
(h) expelling one or more delineated blood fractions through the inlet/outlet opening from the syringe.
The foregoing method may further include the step of recentrifuging at least a portion of the blood before all of the blood is expelled from the syringe.
Advantageously, this may sharpen the delineation between any two blood fractions.
- 7 -. CA 2967846 2017-05-18 The foregoing and other features and advantages of the present invention will now be described with reference to the drawings in which:
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a perspective view of a centrifugable syringe in accordance with the present invention.
FIG. 2 is a partially exploded side elevation view of the syringe shown in FIG.
1.
FIG. 3 is a cross sectional view taken along section line 3-3 in FIG. 2.
FIG. 4 is a cross sectional view similar to that shown in FIG. 2 but instead showing the components in an engaged position.
FIG. 5 is an enlarged exploded perspective view of the piston assembly which appears in FIGS. 2-4 and which is hidden from view in FIG. 1.
FIG. 6 is an exploded side elevation view of the piston assembly.
FIG. 7 is a cross sectional view, partially cut away, and an accompanying detail view of the piston assembly inside the syringe barrel with locking tabs out of engagement with a locking groove in the syringe barrel.
FIG. 8 shows views similar to FIG. 7 but with the piston assembly moved to a position where the locking tabs are in engagement with the locking groove.
FIGS. 9 is a pictorial flow chart of steps made possible by characteristics of the present invention.
FIG. 10 is a pictorial flow chart of additional steps which may be taken between Steps 6 and 7 shown in FIG. 9 if a finer delineation is desired between any two blood fractions. FIG. 10 also illustrates the inclusion of a plunger handle lock which engages both a flange extending outwardly from the syringe barrel and the plunger handle.
- 8 -. CA 2967846 2017-05-18 FIG. 11 is an enlarged side elevation view of the plunger handle lock shown in FIG.10.
FIG. 12 is a top view illustrating engagement between the plunger handle lock and the plunger.
FIG. 13 is a side elevation view of a modified syringe barrel and a delineation neck releasably attachable to the modified barrel.
FIG. 14 is a cross sectional view of the piston assembly showing the action and translation of centrifugal forces acting on a flexible seal forming part of the assembly and bearing against the bore wall of the syringe barrel.
FIG. 15, as previously indicated, illustrates a column of blood together with an arrow indicating the direction of centrifugal force.
DETAILED DESCRIPTION OF THE INVENTION
Referring now to the drawings, there is shown a centrifugable syringe generally designated 100, the syringe comprising a substantially transparent barrel 10, a substantially transparent, elongated delineation neck 30, an adapter 40 attached to neck 30, and a plunger formed by the combination of a handle 50 and a fluid sealing member or piston assembly generally designated 70.
As depicted, barrel 10 and neck 30 are generally cylindrical. Other components are routinely designed to fit with the cylindrical configuration in a cooperative manner. However, while a cylindrical configuration is preferred, it is not considered essential.
Substantial transparency means transparency which is sufficient to enable blood and any blood fractions which result after the blood is centrifuged to be viewed through the wall of barrel 10 and/or neck 30, as the case may be.
Barrel 10 has an axial bore 11 defined by bore wall 12 and extends from a mouth opening 14 best seen in FIG. 3 to a distal end opening 15 at distal end 16 of the barrel. Barrel 10 also includes a flange 18 extending outwardly from opening 15.
- 9 -T. CA 2967846 2017-05-18 This flange has a conventional shape characteristic of many medical syringes and is designed to be easily gripped with fingers. As best seen in FIGS. 7 and 8, barrel 10 also includes a locking groove 85, the purpose of which is described below in more detail.
As will be apparent from FIGS. 3 and 4, the cross sectional area of distal end opening 16 is substantially less than that of mouth opening 14. In the cylindrical embodiment shown, an example would be where mouth opening 14 has a diameter of about 25 mm. defining an area of about 491 mm2, and where distal end opening 16 has a diameter of about 3 mm. defining an area of about 7 mm2.
Delineation neck 30 extends away from distal end 16 of the barrel to its own distal end 32 with an inlet/outlet opening 36. It has an axial bore 34 in fluid flow communication with axial bore 11 of the barrel and extends lengthwise through the neck to inlet/outlet opening 32. As will be apparent from FIGS. 3 and 4, bore 34 has a cross sectional area which is substantially the same as the cross sectional area of distal end opening 15 of the barrel. Neck 30 not only provides a narrowed down cross sectional area compared to that of barrel 10, but also allows viewing of the delineation between blood fractions as blood is being expelled from the syringe through opening 32.
Adapter 40 is attached to neck 30 proximate inlet/outlet opening 32, preferably in an integral manner, and enables the releasable connection of a selected device over the opening. The selected device, which should not be considered as part of the present invention, may be one of various devices including:
a needle device generally designated 500 comprising a hypodermic needle 502 and fitting 504 as shown in FIG. 9;
a capping device generally designated 600 comprising a cap 602 and fitting 604 as shown in FIGS. 9; or, a hose device generally designated 700 comprising a hose 702 and fitting 704 as shown in FIG. 9.
- 10-r CA 2967846 2017-05-18 , In the present embodiment, adapter 40 and distal end 32 of the neck together provide a luer male fitting. Fittings 504, 604 and 704 each provide a cooperative luer female fitting. Such fittings are well known to those skilled in the art and are not described or shown here in any more detail.
Handle 50 extends from a head 52 to an internally threaded connector 55 which is releasably connectable to externally threaded connector 80 forming part of piston assembly 70. As best seen in FIGS. 5 and 6, piston assembly 70 comprises two parts - a flexible rubber seal 75 and a plastic framework 72. The framework is integrally formed and includes a retainer ring 74 which permits snap fitting engagement of the seal with the framework. Connector 80 is integrally formed with the framework. The seal includes a flexible side wall 76 for bearing against bore wall 12 (see FIGS. 3, 4) and a flexible conical face 77 projecting forward of the framework. As indicated by the right facing horizontal arrows and diagonal arrows in FIG. 14, axial forces bearing on the seal are translated by the conical face and side wall to a lateral outward force on the bore wall. As pressure is increased against the face, it detents slightly by a distance "d" which in turn redirects the force down the plane of the face, and inherently produces a lateral outward force against the wall.
The net effect is to increase sealing pressure and to produce a stronger seal between the piston assembly and the bore wall.
Piston assembly 70 also includes a plurality (4) of flexible locking tabs 82 which are integrally formed with and thereby supported by the framework. In use the tabs slidably bear outwardly from the framework against bore wall 12 and, as best seen in FIGS. 7 and 8, are designed to engage aforementioned locking groove 85 in the bore wall as the piston assembly reaches mouth opening 14 of barrel 10.
Such engagement serves to restrain egress of the piston assembly through the mouth opening during centrifuge operations.
At times, and as is discussed below, it is desirable during centrifuge operations to restrain movement of piston assembly 70 within barrel 10 at a distance away from mouth opening 14.
- 11 -, CA 2967846 2017-05-18 Referring now to FIG. 9 there are shown several typical steps involved when syringe 100 is being used as an apparatus for blood fractionation.
Step 1 demonstrates the need to attach needle device 500 to adapter 40 of the syringe.
Step 2 demonstrates whole blood within the syringe after extraction from a subject.
Step 3 demonstrates a usual preference or need to remove the needle device and replace it with capping device 600. In addition, it is at this step, preliminary to centrifuge operations, that the plunger handle is unthreaded, or otherwise removed.
Step 4 with arrows indicating alternative directions of centrifuge forces demonstrates the location of syringe 100 in a centrifuge (not shown) where the whole blood is spun into density gradients of blood, primarily three fractions, that of red blood cells, plasma and a buffy coat (leukocytes and platelets). Because of the ability of this invention to stop the piston assembly from exiting the barrel, the blood can be fractionated such that upon centrifuging, the red blood cells can be concentrated at either the end of the barrel or the piston assembly position, depending on the direction of centrifugal force chosen, thus allowing the expulsion of red blood cells either first in the process or last.
Step 5 demonstrates reattachment of the plunger handle in preparation for the process of expelling the blood from syringe 100 through hose device 700. This particular example shows the red blood cells centrifuged towards the piston assembly thus they will be expelled last.
Step 6 demonstrates the first step in the blood expulsion process, that of expelling the plasma and then the leukocytes and platelets. Expulsion of each fraction takes place until such time as the delineation between fractions is visually observed to be present in the delineation neck. Note: If co-mingling between any two fractions has taken place, for example, if the delineation between red blood cells and the buffy coat (leukocytes and platelets) is blurred by the two fractions having
- 12 -. CA 2967846 2017-05-18 blended, the option is available to take additional steps as is discussed below with reference to FIG. 10.
Step 7 demonstrates the expulsion of the last fraction with this particular example being that of reinjecting the red blood cells into the subject from whom they were removed at first instance.
Referring now to FIGS. 10, 11 and 12, there is shown an added component (plunger handle lock 90) which may be used with and which forms part of the present invention for the purpose of achieving a finer delineation between any two blood fractions.
Step 6a in FIG. 10 demonstrates the situation where the line of delineation D1 between any two blood fractions, as viewed in the delineation neck and as best seen in the expanded view of the transition point, is co-mingled or otherwise blended between the two adjoining blood fractions. The delineation may be considered as fuzzy. Plunger lock 90 has been placed to engage both the syringe barrel and the plunger handle such that that the piston assembly cannot move from it locked position during centrifuge operation.
As best seen in FIGS. 11 and 12, plunger lock 90 slips over barrel flange 18 and includes a set screw 92 threadable through flange 94 to engage a face 58 of handle 50 thereby locking the handle and the connected piston assembly in position.
Step 6b demonstrates the re-centrifuge of the blood sample shown in Step 6a with the piston assembly restrained in its locked position. As indicated by the expanded view in the illustration, re-centrifuging with the direction of centrifugal forces indicated by arrows may result in a significantly sharper line of delineation 02 between blood fractions.
As is shown in various ones of the drawings, barrel 10 and delineation neck of syringe 100 are integrally formed. However, this is not essential. By way of example, FIG. 13 illustrates a centrifugal syringe 100" wherein a delineation neck 30", now including an externally threaded coupler 39 at its proximal end, is
- 13 -releasably attachable to an internally threaded coupler 19 at the distal end of the syringe barrel.
Referring now to FIG. 15, there is shown is a side view of a typical vile showing the, to-scale, fraction of erythrocytes at approximately 45%, platelets/leukocytes at less than 1`)/0 and plasma at approximately 55% of total blood volume. It is to demonstrate the complexity of attempting to isolate, or otherwise, segregate the very narrow band of platelets/leukocytes from the significantly higher volume of its adjacent erythrocytes and plasma without losing to or taking away from either of the two said adjacent blood components.
In operation, the present invention typically may be used as follows as illustrated by FIG. 9:
Step 1. A disposable syringe is removed from its sterile packaging with a hypodermic needle for the purpose of venipuncture, or otherwise the removal of blood from a patient by way of inserting the hypodermic needle into a vein and extracting blood. If needed, a blood anticoagulant may be added prior to venipuncture as a means of keeping the blood from clotting through potentially multiple centrifuging of the same sample.
Step 2. A full syringe of blood is extracted to the level of the piston assembly engages its stop mechanism within the barrel.
Step 3. Two sub-steps take place within Step 3. The needle is removed from the syringe and replaced with a sterile cap and the plunger handle is unthreaded, or otherwise removed from the piston assembly. The purpose of removing the plunger handle is to allow for reduced spin radius within a centrifuge.
Step 4. The full syringe is placed into a centrifuge carriage and pointed in either of two directions. The syringe chamber can be installed whereby the centrifugal force exerted on the blood, drives the densest material, that of red blood cells, towards the plunger piston assembly or the other way around towards the discharge/needle end of the syringe. The determining point as to which way the
- 14-, syringe is to be positioned into the centrifuge has to do with what blood fraction is to be expelled through the tip first. In the event that the red blood cells are needing to be expelled first, the syringe would be inserted with the capped needle-end facing away from the center of centrifuge rotation thus placing the most dense fractionation, red blood cells, at the needle end and consequently to be expelled first upon pushing the plunger into the barrel.
Step 5. Again, two sub-steps take place within Step 5. The plunger handle is reattached to the piston assembly to allow for the expelling of the blood fractions from the barrel. The blood can then be expelled into either a patient by attaching another hypodermic needle or other holding chamber, such as a blood bag, thus requiring the attachment of a sterile blood transport tube.
Step 6. The blood fractions are now expelled from the syringe using an inward force, most commonly thumb pressure, on the plunger handle. The point at which to stop expelling between blood fractionations has to do with expelling a particular fraction, (plasma first, as illustrated in Step 6 of FIG. 9) until such time as its delineation point between the two fractions enters the elongated neck whereby the much reduced cross sectional area of the neck allows for a much more specific dividing line between any two fractions. Once the plasma fraction has been expelled, and/or retained with the platelets, the much less volume of platelets can now be expelled until such time as the red blood cells show up in the elongated neck and a clear delineation can be seen between the two strata. In the event that an even finer line of delineation between either platelets and red blood cells or platelets and plasma needs to take place, the syringe can be centrifuged again so that a finer line between one fraction and the platelets can be seen in the transparent neck of the syringe. This optional auxiliary step, as illustrated in FIG. 10, requires a retainer or plunger lock to hold the piston assembly in place through the process of re-centrifuging.
Step 7. As illustrated in Steps 6 and 7 of FIG. 9, with the option of the red blood cells being centrifuged to the piston end of the syringe, and thus last to be expelled, a change of the attachment to the adapter at the end of the delineation
- 15 -, neck may or may not need to take place at this point depending on the ultimate location of such cells. If the remaining blood, red cells, is needing to be re-injected into a patient, then another sterile needle would need to be attached and those cells re-introduced into the recipient from which they may or may not have originated.
As a concluding step, the syringe, needles and applicable hose will be disposed of under standard medical practice and protocol.
The scope of the claims should not be limited by the specific embodiments illustrated in the drawings, but should be given the broadest interpretation consistent with the description as a whole.

Claims (17)

THE EMBODIMENTS OF THE INVENTION IN WHICH AN EXCLUSIVE
PROPERTY OR PRIVILEGE IS CLAIMED ARE DEFINED AS FOLLOWS:
1. A centrifugable syringe for use in blood fractionation, said syringe comprising:
(a) a substantially transparent barrel having an axial bore defined by a bore wall, said bore extending from a mouth opening at a proximal end of said barrel to a distal end opening at a distal end of said barrel, each of said openings having an associated cross sectional area, the cross sectional area of said distal end opening being substantially less than the cross sectional area of said mouth opening;
(b) a substantially transparent, elongated delineation neck extending away from said distal end of said barrel to a distal end of said neck and having an axial bore in fluid flow communication with the axial bore of said barrel, said axial bore of said neck extending lengthwise through said neck to an inlet/outlet opening in said neck at said distal end of said neck and having a cross sectional area substantially the same as said cross sectional area of said distal end opening of said barrel;
(c) a plunger for drawing blood into said barrel and for expelling blood from said barrel, said plunger comprising:
(i) a fluid sealing member for slidably bearing against said bore wall of said barrel to prevent the flow of blood from said barrel through said mouth, said member being advanceable and retractable within said axial bore of said barrel; and, (ii) a handle releasably connectable to said sealing member for enabling the advancement and retraction of said sealing member within said axial bore of said barrel.
and, (d) an adapter attached to said neck for enabling releasable connection of a selected device over said inlet/outlet opening.
2. A syringe as defined in claim 1, wherein said fluid sealing member comprises:
(a) a framework;
(b) a flexible seal supported by said framework for slidably bearing against said bore wall; and, (c) an adapter supported by said framework for enabling the releasable connection of said handle to said member.
3. A syringe as defined in claim 2, wherein said flexible seal comprises a flexible side wall for bearing against said bore wall and a flexible conical face projecting from said side wall forward of said framework, said conical face for translating an axial force applied to said face to a lateral outward force on said side wall.
4. A syringe as defined in claim 2, said sealing member further comprising a plurality of flexible locking tabs peripherally supported by said framework, said tabs for slidably bearing outwardly from said framework against said bore wall and for engaging a locking groove in said bore wall to restrain egress of said sealing member through said mouth during centrifuge operations.
5. A syringe as defined in claim 1, wherein said selected device is a capping device engageable with said adapter to removably cap and seal said inlet/outlet opening.
6. A syringe as defined in claim 1, wherein said selected device is a needle device engageable with said adapter to enable the withdrawal of blood from a subject into said syringe.
7. A syringe as defined in claim 1, wherein said selected device is a hose device engageable with said adapter to carry away blood being expelled from said syringe.
8. A syringe as defined in claim 1, wherein said delineation neck is integrally formed with said barrel.
9. A syringe as defined in claim 1, wherein said delineation neck is releasably attachable to said barrel.
10. A syringe as defined in claim 1 including a plunger handle lock for engaging both said handle and a flange extending outwardly from said mouth opening of said barrel to hold said fluid sealing member at a selected position within said barrel during centrifuge operations.
11. For use in combination with a syringe barrel having an axial bore for holding blood, said bore having an associated cross sectional area measured transverse to said bore:
a substantially transparent elongated delineation neck having an axial bore extending therethrough for viewing centrifuged blood fractions following the centrifuge of blood while carried within the bore of said barrel and said bore of said neck, the bore of said neck being in fluid flow communication with the bore of said barrel during centrifuge operations and having an associated cross sectional area measured transverse to said bore of said neck which is substantially less than said cross sectional area of said bore of said barrel.
12. A delineation neck as defined in claim 11, said neck including an adapter attached to said neck proximate an inlet/outlet opening in said neck for enabling the releasable connection of a selected device over said inlet/outlet opening.
13. A delineation neck as defined in claim 12, wherein said selected device is a capping device engageable with said adapter to removably cap and seal said inlet/outlet opening.
14. A delineation neck as defined in claim 12, wherein said selected device is a needle device engageable with said adapter to enable the withdrawal of blood from a subject into said syringe.
15. A delineation neck as defined in claim 12, wherein said selected device is a hose device engageable with said adapter to carry away blood being expelled from said syringe.
16. A method of blood fractionation, comprising:
(a) providing a syringe as defined in claim 1;
(b) releasably connecting a needle device to said delineation neck;
(c) drawing blood from a subject through said needle device and said delineation neck into said syringe;
(d) disconnecting said needle device from said delineation neck;
(e) capping and sealing said inlet/outlet opening in said delineation neck with a removable capping device;
(f) centrifuging said blood within said syringe to separate the blood into delineable blood fractions;
(g) removing said capping device;
(h) expelling a delineated blood fraction through said inlet/outlet opening from said syringe.
17. A method as defined in claim 16, further including the step of recentrifuging at least a portion of said blood before all of said blood is expelled through said inlet/outlet to sharpen the delineation between any two blood fractions.
CA2967846A 2016-05-18 2017-05-18 Centrifugal syringe and method for blood fractionation Pending CA2967846A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662338450P 2016-05-18 2016-05-18
US62/338,450 2016-05-18

Publications (1)

Publication Number Publication Date
CA2967846A1 true CA2967846A1 (en) 2017-11-18

Family

ID=60324248

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2967846A Pending CA2967846A1 (en) 2016-05-18 2017-05-18 Centrifugal syringe and method for blood fractionation

Country Status (1)

Country Link
CA (1) CA2967846A1 (en)

Similar Documents

Publication Publication Date Title
US7452344B2 (en) Platelet concentration syringe kit
EP1202758B1 (en) Platelet concentration syringe kit and method
JP6324377B2 (en) A device that extracts, stores and / or processes blood or other substances of human or animal origin and applies blood compounds or other biological compounds
US4366822A (en) Method and apparatus for bone marrow cell separation and analysis
US7922972B2 (en) Method and apparatus for separating fluid components
JP4983204B2 (en) Centrifuge container and centrifuge method
US11345892B2 (en) Centrifugal syringe and method for blood fractionation
JP2008104789A (en) Method and device for separation of platelet rich plasma
RU2694468C2 (en) Device for taking blood or blood preparation
CN103957967A (en) Syringe with breakable plunger for arterial blood gas sample collection
BR112019014436A2 (en) CONTAINER DEVICE FOR COLLECTING, STORING AND PROCESSING BLOOD OR A BLOOD COMPOUND
US11325118B1 (en) Device, kit and methods for creating platelet rich plasma
US20190025162A1 (en) Blood and Marrow Draw Processing Devices and Methods
WO2012003873A1 (en) Device and method for collecting platelet concentrate
US5249711A (en) Disposable dispensing pipette
JP2006078428A (en) Device for extracting component
JP5691581B2 (en) Platelet-rich plasma separation kit and platelet-rich plasma separation method
CA2967846A1 (en) Centrifugal syringe and method for blood fractionation
US10105084B2 (en) Blood sampler
KR200486998Y1 (en) Medical syringe kit capable of extracting specific ingredients
US11759775B2 (en) Device, kit and methods for creating platelet rich plasma
US20200360609A1 (en) Novel syringe system for fluid separation
CN210384934U (en) Preparation facilities of rich platelet plasma
US20200360921A1 (en) Apparatus And Method For Centrifuging A Biologic

Legal Events

Date Code Title Description
EEER Examination request

Effective date: 20220421

EEER Examination request

Effective date: 20220421

EEER Examination request

Effective date: 20220421