CA2915777C - Device and method for compressing a hydrogel - Google Patents

Device and method for compressing a hydrogel Download PDF

Info

Publication number
CA2915777C
CA2915777C CA2915777A CA2915777A CA2915777C CA 2915777 C CA2915777 C CA 2915777C CA 2915777 A CA2915777 A CA 2915777A CA 2915777 A CA2915777 A CA 2915777A CA 2915777 C CA2915777 C CA 2915777C
Authority
CA
Canada
Prior art keywords
component
frame
flask
graft
designed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CA2915777A
Other languages
French (fr)
Other versions
CA2915777A1 (en
Inventor
Ernst Reichmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Universitaet Zuerich
Original Assignee
Universitaet Zuerich
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universitaet Zuerich filed Critical Universitaet Zuerich
Publication of CA2915777A1 publication Critical patent/CA2915777A1/en
Application granted granted Critical
Publication of CA2915777C publication Critical patent/CA2915777C/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/60Materials for use in artificial skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • A61L27/3804Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells characterised by specific cells or progenitors thereof, e.g. fibroblasts, connective tissue cells, kidney cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • A61L27/3804Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells characterised by specific cells or progenitors thereof, e.g. fibroblasts, connective tissue cells, kidney cells
    • A61L27/3813Epithelial cells, e.g. keratinocytes, urothelial cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/52Hydrogels or hydrocolloids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/08Flask, bottle or test tube
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/22Transparent or translucent parts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/48Holding appliances; Racks; Supports
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M25/00Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
    • C12M25/14Scaffolds; Matrices
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M25/00Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
    • C12M25/16Particles; Beads; Granular material; Encapsulation
    • C12M25/18Fixed or packed bed
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0625Epidermal cells, skin cells; Cells of the oral mucosa
    • C12N5/0629Keratinocytes; Whole skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/10Hair or skin implants
    • A61F2/105Skin implants, e.g. artificial skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/34Materials or treatment for tissue regeneration for soft tissue reconstruction
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/90Substrates of biological origin, e.g. extracellular matrix, decellularised tissue
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2537/00Supports and/or coatings for cell culture characterised by physical or chemical treatment

Abstract

The invention relates to a device and a method for compressing a hydrogel layer (H), wherein a separate piston (600) that is designed to be connected to a second component (400) of the device in a releasable manner in an operating mode of the device, particularly by means of a latching connection, presses along a compression direction (C) against said hydrogel layer (H) residing on a membrane bottom (501) of a graft frame (500) so as to compress the hydrogel layer (H) between the piston (600) and the membrane bottom (501).

Description

Device and method for compressing a hvdrogel Specification The present invention relates to a device for compressing a hydrogel as well as to a method for compressing such a hydrogel and systems.
In the human body, cells usually reside in a three-dimensional (3D) macromolecular network, the so-called ECM. In order to mimic the 3D-environment in cell culture, hydrogels can be used.
In this regard, a hydrogel is a network of natural or synthetic, particularly water insoluble, polymer chains able to absorb particularly over 99% of water. The hydrophilicity of the network originates from the existence of chemical residues present within the polymer backbone or lateral chains [1, 2].
With their biocompatibility and flexibility, similar to natural tissue, hydrogels are predestined for applications in the field of tissue engineering of cornea [3], skin [4], cartilage [5], tendon [6] or vascular tissue. Another main advantage of hydrogels is the possibility to integrate easily living cells within a 3-D matrix. To produce a dermo-epidermal skin substitute, dermal fibroblasts are to be submerged within the collagen type I hydrogel, which "traps" these cells upon gelification in three dimensions.
Collagen type I provides a natural matrix for these cells and ideally supports their proliferation, migration and differentiation. Importantly, these fibroblasts provide necessary factors (within six days), and hence the supporting micro- environment for the keratinocytes to be added on the plane upper surface of the hydrogel, 6 days after the gel (containing the fibroblasts) was prepared.
Since the hydrogel has a flabby consistence, it is necessary to plastically compress it, so as to improve its biological properties, but also to increase its physical robustness, which then allows the surgeon to conveniently and securely handle the final gel/skin graft made from the compressed hydrogel.
Therefore, based on the above, the problem underlying the present invention is to provide a device, a system as well as a method for compressing such a hydrogel.
In accordance with one aspect, the present application provides a device which comprises a separate graft frame comprising a circumferential frame member and a permeable membrane bottom connected to said frame member, wherein the graft frame is designed to receive said Date Recue/Date Received 2020-10-15
2 hydrogel so that a hydrogel layer is formed (i.e. the hydrogel in the graft frame extends along the membrane bottom, wherein its dimensions along the membrane bottom are larger than the thickness of the hydrogel perpendicular to the membrane bottom) covering said membrane bottom; a guiding frame having a plurality of guiding rods extending along a compression direction; a filter plate; a first (e.g. lower) component comprising a base having a plurality of openings, particularly formed in an outer edge region of said base, wherein each opening is associated to one of the guiding rods, wherein the first component is designed to be arranged on the guiding frame in an operating mode of the device such that each guiding rod extends through its associated opening, wherein the first component further comprises a circumferential wall protruding from the base of the first component, so that the first component forms a container that is designed to receive the filter plate and the graft frame in said operating mode so that the filter plate is arranged between a bottom of said container of the first component and the membrane bottom of the graft frame; a second (e.g. upper) component comprising a base having a plurality of openings, particularly formed in an outer edge region of said base of the second component, wherein each opening is associated to one of the guiding rods, wherein the second component is designed to be arranged on said first component in said operating mode, such that each guiding rod that extends through its associated opening of the first component is also inserted into its associated opening of the second component so that the second component is slidably guided by said rods along the compression direction; a separate piston that is designed to be connected to said second component in a releasable manner in said operating mode of the device, particularly by means of a latching connection, wherein in said operating mode of the device the second component is designed to press the piston along the compression direction against said hydrogel layer residing on the membrane bottom of the graft frame so as to compress the hydrogel layer between the piston and the membrane bottom.
Preferably, such a hydrogel layer is used for generating an artificial skin graft that can be implanted onto a patient.
Preferably, the hydrogel consists of medical grade bovine collagen type I.
Particularly, human autologous dermal fibroblasts are contained in the hydrogel, and human autologous keratinocytes are situated on the hydrogel, i.e., at an upper surface of the hydrogel .. layer facing away from said membrane bottom, on which the hydrogel resides.
Said membrane or membrane bottom is permeable for water that is squeezed out of the layer during Date Recue/Date Received 2020-10-15
3 compression as well as for cell culture medium, so that the latter can reach the hydrogel from both underneath and above.
Preferably, the membrane bottom preferably consists of PET, is preferably 18 micrometers thick and microporous, with a pore-diameter of preferably 3 micrometers.
According to a preferred embodiment of the present invention, the graft frame and/or the piston are designed as single-use items (i.e. are designed to be replaced after a single use). Thus, there is no need for autoclaving these items every time before using them.
Further, according to a preferred embodiment of the present invention, the piston comprises an e.g. plate-like piston base having a first side forming a contact surface for pressing against the hydrogel layer. Preferably, the piston is designed to be inserted into the graft frame with said contact surface ahead when pressing with its contact surface against the hydrogel layer.
Furthermore, particularly, the piston base comprises a circumferential edge region being designed to contact the frame member of the graft frame when pressing against the hydrogel layer, so as to prevent hydrogel from flowing out of the graft frame through a gap between the piston and the frame member upon compressing the hydrogel layer.
According to a further preferred embodiment of the present invention, the piston comprises two latching elements, particularly protruding from said edge region of the piston base on a second side of the piston base facing away from said first side forming said contact surface. This allows for an easy manual fastening of the piston to the second component as well as releasing the piston from the second component by manually disengaging it with the second component.
Preferably, the second component comprises a support for holding the piston, which support protrudes from a first side of the base of the second component towards the membrane bottom in said operating mode of the device. Preferably, said latching elements are designed to engage with said support for releasably connecting the piston to the support.
Further, according to a preferred embodiment of the present invention, the base of the second component comprises an aperture for each latching element, through which the respective element is accessible, e.g. manually or by means of a tool, from a second side of the base of the second component facing away from said first side of the base, so that the latching elements can be released from the support through said apertures, for instance by bending them away from the support in order to bring them out of engagement with the support.
Date Recue/Date Received 2020-10-15
4 Further, according to a preferred embodiment of the present invention, the piston comprises guiding elements protruding from said edge region of the piston base on said second side of the piston base facing away from said contact surface, wherein said guiding elements are designed to slide along said support for guiding the piston with respect to the support when the piston is connected to the support.
Furthermore, according to a preferred embodiment of the present invention, the second component comprises an adjusting means for adjusting a penetration depth of the piston along the compression direction into the graft frame, i.e., for adjusting the thickness of the hydrogel layer after compression, wherein particularly said adjusting means comprises two screws that are screwed in an internal thread formed in the first side of the base adjacent to the support so that the heights of the screw heads of said screws with respect to said first side the base can be adjusted by turning the respective screw clockwise or counterclockwise.
Preferably, the screw heads are designed to butt against said frame member in the operating mode of the device so as to limit said penetration depth. Preferably, each screw is arranged adjacent to a corner region of the support, wherein said corner region of the support face each other diagonally.
Further, according to a preferred embodiment of the present invention, the base of the second component comprises a receptacle for receiving at least one weight, preferably a plurality of weights, so as to adjust the weight of the second component, by means of which the second component compresses said hydrogel layer in said operating mode of the device, wherein particularly said receptacle is formed by said support. Preferably, said receptacle comprises an opening on the second side of the base of the second component, through which opening said at least one weight or said plurality of weights can be arranged in said receptacle.
Preferably, for supporting said filter plate, the circumferential wall of the container preferably comprises a step on which the filter plate can rest with an edge region of the filter plate.
Furthermore, said graft frame is preferably designed to rest with a circumferential edge region of the frame member on an upper edge of the wall of the container in said operating mode of the device. In order to further stabilize the position of the graft frame within the container, said upper edge of the wall preferably comprises at least one recess for receiving a region of the frame member in a form-fitting manner.
Further, in order to be able to remove the graft frame and/or said filter plate easily from the container of the first component, said wall of the container preferably comprises a bulge for Date Recue/Date Received 2020-10-15
5 taking the filter plate and/or the graft frame out of the container.
Preferably, said bulge is formed such that a finger of a user or the tip of a suitable tool can be inserted into the interior region of the container delimited by said bulge so that the graft frame and/or filter plate can be lifted and removed from the container by means of a finger or said tip of a tool.
Further, the present application provides a system comprising the device characterized in that the system further comprises a flask for incubation of the compressed hydrogel layer, wherein said flask is designed to receive the graft frame with the compressed hydrogel layer residing in said graft frame.
In accordance with another aspect, the present application provides a system comprising at least a graft frame, the graft frame comprising a circumferential frame member and a membrane bottom connected to said frame member, wherein the graft frame is designed to receive a hydrogel so that a hydrogel layer is formed covering said membrane bottom.
Particularly, the membrane bottom is integrally connected to the frame member.
Particularly, the graft frame is designed as a single-use item (i.e. is designed to be replaced after a single use).
Particularly, the graft frame is designed to be inserted into a container of a device for compressing a hydrogel layer residing on the membrane bottom. Preferably, said device is the device according to the invention.
Further, particularly, said system further comprises a flask for incubation of the compressed hydrogel layer residing in the graft frame on the membrane bottom.
Particularly, said flask is designed to receive the graft frame with the compressed hydrogel layer residing in said graft frame on the membrane bottom, i.e., advantageously the usage of the graft frame is twofold. At first, the graft frame serves for holding the hydrogel to be compressed, and thereafter as a means for holding the compressed hydrogel layer during incubation as well as transportation to the patient. Particularly, the flask comprises an opening through which the graft frame can be arranged in an interior of the flask.
Particularly, the flask comprises a lid for closing said opening.
Particularly, said system further comprises a separate support frame being designed to be arranged in said interior of the flask on a bottom of the flask and to support the graft frame.
Date Recue/Date Received 2020-10-15
6 Particularly, the lid is designed to press the graft frame against the support frame when the lid closes said opening of the flask (there may also be an additional separate element being designed to be arranged between the graft frame and the lid, wherein the lid presses against this element and the element in turn presses against the graft frame which is then pressed against the support frame when the lid closes said opening).
Particularly, the flask comprises a further opening for filling a liquid, particularly a cell culture medium, into the flask.
Further, particularly, a screw cap is provided for closing said further opening.
Further, particularly, said flask is transparent at least in sections.
Particularly, said flask and/or the support frame are designed as single-use items (i.e. are designed to be replaced after a single use).
Furthermore, the present application provides a method for compressing a hydrogel layer, using the device or the system, comprising the steps of filling a hydrogel, into the graft frame so that said hydrogel forms a hydrogel layer covering said membrane bottom, arranging the filter plate in said container of the first component, arranging said graft frame comprising the hydrogel layer in said container on top of the filter plate, arranging the first component on the guiding frame so that the guiding rods extend through their respective opening of the first component, arranging the second component on the first component so that said guiding rods are inserted into their respective opening of the second component, compressing the hydrogel layer between the membrane bottom and the piston connected to the second component by letting the second component press with the piston along the compression direction against the hydrogel layer, wherein the second component is guided by said guiding rods along the compression direction.
According to an embodiment of the present invention, said hydrogel is generated as follows:
Collagen type I can be purchased dissolved in an acidic solution. To gelify this collagen it has to be neutralized by a basic buffer. Subsequently complete gelification takes e.g. 120 minutes at e.g. 37 C in a cell incubator. Thereafter the hydrogel can be compressed.
Further, after having compressed the hydrogel, the compressed hydrogel is preferably processed as follows: The compressed hydrogel containing the fibroblasts is incubated for e.g.
6 days until the fibroblasts have proliferated to biologically reasonable cell numbers. Thereafter keratinocytes are added to the plane upper surface of the gel. After additional e.g. 6 days (12 Date Recue/Date Received 2020-10-15
7 days in total) the keratinocytes have formed a stratified epithelium (the epidermis). Thus after 12 days the "hydrogel" which now has turned into a dermo-epidermal skin graft can be transplanted onto the patient.
Further features and advantages of the invention shall be described by means of detailed descriptions of an embodiment with reference to the Figures, wherein Fig. 1 shows a perspective view of a guiding frame of a device according to the invention;
Fig. 2 shows a perspective view of the guiding frame shown in Fig. 1 as well as first lower component of the device according to the invention comprising a container for receiving a filter plate and a graft frame in which the hydrogel layer resides;
Fig. 3 shows a perspective view of the filter plate that is to be arranged in said container and the first component being arranged on the guiding frame;
Fig. 4 shows a perspective view of a second upper component of the device according to the invention for compressing the hydrogel layer;
Fig. 5 shows a perspective view of the arrangement of the graft frame in said container on top of the filter plate;
Fig. 6 shows the fastening of a piston to the second component as well as said first component holding the filter plate and the graft frame;
Fig. 7 shows a perspective view of a detail of the second component and the piston connected thereto;
Fig. 8 shows a further perspective view of a detail of the second component;
Fig. 9 shows a perspective view of the second component upon arrangement of the latter on the first component and on the guiding frame;
Fig. 10 shows a cross section of the device according to the invention in an operating mode;
Fig. 11 shows a detail of the cross section shown in Fig. 10;
Fig. 12 shows a perspective view of the piston upon lifting it from the hydrogel layer in the graft frame;
Fig. 13-16 shows perspective views of a flask for incubating the compressed hydrogel layer.
Date Recue/Date Received 2020-10-15
8 Figs. 1 to 16 show a device for compressing a hydrogel H. The device comprises a guiding frame 100 being designed for holding/guiding a first and a second component 200, 400 of the device with respect to each other, so that the second component 400 can press with a piston 600 along a compression direction C against a hydrogel layer H arranged in a graft frame 500 positioned on the first component 200 in a guided manner.
As shown in Fig. 1 said guiding frame 100 comprises a rectangular frame member 103 formed out of four legs that are connected to each other in four corner regions of the frame member 103, wherein said frame member 103 extends or is positioned on an underlayment - when the device or guiding frame 100 resides in an operating mode - along a horizontal plane, and wherein from each corner region of the frame member 103 a guiding rod 104 protrudes from the frame member 103 counter to said compression direction C that is oriented perpendicular to said horizontal plane.
As shown in Fig. 2 said first component 200 comprises a rectangular base 201 comprising a circumferential edge region 202 in which four openings 204 are formed, namely one in each corner region of the base 201 of the first component 200. Each opening is designed to receive one of the guiding rods 104 of the guiding frame, so that said guiding rods 104 extend through their respective opening 204 of the base 201 of the first component, when the first component is arranged on top of the guiding frame 100 as shown in Fig. 3. Further, as illustrated in Fig. 2, the guiding frame 100 comprises two handles 102 protruding from opposite legs of the frame member 103 of the guiding frame 100. These handles 102 serve for moving or carrying the guiding frame 100, particularly together with the first and the second component 200, 400 arranged thereon.
The base 201 of the first component 200 further comprises a first or upper side 201 a from which a circumferential wall 203 protrudes so that a central portion of the base 201 , e.g. a bottom 230, as well as said wall 203 form a container 220 for receiving a filter plate 300 and a graft frame 500 on top of the filter plate as indicated in Figs. 3, 5 and 6.
The graft frame 500, which is e.g. shown in Fig. 5 comprises a circumferential (e.g. rectangular) frame member 502 and a membrane bottom 501 (i.e. a bottom forming a membrane) connected to said frame member 502, wherein the graft frame 500 is designed to receive a hydrogel so that a hydrogel layer H is formed covering said membrane bottom 501 The membrane preferably consists of PET, is 18 micrometers thick and microporous, with a pore-diameter of preferably 3 micrometers.
Date Recue/Date Received 2020-10-15
9 Advantageously, the graft frame with its membrane bottom 501 can be used for compressing the hydrogel as well as a carrier for holding the hydrogel after compression, e.g. during incubation. Advantageously, during incubation, a cell culture medium can reach the hydrogel layer from below (through the membrane bottom) as well as from above.
Further, the frame member 502 of the graft frame 500 comprises an upper circumferential edge region 503 as well as regions 504 protruding from each of the four legs of the frame member 502.
The filter plate 300 has a rectangular outer contour and is arranged such in the container 220 of the first component 200 that an outer circumferential edge of the filter plate rests on a step 205 of the wall 203 of the container 220 as shown in Figs. 3 and 5. The graft frame 500 is placed on top of the filter plate 300 so that the membrane bottom 501 of the graft frame 500 rests on the filter plate 300, and such that the upper circumferential edge region 503 of the graft frame 500 rests on an upper edge 206 of the wall 203 of the graft frame, wherein said protruding regions 504 of the graft frame 500 engage with corresponding recesses 207 formed in said upper edge 206 of the wall 203 of the container 220 in a form-fitting manner.
Upon compression of the hydrogel layer H, which will be described below, excess water W is pressed through the membrane bottom 501 of the graft frame and flows through said filter plate 300 supporting the membrane bottom 501 into the container 220 where it accumulates on the bottom 230 of the container 220 as shown in Fig. 10, for instance.
.. In order to remove the graft frame as well as the filter plate from the container 220, the wall 203 of the container comprises a bulge 208 as shown in Fig. 2 that allows for manually removing the graft frame 500 as well as the filter plate 300 from the container 220, e.g., by means of a finger.
When the graft frame 500 is arranged in the container 220 as intended (cf.
Fig. 6), the second component 400 is used to compress the hydrogel layer H along the compression direction C as shown in Fig. 10.
As illustrated in Fig. 4 the second component 400 comprises a base 401 comprising a circumferential edge region 403 in which four opening 404 are formed, i.e. one opening 404 in each corner region of the base 401 of the second component 400. Each of these openings 404 receives an associated guiding rod 104 when the second component 400 is arranged on the .. first component 200 (cf. Fig. 9) so that a movement of the second component 400 towards the first component 100 takes place precisely in the compression direction C.
Date Recue/Date Received 2020-10-15
10 Before arranging the second component 400 on the first component 200 a separate piston 600 is arranged on a support 402 of the second component 400 which protrudes from a first or lower side 401a of the base 401 of the second component 400 along the compression direction C, and which comprises a first or lower side 402a facing the hydrogel layer H in the operating mode of the device according to the invention, wherein said first side 402a extends perpendicular to the compression direction C.
The piston 600 comprises a plate-like (e.g. rectangular) piston base 601 having a first or lower side 601 a extending perpendicular to the compression direction C, wherein said first side 601 a forms a contact surface of the piston 600 for pressing against the hydrogel layer H as well as a circumferential edge region 602 for contacting the wall 203 of the container 220 from within in a sealing manner when the contact surface 601 a presses against the hydrogel layer H, so that the hydrogel H stays inside the container 220 and cannot get past piston 600.
For connecting the piston 600 to the support 402 of the second component 400, the piston 600 comprises two latching elements 603 and a plurality of guiding elements 604 protruding from the .. circumferential edge region 602 as well as from a second side 601 b of the piston base 601 facing away from said contact surface 601 a, wherein said latching elements 603 are designed to engage with the support 402 to releasably fasten the piston 600 to the support 402, and wherein said guiding elements 604 are designed to guide the piston 600 with respect to the support 402 upon engaging the latching elements 603 with the support 402 (cf.
Fig. 6). When the piston 600 is fastened to the support 402 by means of the latching elements 604 the second side 601 b of the piston base 601 extends along or butts against the first side 402a of the support 402 (cf. Figs. 7 and 10).
In order to adjust a penetration depth of the piston 600 into the graft frame 500, i.e., the thickness of the compressed hydrogel layer H, along the compression direction C, the second component comprises two screws shown in Fig. 4 that are screwn in an internal thread formed in the first side 401a of the base of the second component 400 adjacent to corner regions of the support 402, wherein said corner regions face each other diagonally.
As can be seen from Figs. 10 and 11, the screw heads of these screws 410 rest on the upper edge region 503 of the frame member 502 of the graft frame 500 (see position A
in Fig. 11), when the contact surface 601a of the piston 600 connected to the second component 400 presses under guidance of the guiding rods 104 against the hydrogel layer H
residing on the membrane bottom 501 of the graft frame 500. Thus, the more these screw heads protrude from Date Recue/Date Received 2020-10-15 ii the first side 401a of the base 401 of the second component, the thicker the compressed hydrogel layer H becomes (see position Tin Fig. 11).
A force for compressing the hydrogel layer is provided by the weight of the second component and the parts attached thereto (e.g. the piston 600).
For adjusting said weight, the second component 400 comprises a receptacle 430 on a second side 401b of the base 401 facing away from said first side 401 a, which receptacle 430 is formed or delimited by said support 402 for supporting the piston 600. Said receptacle 430 is designed to receive one or several weight elements 800 by means of which the overall weight of the second component 400 including the piston 600 can be adjusted (cf. Figs. 9 and 10).
.. After having compressed the hydrogel layer H as intended by means of the device according to the invention, the second component 400 is removed from the first component 200 and the guiding frame 100. For this, the base 401 of the second component 400 comprises apertures 420 via which the latching elements 603 are accessible from the second side 401 b of the basis, e.g. by means of a finger, so that said latching elements 603 can be brought out of their engagement with the support 402 of the second component 400 (cf. Figs. 8 and 9).
Than one has the piston 600 released from the second component 400, which piston 600 usually sticks to the hydrogel layer H in the graft frame 500. The piston 600 is then manually lifted from the graft frame 500 as shown in Fig. 12.
According to an embodiment of the present invention, the membrane bottom 501 inside the graft frame 500 as well as said contact surface 601a of the piston 600 each comprise an area of 6cm x 7cm. Other sizes are also possible. Thus the final compressed hydrogel layer comprises a corresponding area of e.g. 6cm x 7cm and a thickness defined by screws 410, see above.
For further treatment of the compressed hydrogel layer H a flask 700 for incubation of the compressed hydrogel layer H is provided (cf. Figs. 13 to 16). The flask 700 is designed to receive the graft frame 500 with the compressed hydrogel layer H residing in said graft frame 500. For this, the flask 700 comprises an opening 704 in a top part 703 of the flask 700 through which the graft frame 500 is arranged in an interior of the flask 700 as shown in Fig. 14. In beforehand, as shown in Fig. 13, a support frame 706 is arranged on a bottom 702 of the flask 700 through its opening 704 for supporting the graft frame 500. The support frame 706 comprises recesses 707 formed in an upper edge of the support frame 706 for receiving said portions 504 of the frame member 502 of the graft frame 500, wherein the graft frame 500 is Date Recue/Date Received 2020-10-15 designed to rest with its upper edge region 503 on said upper edge of the support frame 706.
Particularly, the support frame 706 rests with four stands 709 on said bottom.
Furthermore, the support frame 706 comprises two opposing protruding regions 708 for contacting a wall 702 of the flask 700 from the interior of the flask 700 so that the support frame 706 cannot be displaced inside the flask 700 in a lateral direction (cf. Figs. 14 and 15).
Once the graft frame 500 is properly positioned in the support frame 706 inside the flask 700, the opening 704 of the flask is closed by means of a lid 710 which then presses the graft frame into the support frame 706 so that the graft frame is fixed along in a direction perpendicular to bottom 701 of the flask between the lid 710 and the support frame 706. It is also possible to lo arrange an additional element between said lid 710 and the graft frame 500 in order to press the graft frame against the support frame 706 by means of the lid 710.
Through a further opening that can be closed by a screw cap, a cell culture medium can be filled into the flask. The cell culture medium is required for both, the culture of the cells in and on the hydrogel layer, and for transportation of the dermo-epidermal grafts made from the hydrogel layer.
Preferably, the guiding frame 100 is made out of a stainless steel.
Further, the first component 200 is preferably made out of PEEK (Polyether ether ketone).
Further, the second component 400 is preferably made out of PEEK (Polyether ether ketone).
Further, the membrane bottom 501 of the graft frame 500 is preferably made out of PET (e.g.
according to ISO 13485).
Furthermore, the piston 600 is preferably made out of Polypropylene.
References [1] Diezi, Mirco, Determining the conditions that regulate epidermal stratification in vitro:
Engineering an epidermal substitute in 3 steps, Master Thesis in Human Biology, Tissue Biology Research Unit, University of Zurich, February 2009;
[2] Baroli, B., Hydrogels for tissue engineering and delivery of tissue-inducing substances. J
Pharm Sci, 2007. 96(9): p. 2197-223.
[3] Mimura, T., et al., Tissue engineering of corneal stroma with rabbit fibroblast precursors and gelatin hydrogels. Mol Vis, 2008. 14: p. 1819-28.
Date Recue/Date Received 2020-10-15 [4] Stark, H.J., et al., Organotypic keratinocyte cocultures in defined medium with regular epidermal morphogenesis and differentiation. Journal of Investigative Dermatology, 1999. 1 12(5): p. 681 -691.
[5] Yamaoka, H., et al., Cartilage tissue engineering using human auricular chondrocytes embedded in different hydrogel materials. J Biomed Mater Res A, 2006. 78(1):
p. 1-11.
[6] Ferguson, R.E. and B. Rinker, The use of a hydrogel sealant on flexor tendon repairs to prevent adhesion formation. Ann Plast Surg, 2006. 56(1): p. 54-8 Date Recue/Date Received 2020-10-15

Claims (56)

What is claimed is:
1. Device for compressing a hydrogel, comprising:
a separate graft frame comprising a circumferential frame member and a membrane bottom connected to said frame member, wherein the graft frame is designed to receive said hydrogel so that a hydrogel layer is formed covering said membrane bottom, a guiding frame having a plurality of guiding rods extending along a compression direction, a filter plate, a first component comprising a base having a plurality of first openings, wherein each of said first openings is associated to one of the guiding rods, wherein the first component is designed to be arranged on the guiding frame in an operating mode of the device such that each guiding rod extends through its associated opening, wherein the first component further comprises a circumferential wall protruding from said base of the first component, so that the first component forms a container that is designed to receive the filter plate and the graft frame in said operating mode so that the filter plate is arranged between a bottom of said container and the membrane bottom of the graft frame, a second component comprising a base having a plurality of second openings, wherein each of said second openings is associated to one of the guiding rods, wherein the second component is designed to be arranged on said first component in said operating mode, such that each guiding rod that extends through its associated opening of the first component is also inserted into its associated opening of the second component so that the second component is guided by said rods along the compression direction, a separate piston that is designed to be connected to said second component in a releasable manner in said operating mode of the device, wherein in said operating mode the second component is designed to press the piston along the compression direction against said hydrogel layer residing on the membrane bottom of the graft frame so as to compress the hydrogel layer between the piston and the membrane bottom.
2. The device according to claim 1, wherein the first plurality of openings are formed in an edge region of said base of the first component.
3. The device according to claim 1 or 2, wherein the second plurality of openings are formed in an edge region of said base of the second component.
Date Recue/Date Received 2021-04-12
4. The device of any one of claims 1 to 3, wherein the releasable manner in said operating mode of the device is by means of a latching connection.
5. The device according to any one of claims 1 to 4, characterized in that the graft frame and/or the piston are designed as single-use items.
6. The device according to any one of claims 1 to 5, characterized in that the piston comprises a piston base having a first side forming a contact surface for pressing against the hydrogel layer.
7. The device of claim 6, wherein the piston is designed to be inserted into the graft frame with its contact surface ahead when pressing with its contact surface against the hydrogel layer.
8. The device of claim 7, wherein the piston base comprises a circumferential edge region being designed to contact the frame member of the graft frame when pressing against the hydrogel layer.
9. The device according to any one of claims 1 to 8, characterized in that the piston comprises two latching elements.
10. The device of claim 9, wherein the two latching elements protrude from said edge region of the piston base on a second side of the piston base facing away from said first side forming said contact surface.
11. The device according to any one of claims 9 to 10, characterized in that the second component comprises a support for the piston, which support protrudes from a first side of the base of the second component towards the membrane bottom in said operating mode of the device.
12. The device of claim 11, wherein the latching elements are designed to engage with said support for releasably connecting the piston to the support.
Date Recue/Date Received 2021-04-12
13. The device according to any one of claims 9 to 12, characterized in that the base of the second component comprises an aperture for each latching element, through which the respective latching element is accessible from a second side of the base of the second component facing away from said first side of the base of the second component
14. The device of claim 13, wherein the latching elements can be released from the support manually via said apertures.
15. The device according to any one of claims 1 to 14, characterized in that the piston comprises guiding elements protruding from said edge region of the piston base on said second side of the piston base facing away from said contact surface, which guiding elements are designed to slide along said support for guiding the piston with respect to the support upon engaging the latching elements with the support.
16. The device according to any one of claims 1 to 15, characterized in that the second component comprises an adjusting means for adjusting a penetration depth of the piston along the compression direction into the graft frame.
17. The device according to claim 16, wherein said adjusting means comprises two screws that are screwed in an internal thread formed in the first side of the base adjacent to the support, so that the heights of the screw heads of said screws with respect to said first side the base can be adjusted by turning the respective screw clockwise or counterclockwise, wherein the screw heads are designed to rest on said frame member in the operating mode of the device so as to limit said penetration depth.
18. The device according to any one of claims 1 to 17, characterized in that the base of the second component comprises a receptacle for receiving at least one weight element, so as to adjust the weight of the second component, by means of which the second component compresses said hydrogel layer in said operating mode of the device.
19. The device of claim 18, wherein said receptacle is formed by said support.
Date Recue/Date Received 2021-04-12
20. The device of claim 19, wherein said receptacle comprises an opening on the second side of the base of the second component via which opening said at least one weight element can be arranged in said receptacle.
21. The device according to any one of claims 1 to 20, characterized in that said circumferential wall of the container comprises a step for supporting said filter plate.
22. The device according to any one of claims 1 to 21, characterized in that said graft frame is designed to rest with a circumferential edge region of the frame member on an upper edge of the wall of the container in said operating mode of the device.
23. The device of claim 22, wherein said upper edge of the wall comprises at least one recess for receiving a region of the frame member of the graft frame in a form-fitting manner.
24. The device according to any one of claims 1 to 23, characterized in that said wall comprises a bulge for taking the filter plate and/or the graft frame out of the container.
25. A system comprising the device according to any one of claims 1 to 24, characterized in that the system further comprises a flask for incubation of the compressed hydrogel layer, wherein said flask is designed to receive the graft frame with the compressed hydrogel layer residing in said graft frame.
26. The system of claim 25, wherein the flask comprises an opening through which the graft frame can be arranged in an interior of the flask.
27. The system of claim 26, wherein the flask comprises a lid for closing said opening.
28. The system of claim 27, wherein said system comprises a support frame being designed to be arranged in said interior of the flask on a bottom of the flask and to support the graft frame, wherein the lid is designed to press the graft frame against the support frame when the lid closes said opening of the flask, and wherein the flask comprises a further opening for filling a liquid into the flask.
Date Recue/Date Received 2021-04-12
29. The system of claim 28, wherein a screw cap is provided for closing said further opening.
30. The system of claim 29, wherein said flask is transparent at least in sections.
31. The system of claim 30, wherein said flask and/or the support frame are designed as single-use items.
32. The system of claim 28, wherein the liquid is a cell culture medium.
33. System comprising at least a graft frame, the graft frame comprising a circumferential frame member and a membrane bottom connected to said frame member, wherein the graft frame is designed to receive a hydrogel so that a hydrogel layer is formed covering said membrane bottom.
34. The system of claim 33, wherein the membrane bottom is integrally connected to the frame member.
35. The system of claim 33 or 34, wherein the graft frame is designed as a single-use item.
36. The system of any one of claims 33 to 35, wherein the graft frame is designed to be inserted into a container of a device for compressing a hydrogel layer residing on the membrane bottom.
37. The system of claim 36, wherein said device is the device according to any one of the claims 1 to 24.
38. The system of claim 36, wherein said system further comprises a flask for incubation of the compressed hydrogel layer residing in the graft frame on the membrane bottom.
39. The system of claim 38, wherein said flask is designed to receive the graft frame with the compressed hydrogel layer residing in said graft frame on the membrane bottom.
Date Recue/Date Received 2021-04-12
40. The system of claim 39, wherein the flask comprises an opening through which the graft frame can be arranged in an interior of the flask.
41. The system of claim 40, wherein the flask comprises a lid for closing said opening.
42. The system of claim 41, wherein said system comprises a separate support frame being designed to be arranged in said interior of the flask on a bottom of the flask and to support the graft frame, wherein the lid is designed to press the graft frame against the support frame when the lid closes said opening of the flask, and wherein the flask comprises a further opening for filling a liquid into the flask.
43. The system of claim 42, wherein the liquid is a cell culture medium.
44. The system of claim 42 or 43, wherein a screw cap is provided for closing said further opening.
45. The system of claim 44, wherein said flask is transparent at least in sections.
46. The system of claim 45, wherein said flask and/or the support frame are designed as single-use items.
47. A method for compressing a hydrogel layer, using the device according to any one of claims 1 to 24 or the system according to claim 25, comprising the steps of:
filling a hydrogel, into the graft frame so that said hydrogel forms a hydrogel layer covering said membrane bottom, arranging the filter plate in said container of the first component, arranging said graft frame comprising the hydrogel layer in said container on top of the filter plate, arranging the first component on the guiding frame so that the guiding rods extend through their respective opening of the first component, arranging the second component on the first component so that said guiding rods are inserted into their respective opening of the second component, Date Recue/Date Received 2021-04-12 compressing the hydrogel layer between the membrane bottom and the piston connected to the second component by letting the second component press with the piston along the compression direction against the hydrogel layer, wherein the second component is guided by said guiding rods along the compression direction.
48. The method of claim 47, further comprising removing the graft frame from the first component and the second component after having compressed the hydrogel layer.
49. The method of claim 48, further comprising arranging the graft frame with the compressed hydrogel layer through an opening of a flask in an interior of said flask on top of a support frame arranged on a bottom of the flask.
50. The method of claim 49, further comprising closing the opening of the flask with a lid, thereby pressing the frame member of the graft frame with the lid against the frame support, so as to secure the graft frame in the flask.
51. The method of claim 50, further comprising filling a cell culture medium into the flask.
52. The method of claim 51, further comprising incubating the compressed hydrogel layer.
53. The method of claim 52, further comprising adding keratinocytes to an upper surface of the hydrogel layer, which upper surface faces away from the membrane bottom.
54. The method of any one of claims 47 to 53, for generating an artificial skin graft.
55. The method of any one of claims 47 to 54, wherein the hydrogel further contains fibroblasts.
56. The method of any one of claims 47 to 55, wherein the step of filling the hydrogel comprises incubating the hydrogel layer residing in the graft frame.
Date Recue/Date Received 2021-04-12
CA2915777A 2013-06-28 2014-06-27 Device and method for compressing a hydrogel Active CA2915777C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP20130174441 EP2818186A1 (en) 2013-06-28 2013-06-28 Device and method for compressing a hydrogel
EP13174441.9 2013-06-28
PCT/EP2014/063786 WO2014207251A2 (en) 2013-06-28 2014-06-27 Device and method for compressing a hydrogel

Publications (2)

Publication Number Publication Date
CA2915777A1 CA2915777A1 (en) 2014-12-31
CA2915777C true CA2915777C (en) 2021-11-23

Family

ID=48703230

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2915777A Active CA2915777C (en) 2013-06-28 2014-06-27 Device and method for compressing a hydrogel

Country Status (10)

Country Link
US (1) US10195310B2 (en)
EP (2) EP2818186A1 (en)
JP (1) JP6494613B2 (en)
CN (1) CN105377317B (en)
AU (1) AU2014300923B2 (en)
BR (1) BR112015032714B1 (en)
CA (1) CA2915777C (en)
ES (1) ES2698968T3 (en)
WO (1) WO2014207251A2 (en)
ZA (1) ZA201509185B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180094941A (en) * 2015-12-04 2018-08-24 프레지던트 앤드 펠로우즈 오브 하바드 칼리지 Open-top microfluidic device and method for simulating the function of tissue
FR3078712B1 (en) * 2018-03-12 2020-03-06 Centre D'etude Des Cellules Souches (Cecs) PROCESS AND DEVICE FOR THE PREPARATION OF AN IMPLANT FROM A STEM CELL CULTURE
BR112022017116A2 (en) * 2020-03-02 2023-01-03 Cutiss Ag DISPOSABLE SYSTEM AND METHOD FOR PREPARING A COMPRESSED HYDROGEL
EP4359024A1 (en) * 2021-06-20 2024-05-01 Cutiss AG Tissue culture vessel for preparation of compressed hydrogel skin grafts and related methods and systems

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5882929A (en) 1998-04-07 1999-03-16 Tissue Engineering, Inc. Methods and apparatus for the conditioning of cartilage replacement tissue
ZA200602094B (en) 2006-01-16 2007-11-28 Reliance Life Sciences Pvt Ltd Device for culturing and transporting cells
US9707703B2 (en) * 2010-06-10 2017-07-18 Ucl Business Plc Apparatus, kits and methods for the production of biomimetic constructs
GB201011476D0 (en) * 2010-07-07 2010-08-25 Ucl Business Plc Controlled production of biomaterial
US8889403B2 (en) * 2011-05-12 2014-11-18 Empire Technology Development Llc Bioreactor for engineered tissue

Also Published As

Publication number Publication date
BR112015032714A2 (en) 2017-07-25
AU2014300923B2 (en) 2019-02-28
CA2915777A1 (en) 2014-12-31
ZA201509185B (en) 2017-03-29
CN105377317B (en) 2019-09-27
JP2016523158A (en) 2016-08-08
EP3013381A2 (en) 2016-05-04
WO2014207251A2 (en) 2014-12-31
US20160136333A1 (en) 2016-05-19
EP2818186A1 (en) 2014-12-31
WO2014207251A3 (en) 2015-03-12
CN105377317A (en) 2016-03-02
EP3013381B1 (en) 2018-08-22
US10195310B2 (en) 2019-02-05
AU2014300923A1 (en) 2016-01-21
ES2698968T3 (en) 2019-02-06
BR112015032714B1 (en) 2020-12-15
JP6494613B2 (en) 2019-04-03

Similar Documents

Publication Publication Date Title
CA2915777C (en) Device and method for compressing a hydrogel
JP7370370B2 (en) Surface topography to alter the physiology of living cells
Van Zuijlen et al. Tissue engineering in burn scar reconstruction
Varshney et al. Culturing melanocytes and fibroblasts within three-dimensional macroporous PDMS scaffolds: towards skin dressing material
JP7361039B2 (en) Ex vivo subcutaneous injection model
Shukla et al. Acellular dermis as a dermal matrix of tissue engineered skin substitute for burns treatment
KR20130111347A (en) Cultured cartilage tissue material
US20230114908A1 (en) Disposable system and method for preparing a compressed hydrogel
JP6480192B2 (en) Method for perfusion of fluid in vascular bed and apparatus for performing the method
WO2015009071A1 (en) Body volume substitute comprising cartilage for grafting by injection, and dual needle-type syringe for injecting same
McCarty et al. The proteoglycan metabolism of articular cartilage in joint-scale culture
EP3919607A1 (en) Multi-compartment container for culturing and surface multiplication of human autologous fibroblasts on a membrane carrier
US20220016321A1 (en) Dermal substitutes and engineered skin with rete ridges
Woodroof et al. The search for an ideal temporary skin substitute: AWBAT Plus, a combination product wound dressing medical device
BABA et al. Combined automated culture system for tubular structure assembly and maturation for vascular tissue engineering
Griffoni Towards advanced immunocompetent skin wound models for in vitro drug evaluation
Cheng Investigation of Surface Stress and Architectural Anisotropy of Biomaterials
WO2014111518A1 (en) Tissue bioreactor
Kalyanaraman Bioreactors to Demonstrate Process Automation and Regulate Physiology of Engineered Skin Substitutes
BE The Role of Matrix Properties and Extrinsic Loading in Osteoblast-Osteocyte Differentiation in Tissue Engineered Scaffolds
Robertson Optical Coherence Tomography Imaging of Tissue Engineered Skin Cultured Under Perfusion Conditions
Kiran et al. Culturing melanocytes and fibroblasts within three-dimensional macroporous PDMS scaffolds: towards skin dressing material

Legal Events

Date Code Title Description
EEER Examination request

Effective date: 20190617