CA2907111A1 - Sgc stimulators - Google Patents

Sgc stimulators

Info

Publication number
CA2907111A1
CA2907111A1 CA2907111A CA2907111A CA2907111A1 CA 2907111 A1 CA2907111 A1 CA 2907111A1 CA 2907111 A CA2907111 A CA 2907111A CA 2907111 A CA2907111 A CA 2907111A CA 2907111 A1 CA2907111 A1 CA 2907111A1
Authority
CA
Canada
Prior art keywords
ring
alkyl
instances
membered heteroaryl
phenyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CA2907111A
Other languages
French (fr)
Other versions
CA2907111C (en
Inventor
Joel Moore
Nicholas Robert Perl
Rajesh R. Iyengar
Ara Mermerian
G-Yoon Jamie Im
Thomas Wai-Ho Lee
Colleen Hudson
Glen Robert RENNIE
Lei Jia
Paul Allen RENHOWE
Timothy Claude Barden
Xiang Y. Yu
James Edward SHEPPECK
Karthik Iyer
Joon Jung
Takashi Nakai
George Todd MILNE
Kimberly Kafadar LONG
Mark Currie
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cyclerion Therapeutics Inc
Original Assignee
Ironwood Pharmaceuticals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ironwood Pharmaceuticals Inc filed Critical Ironwood Pharmaceuticals Inc
Publication of CA2907111A1 publication Critical patent/CA2907111A1/en
Application granted granted Critical
Publication of CA2907111C publication Critical patent/CA2907111C/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/506Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim not condensed and containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/517Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with carbocyclic ring systems, e.g. quinazoline, perimidine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/519Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/535Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
    • A61K31/53751,4-Oxazines, e.g. morpholine
    • A61K31/53771,4-Oxazines, e.g. morpholine not condensed and containing further heterocyclic rings, e.g. timolol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/54Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one sulfur as the ring hetero atoms, e.g. sulthiame
    • A61K31/541Non-condensed thiazines containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/55Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D451/00Heterocyclic compounds containing 8-azabicyclo [3.2.1] octane, 9-azabicyclo [3.3.1] nonane, or 3-oxa-9-azatricyclo [3.3.1.0<2,4>] nonane ring systems, e.g. tropane or granatane alkaloids, scopolamine; Cyclic acetals thereof
    • C07D451/02Heterocyclic compounds containing 8-azabicyclo [3.2.1] octane, 9-azabicyclo [3.3.1] nonane, or 3-oxa-9-azatricyclo [3.3.1.0<2,4>] nonane ring systems, e.g. tropane or granatane alkaloids, scopolamine; Cyclic acetals thereof containing not further condensed 8-azabicyclo [3.2.1] octane or 3-oxa-9-azatricyclo [3.3.1.0<2,4>] nonane ring systems, e.g. tropane; Cyclic acetals thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/08Bridged systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/10Spiro-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/10Spiro-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/02Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
    • C07D491/10Spiro-condensed systems
    • C07D491/107Spiro-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D498/00Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D498/02Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D498/04Ortho-condensed systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Epidemiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Endocrinology (AREA)
  • Reproductive Health (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Cardiology (AREA)
  • Pulmonology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Pyridine Compounds (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Steroid Compounds (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Compounds of Formulae (I') and (I) are described, which are useful as stimulators of sGC, particularly NO-independent, heme-dependent stimulators. These compounds are also useful for treating, preventing or managing various disorders that are herein disclosed.

Description

DEMANDE OU BREVET VOLUMINEUX
LA PRESENTE PARTIE DE CETTE DEMANDE OU CE BREVET COMPREND
PLUS D'UN TOME.

NOTE : Pour les tomes additionels, veuillez contacter le Bureau canadien des brevets JUMBO APPLICATIONS/PATENTS
THIS SECTION OF THE APPLICATION/PATENT CONTAINS MORE THAN ONE
VOLUME

NOTE: For additional volumes, please contact the Canadian Patent Office NOM DU FICHIER / FILE NAME:
NOTE POUR LE TOME / VOLUME NOTE:

sGC Stimulators FIELD OF THE INVENTION
[001] The present disclosure relates to stimulators of soluble guanylate cyclase (sGC), pharmaceutical formulations comprising them and their uses thereof, alone or in combination with one or more additional agents, for treating and/or preventing various diseases, wherein an increase in the concentration of nitric oxide (NO) or an increase in the concentration of cyclic Guanosine Monophosphate (cGMP) might be desirable.
BACKGROUND OF THE INVENTION
[002] Soluble guanylate cyclase (sGC) is the primary receptor for nitric oxide (NO) in vivo.
sGC can be activated via both NO-dependent and NO-independent mechanisms. In response to this activation, sGC converts GTP into the secondary messenger cyclic GMP
(cGMP). The increased level of cGMP, in turn, modulates the activity of downstream effectors including protein kinases, phosphodiesterases (PDEs) and ion channels.
[003] In the body, NO is synthesized from arginine and oxygen by various nitric oxide synthase (NOS) enzymes and by sequential reduction of inorganic nitrate. Three distinct isoforms of NOS have been identified: inducible NOS (iNOS or NOS II) found in activated macrophage cells; constitutive neuronal NOS (nNOS or NOS I), involved in neurotransmission and long term potentiation; and constitutive endothelial NOS (eNOS or NOS III) which regulates smooth muscle relaxation and blood pressure.
[004] Experimental and clinical evidence indicates that reduced bioavailability and/or responsiveness to endogenously produced NO contributes to the development of cardiovascular, endothelial, renal and hepatic disease, as well as erectile dysfunction and other sexual disorders (e.g. female sexual disorder or vaginal atrophy). In particular, the NO
signaling pathway is altered in cardiovascular diseases, including, for instance, systemic and pulmonary hypertension, heart failure, angina, stroke, thrombosis and other thromboembolic diseases, peripheral arterial disease, fibrosis of the liver, lung or kidney and atherosclerosis.
[005] sGC stimulators are also useful in the treatment of lipid related disorders such as e.g., dyslipidemia, hypercholesterolemia, hypertriglyceridemia, sitosterolemia, fatty liver disease, and hepatitis.
[006] Pulmonary hypertension (PH) is a disease characterized by sustained elevation of blood pressure in the pulmonary vasculature (pulmonary artery, pulmonary vein and pulmonary capillaries), which results in right heart hypertrophy, eventually leading to right heart failure and death. In PH, the bioactivity of NO and other vasodilators such as prostacyclin is reduced, whereas the production of endogenous vasoconstrictors such as endothelin is increased, resulting in excessive pulmonary vasoconstriction. sGC stimulators have been used to treat PH
because they promote smooth muscle relaxation, which leads to vasodilation.
[007] Treatment with NO-independent sGC stimulators also promoted smooth muscle relaxation in the corpus cavernosum of healthy rabbits, rats and humans, causing penile erection, indicating that sGC stimulators are useful for treating erectile dysfunction.
[008] NO-independent, heme-dependent, sGC stimulators, such as those disclosed herein, have several important differentiating characteristics, including crucial dependency on the presence of the reduced prosthetic heme moiety for their activity, strong synergistic enzyme activation when combined with NO and stimulation of the synthesis of cGMP by direct stimulation of sGC, independent ofNO. The benzylindazole compound YC-1 was the first sGC
stimulator to be identified. Additional sGC stimulators with improved potency and specificity for sGC have since been developed. These compounds have been shown to produce anti-aggregatory, anti-proliferative and vasodilatory effects.
[009] Since compounds that stimulate sGC in an NO-independent manner offer considerable advantages over other current alternative therapies, there is a need to develop novel stimulators of sGC. They are potentially useful in the prevention, management and treatment of disorders such as pulmonary hypertension, arterial hypertension, heart failure, atherosclerosis, inflammation, thrombosis, renal fibrosis and failure, liver cirrhosis, lung fibrosis, erectile dysfunction, female sexual arousal disorder and vaginal atrophy and other cardiovascular disorders; they are also potentially useful for the prevention, management and treatment of lipid related disorders.
SUMMARY OF THE INVENTION
[0010] The present invention is directed to compounds according to Formula I', or pharmaceutically acceptable salts thereof, J
J¨)_w Rc..............N ---------( jB)n
11 A 'NI
Xl.....S_ i N
N' D, 'X2 =/ (J D) Formula I' wherein Xl is selected from N, CH, C(C1_4 alkyl), C(C1_4 haloalkyl), CC1 and CF;
X2 is independently selected from N or C;
W is either i) absent, with JB connected directly to the carbon atom bearing two J groups, each J is independently selected from hydrogen or methyl, n is 1 and JB is a C1_7 alkyl chain optionally substituted by up to 9 instances of fluorine; wherein, optionally, one ¨CH2¨
unit of said C1-7 alkyl chain can be replaced by ¨0¨ or ¨S¨.
ii) a ring B that is a phenyl or a 5 or 6-membered heteroaryl ring, containing 1 or 2 ring heteroatoms selected from N, 0 or S; wherein with ring B being the phenyl or 5 or 6-membered heteroaryl ring; each J is hydrogen; n is an integer selected from 0 to 3; and each JB is independently selected from halogen, ¨CN, a C1_6 aliphatic, ¨ORB or a C3_8 cycloaliphatic group; wherein each said C1_6 aliphatic and each said C3_8 cycloaliphatic group is optionally and independently substituted with up to 3 instances of R3; each RB is independently selected from hydrogen, a C1_6 aliphatic or a C3_8 cycloaliphatic; wherein each of said RB
that is a C1_6 aliphatic and each of said RB that is a C3_8 cycloaliphatic ring is optionally and independently substituted with up to 3 instances of R3a;
each R3 is independently selected from halogen, ¨CN, C1_4 alkyl, C1_4 haloalkyl, ¨0(C,4 alkyl) or ¨0(C,4 haloalkyl);
each R3' is independently selected from halogen, ¨CN, C1_4 alkyl, C1_4 haloalkyl, ¨0(C,4 alkyl) or ¨0(C,4 haloalkyl);
o is an integer selected from 1 to 3;

each JD is independently selected from JA, halogen, ¨CN, ¨NO2, ¨ORD, ¨SRD, ¨C(0)RD, ¨C(0)ORD, ¨0C(0)RD, ¨C(0)N(RD)25 N(RD)25 _N(Rd)C(0)RD, N. -cl, (K )C(0)ORD, ¨N(Rd)C(0)N(RD)2, _0C(0)N(RD)2, ¨SO2RD, ¨SO2N(RD)2, ¨N(Rd)S02RD, a C1_6 aliphatic, ¨(C1_6 aliphatic)-RD, a C3_8 cycloaliphatic ring, a 6 to 1O-membered aryl ring, a 4 to 8-membered heterocyclic ring or a 5 to 1O-membered heteroaryl ring; wherein each said 4 to 8-membered heterocyclic ring and each said 5 to 10-membered heteroaryl ring contains between 1 and 3 heteroatoms independently selected from 0, N or S; and wherein each said C1_6 aliphatic, each said C1_6 aliphatic portion of the ¨(C1_6 aliphatic)-RD
moiety, each said C3_8 cycloaliphatic ring, each said 6 to 1O-membered aryl ring, each said 4 to 8-membered heterocyclic ring and each said 5 to 1 0-membered heteroaryl ring is optionally and independently substituted with up to 5 instances of R5', wherein at least one JD is not hydrogen;
JA is selected from hydrogen, halogen, methyl, hydroxyl, methoxy, trifluoromethyl, trifluoromethoxy or ¨NRaRb; wherein Ra and Rb are each independently selected from hydrogen, C1_6 alkyl or a 3-6 cycloalkyl ring; or wherein Ra and Rb, together with the nitrogen atom to which they are both attached, form a 4-8 membered heterocyclic ring, or a 5-membered heteroaryl ring optionally containing up to two additional heteroatoms selected from N, 0 and S; wherein each of said 4-8 membered heterocyclic ring and 5-membered heteroaryl ring is optionally and independently substituted by up to 6 instances of fluorine;
each RD is independently selected from hydrogen, a C1_6 aliphatic, ¨(C1_6 aliphatic)-R, a C3_8 cycloaliphatic ring, a 4 to 1O-membered heterocyclic ring, phenyl or a 5 to 6-membered heteroaryl ring; wherein each said 4 to 1O-membered heterocyclic ring and each said 5 to 6-membered heteroaryl ring contains between 1 and 3 heteroatoms independently selected from 0, N or S; and wherein each said C1_6 aliphatic, each said C1_6 aliphatic portion of the - aliphatic)-Rf moiety, each said C3_8 cycloaliphatic ring, each said 4 to 1O-membered heterocyclic ring, each said phenyl and each said 5 to 6-membered heteroaryl ring is optionally and independently substituted with up to 5 instances of R5a; wherein when any RD is one of a C1_6 aliphatic or a ¨(Ci_6 aliphatic)-Rf group, one or two ¨CH2¨ units that form said C1-6 aliphatic chains may, optionally, be replaced by a group independently selected from _N(Rd)_, ¨CO¨ or ¨0¨; provided that when Xl is one of CH, C(Ci_4 alkyl), C(Ci_4 haloalkyl), CC1 or CF;
X2 is C; and at least one JD is ¨N(RD)2 and is attached to one of the pyrimidine ring D carbons ortho to the two nitrogen atoms of said ring D, one instance of RD is not a pyridine or a pyrimidine;

each Rd is independently selected from hydrogen, a C1_6 aliphatic, -(C1_6 aliphatic)-R, a C3_8 cycloaliphatic ring, a 4 to 8-membered heterocyclic ring, phenyl or a 5 to 6-membered heteroaryl ring; wherein each said 4 to 8-membered heterocyclic ring and each said 5 or 6-membered heteroaryl ring contains between 1 and 3 heteroatoms independently selected from 0, N or S; and wherein each said Ci_6 aliphatic, each said Ci_6 aliphatic portion of the -(Ci_6 aliphatic)-Rf moiety, each said C3_8 cycloaliphatic ring, each said 4 to 8-membered heterocyclic ring, each said phenyl and each said 5 to 6-membered heteroaryl ring is optionally and independently substituted by up to 5 instances of R5b; wherein when any Rd is one of a c16 aliphatic or a -(C1_6 aliphatic)-Rf group, one or two -CH2- units that form said C1_6 aliphatic chains may, optionally, be replaced by a group independently selected from _N(Rd)_, -CO- or -O-;
each Rf is independently selected from a C1_3 alkyl, a C3_8 cycloaliphatic ring, a 4 to 1 0-membered heterocyclic ring, phenyl or a 5 to 6-membered heteroaryl ring;
wherein each said 4 to 1 0-membered heterocyclic ring and each said 5 to 6-membered heteroaryl ring contains between 1 and 4 heteroatoms independently selected from 0, N or S;
and wherein each said C3_8 cycloaliphatic ring, each said 4 to 1O-membered heterocyclic ring, each said phenyl and each said 5 to 6-membered heteroaryl ring is optionally and independently substituted by up to 5 instances of R5c;
when JD is -C(0)N(R
D)25 N(RD)25 N.- cl, (K )C(0)N(RD)25 -0C(0)N(RD)2 or -SO2N(RD)2, the two RD groups together with the nitrogen atom attached to the two RD groups may form a 4 to 8-membered heterocyclic ring or a 5-membered heteroaryl ring; wherein each said 4 to 8-membered heterocyclic ring and each said 5-membered heteroaryl ring optionally contains up to 3 additional heteroatoms independently selected from N, 0 or S, in addition to the nitrogen atom to which the two RD groups are attached; and wherein each said 4 to 8-membered heterocyclic ring and each said 5-membered heteroaryl ring is optionally and independently substituted by up to 5 instances of R5;
when JD is -N(Rd)C(0)RD, the RD group together with the carbon atom attached to the RD
group, with the nitrogen atom attached to the Rd group, and with the Rd group may form a 4 to 8-membered heterocyclic ring or a 5-membered heteroaryl ring; wherein each said 4 to 8-membered heterocyclic ring and each said 5-membered heteroaryl ring optionally contains up to 2 additional heteroatoms independently selected from N, 0 or S, in addition to the nitrogen atom to which the Rd group is attached; and wherein each said 4 to 8-membered heterocyclic ring and each said 5-membered heteroaryl ring is optionally and independently substituted by up to 5 instances of R5;
when JD is ¨N(Rd)C(0)ORD, the RD group together with the oxygen atom attached to the RD
group, with the carbon atom of the ¨C(0)¨ portion of the ¨N(Rd)C(0)ORD group, with the nitrogen atom attached to the Rd group, and with said Rd group, may form a 4 to 8-membered heterocyclic ring; wherein said 4 to 8-membered heterocyclic ring optionally contains up to 2 additional heteroatoms independently selected from N, 0 or S, and is optionally and independently substituted by up to 5 instances of R5;
when JD is ¨N(Rd)C(0)N(RD)2, one of the RD groups attached to the nitrogen atom, together with said nitrogen atom, and with the N atom attached to the Rd group and said Rd group may form a 4 to 8-membered heterocyclic ring; wherein said 4 to 8-membered heterocyclic ring optionally contains up to 2 additional heteroatoms independently selected from N, 0 or S, and is optionally and independently substituted by up to 5 instances of R5;
when JD is ¨N(Rd)S02RD, the RD group together with the sulfur atom attached to the RD group, with the nitrogen atom attached to the Rd group, and with said Rd group may combine to form a 4 to 8-membered heterocyclic ring; wherein said 4 to 8-membered heterocyclic ring optionally contains up to 2 additional heteroatoms independently selected from N, 0 or S, and is optionally and independently substituted by up to 5 instances of R5;
each R5 is independently selected from halogen, ¨CN, C1_6 alkyl, ¨( C1_6 alkyl)-R6, ¨0R6, ¨SR6, ¨COR6, ¨0C(0)R6, ¨C(0)0R6, ¨C(0)N(R6)2, ¨C(0)N(R6)S02R6, ¨N(R6)C(0)R6, ¨N(R6)C(0)0R6, ¨N(R6)C(0)N(R6)2, ¨N(R6)2, ¨502R6, ¨5020H, ¨SO2NHOH, ¨502N(R6)2, ¨502N(R6)COOR6, ¨502N(R6)C(0)R6, ¨N(R6)502R6, ¨(C=0)NHOR6, a C3_8 cycloalkyl ring, a 4 to 7-membered heterocyclic ring, a 5 or 6-membered heteroaryl ring, phenyl, benzyl, an oxo group or a bicyclic group; wherein each of said 5 or 6-membered heteroaryl ring or 4 to 7-membered heterocyclic ring contains up to 4 ring heteroatoms independently selected from N, 0 and S; and wherein each of said C1_6 alkyl, C1_6 alkyl portion of the ¨( C1_6 a1kyl)-R6 moiety, C3_8 cycloalkyl ring, 4 to 7-membered heterocyclic ring, 5 or 6-membered heteroaryl ring, benzyl or phenyl group is optionally and independently substituted with up to 3 instances of halogen, C1_4 alkyl, ¨OH, ¨NH2, ¨NH(C1_4 alkyl), ¨N(C1_4 alky1)2, ¨CN, ¨COOH, ¨CONH2, ¨COO(C1_4 alkyl), ¨0(C1_4 alkyl), ¨0(C1_4 haloalkyl) or oxo; wherein said bicyclic group contains ring one and ring two in a fused or bridged relationship, said ring one is a 4 to 7-membered heterocyclic ring, a 5 or 6-membered heteroaryl ring, phenyl or benzyl, and said ring two is a phenyl ring or a 5 or 6-membered heteroaryl ring containing up to 3 ring heteroatoms selected from N, 0 or S; and wherein said bicyclic group is optionally and independently substituted by up to six instances of halogen, C1_4 alkyl, ¨OH, ¨NH2, ¨NH(C1-4 alkyl), ¨N(Ci_4 alky1)2, ¨CN, ¨COOH, ¨CONH2, ¨COO(C1_4 alkyl), ¨0(C1_4 alkyl), ¨0(C1-4 haloalkyl) or oxo;
two instances of R5, attached to the same or different atoms of .11), together with said atom or atoms to which they are attached, may optionally form a C3_8 cycloalkyl ring, a 4 to 6-membered heterocyclic ring; a phenyl or a 5 or 6-membered heteroaryl ring, resulting in a bicyclic system wherein the two rings of the bicyclic system are in a spiro, fused or bridged relationship, wherein said 4 to 6-membered heterocycle or said 5 or 6-membered heteroaryl ring contains up to four ring heteroatoms independently selected from N, 0 or S; and wherein said C3_8 cycloalkyl ring, 4 to 6-membered heterocyclic ring, phenyl or 5 or 6-membered heteroaryl ring is optionally and independently substituted by up to 3 instances of Ci _4 alkyl, C1_4 haloalkyl, C1_4 alkoxy, C1_4 haloalkoxy, oxo, ¨C(0)0(C1_4 alkyl), ¨C(0)0H, ¨NR(C0)0(C1_4 alkyl), ¨CONH2, ¨OH or halogen; wherein R is hydrogen or a C1_2 alkyl;
each R5a and each R5b is independently selected from halogen, ¨CN, C1_6 alkyl, ¨(C1-6 alkyl)R6a, ¨0R6a, ¨SR6a, ¨COR6a, ¨0C(0)R6a, ¨C(0)0R6a, ¨C(0)N(R6a)2, ¨C(0)N(R6a)S02R6a, ¨N(R6a)C(0)R6a, ¨N(R6a)C(0)0R6a, ¨N(R6a)C(0)N(R6a)2, ¨N(R6a)2, ¨SO2R6a, ¨S020H, ¨SO2NHOH, ¨502N(R6a)2, ¨502N(R6a)COOR6a, ¨502N(R6a)C(0)R6a, ¨N(R6a)S02R6a, ¨(C=0)NHOR6a, a C3_8 cycloalkyl ring, a 4 to 7-membered heterocyclic ring, a 5 or 6-membered heteroaryl ring, phenyl, benzyl, an oxo group or a bicyclic group; wherein each 5 or 6-membered heteroaryl ring or 4 to 7-membered heterocyclic ring contains up to 4 ring heteroatoms independently selected from N, 0 and S, wherein each of said C1_6 alkyl, C1_6 alkyl portion of the ¨(C1_6 a1kyl)R6a moiety, C3_8 cycloalkyl ring, 4 to 7-membered heterocyclic ring, 5 or 6-membered heteroaryl ring, benzyl or phenyl group is optionally and independently substituted with up to 3 instances of halogen, C1_4 alkyl, C1_4 haloalkyl, ¨OH, ¨NH2, ¨NH(C1-4 alkyl), ¨N(C1_4 a1ky1)2, ¨CN, ¨COOH, ¨CONH2, ¨COO(C1_4 alkyl), ¨0(C1_4 alkyl), ¨0(C1-4 haloalkyl) or oxo; wherein said bicyclic group contains ring one and ring two in a fused or bridged relationship, said ring one is a 4 to 7-membered heterocyclic ring, a 5 or 6-membered heteroaryl ring, phenyl or benzyl, and said ring two is a phenyl ring or a 5 or 6-membered heteroaryl ring containing up to 3 ring heteroatoms selected from N, 0 or S;
and wherein said bicyclic group is optionally and independently substituted by up to six instances of halogen, C1_4 alkyl, ¨OH, ¨NH2, ¨NH(C1_4 alkyl), ¨N(C1_4 alky1)2, ¨CN, ¨COOH, ¨CONH2, ¨COO(Ci_4 alkyl), ¨0(Ci_4 alkyl), ¨0(Ci_4 haloalkyl) or oxo;
two instances of R5a or two instances of R5b attached to the same or different atoms of RD or Rd, respectively, together with said atom or atoms to which they are attached, may optionally form a C3_8 cycloalkyl ring, a 4 to 6-membered heterocyclic ring; a phenyl or a 5 or 6-membered heteroaryl ring, resulting in a bicyclic system wherein the two rings of the bicyclic system are in a spiro, fused or bridged relationship with respect to each other; wherein said 4 to 6-membered heterocycle or said 5 or 6-membered heteroaryl ring contains up to four ring heteroatoms independently selected from N, 0 or S; and wherein said C3_8 cycloalkyl ring, 4 to 6-membered heterocyclic ring, phenyl or 5 or 6-membered heteroaryl ring is optionally and independently substituted by up to 3 instances of C14 alkyl, C1_4 haloalkyl, C1_4 alkoxy, C1-4 haloalkoxy, oxo, ¨C(0)0(C1_4 alkyl), ¨C(0)0H, ¨C(0)NH2, ¨NR(C0)0(C1_4 alkyl), ¨OH or halogen; wherein R is hydrogen or a C1_2 alkyl;
each R5' is independently selected from halogen, ¨CN, C1_6 alkyl, ¨(C1_6 a1ky1)-R6b, ¨0R6b, ¨SR6b, ¨COR6b, ¨0C(0)R6b, ¨C(0)0R6b, ¨C(0)N(R6b)2, ¨C(0)N(R6b)S02R6b, ¨N(R6b)C(0)R6b, ¨N(R6b)C(0)0R6b, ¨N(R6b)C(0)N(R6b)2, ¨N(R6b)2, ¨SO2R6b, ¨S020H, ¨SO2NHOH, ¨502N(R6b)2, ¨502N(R6b)COOR6b, ¨502N(R6b)C(0)R6b, ¨N(R6b)S02R6b, ¨(C=0)NHOR6b, a C3_8 cycloalkyl ring, a 4 to 7-membered heterocyclic ring, a 5 or 6-membered heteroaryl ring, phenyl, benzyl, an oxo group, or a bicyclic group;
wherein each of said 5 or 6-membered heteroaryl ring and each of said 4 to 7-membered heterocyclic ring contains up to 4 ring heteroatoms independently selected from N, 0 and S; and wherein each of said C1_6 alkyl, C1_6 alkyl portion of said ¨(C1_6 a1ky1)-R6b moiety, each of said C3_8 cycloalkyl ring, each of said 4 to 7-membered heterocyclic ring, each of said 5 or 6-membered heteroaryl ring, each of said benzyl and each of said phenyl group is optionally and independently substituted with up to 3 instances of halogen, C1_4 alkyl, ¨OH, ¨NH2, ¨NH(C1_4 alkyl), ¨N(C1-4 alky1)2, ¨CN, ¨COOH, ¨CONH2, ¨COO(C1_4 alkyl), ¨0(C1_4 alkyl), ¨0(C1_4 haloalkyl) or oxo;
wherein said bicyclic group contains a first ring and a second ring in a fused or bridged relationship, said first ring is a 4 to 7-membered heterocyclic ring, a 5 or 6-membered heteroaryl ring, phenyl or benzyl, and said second ring is a phenyl ring or a 5 or 6-membered heteroaryl ring containing up to 3 ring heteroatoms selected from N, 0 or S;
and wherein said bicyclic group is optionally and independently substituted by up to six instances of halogen, C1_4 alkyl, ¨OH, ¨NH2, ¨NH(C1_4 alkyl), ¨N(C1_4 alky1)2, ¨CN, ¨COOH, ¨CONH2, ¨COO(Ci_4 alkyl), ¨0(Ci_4 alkyl), ¨0(Ci_4 haloalkyl) or oxo;
two instances of R5c attached to the same or different atoms of Rf, together with said atom or atoms to which it is attached, may optionally form a C3_8 cycloalkyl ring, a 4 to 6-membered heterocyclic ring; a phenyl or a 5 or 6-membered heteroaryl ring, resulting in a bicyclic system wherein the two rings of the bicyclic system are in a spiro, fused or bridged relationship with respect to each other; wherein said 4 to 6-membered heterocycle or said 5 or 6-membered heteroaryl ring contains up to four ring heteroatoms independently selected from N, 0 or S; and wherein said C3_8 cycloalkyl ring, 4 to 6-membered heterocyclic ring, phenyl or 5 or 6-membered heteroaryl ring is optionally and independently substituted by up to 3 instances of C1_4 alkyl, C1_4 haloalkyl, C1_4 alkoxy, C1_4 haloalkoxy, oxo, ¨C(0)0(C1_4 alkyl), ¨C(0)0H, ¨CONH2, ¨NR(C0)0(C1_4 alkyl), ¨OH or halogen; wherein R is hydrogen or a C1_2 alkyl;
each R5d is independently selected from halogen, ¨CN, C1_6 alkyl, ¨(C1_6 alkyl)-R6, ¨0R6, ¨SR6, ¨COR6, ¨0C(0)R6, ¨C(0)0R6, ¨C(0)N(R6)2, ¨N(R6)C(0)R6, ¨N(R6)C(0)0R6, ¨N(R6)C(0)N(R6)2, ¨N(R6)2, ¨S02R6, ¨S020H, ¨SO2NHOH, ¨502N(R6)COR6, ¨502N(R6)2, ¨N(R6)502R6, a C7-12 aralkyl, a C3_8 cycloalkyl ring, a 4 to 7-membered heterocyclic ring, a 5 or 6-membered heteroaryl ring, phenyl or an oxo group;
wherein each 5 or 6-membered heteroaryl ring or 4 to 7-membered heterocyclic ring contains up to four ring heteroatoms independently selected from N, 0 and S, wherein each of said C1_6 alkyl, C1_6 alkyl portion of the ¨(C1_6 alkyl)-R6moiety, C7_12 aralkyl, C3_8 cycloalkyl ring, 4 to 7-membered heterocyclic ring, 5 or 6-membered heteroaryl ring or phenyl group is optionally and independently substituted with up to 3 instances of halogen, C1_4 alkyl, C1_4 (haloalkyl), ¨OH, ¨NH2, ¨NH(C1_4 alkyl), ¨N(C1_4 alky1)2, ¨CN, ¨COOH, ¨CONH2, ¨COO(C1_4 alkyl), ¨0(C1-4 alkyl), ¨0(C1_4 haloalkyl) or oxo;
two instances of R5' attached to the same or different atoms of JD, together with said atom or atoms ofJD to which they are attached, may optionally form a C3_8 cycloalkyl ring, a 4 to 6-membered heterocyclic ring; a phenyl or a 5 or 6-membered heteroaryl ring, resulting in a bicyclic system wherein the two rings of the bicyclic system are in a spiro, fused or bridged relationship with respect to each other; wherein said 4 to 6-membered heterocycle or said 5 or 6-membered heteroaryl ring contains up to four ring heteroatoms independently selected from N, 0 or S; and wherein said C3_8 cycloalkyl ring, 4 to 6-membered heterocyclic ring, phenyl or or 6-membered heteroaryl ring is optionally and independently substituted by up to 3 instances of Ci _4 alkyl, Ci _4 haloalkyl, Ci _4 alkoxy, Ci_4 haloalkoxy, oxo, ¨C(0)0(C1_4 alkyl), ¨C(0)0H, ¨NR(C0)0(C1_4 alkyl), ¨C(0)NH2, ¨OH or halogen; wherein R is hydrogen or a Ci_2 alkyl;
each R6 is independently selected from hydrogen, a Ci_6 alkyl, phenyl, benzyl, a C3_8 cycloalkyl ring, a 4 to 7-membered heterocyclic ring or a 5 or 6-membered heteroaryl ring, wherein each of said Ci_6 alkyl, each of said phenyl, each of said benzyl, each of said C3_8 cycloalkyl group, each of said 4 to 7-membered heterocyclic ring and each of said 5 or 6-membered heteroaryl ring is optionally and independently substituted with up to 3 instances of halogen, Ci_4 alkyl, ¨OH, ¨NH2, ¨NH(C1_4 alkyl), ¨N(C1_4 a1ky1)2, ¨CN, ¨COOH, ¨C(0)NH2, ¨COO(C1_4 alkyl), ¨0(C1_4 alkyl), ¨0(C1_4 haloalkyl) or oxo, wherein each of said 5 or 6-membered heteroaryl ring or 4 to 7-membered heterocyclic ring contains up to 4 ring heteroatoms independently selected from N, 0 and S;
each R6a is independently selected from hydrogen, a Ci_6 alkyl, phenyl, benzyl, a C3_8 cycloalkyl ring, a 4 to 7-membered heterocyclic ring or a 5 or 6-membered heteroaryl ring, wherein each of said C1_6 alkyl, each of said phenyl, each of said benzyl, each of said C3_8 cycloalkyl group, each of said 4 to 7-membered heterocyclic ring and each of said 5 or 6-membered heteroaryl ring is optionally and independently substituted with up to 3 instances of halogen, Ci_4 alkyl, ¨OH, ¨NH2, ¨NH(Ci_4 alkyl), ¨N(Ci_4 alky1)2, ¨CN, ¨COOH, ¨C(0)NH2, ¨C(0)N(Ci_6 a1ky1)2, ¨C(0)NH(Ci_6 alkyl), ¨C(0)N(Ci_6 haloalky1)2, ¨C(0)NH(Ci_6 haloalkyl), C(0)N(Ci_6 alkyl)(Ci_6 haloalkyl), ¨COO(Ci_6 alkyl), ¨COO(C1-6 haloalkyl), ¨0(Ci_4 alkyl), ¨0(Ci_4 haloalkyl) or oxo, wherein each of said 5 or 6-membered heteroaryl ring or 4 to 7-membered heterocyclic ring contains up to 4 ring heteroatoms independently selected from N, 0 and S;
each R6b is independently selected from hydrogen, a Ci_6 alkyl, phenyl, benzyl, a C3_8 cycloalkyl ring, a 4 to 7-membered heterocyclic ring or a 5 or 6-membered heteroaryl ring, wherein each of said C1_6 alkyl, each of said phenyl, each of said benzyl, each of said C3_8 cycloalkyl group, each of said 4 to 7-membered heterocyclic ring and each of said 5 or 6-membered heteroaryl ring is optionally and independently substituted with up to 3 instances of halogen, Ci_4 alkyl, ¨OH, ¨NH2, ¨NH(Ci_4 alkyl), ¨N(Ci_4 alky1)2, ¨CN, ¨COOH, ¨C(0)NH2, ¨COO(Ci_4 alkyl), ¨0(Ci_4 alkyl), ¨0(Ci_4 haloalkyl) or oxo, wherein each of said or 6-membered heteroaryl ring or 4 to 7-membered heterocyclic ring contains up to 4 ring heteroatoms independently selected from N, 0 and S; wherein two instances of R6 linked to the same nitrogen atom of R5 or R5d, together with said nitrogen atom of R5 or R5d, respectively, may form a 5 to 8-membered heterocyclic ring or a 5-membered heteroaryl ring; wherein each said 5 to 8-membered heterocyclic ring and each said 5-membered heteroaryl ring optionally contains up to 2 additional heteroatoms independently selected from N, 0 or S;
two instances of R6a linked to a nitrogen atom of R5a or R5b, together with said nitrogen, may form a 5 to 8-membered heterocyclic ring or a 5-membered heteroaryl ring;
wherein each said 5 to 8-membered heterocyclic ring and each said 5-membered heteroaryl ring optionally contains up to 2 additional heteroatoms independently selected from N, 0 or S;
two instances of R6b linked to a nitrogen atom of R5c, together with said nitrogen, may form a 5 to 8-membered heterocyclic ring or a 5-membered heteroaryl ring; wherein each said 5 to 8-membered heterocyclic ring and each said 5-membered heteroaryl ring optionally contains up to 2 additional heteroatoms independently selected from N, 0 or S;
two JD groups attached to two vicinal ring D atoms, taken together with said two vicinal ring D
atoms, may form a 5 to 7-membered heterocycle or a 5-membered heteroaryl ring that is fused to ring D; wherein said 5 to 7-membered heterocycle or said 5-membered ring heteroaryl contains from 1 to 3 heteroatoms independently selected from N, 0 or S; and wherein said 5 to 7-membered heterocycle or said 5-membered heteroaryl ring is optionally and independently substituted by up to 3 instances of oxo or ¨(Y)¨R9;
wherein Y is either absent or is a linkage in the form of a Ci_6 alkyl chain, optionally substituted by up to 6 instances of fluoro; and wherein when Y is said Ci_6 alkyl chain, up to 3 methylene units of this alkyl chain, can be replaced by a group selected from ¨0¨, ¨C(0) ¨ or ¨N((Y)-R90)¨, wherein i) when Y is absent, each R9 is independently selected from hydrogen, ¨COR1 , ¨C(0)0R1 , ¨C(0)N(R1 )2, ¨C(0)N(R1 )S02R1 ,¨S02R1 , ¨SO2N(R1 )2, ¨502N(R1 )COOR1 5 ¨502N(R1 )C(0)R1 , ¨(C=0)NHOR1 , C3_6 cycloalkyl ring, a 4-8-membered heterocyclic ring, a phenyl ring or a 5-6 membered heteroaroaryl ring; wherein each said 4 to 8-membered heterocyclic ring or 5 to 6-membered heteroaryl ring contains up to 4 ring heteroatoms independently selected from N, 0 or S; and wherein each of said C3_6 cycloalkyl rings, each of said 4 to 8-membered heterocyclic rings, each of said phenyl and each of said to 6-membered heteroaryl rings is optionally and independently substituted with up to 3 instances of R"; and ii) when Y is present, each R9 is independently selected from hydrogen, halogen, -CN, -0R1 , -COR1 , -0C(0)R1 , -C(0)0R1 , -C(0)N(R1 )2, -C(0)N(Rio)so2Rio, N(Rio)c(0)Rio, Nr io, K 1C(0)0R1 , -N(R1 )C(0)N(Rio)2, N(R0IN2, cc, -n,õ
) oki2iv_1 , S 02N(R1 0)2, 502N(R1 )COOR1 , -502N(R10)c(0)R10, N(R10)502R10, (C=0)NHOR1 , C3_6 cycloalkyl ring, a 4-8-membered heterocyclic ring, a phenyl ring or a 5-6 membered heteroaroaryl ring; wherein each said 4 to 8-membered heterocyclic ring or 5 to 6-membered heteroaryl ring contains up to 4 ring heteroatoms independently selected from N, 0 or S; and wherein each of said C3_6 cycloalkyl rings, each of said 4 to 8-membered heterocyclic rings, each of said phenyl and each of said 5 to 6-membered heteroaryl rings is optionally and independently substituted with up to 3 instances of R";
each R9 is independently selected from hydrogen, halogen, -CN, -0R1 , -COR1 , -0C(0)R1 , -C(0)0R1 , 2 -C(0)N(R10.), C(0)N(Rio)502R1o, N(Rio)c(0)Rio, Nr io, K 1C(0)0R1 , -N(R1 )C(0)N(Rio)2, N(R0IN2, cc, -n,õ
) ov21=_1 ,2 SO2N(Ri0,), 502N(R1 )COOR1 , -502N(R10)c(0)R10, N(R10)502R10, (C=0)NHOR1 , C3_6 cycloalkyl ring, a 4-8-membered heterocyclic ring, a phenyl ring or a 5-6 membered heteroaryl ring; wherein each said 4 to 8-membered heterocyclic ring or 5 to 6-membered heteroaryl ring contains up to 4 ring heteroatoms independently selected from N, 0 or S; and wherein each of said C3_6 cycloalkyl rings, each of said 4 to 8-membered heterocyclic rings, each of said phenyl and each of said 5 to 6-membered heteroaryl rings is optionally and independently substituted with up to 3 instances ofRil;
each R1 is independently selected from hydrogen, a C1_6 alkyl, -(C1_6 a1kyl)-R13, phenyl, benzyl, a C3_8 cycloalkyl ring, a 4 to 7-membered heterocyclic ring or a 5 or 6-membered heteroaryl ring, wherein each 5 or 6-membered heteroaryl ring or 4 to 7-membered heterocyclic ring contains up to 4 ring heteroatoms independently selected from N, 0 and S;
and wherein each of said C1_6 alkyl, C1_6 alkyl portion of said -(C1_6 a1kyl)-R13 moiety, each
12 said phenyl, each said benzyl, each said C3_8 cycloalkyl group, each said 4 to 7-membered heterocyclic ring and each 5 or 6-membered heteroaryl ring is optionally and independently substituted with up to 3 instances of Ri la;
each R13 is independently selected from a phenyl, a benzyl, a C3_6 cycloalkyl ring, a 4 to 7-membered heterocyclic ring or a 5 or 6-membered heteroaryl ring, wherein each 5 or 6-membered heteroaryl ring or 4 to 7-membered heterocyclic ring contains up to 4 ring heteroatoms independently selected from N, 0 and S; and wherein each said phenyl, each of said benzyl, each said C3_8 cycloalkyl group, each said 4 to 7-membered heterocyclic ring and each 5 or 6-membered heteroaryl ring is optionally and independently substituted with up to 3 instances of Ri lb;
each R" is independently selected from halogen, oxo, C1_6 alkyl, ¨CN, ¨0R12, ¨COR12, ¨C(0)0R12, ¨C(0)N(R12)2, ¨N(R12)C(0)R12, ¨N(R12)C(0)0R12, ¨N(R12)C(0)N(R12)2, ¨N(R12)2, ¨SO2R12, ¨SO2N(R12)2 or ¨N(R12)S02R12; wherein each of said C1_6 alkyl is optionally and independently substituted by up to 6 instances of fluoro and/or 3 instances of R12;
each R' la is independently selected from halogen, oxo, C1_6 alkyl, ¨CN, ¨0R12, ¨COR12, ¨C(0)0R12, ¨C(0)N(R12)2, ¨N(R12)C(0)R12, ¨N(R12)C(0)0R12, ¨N(R12)C(0)N(R12)2, ¨N(R12)2, ¨SO2R12, ¨SO2N(R12)2 or ¨N(R12)S02R12; wherein each of said Ci_6 alkyl is optionally and independently substituted by up to 6 instances of fluoro and/or 3 instances of R12; and each R' lb is independently selected from halogen, C1_6 alkyl, oxo, ¨CN, ¨0R12, ¨COR12, ¨C(0)0R12, ¨C(0)N(R12)2, ¨N(R12)C(0)R12, ¨N(R12)C(0)0R12, ¨N(R12)C(0)N(R12)2, ¨N(R12)2, ¨502R12, ¨502N(R12)2 or ¨N(R12)502R12; wherein each of said C1_6 alkyl is optionally and independently substituted by up to 6 instances of fluoro and/or 3 instances of R12;
each R12 is selected from hydrogen, a Ci_6 alkyl, phenyl, benzyl, a C3_8 cycloalkyl ring, a 4 to 7-membered heterocyclic ring or a 5 or 6-membered heteroaryl ring, wherein each 5 or 6-membered heteroaryl ring or 4 to 7-membered heterocyclic ring contains up to 4 ring heteroatoms independently selected from N, 0 and S; and wherein each of said C1_6 alkyl, each
13 said phenyl, each said benzyl, each said C3_8 cycloalkyl group, each said 4 to 7-membered heterocyclic ring and each 5 or 6-membered heteroaryl ring is optionally and independently substituted with up to 3 instances of halogen, Ci_4 alkyl, C1_4 (fluoroalkyl), ¨OH, ¨NH2, ¨NH(C1_4 alkyl), ¨N(C1_4alky1)2, ¨CN, ¨COOH, ¨CONH2, ¨COO(C1_4 alkyl), ¨0(C1_4 alkyl), ¨0(Ci_4fluoroalkyl) or oxo.
Rc is either i) a ring C; or ii) is selected from halogen, ¨CN, C1_6 alkyl, ¨(C1_6 alkyl)-RN, ¨COW, ¨C(0)0R7, ¨C(0)N(R7)2, ¨N(R7)C(0)R7, ¨N(R7)C(0)0R7, ¨N(R7)C(0)N(R7)2, ¨N(R7)2, ¨S02R7, ¨SO2N(R7)2, ¨C(0)N(R7)S02R7, ¨S02N(R7)COOR7, ¨S02N(R7)C(0)R7 or ¨N(R7)502R7;
wherein each said C1_6 alkyl, each C1_6 alkyl portion of said ¨(C1_6 alkyl)-RN, is optionally and independently substituted with up to 6 instances of fluoro and up to 2 instances of ¨CN, ¨0R8, oxo, ¨N(R8)2, ¨N(R8)C(0)R8, ¨N(R8)C(0)0R8, ¨N(R8)C(0)N(R8)2, ¨502R8, ¨502N(R8)2, ¨NHOR8, ¨502N(R8)COOR8, ¨502N(R8)C(0)R8, ¨N(R8)502R8;
wherein each R7 is independently selected from hydrogen, C1_6 alkyl, C1_6 fluoroalkyl, a C3_8 cycloalkyl ring, phenyl, a 4 to 7-membered heterocyclic ring or a 5 or 6-membered heteroaryl ring; wherein each of said 5 or 6-membered heteroaryl ring or 4 to 7-membered heterocyclic ring contains up to 4 ring heteroatoms independently selected from N, 0 and S;
and wherein each of said Ci_6 alkyl, each of said phenyl, each of said C3_8 cycloalkyl group, each of said 4 to 7-membered heterocyclic ring and each of said 5 or 6-membered heteroaryl ring is optionally and independently substituted with up to 3 instances of halogen, Ci_4 alkyl, ¨OH, ¨NH2, ¨NH(C1_4 alkyl), ¨N(C1_4a1ky1)2, ¨CN, ¨COOH, ¨COO(C1_4 alkyl), ¨0(C1_4 alkyl), ¨0(C1-4 haloalkyl) or oxo;
each R8 is independently selected from hydrogen, Ci_6 alkyl, Ci_6fluoroalkyl, a C3_8 cycloalkyl ring, a 4 to 7-membered heterocyclic ring or a 5 or 6-membered heteroaryl ring; wherein each of said 5 or 6-membered heteroaryl ring or 4 to 7-membered heterocyclic ring contains up to 4 ring heteroatoms independently selected from N, 0 and S; and wherein each of said Ci_6 alkyl, each of said phenyl, each of said C3_8 cycloalkyl group, each of said 4 to 7-membered heterocyclic ring and each of said 5 or 6-membered heteroaryl ring is optionally and independently substituted with up to 3 instances of halogen, Ci_4 alkyl, ¨OH, ¨NH2, ¨NH(C1-4
14 alkyl), ¨N(C1_4alky1)2, ¨CN, ¨COOH, ¨COO(C1_4 alkyl), ¨0(C1_4 alkyl), ¨0(C1_4haloalkyl) or oxo each RN is independently selected from a phenyl ring, a monocyclic 5 or 6-membered heteroaryl ring, a monocyclic C3-6 cycloaliphatic ring, or a monocyclic 4 to 6-membered heterocycle; wherein said monocyclic 5 or 6-membered heteroaryl ring or said monocyclic 4 to 6-membered heterocycle contain between 1 and 4 heteroatoms selected from N, 0 or S;
wherein said monocyclic 5 or 6-membered heteroaryl ring is not a 1,3,5-triazinyl ring; and wherein said phenyl, said monocyclic 5 to 6-membered heteroaryl ring, said monocyclic C3_6 cycloaliphatic ring, or said monocyclic 4 to 6-membered heterocycle is optionally and independently substituted with up to 6 instances of fluoro and/or up to 3 instances ofJm;
each Jm is independently selected from ¨CN, a C1_6 aliphatic, ¨ORm, ¨SRm, ¨N(Rm)2, a C3_8 cycloaliphatic ring or a 4 to 8-membered heterocyclic ring; wherein said 4 to 8-membered heterocyclic ring contains 1 or 2 heteroatoms independently selected from N, 0 or S; wherein each said C1_6 aliphatic, each said C3-8 cycloaliphatic ring and each said 4 to 8-membered heterocyclic ring, is optionally and independently substituted with up to 3 instances of R7c;
each Rm is independently selected from hydrogen, a C1_6 aliphatic, a C3_8 cycloaliphatic ring or a 4 to 8-membered heterocyclic ring; wherein each said 4 to 8-membered heterocyclic ring contains between 1 and 3 heteroatoms independently selected from 0, N or S;
and wherein ring C is a phenyl ring, a monocyclic 5 or 6-membered heteroaryl ring, a bicyclic 8 to 10-membered heteroaryl ring, a monocyclic 3 to 10-membered cycloaliphatic ring, or a monocyclic 4 to 10-membered heterocycle; wherein said monocyclic 5 or 6-membered heteroaryl ring, said bicyclic 8 to 10-membered heteroaryl ring, or said monocyclic 4 to 10-membered heterocycle contain between 1 and 4 heteroatoms selected from N, 0 or S;
wherein said monocyclic 5 or 6-membered heteroaryl ring is not a 1,3,5-triazinyl ring; and wherein said phenyl, monocyclic 5 to 6-membered heteroaryl ring, bicyclic 8 to 10-membered heteroaryl ring, monocyclic 3 to 10-membered cycloaliphatic ring, or monocyclic 4 to 10-membered heterocycle is optionally and independently substituted with up to p instances of Jc'; wherein p is 0 or an integer selected from 1 to 3.
each Jc' is independently selected from halogen, ¨CN, ¨NO2, a C1_6 aliphatic, ¨OR", ¨SR", ¨N(RH)2, a C3_8 cycloaliphatic ring or a 4 to 8-membered heterocyclic ring;
wherein said 4 to 8-membered heterocyclic ring contains 1 or 2 heteroatoms independently selected from N, 0 or S; wherein each said Ci_6 aliphatic, each said C3-8 cycloaliphatic ring and each said 4 to 8-membered heterocyclic ring, is optionally and independently substituted with up to 3 instances of R7'; or alternatively, two Jc' groups attached to two vicinal ring C atoms, taken together with said two vicinal ring C atoms, form a 5 to 7-membered heterocycle that is a new ring fused to ring C;
wherein said 5 to 7-membered heterocycle contains from 1 to 2 heteroatoms independently selected from N, 0 or S;
each RH is independently selected from hydrogen, a Ci_6 aliphatic, a C3_8 cycloaliphatic ring or a 4 to 8-membered heterocyclic ring ; wherein each said 4 to 8-membered heterocyclic ring contains between 1 and 3 heteroatoms independently selected from 0, N or S;
alternatively, two instances of R" linked to the same nitrogen atom of ¨N(RH)2, together with said nitrogen atom of ¨N(RH)2, form a 4 to 8-membered heterocyclic ring or a 5-membered heteroaryl ring;
wherein each said 4 to 8-membered heterocyclic ring and each said 5-membered heteroaryl ring optionally contains up to 2 additional heteroatoms independently selected from N, 0 or S;
each R7c is independently selected from hydrogen, halogen, ¨CN, ¨NO2, C1_4 alkyl, C1-4 haloalkyl, C3_8 cycloalkyl ring, ¨0R8b, ¨Se, ¨N(R8b)2, ¨C(0)0(C1_4 alkyl), ¨C(0)0H, ¨NR(CO)CO(C1_4 alkyl) or an oxo group; wherein each said cycloalkyl group is optionally and independently substituted with up to 3 instances of halogen;
each R7d is independently selected from hydrogen, halogen, ¨CN, ¨NO2, C1_4 alkyl, C1-4 haloalkyl, C3_8 cycloalkyl ring, ¨0R8c, ¨SR8c, ¨N(R8c)2, or an oxo group;
wherein each said cycloalkyl group is optionally and independently substituted with up to 3 instances of halogen;
each R8b is independently selected from hydrogen, C1_6 alkyl, C1_6 fluoroalkyl, a C3_8 cycloalkyl ring, a 4 to 7-membered heterocyclic ring or a 5 or 6-membered heteroaryl ring; wherein each of said 5 or 6-membered heteroaryl ring or 4 to 7-membered heterocyclic ring contains up to 4 ring heteroatoms independently selected from N, 0 and S; and wherein each of said C1_6 alkyl, each of said phenyl, each of said C3_8 cycloalkyl group, each of said 4 to 7-membered heterocyclic ring and each of said 5 or 6-membered heteroaryl ring is optionally and independently substituted with up to 3 instances of halogen, Ci_4 alkyl, ¨OH, ¨NH2, ¨NH(C1-4 alkyl), ¨N(C1_4 a1ky1)2, ¨CN, ¨COOH, ¨COO(C1_4 alkyl), ¨0(C1_4 alkyl), ¨0(C1_4 haloalkyl) or oxo;

each R8' is independently selected from hydrogen, Ci_6 alkyl, C1_6 fluoroalkyl, a C3_8 cycloalkyl ring, a 4 to 7-membered heterocyclic ring or a 5 or 6-membered heteroaryl ring; wherein each of said 5 or 6-membered heteroaryl ring or 4 to 7-membered heterocyclic ring contains up to 4 ring heteroatoms independently selected from N, 0 and S; and wherein each of said C1_6 alkyl, each of said phenyl, each of said C3_8 cycloalkyl group, each of said 4 to 7-membered heterocyclic ring and each of said 5 or 6-membered heteroaryl ring is optionally and independently substituted with up to 3 instances of halogen, C1_4 alkyl, ¨OH, ¨NH2, ¨NH(C1-4 alkyl), ¨N(C1_4a1ky1)2, ¨CN, ¨COOH, ¨COO(C1_4 alkyl), ¨0(C1_4 alkyl), ¨0(C1_4haloa1kyl) or oxo;
provided that the compound is not a compound depicted below:

(.J B)O-3 N NC j D....... N, i ;NI N
\ /
, N JA .___..N

F ; and OMe ; wherein JD is either an ethylene or ¨N(Me)2;
JA is either hydrogen or methyl; and JB is either fluoro or Ci_2a1koxy.
[0011] The present invention is also directed to compounds according to Formula I, or pharmaceutically acceptable salts thereof, ( JC) p 0 "N GI 13)n I IV
1 N Ri =
/
Formula I
wherein:
X is selected from N, CH, C(C1_4 alkyl), C(C1_4haloa1kyl), CC1 and CF;
ring B is a phenyl or a 6-membered heteroaryl ring containing 1 or 2 ring nitrogen atoms, or ring B is a thiophene;
n is 0 or an integer selected from 1 to 3;

each JB is independently selected from halogen, ¨CN, a C1_6 aliphatic, ¨ORB or a C3-8 cycloaliphatic ring; wherein each of said C 1 _6 aliphatic and each of said C3_8 cycloaliphatic group is optionally substituted with up to 3 instances of halogen;
each Re is independently selected from hydrogen, a C 1 _6 aliphatic or a C3_8 cycloaliphatic ring;
wherein each of said Re that is a C 1 _6 aliphatic and each of said Re that is a C3-8 cycloaliphatic ring is optionally substituted with up to 3 instances of halogen;
JA is selected from hydrogen, halogen, methyl, methoxy, trifluoromethyl, trifluoromethoxy or ¨NRaRb, wherein Ra and Rb are each independently selected from hydrogen, C 1 _6 alkyl or a 3-6 cycloalkyl ring;
JD is absent or selected from halogen, ¨CN, ¨CF3, methoxy, trifluoromethoxy, nitro, amino or methyl;
Rl and R2, together with the nitrogen atom to which they are attached, form a 4 to 8-membered heterocyclic ring or 5 or 6-membered heteroaryl ring; wherein said 4 to 8-membered heterocyclic ring or 5 or 6-membered heteroaryl ring optionally contains in addition to the nitrogen atom up to 3 ring heteroatoms independently selected from N, 0 or S, and is optionally substituted by up to 5 instances of R5; or alternatively, Rl and R2 are each independently selected from hydrogen, C 1 _6 alkyl, a C3_8 cycloalkyl ring, a 4 to 8-membered heterocyclic ring, a 5 or 6-membered heteroaryl or a C1_6 alkyl¨R'; wherein each of said 4 to 8-membered heterocyclic ring and each of said or 6-membered heteroaryl ring contains up to 3 ring heteroatoms independently selected from N, 0 and S; and wherein each of said C 1 _6 alkyl, C3_8 cycloalkyl ring, 4 to 8-membered heterocyclic ring group, 5 or 6-membered heteroaryl and the C1_6 alkyl portion of said C1_6 alkyl¨R' is optionally and independently substituted with up to 5 instances of R5a; provided that Rl and R2 are never simultaneously hydrogen;
and provided than when X is one of CH, C(Ci _4 alkyl), C(Ci_4 haloalkyl), CC1 or CF, one of Rl and R2 is not a pyridine or a pyrimidine; or alternatively, JD and one of R' or R2 can form a 5-6 membered heterocyclic ring containing up to two heteroatoms selected from 0, N and S and optionally substituted with up to 3 instances of oxo or ¨(Y)¨R9;
wherein Y is either absent or is a linkage in the form of a C1_6 alkyl chain, optionally substituted by up to 6 instances of fluoro;
each R9 is independently selected from hydrogen, fluoro, ¨CN, ¨ORm, ¨SRm, ¨COR1 , ¨0C(0)R1 , ¨C(0)0R1 , ¨C(0)N(R1 )2, ¨C(0)N(R1 )S02R1 , ¨N(R1 )C(0)R1 , ¨N(R1 )C(0)0R1 5 ¨N(R1 )C(0)N(R1 )2, ¨N(R1 )25 ¨S 02R1 5 ¨SO2N(R1 )25 -SO2N(R1 )COOR1 , -SO2N(R1 )C(0)R1 , -N(R1 )S02R1 , ¨(C=0)NHOR1 , a C3-6 cycloalkyl ring, a 4-8-membered heterocyclic ring or a 5-6 membered heteroaryl ring;
wherein each said 4 to 8-membered heterocyclic ring or 5 to 6-membered heteroaromatic ring contains up to 4 ring heteroatoms independently selected from N, 0 or S; and wherein each of said C3_6 cycloalkyl rings, each of said 4 to 8-membered heterocyclic rings and each of said 5 to 6-membered heteroaromatic rings is optionally substituted with up to 3 instances of R";
each R" is independently selected from halogen, C1_6 alkyl, ¨CN, ¨0R12, ¨SR12, ¨COR12, ¨0C(0)R12, ¨C(0)0R12, ¨C(0)N(R12)2, -C(0)N(R12)502R12, -N(R12)C(0)R12, -N(R12)C(0)0R125 -N(R12)C(0)N(R12)25 -N(R12)25 -502R125 -502N(R12)25 -502N(R12)COOR125 -502N(R12)C(0)R125 -N(R12)S02R12 and ¨N=OR' 2; wherein each of said C1_6 alkyl is optionally and independently substituted by up to 3 instances of fluoro, ¨OH, ¨0(C,4 alkyl), phenyl and ¨0(C,4 fluoroalkyl) wherein each Rl is independently selected from hydrogen, a C1_6 alkyl, phenyl, benzyl, a C3_8 cycloalkyl ring, a 4 to 7-membered heterocyclic ring or a 5 or 6-membered heteroaryl ring, wherein each 5 or 6-membered heteroaryl ring or 4 to 7-membered heterocyclic ring contains up to 4 ring heteroatoms independently selected from N, 0 and S;
and wherein each of said C1_6 alkyl, each said phenyl, each said benzyl, each said C3_8 cycloalkyl group, each said 4 to 7-membered heterocyclic ring and each 5 or 6-membered heteroaryl ring is optionally and independently substituted with up to 3 instances of halogen, C1_4 alkyl, C1_4 (fluoroalkyl), ¨OH, ¨NH2, ¨NH(Ci_4 alkyl), ¨N(Ci_4 a1ky1)2, ¨CN, ¨COOH, ¨COO(Ci_4 alkyl), ¨0(C,4 alkyl), ¨0(C,4 fluoroalkyl) or oxo; and wherein each R12 is independently selected from hydrogen, a C1_6 alkyl, phenyl, benzyl, a C3_8 cycloalkyl ring, a 4 to 7-membered heterocyclic ring or a 5 or 6-membered heteroaryl ring, wherein each 5 or 6-membered heteroaryl ring or 4 to 7-membered heterocyclic ring contains up to 4 ring heteroatoms independently selected from N, 0 and S;
and wherein each of said C1_6 alkyl, each said phenyl, each said benzyl, each said C3_8 cycloalkyl group, each said 4 to 7-membered heterocyclic ring and each 5 or 6-membered heteroaryl ring is optionally and independently substituted with up to 3 instances of halogen, C1_4 alkyl, C1_4 (fluoroalkyl), ¨OH, ¨NH2, ¨NH(Ci_4 alkyl), ¨N(Ci_4 a1ky1)2, ¨CN, ¨COOH, ¨COO(Ci_4 alkyl), ¨0(C,4 alkyl), ¨0(C,4 fluoroalkyl) OT OXO;

RI( is selected from a C3_8 cycloalkyl ring, a 4 to 8-membered heterocyclic ring, phenyl, or a 5 to 6-membered heteroaromatic ring; wherein each of said 4 to 8-membered heterocyclic ring or 5 to 6-membered heteroaromatic ring contains up to 4 ring heteroatoms independently selected from N, 0 or S; and wherein each of said C3_8 cycloalkyl ring, each of said 4 to 8-membered heterocyclic ring, each of said phenyl, and each of said 5 to 6-membered heteroaromatic ring is optionally substituted with up to 5 instances of R5';
each R5' is independently selected from halogen, ¨CN, C1_6 alkyl, ¨0R6b, ¨SR6b, ¨COR6b, ¨0C(0)R6b, ¨C(0)0R6b, ¨C(0)N(R6b)2, ¨C(0)N(R6b)S02R6b, ¨N(R6b)C(0)R6b, ¨N(R6b)C(0)0R6b, ¨N(R6b)C(0)N(R6b)2, ¨N(R6b)2, ¨SO2R6b, ¨SO2N(R6b)2, ¨502N(R6b)COOR6b, ¨502N(R6b)C(0)R6b, ¨N(R6b)S02R6b, ¨(C=0)NHOR6b, a C3-8 cycloalkyl ring, a 4 to 7-membered heterocyclic ring, a 5 or 6-membered heteroaryl ring, phenyl, benzyl, an oxo group, or a bicyclic group; wherein each of said 5 or 6-membered heteroaryl ring and each of said 4 to 7-membered heterocyclic ring contains up to 4 ring heteroatoms independently selected from N, 0 and S; and wherein each of said C1_6 alkyl, each of said C3_8 cycloalkyl ring, each of said 4 to 7-membered heterocyclic ring, each of said 5 or 6-membered heteroaryl ring, each of said benzyl and each of said phenyl group is optionally and independently substituted with up to 3 instances of halogen, C1_4 alkyl, ¨OH, ¨NH2, ¨NH(C1_4 alkyl), ¨N(C1_4 a1ky1)2, ¨CN, ¨COOH, ¨COO(C1_4 alkyl), ¨0(C1_4 alkyl), ¨0(C1_4 haloalkyl) or oxo; wherein said bicyclic group contains a first ring and a second ring in a fused or bridged relationship, said first ring is a 4 to 7-membered heterocyclic ring, a 5 or 6-membered heteroaryl ring, phenyl or benzyl, and said second ring is a phenyl ring or a 5 or 6-membered heteroaryl ring containing up to 3 ring heteroatoms selected from N, 0 or S;
and wherein said bicyclic group is optionally and independently substituted by up to six instances of halogen, C1_4 alkyl, ¨OH, ¨NH2, ¨NH(C1_4 alkyl), ¨N(C1_4 a1ky1)2, ¨CN, ¨COOH, ¨COO(C1_4 alkyl), ¨0(C1_4 alkyl), ¨0(C1_4 haloalkyl) or oxo;
each R6b is independently selected from hydrogen, a C1_6 alkyl, phenyl, benzyl, a C3_8 cycloalkyl ring, a 4 to 7-membered heterocyclic ring or a 5 or 6-membered heteroaryl ring, wherein each 5 or 6-membered heteroaryl ring or 4 to 7-membered heterocyclic ring contains up to 4 ring heteroatoms independently selected from N, 0 and S;
and wherein each of said C1_6 alkyl, each said phenyl, each said benzyl, each said C3_8 cycloalkyl group, each said 4 to 7-membered heterocyclic ring and each 5 or 6-membered heteroaryl ring is optionally and independently substituted with up to 3 instances of halogen, Ci_4 alkyl, ¨OH, ¨NH2, ¨NH(C1_4 alkyl), ¨N(C1_4 alky1)2, ¨CN, ¨COOH, ¨COO(C1_4 alkyl), ¨0(C1_4 alkyl), ¨0(C1_4 haloalkyl) or oxo; or two instances of R5c attached to the same or different ring atoms of RY, together with said ring atom or atoms, may form a C3_8 cycloalkyl ring, a 4 to 6-membered heterocyclic ring; a phenyl or a 5 or 6-membered heteroaryl ring, resulting in a bicyclic system wherein the two rings are in a spiro, fused or bridged relationship, wherein said 4 to 6-membered heterocycle or said 5 or 6-membered heteroaryl ring contains up to three heteroatoms independently selected from N, 0 or S; and wherein said C3_8 cycloalkyl ring, 4 to 6-membered heterocyclic ring, phenyl or a 5 or 6-membered heteroaryl ring is optionally and independently substituted by up to 3 instances of Ci _4 alkyl, haloalkyl, C1_4 alkoxy, C1_4 haloalkoxy, oxo, ¨C(0)0(C1_4 alkyl), ¨C(0)0H, ¨NR"(CO)CO(C1_4 alkyl), ¨OH or halogen; wherein R" is hydrogen or a C1_2 alkyl;
each R5a is independently selected from halogen, ¨CN, C1_6 alkyl, ¨0R6a, ¨SR6a, ¨COR6a, ¨0C(0)R6a, ¨C(0)0R6a, ¨C(0)N(R6a)2, C(0)N(R6a)so2R6a, N(R6a)c(0)R6a, ¨N(R6a)C(0)0R6a5 N(R6a)c(0)N(R6a)25 N(R6a 2 )5 SO2R6a, ¨502N(R6a)2, ¨502N(R6a)COOR6a, ¨502N(R6a)c(0)R6a5 N(R6a)so2R6a5 (C=0)NHOR6a, a C3_8 cycloalkyl ring, a 4 to 7-membered heterocyclic ring, a 5 or 6-membered heteroaryl ring, phenyl, benzyl, an oxo group or a bicyclic group; wherein each 5 or 6-membered heteroaryl ring or 4 to 7-membered heterocyclic ring contains up to 4 ring heteroatoms independently selected from N, 0 and S, wherein each of said C1_6 alkyl, C3_8 cycloalkyl ring, 4 to 7-membered heterocyclic ring, 5 or 6-membered heteroaryl ring, benzyl or phenyl group is optionally and independently substituted with up to 3 instances of halogen, C1_4 alkyl, C1_4 haloalkyl, ¨OH, ¨NH2, ¨NH(C1_4 alkyl), ¨N(C1_4 a1ky1)2, ¨CN, ¨COOH, ¨COO(C1_4 alkyl), ¨0(C1_4 alkyl), ¨0(C1_4 haloalkyl) or oxo; wherein said bicyclic group contains ring one and ring two in a fused or bridged relationship, said ring one is a 4 to 7-membered heterocyclic ring, a 5 or 6-membered heteroaryl ring, phenyl or benzyl, and said ring two is a phenyl ring or a 5 or 6-membered heteroaryl ring containing up to 3 ring heteroatoms selected from N, 0 or S; and wherein said bicyclic group is optionally and independently substituted by up to six instances of halogen, C1_4 alkyl, ¨OH, ¨NH2, ¨NH(C1_4 alkyl), ¨N(C1_4 a1ky1)2, ¨CN, ¨COOH, ¨COO(C1_4 alkyl), ¨0(C1_4 alkyl), ¨0(C1_4 haloalkyl) or oxo;
each R6a is independently selected from hydrogen, a C1_6 alkyl, phenyl, benzyl, a C3_8 cycloalkyl ring, a 4 to 7-membered heterocyclic ring or a 5 or 6-membered heteroaryl ring, wherein each of said C1_6 alkyl, each of said phenyl, each of said benzyl, each of said C3_8 cycloalkyl group, each of said 4 to 7-membered heterocyclic ring and each of said 5 or 6-membered heteroaryl ring is optionally and independently substituted with up to 3 instances of halogen, C1_4 alkyl, ¨OH, ¨NH2, ¨NH(Ci_4 alkyl), ¨N(Ci_4 a1ky1)2, ¨CN, ¨COOH, ¨C(0)NH2, ¨C(0)N(C1_6 alky1)2, ¨C(0)NH(C1_6 alkyl), ¨C(0)N(C1-6 haloa1ky1)2, ¨C(0)NH(Ci_6 halo alkyl), C(0)N(Ci_6 alkyl)(Ci_6 haloalkyl), ¨COO(C1-6 alkyl), ¨COO(Ci_6 haloalkyl), ¨0(Ci_4 alkyl), ¨0(Ci_4 haloalkyl) or oxo, wherein each of said 5 or 6-membered heteroaryl ring or 4 to 7-membered heterocyclic ring contains up to 4 ring heteroatoms independently selected from N, 0 and S; or when one of R1 or R2 is the C3_8 cycloalkyl ring, 4 to 8-membered heterocyclic ring or 5 or 6-membered heteroaryl substituted with up to 5 instances of R5a, two of the instances of R5' attached to the same or different ring atoms of said Rl or R2, together with said atom or atoms, may optionally form a C3_8 cycloalkyl ring, a 4 to 6-membered heterocyclic ring, a phenyl or a 5 or 6-membered heterocyclic ring, resulting in a bicyclic system wherein the two rings are in a spiro, fused or bridged relationship, wherein said 4 to 6-membered heterocycle or said 5 or 6-membered heterocyclic ring contains up to two ring heteroatoms independently selected from N, 0 or S; and wherein said C3_8 cycloalkyl ring, 4 to 6-membered heterocyclic ring, phenyl or 5 or 6-membered heterocyclic ring is optionally substituted by up to 2 instances of C14 alkyl, haloalkyl, oxo, ¨(CO)CO(C1_4 alkyl), ¨NR'(CO)CO(C1_4 alkyl) or halogen;
wherein R' is hydrogen or a C1_2 alkyl;
each R5 is independently selected from halogen, ¨CN, C1_6 alkyl, ¨0R6, ¨SR6, ¨COR6, ¨0C(0)R6, ¨C(0)0R6, ¨C(0)N(R6)2, ¨C(0)N(R6)S02R6, ¨N(R6)C(0)R6, ¨N(R6)C(0)0R6, ¨N(R6)C(0)N(R6)2, ¨N(R6)2, ¨S02R6, ¨502N(R6)2, ¨502N(R6)COOR6, ¨502N(R6)C(0)R6, ¨N(R6)502R6, ¨(C=0)NHOR6, a C3-8 cycloalkyl ring, a 4 to 7-membered heterocyclic ring, a 5 or 6-membered heteroaryl ring, phenyl, benzyl, an oxo group or a bicyclic group; wherein each of said 5 or 6-membered heteroaryl ring or 4 to 7-membered heterocyclic ring contains up to 4 ring heteroatoms independently selected from N, 0 and S; and wherein each of said C1_6 alkyl, C3_8 cycloalkyl ring, 4 to 7-membered heterocyclic ring, 5 or 6-membered heteroaryl ring, benzyl or phenyl group is optionally and independently substituted with up to 3 instances of halogen, C1_4 alkyl, ¨OH, ¨NH2, ¨NH(Ci_4 alkyl), ¨N(Ci_4 a1ky1)2, ¨CN, ¨COOH, ¨COO(Ci_4 alkyl), ¨0(C,4 alkyl), ¨0(C,4 haloalkyl) or oxo; wherein said bicyclic group contains ring one and ring two in a fused or bridged relationship, said ring one is a 4 to 7-membered heterocyclic ring, a 5 or 6-membered heteroaryl ring, phenyl or benzyl, and said ring two is a phenyl ring or a 5 or 6-membered heteroaryl ring containing up to 3 ring heteroatoms selected from N, 0 or S; and wherein said bicyclic group is optionally and independently substituted by up to six instances of halogen, C1_4 alkyl, ¨OH, ¨NH2, ¨NH(C1_4 alkyl), ¨N(C1_4 alky1)2, ¨CN, ¨COOH, ¨COO(C1_4 alkyl), ¨0(C1_4 alkyl), ¨0(C1_4 haloalkyl) or oxo;
each R6 is independently selected from hydrogen, a Ci_6 alkyl, phenyl, benzyl, a C3_8 cycloalkyl ring or a 4 to 7-membered heterocyclic ring, a 5 or 6-membered heteroaryl ring;
wherein each of said 5 or 6-membered heteroaryl ring or 4 to 7-membered heterocyclic ring contains up to 4 ring heteroatoms independently selected from N, 0 and S;
and wherein each of said C1_6 alkyl, each of said phenyl, each of said benzyl, each of said C3_8 cycloalkyl group, each of said 4 to 7-membered heterocyclic ring and each of said or 6-membered heteroaryl ring is optionally and independently substituted with up to 3 instances of halogen, Ci_4 alkyl, ¨OH, ¨NH2, ¨NH(C1_4 alkyl), ¨N(C1_4 alky1)2, ¨CN, ¨COOH, ¨COO(C1_4 alkyl), ¨0(C1_4 alkyl), ¨0(C1_4 haloalkyl) or oxo; or when Rl and R2 attached to the nitrogen atom form the 4 to 8-membered heterocyclic ring or 5 or 6-membered heteroaryl ring substituted with up to 5 instances of R5, two of the instances of R5 attached to the same or different atoms of said ring, together with said atom or atoms, may optionally form a C3_8 cycloalkyl ring, a 4 to 6-membered heterocyclic ring; a phenyl or a 5 or 6-membered heteroaryl ring, resulting in a bicyclic system wherein the two rings of the bicyclic system are in a spiro, fused or bridged relationship, wherein said 4 to 6-membered heterocycle or said 5 or 6-membered heteroaryl ring contains up to three ring heteroatoms independently selected from N, 0 or S; and wherein said C3_8 cycloalkyl ring, 4 to 6-membered heterocyclic ring, phenyl or 5 or 6-membered heteroaryl ring is optionally and independently substituted by up to 3 instances of C1_4 alkyl, Ci_4 haloalkyl, Ci_4 alkoxy, Ci_4 haloalkoxy, oxo, ¨C(0)0(C1-4 alkyl), ¨C(0)0H, ¨NR(CO)CO(C1_4 alkyl), ¨OH or halogen; wherein R is hydrogen or a Ci_2 alkyl;
p is an integer selected from 0, 1 or 2;
ring C is a monocyclic 5-membered heteroaryl ring containing up to 4 ring heteroatoms selected from N, 0 or S; wherein said monocyclic 5-membered heteroaryl ring is not a 1,3,5-triazinyl ring;
each Jc is independently selected from halogen or a Ci_4 aliphatic optionally and independently substituted by up to 3 instances of C14 alkoxy, Ci_4 haloalkoxy, oxo, ¨C(0)0(C1-4 alkyl), ¨C(0)0H, ¨NR(CO)CO(Ci_4 alkyl), ¨OH or halogen.

[0012] The invention is also directed to a pharmaceutical composition comprising a compound according to Formula I or Formula I', or a pharmaceutically acceptable salt thereof, and at least one pharmaceutically acceptable excipient or carrier. The invention is also directed to a pharmaceutical formulation or dosage form comprising the pharmaceutical composition.
[0013] The invention also provides a method of treating or preventing a disease, health condition or disorder in a subject in need thereof, comprising administering, alone or in combination therapy, a therapeutically effective amount of a compound of Formula I or Formula I' or a pharmaceutically acceptable salt thereof to the subject;
wherein the disease, health condition or disorder is a peripheral, pulmonary, hepatic, kidney, cardiac or cerebral vascular/endothelial disorder or condition, a urogenital-gynecological or sexual disorder or condition, a thromboembolic disease, a fibrotic disorder, a pulmonary or respiratory disorder, renal or hepatic disorder, ocular disorder, hearing disorder, CNS disorder, circulation disorder, topical or skin disorder, metabolic disorder, atherosclerosis, wound healing or a lipid related disorder that benefits from sGC stimulation or from an increase in the concentration of NO or cGMP.
DETAILED DESCRIPTION OF THE INVENTION
[0014] Reference will now be made in detail to certain embodiments of the invention, examples of which are illustrated in the accompanying structures and formulae.
While the invention will be described in conjunction with the enumerated embodiments, it will be understood that they are not intended to limit the invention to those embodiments. Rather, the invention is intended to cover all alternatives, modifications and equivalents that may be included within the scope of the present invention as defined by the claims.
The present invention is not limited to the methods and materials described herein but include any methods and materials similar or equivalent to those described herein that could be used in the practice of the present invention. In the event that one or more of the incorporated literature references, patents or similar materials differ from or contradict this application, including but not limited to defined terms, term usage, described techniques or the like, this application controls.
Definitions and general terminology
[0015] For purposes of this disclosure, the chemical elements are identified in accordance with the Periodic Table of the Elements, CAS version, and the Handbook of Chemistry and Physics, 75th Ed. 1994. Additionally, general principles of organic chemistry are described in "Organic Chemistry", Thomas Sorrell, University Science Books, Sausalito: 1999, and "March's Advanced Organic Chemistry", 5th Ed., Smith, M. B. and March, J., eds. John Wiley & Sons, New York: 2001, which are herein incorporated by reference in their entirety.
[0016] As described herein, compounds of Formula I may be optionally substituted with one or more substituents, such as illustrated generally below, or as exemplified by particular classes, subclasses and species of the invention. The phrase "optionally substituted"
is used interchangeably with the phrase "substituted or unsubstituted." In general, the term "substituted" refers to the replacement of one or more hydrogen radicals in a given structure with the radical of a specified substituent. Unless otherwise indicated, an optionally substituted group may have a substituent at each substitutable position of the group. When more than one position in a given structure can be substituted with more than one substituent selected from a specified group, the substituent may be either the same or different at each position unless otherwise specified. As will be apparent to one of ordinary skill in the art, groups such as -H, halogen, -NO2, -CN, -OH, -NH2 or -0CF3 would not be substitutable groups.
[0017] The phrase "up to", as used herein, refers to zero or any integer number that is equal to or less than the number following the phrase. For example, "up to 3" means any one of 0, 1, 2, or 3. As described herein, a specified number range of atoms includes any integer therein. For example, a group having from 1-4 atoms could have 1, 2, 3 or 4 atoms. When any variable occurs more than one time at any position, its definition on each occurrence is independent from every other occurrence.
[0018] Selection of substituents and combinations envisioned by this disclosure are only those that result in the formation of stable or chemically feasible compounds. Such choices and combinations will be apparent to those of ordinary skill in the art and may be determined without undue experimentation. The term "stable", as used herein, refers to compounds that are not substantially altered when subjected to conditions to allow for their production, detection, and, in some embodiments, their recovery, purification, and use for one or more of the purposes disclosed herein. In some embodiments, a stable compound is one that is not substantially altered when kept at a temperature of 25 C or less, in the absence of moisture or other chemically reactive conditions, for at least a week. A chemically feasible compound is a compound that can be prepared by a person skilled in the art based on the disclosures herein supplemented, if necessary, relevant knowledge of the art.
[0019] A compound, such as the compounds of Formula I or other compounds herein disclosed, may be present in its free form (e.g. an amorphous form, or a crystalline form or a polymorph). Under certain conditions, compounds may also form co-forms. As used herein, the term co-form is synonymous with the term multi-component crystalline form.
When one of the components in the co-form has clearly transferred a proton to the other component, the resulting co-form is referred to as a "salt". The formation of a salt is determined by how large the difference is in the pKas between the partners that form the mixture. For purposes of this disclosure, compounds include pharmaceutically acceptable salts, even if the term "pharmaceutically acceptable salts" is not explicitly noted.
[0020] Unless only one of the isomers is drawn or named specifically, structures depicted herein are also meant to include all stereoisomeric (e.g., enantiomeric, diastereomeric, atropoisomeric and cis-trans isomeric) forms of the structure; for example, the R and S
configurations for each asymmetric center, Ra and Sa configurations for each asymmetric axis, (Z) and (E) double bond configurations, and cis and trans conformational isomers. Therefore, single stereochemical isomers as well as racemates, and mixtures of enantiomers, diastereomers, and cis-trans isomers (double bond or conformational) of the present compounds are within the scope of the present disclosure. Unless otherwise stated, all tautomeric forms of the compounds of the present disclosure are also within the scope of the invention. As an example, a substituent drawn as below:
vvvv, wherein R may be hydrogen, would include both compounds shown below:
NH
OH
[0021] The present disclosure also embraces isotopically-labeled compounds which are identical to those recited herein, but for the fact that one or more atoms are replaced by an atom having an atomic mass or mass number different from the atomic mass or mass number usually found in nature. All isotopes of any particular atom or element as specified are contemplated within the scope ofthe compounds of the invention, and their uses. Exemplary isotopes that can be incorporated into compounds of the invention include isotopes of hydrogen, carbon, nitrogen, oxygen, phosphorus, sulfur, fluorine, chlorine, and iodine, such as 2H, 3H, 13c5 14C5 13N5 15N5 1505 1705 1805 32P5 33P5 35s5 18F5 36C15 1231, and 125I, respectively. Certain isotopically-labeled compounds of the present invention (e.g., those labeled with 3H and 14C) are useful in compound and/or substrate tissue distribution assays. Tritiated (i.e., 3H) and carbon-14 (i.e., 14C) isotopes are useful for their ease of preparation and detectability. Further, substitution with heavier isotopes such as deuterium (i.e., 2H) may afford certain therapeutic advantages resulting from greater metabolic stability (e.g., increased in vivo half-life or reduced dosage requirements) and hence may be preferred in some circumstances.
Positron emitting isotopes such as 150, 13N5 "C, and 18F are useful for positron emission tomography (PET) studies to examine substrate receptor occupancy. Isotopically labeled compounds of the present invention can generally be prepared by following procedures analogous to those disclosed in the Schemes and/or in the Examples herein below, by substituting an isotopically labeled reagent for a non-isotopically labeled reagent.
[0022] The term "aliphatic" or "aliphatic group", as used herein, means a straight-chain (i.e., unbranched) or branched, substituted or unsubstituted hydrocarbon chain that is completely saturated or that contains one or more units of unsaturation. Unless otherwise specified, aliphatic groups contain 1-20 aliphatic carbon atoms. In some embodiments, aliphatic groups contain 1-10 aliphatic carbon atoms. In other embodiments, aliphatic groups contain 1-8 aliphatic carbon atoms. In still other embodiments, aliphatic groups contain 1-6 aliphatic carbon atoms. In other embodiments, aliphatic groups contain 1-4 aliphatic carbon atoms and in yet other embodiments, aliphatic groups contain 1-3 aliphatic carbon atoms.
Suitable aliphatic groups include, but are not limited to, linear or branched, substituted or unsubstituted alkyl, alkenyl, or alkynyl groups. Specific examples of aliphatic groups include, but are not limited to: methyl, ethyl, propyl, butyl, isopropyl, isobutyl, vinyl, sec-butyl, tert-butyl, butenyl, propargyl, acetylene and the like. To be perfectly clear, the term "aliphatic chain" may be used interchangeably with the term "aliphatic" or "aliphatic group".
[0023] The term "alkyl", as used herein, refers to a saturated linear or branched-chain monovalent hydrocarbon radical. Unless otherwise specified, an alkyl group contains 1-20 carbon atoms (e.g., 1-20 carbon atoms, 1-10 carbon atoms, 1-8 carbon atoms, 1-6 carbon atoms, 1-4 carbon atoms or 1-3 carbon atoms). Examples of alkyl groups include, but are not limited to, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, s-butyl, t-butyl, pentyl, hexyl, heptyl, octyl and the like.
[0024] The term "alkenyl" refers to a linear or branched-chain monovalent hydrocarbon radical with at least one site of unsaturation, i.e., a carbon-carbon, sp2 double bond, wherein the alkenyl radical includes radicals having "cis" and "trans" orientations, or alternatively, "E" and "Z" orientations. Unless otherwise specified, an alkenyl group contains 2-20 carbon atoms (e.g., 2-20 carbon atoms, 2-10 carbon atoms, 2-8 carbon atoms, 2-6 carbon atoms, 2-4 carbon atoms or 2-3 carbon atoms). Examples include, but are not limited to, vinyl, allyl and the like.
[0025] The term "alkynyl" refers to a linear or branched monovalent hydrocarbon radical with at least one site of unsaturation, i.e., a carbon-carbon sp triple bond.
Unless otherwise specified, an alkynyl group contains 2-20 carbon atoms (e.g., 2-20 carbon atoms, 2-10 carbon atoms, 2-8 carbon atoms, 2-6 carbon atoms, 2-4 carbon atoms or 2-3 carbon atoms). Examples include, but are not limited to, ethynyl, propynyl, and the like.
[0026] The term "carbocyclic" refers to a ring system formed only by carbon and hydrogen atoms. Unless otherwise specified, throughout this disclosure, carbocycle is used as a synonym of "non-aromatic carbocycle" or "cycloaliphatic". In some instances the term can be used in the phrase "aromatic carbocycle", and in this case it refers to an "aryl group" as defined below.
[0027] The term "cycloaliphatic" (or "non-aromatic carbocycle", "non-aromatic carbocyclyl", "non-aromatic carbocyclic") refers to a cyclic hydrocarbon that is completely saturated or that contains one or more units of unsaturation but which is not aromatic, and which has a single point of attachment to the rest of the molecule. Unless otherwise specified, a cycloaliphatic group may be monocyclic, bicyclic, tricyclic, fused, spiro or bridged. In one embodiment, the term "cycloaliphatic" refers to a monocyclic C3-C12 hydrocarbon or a bicyclic hydrocarbon. In some embodiments, any individual ring in a bicyclic or tricyclic ring system has 3-7 members. Suitable cycloaliphatic groups include, but are not limited to, cycloalkyl, cycloalkenyl, and cycloalkynyl. Examples of aliphatic groups include cyclopropyl, cyclobutyl, cyclopentyl, cyclopentenyl, cyclohexyl, cyclohexenyl, cycloheptyl, cycloheptenyl, norbornyl, cyclooctyl, cyclononyl, cyclodecyl, cycloundecyl, cyclododecyl, and the like.
[0028] The term "cycloaliphatic" also includes polycyclic ring systems in which the non-aromatic carbocyclic ring can be "fused" to one or more aromatic or non-aromatic carbocyclic or heterocyclic rings or combinations thereof, as long as the radical or point of attachment is on the non-aromatic carbocyclic ring.
[0029] "Cycloalkyl", as used herein, refers to a ring system in which is completely saturated and which has a single point of attachment to the rest of the molecule. Unless otherwise specified, a cycloalkyl group may be monocyclic, bicyclic, tricyclic, fused, spiro or bridged. In one embodiment, the term "cycloalkyl" refers to a monocyclic C3-C12 saturated hydrocarbon or a bicyclic C7-C12 saturated hydrocarbon. In some embodiments, any individual ring in a bicyclic or tricyclic ring system has 3-7 members. Suitable cycloalkyl groups include, but are not limited to cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cycloheptenyl, norbornyl, cyclooctyl, cyclononyl, cyclodecyl, cycloundecyl, cyclododecyl, and the like.
[0030] "Heterocycle" (or "heterocycly1" or "heterocyclic), as used herein, refers to a ring system in which one or more ring members are an independently selected heteroatom, which is completely saturated or that contains one or more units of unsaturation but which is not aromatic, and which has a single point of attachment to the rest of the molecule. Unless otherwise specified, through this disclosure, heterocycle is used as a synonym of "non-aromatic heterocycle". In some instances the term can be used in the phrase "aromatic heterocycle", and in this case it refers to a "heteroaryl group" as defined below. The term heterocycle also includes fused, spiro or bridged heterocyclic ring systems.
Unless otherwise specified, a heterocycle may be monocyclic, bicyclic or tricyclic. In some embodiments, the heterocycle has 3-18 ring members in which one or more ring members is a heteroatom independently selected from oxygen, sulfur or nitrogen, and each ring in the system contains 3 to 7 ring members. In other embodiments, a heterocycle may be a monocycle having 3-7 ring members (2-6 carbon atoms and 1-4 heteroatoms) or a bicycle having 7-10 ring members (4-9 carbon atoms and 1-6 heteroatoms). Examples of bicyclic heterocyclic ring systems include, but are not limited to: adamantanyl, 2-oxa-bicyclo[2.2.2]octyl, 1-aza-bicyclo[2.2.2]octyl.
[0031] As used herein, the term "heterocycle" also includes polycyclic ring systems wherein the heterocyclic ring is fused with one or more aromatic or non-aromatic carbocyclic or heterocyclic rings, or with combinations thereof, as long as the radical or point of attachment is on the heterocyclic ring.
[0032] Examples of heterocyclic rings include, but are not limited to, the following monocycles: 2-tetrahydrofuranyl, 3-tetrahydrofuranyl, 2-tetrahydrothiophenyl, 3-tetrahydrothiophenyl, 2-morpholino, 3-morpholino, 4-morpholino, 2-thiomorpholino, 3-thiomorpholino, 4-thiomorpholino, 1-pyrrolidinyl, 2-pyrrolidinyl, 3-pyrrolidinyl, 1-tetrahydropiperazinyl, 2-tetrahydropiperazinyl, 3-tetrahydropiperazinyl, 1-piperidinyl, 2-piperidinyl, 3-piperidinyl, 1-pyrazolinyl, 3-pyrazolinyl, 4-pyrazolinyl, 5-pyrazolinyl, 1-piperidinyl, 2-piperidinyl, 3-piperidinyl, 4-piperidinyl, 2-thiazolidinyl, 3-thiazolidinyl, 4-thiazolidinyl, 1-imidazolidinyl, 2-imidazolidinyl, 4-imidazolidinyl, 5-imidazolidinyl; and the following bicycles: 3-1H-benzimidazol-2-one, 3-(1-alkyl)-benzimidazo1-2-one, indolinyl, tetrahydroquinolinyl, tetrahydroisoquinolinyl, benzothio lane, benzodithiane, and 1,3-dihydro-imidazol-2-one.
[0033] As used herein, the term "aryl" (as in "aryl ring" or "aryl group"), used alone or as part of a larger moiety, as in "aralkyl", "aralkoxy", "aryloxyalkyl", refers to a carbocyclic ring system wherein at least one ring in the system is aromatic and has a single point of attachment to the rest of the molecule. Unless otherwise specified, an aryl group may be monocyclic, bicyclic or tricyclic and contain 6-18 ring members. The term also includes polycyclic ring systems where the aryl ring is fused with one or more aromatic or non-aromatic carbocyclic or heterocyclic rings, or with combinations thereof, as long as the radical or point of attachment is in the aryl ring. Examples of aryl rings include, but are not limited to, phenyl, naphthyl, indanyl, indenyl, tetralin, fluorenyl, and anthracenyl.
[0034] The term "aralkyl" refers to a radical having an aryl ring substituted with an alkylene group, wherein the open end of the alkylene group allows the aralkyl radical to bond to another part of the compound of Formula I. The alkylene group is a bivalent, straight-chain or branched, saturated hydrocarbon group. As used herein, the term "C7_12 aralkyl" means an aralkyl radical wherein the total number of carbon atoms in the aryl ring and the alkylene group combined is 7 to 12. Examples of "aralkyl" include, but not limited to, a phenyl ring substituted by a Ci_6 alkylene group, e.g., benzyl and phenylethyl, and a naphthyl group substituted by a Ci_2 alkylene group.
[0035] The term "heteroaryl" (or "heteroaromatic" or "heteroaryl group" or "aromatic heterocycle") used alone or as part of a larger moiety as in "heteroaralkyl"
or "heteroarylalkoxy" refers to a ring system wherein at least one ring in the system is aromatic and contains one or more heteroatoms, wherein each ring in the system contains 3 to 7 ring members and which has a single point of attachment to the rest of the molecule. Unless otherwise specified, a heteroaryl ring system may be monocyclic, bicyclic or tricyclic and have a total of five to fourteen ring members. In one embodiment, all rings in a heteroaryl system are aromatic. Also included in this definition are heteroaryl radicals where the heteroaryl ring is fused with one or more aromatic or non-aromatic carbocyclic or heterocyclic rings, or combinations thereof, as long as the radical or point of attachment is in the heteroaryl ring.
Bicyclic 6, 5 heteroaromatic system, as used herein, for example, is a six membered heteroaromatic ring fused to a second five membered ring wherein the radical or point of attachment is on the six-membered ring.
[0036] Heteroaryl rings include, but are not limited to the following monocycles: 2-furanyl, 3-furanyl, N-imidazolyl, 2-imidazolyl, 4-imidazolyl, 5-imidazolyl, 3-isoxazolyl, 4-isoxazolyl, 5-isoxazolyl, 2-oxazolyl, 4-oxazolyl, 5-oxazolyl, N-pyrrolyl, 2-pyrrolyl, 3-pyrrolyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, 2-pyrimidinyl, 4-pyrimidinyl, 5-pyrimidinyl, pyridazinyl (e.g., 3-pyridazinyl), 2-thiazolyl, 4-thiazolyl, 5-thiazolyl, tetrazolyl (e.g., 5-tetrazoly1), triazolyl (e.g., 2-triazoly1 and 5-triazoly1), 2-thienyl, 3-thienyl, pyrazolyl (e.g., 2-pyrazoly1), isothiazolyl, 1,2,3-oxadiazolyl, 1,2,5-oxadiazolyl, 1,2,4-oxadiazolyl, 1,2,3-triazolyl, 1,2,3-thiadiazolyl, 1,3,4-thiadiazolyl, 1,2,5-thiadiazolyl, pyrazinyl, 1,3,5-triazinyl, and the following bicycles: benzimidazolyl, benzofuryl, benzothiophenyl, benzopyrazinyl, benzopyranonyl, indolyl (e.g., 2-indoly1), purinyl, quinolinyl (e.g., 2-quinolinyl, 3-quinolinyl, 4-quinolinyl), and isoquinolinyl (e.g., 1-isoquinolinyl, 3-isoquinolinyl, or 4-isoquinoliny1).
[0037] As used herein, "cyclo" (or "cyclic", or "cyclic moiety") encompasses mono-, bi- and tri-cyclic ring systems including cycloaliphatic, heterocyclic, aryl or heteroaryl, each of which has been previously defined.
[0038] "Fused" bicyclic ring systems comprise two rings which share two adjoining ring atoms.
[0039] "Bridged" bicyclic ring systems comprise two rings which share three or four adjacent ring atoms. As used herein, the term "bridge" refers to an atom or a chain of atoms connecting two different parts of a molecule. The two atoms that are connected through the bridge (usually but not always, two tertiary carbon atoms) are referred to as "bridgeheads".
In addition to the bridge, the two bridgeheads are connected by at least two individual atoms or chains of atoms.
Examples of bridged bicyclic ring systems include, but are not limited to, adamantanyl, norbornanyl, bicyclo[3.2.1]octyl, bicyclo[2.2.2]octyl, bicyclo[3.3.1]nonyl, bicyclo[3.2.3]nonyl, 2-oxa-bicyclo[2.2.2]octyl, 1-aza-bicyclo[2.2.2]octyl, 3-aza-bicyclo[3.2.1]octyl, and 2,6-dioxa-tricyclo[3.3.1.03,7]nonyl. "Spiro"
bicyclic ring systems share only one ring atom (usually a quaternary carbon atom) between the two rings.
[0040] The term "ring atom" refers to an atom such as C, N, 0 or S that is part of the ring of an aromatic ring, a cycloaliphatic ring, a heterocyclic or a heteroaryl ring. A
"substitutable ring atom" is a ring carbon or nitrogen atom bonded to at least one hydrogen atom.
The hydrogen can be optionally replaced with a suitable substituent group. Thus, the term "substitutable ring atom" does not include ring nitrogen or carbon atoms which are shared when two rings are fused. In addition, "substitutable ring atom" does not include ring carbon or nitrogen atoms when the structure depicts that they are already attached to one or more moiety other than hydrogen and no hydrogens are available for substitution.
[0041] "Heteroatom" refers to one or more of oxygen, sulfur, nitrogen, phosphorus, or silicon, including any oxidized form of nitrogen, sulfur, phosphorus, or silicon, the quaternized form of any basic nitrogen, or a substitutable nitrogen of a heterocyclic or heteroaryl ring, for example N (as in 3,4-dihydro-2H-pyrroly1), NH (as in pyrrolidinyl) or NR (as in N-substituted pyrrolidinyl).
[0042] In some embodiments, two independent occurrences of a variable may be taken together with the atom(s) to which each variable is bound to form a 5-8-membered, heterocyclyl, aryl, or heteroaryl ring or a 3-8-membered cycloaliphatic ring.
Exemplary rings that are formed when two independent occurrences of a substituent are taken together with the atom(s) to which each variable is bound include, but are not limited to the following: a) two independent occurrences of a substituent that are bound to the same atom and are taken together with that atom to form a ring, where both occurrences of the substituent are taken together with the atom to which they are bound to form a heterocyclyl, heteroaryl, cycloaliphatic or aryl ring, wherein the group is attached to the rest of the molecule by a single point of attachment; and b) two independent occurrences of a substituent that are bound to different atoms and are taken together with both of those atoms to form a heterocyclyl, heteroaryl, cycloaliphatic or aryl ring, wherein the ring that is formed has two points of attachment with the rest of the molecule. For example, where a phenyl group is substituted with two occurrences of -OR as in Formula D1:

\t.. 0 R

,
[0043] these two occurrences of -OR are taken together with the carbon atoms to which they are bound to form a fused 6-membered oxygen containing ring as in Formula D2:
oj
[0044] It will be appreciated that a variety of other rings can be formed when two independent occurrences of a substituent are taken together with the atom(s) to which each substituent is bound and that the examples detailed above are not intended to be limiting.
[0045] In some embodiments, an alkyl or aliphatic chain can be optionally interrupted with another atom or group. This means that a methylene unit of the alkyl or aliphatic chain can optionally be replaced with said other atom or group. Unless otherwise specified, the optional replacements form a chemically stable compound. Optional interruptions can occur both within the chain and/or at either end of the chain; i.e. both at the point of attachment(s) to the rest of the molecule and/or at the terminal end. Two optional replacements can also be adjacent to each other within a chain so long as it results in a chemically stable compound. Unless otherwise specified, if the replacement or interruption occurs at a terminal end of the chain, the replacement atom is bound to an H on the terminal end. For example, if -CH2CH2CH3 were optionally interrupted with -0-, the resulting compound could be -OCH2CH3, -CH2OCH3, or -CH2CH2OH. In another example, if the divalent linker -CH2CH2CH2- were optionally interrupted with -0-, the resulting compound could be -OCH2CH2-, -CH2OCH2-, or -CH2CH20-. The optional replacements can also completely replace all of the carbon atoms in a chain. For example, a C3 aliphatic can be optionally replaced by ¨N(R)-, -C(0)-, and -N(R')-to form ¨N(R')C(0)N(R')- (a urea).
[0046] In general, the term "vicinal" refers to the placement of substituents on a group that includes two or more carbon atoms, wherein the substituents are attached to adjacent carbon atoms.
[0047] In general, the term "geminal" refers to the placement of substituents on a group that includes two or more carbon atoms, wherein the substituents are attached to the same carbon atom.
[0048] The terms "terminally" and "internally" refer to the location of a group within a substituent. A group is terminal when the group is present at the end of the substituent not further bonded to the rest of the chemical structure. Carboxyalkyl, i.e., Rx0(0)C-a1ky1 is an example of a carboxy group used terminally. A group is internal when the group is present in the middle of a substituent at the end of the substituent bound to the rest of the chemical structure. Alkylcarboxy (e.g., alkyl-C(0)0- or alkyl-0(C0)-) and alkylcarboxyaryl (e.g., alkyl-C(0)0-aryl- or alkyl-0(C0)-aryl-) are examples of carboxy groups used internally.
[0049] As described herein, a bond drawn from a substituent to the center of one ring within a multiple-ring system (as shown below), represents substitution of the substituent at any substitutable position in any of the rings within the multiple ring system.
For example, formula D3 represents possible substitution in any of the positions shown in formula D4:
140\ x x \ X
X
X X
[0050] This also applies to multiple ring systems fused to optional ring systems (which would be represented by dotted lines). For example, in Formula D5, X is an optional substituent both for ring A and ring B.
[0051] If, however, two rings in a multiple ring system each have different substituents drawn from the center of each ring, then, unless otherwise specified, each substituent only represents substitution on the ring to which it is attached. For example, in Formula D6, Y is an optional substituent for ring A only, and X is an optional substituent for ring B only.
A B X
_ ,=
[0052] As used herein, the terms "alkoxy" or "alkylthio" refer to an alkyl group, as previously defined, attached to the molecule, or to another chain or ring, through an oxygen ("alkoxy" i.e., ¨0¨alkyl) or a sulfur ("alkylthio" i.e., ¨S-alkyl) atom.
[0053] The terms Cn_m"alkoxyalkyl", Cn_m"alkoxyalkenyl", C,i_m "alkoxyaliphatic", and C,i_m "alkoxyalkoxy" mean alkyl, alkenyl, aliphatic or alkoxy, as the case may be, substituted with one or more alkoxy groups, wherein the combined total number of carbons of the alkyl and alkoxy groups, alkenyl and alkoxy groups, aliphatic and alkoxy groups or alkoxy and alkoxy groups, combined, as the case may be, is between the values of n and m. For example, a C4-6 alkoxyalkyl has a total of 4-6 carbons divided between the alkyl and alkoxy portion; e.g. it can be ¨CH2OCH2CH2CH3, ¨CH2CH2OCH2CH3 or ¨CH2CH2CH2OCH3.
[0054] When the moieties described in the preceding paragraph are optionally substituted, they can be substituted in either or both of the portions on either side of the oxygen or sulfur. For example, an optionally substituted C4 alkoxyalkyl could be, for instance, ¨CH2CH2OCH2(Me)CH3 or ¨CH2(OH)0 CH2CH2CH3; a C5 alkoxyalkenyl could be, for instance, ¨CH=CHO CH2CH2CH3 or ¨CH=CHCH2OCH2CH3.
[0055] The terms aryloxy, arylthio, benzyloxy or benzylthio, refer to an aryl or benzyl group attached to the molecule, or to another chain or ring, through an oxygen ("aryloxy", benzyloxy e.g., ¨0¨Ph, ¨OCH2Ph) or sulfur ("arylthio" e.g., ¨S-Ph, ¨S-CH2Ph) atom.
Further, the terms "aryloxyalkyl", "benzyloxyalkyl" "aryloxyalkenyl" and "aryloxyaliphatic" mean alkyl, alkenyl or aliphatic, as the case may be, substituted with one or more aryloxy or benzyloxy groups, as the case may be. In this case, the number of atoms for each aryl, aryloxy, alkyl, alkenyl or aliphatic will be indicated separately. Thus, a 5-6-membered aryloxy(C1_4a1ky1) is a 5-6 membered aryl ring, attached via an oxygen atom to a C1_4 alkyl chain which, in turn, is attached to the rest of the molecule via the terminal carbon of the C1_4 alkyl chain.
[0056] As used herein, the terms "halogen" or "halo" mean F, Cl, Br, or I.
[0057] The terms "haloalkyl", "haloalkenyl", "haloaliphatic", and "haloalkoxy"
mean alkyl, alkenyl, aliphatic or alkoxy, as the case may be, substituted with one or more halogen atoms.
For example a C1_3 haloalkyl could be ¨CFHCH2CHF2 and a C1_2 haloalkoxy could be ¨0C(Br)HCHF2. This term includes perfluorinated alkyl groups, such as ¨CF3 and -CF2CF3.
[0058] As used herein, the term "cyano" refers to ¨CN or ¨C1\1.
[0059] The terms "cyanoalkyl", "cyanoalkenyl", "cyanoaliphatic", and "cyanoalkoxy" mean alkyl, alkenyl, aliphatic or alkoxy, as the case may be, substituted with one or more cyano groups. For example a C1_3 cyanoalkyl could be ¨C(CN)2CH2CH3 and a C1_2 cyanoalkenyl could be =CHC(CN)H2.
[0060] As used herein, an "amino" group refers to ¨NH2.
[0061] The terms "aminoalkyl", "aminoalkenyl", "aminoaliphatic", and "aminoalkoxy" mean alkyl, alkenyl, aliphatic or alkoxy, as the case may be, substituted with one or more amino groups. For example a C1_3 aminoalkyl could be ¨CH(NH2)CH2CH2NH2 and a C1-2 aminoalkoxy could be ¨OCH2CH2NH2.
[0062] The term "hydroxyl" or "hydroxy" refers to ¨OH.
[0063] The terms "hydroxyalkyl", "hydroxyalkenyl", "hydroxyaliphatic", and "hydroxyalkoxy" mean alkyl, alkenyl, aliphatic or alkoxy, as the case may be, substituted with one or more ¨OH groups. For example a C1_3 hydroxyalkyl could be ¨CH2(CH2OH)CH3 and a C4 hydroxyalkoxy could be ¨OCH2C(CH3)(OH)CH3.
[0064] As used herein, a "carbonyl", used alone or in connection with another group refers to ¨C(0) ¨ or ¨C(0)H. For example, as used herein, an "alkoxycarbonyl," refers to a group such as ¨C(0)0(alkyl).
[0065] As used herein, an "oxo" refers to =0, wherein oxo is usually, but not always, attached to a carbon atom (e.g., it can also be attached to a sulfur atom). An aliphatic chain can be optionally interrupted by a carbonyl group or can optionally be substituted by an oxo group, and both expressions refer to the same: e.g. ¨CH2-C(0)-CH3.
[0066] As used herein, in the context of resin chemistry (e.g. using solid resins or soluble resins or beads), the term "linker" refers to a bifunctional chemical moiety attaching a compound to a solid support or soluble support.
[0067] In all other situations, a "linker", as used herein, refers to a divalent group in which the two free valences are on different atoms (e.g. carbon or heteroatom) or are on the same atom but can be substituted by two different substituents. For example, a methylene group can be C1 alkyl linker (¨CH2¨) which can be substituted by two different groups, one for each of the free valences (e.g. as in Ph-CH2-Ph, wherein methylene acts as a linker between two phenyl rings).

Ethylene can be C2 alkyl linker (¨CH2CH2¨) wherein the two free valences are on different atoms. The amide group, for example, can act as a linker when placed in an internal position of a chain (e.g. ¨CONH¨ ). A linker can be the result of interrupting an aliphatic chain by certain functional groups or of replacing methylene units on said chain by said functional groups. E.g.
a linker can be a C1_6 aliphatic chain in which up to two methylene units are substituted by ¨C(0)- or ¨NH¨ (as in ¨CH2-NH-CH2-C(0)-CH2¨ or ¨ CH2-NH-C(0)-CH2¨). An alternative way to define the same ¨CH2-NH-CH2-C(0)-CH2¨ and ¨ CH2-NH-C(0)-CH2¨ groups is as a C3 alkyl chain optionally interrupted by up to two ¨C(0) ¨ or ¨NH¨ moieties.
Cyclic groups can also form linkers: e.g. a 1,6-cyclohexanediy1 can be a linker between two R groups, as in R--C)-R
. A linker can additionally be optionally substituted in any portion or position.
[0068] Divalent groups of the type R-CH= or R2C=, wherein both free valences are in the same atom and are attached to the same substituent, are also possible. In this case, they will be referred to by their IUPAC accepted names. For instance an alkylidene (such as, for example, a methylidene (=CH2) or an ethylidene (=CH-CH3)) would not be encompassed by the definition of a linker in this disclosure.
[0069] The term "protecting group", as used herein, refers to an agent used to temporarily block one or more desired reactive sites in a multifunctional compound. In certain embodiments, a protecting group has one or more, or preferably all, of the following characteristics: a) reacts selectively in good yield to give a protected substrate that is stable to the reactions occurring at one or more of the other reactive sites; and b) is selectively removable in good yield by reagents that do not attack the regenerated functional group.
Exemplary protecting groups are detailed in Greene, T. W. et al., "Protective Groups in Organic Synthesis", Third Edition, John Wiley & Sons, New York: 1999, the entire contents of which is hereby incorporated by reference. The term "nitrogen protecting group", as used herein, refers to an agents used to temporarily block one or more desired nitrogen reactive sites in a multifunctional compound. Preferred nitrogen protecting groups also possess the characteristics exemplified above, and certain exemplary nitrogen protecting groups are detailed in Chapter 7 in Greene, T. W., Wuts, P. G in "Protective Groups in Organic Synthesis", Third Edition, John Wiley & Sons, New York: 1999, the entire contents of which are hereby incorporated by reference.
[0070] As used herein, the term "displaceable moiety" or "leaving group"
refers to a group that is associated with an aliphatic or aromatic group as defined herein and is subject to being displaced by nucleophilic attack by a nucleophile.
[0071] As used herein, "amide coupling agent" or "amide coupling reagent"
means a compound that reacts with the hydroxyl moiety of a carboxy moiety thereby rendering it susceptible to nucleophilic attack. Exemplary amide coupling agents include DIC
(diisopropylcarbodiimide), EDCI (1-ethy1-3-(3-dimethylaminopropyl)carbodiimide), DCC
(dicyclohexylcarbodiimide), BOP (benzotriazol-1-yloxy-tris(dimethylamino)-phosphonium hexafluorophosphate), pyBOP ((benzotriazol-1-yloxy)tripyrrolidinophosphonium hexafluorophosphate), etc.
[0072] The compounds of the invention are defined herein by their chemical structures and/or chemical names. Where a compound is referred to by both a chemical structure and a chemical name, and the chemical structure and chemical name conflict, the chemical structure is determinative of the compound's identity.
Compound embodiments
[0073] In a first aspect the invention relates to a compound according to Formula I', or a pharmaceutically acceptable salt thereof, J
J¨)_w Rc......õ.N ---------( jB)n 11 A 'NI
XLS_ i N
N ' D, ')(2=/ (..1E))0 Formula I' wherein each of X1 is selected from N, CH, C(Ci_4 alkyl), C(Ci_4 haloalkyl), CC1 and CF;
X2 is selected from N or C;
W is either:
i) absent, with JB connected directly to the carbon atom bearing two J groups, each J is independently selected from hydrogen or methyl, n is 1 and JB is a C1_7 alkyl chain optionally substituted by up to 9 instances of fluorine; wherein, optionally, one ¨CH2¨
unit of said C1-7 alkyl chain can be replaced by ¨0¨ or ¨S¨.
ii) a ring B that is a phenyl or a 5 or 6-membered heteroaryl ring, containing 1 or 2 ring heteroatoms selected from N, 0 or S; wherein with ring B being the phenyl or 5 or 6-membered heteroaryl ring; each J is hydrogen; n is an integer selected from 0 to 3; and each JB is independently selected from halogen, ¨CN, a C1_6 aliphatic, ¨ORB or a C3_8 cycloaliphatic group; wherein each said C1_6 aliphatic and each said C3_8 cycloaliphatic group is optionally and independently substituted with up to 3 instances of R3; each RB is independently selected from hydrogen, a C1_6 aliphatic or a C3_8 cycloaliphatic; wherein each of said RB
that is a C1_6 aliphatic and each of said RB that is a C3_8 cycloaliphatic ring is optionally and independently substituted with up to 3 instances of R3a;
each R3 is independently selected from halogen, ¨CN, C1_4 alkyl, C1_4 haloalkyl, ¨0(C 1 _4 alkyl) or ¨0(Ci_4 haloalkyl);
each R3' is independently selected from halogen, ¨CN, C1_4 alkyl, C1_4 haloalkyl, ¨0(C 1 _4 alkyl) or ¨0(Ci_4 haloalkyl);
o is an integer selected from 1 to 3;
each JD is independently selected from JA, halogen, ¨CN, ¨NO2, ¨ORD, ¨SRD, ¨C(0)RD, ¨C(0)ORD, ¨0C(0)RD, ¨C(0)N(RD)2, ¨N(RD)2, ¨N(Rd)C(0)RD, ¨N(Rd)C(0)ORD, ¨N(Rd)C(0)N(RD)2, ¨0C(0)N(RD)2, ¨SO2RD, ¨SO2N(RD)2, ¨N(Rd)S02RD, a C1_6 aliphatic, ¨(C1_6 aliphatic)-RD, a C3_8 cycloaliphatic ring, a 6 to 10-membered aryl ring, a 4 to 8-membered heterocyclic ring or a 5 to 10-membered heteroaryl ring; wherein each said 4 to 8-membered heterocyclic ring and each said 5 to 10-membered heteroaryl ring contains between 1 and 3 heteroatoms independently selected from 0, N or S; and wherein each said C1_6 aliphatic, each said C1_6 aliphatic portion of the ¨(C 1 _6 aliphatic)-RD
moiety, each said C3_8 cycloaliphatic ring, each said 6 to 10-membered aryl ring, each said 4 to 8-membered heterocyclic ring and each said 5 to 10-membered heteroaryl ring is optionally and independently substituted with up to 5 instances of R5d;
JA is selected from hydrogen, halogen, methyl, hydroxyl, methoxy, trifluoromethyl, trifluoromethoxy or ¨NRaRb; wherein Ra and Rb are each independently selected from hydrogen, C1_6 alkyl or a 3-6 cycloalkyl ring; or wherein Ra and Rb, together with the nitrogen atom to which they are both attached, form a 4-8 membered heterocyclic ring, or a 5-membered heteroaryl ring optionally containing up to two additional heteroatoms selected from N, 0 and S; wherein each of said 4-8 membered heterocyclic ring and 5-membered heteroaryl ring is optionally and independently substituted by up to 6 instances of fluorine;
each RD is independently selected from hydrogen, a Ci_6 aliphatic, ¨(C1_6 aliphatic)-R, a C3_8 cycloaliphatic ring, a 4 to 10-membered heterocyclic ring, phenyl or a 5 to 6-membered heteroaryl ring; wherein each said 4 to 10-membered heterocyclic ring and each said 5 to 6-membered heteroaryl ring contains between 1 and 3 heteroatoms independently selected from 0, N or S; and wherein each said Ci_6 aliphatic, each said Ci_6 aliphatic portion of the ¨(Ci_6 aliphatic)-Rf moiety, each said C3_8 cycloaliphatic ring, each said 4 to 10-membered heterocyclic ring, each said phenyl and each said 5 to 6-membered heteroaryl ring is optionally and independently substituted with up to 5 instances of R5a; wherein when any RD is one of a C1_6 aliphatic or a ¨(C1_6 aliphatic)-Rf group, one or two ¨CH2¨ units that form said C1-6 aliphatic chains may, optionally, be replaced by a group independently selected from _N(Rd)_, ¨CO¨ or ¨O¨;
each Rd is independently selected from hydrogen, a Ci_6 aliphatic, ¨(C1_6 aliphatic)-R, a C3_8 cycloaliphatic ring, a 4 to 8-membered heterocyclic ring, phenyl or a 5 to 6-membered heteroaryl ring; wherein each said 4 to 8-membered heterocyclic ring and each said 5 or 6-membered heteroaryl ring contains between 1 and 3 heteroatoms independently selected from 0, N or S; and wherein each said Ci_6 aliphatic, each said Ci_6 aliphatic portion of the ¨(C1_6 aliphatic)-Rf moiety, each said C3_8 cycloaliphatic ring, each said 4 to 8-membered heterocyclic ring, each said phenyl and each said 5 to 6-membered heteroaryl ring is optionally and independently substituted by up to 5 instances of R5b; wherein when any Rd is one of a C1-6 aliphatic or a ¨(C1_6 aliphatic)-Rf group, one or two ¨CH2¨ units that form said Ci_6 aliphatic chains may, optionally, be replaced by a group independently selected from ¨N(Rd)_, ¨CO¨ or ¨O¨;
each Rf is independently selected from a C1_3 alkyl, a C3_8 cycloaliphatic ring, a 4 to 10-membered heterocyclic ring, phenyl or a 5 to 6-membered heteroaryl ring;
wherein each said 4 to 10-membered heterocyclic ring and each said 5 to 6-membered heteroaryl ring contains between 1 and 4 heteroatoms independently selected from 0, N or S;
and wherein each said C3_8 cycloaliphatic ring, each said 4 to 10-membered heterocyclic ring, each said phenyl and each said 5 to 6-membered heteroaryl ring is optionally and independently substituted by up to 5 instances of R5c;

when JD is ¨C(0)N(RD)2, ¨N(RD)2, ¨N(Rd)C(0)N(RD)2, ¨0C(0)N(RD)2 or ¨SO2N(RD)2, the two RD groups together with the nitrogen atom attached to the two RD groups may form a 4 to 8-membered heterocyclic ring or a 5-membered heteroaryl ring; wherein each said 4 to 8-membered heterocyclic ring and each said 5-membered heteroaryl ring optionally contains up to 3 additional heteroatoms independently selected from N, 0 or S, in addition to the nitrogen atom to which the two RD groups are attached; and wherein each said 4 to 8-membered heterocyclic ring and each said 5-membered heteroaryl ring is optionally and independently substituted by up to 5 instances of R5;
when JD is ¨N(Rd)C(0)RD, the RD group together with the carbon atom attached to the RD
group, with the nitrogen atom attached to the Rd group, and with the Rd group may form a 4 to 8-membered heterocyclic ring or a 5-membered heteroaryl ring; wherein each said 4 to 8-membered heterocyclic ring and each said 5-membered heteroaryl ring optionally contains up to 2 additional heteroatoms independently selected from N, 0 or S, in addition to the nitrogen atom to which the Rd group is attached; and wherein each said 4 to 8-membered heterocyclic ring and each said 5-membered heteroaryl ring is optionally and independently substituted by up to 5 instances of R5;
when JD is ¨N(Rd)C(0)ORD, the RD group together with the oxygen atom attached to the RD
group, with the carbon atom of the ¨C(0)¨ portion of the ¨N(Rd)C(0)ORD group, with the nitrogen atom attached to the Rd group, and with said Rd group, may form a 4 to 8-membered heterocyclic ring; wherein said 4 to 8-membered heterocyclic ring optionally contains up to 2 additional heteroatoms independently selected from N, 0 or S, and is optionally and independently substituted by up to 5 instances of R5;
when JD is ¨N(Rd)C(0)N(RD)2, one of the RD groups attached to the nitrogen atom, together with said nitrogen atom, and with the N atom attached to the Rd group and said Rd group may form a 4 to 8-membered heterocyclic ring; wherein said 4 to 8-membered heterocyclic ring optionally contains up to 2 additional heteroatoms independently selected from N, 0 or S, and is optionally and independently substituted by up to 5 instances of R5;
when JD is ¨N(Rd)S02RD, the RD group together with the sulfur atom attached to the RD group, with the nitrogen atom attached to the Rd group, and with said Rd group may combine to form a 4 to 8-membered heterocyclic ring; wherein said 4 to 8-membered heterocyclic ring optionally contains up to 2 additional heteroatoms independently selected from N, 0 or S, and is optionally and independently substituted by up to 5 instances of R5;
each R5 is independently selected from halogen, ¨CN, C1_6 alkyl, ¨( C1_6 alkyl)-R6, ¨0R6, ¨SR6, ¨COR6, ¨0C(0)R6, ¨C(0)0R6, ¨C(0)N(R6)2, ¨C(0)N(R6)S02R6, ¨N(R6)C(0)R6, ¨N(R6)C(0)0R6, ¨N(R6)C(0)N(R6)2, ¨N(R6)2, ¨S02R6, ¨5020H, ¨SO2NHOH, ¨502N(R6)2, ¨502N(R6)COOR6, ¨502N(R6)C(0)R6, ¨N(R6)502R6, ¨(C=0)NHOR6, a C3_8 cycloalkyl ring, a 4 to 7-membered heterocyclic ring, a 5 or 6-membered heteroaryl ring, phenyl, benzyl, an oxo group or a bicyclic group; wherein each of said 5 or 6-membered heteroaryl ring or 4 to 7-membered heterocyclic ring contains up to 4 ring heteroatoms independently selected from N, 0 and S; and wherein each of said C1_6 alkyl, C1_6 alkyl portion of the ¨( C1_6 a1kyl)-R6 moiety, C3_8 cycloalkyl ring, 4 to 7-membered heterocyclic ring, 5 or 6-membered heteroaryl ring, benzyl or phenyl group is optionally and independently substituted with up to 3 instances of halogen, C1_4 alkyl, ¨OH, ¨NH2, ¨NH(C1_4 alkyl), ¨N(C1_4 alky1)2, ¨CN, ¨COOH, ¨CONH2, ¨COO(Ci_4 alkyl), ¨0(Ci_4 alkyl), ¨0(Ci_4 haloalkyl) or oxo; wherein said bicyclic group contains ring one and ring two in a fused or bridged relationship, said ring one is a 4 to 7-membered heterocyclic ring, a 5 or 6-membered heteroaryl ring, phenyl or benzyl, and said ring two is a phenyl ring or a 5 or 6-membered heteroaryl ring containing up to 3 ring heteroatoms selected from N, 0 or S; and wherein said bicyclic group is optionally and independently substituted by up to six instances of halogen, C1_4 alkyl, ¨OH, ¨NH2, ¨NH(C1-4 alkyl), ¨N(Ci_4 a1ky1)2, ¨CN, ¨COOH, ¨CONH2, ¨COO(C1_4 alkyl), ¨0(C1_4 alkyl), ¨0(C1-4 haloalkyl) or oxo;
two instances of R5, attached to the same or different atoms of JD, together with said atom or atoms to which they are attached, may optionally form a C3_8 cycloalkyl ring, a 4 to 6-membered heterocyclic ring; a phenyl or a 5 or 6-membered heteroaryl ring, resulting in a bicyclic system wherein the two rings of the bicyclic system are in a spiro, fused or bridged relationship, wherein said 4 to 6-membered heterocycle or said 5 or 6-membered heteroaryl ring contains up to four ring heteroatoms independently selected from N, 0 or S; and wherein said C3_8 cycloalkyl ring, 4 to 6-membered heterocyclic ring, phenyl or 5 or 6-membered heteroaryl ring is optionally and independently substituted by up to 3 instances of C14 alkyl, C1_4 haloalkyl, C1_4 alkoxy, C1_4 haloalkoxy, oxo, ¨C(0)0(C1_4 alkyl), ¨C(0)0H, ¨NR(C0)0(C1_4 alkyl), ¨CONH2, ¨OH or halogen; wherein R is hydrogen or a C1_2 alkyl;

each R5a and each R5b is independently selected from halogen, -CN, C1_6 alkyl, -(C1-6 alkyl)R6a, -0R6a, -SR6a, -COR6a, -0C(0)R6a, -C(0)0R6a, -C(0)N(R6a)2, -C(0)N(R6a)S02R6a, -N(R6a)C(0)R6a, -N(R6a)C(0)0R6a, -N(R6a)C(0)N(R6a)2, -N(R6a)2, -SO2R6a, -5020H, -SO2NHOH, -502N(R6a)2, -502N(R6a)COOR6a, -502N(R6a)C(0)R6a, -N(R6a)S02R6a, -(C=0)NHOR6a, a C3_8 cycloalkyl ring, a 4 to 7-membered heterocyclic ring, a 5 or 6-membered heteroaryl ring, phenyl, benzyl, an oxo group or a bicyclic group; wherein each 5 or 6-membered heteroaryl ring or 4 to 7-membered heterocyclic ring contains up to 4 ring heteroatoms independently selected from N, 0 and S, wherein each of said C1_6 alkyl, C1_6 alkyl portion of the -(C1_6 a1kyl)R6a moiety, C3_8 cycloalkyl ring, 4 to 7-membered heterocyclic ring, 5 or 6-membered heteroaryl ring, benzyl or phenyl group is optionally and independently substituted with up to 3 instances of halogen, C1_4 alkyl, C1_4 haloalkyl, -OH, -NH2, -NH(C1-4 alkyl), -N(Ci_4 a1ky1)2, -CN, -COOH, -CONH2, -COO(C1_4 alkyl), -0(C1_4 alkyl), -0(C1-4 haloalkyl) or oxo; wherein said bicyclic group contains ring one and ring two in a fused or bridged relationship, said ring one is a 4 to 7-membered heterocyclic ring, a 5 or 6-membered heteroaryl ring, phenyl or benzyl, and said ring two is a phenyl ring or a 5 or 6-membered heteroaryl ring containing up to 3 ring heteroatoms selected from N, 0 or S;
and wherein said bicyclic group is optionally and independently substituted by up to six instances of halogen, C1_4 alkyl, -OH, -NH2, -NH(C1-4 a1kY1), -N(C1-4 a1ky1)2, -CN, -COOH, -CONH2, -COO(Ci_4 alkyl), -0(Ci_4 alkyl), -0(Ci_4 haloalkyl) or oxo;
two instances of R5a or two instances of R5b attached to the same or different atoms of RD or Rd, respectively, together with said atom or atoms to which they are attached, may optionally form a C3_8 cycloalkyl ring, a 4 to 6-membered heterocyclic ring; a phenyl or a 5 or 6-membered heteroaryl ring, resulting in a bicyclic system wherein the two rings of the bicyclic system are in a spiro, fused or bridged relationship with respect to each other; wherein said 4 to 6-membered heterocycle or said 5 or 6-membered heteroaryl ring contains up to four ring heteroatoms independently selected from N, 0 or S; and wherein said C3_8 cycloalkyl ring, 4 to 6-membered heterocyclic ring, phenyl or 5 or 6-membered heteroaryl ring is optionally and independently substituted by up to 3 instances of C14 alkyl, C1_4 haloalkyl, C1_4 alkoxy, C1-4 haloalkoxy, oxo, -C(0)0(C1_4 alkyl), -C(0)0H, -C(0)NH2, -NR(C0)0(C1_4 alkyl), -OH or halogen; wherein R is hydrogen or a C1_2 alkyl;
each R5' is independently selected from halogen, -CN, C1_6 alkyl, -(C1_6 a1ky1)-R6b, -0R6b, -SR6b, -COR6b, -0C(0)R6b, -C(0)0R6b, -C(0)N(R6b)2, -C(0)N(R6b)S02R6b, -N(R6b)C(0)R6b, -N(R6b)C(0)0R6b, -N(R6b)C(0)N(R6b)2, -N(R6b)2, -SO2R6b, -S020H, -SO2NHOH, -SO2N(R6b)2, -SO2N(R6b)COOR6b, -SO2N(R6b)C(0)R6b, -N(R6b)S02R6b, -(C=0)NHOR6b, a C3_8 cycloalkyl ring, a 4 to 7-membered heterocyclic ring, a 5 or 6-membered heteroaryl ring, phenyl, benzyl, an oxo group, or a bicyclic group;
wherein each of said 5 or 6-membered heteroaryl ring and each of said 4 to 7-membered heterocyclic ring contains up to 4 ring heteroatoms independently selected from N, 0 and S; and wherein each of said C1_6 alkyl, C1_6 alkyl portion of said -(C1_6 a1ky1)-R6b moiety, each of said C3_8 cycloalkyl ring, each of said 4 to 7-membered heterocyclic ring, each of said 5 or 6-membered heteroaryl ring, each of said benzyl and each of said phenyl group is optionally and independently substituted with up to 3 instances of halogen, C1_4 alkyl, -OH, -NH2, -NH(C1_4 alkyl), -N(C1-4 alky1)2, -CN, -COOH, -CONH2, -COO(C1_4 alkyl), -0(C1_4 alkyl), -0(C1_4 haloalkyl) or oxo;
wherein said bicyclic group contains a first ring and a second ring in a fused or bridged relationship, said first ring is a 4 to 7-membered heterocyclic ring, a 5 or 6-membered heteroaryl ring, phenyl or benzyl, and said second ring is a phenyl ring or a 5 or 6-membered heteroaryl ring containing up to 3 ring heteroatoms selected from N, 0 or S;
and wherein said bicyclic group is optionally and independently substituted by up to six instances of halogen, C1_4 alkyl, -OH, -NH2, -NH(C1_4 alkyl), -N(C1_4 a1ky1)2, -CN, -COOH, -CONH2, -COO(C1_4 alkyl), -0(C1_4 alkyl), -0(C1_4 haloalkyl) or oxo;
two instances of R5c attached to the same or different atoms of Rf, together with said atom or atoms to which it is attached, may optionally form a C3_8 cycloalkyl ring, a 4 to 6-membered heterocyclic ring; a phenyl or a 5 or 6-membered heteroaryl ring, resulting in a bicyclic system wherein the two rings of the bicyclic system are in a spiro, fused or bridged relationship with respect to each other; wherein said 4 to 6-membered heterocycle or said 5 or 6-membered heteroaryl ring contains up to four ring heteroatoms independently selected from N, 0 or S; and wherein said C3_8 cycloalkyl ring, 4 to 6-membered heterocyclic ring, phenyl or 5 or 6-membered heteroaryl ring is optionally and independently substituted by up to 3 instances of C1_4 alkyl, C1_4 haloalkyl, C1_4 alkoxy, C1_4 haloalkoxy, oxo, -C(0)0(C1_4 alkyl), -C(0)0H, -CONH2, -NR(C0)0(C1_4 alkyl), -OH or halogen; wherein R is hydrogen or a C1_2 alkyl;
each R5d is independently selected from halogen, -CN, C1_6 alkyl, -(C1_6 a1kyl)-R6, -0R6, -5R6, -COR6, -0C(0)R6, -C(0)0R6, -C(0)N(R6)2, -N(R6)C(0)R6, -N(R6)C(0)0R6, -N(R6)C(0)N(R6)2, -N(R6)2, -502R6, -5020H, -SO2NHOH, -502N(R6)COR6, -502N(R6)2, -N(R6)502R6, a C7-12 aralkyl, a C3_8 cycloalkyl ring, a 4 to 7-membered heterocyclic ring, a 5 or 6-membered heteroaryl ring, phenyl or an oxo group;
wherein each 5 or 6-membered heteroaryl ring or 4 to 7-membered heterocyclic ring contains up to four ring heteroatoms independently selected from N, 0 and S, wherein each of said Ci_6 alkyl, Ci_6 alkyl portion of the ¨(Ci_6 alkyl)-R6moiety, C7_12 aralkyl, C3_8 cycloalkyl ring, 4 to 7-membered heterocyclic ring, 5 or 6-membered heteroaryl ring or phenyl group is optionally and independently substituted with up to 3 instances of halogen, Ci_4 alkyl, Ci_4 (haloalkyl), ¨OH, ¨NH2, ¨NH(C1_4 alkyl), ¨N(C1_4 alky1)2, ¨CN, ¨COOH, ¨CONH2, ¨COO(C1_4 alkyl), ¨0(C1-4 alkyl), ¨0(C1_4 haloalkyl) or oxo;
two instances of R5' attached to the same or different atoms of JD, together with said atom or atoms ofJD to which they are attached, may optionally form a C3_8 cycloalkyl ring, a 4 to 6-membered heterocyclic ring; a phenyl or a 5 or 6-membered heteroaryl ring, resulting in a bicyclic system wherein the two rings of the bicyclic system are in a spiro, fused or bridged relationship with respect to each other; wherein said 4 to 6-membered heterocycle or said 5 or 6-membered heteroaryl ring contains up to four ring heteroatoms independently selected from N, 0 or S; and wherein said C3_8 cycloalkyl ring, 4 to 6-membered heterocyclic ring, phenyl or or 6-membered heteroaryl ring is optionally and independently substituted by up to 3 instances of C1_4 alkyl, C1_4 haloalkyl, C1_4 alkoxy, C1_4 haloalkoxy, oxo, ¨C(0)0(C1_4 alkyl), ¨C(0)0H, ¨NR(C0)0(C1_4 alkyl), ¨C(0)NH2, ¨OH or halogen; wherein R is hydrogen or a C1_2 alkyl;
each R6 is independently selected from hydrogen, a C1_6 alkyl, phenyl, benzyl, a C3_8 cycloalkyl ring, a 4 to 7-membered heterocyclic ring or a 5 or 6-membered heteroaryl ring, wherein each of said C1_6 alkyl, each of said phenyl, each of said benzyl, each of said C3_8 cycloalkyl group, each of said 4 to 7-membered heterocyclic ring and each of said 5 or 6-membered heteroaryl ring is optionally and independently substituted with up to 3 instances of halogen, C1_4 alkyl, ¨OH, ¨NH2, ¨NH(C1_4 alkyl), ¨N(C1_4 a1ky1)2, ¨CN, ¨COOH, ¨C(0)NH2, ¨COO(C1_4 alkyl), ¨0(C1_4 alkyl), ¨0(C1_4 haloalkyl) or oxo, wherein each of said 5 or 6-membered heteroaryl ring or 4 to 7-membered heterocyclic ring contains up to 4 ring heteroatoms independently selected from N, 0 and S;
each R6a is independently selected from hydrogen, a C1_6 alkyl, phenyl, benzyl, a C3_8 cycloalkyl ring, a 4 to 7-membered heterocyclic ring or a 5 or 6-membered heteroaryl ring, wherein each of said C1_6 alkyl, each of said phenyl, each of said benzyl, each of said C3_8 cycloalkyl group, each of said 4 to 7-membered heterocyclic ring and each of said 5 or 6-membered heteroaryl ring is optionally and independently substituted with up to 3 instances of halogen, C 1_4 alkyl, ¨OH, ¨NH2, ¨NH(C1_4 alkyl), ¨N(C1_4 alky1)2, ¨CN, ¨COOH, ¨C(0)NH2, ¨COO(C1_4 alkyl), ¨0(C1_4 alkyl), ¨0(C1_4 haloalkyl) or oxo, wherein each of said or 6-membered heteroaryl ring or 4 to 7-membered heterocyclic ring contains up to 4 ring heteroatoms independently selected from N, 0 and S;
each R6b is independently selected from hydrogen, a C1_6 alkyl, phenyl, benzyl, a C3_8 cycloalkyl ring, a 4 to 7-membered heterocyclic ring or a 5 or 6-membered heteroaryl ring, wherein each of said C1_6 alkyl, each of said phenyl, each of said benzyl, each of said C3_8 cycloalkyl group, each of said 4 to 7-membered heterocyclic ring and each of said 5 or 6-membered heteroaryl ring is optionally and independently substituted with up to 3 instances of halogen, C1_4 alkyl, ¨OH, ¨NH2, ¨NH(Ci_4 alkyl), ¨N(Ci_4 a1ky1)2, ¨CN, ¨COOH, ¨C(0)NH2, ¨C(0)N(Ci_6 a1ky1)2, ¨C(0)NH(Ci_6 alkyl), ¨C(0)N(Ci_6 haloa1ky1)2, ¨C(0)NH(Ci_6 haloalkyl), C(0)N(Ci_6 alkyl)(Ci_6 haloalkyl), ¨COO(Ci_6 alkyl), ¨COO(C1-6 haloalkyl), ¨0(Ci_4 alkyl), ¨0(Ci_4 haloalkyl) or oxo, wherein each of said 5 or 6-membered heteroaryl ring or 4 to 7-membered heterocyclic ring contains up to 4 ring heteroatoms independently selected from N, 0 and S; wherein two instances of R6 linked to the same nitrogen atom of R5 or R5d, together with said nitrogen atom of R5 or R5d, respectively, may form a 5 to 8-membered heterocyclic ring or a 5-membered heteroaryl ring; wherein each said 5 to 8-membered heterocyclic ring and each said 5-membered heteroaryl ring optionally contains up to 2 additional heteroatoms independently selected from N, 0 or S;
two instances of R6a linked to a nitrogen atom of R5a or R5b, together with said nitrogen, may form a 5 to 8-membered heterocyclic ring or a 5-membered heteroaryl ring;
wherein each said 5 to 8-membered heterocyclic ring and each said 5-membered heteroaryl ring optionally contains up to 2 additional heteroatoms independently selected from N, 0 or S;
two instances of R6b linked to a nitrogen atom of R5c, together with said nitrogen, may form a 5 to 8-membered heterocyclic ring or a 5-membered heteroaryl ring; wherein each said 5 to 8-membered heterocyclic ring and each said 5-membered heteroaryl ring optionally contains up to 2 additional heteroatoms independently selected from N, 0 or S;

two JD groups attached to two vicinal ring D atoms, taken together with said two vicinal ring D
atoms, may form a 5 to 7-membered heterocycle or a 5-membered heteroaryl ring that is fused to ring D; wherein said 5 to 7-membered heterocycle or said 5-membered ring heteroaryl contains from 1 to 3 heteroatoms independently selected from N, 0 or S; and wherein said 5 to 7-membered heterocycle or said 5-membered heteroaryl ring is optionally and independently substituted by up to 3 instances of oxo or ¨(Y)¨R9;
wherein Y is either absent or is a linkage in the form of a Ci_6 alkyl chain, optionally substituted by up to 6 instances of fluoro; and wherein when Y is said Ci_6 alkyl chain, up to 3 methylene units of this alkyl chain, can be replaced by a group selected from ¨0¨, ¨C(0) ¨ or ¨N((Y)-R90)¨, wherein i) when Y is absent, each R9 is independently selected from hydrogen, ¨COR1 , ¨C(0)0R1 , ¨C(0)N(R1 )2, ¨C(0)N(R1 )S02R1 ,¨S02R1 , ¨SO2N(R1 )2, -502N(R1 )COOR1 5 -502N(R1 )C(0)R1 , ¨(C=0)NHOR1 , C3_6 cycloalkyl ring, a 4-8-membered heterocyclic ring, a phenyl ring or a 5-6 membered heteroaroaryl ring; wherein each said 4 to 8-membered heterocyclic ring or 5 to 6-membered heteroaryl ring contains up to 4 ring heteroatoms independently selected from N, 0 or S; and wherein each of said C3_6 cycloalkyl rings, each of said 4 to 8-membered heterocyclic rings, each of said phenyl and each of said to 6-membered heteroaryl rings is optionally and independently substituted with up to 3 instances of R"; and ii) when Y is present, each R9 is independently selected from hydrogen, halogen, ¨CN, ¨0R1 , ¨COR1 , ¨0C(0)R1 , ¨C(0)0R1 , ¨C(0)N(R1 )2, ¨C(0)N(R1 )502R1 , ¨N(R1 )C(0)R1 , ¨N(R1 )C(0)0R1 , ¨N(R1 )C(0)N(R1 )2, ¨N(R1 )2, ¨502R' , ¨502N(R1 )25 -502N(R1 )COOR1 5 -502N(R1 )C(0)Ri 5 -N(R1 )502R1 , ¨(C=0)NHOR1 , C3_6 cycloalkyl ring, a 4-8-membered heterocyclic ring, a phenyl ring or a 5-6 membered heteroaroaryl ring; wherein each said 4 to 8-membered heterocyclic ring or 5 to 6-membered heteroaryl ring contains up to 4 ring heteroatoms independently selected from N, 0 or S; and wherein each of said C3_6 cycloalkyl rings, each of said 4 to 8-membered heterocyclic rings, each of said phenyl and each of said 5 to 6-membered heteroaryl rings is optionally and independently substituted with up to 3 instances of R";

each R9 is independently selected from hydrogen, halogen, ¨CN, ¨0R1 , ¨COR1 , ¨0C(0)R1 , ¨C(0)0R1 , 2 ¨C(0)N(R10.), C(0)N(Rio)so2Rio, N(Rio)c(0)Rio, Nr io, K )C(0)0R1 , ¨N(R1 )C(0)N(Rio)25 N(Rio) 25 ¨SO
2R' 25 502N(R1 )COOR1 , ¨502N(R10)c(0)R105 N(R10)502R1 05 (C=0)NHOR1 , C3_6 cycloalkyl ring, a 4-8-membered heterocyclic ring, a phenyl ring or a 5-6 membered heteroaryl ring; wherein each said 4 to 8-membered heterocyclic ring or 5 to 6-membered heteroaryl ring contains up to 4 ring heteroatoms independently selected from N, 0 or S; and wherein each of said C3_6 cycloalkyl rings, each of said 4 to 8-membered heterocyclic rings, each of said phenyl and each of said 5 to 6-membered heteroaryl rings is optionally and independently substituted with up to 3 instances ofRil;
each Rl is independently selected from hydrogen, a C1_6 alkyl, ¨(C1_6 a1kyl)-R13, phenyl, benzyl, a C3_8 cycloalkyl ring, a 4 to 7-membered heterocyclic ring or a 5 or 6-membered heteroaryl ring, wherein each 5 or 6-membered heteroaryl ring or 4 to 7-membered heterocyclic ring contains up to 4 ring heteroatoms independently selected from N, 0 and S;
and wherein each of said C1_6 alkyl, C1_6 alkyl portion of said ¨(C1_6 a1kyl)-R13 moiety, each said phenyl, each said benzyl, each said C3_8 cycloalkyl group, each said 4 to 7-membered heterocyclic ring and each 5 or 6-membered heteroaryl ring is optionally and independently substituted with up to 3 instances of Ri la;
each R13 is independently selected from a phenyl, a benzyl, a C3_6 cycloalkyl ring, a 4 to 7-membered heterocyclic ring or a 5 or 6-membered heteroaryl ring, wherein each 5 or 6-membered heteroaryl ring or 4 to 7-membered heterocyclic ring contains up to 4 ring heteroatoms independently selected from N, 0 and S; and wherein each said phenyl, each of said benzyl, each said C3_8 cycloalkyl group, each said 4 to 7-membered heterocyclic ring and each 5 or 6-membered heteroaryl ring is optionally and independently substituted with up to 3 instances of Ri lb;
each R" is independently selected from halogen, oxo, C1_6 alkyl, ¨CN, ¨0R12, ¨COR12, ¨C(0)0R12, ¨C(0)N(Ri2)25 N(R12)c(0)R125 Nc.K 12, )C(0)0R125 Nr 12, K )C(0)N(R12)25 N(R12)25 502R12, ¨502N(R12)2 or ¨N(R12)502R12; wherein each of said C1_6 alkyl is optionally and independently substituted by up to 6 instances of fluoro and/or 3 instances of R12;
each R' la is independently selected from halogen, oxo, C1_6 alkyl, ¨CN, ¨0R12, ¨COR12, ¨C(0)0R12, ¨C(0)N(Ri2)25 N(R12)c(0)R125 Nc.K 12, )C(0)0R125 Nr 12, K )C(0)N(R12)25 -N(R12)2, -SO2R12, -SO2N(R12)2 or -N(R12)S02R12; wherein each of said C1_6 alkyl is optionally and independently substituted by up to 6 instances of fluoro and/or 3 instances of R12; and each R' lb is independently selected from halogen, C1_6 alkyl, oxo, -CN, -0R12, -COR12, -C(0)0R12, -C(0)N(R12)2, -N(R12)C(0)R12, -N(R12)C(0)0R12, -N(R12)C(0)N(R12)2, -N(R12)2, -502R12, -502N(R12)2 or -N(R12)502R12; wherein each of said C1_6 alkyl is optionally and independently substituted by up to 6 instances of fluoro and/or 3 instances of R12;
each R12 is selected from hydrogen, a C1_6 alkyl, phenyl, benzyl, a C3_8 cycloalkyl ring, a 4 to 7-membered heterocyclic ring or a 5 or 6-membered heteroaryl ring, wherein each 5 or 6-membered heteroaryl ring or 4 to 7-membered heterocyclic ring contains up to 4 ring heteroatoms independently selected from N, 0 and S; and wherein each of said C1_6 alkyl, each said phenyl, each said benzyl, each said C3_8 cycloalkyl group, each said 4 to 7-membered heterocyclic ring and each 5 or 6-membered heteroaryl ring is optionally and independently substituted with up to 3 instances of halogen, C1_4 alkyl, C1_4 (fluoroalkyl), -OH, -NH2, -NH(Ci_4 alkyl), -N(Ci_4 a1ky1)2, -CN, -COOH, -CONH2, -COO(Ci_4 alkyl), -0(C,4 alkyl), -0(C,4 fluoroalkyl) or oxo.
Rc is either i) a ring C; or ii) is selected from halogen, -CN, C1_6 alkyl, -(C1_6 alkyl)-RN, -COR7, -C(0)0R7, -C(0)N(R7)2, -N(R7)C(0)R7, -N(W)C(0)0R7, -N(R7)C(0)N(R7)2, -N(R7)2, -502R7, -502N(R7)2, -C(0)N(W)502R7, -502N(W)COOR7, -502N(W)C(0)R7, or -N(R7)502R7 or -(C=0)NHOR7; wherein each said C1_6 alkyl, each C1_6 alkyl portion of said -(C1_6 alkyl)-RN, is optionally and independently substituted with up to 6 instances of fluoro and up to 2 instances of -CN, -0R8, oxo, -N(R8)2, -N(R8)C(0)R8, -N(R8)C(0)01e, -N(R8)C(0)N(R8)2, -502R8, -502N(R8)2, -NHOR8, -S02N(R8)COOR8, -S02N(R8)C(0)R8, -N(R8)02R8;
wherein each R7 is independently selected from hydrogen, C1_6 alkyl, C1_6 fluoroalkyl, a C3_8 cycloalkyl ring, phenyl, a 4 to 7-membered heterocyclic ring or a 5 or 6-membered heteroaryl ring; wherein each of said 5 or 6-membered heteroaryl ring or 4 to 7-membered heterocyclic ring contains up to 4 ring heteroatoms independently selected from N, 0 and S;
and wherein each of said C1_6 alkyl, each of said phenyl, each of said C3_8 cycloalkyl group, each of said 4 to 7-membered heterocyclic ring and each of said 5 or 6-membered heteroaryl ring is optionally and independently substituted with up to 3 instances of halogen, Ci_4 alkyl, ¨OH, ¨NH2, ¨NH(C1_4 alkyl), ¨N(C1_4 a1ky1)2, ¨CN, ¨COOH, ¨COO(C1_4 alkyl), ¨0(C1_4 alkyl), ¨0(C1-4 haloalkyl) or oxo;
each R8 is independently selected from hydrogen, C1_6 alkyl, C1_6 fluoroalkyl, a C3_8 cycloalkyl ring, a 4 to 7-membered heterocyclic ring or a 5 or 6-membered heteroaryl ring; wherein each of said 5 or 6-membered heteroaryl ring or 4 to 7-membered heterocyclic ring contains up to 4 ring heteroatoms independently selected from N, 0 and S; and wherein each of said C1_6 alkyl, each of said phenyl, each of said C3_8 cycloalkyl group, each of said 4 to 7-membered heterocyclic ring and each of said 5 or 6-membered heteroaryl ring is optionally and independently substituted with up to 3 instances of halogen, C1_4 alkyl, ¨OH, ¨NH2, ¨NH(C1-4 alkyl), ¨N(C1_4 alky1)2, ¨CN, ¨COOH, ¨COO(C1_4 alkyl), ¨0(C1_4 alkyl), ¨0(C1_4 haloalkyl) or oxo;
each RN is independently selected from a phenyl ring, a monocyclic 5 or 6-membered heteroaryl ring, a monocyclic C3-6 cycloaliphatic ring, or a monocyclic 4 to 6-membered heterocycle; wherein said monocyclic 5 or 6-membered heteroaryl ring or said monocyclic 4 to 6-membered heterocycle contain between 1 and 4 heteroatoms selected from N, 0 or S;
wherein said monocyclic 5 or 6-membered heteroaryl ring is not a 1,3,5-triazinyl ring; and wherein said phenyl, said monocyclic 5 to 6-membered heteroaryl ring, said monocyclic C3_6 cycloaliphatic ring, or said monocyclic 4 to 6-membered heterocycle is optionally and independently substituted with up to 6 instances of fluoro and/or up to 3 instances ofJm;
each Jm is independently selected from ¨CN, a C1_6 aliphatic, ¨ORm, ¨SRm, ¨N(Rm)2, a C3_8 cycloaliphatic ring or a 4 to 8-membered heterocyclic ring; wherein said 4 to 8-membered heterocyclic ring contains 1 or 2 heteroatoms independently selected from N, 0 or S; wherein each said C1_6 aliphatic, each said C3-8 cycloaliphatic ring and each said 4 to 8-membered heterocyclic ring, is optionally and independently substituted with up to 3 instances of R7c;
each Rm is independently selected from hydrogen, a C1_6 aliphatic, a C3_8 cycloaliphatic ring or a 4 to 8-membered heterocyclic ring; wherein each said 4 to 8-membered heterocyclic ring contains between 1 and 3 heteroatoms independently selected from 0, N or S;
and wherein ring C is a phenyl ring, a monocyclic 5 or 6-membered heteroaryl ring, a bicyclic 8 to 10-membered heteroaryl ring, a monocyclic 3 to 10-membered cycloaliphatic ring, or a monocyclic 4 to 10-membered heterocycle; wherein said monocyclic 5 or 6-membered heteroaryl ring, said bicyclic 8 to 10-membered heteroaryl ring, or said monocyclic 4 to 10-membered heterocycle contain between 1 and 4 heteroatoms selected from N, 0 or S;
wherein said monocyclic 5 or 6-membered heteroaryl ring is not a 1,3,5-triazinyl ring; and wherein said phenyl, monocyclic 5 to 6-membered heteroaryl ring, bicyclic 8 to 10-membered heteroaryl ring, monocyclic 3 to 10-membered cycloaliphatic ring, or monocyclic 4 to 10-membered heterocycle is optionally and independently substituted with up to p instances of f'; wherein p is 0 or an integer selected from 1 to 3;
each Jc' is independently selected from halogen, ¨CN, ¨NO2, a C1_6 aliphatic, ¨OR", ¨SRH, ¨N(RH)2, a C3_8 cycloaliphatic ring or a 4 to 8-membered heterocyclic ring;
wherein said 4 to 8-membered heterocyclic ring contains 1 or 2 heteroatoms independently selected from N, 0 or S; wherein each said C1_6 aliphatic, each said C3-8 cycloaliphatic ring and each said 4 to 8-membered heterocyclic ring, is optionally and independently substituted with up to 3 instances of R7'; or alternatively, two Jc' groups attached to two vicinal ring C atoms, taken together with said two vicinal ring C atoms, form a 5 to 7-membered heterocycle that is a new ring fused to ring C;
wherein said 5 to 7-membered heterocycle contains from 1 to 2 heteroatoms independently selected from N, 0 or S;
each RH is independently selected from hydrogen, a C1_6 aliphatic, a C3_8 cycloaliphatic ring or a 4 to 8-membered heterocyclic ring ; wherein each said 4 to 8-membered heterocyclic ring contains between 1 and 3 heteroatoms independently selected from 0, N or S;
alternatively, two instances of R" linked to the same nitrogen atom of ¨N(RH)2, together with said nitrogen atom of ¨N(RH)2, form a 4 to 8-membered heterocyclic ring or a 5-membered heteroaryl ring;
wherein each said 4 to 8-membered heterocyclic ring and each said 5-membered heteroaryl ring optionally contains up to 2 additional heteroatoms independently selected from N, 0 or S;
each R7c is independently selected from hydrogen, halogen, ¨CN, ¨NO2, C1_4 alkyl, C1-4 haloalkyl, C3_8 cycloalkyl ring, ¨0R8b, ¨SR8b, ¨N(R8b)2, ¨C(0)0(C1_4 alkyl), ¨C(0)0H, ¨NR(CO)CO(C1_4 alkyl) or an oxo group; wherein each said cycloalkyl group is optionally and independently substituted with up to 3 instances of halogen;
each R7d is independently selected from hydrogen, halogen, ¨CN, ¨NO2, C1_4 alkyl, C1-4 haloalkyl, C3_8 cycloalkyl ring, ¨0R8c, ¨SR8c, ¨N(R8c)2, or an oxo group;
wherein each said cycloalkyl group is optionally and independently substituted with up to 3 instances of halogen;

each R8b is independently selected from hydrogen, C1_6 alkyl, C1_6 fluoroalkyl, a C3_8 cycloalkyl ring, a 4 to 7-membered heterocyclic ring or a 5 or 6-membered heteroaryl ring; wherein each of said 5 or 6-membered heteroaryl ring or 4 to 7-membered heterocyclic ring contains up to 4 ring heteroatoms independently selected from N, 0 and S; and wherein each of said C1_6 alkyl, each of said phenyl, each of said C3_8 cycloalkyl group, each of said 4 to 7-membered heterocyclic ring and each of said 5 or 6-membered heteroaryl ring is optionally and independently substituted with up to 3 instances of halogen, C1_4 alkyl, ¨OH, ¨NH2, ¨NH(C1-4 alkyl), ¨N(C1_4 a1ky1)2, ¨CN, ¨COOH, ¨COO(C1_4 alkyl), ¨0(C1_4 alkyl), ¨0(C1_4 haloalkyl) or oxo;
each R8' is independently selected from hydrogen, C1_6 alkyl, C1_6 fluoroalkyl, a C3_8 cycloalkyl ring, a 4 to 7-membered heterocyclic ring or a 5 or 6-membered heteroaryl ring; wherein each of said 5 or 6-membered heteroaryl ring or 4 to 7-membered heterocyclic ring contains up to 4 ring heteroatoms independently selected from N, 0 and S; and wherein each of said C1_6 alkyl, each of said phenyl, each of said C3_8 cycloalkyl group, each of said 4 to 7-membered heterocyclic ring and each of said 5 or 6-membered heteroaryl ring is optionally and independently substituted with up to 3 instances of halogen, Ci_4 alkyl, ¨OH, ¨NH2, ¨NH(C1-4 alkyl), ¨N(Ci_4 a1ky1)2, ¨CN, ¨COOH, ¨COO(C1_4 alkyl), ¨0(C1_4 alkyl), ¨0(C1_4 haloalkyl) or oxo;
provided that the compound is not a compound depicted below:

B
(.-1 )0-3 N NC JD N, \\;NI N

, N JA

F ; and OMe ; wherein JD is either an ethylene or ¨N(Me)2;
JA is either hydrogen or methyl and JB is either fluoro or C1_2 alkoxy.
[0074] In some embodiments of the compounds of Formula I', W is absent. In some of these embodiments, wherein W is absent, the compound is represented by Formula II'a:

Q
Rc...\___ Nil D \\
X,Nt D
(J )o .
, Formula II'a wherein Q represents a C1_7 alkyl group, optionally substituted with up to 9 instances of fluorine. In other embodiments Q is substituted with up to 5 instances of fluorine.
[0075] In still other embodiments of Formula I' wherein W is absent, the compound is represented by Formula III'a:
Q' \

Rc 1 N,...¨N
11 'N
Xl...!( N D'2 eR1 ).z..........(.._ A .- N.
Jo R2 Jo ;
Formula III'a wherein, Q' is a C1_5 alkyl chain, optionally substituted by up to 6 instances of fluorine. In some of these embodiments, X2 is N, and the moiety ¨N(R1)(R2) is absent. In other embodiments, X2 is C, and the moiety ¨N(R1)(R2) is present. In some of these embodiments:
Rl and R2, together with the nitrogen atom to which they are attached, form a 4 to 8-membered heterocyclic ring or 5-membered heteroaryl ring; wherein said 4 to 8-membered heterocyclic ring or 5-membered heteroaryl ring optionally contains, in addition to the nitrogen atom to which Rl and R2 are attached, up to 3 ring heteroatoms independently selected from N, 0 or S, and is optionally substituted by up to 5 instances of R5e;
each R5e is independently selected from halogen, ¨CN, C1_6 alkyl, ¨(C1_4 a1kyl)-R6, a C3-8 cycloalkyl ring, C1_4 cyanoalkyl, ¨0R6, ¨SR6, ¨000R6, ¨COR6, ¨C(0)0R6, ¨C(0)N(R6)2, ¨N(R6)C(0)R6, ¨N(R6)2, ¨S02R6, ¨S020H, ¨SO2NHOH, ¨502N(R6)COR6, ¨502N(R6)2, ¨N(R6)502R6, benzyl, phenyl or an oxo group; wherein each said phenyl ring and each said benzyl group, is optionally and independently substituted with up to 3 instances of halogen, ¨OH, ¨NH2, ¨NH(C1_4 alkyl), ¨N(C1_4 alky1)2, ¨CN, C1_4 alkyl, C1_4 haloalkyl, ¨0(C1_4 alkyl) or ¨0(Ci_4 haloalkyl); and wherein each said C1_6 alkyl, each C1_4 alkyl portion of said ¨(C1-4 alkyl)-R6 moiety, and each said C3_8 cycloalkyl ring is optionally and independently substituted with up to 3 instances of halogen; wherein each R6 is independently selected from hydrogen, a C1_6 alkyl, a C2_4 alkenyl, phenyl, benzyl, or a C3_8 cycloalkyl ring; wherein each said C1_6 alkyl, each said C2_4 alkenyl, each said phenyl, each said benzyl and each said C3_8 cycloalkyl group is optionally and independently substituted with up to 3 instances of halogen;
two of the instances of R5e attached to the same or different atoms of said ring formed by Rl, R2 and the nitrogen to which Rl and R2 are attached, together with said atom or atoms, may optionally form a C3_8 cycloalkyl ring, a 4 to 6-membered heterocyclic ring; a phenyl or a 5 or 6-membered heteroaryl ring, resulting in a bicyclic system wherein the two rings of the bicyclic system are in a spiro, fused or bridged relationship, wherein said 4 to 6-membered heterocycle or said 5 or 6-membered heteroaryl ring contains up to three ring heteroatoms independently selected from N, 0 or S; and wherein said C3_8 cycloalkyl ring, 4 to 6-membered heterocyclic ring, phenyl or 5 or 6-membered heteroaryl ring is optionally and independently substituted by up to 3 instances of C14 alkyl, C1_4 haloalkyl, C1_4 alkoxy, C1_4 haloalkoxy, oxo, ¨C(0)0(C1-4 alkyl), ¨C(0)0H, ¨C(0)NH2, ¨NR(C0)0(C1_4 alkyl), ¨OH or halogen; wherein R is hydrogen or a C1_2 alkyl.
In some of these embodiments, alternatively, Rl and R2 are each independently selected from hydrogen, C1_6 alkyl, a C3_8 cycloalkyl ring, a 4 to 8-membered heterocyclic ring, a 5 or 6-membered heteroaryl, phenyl or a C1_6 alkyl¨R'; wherein each of said 4 to 8-membered heterocyclic ring and each of said 5 or 6-membered heteroaryl ring contains up to 3 ring heteroatoms independently selected from N, 0 and S; and wherein each of said C1_6 alkyl, C1_6 alkyl portion of each said C1_6 alkyl¨R' moiety, C3_8 cycloalkyl ring, 4 to 8-membered heterocyclic ring group, 5 or 6-membered heteroaryl, phenyl and C1_6 alkyl¨R' is optionally and independently substituted with up to 5 instances of R5;
RY is selected from a C3_8 cycloalkyl ring, a 4 to 8-membered heterocyclic ring, phenyl, or a 5 to 6-membered heteroaryl ring; wherein each of said 4 to 8-membered heterocyclic ring or 5 to 6-membered heteroaromatic ring contains between 1 and 4 ring heteroatoms independently selected from N, 0 or S; and wherein each of said C3_8 cycloalkyl ring, each of said 4 to 8-membered heterocyclic ring, each of said phenyl, and each of said 5 to 6-membered heteroaryl ring is optionally substituted with up to 5 instances 0f R5;
each R5f is independently selected from halogen, -CN, C1_6 alkyl, -(C1_4 a1ky1)-R6a, a C7-12 aralkyl, C3_8 cycloalkyl ring, C1_4 cyanoalkyl, -0R6a, -SR6a, -000R6a, -COR6a, -C(0)0R6a, -C(0)N(R6a)2, -N(R6a)C(0)R6a, -N(R6a)2, -SO2R6a, -SO2N(R6a)2, -N(R6a)S02R6a, -S020H, -SO2NHOH, -502N(R6a)COR6a, phenyl or an oxo group; wherein each said phenyl group is optionally and independently substituted with up to 3 instances of halogen, -OH, -NH2, -NH(C1_4 alkyl), -N(C1_4 a1ky1)2, -NO2, -CN, C1_4 alkyl, C1_4 haloalkyl, -0(C1_4 alkyl) or -0(Ci_4 haloalkyl); and wherein each said C7_12 aralkyl, C1_6 alkyl, C1_4 alkyl portion of each said -(C1_4 a1ky1)-R6a and each said C3-8 cycloalkyl group is optionally and independently substituted with up to three instances of halogen;
each R6a is independently selected from hydrogen, a C1_6 alkyl, a C2_4 alkenyl, phenyl, benzyl, or a C3_8 cycloalkyl ring; wherein each said C1_6 alkyl, each said C2_4 alkenyl, each said phenyl, each said benzyl and each said C3_8 cycloalkyl group is optionally and independently substituted with up to 3 instances of halogen;
each R5g is independently selected from halogen, -CN, C1_6 alkyl, -(C1_4 a1ky1)-R6b, a benzyl, C3_8 cycloalkyl ring, C1_4 cyanoalkyl, -0R6b, -SR6b, -000R6b, -COR6b, -C(0)0R6b, -C(0)N(R6b)2, -N(R6b)C(0)R6b, -N(R6b)2, -SO2R6b, -502N(R6b)2, -N(R6b)S02R6b, -5020H, -SO2NHOH, -502N(R6b)COR6b, phenyl or an oxo group; wherein each said phenyl and each said benzyl group is optionally and independently substituted with up to 3 instances of halogen, -OH, -NH2, -NH(C1_4 alkyl), -N(C1_4 a1ky1)2, -NO2, -CN, C1_4 alkyl, C1_4 haloalkyl, -0(C1_4 alkyl) or -0(C1_4 haloalkyl); and wherein each said C1_6 alkyl, C1_4 alkyl portion of each said (C1_4 a1ky1)-R6b moiety and each said C3-8 cycloalkyl group is optionally and independently substituted with up to 3 instances of halogen;
each R6b is independently selected from hydrogen, a C1_6 alkyl, a C2_4 alkenyl, phenyl, benzyl, or a C3_8 cycloalkyl ring; wherein each said C1_6 alkyl, each said C2_4 alkenyl, each said phenyl, each said benzyl and each said C3_8 cycloalkyl group is optionally and independently substituted with up to 3 instances of halogen.
In some embodiments, alternatively, two instances 0f5g attached to the same or different ring atoms of R', together with said ring atom or atoms, form a C3_8 cycloalkyl ring, a 4 to 6-membered heterocyclic ring; a phenyl or a 5 or 6-membered heteroaryl ring, resulting in a bicyclic system wherein the two rings are in a spiro, fused or bridged relationship, wherein said 4 to 6-membered heterocycle or said 5 or 6-membered heteroaryl ring contains up to three heteroatoms independently selected from N, 0 or S; and wherein said C3_8 cycloalkyl ring, 4 to 6-membered heterocyclic ring, phenyl or 5 or 6-membered heteroaryl ring is optionally and independently substituted by up to 3 instances of C,4 alkyl, Ci_4 haloalkyl, Ci_4 alkoxy, C1-4 haloalkoxy, oxo, ¨C(0)0(C1_4 alkyl), ¨C(0)0H, ¨C(0)NH2, ¨NR"(C0)0(C1_4 alkyl), ¨OH or halogen; and R" is hydrogen or a C1_2 alkyl.
In those embodiments when one of R' or R2 is the C3_8 cycloalkyl ring, 4 to 8-membered heterocyclic ring or 5 or 6-membered heteroaryl substituted with up to 5 instances of R51, two of the instances of R5 attached to the same or different ring atoms of said Rl or R2, together with said atom or atoms, form a C3_8 cycloalkyl ring, a 4 to 6-membered heterocyclic ring, a phenyl or a 5 or 6-membered heterocyclic ring, resulting in a bicyclic system wherein the two rings are in a spiro, fused or bridged relationship, wherein said 4 to 6-membered heterocycle or said 5 or 6-membered heterocyclic ring contains up to two ring heteroatoms independently selected from N, 0 or S; and wherein said C3_8 cycloalkyl ring, 4 to 6-membered heterocyclic ring, phenyl or 5 or 6-membered heterocyclic ring is optionally substituted by up to 2 instances of C,4 alkyl, C1_4 haloalkyl, oxo, ¨(CO)0(C,4 alkyl), ¨NR'(C0)0(Ci_4 alkyl) or halogen;
wherein R' is hydrogen or a C1_2 alkyl.
In some embodiments, the two JD groups attached to two vicinal ring D atoms, taken together with said two vicinal ring D atoms, may optionally form a 5 to 6-membered heterocycle or a 5-membered heteroaryl ring that is fused to ring D; wherein said 5 to 6-membered heterocycle or said 5-membered ring heteroaryl contains from 1 to 3 heteroatoms independently selected from N, 0 or S; and wherein said 5 to 6-membered heterocycle or said 5-membered heteroaryl ring is optionally and independently substituted by up to 3 instances of oxo or ¨(Y)¨R9, and RY
is defined as above.
[0076] In some embodiments of the first aspect, at least one of the two instances of X1 and X2 is N. In other embodiments, only one instance of X1 and X2 is N and the other one is C. In still other embodiments, X2 is C on ring D and is optionally substituted with JD.
[0077] In some embodiments of the compounds of Formula I', the compound is represented by Formula IV'a:

IRc__N
li 'N
Xl...!( õ,---"N
--- N

JD
;
Formula IV'a JA is selected from hydrogen, halogen, methyl, hydroxyl, methoxy, trifluoromethyl, trifluoromethoxy or ¨NRaRb; in some of these embodiments, Ra and Rb are each independently selected from hydrogen, C1_6 alkyl or a 3-6 cycloalkyl ring; alternatively, Ra and Rb, together with the nitrogen atom to which they are both attached, may form a 4-8 membered heterocyclic ring or a 5-membered heteroaryl ring optionally containing up to two additional heteroatoms selected from N, 0 and S; wherein each of said 4-8 membered heterocyclic ring and 5-membered heteroaryl ring is optionally and independently substituted by up to 6 instances of fluorine; JD is selected from hydrogen or fluorine; and Rl and R2 are as defined supra.
[0078] In other embodiments of the compounds of Formula I', the compound is represented by Formula II'b:
/-0 ( JB)n Rc..._N
11 A 'N
X1,/( )¨N
f/ 0 \=-/(j1D)0 Formula II'b In some of these embodiments, ring B is a phenyl. In other embodiments, ring B
is a 5 or 6-membered heteroaryl ring, containing 1 or 2 ring heteroatoms selected from N, 0 or S.
[0079] In some embodiments of the compounds of Formula II'b, X2 on ring D is carbon, optionally substituted by JD. In other embodiments, X2 on ring D is nitrogen.
[0080] In some embodiments of the compounds of Formula II'b, each JD is independently selected from J
A, halogen, a Ci_6 aliphatic, ¨N(RD)2, ¨N(Rd)CORD, ¨N(Rd)COORD, ¨ORD , ¨N(Rd)S02RD, or an optionally substituted C3_8 cycloaliphatic ring. In other embodiments, o is 2 and each JD is independently selected from a halogen atom or ¨N(RD)2, ¨N(Rd)CORD, ¨OH, ¨N(Rd)COORD or ¨N(Rd)S02RD. In still other embodiments, o is 2 and one instance ofJD is fluoro or chloro and the other instance ofJD is ¨OH. In further embodiments of Formula II'b, o is 2 and one instance ofJD is ¨NH2 and the other one is independently selected from ¨N(RD)2, wherein at least one instance of RD is not hydrogen, or is ¨NHCORD, ¨N(Rd)COORD or ¨N(Rd)S02RD . In yet other embodiments, o is 2 and one instance ofJD is independently selected from ¨N(RD)2 or ¨NHCORD and the other instance ofJD is selected from fluoro or chloro. In still other embodiments, o is 1 and JD is amino.
[0081] In some embodiments of the compounds of Formula I' or Formula II'b, the compound is represented by one of Formula III'b or III'c:
(JB)n (JB)n RNc RNc 'N
IN! D IN! D
X2>f X2>f (J )o (J )o Formula III'b Formula III'c.
[0082] In other embodiments of the compounds of Formula I' or Formula II'b, the compound is represented by Formula IV'b or Formula IV'c:
Rc ;/(GIBn N
sN fi N ) 'N
N
IN D 2 ,R1 D 2 ,R1 Jo" ¨A R2 Jo" ¨A R2 Jo Jo =
Formula IV'b Formula IV'c.
[0083] In some embodiments of the compounds of Formula IV'b or Formula IV'c, X2 is nitrogen and the moiety ¨NR1R2 is absent. In other embodiments, X2 is carbon and the moiety -NR R2 is present.
[0084] In some embodiments of any one of the above depicted Formulae wherein W
is ring B, the compound is represented by Formula V'b:

/\
/ A JB)n RN
1 'N
,...
N1)..,?...... ,R1 JD
;
Formula V'b wherein, JA is selected from hydrogen, halogen, methyl, hydroxyl, methoxy, trifluoromethyl, trifluoromethoxy or ¨NRaRb; in some of these embodiments, Ra and Rb are each independently selected from hydrogen, Ci_6 alkyl or a 3-6 cycloalkyl ring; alternatively, in other embodiments, Ra and Rb, together with the nitrogen atom to which they are both attached, may form a 4-8 membered heterocyclic ring or a 5-membered heteroaryl ring optionally containing up to two additional heteroatoms selected from N, 0 and S; wherein each of said 4-8 membered heterocyclic ring and 5-membered heteroaryl ring is optionally and independently substituted by up to 6 instances of fluorine; and JD is either absent or is fluorine.
[0085] In some embodiments of the compounds of Formula I' or Formula II'b, ring B is phenyl. In other embodiments of the compounds of Formula I' or Formula II'b, ring B is a 6-membered heteroaryl ring. In some of these embodiments, n is an integer selected from 1, 2, or 3 and each JB is independently selected from halogen, a Ci_6 aliphatic or ¨ORB. In other embodiments, each JB is independently selected from halogen. In other embodiments, each JB
is independently selected from fluoro or chloro. In still other embodiments, JB is fluoro. In further embodiments, JB is methyl or ethyl. In yet other embodiments, n is 1.
In some of these embodiments in which n is 1, JB is selected from halogen. In other embodiments, JB is fluoro or chloro. In still other embodiments, JB is fluoro.
[0086] In other embodiments of Formula I' or Formula II'b, at least one JB is ortho to the attachment of the methylene linker between ring B and ring A. In some of these embodiments in which at least one JB is ortho to the attachment of the methylene linker between ring B and ring A, the at least one JB that is ortho is independently selected from halogen. In other embodiments, the at least one JB is independently selected from fluoro or chloro. In still other embodiments, the at least one JB is fluoro. In yet other embodiments, n is 1 and the at least one JB ortho to the attachment of the methylene linker between ring B and ring A
is fluoro.
[0087] In other embodiments of the compounds of Formula I' or Formula IFb, ring B is a 6-membered heteroaryl ring. In some of these embodiments, ring B is a pyridyl ring. In other embodiments, ring B is a pyrimidinyl ring.
[0088] In some embodiments of the compounds of Formula I' 5 or Formula II'a, or Formula IFb, or Formula III'b or Formula o is an integer selected from 1, 2, and 3.
In some of these embodiments in which o is selected from 1, 2, and 3, each JD is independently selected from halogen, a Ci_6 aliphatic, -N(R
D)25 _N(Rd)C(0)RD, N.- cl, (K )C(0)ORD, ¨N(Rd)C(0)N(RD)2, -SO2RD, -SO2N(RD)2, -N(Rd)S02RD, -ORD or an optionally substituted C3_8 cycloaliphatic ring.
[0089] In other embodiments of the compounds of Formula I' or Formula II'a, or Formula IFb, or Formula III'b or Formula o is 1 or 2 and each JD is independently selected from a halogen atom or _N(RD)2, -N(Rd)CORD, -OH, -N(Rd)COORD, or -N(Rd)S02RD. In some of these embodiments wherein o is 1 or 2, each Rd is independently selected from hydrogen or C1_4 alkyl. In other embodiments when o is 1 or 2, at least one instance ofJD is independently selected from fluoro, chloro, oxo, hydroxyl or amino.
[0090] In some embodiments of the compounds of Formula I' or Formula II'a, the compounds is represented by one of Formulae Va or VI'a:
Rc 9 RNc 9 I 'NI

I Ni I
JA
(JE) No-3 (JE)o-3 Formula V'a Formula VI'a;
wherein ring E is a 5 or 6-membered heterocyclic ring, containing up to 3 heteroatoms selected from N, 0 and S; and wherein each JE is independently selected from oxo or -(Y)-R9.
[0091] In some of the embodiments of the compounds of Formula I' or Formula IFb, the compound is represented by one of Formulae VI'b or Formula VII'b:

, \ (F)1-2 \ (F)1-2 RN RN
........(1 sN ........(1 sN
)1N diN
13.....1.?....... I ....D.?........
JA N
.._Ei) (JE)o-3 (JE)o-3 Formula VI'b Formula VII'b wherein ring E is a 5 or 6-membered heterocyclic ring, containing up to 3 heteroatoms selected from N, 0 and S; and wherein each JE is independently selected from oxo or ¨(Y)-R9.
[0092] In some of the embodiments of the compounds of Formula V'a, Formula VI'a, Formula VI'b or Formula VII'b, JA is selected from halogen, ¨NH2, ¨OH, or hydrogen.
[0093] In some of the embodiments of the compounds of Formula V'a, Formula VI'a, Formula VI'b or Formula VII'b, ring E is a heterocyclic ring containing one nitrogen ring atom and at least one instance ofJE is oxo. In some of these embodiments, one JE is oxo and two other instances ofJE are independently selected from ¨(Y)-R9.
[0094] In other embodiments of the compounds of Formula V'a, Formula VI'a, Formula VI'b or Formula VII'b, each ¨(Y)-R9 is independently selected from a Ci_6 alkyl; a 5 or 6-membered heteroaryl ring containing between 1 and 3 heteroatoms independently selected from N, 0 or S and optionally substituted by one or more instances of C,6 alkyl or halogen; and ¨C(0)NH-R1 . In some of these embodiments, Rl is a C3_6 cycloalkyl ring.
[0095] In some embodiments of the compounds of Formula I' or Formula II'a, the compound is represented by FormulaVII'a:
Rc.,...N9 1 I\I
,--5"-sN
13.....7_, ,....!...) R1.-N[
R2 (JE)0_3 Formula VII'a.

In these embodiments, ring E is a 5 or 6-membered heterocyclic ring, containing up to 3 heteroatoms selected from N, 0 and S; and each JE is independently selected from oxo or ¨(Y)-R9.
[0096] In some of the compounds of Formula I' or Formula II'b, the compound is represented by FormulaVIII'b:


RcN___N
c sN
N ,)1 N
IN).....;,.........

,!\.) Formula VIII'b wherein ring E is a 5 or 6-membered heterocyclic ring, containing up to 3 heteroatoms selected from N, 0 and S; and each JE is independently selected from oxo or ¨(Y)-R9.
[0097] In some of the embodiments of the compounds of FormulaVII'a and Formula VIII'b, one instance ofJE is oxo and two other instances ofJE are independently selected from C1_6 alkyl; a 5 or 6-membered heteroaryl ring, containing between 1 and 3 heteroatoms independently selected from N, 0 or S and optionally substituted by one or more instances of C1_6 alkyl or halogen; and ¨(CO)NH-R' . In some of these embodiments, Rm is a cycloalkyl ring.
[0098] In some of the embodiments of the compounds of Formula I' or Formula VII'a, the compound is represented by Formula VIII'a or Formula VIII'd:
Rc 9 N..¨N
RC P
...._1 'N N......N
I 'NI
NT ,1-1 (Y)-R9 0 Formula VIII'a Formula VIII'd.
To be perfectly clear, both ¨(Y)-R9 substituents may be attached to any of the available ring carbons, but are attached to the same carbon.
[0099] In some embodiments of the compounds of Formula I' or Formula VIII'b, the compound is represented by Formula XIX'b or Formula XIX'd:
Rc 1-2 Rc sN
N
D

Formula XIX'b Formula XIX'd.
As above, both ¨(Y)-R9 substituents may be attached to any of the available ring carbons, but are attached to the same carbon.
[00100] In some of the compounds of Formula I', the compound is represented by one of Formulae XIX'a or X'a, Rc 9 RN 9 1_.(\1\1 tõ(1\I
m ,R1 "; ,R1 N N , JA 'R2 JD JD
Formula XIX'a Formula X'a.
[00101] In these embodiments, each JA is independently selected from ¨NH2 or hydrogen. In some embodiments, each JD is either absent or is halogen when Rl and R2 are not both hydrogen. In other embodiments, Rl and R2 are both simultaneously hydrogen, and each JD is independently selected from ¨C(0)RD, ¨C(0)ORD, ¨0C(0)RD, ¨C(0)N(RD)2, ¨N(RD)2, ¨N(Rd)C(0)RD, ¨N(Rd)C(0)ORD, ¨N(Rd)C(0)N(RD)2, ¨0C(0)N(RD)2, ¨SO2RD, ¨SO2N(RD)2 or ¨N(Rd)S02RD.
[00102] In some of the compounds of Formula I', the compound is represented by one of Formulae X'b or XI'b:

(F)1-2 (F)1-2 ..\-..\-r----0 r----0 I ;NI I 'NI
-....__(/
----::N õ,---N1 IN\ D\\ N,R1 IN! 1.:......_ ,R1 N---- N.
JA)---1' 'R2 IR-, JD JD
=
, X'b, XI'b In these embodiments, each JA is independently selected from -NH2 or hydrogen.
In some embodiments, each JD is either absent or is halogen when Rl and R2 are not both hydrogen. In other embodiments, Rl and R2 are both simultaneously hydrogen, and each JD is independently selected from -C(0)RD, -C(0)ORD, -0C(0)RD, -C(0)N(RD)2, -N(RD)2, -N(Rd)C(0)RD, -N(Rd)C(0)ORD, -N(Rd)C(0)N(RD)2, -0C(0)N(RD)2, -SO2RD, -SO2N(RD)2 or -N(Rd)S02RD.
[00103] In some of the embodiments of the compounds of Formula I', Formula XIX'a Formula X'a, Formula X'b, or Formula XI'b, JD is selected from -NH2, -OH, and hydrogen.
[00104] In some embodiments, Rc is not a ring. In some of these embodiments, Rc is halogen, -CN, C1_6 alkyl, -(C1_6 alkyl)-RN, -COOR7, -COR7, -C(0)0R7, -C(0)N(R7)2, -N(R7)C(0)R7, -N(R7)C(0)0R7, -N(R7)C(0)N(R7)2, -N(R7)2, -502R7, -502N(R7)2, or -N(R7)502R7. In some embodiments when Rc is a C1_6 alkyl or -(C1_6 alkyl)-RN, the C1_6 alkyl or the (C1_6 alkyl) portion of the -(C1_6 alkyl)-RN moiety may be optionally and independently substituted with up to 6 instances of fluoro and/or up to 2 instances of R7c.
In other embodiments, Rc is -CN, C1_6 alkyl, -COR7, -C(0)0R7, -C(0)N(R7)2, -N(R7)2, -502R7, or -502N(R7)2. In some embodiments when Rc is a C1_6 alkyl or -(C1_6 alkyl)-RN, the C1_6 alkyl or the (C1_6 alkyl) portion of the -(C1_6 alkyl)-RN moiety may be optionally and independently substituted with up to 6 instances of fluoro and/or up to 2 instances of R7'.
In still other embodiments, Rc is -COR7, -C(0)0R7, -C(0)N(R7)2, -N(R7)2, -502R7 or -502N(R7)2.
[00105] In some embodiments, Rc is a ring.
[00106] The present invention is further directed to compounds of Formula I, or pharmaceutically acceptable salts thereof, ( JC) p 0 N/- 0 (JB) n I 1\1 X 1_ 1 N Ri N. tN1' =
/
Formula I
wherein:
X is selected from N, CH, C(C1_4 alkyl), C(C1_4 haloalkyl), CC1 and CF;
ring B is a phenyl or a 6-membered heteroaryl ring containing 1 or 2 ring nitrogen atoms, or ring B is a thiophene;
n is 0 or an integer selected from 1 to 3;
each JB is independently selected from halogen, ¨CN, a C1_6 aliphatic, ¨ORB or a C3-8 cycloaliphatic ring; wherein each of said C1_6 aliphatic and each of said C3_8 cycloaliphatic group is optionally substituted with up to 3 instances of halogen;
each RB is independently selected from hydrogen, a C1_6 aliphatic or a C3_8 cycloaliphatic ring;
wherein each of said RB that is a C1_6 aliphatic and each of said RB that is a cycloaliphatic ring is optionally substituted with up to 3 instances of halogen;
JA is selected from hydrogen, halogen, methyl, methoxy, trifluoromethyl, trifluoromethoxy or ¨NRaRb, wherein Ra and Rb are each independently selected from hydrogen, C1_6 alkyl or a 3-6 cyclo alkyl ring;
JD is absent or selected from halogen, ¨CN, ¨CF3, methoxy, trifluoromethoxy, nitro, amino or methyl;
Rl and R2, together with the nitrogen atom to which they are attached, form a 4 to 8-membered heterocyclic ring or 5 or 6-membered heteroaryl ring; wherein said 4 to 8-membered heterocyclic ring or 5 or 6-membered heteroaryl ring optionally contains in addition to the nitrogen atom up to 3 ring heteroatoms independently selected from N, 0 or S, and is optionally substituted by up to 5 instances of R5; or alternatively, Rl and R2 are each independently selected from hydrogen, C1_6 alkyl, a C3_8 cycloalkyl ring, a 4 to 8-membered heterocyclic ring, a 5 or 6-membered heteroaryl or a C1_6 alkyl¨R'; wherein each of said 4 to 8-membered heterocyclic ring and each of said or 6-membered heteroaryl ring contains up to 3 ring heteroatoms independently selected from N, 0 and S; and wherein each of said C1_6 alkyl, C3_8 cycloalkyl ring, 4 to 8-membered heterocyclic ring group, 5 or 6-membered heteroaryl and the C1_6 alkyl portion of said Ci_6 alkyl¨R' is optionally and independently substituted with up to 5 instances of R5a; provided that R1 and R2 are never simultaneously hydrogen;
or alternatively, JD and one of R' or R2 can form a 5-6 membered heterocyclic ring containing up to two heteroatoms selected from 0, N and S and optionally substituted with up to 3 instances of oxo or ¨(Y)¨R9;
wherein Y is either absent or is a linkage in the form of a C1_6 alkyl chain, optionally substituted by up to 6 instances of fluoro;
each R9 is independently selected from hydrogen, fluoro, ¨CN, ¨ORM, sR105 CORM, -0C(0)R' 5 ¨C(0)0R1 , ¨C(0)N(R10)25 C(0)N(Rio)so2Rio, N(Rio)c(0)Rio, ¨N(R1 )C(0)0R105 N(¨K 1) C(0)N(Rio)25 N(Rio\25 ) oki2iv_1 , 502N(R1 )2, -502N(R1 )COOR1 , -502N(R10)c(o)R105 N(R10)5 2R1 05 (C=0)NHOR1 , a C3_6 cycloalkyl ring, a 4-8-membered heterocyclic ring or a 5-6 membered heteroaroaryl ring; wherein each said 4 to 8-membered heterocyclic ring or 5 to 6-membered heteroaromatic ring contains up to 4 ring heteroatoms independently selected from N, 0 or S; and wherein each of said C3_6 cycloalkyl rings, each of said 4 to 8-membered heterocyclic rings and each of said 5 to 6-membered heteroaromatic rings is optionally substituted with up to 3 instances of R";
each R" is independently selected from halogen, C1_6 alkyl, ¨CN, ¨OR125 sR125 COR12, ¨0C(0)R12, ¨C(0)0R12, ¨C(0)N(R12)25 C(0)N(Ri2)502R12, N(R12)c(0)R12, ¨N(R12)C(0)0R125 Nc.K 12, )C(0)N(R12)25 N(R12)25 502R125 -502N(R12)25 -502N(R12)COOR125 -502N(R12)c(0)R125 N(R12)s02R12 and ¨N=OR' 2; wherein each of said C1_6 alkyl is optionally and independently substituted by up to 3 instances of fluoro, ¨OH, ¨0(C,4 alkyl), phenyl and ¨0(C,4 fluoroalkyl);
wherein each R1 is independently selected from hydrogen, a C1_6 alkyl, phenyl, benzyl, a C3_8 cycloalkyl ring, a 4 to 7-membered heterocyclic ring or a 5 or 6-membered heteroaryl ring, wherein each 5 or 6-membered heteroaryl ring or 4 to 7-membered heterocyclic ring contains up to 4 ring heteroatoms independently selected from N, 0 and S;
and wherein each of said C1_6 alkyl, each said phenyl, each said benzyl, each said C3_8 cycloalkyl group, each said 4 to 7-membered heterocyclic ring and each 5 or 6-membered heteroaryl ring is optionally and independently substituted with up to 3 instances of halogen, C1_4 alkyl, C1_4 (fluoroalkyl), ¨OH, ¨NH2, ¨NH(Ci_4 alkyl), ¨N(Ci_4 a1ky1)2, ¨CN, ¨COOH, ¨COO(Ci_4 alkyl), ¨0(C,4 alkyl), ¨0(C,4 fluoroalkyl) or oxo; and wherein each R12 is independently selected from hydrogen, a C1_6 alkyl, phenyl, benzyl, a C3_8 cycloalkyl ring, a 4 to 7-membered heterocyclic ring or a 5 or 6-membered heteroaryl ring, wherein each 5 or 6-membered heteroaryl ring or 4 to 7-membered heterocyclic ring contains up to 4 ring heteroatoms independently selected from N, 0 and S;
and wherein each of said C1_6 alkyl, each said phenyl, each said benzyl, each said C3_8 cycloalkyl group, each said 4 to 7-membered heterocyclic ring and each 5 or 6-membered heteroaryl ring is optionally and independently substituted with up to 3 instances of halogen, C1_4 alkyl, C1_4 (fluoroalkyl), ¨OH, ¨NH2, ¨NH(Ci_4 alkyl), ¨N(Ci_4 a1ky1)2, ¨CN, ¨COOH, ¨COO(Ci_4 alkyl), ¨0(C,4 alkyl), ¨0(C,4 fluoroalkyl) OT OXO;
RI( is selected from a C3_8 cycloalkyl ring, a 4 to 8-membered heterocyclic ring, phenyl, or a 5 to 6-membered heteroaromatic ring; wherein each of said 4 to 8-membered heterocyclic ring or 5 to 6-membered heteroaromatic ring contains up to 4 ring heteroatoms independently selected from N, 0 or S; and wherein each of said C3_8 cycloalkyl ring, each of said 4 to 8-membered heterocyclic ring, each of said phenyl, and each of said 5 to 6-membered heteroaromatic ring is optionally substituted with up to 5 instances of R5';
each R5' is independently selected from halogen, ¨CN, C1_6 alkyl, ¨0R6b, ¨SR6b, ¨COR6b, ¨0C(0)R6b, ¨C(0)0R6b, ¨C(0)N(R6b)2, ¨C(0)N(R6b)S02R6b, ¨N(R6b)C(0)R6b, ¨N(R6b)C(0)0R6b, ¨N(R6b)C(0)N(R6b)2, ¨N(R6b)2, ¨SO2R6b, ¨502N(R6b)2, ¨502N(R6b)COOR6b, ¨502N(R6b)C(0)R6b, ¨N(R6b)S02R6b, ¨(C=0)NHOR6b, a C3-8 cycloalkyl ring, a 4 to 7-membered heterocyclic ring, a 5 or 6-membered heteroaryl ring, phenyl, benzyl, an oxo group, or a bicyclic group; wherein each of said 5 or 6-membered heteroaryl ring and each of said 4 to 7-membered heterocyclic ring contains up to 4 ring heteroatoms independently selected from N, 0 and S; and wherein each of said C1_6 alkyl, each of said C3_8 cycloalkyl ring, each of said 4 to 7-membered heterocyclic ring, each of said 5 or 6-membered heteroaryl ring, each of said benzyl and each of said phenyl group is optionally and independently substituted with up to 3 instances of halogen, C1_4 alkyl, ¨OH, ¨NH2, ¨NH(Ci_4 alkyl), ¨N(Ci_4 a1ky1)2, ¨CN, ¨COOH, ¨COO(Ci_4 alkyl), ¨0(C,4 alkyl), ¨0(C,4 haloalkyl) or oxo; wherein said bicyclic group contains a first ring and a second ring in a fused or bridged relationship, said first ring is a 4 to 7-membered heterocyclic ring, a 5 or 6-membered heteroaryl ring, phenyl or benzyl, and said second ring is a phenyl ring or a 5 or 6-membered heteroaryl ring containing up to 3 ring heteroatoms selected from N, 0 or S;
and wherein said bicyclic group is optionally and independently substituted by up to six instances of halogen, Ci_4 alkyl, ¨OH, ¨NH2, ¨NH(C1_4 alkyl), ¨N(C1_4 alky1)2, ¨CN, ¨COOH, ¨COO(C1_4 alkyl), ¨0(C1_4 alkyl), ¨0(C1_4 haloalkyl) or oxo;
each R6b is independently selected from hydrogen, a Ci_6 alkyl, phenyl, benzyl, a C3_8 cycloalkyl ring, a 4 to 7-membered heterocyclic ring or a 5 or 6-membered heteroaryl ring, wherein each 5 or 6-membered heteroaryl ring or 4 to 7-membered heterocyclic ring contains up to 4 ring heteroatoms independently selected from N, 0 and S;
and wherein each of said C1_6 alkyl, each said phenyl, each said benzyl, each said C3_8 cycloalkyl group, each said 4 to 7-membered heterocyclic ring and each 5 or 6-membered heteroaryl ring is optionally and independently substituted with up to 3 instances of halogen, Ci_4 alkyl, ¨OH, ¨NH2, ¨NH(C1_4 alkyl), ¨N(C1_4 a1ky1)2, ¨CN, ¨COOH, ¨COO(C1_4 alkyl), ¨0(C1_4 alkyl), ¨0(C1_4 haloalkyl) or oxo; or two instances of R5c attached to the same or different ring atoms of RY, together with said ring atom or atoms, may form a C3_8 cycloalkyl ring, a 4 to 6-membered heterocyclic ring; a phenyl or a 5 or 6-membered heteroaryl ring, resulting in a bicyclic system wherein the two rings are in a spiro, fused or bridged relationship, wherein said 4 to 6-membered heterocycle or said 5 or 6-membered heteroaryl ring contains up to three heteroatoms independently selected from N, 0 or S; and wherein said C3_8 cycloalkyl ring, 4 to 6-membered heterocyclic ring, phenyl or a 5 or 6-membered heteroaryl ring is optionally and independently substituted by up to 3 instances of C14 alkyl, C1-haloalkyl, C1_4 alkoxy, Ci_4 haloalkoxy, oxo, ¨C(0)0(C1_4 alkyl), ¨C(0)0H, ¨NR"(CO)CO(C1_4 alkyl), ¨OH or halogen; wherein R" is hydrogen or a Ci_2 alkyl;
each R5a is independently selected from halogen, ¨CN, C1_6 alkyl, ¨0R6a, ¨SR6a, ¨COR6a, ¨0C(0)R6a, ¨C(0)0R6a, ¨C(0)N(R6a)2, ¨C(0)N(R6a)S02R6a, ¨N(R6a)C(0)R6a, ¨N(R6a)C(0)0R6a, ¨N(R6a)C(0)N(R6a)2, ¨N(R6a)2, ¨SO2R6a, ¨502N(R6a)2, ¨502N(R6a)COOR6a, ¨502N(R6a)C(0)R6a, ¨N(R6a)S02R6a, ¨(C=0)NHOR6a, a C3-8 cycloalkyl ring, a 4 to 7-membered heterocyclic ring, a 5 or 6-membered heteroaryl ring, phenyl, benzyl, an oxo group or a bicyclic group; wherein each 5 or 6-membered heteroaryl ring or 4 to 7-membered heterocyclic ring contains up to 4 ring heteroatoms independently selected from N, 0 and S, wherein each of said Ci_6 alkyl, C3_8 cycloalkyl ring, 4 to 7-membered heterocyclic ring, 5 or 6-membered heteroaryl ring, benzyl or phenyl group is optionally and independently substituted with up to 3 instances of halogen, C1_4 alkyl, C1_4 haloalkyl, ¨OH, ¨NH2, ¨NH(C1_4 alkyl), ¨N(C1_4 a1ky1)2, ¨CN, ¨COOH, ¨COO(C1_4 alkyl), ¨0(C1_4 alkyl), ¨0(C1_4 haloalkyl) or oxo; wherein said bicyclic group contains ring one and ring two in a fused or bridged relationship, said ring one is a 4 to 7-membered heterocyclic ring, a 5 or 6-membered heteroaryl ring, phenyl or benzyl, and said ring two is a phenyl ring or a 5 or 6-membered heteroaryl ring containing up to 3 ring heteroatoms selected from N, 0 or S; and wherein said bicyclic group is optionally and independently substituted by up to six instances of halogen, C1_4 alkyl, ¨OH, ¨NH2, ¨NH(C1_4 alkyl), ¨N(C1_4 alky1)2, ¨CN, ¨COOH, ¨COO(Ci_4 alkyl), ¨0(Ci_4 alkyl), ¨0(Ci_4 haloalkyl) or oxo;
each R6a is independently selected from hydrogen, a Ci_6 alkyl, phenyl, benzyl, a C3_8 cycloalkyl ring, a 4 to 7-membered heterocyclic ring or a 5 or 6-membered heteroaryl ring, wherein each of said Ci_6 alkyl, each of said phenyl, each of said benzyl, each of said C3_8 cycloalkyl group, each of said 4 to 7-membered heterocyclic ring and each of said 5 or 6-membered heteroaryl ring is optionally and independently substituted with up to 3 instances of halogen, C1_4 alkyl, ¨OH, ¨NH2, ¨NH(Ci_4 alkyl), ¨N(Ci_4 alky1)2, ¨CN, ¨COOH, ¨C(0)NH2, ¨C(0)N(Ci_6 alky1)2, ¨C(0)NH(Ci_6 alkyl), ¨C(0)N(C1-6 haloa1ky1)2, ¨C(0)NH(Ci_6 aoalkyl), C(0)N(Ci_6 alkyl)(Ci_6 haloalkyl), ¨COO(C1-alkyl), ¨COO(Ci_6 haloalkyl), ¨0(Ci_4 alkyl), ¨0(Ci_4 haloalkyl) or oxo, wherein each of said 5 or 6-membered heteroaryl ring or 4 to 7-membered heterocyclic ring contains up to 4 ring heteroatoms independently selected from N, 0 and S; or when one of R1 or R2 is the C3_8 cycloalkyl ring, 4 to 8-membered heterocyclic ring or 5 or 6-membered heteroaryl substituted with up to 5 instances of R5a, two of the instances of R5' attached to the same or different ring atoms of said R1 or R2, together with said atom or atoms, may optionally form a C3_8 cycloalkyl ring, a 4 to 6-membered heterocyclic ring, a phenyl or a 5 or 6-membered heterocyclic ring, resulting in a bicyclic system wherein the two rings are in a spiro, fused or bridged relationship, wherein said 4 to 6-membered heterocycle or said 5 or 6-membered heterocyclic ring contains up to two ring heteroatoms independently selected from N, 0 or S; and wherein said C3_8 cycloalkyl ring, 4 to 6-membered heterocyclic ring, phenyl or 5 or 6-membered heterocyclic ring is optionally substituted by up to 2 instances of Ci_4 alkyl, C1-4 haloalkyl, oxo, ¨(CO)CO(Ci_4 alkyl), ¨NR'(CO)CO(Ci_4 alkyl) or halogen;
wherein R' is hydrogen or a Ci_2 alkyl;
each R5 is independently selected from halogen, ¨CN, C1_6 alkyl, ¨0R6, ¨SR6, ¨COR6, ¨0C(0)R6, ¨C(0)0R6, ¨C(0)N(R6)2, ¨C(0)N(R6)S02R6, ¨N(R6)C(0)R6, ¨N(R6)C(0)0R6, ¨N(R6)C(0)N(R6)2, ¨N(R6)2, ¨S02R6, ¨SO2N(R6)2, ¨SO2N(R6)COOR6, ¨502N(R6)C(0)R6, ¨N(R6)502R6, ¨(C=0)NHOR6, a C3-8 cycloalkyl ring, a 4 to 7-membered heterocyclic ring, a 5 or 6-membered heteroaryl ring, phenyl, benzyl, an oxo group or a bicyclic group; wherein each of said 5 or 6-membered heteroaryl ring or 4 to 7-membered heterocyclic ring contains up to 4 ring heteroatoms independently selected from N, 0 and S; and wherein each of said C1_6 alkyl, C3_8 cycloalkyl ring, 4 to 7-membered heterocyclic ring, 5 or 6-membered heteroaryl ring, benzyl or phenyl group is optionally and independently substituted with up to 3 instances of halogen, C1_4 alkyl, ¨OH, ¨NH2, ¨NH(C1_4 alkyl), ¨N(C1_4 a1ky1)2, ¨CN, ¨COOH, ¨COO(C1_4 alkyl), ¨0(C1_4 alkyl), ¨0(C1_4 haloalkyl) or oxo;
wherein said bicyclic group contains ring one and ring two in a fused or bridged relationship, said ring one is a 4 to 7-membered heterocyclic ring, a 5 or 6-membered heteroaryl ring, phenyl or benzyl, and said ring two is a phenyl ring or a 5 or 6-membered heteroaryl ring containing up to 3 ring heteroatoms selected from N, 0 or S; and wherein said bicyclic group is optionally and independently substituted by up to six instances of halogen, C1_4 alkyl, ¨OH, ¨NH2, ¨NH(C1_4 alkyl), ¨N(C1_4 a1ky1)2, ¨CN, ¨COOH, ¨COO(C1_4 alkyl), ¨0(C1_4 alkyl), ¨0(C1_4 haloalkyl) or oxo;
each R6 is independently selected from hydrogen, a C1_6 alkyl, phenyl, benzyl, a C3_8 cycloalkyl ring or a 4 to 7-membered heterocyclic ring, a 5 or 6-membered heteroaryl ring;
wherein each of said 5 or 6-membered heteroaryl ring or 4 to 7-membered heterocyclic ring contains up to 4 ring heteroatoms independently selected from N, 0 and S;
and wherein each of said C1_6 alkyl, each of said phenyl, each of said benzyl, each of said C3_8 cycloalkyl group, each of said 4 to 7-membered heterocyclic ring and each of said or 6-membered heteroaryl ring is optionally and independently substituted with up to 3 instances of halogen, C1_4 alkyl, ¨OH, ¨NH2, ¨NH(C1_4 alkyl), ¨N(C1_4 a1ky1)2, ¨CN, ¨COOH, ¨COO(C1_4 alkyl), ¨0(C1_4 alkyl), ¨0(C1_4 haloalkyl) or oxo; or when Rl and R2 attached to the nitrogen atom form the 4 to 8-membered heterocyclic ring or 5 or 6-membered heteroaryl ring substituted with up to 5 instances of R5, two of the instances of R5 attached to the same or different atoms of said ring, together with said atom or atoms, may optionally form a C3_8 cycloalkyl ring, a 4 to 6-membered heterocyclic ring; a phenyl or a 5 or 6-membered heteroaryl ring, resulting in a bicyclic system wherein the two rings of the bicyclic system are in a spiro, fused or bridged relationship, wherein said 4 to 6-membered heterocycle or said 5 or 6-membered heteroaryl ring contains up to three ring heteroatoms independently selected from N, 0 or S; and wherein said C3_8 cycloalkyl ring, 4 to 6-membered heterocyclic ring, phenyl or 5 or 6-membered heteroaryl ring is optionally and independently substituted by up to 3 instances of C1_4 alkyl, Ci_4haloalkyl, Ci_4alkoxy, C1_4haloalkoxy, oxo, -C(0)0(C1-4 alkyl), -C(0)0H, -NR(CO)CO(C1_4 alkyl), -OH or halogen; wherein R is hydrogen or a Ci_2 alkyl;
p is an integer selected from 0, 1 or 2;
ring C is a monocyclic 5-membered heteroaryl ring containing up to 4 ring heteroatoms selected from N, 0 or S; wherein said monocyclic 5-membered heteroaryl ring is not a 1,3,5-triazinyl ring;
each Jc is independently selected from halogen or a Ci_4 aliphatic optionally and independently substituted by up to 3 instances of Ci_4alkoxy, Ci_4haloa1koxy, oxo, -C(0)0(C1-alkyl), -C(0)0H, -NR(CO)CO(C1_4 alkyl), -OH or halogen; or alternatively, ring C is absent, p is 1, and Jc is selected from halogen, -CN, C1_6 alkyl, -OR', -SR7, -COR7, -0C(0)R7, -C(0)0R7, -C(0)N(R7)2, -N(R7)C(0)R7, -N(R7)C(0)0R7, -N(R7)C(0)N(R7)2, -N(R7)2, -S02R7, -SO2N(R7)2, -C(0)N(R7)502R7, -502N(R7)COOR7, -502N(R7)C(0)R7, -N(R7)502R7, -(C=0)NHOR7 or an oxo group; wherein C1_6 alkyl is optionally and independently substituted with up to 6 instances of fluoro and up to 2 instances of -CN, -0R8, oxo, -N(102, -N(R8)C(0)1e, -N(10C(0)01e, -N(R8)C(0)N(R8)2, -S02R8, -502N(R8)2, -NHOR8, -502N(R8)COOR8, -502N(R8)C(0)R8, -N(R8)502R8;
wherein each R7 is independently selected from hydrogen, C1_6 alkyl, C1_6 fluoroalkyl, a C3_8 cycloalkyl ring, phenyl, a 4 to 7-membered heterocyclic ring or a 5 or 6-membered heteroaryl ring; wherein each of said 5 or 6-membered heteroaryl ring or 4 to 7-membered heterocyclic ring contains up to 4 ring heteroatoms independently selected from N, 0 and S; and wherein each of said C1_6 alkyl, each of said phenyl, each of said C3_8 cycloalkyl group, each of said 4 to 7-membered heterocyclic ring and each of said or 6-membered heteroaryl ring is optionally and independently substituted with up to 3 instances of halogen, C1_4 alkyl, -OH, -NH2, -NH(C1_4 alkyl), -N(C1_4a1ky1)2, -CN, -COOH, -COO(C1_4 alkyl), -0(C1_4 alkyl), -0(C1_4haloa1kyl) or oxo; and wherein, each R8 is independently selected from hydrogen, C1_6 alkyl, C1_6 fluoroalkyl, a C3_8 cycloalkyl ring, a 4 to 7-membered heterocyclic ring or a 5 or 6-membered heteroaryl ring; wherein each of said 5 or 6-membered heteroaryl ring or 4 to 7-membered heterocyclic ring contains up to 4 ring heteroatoms independently selected from N, 0 and S; and wherein each of said C1_6 alkyl, each of said phenyl, each of said C3_8 cycloalkyl group, each of said 4 to 7-membered heterocyclic ring and each of said 5 or 6-membered heteroaryl ring is optionally and independently substituted with up to 3 instances of halogen, Ci_4 alkyl, ¨OH, ¨NH2, ¨NH(C1_4 alkyl), ¨N(C1_4 alky1)2, ¨CN, ¨COOH, ¨COO(C1_4 alkyl), ¨0(C1_4 alkyl), ¨0(C1_4 haloalkyl) or oxo.
[00107] In some embodiments of the compounds of Formula I, or pharmaceutically acceptable salts thereof, n is an integer selected from 1 or 2 and each JB is independently selected from halogen, a C1_4 alkyl or ¨ORB. In other embodiments, each JB is independently selected from halogen atoms. In still other embodiments, each JB is independently selected from fluoro or chloro. In yet other embodiments, each JB is fluoro.
[00108] In some embodiments of the compounds of Formula I, or pharmaceutically acceptable salts thereof, each JB is a C1_4 alkyl. In some of these embodiments, JB is ethyl or methyl. In some embodiments, JB is methyl.
[00109] In some embodiments of the compounds of Formula I, or pharmaceutically acceptable salts thereof, n is 1.
[00110] In some embodiments of the compounds of Formula I, or pharmaceutically acceptable salts thereof, n is 1 and each JB is independently selected from halogen, a C1_4 alkyl or ¨ORB. In some of these embodiments, JB is halogen. In some embodiments, JB
is chloro or fluoro. In other embodiments, JB is fluoro. Alternatively, in other embodiments, JB is C1_4 alkyl. In still other embodiments, JB is methyl or ethyl.
[00111] In some embodiments of the compounds of Formula I, or pharmaceutically acceptable salts thereof, at least one JB is ortho to the attachment of the methylene linker between ring B and the ring bearing Xl. In some of these embodiments, the at least one JB is independently selected from halogen atoms. In still other embodiments, each at least one JB is independently selected from fluoro or chloro. In yet other embodiments, each at least one JB is fluoro. In other embodiments, n is 1 and the JB ortho to the attachment of the methylene linker between ring B and the ring bearing Xl is fluoro.
[00112] In some embodiments of the compounds of Formula I, or pharmaceutically acceptable salts thereof, n is an integer selected from 1 or 2 and each JB is independently selected from halogen, a C1_4 alkyl or ¨ORB, wherein at least one JB is ortho to the attachment of the methylene linker between ring B and the ring bearing Xl. In some of these embodiments, the halogen can be chloro or, preferably, fluoro. In other embodiments, at least one JB is halogen. Alternatively, at least one JB is a C1_4 alkyl, e.g., methyl or ethyl. In some of these embodiments, n is 1. In some embodiments, the JB ortho to the attachment of the methylene linker between ring B and the ring bearing Xl is fluoro.
[00113] In some embodiments of the compounds of Formula I, or pharmaceutically acceptable salts thereof, n is 2 and each JB is a halogen atom. In some embodiments, each JB is independently selected from chloro or fluoro. In other embodiments, one JB is fluoro and the other JB is chloro. In still other embodiments, each JB is fluoro.
[00114] In some embodiments of the compounds of Formula I, or pharmaceutically acceptable salts thereof, ring B is phenyl. In some of these embodiments, n is 1 or 2. In some of these embodiments, a JB is ortho to the attachment of the methylene linker between ring B
and the ring bearing Xl, and the JB is halogen, e.g. chloro or, preferably, fluoro.
[00115] In some embodiments of the compounds of Formula I, or pharmaceutically acceptable salts thereof, ring B is a 6-membered heteroaryl ring or a thiophene ring. In other embodiments, ring B is a pyridyl ring. In still other embodiments, ring B is a pyrimidinyl ring.
In yet other embodiments, ring B is a thiophene ring.
[00116] In some embodiments of the compounds of Formula I, or pharmaceutically acceptable salts thereof, JD is chloro, fluoro, or is absent. In some embodiments, JD is fluoro.
[00117] In some embodiments of the compounds of Formula I, or pharmaceutically acceptable salts thereof, JA is hydrogen.
[00118] In some embodiments of the compounds of Formula I, or pharmaceutically acceptable salts thereof, ring C is a monocyclic 5-membered heteroaryl ring containing 1 or 2 ring heteroatoms selected from N, 0 or S. In some of these embodiments, ring C
is an oxazole or isoxazole ring. In some of these compounds, or pharmaceutically acceptable salts thereof, ring C is unsubstituted, and in yet other embodiments ring C is an unsubstituted oxazole or isoxazole ring.
[00119] In some embodiments of the compounds of Formula I, or pharmaceutically acceptable salts thereof, Xl is N. In some of these embodiments, ring C is an oxazole or isoxazole ring. In other embodiments, ring C is unsubstituted, and in still embodiments, ring C
is an unsubstituted oxazole or isoxazole ring. In some of theseembodiments, ring B is phenyl.
In some of these embodiments, JB is halogen, e.g., chloro or, preferably, fluoro. In other embodiments, there is a JB ortho to the methylene bridge between the ring bearing Xl and ring B. In some of these compounds, or pharmaceutically acceptable salts thereof, n is 1. In some of these compounds, or pharmaceutically acceptable salts thereof, wherein n is 1, JB is ortho to the methylene bridge between the ring bearing Xl and ring B. In some of these embodiments, JD is halogen, e.g., chloro or, preferably, fluoro.
[00120] In some embodiments of the compounds of Formula I, or pharmaceutically acceptable salts thereof, Xl is N and p is O. In some of these embodiments, ring C is an oxazole or isoxazole ring. In some of these embodiments, ring B is phenyl. In some of these embodiments, JB is halogen, e.g., chloro or, preferably, fluoro. In other embodiments, there is a JB ortho to the methylene bridge between the ring bearing Xl and ring B. In some of these embodiments, n is 1. In some of these embodiments, n is 1, JB is ortho to the methylene bridge between the ring bearing Xl and ring B, and JD is halogen, e.g., chloro or, preferably, fluoro.
[00121] In some embodiments of the compounds of Formula I, or pharmaceutically acceptable salts thereof, Xl is N and ring C is an isoxazolyl ring. In some of these embodiments, ring B is phenyl. In some of these embodiments, wherein ring B is phenyl, JB is halogen, e.g., chloro or, preferably, fluoro. In other embodiments, wherein ring B is phenyl, n is 1. In still other embodiments, wherein ring B is phenyl and n is 1, JB is halogen, preferably, fluoro. In yet other embodiments, wherein ring B is phenyl, there is a JB
ortho to the methylene bridge between the ring bearing Xl and ring B. In yet other embodiments, wherein ring B is phenyl, the JB is ortho to the methylene bridge between the ring bearing Xl and ring B, and JB is preferably halogen, e.g., chloro or fluoro. In some of these compounds, or pharmaceutically acceptable salts thereof, JD is halogen. In some of these compounds, or pharmaceutically acceptable salts thereof, JD is fluoro.
[00122] In some embodiments of the compounds of Formula I, or pharmaceutically acceptable salts thereof, Xl is C with a substituent (resulting in, for instance, CH, C(C1_4 alkyl), C(Ci _4 haloalkyl), CC1 or CF). In some of these embodiments, ring C is an oxazole or isoxazole ring. In some of these embodiments, ring C is unsubstituted, and in still other embodiments, ring C is an unsubstituted oxazole or isoxazole ring. In some of these embodiments, ring B is phenyl. In some of these compounds, or pharmaceutically acceptable salts thereof, JB is halogen, e.g., chloro or, preferably, fluoro. In some of these embodiments, there is a JB ortho to the methylene bridge between the ring bearing Xl and ring B. In some of these compounds, or pharmaceutically acceptable salts thereof, n is 1. In some of these compounds, or pharmaceutically acceptable salts thereof, wherein n is 1, JB is ortho to the methylene bridge between the ring bearing Xl and ring B. In some of these compounds, or pharmaceutically acceptable salts thereof, JD is halogen, e.g., chloro or, preferably, fluoro.
[00123] In some embodiments of the compounds of Formula I, or pharmaceutically acceptable salts thereof, Xl is C with a substituent (resulting in, for instance, CH, C(C1_4 alkyl), C(C1_4 haloalkyl), CC1 or CF) and p is O. In some of these embodiments, ring C
is an oxazole or isoxazole ring. In some of these embodiments, ring B is phenyl. In some of these embodiments, JB is halogen, e.g., chloro or, preferably, fluoro. In other embodiments, there is a JB ortho to the methylene bridge between the ring bearing Xl and ring B. In some of these compounds, or pharmaceutically acceptable salts thereof, n is 1. In some of these compounds, or pharmaceutically acceptable salts thereof, wherein n is 1, JB is ortho to the methylene bridge between the ring bearing Xl and ring B. In some of these compounds, or pharmaceutically acceptable salts thereof, JD is halogen, e.g., chloro or, preferably, fluoro.
[00124] In some embodiments of the compounds of Formula I, or pharmaceutically acceptable salts thereof, Xl is C with a substituent (resulting in, for instance, CH, C(C1_4 alkyl), C(C1_4 haloalkyl), CC1 or CF) and ring C is an isoxazolyl group. In some of these embodiments, ring B is phenyl. In some of these embodiments wherein ring B is phenyl, JB is halogen, e.g., chloro or, preferably, fluoro. In other embodiments wherein ring B is phenyl, n is 1. In still other embodiments wherein ring B is phenyl and n is 1, JB is halogen, preferably, fluoro. In yet other embodiments wherein ring B is phenyl, there is a JB ortho to the methylene bridge between the ring bearing Xl and ring B. In yet other embodiments wherein ring B is phenyl, the JB is ortho to the methylene bridge between the ring bearing Xl and ring B, and JB is preferably halogen, e.g., chloro or fluoro. In some of these embodiments, JD
is halogen. In some of these compounds, or pharmaceutically acceptable salts thereof, JD is fluoro.
[00125] The present invention is also directed to some embodiments of the compounds of Formula I having a structure as depicted in Formulae IIa or IIb, or pharmaceutically acceptable salts thereof:



/ G(J13)1-2 Ring C N
/ µ _____________________________________________________ (J13)1-2 Ring C N
rl. sN -1- IV
NI_ NI_ N. =\-1\l1 F H
Formula IIa Formula IIb;
wherein each JB is halogen; and ring C is an unsubstituted oxazole or isoxazole ring.
[00126] The present invention is also directed to some embodiments of the compounds of Formula II having a structure as depicted in Formulae Ma to IIId, or pharmaceutically acceptable salts thereof:
¨c p / J13 \
-Ring C N \-- (J-)1-2 Ring CN ( )1-2 NN
/
, _________________________________________________ N) __ N
/ \ R1 ,/ \ R1 N N R2 IIIa IIIb N \ N R2 \ \
F H
Mc IIId _____________________________________________________ c, ---\
_________________________ (`'IB) - 13)1-2 NN
/ ___________________ N \ R1 / __ N\ R1 \ \
F H
Formula IIIa-IIId, wherein each JB is halogen; and ring C is an unsubstituted oxazole or isoxazole ring.
[00127] The present invention is also directed to some embodiments of the compounds of Formulae IIIa and Mb having a structure as depicted in Formula IVa and Formula IVb, or pharmaceutically acceptable salts thereof:

(-\ 1 N, \ ___ (-113)1 -2 \ 1 Nil (J13)1-2 \ IN \ IN
N\- N\-F H
Formula IVa Formula IVb, wherein each JB is halogen;
and ring F is a monocyclic or bicyclic 4 to 10-membered heterocyclic ring or a monocyclic or bicyclic 5 to 10-membered heteroaryl ring; wherein said 4 to 10-membered heterocyclic ring or to 10-membered heteroaryl ring optionally contains up to 3 ring heteroatoms independently selected from N, 0 or S, and is optionally and independently substituted by up to 3 instances of R5.
[00128] In some of the embodiments of the compounds of Formula IVa or Formula IVb, or pharmaceutically acceptable salts thereof, ring F is substituted by:
(i) 3 instances of R5; wherein at least two of said instances are the same, or (ii) 0, 1 or 2 instances of R5; wherein, when ring F is substituted by 2 instances of R5, then each of the instances of R5 is independently selected;
wherein each R5 is selected from fluoro, methyl, ethyl, methoxy, trifluoromethyl, trifluoromethoxy, hydroxyl, Ci _6 (hydroxy)alkyl, oxo, ¨CN, ¨0(C1 _6 alkyl)-COORz, ¨NH(C 1-6 alkyl)-COORz, ¨(C1_6 alkyl)-COORz , ¨COORz, ¨CORz, ¨CON(Rz)2, ¨NHCOORz, ¨NHCON(Rz)2, ¨CONHSO2Rz, ¨NHCORz, ¨NH(Ci_6 alky1)-CON(Rz)2, ¨N(Rz)2, ¨SO2Rz, ¨SO2N(Rz)2, ¨SO2NHCORz, ¨SO2NHCOORz, phenyl, benzyl, or a 5 or 6 membered heterocyclic or heteroaryl ring; wherein each of said phenyl, benzyl or 5-6 membered heteroaryl or heterocyclic ring is optionally substituted by 1 or 2 instances of R;
wherein each Rz is independently selected from hydrogen, a C3_6 cycloalkyl, a C1_6 alkyl, a C1_6 fluoroalkyl; and wherein each Rza is independently selected from hydrogen, halogen, a C3_6 cycloalkyl, a C1_6 alkyl, a C1_6 fluoroalkyl, oxo and ¨COOH.
[00129] In some of the embodiments of the compounds of Formula IVa or Formula IVb , or pharmaceutically acceptable salts thereof, at least one instance of R5 is a ¨COOH moiety or at least one instance of R5 is substituted by a ¨COOH moiety.
[00130] The present invention is also directed to some embodiments of the compounds of Formula IVa or Formula IVb having a structure as depicted in Formula Va or Formula Vb, or pharmaceutically acceptable salts thereof:
/ (-- F-0, (g)i-2 \ 1 N nJ13)1-2 N 40 OH \-Nt 0 OH
F H
Formula Va Formula Vb, wherein F is a ring that includes the nitrogen attached to the pyrimidine, and wherein ring F is optionally and independently further substituted by 1 or 2 instances of R5.
[00131] The present invention is also directed to some embodiments of the compounds of Formula I having a structure as depicted in Formula VIa or Formula VIb, or pharmaceutically acceptable salts thereof:
Ri Ri N tN 0 \ __ t N 41) F H
Formula VIa Formula VIb, wherein each JB is halogen;
Rl is hydrogen or C1_6 alkyl;
and ring G is a monocyclic or bicyclic 4 to 10-membered heterocyclic ring or a monocyclic or bicyclic 5 to 10-membered heteroaryl ring; wherein said 4 to 10-membered heterocyclic ring or 5 to 10-membered heteroaryl ring optionally contains up to 3 ring heteroatoms independently selected from N, 0 or S, and is optionally and independently substituted by up to 3 instances of R5a.
In some of these compounds, or pharmaceutically acceptable salts thereof, each R5' is selected from fluoro, methyl, ethyl, methoxy, trffluoromethyl, trffluoromethoxy, hydroxyl, C1-6 (hydrOXY)alkYl, oxo, ¨CN, ¨0(C1-6 alkyl)-COORzb, ¨NH(C1-6 alkyl)-COORzb, ¨(C1-alkyl)-COORzb , ¨COORzb, ¨CORzb, ¨CON(Rzb)2, ¨NHCOORzb, ¨NHCON(Rzb)2, ¨CONHSO2Rzb, ¨NHCORzb, ¨NH(C1-6 alky1)-CON(Rzb)2, ¨N(R zb)2, ¨SO2Rzb, ¨SO2N(Rzb)2, ¨SO2NHCORzb, ¨SO2NHCOORzb, phenyl, benzyl, or a 5 or 6 membered heterocyclic or heteroaryl ring; wherein each of said phenyl, benzyl or 5-6 membered heteroaryl or heterocyclic ring is optionally substituted by 1 or 2 instances of Rzc; wherein each Rzb is independently selected from hydrogen, a C1_4 alkyl, a C1_4 fluoroalkyl;
and wherein each Rzc is independently selected from hydrogen, halogen, a C1_4 alkyl, a C1_4 fluoroalkyl, oxo and ¨COOH.
In some of these compounds, or pharmaceutically acceptable salts thereof, at least one instance of R5a is a ¨COOH moiety or at least one instance of R5a comprises a ¨COOH
moiety.
[00132] The present invention is also directed to some embodiments of the compounds of Formula VIa or Formula VIb having a structure as depicted in Formula VIIa or Formula VIIb, or pharmaceutically acceptable salts thereof:
--\ 1 1\11, \ ____ (.-113)1-2 \ IN
\ ______________________________________________________ (.-113) ¨N /Ri 0 \ 1 Ns ._1-2 \ IN
¨N /Ri I\1 tN 9 OH N\ __ t N 0 OH
F H
Formula VIIa Formula VIIb wherein ring G is optionally and independently further substituted by 1 or 2 instances of R5a.
[00133] The present invention is also directed to some embodiments of the compounds of Formula IIIa or Formula IIIc having a structure as depicted in Formula VIIIa or Formula VIIIb, or pharmaceutically acceptable salts thereof:

\ IN \ IN
Ri Ri RY N, RY tN I\1 tN
i L L
F H
Formula VIIIa Formula VIIIb wherein JB is halogen; Rl is hydrogen or Ci_6 alkyl; L is a Ci_6 alkyl group optionally and independently substituted by up to three instances of R5a; and ring RI( is a monocyclic or bicyclic 4 to 10-membered heterocyclic ring or a monocyclic or bicyclic 5 to 10-membered heteroaryl ring; wherein said 4 to 10-membered heterocyclic ring or 5 to 10-membered heteroaryl ring optionally contains up to 3 additional heteroatoms independently selected from N, 0 or S, and is optionally and independently substituted by up to 3 instances of R5b.
[00134] The present invention is also directed to some embodiments of the compounds of Formula VIIIa or Formula VIIIb having a structure as depicted in one of Formulae IXa or IXb or Formulae Xa or Xb, or pharmaceutically acceptable salts thereof:
\ IN \ IN
Ri Ri N
RY RY e¨N Nq¨N
i L L
F
0¨ NOH H
0¨ NOH
Formula IXa Formula IXb \ IN \ IN
Ri Ri R''N e¨N R OH \ tN RY OH
i L L
F H

Formula Xa Formula Xb wherein in Formula IXa or Formula IXb, the linker L is further optionally and independently substituted by up to two instances of R5a; and in Formula Xa or Formula Xb, ring RI( is further optionally and independently substituted by up to two instances of R5b.
[00135] The present invention is also directed to some embodiments of the compounds of Formula IIIa or Formula IIIb having a structure as depicted in Formula XIa or Formula XIb, or pharmaceutically acceptable salts thereof:

\ IN \ IN
Ri Ri -N -N
rN2 rN2 Formula XIa Formula XIb wherein JB is halogen; Rl is hydrogen or Ci_6 alkyl; and R2 is a Ci_6 alkyl group optionally and independently substituted by up to three instances of R5a.
[00136] In some embodiments, the compounds of Formula I are selected from those listed in Table 1A, Table 1B, Table 1C and Table 1D.
Table 1A

NF
µ1\1 Nû
IssN

F F
0- Nc . o N N
1 ;N l ;N
N /----\ N\___ N/-----\
..___/0 NH

F F
C-N N
I 'N l /1\1 1,"--- N 1--- N
Nv.....N/----N Nv___ N /---- \
__/N --H N --\

(--- 0 1-6 F F
0.-N
N
c'N
_.....,...(HN
)---1 N
N/

F F
c.&..., .
..:_k____ =
N N
l/ 'N _.,..,..1 /sN
F oN HNN0._0H

F F

N .
.,.k_., =
N l 'N
, L...iN
---N
N\____--NH
---"N
Fo N\_________ 6 ,,0, F F
ujC) N N
;1\1 HO-., --IN

F F
=
N
l 'N
l ;N

--1---N\ /-......\
NN/.---\ N\-=----------1\1\_ "N C F3 \----/ F ---S\ //
N

F F
0\10-*
N N
c /'N 1 1\1 /
-----N
Na..0Me N OH
N\.____N\5 F F

CN. =
N N
1 1 ;N
1;1\I ---N OMe 1"-N
Nv__________N\ NOH

F F
O-N
N
c-IN__. 41t N N
1 ;
TSN 1 %I\I
1¨N
/1\1 H OMe F F

Ns N

N\/__ j____ 0 NtTh CF3 1-23 Ly0 F F
C--[\N .
ccõ..0 N 411 I /sN N
'N
1\g ---S-N
,Boc ......._N
N
F ---'N
NH N._\,....Ni 0./(:) H
------\( 1-25 F 1-26 F F
o-e l z S
'N
N N

N1\1 F N
N
/-----\0 b Boc/ 1-27 CI 1-28 F F

N, N

IsN/
N )---N
N_.
N_) N"-----\ N 0 NH

F F

CK___ 4it N N
1 ;N C-0\ 1 '1\1 NI \/---\.< N, H 0 \.....N
L"--z---( --\--=( %0 F F
Csj--N N
c/'N ._I /1\1 Oy.0--1\1---N1?---N ----\ N ---N
0 NO\---_/

F F
ON

it UIN___ 44It N .,....,..1 zsN
1 ;N
---f\l 1--N H N\NH
Nq-No-N'Boc F o N

F F
O-N O-N
k_._. .
.........k__ 41Ik N N
1 ;N 1 ;N
r-yH
N\Ng H

F F
c isINO- . 0- N
N
'N 'N
/ z 1 /1\1 ---N 1"--N
1\1NH Ng__ N

F F

= N
N N
1 'N 1 '1\1 OH
N
Nv_______N Na F F
C.fl 9 N
.
N N
I.4'N N
c ;
.---.N 0 N\________ C)2S

FF
CiN =Ci\ji .
Ns N
Ng__ N\)N Nqc,,NH2 F F
C-JN git Ke:):N .
N N
'I\1 IV \

----/S-"N
/ N
N

F F
O-N
. O-N
=
t..._(/'N 1 ;N

."-- 0 Nq___N . / N
H
F 1-49 F c6,c7 F F

*
\ N \ 1 N
1 /'N 1 N
/

/ N
Nv..õ.......N J,0 H

F F
0-N 0,N
N N
1 ;N 1 ;N

Nq---NeH kl\......._ NH
F 0 1_53 F 1-54 F F

N N
/sN l N
------S---N
1?____N SOH F
Nv_______ \ 0 \_______N

F F

..._.J.N,., .
N c N/'N 1 / 'N
OH
F
.___NO
..--N
NF Lb N

F F
.0-N C\I .
N N
1 ;N l 'N
-...õ
--.1--N 0 ---N ) Nq____ N/.----g N

H

F F

..___LN,,, =
N N
1 ;N 1 ;N
N N,\ ,F N\_ No, , ,F F
F

F F
N C- .
......1KN 1 = N
1 'N

1"--N
N No<
F a F F
0N= C-j\IN fa N N
l isN 1 'N
--I--N
Nv_______ H F

F
N F
N
.I
.,'N
c/sN /
OH
----N OH Nx \____N

\-----=( H 0 F [Abs) F
C-j\i 'N
NQ
NH
H OH

F F
0,N
N
0,N
N
=
ci'N 1 ;N

N / N
/Th "O 1-72 F F
N
cxõ, 4111, N N
.1_,....'N c,'N
---N ---N
N7------\
._._../0 OM e 1-73 F 1-74 F F
0,N
\ /

*
N
1 sN
/ 1 ;N
OH
N\
z NO ,......).,b -1"--N
N \ COOH
\ N NO

F F

'N 'N 1 /NI c/NI

Nq_....Na NqN\5 COOH

Fe , F ,Abs, 0,N
\ /
lit N N
,..,...,(1 ,'N / NI
=
/
----N
N\_N/----.\ 0 /N

\........y F 0 1_79 NI H

F :Abs., F

.Ctx..õ.N .
\ \ N N
HN
1--1 i'N N 1-1/,=
II
,,, / N /OH
iy...._ N CO2H N __._...N/A t H

F
F ,Abss 01- . C-y *
N
N
1 ;N

0 -______ OH
-------N /_......?--OH 0/
Nv______ ----N --, N
N\_________ No F F :Abs' =
\ \ N N
/ N
1 N c'N
N

/ N N\____N)---f -L.----N CO2H % OH
H H

F Abs] F (Abs, \ fuj0- e 0-N
I
c___K___ =
N
N
;N
----___. OH 1 ;
S 1\1 I0___L -1-N ------N Nv........__N CO2H

F :Abs: F (Abs:

0-N *
\ \ N
/N

' \ iN
cpOH
/
NN
N\_N
\ F =F 1-89 1-90 F (Abs) F
O-N
* 0-N
*
\ 1 N N
I 'N
OH

NN_ F F .

F F

N
c/sN I ;N
NN NSC)ZOH
H H

F ,Abs, F Abs, 0,N . N
N
N N
I sN 1 N
1....,.. 0 OH ,,(/ OH

-_, / N Nv____\ -"--N --.

F

F
F

N
___.1j._, I ;N N
OH I
0(/ NO
a ."---N N
N b N?_____N

F F

c..,K___ =
N N
1 ;NI 1 'NI r 0.0H
0(:) Nv_____?._ N

F F

. 0--N
\ \ N
1 ;N 1 'NI

-1....1V D X/
/ N
1\------\ 0.___f_ \ N CO2H
Nq----N-- H

F :Abs;,A. F
1:(N
c.&.., .
N
N
c sN
o OH
N
)----- /)___N
---/ N s.__ N' N\____?..__N 7---CO2H NS

F F
i& 4 N
.......I_N__ .
N
N

Is__N 0 NH2 N COOH
N
NA H

F :Abs: F :Abs * 0-N
*
\ 1 N \ \ N
1 1\1 N HN =
I\O>H /

N /N
\

H

F F
-N
e 010- .
N
I ;N I ;N

N\........_ ----\___/ N
'Bac 1-110 H H
F F

F F :Abs, N 0,N
N
t_.(/'N , c/N
. /OH
""--N
N \ N\--------......____N/"."-0O2H
H

F F :Abs:

N 0,N l- N

1 ;NI
/

-1---N N, N/---- /NI
.b F F :Abs:
0,N

lik N N
1 x'N 10 / 1\1 /

----S¨N N, N / N
NI LN/---- iN
µ.._....._NZ----CO2H
--\---=( N¨( H
F CO2Et 1_115 F 1-116 - .
F Abs F Abs:
0,N 0,N
\ /
. \ /

/ 1\1 IN .._\...õ CO2H L...,/---CO2H
H H
F F

F F (Abs.
O-N
* O-N
Ns N
c/ N 1 'NI
OH
OH 1¨N c) ----N Nq_ N 11, Nv...______N
it F
F :Abs:

0,N
N, 1 'N

OH -------N COOH
----'S 0 Nv____N .
H-ONH

F F

c_1:1_,. * 0-,N =
(1 / N \ ;N
----N / N
NNo___ N NDO2H
C

F F

C!2IN .
N, N
I sN

.Nr----N , 0/
7,_o F F
O-N 0,N
c....c___ =
1\1µ N

;
---1_. ki100C
"----N
NvN 110 OH

F F
0,N
\ I 4. c3NO-N N
N
I 'NI
/ 1 ;N

H N
H

F .rN

F F

..... _LIN__ = N
.
N N
l ;N 1 'N
-------N COOH

F y N F im N
)r F F
0-N C- .
N, I sN

1400C ( \._ HOOC
N\________, NNNL..?õ)-----\ N' \
N1--(--F F
N4. 0, ck,,k1 N
it N
1 ;N 1 N
17_k /l00C HOOC
NI N N / N\I N
\ )-----A 0¨
N--.\( F :Abs] F

OIN___N
. O-N
\ N .
1 ;N 1 'N

N / N Q
COOH
\ OH H

F F
0 N 0 0¨N
N
N, N I 'NI
OH
is-N 0 1"--N Nv............N
NsqN/---) 11_ /05, L)-Wo F 40, F F
O-N
441k * O-N
\ 1 N
N, N/ N
N/"--CN 1\1-----N CO2H

F F
Or\I * O-N
=
\ I N N
'1\1 L
S, CO2H l'N ON
i N

F F
O-N C.NNI 40 c)-N =
N, N
1 /N 'N
I
1-"N
s-N
,11H
N
1\11\1 F
F (Abs:
O-N 1C-!\ iffk UIN____ *
N, N
...._,../N ,,, --N\q---Nr-s\ NH2 Nve-0O2H
H

F F

õ...3N___ =
N N
I ,'N
I 'NI
0 OH -.....,(/
-------N
N\________N
\ NIM

CI

F :Abs F

e ON
N
=
I ;N /

N\__ CO2H ,----NQZ-..
N
H
F
F 1-151 co2H 1452 F F

\ \ N
....,._(1,'N \ IN
=----N N Q
N?l HO 1 \
N tNI-1 COOH
0 \¨

F sit F :Abs) F
O-N
411. 0-N
U[N.....N
\ \ Ns (1 ;NI
OH \ /N
)-----N

N-_,\I Ni ¨1\11-1 --COON
\_ F[Abs) F
*0 410 o-N
_._t___ =
N __ Ns .....,..(I /sN 1 N
------/S--N
p---\ ,NI, H
HN N\______ ,A F
F ';.µ O 1-158 0 '0 1-157 F Abs, F
0-N . 0 N
...: 4110 \
\ Ns N
1 'NI
\ /N
HOOC OH
/ \N\._..._____N
N ¨1\11-1 .
\_ F .
F ,Abs, Cj-N 410 N
N
1 ;
OH
N 1 'NI

N___. --------N .:.\j F
010- 4.
F
1 ;N
1____ kil 00C H N
1 'N
Nv........._,Nb_ F NH
o-.-C F3 :Abs F
0-N = c F NI N fa \ \ \ NiN l 1---'N

HOOC (:) .. / N -N
/ \ IN1q..._ N\ -NH 1st N
F F
* 1-166 F F

. .
N, N
/NII 1\1 0,/ 0 )----/ N
N?.....
N
\ F
F .

F F
N 0,N
\ /
\ /
N N#
1 'NI
/

I , I
N OH
N OH

F F
0,N
\ /

-1\1 N
git N
1 'NI
/ I 'N
N 1\1 0 1-N
N .(:)H N)0/
H ,:
F / \ 1-171 N
i õ F
F Abs 0,N \o,iN =
\ /

NN

/
1 ;1\1 I

N OH
I

H

F

F F

N N
N 'NI
/)--N
OH
N NO__ / N/------\<
/P=_., \ 0 F 0 \L' 1-175 F 1-176 F F

N N
(1µ1\1 'N
1"-N
N\qCO2H
H

0--N F . 'Abs) F
C-\iN .
\\ N N
\,N 1 '1\1 (/

N ----N1 ...._ / µ
N\ ¨NH N...N CO2H
H
F .b,õ...r0 F 1-180 F (Absj F 'Abs) 0, 0,N
\ /
*
N N
i 'NI
, N ' U NO X,,,,, N 1\1 0 N OH
H N - -OH

F F
0\i- 40 CTN .
N N
,../
L // N l / N
HO
N C)C) IsN
N?__.r\c.111_) F F

Ul_.,, 441k q___ =
N N
cisN 1 'N
-õg N-1\1 CF3 C0H ---1\1 Nq ----N \ /2 No,CO2H
F 1-185 F Ph 1-186 F F
0--N 401 CI\ =
N \ N N
\ /N ....HN
/)--N
/ N /
N N XF It \¨ \ COOH COOH

F F
0,N
N
._,._t._._, *
N, ....,,I /'N
?1 / N
--.-1\1 NNj_ COOH N\________./---N,11H
F 1-190 --- IN\ NN

F F

ON
......k____ .
\ \ N N1 \
\ 1N N
02M e I
S- N H
/ N
N N

F F

. 0,N

N
N /,,Nc;i ----N N N y 0 F F
\C),IN *
N 0,N
/ 'NI N
/ /'1\1 N N ----N
1\ 1 Nq___ N OH
ao7õ

F :Abs: F
0-N 41/ 0-N .
N \ N \ \ N
HOOC
N Q / N ) \
/ µ
N tN1-1 COOH N\ N `-S
\ - - H \

F (Abs) F

=
N N
;N 1 N
--1--N e 1\
-----N ----.. N?__ N 0---\
\ \
F 1-200 F.c?

F F
0, \ N ON
CIJ___ 40 N N, 1 1\1 1 N
/

N OH
1\1 X)::) N___N/---1 IN OH F.?

F F

'N 'N 1 /1\1 1 / N
Is N OH 1--N 0--/
N?/----µ N /-F
0, N F 'Abs' =
\ \ N
/ 'NI
/ 1 1'N
N ' N 0 N / N ), N
OH
k._....?õ.N COOH
\

FF
O¨N
= ON
=
1.
\ N N
1 ; sN 1 / N
N / N\ COOH ----S¨N OH
Q). Nq......N7----\<
' \ 0 F F
0¨N
* Cf\ =
\ 1 N N
;N
/OH
iN
õ, / N CO2H I\T--N\I -----\
v__....--_.6.
H NNH

F F
0 N 0,N
Ns Ns 1 / N 1 N (:) OH
1"¨N 0 ---¨N ....._._\ F
N F
N N :
, N F _13 \¨___./

F F
0¨N C,12 lik ...õ..tN___ = N
N
1 1\1 1 /sN

-----S¨N N\_______ , NOH
Nq'N/OH

F F
411kO-N
N \ 1 N
1 /sN OH

--.1-N r(:) / N
H

F e =
F ,Abs, N
N
/'N 1 /sN
H/
---/

N\_ __N/--- --1-N OH
\ 0 N/Th<
\ 0 F = N F [Abs:
ci-N -N. .
/ N
)-----COOH /N
N = ¨1\1.-CN SjN ', 0 \ OH

F F
O-N CN 4Ik N N

(COOH
N N
ITI---\

:Abs;F , F 'Abs.
O-N
git O-N

\ N \ \ N

)...4 FF m / N
m / N "q,NCO2H

H

F F

.
\ \ N \ 1 N
1 sl\I
/ .,.,Fy 1 1\1 N / 11 ), \._......_N CO2H

F F
O-N
ck___ 4Ikt 0-N
N N
.'N 'N
c/

---N

F F
*0 . Clii .
I
'N N
l 'NI /

-------- N
Ng__ Ng__ Nay 0/
Na j\---OH

F F
Ct .
O-N
41Ik 1..._..,'N I ;N
I
COOH
F H

F F
F
0..N
= 0-N
_.e.k._., .
N N
1 ;N 'N(1 /
---S---N -"""N ---"._ N 1\1_N CO2H
0 \

F
F :Abs.
. C 411k etN_N
ONs N
...,..../N
.__,..1 /1\1 N=N, 1-11V:s....</N
"-=-N ----, CO2H =----N
, N N\q_.....
\

F F :Abs]
0-,N * 0-N
4lik \ \ Ns \ I N
\ IN I/ 'NI
N
Iss.
CO2H "\...,..- CO2H
F 1-238 \

e , F ,Abs F (Abs:

glik 0-N
\ \ N
\ N 1 sN

µN /
c' Cl N / N
/N --' v...........N/"-CO2H
N
.......,N/CO2H \

F :Abs: F 'Abs . 0-N
*
\ \ N \ 1 N
1 /sN 1 1N C
HOOC,, / N
N ,N
1\1_,......_ N......c) \__--N-----COOH
\ H

F F
O-N 01 Csi._ 49 N
\ \ N l \N
...,...
\ iN
"----N
/ N / r\i_________--NH
N N
\_ tCO2H
F

F F[Abs) 'N
= O-N 410 1 ;N ( x \ N, \ N
0 / _O¨

N
----N / N ( N\_______ F /CO

F :Abs: F
0¨N
. 0 N
41, \ I N
N I 'N
1 ;N N...._ ------N
N / N
I \IL ....
\ F COOH 1_249 F F

. 0,N
\ /
\ I
N N
I ;N 1 'NI
/
N N
1\1/ H N CO2 0 .._......_N/---.,7s.
N .).L
\ H OH

F F
O¨N
4lik 0¨N
4511k , , \ 1 N
N
1 ;1\1 l 1'N
N 1 / N CO2H N--N7----5_ / N\ CO2H
INL.1)LN/..¨..., \.....", \ \

\N'iN HOOC \ /N

N
.N/ N N OH
\
NLZ-N
¨

.
N
0, / % / \
'N
CO H eN
N
N-'-N
N COOH
F 1-256 \

O¨N
F . [Abs] F
0,N
\ /
\ \ N N
\ /N / 1\1 N ' N I-1 0 NN %__, 9 H 0 0/ YTh\1 N Sµr.1 F 1-258 H H µ=-=

F

F :Abs, N-/ ,NN 111 ..._._ N
1.....__?___N
N -).---1-1 A
co2H N
1 - N--s F
,....y...., )...,,,./ 0 .;..0 * H 0 F F

. Cjf\ .
1 ;N l /N

F

F F
0,N
\ /
i N . 0- N
4.
\ 1 N
i 1\1 N ' N / N 0 yN*(-1 Nµ......_...N CO2H
F
7Sr-' F F
ON
. O-N
.
\ 1 N
c ;NI 1 OH /1\1 ---N
F

F F

. 0-N
N \ N
1 /sN 1 'N
OH /

N
H
F

F 'Abs' F

* 0-N
\ N .
1 1 '1\1 /N /
N 5L F:
N\/...___?__ OH N / N
N
\ CO2H

Table 1B
F (Abs, F
C12( 49 N *
1 zµN 1 ;N 0 -1--N----ci-N-1----s 1"--N
N\........_N d / 0 N % N
q- = OH
\ 0 , F F

F F

ON
N N
(1 ;NI c'N
-----N ----c0H --1\1 Nv. j....._ N\________N * 0 N
\ 0 \ OH
F

F F

_____Ic___ =
N N
1 /'N 1 'N
S
-----5.___ k . HN-Ni N
ss T\ I/-1\ " /C) N
.
_q"----N
OH H
\--CF3 F F

F
F

_...ic...__ =
N N
_,..._,(1 /1\1 1 %N

=----N tj\---OH
""--N1 lip OH
µ-1---- H
F

F

F F
O-N
N N
1 ;N 1 /1\1 OH
-----S---N / N
N /C-/ \ NN
--\____------0 H N
F H F

F [Abs]
F
O-N O-N

........_(I /'N OH OH

N\_____ N II N
\ F
F

F
F ,Abs, =
N
c;N
_.....,/OH
Na... -,N1 . OH
F F

:Abs;F
F , CN N

\ I .
N
I N NA I N
/
I N
-----5.__ HNI / N 9 <

--v---=z---( H --v------=( H \
F F

F F

c______ .=
\ I
N N
1 ;NI I /N

I__. 1\1______\ ri 110 F F
0,N
\ I . ON
441kt N \ 1 N
i /1\1 I /N
/N / N
Noci0OH
NNO<CO2H
----.
OMe F F

F 0, F
ON N \11\1 N = st \ I /
I /sN N
N , N N N
N
F F 1-õ..-COOH

F
F
=O-N . 0-N
\ I
x \ N N
\ /1\1 Ph /
) CO21-I OH

z N
=)11 N\ -NH Nv____.?_._N
F
F

F :Abs: F
\ I 4111. ON.
N
I 1\1 1 NN
/
OH

/N
N I\ Ph L,?....., NR--.N04.1\.1H2 -.- "...., COO Me F F

F F
O-N
\ I Ilikt ON
____ .
N
N
I ;1\1 1 /%N
z N
N t 041\IH2 F

OMe F

F F

\I N e 'N 4Ik N
l ;NI l ;N
/ N
Nv......____N CO2H -IN
Nq--_. NOZ)H
F

OH F

F F
F

*
N N
(I / N I 1\1 HO
__1\1-100c_ 0 ""--N
N......_ F \
F F F

; .

r0. O-N
,---'-µc [L IN N
1 ''N
0 4, N \µ ;-----/
1, H
F

F

N
I N

--Nv_______ N
H
F

Table 1C
F F
CN .
N N
1 z'N 1 IN
z CO2H

OC_C___)2H
\
F F

F F

N N
1 2S1 1 ;N
-----___NHO2C6 ----N0' , ICO2H
N\______N N,,.
\
F F

F F
0-N tai......N .
N N
1 ;N 1 2S1 .,CO2H -------- N C 02H
No N \.
µ......._N
F F

F F

c....k___ .
N N
1 ;N 1 2S1 --"----N 1--ilS1 -----\ H OH
F F

F F
0-N 0:)..e._-_llN, =
N N
1 ;N 1 ;N
OH
5......./
N?0 N OH
H

F F

ULN____ = .._..ilN___ *
N N
1 ;N...,..?1 'N
N,/0H______N i "-H 6H ----- H 111, OH
F F
F

F F
0,N 0-N
c_k____ =
N N
1 ;N 1 z'N
OH
----__NHO2C .

N\q___N
OH
F F

F F

ULN____ =
ULN____ =
N N
1 ;N 1 ;N

Nz____{-0HOH
\ OH \ 6H
F F

F F
*0- = 0(:t *
N N
1 'N 1 /'N
, --"----N 1--N
rq?,..N /-__COH N\q,...Nr._..{-0H
V, OH /\ OH
F/

F F
()- =
N N
1 ,'N 1 ,'N

H i µ

F F

F
F C-11 .
\ -u_N___O m =
N
1.._..

I sN
( NI, ---N----=-7 H 1-327 Nµ \)..._,N,7--....( ."--------7 H .oF3 F
0¨N
=
ON F
CLN...... 4, , 'N
N
I /
F F l ;N
----5, N F

F

F F

C.11... = C.J,N___ =
l ;N 1 sisl OS, 1_N 0 NH
s, N\_____.0 N\._/4.....1%.
F F

F F
0,N ON
_.____LN___ =
\CILN___ 441, N
I sN C)S, I zsN
n NH OH

N$

N N\ j&
F

F F


N N
* 0,N
UN___ =
__....1 ;N N
OH I ;N
"---N1 OH
C).,1 N\q ..._ rs'1..._ N _ 11.

H

F F

* OIN .

ON___N
N
I ;N I ;N
OH
ON
/
"

I OH
N'--( ri. 0 'OH N CF3 F F

F F
o * 0-N
*
I ;N .1_,.../('N
Me02C HO2C

F F

F F

= ON
lik \ \ N \
NH2 = \ N H
, I ;N I ,,N N-N, II N
0 N,..,/
N______I .._ / N
N\______ N N
F F

F F
0, * ni =
SN, (1 /IV .41µ1 CO2H "---N1 CO2H
N(--6 N7_6.
\
F F

FF
O-N
------.N
\ 1 N S\-:
I ;N I ;N
/N
H
------\. N-s, N? ---/ N
/.---- (3 0 N CO2H-----6.
\ \
F F

F F
cic___O N ilik c.c.e.õ0 N lik N, N
c/N cN
/----N OH
N\ H N\.N\.....
/ N OH
F / F
-N OH

F F
N R
N
,......... ;Ni /
0õp TFA \ S---N
N
H OH
------- il OH
F F

F F
CI-21iN 440 c-iiN0 *
\ I
N N
I ;N 14N

OH N
F F
i3oc F F
N N
1 ;N , I ; N
1"---N---N1 OH
N \...... N\.....____N/"--OH
F F H

F F

* *
c;N ...,1 /'N
H CF
----N N s ' 3 o N---- V'------[1. FCF 3 F F

F F

* .

1 ;N 1 ;H

-IN
N\_______N,..
NH
H
F F3c C F3 F

F F

CI N ,..., . C.. 1 N _ . _ =
N N
'N
cz 1 'N
1___ ?-N N
IslOH
H ____________________________________________________ H __ F F

F F

UIN__ = CIN__ 441k N N
cz'N c'N
V
OH H
Z)---N it ---N , 0 0 , _Nz 11,0 N,______\<
N-s --- N
H \ 0 F F

F F

. CiiN .
c,1\1 N
I ,\N I 'N
-__S__N

N\
CF3 /........... c---\\/ N,4Na OH
N
H %
F (3 F

F F
0-c 12..N....1 ., =
\ I N
sN -----< 0 _.,./OH
----N --.
/).-"N Nv_...._N3 0, N\Dir(\1 F
OH
F

F F
N N
I ;N I ;N
0, P
-IN -------N N/
KI\--Na ,N H2 NN/"-----/ H
S H
0 ' F F
*0, . C-ii .
N N
_......;N
0, .----N _ /NS 'OH -1--N =
N\ N/--.. N\q___N
\ H CO2H
F F

F F
*
1 i'N czN 0 H
--1---N N ---NI N *
N\q__N\jj(\1 \__N

OH
F F

FF
c...,..._o-N N
. <0:1 .
/'N N
o 1 /N

ND,A 0 NC----N\_______ -------N N
\
N\N/"---S1).(OH
F
\
F

F F
uNI - = Q fit Ns N
N
c/ 'N0,? 0 ----N
Nv......?_N/---, N 1 \ \ 0 F F

F F

..,...1c....., =
UIN.õ.õ =
N N
I'N'N

/---N = OH

/-----ND-AOH NL____N 0 \ 71 H
F F

F F
Ciii .
N N
_.......1 ;N ,......../ N
---1µ1 OH -----NI
N\ :?__Nõ.
H os-OH

F F
oiN0 . CL *
Ns oi)OH N
,........./ N 1 2\1 N\r----/ H F
H H
F F

F F
oLO . OsiN e N N
_........./sN.........(HN
0 o N

---14 r v.....\,_ \
\ F
F

F F
0,N
N N
c/sN1 'N
........(1 0 ---- N e -----N \,Si-N1 ---Nv.......N N?f"--/ H
H OH H

F F
(:)-11 et <_:t .
N N
I ;N I 'N

N\ ...j....._ i\i.............N,.\
\____.../FF
\-------(1,\IFI
F H F

F F

ON 411k N N
I4N I 'NJ
-----S"----N
N-N f-% 0 w0 F N___NT-=3\-FC:i OH \,SI-EF H
-N
H F F
F

F
F
Q

4Ik 0(t =IN! ......, N
N
1" 1 siv -...,1 -"--- N ,N - \< ----- N ,NH2 NR"-/------O \.....--N7--/
H H H-Cl F F

F F
N

=
N4Ik N
1 ;N l(/\1\1 H ,CF3 1----N N-s, N----N /y\----NH2 N 'LN/--/ Cro \-----N OH
F F

F F

__IN..... .
N N
;N n0 1 /
¨, / F 1 1'N 0 rri,SI-F Is N .
N OH
H H
F F

F F
01NO . *0- 410 N N
c/sN ......_(HN
1)---N
---N OH
NN\__N7-/_____ v_....?---NOH ?
02\

F \--F F

* *10 N *
c/ N F; _,....1 / N F._ N ;
"--/ N OH N?--- 0 H

F

F F
N
CIN___ = N
N N
1 ;N l ;N \
F F
S---Isl /
1--N C),____F
Nv j....N OH
H /\--F

F F
c jc__ git N N
1 'N 0 1 '1\I
-..___. F F

N OH
N N

F

F F
0-N oiNo- =
...õ11,N__ =
N N
/N
I 'NI
F F o .---N F--....___/OH

N\______ N OH
H
H

F F
O-N N
* O-N N
*
_......N 1 z'N
---N1 COOH 1"-NI OH
NINL j F F
*

1 'N c;N
NN
".-OH Ni....._?L"---N N/....,2)\--OH
H
\----F F

F F
411k 4411k N,--N, I / N I N
rs--NH ---1N COOH
\
F F

F F
4k 441k N.,..-= N, N....- Ns OH

1\_.....N\ N\_________ N
H
F F

F, F
N,..-N, O-N

I / N
...=\'c,...-N1 1 1\1 -------"N OH
F F
Nq'NfF3cF3 )----N
N\.......s_N
F H
F

F F
0(t .

IN,..., = N
N t....iN
c x OH

OH 'Isl N\_......\,____ N /---1N
----Isl H 0 N \...._ F
-N

F F
oiNO, *
ON *
N N
.c /N 1 'N
F F _N F3C, \\C) N\_____---N FV)LN OH N\q_._ )-...,/"NH2 N
H H
F F

F F
*0 .
Ns N
1 z N 1 N
-,...../s.....:___N
N ---N
N
\ / m NH2 \ / NH2 HN
HN Me OEt NH2 0 0 0 o F
F
CiiN fit ON
N
ilk ;N N
cINNIN CO
HN \ m /NH2 ---"N
NI\ Nas,N,____, NH

0"0 F F

N
N N
c;N _.,..õ(HN
Nv_________ C F3 N ,FNi_.e.
S, ' F CO2H 1-424 F 8'0 1' , 1-425 F F

____IN...õ. =
...,..j...N__ =
N N
1 ;N ..,.._...1 ;1\1 Nq No_ ,ILy S, \\
"0 F
F *0 =
1C. .
N

,..,.., _.........;N

----N pH NR___Na-S,'Njcv, N7---, H
F \------\ F 1-429 F F
\aiN0 * CjN *
N N
1 ;N 1 /N
1--N ----ii0--.
N\_______N
OH OH

F F
C)4N *
*
N
'N( / 'N
N N?___N\
\ NH
F \----\ F /

F
F

uiNO.. .
0-N N, c_II N = õ....__71 ;-----N
cz'N
N\________N .00H
.."-N

OH
OH

F F
oixO = oiNO, .
N N
1 ;N 1 ;N
0\ 0 S

N\H N/--__./ 'NH2 N\____ NH
F 1-436 F \-----\
S-NH PH
0- II \ e "¨OH 1-437 F
F
C-jiN .

c...._k___ = N
N 1 ;N
I ;N

-".1"--N NH
Nq_Noci F \----\
0 .S-NH
F
HN 0'6 \__\
OH

F
F
cLO . OsiN .
N N
,..........N ...,...?1 ;N
H
N ....)-1N N____NO6)H ---1µ1 N 0 N/".--H N-NH
H F
F
137 F F
ujNO- . CIsiN .
N N
N 1 ;N

-1-- q N"N N---- q 1-11 /----HH2 OH
F F

F
F
06Nõ..,N .

N l 'N
_.....,...(1 ;N ,1 o 0 õ).:7- N R= 5) CF, "--- N -.= C F3 H
H
F

F
F
N N
......õ.1 ;N c/sN

R`c197-0/ ----N
nivN,.. NvNa H
F
F

F F
oiN0 * 0- N
N N
1 ;NJ 1 ;N
----------N S CO2HiCO2H
H H
F F
138 F F

* 0 44.
1 ;N 1 'N
/

N N/---<CO2H
OH
\ L---F F

F F
cON . 0,N
i c___LIN___ =
N, N
I......?/N 1........../('N

NN3.... NN3 CF3 '"CF3 F F

F F
*0- * 0(t =
N N
.c;N ...õ..,e1 ;N
OH OH
---NI aCF3 N___N
F F

Table ID
F
F

. *
..._"1:
1 sN
1 ;N1 ......,.. OH

----""--- N RV? NI--q_1\7bi N\j_N, "-NH2 HCI
H
F
139 F
F
(:)- *
N =
c N
; N
.c/'N

"-- N 0 H
NoNJ )O
_ N )µ......0 "---z--/ H
H
OH

F F
CTN . (t .
N N
__.....1 i'N
.1_,..,N
o o Ph '--- N //N
/ ---- N
H N
NOH)L6' F

F F

= 0 *
A,N N
1 ;N 1 'N
, OH
1---N __._../OH -----____Isroc N N\_______N
N
H
F F

F
F
ON

.... jc___ = ... j.N___ =
N
N l 'N
1 ;N
-....._ 1--N 1\1---N\ )L

N\ _i___N
-- H
H)\---CrEl F
140 F F
0-N IQ =
_._,I...N___ =
N N
I ;N I ;N

----1-N ---1-N /...____OH
N/"CF3 N, \_.....
N
F FF
F F

F
N
C.I.,._. . F
N ..,...tN__O-N 441, 'N
, N
I 'N
F
1.1\1 ."
F
N
H
N---\ F FF N
C--.02 H

F
F

4. ON
___LN,,,, =
N
N
I ;N OH
N FT' N\q....., / N\___--__/)--/ N\\ "(:))/CF3 N
H N
H
F
141 F
F
ON

cl.N..._ N
N I 'N
I ;N -.õ...
F F
0 ---N iy_F
----1-N - n \// SO,Me No...._N\,S-_/ - NV____---N OH
H
H F F F
F

F
F
= ICN .
N...__N N
N
c ;KI
cIN
----N , 3 OH CI
-=--N OAc NO-N/-CF
----\ H F3C
t:----/- H CF3 F

F F

4. 0, * 40 H0*--N, N
I /N ...,,../sN
i./OH 0 NI ---N \\ N/-----, z N
/CF3 N\______NT--- No F F

F F

e N N
KI I ;KI
---N CI OH ""---N 0. P 0/
No.....N)\----6 1\1___y_NN,S--.7 H H
142 F F
* 0 *
H2N Ns ,....(I ;N I N
/
---N COOH / N COOH
N/-----6 NR_N7-----6 \
F F

F F
N
*
N N
I ;N I ;N
___NI, 7,,...._ (C)cH

X
TIS¨N
\-------F H F3C

F F

UN__ =
N N
I ,'N I ;N 0 -------N OH 1____N /1\JH
N,-...,7< Ng_ CF N

F
F

ON
___k____ = __-__Ic__ .
N
N I sisl I 2\1 1"-N O. P
1__ 0 SO2N H2 zSiSS-N: r\j\ )L// N, \LN,--..,
143 F F F F

= 0-N
c ____Ic___ =
N
I ;N NI 'N
, -------N ,..._ JOH
N \ N/ -7rC F3 NJ\ 1.:?.,_, /-.......7 --- OH
\

F
F

F F

N N
F
I ;N c;N
--N R= ? li OH N\ \L ,S
H H

F
ON
F

.._ jiN,.._ =
*
_.,,....1 'N
z N
I sN
FH

N\______ NH Ng__ N
o--7 H 0 F F

N UIN____N .
I ;N I 'N
0 n D
....1"-N ---N '-')L7<OH
N\..j..._ N.,....õ N \LN
--\--=-< H 0 D
144 F
F
C.N
N ___ = ON
N
I
1;N N
I / N
.-N
N NO -1¨N N(3)_70Ac F H

F
F

= N
Ck ;N ____ =
N
I
Ns I / N
---1¨N \\ ,OAc N 1\1 /-----7 1.-- Ni.,N (\\ ../,OH
..)___---H
H
F

F

F
0,N 10 O-N N
= \ I
N
I 'N

I ;N

.. / N
im/OH
Nvi___ NI --TCF3 F , e.
1-3%, F F

....__LN____ =
c_k___ =
N N
I ;N I /'N

\ S' H
F F
145 F
\ cuN___O N = F
ON
N
I ;N N
--I
csN

N\ --.0 i)----N O\ ?
NS---( H
F-e F F F

F

N
N, I sN
I / N ...._1 0 ---1\1 -----S"N N?_.
N v F
F

F F

ON
c. õIN__ =
c.õ1,..., =
N N
I ;N .4'N
H
-----"" "---N S-rp N \L-----cN.--- ?/...,..._/ .... 3 N
F F

ri cN = ic N
N I sN
-...._ ...õ.....(1 /'N

----N1 (:).= 19.}--0/ N (NH2 ID
H F
146 F

.._...K.,.. =
rj N N
I_4'N I 'N

N\qINR"-NH2 F F

F F
0,N 0-N
c..c.... .
c___UN____ =
N N
c,'N I ,'N
N

0,11 ---- ' N
N?/..___Srp --.... 3 N\.!......,Nõõt-NH2 H
F F

cr_j cr\
or,.. ,N__ r j \ 1 \ I
N N
I ;N I N
-..1 ----"S-N OH ""--N
Nq'N H F3C CF3NR,....N,Et Et F F

F
F
N
C.I.NN = C_N 40t N
I ;N I ;N
---1"--N NH2 N/---<

H
F
147 F
F
ON

CIN___ =
N 1 'N
;N
1"-N
-----N C)\\ ,NH2 OH
Nq--NT-C
H F
H
F

C
NclIN__ rj N
N I sisl 1 ;N -,,...

v Ts /-14 4L IsI_ \

F

F F

N 0-N . \ N
*
_.....,.(1 isKI I iN

""=-N (:)\\_ / N )\____o NO__ N
H "--\-----z-/ H

F F

N N
L_..iN l /N

---N/ N ).\____.-S02Me Nv......_.
NS02Me N
H
F F
OH
148 F F
0.N
\ I

=
NI, I /N c/'N

N / N
/OH
H
F

F F

c....k.õ. =
.......JJN___ =
N N
......,..1 /'N 1 ;N

NV

NV_____ N 4\ -C-. .,, F3 ,---N CF
H nu =-----( H HO 3 F F

F
F

N
l N
INN
z -,..1 '''-fq -----N Nq___N
NN-----j H
F

F F

ck,.._ =
.___kN
,.... 40 N, I /N I.......iN

/ N -----N CI H
N)L/
Nq N\ j....

H
F
149 F
F
0,N
UN..... . 0 N
N
N
c/N
c/sN
---.../
-----N -; NH2 --t----:( H 0 --\----:--( H 0 F
F

F
F

UN.....
N. 0 N
...111.N..._ .
N
I /'N
I /sN
----:s"-N NH20 0 ----N -OH

H
F

F F
N
CIN___ = 0-N
___Ic___ =
N N
I ;N I 'N
-,1 -----____N F3C
N\____NH2 0 N----INI X /
N

F No2 F
F
N
* 0 N
N=
N' N' I ;N
ciN
T1" OX / .---NI )OH ,-S/n N 1\1____y_N/----, b-H
H
150 F

c ..iN__., = ON
*
I

z'NI N
sN
F ...õ..(/

N-H NH
F N\.______N/---6.
--'S H
0--,/ -----F
F

c3N..... = 0,N

N ___ lik N /s l z'N
H , N¨N dr oN N-s',0 0 /
-------N )Ly"---0 N\
----\ H 0 H
F

F F
0-N :.:)N iikt N N
l ;N
H = I zsN

----S"--N N-s, --1--N
NO,.....N)\----c (3 ,0 Kit F F
0,N
CjiNN 44Ik N N
l /V 1.......('N

/).--N

N)i,....O1 , N
151 F F
0,N ON1 __Icc.,..,. . 4/
----KN
.-N
l /s N l z'N

/ N iN ID HID
UN I NI\ ....)__ N)\--...0 F F
0, 0, < N
\ *
N
y N
I zsN I ;1\1 N ) ,N Ism N '1\1)C)\
H N z.,..z/ N
H O-N

F F
0,N
ON
Ns N
I z N i 1\1 /µ
NO

õ, ,t, /
I mos_ N ),\ ---- 1....y.... fi-____ro H N [1 N=i F F
0,N

N
N
I µ1\1 1..,.../('N /

----KI /
NO)\----ci 1\(....y_N ,
152 F F
0,N C...&...N .
jc...._ .
N N
I --I ;N I zsN

' = \ / N \\
)Lcs _____/O
H H

F F
0,-N0,N
\ I 4. \ I .
N N
1 ;NI I zsN
O , m z N /\._N 000 µ/S
11......}__N
L----i-N
H H

F
F
kj . 0-N
N-__ .
N N
I zsN I 'N
(/
-.1.--Nõ/
, \\N Nk ----V"'N)L--n---4 0 H HN-N --\--- H 0---F F

ON
UN____ =
c___UN___ =
N N
Iz'r\J I 'N
.....,_ N----4,OH ''''N
H
H
F \---CF3 F
153 F
F

N N
I ;N i /'N
---1___ F3C 0-me -IN
N 0 N \\ )µ...,...
H ---k-_,Z--N
H
F

F F
0,N 0,N
*
N N
cI ;N i /V H o N-_f0 0 (:).( / N R, /
N\_.....y... )O im.\-__\,..
--. N ---. N
H H

F F

..._IN___ =
N
/K1 I 'NJ
....õ..
N
0 * 0 -="-N --- t\ _ /
N.......)_\__ N õ 0 N/ -(-:N
H r3L. 1 H

F
F

ON
N
\I I
= =
N
I sisl /1s1 -,.._..

/ N
N \\,z7 N\ ?
\._..-"-N
H)LCO
F t-----\--OH
154 F F
0-N 0,.N
.,...1c,._ =
UIN.,_, 410 N N
1 ;N c,'N

HO
0 --N (:)OH ----N
N\ j____ N\j_N 110 N' 1 H Me H

F
F
0,N
c ...1c___ = ON 4.
I
N, N ,N
.I'N
'-''----N
N *----1\1 (:7\\ /,CN
, \_____N
It__ j_. N---\-----"--"( H
H
F

F
F

Ck., =
.,...1c,._ = N
N I sisl I,N ,...,.......
o 1¨N (:)s¨ -"--N NzjLNH2 H
H
F

F
F
:I
= 0-N

\ \ N s:N
I 'N
I ;N /

-1-N )QS--- N' N )\-_ N\q___ )`1\1 N
N. n H
H
155 F F
N 0,N
__IJN,.., e N N

-"---( O H NH o H NH
1;--N A ,N 2---\< ''"=-N A
N\ ,N---\<
NO_N/-----, 0 j___Nt-----/

H H

F F

N N
I x'N l 'N
o H \N.__ --1._ 0 0ii, 1--N A b ,N-s0 No H H

F F
N
0,N
c_IIN___ =
N N
I z'N l N
--"Z
F3C __N 0 1:211:1 -----.S /
Nv?........N)Z-- -----= \X N, A).\---.

F F

FF
Ck N . 0-N

N
l;14 I / N

IsN -N
'N\ NCO2Et
156 F F
0,N 0,k, .
N, N, I /N I /N
n 0 N (:)\\ ,'1 110 CO?
N )L
S % N\......)Ni---.7 Li¨N CI
H H

F

0,ru C, =
N I ;N
I ;N

0 --\ ii Nq ---1.... N NS *
ni\........)___N ,CF3 HN- /------/
H S.

F F
0,N 0 ___ N
l 1'N I ; C
IV
0 *

-IN \k H1110 N / \N )L,KI
N(....)õ.N7-_,/

H H

F F
ON 0, U__ 4Ik N, I /N
. ' / 0 .
0 H 0 y iN

N "I )-L/N---( N,/
)'1\1 ---.L.,%---N
H H
157 F F
N 0Uk , __" .
N
I ;14 l \N
00, -,.., N
0 1 j 0 *
/N ----1\1 \\ N
N\ j.......N7,/

H H

FF
0-N = 0-N
.., jc____ =
Ns N
x N 0 I 'N
-,,, NI L/
k 0 Nk-N

F F

c.õ11N___ N N
_l 'N l ;N

'''1\1 ITIN y N\.........___NCO2H
--k_...--N Is16' H
F F

F F
N Cke,...N =
N N
l;14 I 'N
1.._.

/ N N
NY (3%, N \ NH2 N / \ ;0\\ =110 F
q---- [1 0 F F
158 F
F

....__UN___ = 0,N
__11N___ .
N
I
N ;N I ;N
-IN
l .___...OyC F3 'N - 0 \\ //0 ,-. .,1-0 3 N/.
N\________N,S.--/
..-L- H NN
H
F
F

F F

...õ1.1N____ =
N N
cz'Isl c'N
1)---N o\ p ----Isl ID\ 9 NC____ N?,S----ci , N
H H
F F

F F

UN___ =
N N
I ;N I / N
1----N 0= =
N__)\S N,Sõco H

F F
0-N 0,N
c j_N____ =
N Kl\
O-...
I ;NI /N

----L0 0 40 / = --**---N
N\ \N,Sµ,00 1\1\___Na__OH
--\--=-( H
F F
159 F F
0,N 0-N .
N
1 'N (1 iN
1z-N N
O __...... N
\\ iCk\d) N\ \,---/ "--- \ OEt \--7.----( H

F F F F F F
ck_e_O-N di- O-N di-N N
l ;N 1 'N
-..._.
N)=-N
HN \ / m NH2 O HNN)\--j---Me Et ).r.rNH2 F F

c_k___ .
_...k...
N N .
l ;N j...,...iN
N )------N
N)Le--NH2 H2N FiN,? H2N N ip
160 F

0-N .
...... j_IN___ = N
N 1 ;N
I / N

N
/q....s N ;-_,(( 0,7i, C F3 N\
HN Me Fisi 0 H N-N
F .
0 N-jc FF
0-N = 0-N
...,...LN___ .)1N.,.__ =
N N
N
F
1 /s I sN
-------S-N (:)\ = 1_ n N
N-= -----NI \\ ,S N
co \ _ N0 --\--=-( H H
F F

O'N

N
.
1 /sN N
c,'N
--1-__N F3C / 0 N? ).__/---,p ---- N NH2 H NO-1\14F
161 N

=
/1\1 \N
OH

N \=/
0/kj =
/sN
;N
OH
Nq N-e NH

O.
I sN
c/N
N N\NN

b OH
162 F

=
1 'N

H
F

Methods of preparing the compounds [00137] The compounds of Formulae I to XI may be prepared according to the schemes and examples depicted and described below. Unless otherwise specified, the starting materials and various intermediates may be obtained from commercial sources, prepared from commercially available compounds or prepared using well-known synthetic methods. Another aspect of the present invention is a process for preparing the compounds of Formula I as disclosed herein.
General synthetic procedures for the compounds of this invention are described below. The synthetic schemes are presented as examples and do not limit the scope of the invention in any way.
General Procedure A
Step 1 Step 2 Step 3 Step 4 R NrR' Na0 R
0 01_1 .-----, rµ N
AlMe3, NH4CI R -----N, 0 LIHMDS )..r H2NHN R .-r- ; F"---."CO2Et 1)----NH
. . I N _______ . c/ N _______ * /
R / OEt ____ RMe THF/toluene HCI toluene Et0H N\_____(0 0 Et0H 110 C 90 Co C
0 ---0--OEt F
A EtO.H.r0Et 70 C
B C D
E

Step 1:
Dione enolate formation: To a solution of ketone A in THF cooled to ¨78 C, LiHMDS (e.g., 0.9 equiv, 1.0 M in toluene) was added dropwise via syringe. The reaction was allowed to warm to 0 C, then charged with diethyl oxalate (1.2 equiv). At this time, the reaction was warmed to room temperature and stirred at that temperature until judged complete (e.g., using either TLC or LC/MS analysis). Once the reaction was complete (reaction time was typically
163 45 minutes), the product dione enolate B was used "as-is" in Step 2, i.e., the cyclization step, without any further purification.
Step 2:
Pyrazole formation: Dione enolate B was diluted with ethanol and consecutively charged with HC1 (e.g., 3 equiv, 1.25 M solution in ethanol) and arylhydrazine hydrate (e.g., 1.15 equiv).
The reaction mixture was heated to 70 C and stirred at this temperature until cyclization was deemed complete (e.g., by LC/MS analysis, typically 30 minutes). Once complete, the reaction mixture was treated carefully with solid sodium bicarbonate (e.g., 4 equiv) and diluted with dichloromethane and water. Layers were separated, and aqueous layer was futher diluted with water before extraction with dichloromethane (3x). The combined organics were washed with brine, dried over MgSO4, filtered, and concentrated in vacuo. The resulting pyrazole C was then purified by Si02 chromatography using an appropriate gradient of Et0Ac in hexanes.
Step 3:
Amidine formation: To a suspension of NH4C1 (e.g., 5 equiv) in toluene cooled to 0 C was added A1Me3 (e.g., 5 equiv, 2.0M solution in toluene) dropwise via syringe.
The reaction was allowed to warm to room temperature, and stirred at this temperature until no more bubbling was observed. Pyrazole C was added in 1 portion to the reaction mixture, heated to 110 C, and stirred at this temperature until judged complete (e.g., using either TLC or LC/MS analysis).
Once complete, the reaction was cooled, treated with excess methanol, and stirred vigorously for 1 hour at room temperature. The thick slurry was filtered, and the resulting solid cake was washed with methanol. The filtrate was concentrated in vacuo, and the resulting solids were re-suspended in an ethyl acetate : isopropyl alcohol = 5:1 solvent mixture.
The reaction was further treated with saturated sodium carbonate solution, and stirred for 10 minutes before the layers are separated. The aqueous layer was extracted with the ethyl acetate :
isopropyl alcohol = 5:1 solvent mixture (3x), and the combined organics were washed with brine.
The organics were further dried over Mg504, filtered, and the solvent removed in vacuo. The product amidine D was used as-is in subsequent steps without further purification.
Step 4:
Pyrimidone formation: Amidine D was suspended in ethanol, and stirred vigorously at 23 C to encourage full solvation. The reaction was further treated with sodium 3-ethoxy-2-fluoro-3-oxoprop-1-en-1-olate (e.g., 3 equiv.), and the flask was equipped with a
164 reflux condenser. The reaction was placed into a pre-heated oil bath maintained at 90 C and stirred until full consumption of starting material was observed on the LC/MS
(reaction times were typically 1 h). The contents were cooled to 23 C, and the reaction mixture acidified with HC1 (e.g., 3 equiv., 1.25M solution in Et0H). The mixture was stirred for 30 minutes, and the majority of the solvent was removed in vacuo. Contents were re-suspended in ether and water (1:1 mixture), and the resulting slurry was stirred for 20 min. The suspension was vacuum filtered, and the solid cake was rinsed with additional water and ether and dried on high vacuum overnight. The resulting pyrimidone E was used as-is in subsequent steps without further purification.
General procedure B
F F

N N
.........(/

¨1.-h2 ----N
1\1........._ Nv...........N,Ri CI
F k2 F
Intermediate 1 [00138] A solution of amino nucleophile (3 equiv.), triethylamine (10 equiv.), and Intermediate 1 (1 equiv.) was stirred in dioxane and water (2:1 ratio) at 90 C until complete consumption of starting material was observed by LC/MS. The solution was diluted with aqueous 1N hydrochloric acid and dichloromethane. The layers were then separated and the aqueous layer was extracted with dichloromethane. The organics were combined, dried over magnesium sulfate, filtered, and the solvent was removed in vacuo.
Purification yielded the desired product.
General procedure C
F 0, ,o, ,0 F
H3C)II IICH3 C.....t.N.N õ...._ .
0õ0 Ce!ILN_I
Ns /-----_/ % N
0 H3C sc;

Et3N 0 N\

J¨NH2 --\----. H
Intermediate 2
165 A mixture of Intermediate 2 (this intermediate was described in previously published patent application W02012/3405 Al; 1 equivalent) and carboxylic acid (1.1 equivalent) in N,N-dimethylformamide was treated with triethylamine (4 equivalent) followed by a 50% in ethyl acetate solution of propylphosphonic anhydride (T3P, 1.4 equivalent).
The reaction was heated to 80 C for 24 h, after which the reaction was diluted with water and 1N hydrochloric acid solution. Contents were extracted with dichloromethane, then ethyl acetate. The combined organic layers were dried over sodium sulfate, filtered, and concentrated in vacuo. Purification yielded the desired product.
Pharmaceutically acceptable salts of the invention.
[00139] The phrase "pharmaceutically acceptable salt," as used herein, refers to pharmaceutically acceptable organic or inorganic salts of a compound of Formula I or Formula I'. The pharmaceutically acceptable salts of a compound of Formula I or Formula I' are used in medicine. Salts that are not pharmaceutically acceptable may, however, be useful in the preparation of a compound of Formula I or Formula I' or of their pharmaceutically acceptable salts. A pharmaceutically acceptable salt may involve the inclusion of another molecule such as an acetate ion, a succinate ion or other counter ion. The counter ion may be any organic or inorganic moiety that stabilizes the charge on the parent compound.
Furthermore, a pharmaceutically acceptable salt may have more than one charged atom in its structure.
Instances where multiple charged atoms are part of the pharmaceutically acceptable salt can have multiple counter ions. Hence, a pharmaceutically acceptable salt can have one or more charged atoms and/or one or more counter ion.
[00140] Pharmaceutically acceptable salts of the compounds described herein include those derived from the compounds with inorganic acids, organic acids or bases. In some embodiments, the salts can be prepared in situ during the final isolation and purification of the compounds. In other embodiments the salts can be prepared from the free form of the compound in a separate synthetic step.
[00141] When a compound of Formula I or Formula I' is acidic or contains a sufficiently acidic bioisostere, suitable "pharmaceutically acceptable salts" refers to salts prepared form pharmaceutically acceptable non-toxic bases including inorganic bases and organic bases.
Salts derived from inorganic bases include aluminum, ammonium, calcium, copper, ferric, ferrous, lithium, magnesium, manganic salts, manganous, potassium, sodium, zinc and the like.
Particular embodiments include ammonium, calcium, magnesium, potassium and sodium salts.
166 Salts derived from pharmaceutically acceptable organic non-toxic bases include salts of primary, secondary and tertiary amines, substituted amines including naturally occurring substituted amines, cyclic amines and basic ion exchange resins, such as arginine, betaine, caffeine, cho line, N, N1-dibenzylethylenediamine, diethylamine, 2-diethylaminoethano1, 2-dimethylaminoethano1, ethanolamine, ethylenediamine, N-ethylmorpholine, N-ethylpiperidine, glucamine, glucosamine, histidine, hydrabamine, isopropylamine, lysine, methylglucamine, morpho line, piperazine, piperidine, polyamine resins, procaine, purines, theobromine, triethylamine, trimethylamine tripropylamine, tromethamine and the like.
[00142] When a compound of Formula I or Formula I' is basic or contains a sufficiently basic bioisostere, salts may be prepared from pharmaceutically acceptable non-toxic acids, including inorganic and organic acids. Such acids include acetic, benzenesulfonic, benzoic, camphorsulfonic, citric, ethanesulfonic, fumaric, gluconic, glutamic, hydrobromic, hydrochloric, isethionic, lactic, maleic, malic, mandelic, methanesulfonic, mucic, nitric, pamoic, pantothenic, phosphoric, succinic, sulfuric, tartaric, p-toluenesulfonic acid and the like. Particular embodiments include citric, hydrobromic, hydrochloric, maleic, phosphoric, sulfuric and tartaric acids. Other exemplary salts include, but are not limited, to sulfate, citrate, acetate, oxalate, chloride, bromide, iodide, nitrate, bisulfate, phosphate, acid phosphate, isonicotinate, lactate, salicylate, acid citrate, tartrate, oleate, tannate, pantothenate, bitartrate, ascorbate, succinate, maleate, gentisinate, fumarate, gluconate, glucuronate, saccharate, formate, benzoate, glutamate, methanesulfonate, ethanesulfonate, benzenesulfonate, p-toluenesulfonate, and pamoate (i.e., 1,1'-methylene-bis-(2-hydroxy-3-naphthoate)) salts.
[00143] The preparation of the pharmaceutically acceptable salts described above and other typical pharmaceutically acceptable salts is more fully described by Berg et al., "Pharmaceutical Salts," J. Pharm. Sci., 1977:66:1-19, incorporated here by reference in its entirety.
[00144] In addition to the compounds described herein, their pharmaceutically acceptable salts may also be employed in compositions to treat or prevent the herein identified disorders.
Pharmaceutical compositions and methods of administration.
[00145] The compounds herein disclosed, and their pharmaceutically acceptable salts thereof may be formulated as pharmaceutical compositions or "formulations".
167 [00146] A typical formulation is prepared by mixing a compound of Formula I or Formula I', or a pharmaceutically acceptable salt thereof, and a carrier, diluent or excipient. Suitable carriers, diluents and excipients are well known to those skilled in the art and include materials such as carbohydrates, waxes, water soluble and/or swellable polymers, hydrophilic or hydrophobic materials, gelatin, oils, solvents, water, and the like. The particular carrier, diluent or excipient used will depend upon the means and purpose for which a compound of Formula I
and Formula I' is being formulated. Solvents are generally selected based on solvents recognized by persons skilled in the art as safe (GRAS-Generally Regarded as Safe) to be administered to a mammal. In general, safe solvents are non-toxic aqueous solvents such as water and other non-toxic solvents that are soluble or miscible in water.
Suitable aqueous solvents include water, ethanol, propylene glycol, polyethylene glycols (e.g., PEG400, PEG300), etc. and mixtures thereof. The formulations may also include other types of excipients such as one or more buffers, stabilizing agents, antiadherents, surfactants, wetting agents, lubricating agents, emulsifiers, binders, suspending agents, disintegrants, fillers, sorbents, coatings (e.g. enteric or slow release) preservatives, antioxidants, opaquing agents, glidants, processing aids, colorants, sweeteners, perfuming agents, flavoring agents and other known additives to provide an elegant presentation of the drug (i.e., a compound of Formula I
and Formula I' or pharmaceutical composition thereof) or aid in the manufacturing of the pharmaceutical product (i.e., medicament).
[00147] The formulations may be prepared using conventional dissolution and mixing procedures. For example, the bulk drug substance (i.e., a compound of Formula I and Formula I', a pharmaceutically acceptable salt thereof, or a stabilized form of the compound, such as a complex with a cyclodextrin derivative or other known complexation agent) is dissolved in a suitable solvent in the presence of one or more of the excipients described above. A compound having the desired degree of purity is optionally mixed with pharmaceutically acceptable diluents, carriers, excipients or stabilizers, in the form of a lyophilized formulation, milled powder, or an aqueous solution. Formulation may be conducted by mixing at ambient temperature at the appropriate pH, and at the desired degree of purity, with physiologically acceptable carriers. The pH of the formulation depends mainly on the particular use and the concentration of compound, but may range from about 3 to about 8. When the agent described herein is a solid amorphous dispersion formed by a solvent process, additives may be added directly to the spray-drying solution when forming the mixture such as the additive is dissolved or suspended in the solution as a slurry which can then be spray dried.
Alternatively, the
168 additives may be added following spray-drying process to aid in the forming of the final formulated product.
[00148] The compound of Formula I and Formula I' or a pharmaceutically acceptable salt thereof is typically formulated into pharmaceutical dosage forms to provide an easily controllable dosage of the drug and to enable patient compliance with the prescribed regimen.
Pharmaceutical formulations of a compound of Formula I and Formula I', or a pharmaceutically acceptable salt thereof, may be prepared for various routes and types of administration. Various dosage forms may exist for the same compound, since different medical conditions may warrant different routes of administration.
[00149] The amount of active ingredient that may be combined with the carrier material to produce a single dosage form will vary depending upon the subject treated and the particular mode of administration. For example, a time-release formulation intended for oral administration to humans may contain approximately 1 to 1000 mg of active material compounded with an appropriate and convenient amount of carrier material which may vary from about 5 to about 95% of the total compositions (weight: weight). The pharmaceutical composition can be prepared to provide easily measurable amounts for administration. For example, an aqueous solution intended for intravenous infusion may contain from about 3 to 500 [tg of the active ingredient per milliliter of solution in order that infusion of a suitable volume at a rate of about 30 mL/hr can occur. As a general proposition, the initial pharmaceutically effective amount of the inhibitor administered will be in the range of about 0.01-100 mg/kg per dose, namely about 0.1 to 20 mg/kg of patient body weight per day, with the typical initial range of compound used being 0.3 to 15 mg/kg/day.
[00150] The term "therapeutically effective amount" as used herein means that amount of active compound or pharmaceutical agent that elicits the biological or medicinal response in a tissue, system, animal or human that is being sought by a researcher, veterinarian, medical doctor or other clinician. The therapeutically or pharmaceutically effective amount of the compound to be administered will be governed by such considerations, and is the minimum amount necessary to ameliorate, cure or treat the disease or disorder or one or more of its symptoms.
[00151] The pharmaceutical compositions of Formula I and Formula I' will be formulated, dosed, and administered in a fashion, i.e., amounts, concentrations, schedules, course, vehicles, and route of administration, consistent with good medical practice. Factors for consideration in
169 this context include the particular disorder being treated, the particular mammal being treated, the clinical condition of the individual patient, the cause of the disorder, the site of delivery of the agent, the method of administration, the scheduling of administration, and other factors known to medical practitioners, such as the age, weight, and response of the individual patient.
[00152] The term "prophylactically effective amount" refers to an amount effective in preventing or substantially lessening the chances of acquiring a disease or disorder or in reducing the severity of the disease or disorder before it is acquired or reducing the severity of one or more of its symptoms before the symptoms develop. Roughly, prophylactic measures are divided betweenprimary prophylaxis (to prevent the development of a disease) and secondary prophylaxis (whereby the disease has already developed and the patient is protected against worsening of this process).
[00153] Acceptable diluents, carriers, excipients, and stabilizers are those that are nontoxic to recipients at the dosages and concentrations employed, and include buffers such as phosphate, citrate, and other organic acids; antioxidants including ascorbic acid and methionine;
preservatives (such as octadecyldimethylbenzyl ammonium chloride;
hexamethonium chloride; benzalkonium chloride, benzethonium chloride; phenol, butyl or benzyl alcohol;
alkyl parabens such as methyl or propyl paraben; catechol; resorcinol;
cyclohexanol;
3-pentanol; and m-cresol); proteins, such as serum albumin, gelatin, or immunoglobulins;
hydrophilic polymers such as polyvinylpyrrolidone; amino acids such as glycine, glutamine, asparagine, histidine, arginine, or lysine; monosaccharides, disaccharides, and other carbohydrates including glucose, mannose, or dextrins; chelating agents such as EDTA; sugars such as sucrose, mannitol, tretralose or sorbitol; salt-forming counter-ions such as sodium;
metal complexes (e.g. Zn-protein complexes); and/or non-ionic surfactants such as TWEENTm, PLURONICSTM or polyethylene glycol (PEG). The active pharmaceutical ingredients may also be entrapped in microcapsules prepared, for example, by coacervation techniques or by interfacial polymerization, e.g., hydroxymethylcellulose or gelatin-microcapsules and poly-(methylmethacylate) microcapsules, respectively; in colloidal drug delivery systems (for example, liposomes, albumin microspheres, microemulsions, nano-particles and nanocapsules) or in macroemulsions. Such techniques are disclosed in Remington's: The Science and Practice of Pharmacy, 21st Edition, University of the Sciences in Philadelphia, Eds., 2005 (hereafter "Remington' s").
[00154] "Controlled drug delivery systems" supply the drug to the body in a manner precisely controlled to suit the drug and the conditions being treated. The primary aim is to achieve a
170 therapeutic drug concentration at the site of action for the desired duration of time. The term "controlled release" is often used to refer to a variety of methods that modify release of drug from a dosage form. This term includes preparations labeled as "extended release", "delayed release", "modified release" or "sustained release". In general, one can provide for controlled release of the agents described herein through the use of a wide variety of polymeric carriers and controlled release systems including erodible and non-erodible matrices, osmotic control devices, various reservoir devices, enteric coatings and multiparticulate control devices.
[00155] "Sustained-release preparations" are the most common applications of controlled release. Suitable examples of sustained-release preparations include semipermeable matrices of solid hydrophobic polymers containing the compound, which matrices are in the form of shaped articles, e.g. films, or microcapsules. Examples of sustained-release matrices include polyesters, hydrogels (for example, poly(2-hydroxyethyl-methacrylate), or poly(vinylalcohol)), polylactides (U.S. Pat. No. 3,773,919), copolymers of L-glutamic acid and gamma-ethyl-L-glutamate, non-degradable ethylene-vinyl acetate, degradable lactic acid-glycolic acid copolymers, and poly-Df)-3-hydroxybutyric acid.
[00156] "Immediate-release preparations" may also be prepared. The objective of these formulations is to get the drug into the bloodstream and to the site of action as rapidly as possible. For instance, for rapid dissolution, most tablets are designed to undergo rapid disintegration to granules and subsequent deaggregation to fine particles.
This provides a larger surface area exposed to the dissolution medium, resulting in a faster dissolution rate.
[00157] Agents described herein can be incorporated into an erodible or non-erodible polymeric matrix controlled release device. By an erodible matrix is meant aqueous-erodible or water-swellable or aqueous-soluble in the sense of being either erodible or swellable or dissolvable in pure water or requiring the presence of an acid or base to ionize the polymeric matrix sufficiently to cause erosion or dissolution. When contacted with the aqueous environment of use, the erodible polymeric matrix imbibes water and forms an aqueous-swollen gel or matrix that entraps the agent described herein. The aqueous-swollen matrix gradually erodes, swells, disintegrates or dissolves in the environment of use, thereby controlling the release of a compound described herein to the environment of use. One ingredient of this water-swollen matrix is the water-swellable, erodible, or soluble polymer, which may generally be described as an osmopolymer, hydrogel or water-swellable polymer.
Such polymers may be linear, branched, or cross linked. The polymers may be homopolymers or copolymers. In certain embodiments, they may be synthetic polymers derived from vinyl,
171 acrylate, methacrylate, urethane, ester and oxide monomers. In other embodiments, they can be derivatives of naturally occurring polymers such as polysaccharides (e.g.
chitin, chitosan, dextran and pullulan; gum agar, gum arabic, gum karaya, locust bean gum, gum tragacanth, carrageenans, gum ghatti, guar gum, xanthan gum and scleroglucan), starches (e.g. dextrin and maltodextrin), hydrophilic colloids (e.g. pectin), phosphatides (e.g.
lecithin), alginates (e.g.
ammonium alginate, sodium, potassium or calcium alginate, propylene glycol alginate), gelatin, collagen, and cellulosics. Cellulosics are cellulose polymer that has been modified by reaction of at least a portion of the hydroxyl groups on the saccharide repeat units with a compound to form an ester-linked or an ether-linked substituent. For example, the cellulosic ethyl cellulose has an ether linked ethyl substituent attached to the saccharide repeat unit, while the cellulosic cellulose acetate has an ester linked acetate substituent. In certain embodiments, the cellulosics for the erodible matrix comprises aqueous-soluble and aqueous-erodible cellulosics can include, for example, ethyl cellulose (EC), methylethyl cellulose (MEC), carboxymethyl cellulose (CMC), CMEC, hydroxyethyl cellulose (HEC), hydroxypropyl cellulose (HPC), cellulose acetate (CA), cellulose propionate (CP), cellulose butyrate (CB), cellulose acetate butyrate (CAB), CAP, CAT, hydroxypropyl methyl cellulose (HPMC), HPMCP, HPMCAS, hydroxypropyl methyl cellulose acetate trimellitate (HPMCAT), and ethylhydroxy ethylcellulose (EHEC). In certain embodiments, the cellulosics comprises various grades of low viscosity (MW less than or equal to 50,000 daltons, for example, the Dow MethocelTM series E5, El5LV, E5OLV and KlOOLY) and high viscosity (MW
greater than 50,000 daltons, for example, E4MCR, ElOMCR, K4M, K15M and KlOOM and the MethocelTM
K series) HPMC. Other commercially available types of HPMC include the Shin Etsu Metolose 90SH series.
[00158] Other materials useful as the erodible matrix material include, but are not limited to, pullulan, polyvinyl pyrrolidone, polyvinyl alcohol, polyvinyl acetate, glycerol fatty acid esters, polyacrylamide, polyacrylic acid, copolymers of ethacrylic acid or methacrylic acid (EUDRAGITO, Rohm America, Inc., Piscataway, New Jersey) and other acrylic acid derivatives such as homopolymers and copolymers of butylmethacrylate, methylmethacrylate, ethylmethacrylate, ethylacrylate, (2-dimethylaminoethyl) methacrylate, and (trimethylaminoethyl) methacrylate chloride.
[00159] Alternatively, the agents of the present invention may be administered by or incorporated into a non-erodible matrix device. In such devices, an agent described herein is distributed in an inert matrix. The agent is released by diffusion through the inert matrix.
172 Examples of materials suitable for the inert matrix include insoluble plastics (e.g methyl acrylate-methyl methacrylate copolymers, polyvinyl chloride, polyethylene), hydrophilic polymers (e.g. ethyl cellulose, cellulose acetate, cross linked polyvinylpyrrolidone (also known as crospovidone)), and fatty compounds (e.g. carnauba wax, microcrystalline wax, and triglycerides). Such devices are described further in Remington: The Science and Practice of Pharmacy, 20th edition (2000).
[00160] As noted above, the agents described herein may also be incorporated into an osmotic control device. Such devices generally include a core containing one or more agents as described herein and a water permeable, non-dissolving and non-eroding coating surrounding the core which controls the influx of water into the core from an aqueous environment of use so as to cause drug release by extrusion of some or all of the core to the environment of use. In certain embodiments, the coating is polymeric, aqueous-permeable, and has at least one delivery port. The core of the osmotic device optionally includes an osmotic agent which acts to imbibe water from the surrounding environment via such a semi-permeable membrane. The osmotic agent contained in the core of this device may be an aqueous-swellable hydrophilic polymer or it may be an osmogen, also known as an osmagent. Pressure is generated within the device which forces the agent(s) out of the device via an orifice (of a size designed to minimize solute diffusion while preventing the build-up of a hydrostatic pressure head). Non limiting examples of osmotic control devices are disclosed in U. S. Patent Application Serial No.
09/495,061.
[00161] The amount of water-swellable hydrophilic polymers present in the core may range from about 5 to about 80 wt% (including for example, 10 to 50 wt%). Non limiting examples of core materials include hydrophilic vinyl and acrylic polymers, polysaccharides such as calcium alginate, polyethylene oxide (PEO), polyethylene glycol (PEG), polypropylene glycol (PPG), poly (2-hydroxyethyl methacrylate), poly (acrylic) acid, poly (methacrylic) acid, polyvinylpyrrolidone (PVP) and cross linked PVP, polyvinyl alcohol (PVA), PVA/PVP
copolymers and PVA/PVP copolymers with hydrophobic monomers such as methyl methacrylate, vinyl acetate, and the like, hydrophilic polyurethanes containing large PEO
blocks, sodium croscarmellose, carrageenan, hydroxyethyl cellulose (HEC), hydroxypropyl cellulose (HPC), hydroxypropyl methyl cellulose (HPMC), carboxymethyl cellulose (CMC) and carboxyethyl cellulose (CEC), sodium alginate, polycarbophil, gelatin, xanthan gum, and sodium starch glycolat. Other materials include hydrogels comprising interpenetrating networks of polymers that may be formed by addition or by condensation polymerization, the
173 components of which may comprise hydrophilic and hydrophobic monomers such as those just mentioned. Water-swellable hydrophilic polymers include but are not limited to PEO, PEG, PVP, sodium croscarmellose, HPMC, sodium starch glycolate, polyacrylic acid and cross linked versions or mixtures thereof.
[00162] The core may also include an osmogen (or osmagent). The amount of osmogen present in the core may range from about 2 to about 70 wt% (including, for example, from 10 to 50 wt%). Typical classes of suitable osmogens are water-soluble organic acids, salts and sugars that are capable of imbibing water to thereby effect an osmotic pressure gradient across the barrier of the surrounding coating. Typical useful osmogens include but are not limited to magnesium sulfate, magnesium chloride, calcium chloride, sodium chloride, lithium chloride, potassium sulfate, sodium carbonate, sodium sulfite, lithium sulfate, potassium chloride, sodium sulfate, mannitol, xylitol, urea, sorbitol, inositol, raffinose, sucrose, glucose, fructose, lactose, citric acid, succinic acid, tartaric acid, and mixtures thereof. In certain embodiments, the osmogen is glucose, lactose, sucrose, mannitol, xylitol, sodium chloride, including combinations thereof.
[00163] The rate of drug delivery is controlled by such factors as the permeability and thickness of the coating, the osmotic pressure of the drug-containing layer, the degree of hydrophilicity of the hydrogel layer, and the surface area of the device.
Those skilled in the art will appreciate that increasing the thickness of the coating will reduce the release rate, while any of the following will increase the release rate: increasing the permeability of the coating;
increasing the hydrophilicity of the hydrogel layer; increasing the osmotic pressure of the drug-containing layer; or increasing the device's surface area.
[00164] In certain embodiments, entrainment of particles of agents described herein in the extruding fluid during operation of such osmotic device is desirable. For the particles to be well entrained, the agent drug form is dispersed in the fluid before the particles have an opportunity to settle in the tablet core. One means of accomplishing this is by adding a disintegrant that serves to break up the compressed core into its particulate components. Non limiting examples of standard disintegrants include materials such as sodium starch glycolate (e. g., ExplotabTM
CLV), microcrystalline cellulose (e. g., AvicelTm), microcrystalline silicified cellulose (e. g., ProSoIvTM) and croscarmellose sodium (e. g., Ac-Di-SolTM), and other disintegrants known to those skilled in the art. Depending upon the particular formulation, some disintegrants work better than others. Several disintegrants tend to form gels as they swell with water, thus hindering drug delivery from the device. Non-gelling, non-swelling disintegrants provide a
174 more rapid dispersion of the drug particles within the core as water enters the core. In certain embodiments, non-gelling, non-swelling disintegrants are resins, for example, ion-exchange resins. In one embodiment, the resin is AmberliteTM IRP 88 (available from Rohm and Haas, Philadelphia, PA). When used, the disintegrant is present in amounts ranging from about 1-25% of the core agent.
[00165] Another example of an osmotic device is an osmotic capsule. The capsule shell or portion of the capsule shell can be semipermeable. The capsule can be filled either by a powder or liquid consisting of an agent described herein, excipients that imbibe water to provide osmotic potential, and/or a water-swellable polymer, or optionally solubilizing excipients. The capsule core can also be made such that it has a bilayer or multilayer agent analogous to the bilayer, trilayer or concentric geometries described above.
[00166] Another class of osmotic device useful in this invention comprises coated swellable tablets, for example, as described in EP378404. Coated swellable tablets comprise a tablet core comprising an agent described herein and a swelling material, preferably a hydrophilic polymer, coated with a membrane, which contains holes, or pores through which, in the aqueous use environment, the hydrophilic polymer can extrude and carry out the agent.
Alternatively, the membrane may contain polymeric or low molecular weight water-soluble porosigens. Porosigens dissolve in the aqueous use environment, providing pores through which the hydrophilic polymer and agent may extrude. Examples of porosigens are water-soluble polymers such as HPMC, PEG, and low molecular weight compounds such as glycerol, sucrose, glucose, and sodium chloride. In addition, pores may be formed in the coating by drilling holes in the coating using a laser or other mechanical means. In this class of osmotic devices, the membrane material may comprise any film-forming polymer, including polymers which are water permeable or impermeable, providing that the membrane deposited on the tablet core is porous or contains water-soluble porosigens or possesses a macroscopic hole for water ingress and drug release. Embodiments of this class of sustained release devices may also be multilayered, as described, for example, in EP378404.
[00167] When an agent described herein is a liquid or oil, such as a lipid vehicle formulation, for example as described in W005/011634, the osmotic controlled-release device may comprise a soft-gel or gelatin capsule formed with a composite wall and comprising the liquid formulation where the wall comprises a barrier layer formed over the external surface of the capsule, an expandable layer formed over the barrier layer, and a semipermeable layer formed over the expandable layer. A delivery port connects the liquid formulation with the aqueous use
175 environment. Such devices are described, for example, in US6419952, US6342249, U55324280, U54672850, U54627850, U54203440, and US3995631.
[00168] As further noted above, the agents described herein may be provided in the form of microparticulates, generally ranging in size from about 10 m to about 2mm (including, for example, from about 100 m to lmm in diameter). Such multiparticulates may be packaged, for example, in a capsule such as a gelatin capsule or a capsule formed from an aqueous-soluble polymer such as HPMCAS, HPMC or starch; dosed as a suspension or slurry in a liquid ; or they may be formed into a tablet, caplet, or pill by compression or other processes known in the art. Such multiparticulates may be made by any known process, such as wet- and dry-granulation processes, extrusion/spheronization, roller-compaction, melt-congealing, or by spray-coating seed cores. For example, in wet-and dry- granulation processes, the agent described herein and optional excipients may be granulated to form multiparticulates of the desired size.
[00169] The agents can be incorporated into microemulsions, which generally are thermodynamically stable, isotropically clear dispersions of two immiscible liquids, such as oil and water, stabilized by an interfacial film of surfactant molecules (Encyclopedia of Pharmaceutical Technology, New York: Marcel Dekker, 1992, volume 9). For the preparation of microemulsions, surfactant (emulsifier), co-surfactant (co-emulsifier), an oil phase and a water phase are necessary. Suitable surfactants include any surfactants that are useful in the preparation of emulsions, e.g., emulsifiers that are typically used in the preparation of creams.
The co-surfactant (or "co-emulsifier") is generally selected from the group of polyglycerol derivatives, glycerol derivatives and fatty alcohols. Preferred emulsifier/co-emulsifier combinations are generally although not necessarily selected from the group consisting of:
glyceryl monostearate and polyoxyethylene stearate; polyethylene glycol and ethylene glycol palmitostearate; and caprilic and capric triglycerides and oleoyl macrogolglycerides. The water phase includes not only water but also, typically, buffers, glucose, propylene glycol, polyethylene glycols, preferably lower molecular weight polyethylene glycols (e.g., PEG 300 and PEG 400), and/or glycerol, and the like, while the oil phase will generally comprise, for example, fatty acid esters, modified vegetable oils, silicone oils, mixtures of mono- di- and triglycerides, mono- and di-esters of PEG (e.g., oleoyl macrogol glycerides), etc.
[00170] The compounds described herein can be incorporated into pharmaceutically-acceptable nanoparticle, nanosphere, and nanocapsule formulations (Delie and Blanco-Prieto, 2005, Molecule 10:65-80). Nanocapsules can generally entrap compounds
176 in a stable and reproducible way. To avoid side effects due to intracellular polymeric overloading, ultrafine particles (sized around 0.1 [tm) can be designed using polymers able to be degraded in vivo (e.g. biodegradable polyalkyl-cyanoacrylate nanoparticles). Such particles are described in the prior art.
[00171] Implantable devices coated with a compound of this invention are another embodiment of the present invention. The compounds may also be coated on implantable medical devices, such as beads, or co-formulated with a polymer or other molecule, to provide a "drug depot", thus permitting the drug to be released over a longer time period than administration of an aqueous solution of the drug. Suitable coatings and the general preparation of coated implantable devices are described in U.S. Pat. Nos. 6,099,562;
5,886,026; and 5,304,121. The coatings are typically biocompatible polymeric materials such as a hydrogel polymer, polymethyldisilo xane, polycapro lactone, polyethylene glycol, polylactic acid, ethylene vinyl acetate, and mixtures thereof. The coatings may optionally be further covered by a suitable topcoat of fluorosilicone, polysaccharides, polyethylene glycol, phospholipids or combinations thereof to impart controlled release characteristics in the composition.
[00172] The formulations include those suitable for the administration routes detailed herein.
The formulations may conveniently be presented in unit dosage form and may be prepared by any of the methods well known in the art of pharmacy. Techniques and formulations generally are found in Remington's. Such methods include the step of bringing into association the active ingredient with the carrier which constitutes one or more accessory ingredients. In general the formulations are prepared by uniformly and intimately bringing into association the active ingredient with liquid carriers or finely divided solid carriers or both, and then, if necessary, shaping the product.
[00173] The terms "administer", "administering" or "administration" in reference to a compound, composition or formulation of the invention means introducing the compound into the system of the animal in need oftreatment. When a compound ofthe invention is provided in combination with one or more other active agents, "administration" and its variants are each understood to include concurrent and/or sequential introduction of the compound and the other active agents.
[00174] The compositions described herein may be administered systemically or locally, e.g.:
orally (e.g. using capsules, powders, solutions, suspensions, tablets, sublingual tablets and the like), by inhalation (e.g. with an aerosol, gas, inhaler, nebulizer or the like), to the ear (e.g.
177 using ear drops), topically (e.g. using creams, gels, liniments, lotions, ointments, pastes, transdermal patches, etc), ophthalmically (e.g. with eye drops, ophthalmic gels, ophthalmic ointments), rectally (e.g. using enemas or suppositories), nasally, buccally, vaginally (e.g.
using douches, intrauterine devices, vaginal suppositories, vaginal rings or tablets, etc), via an implanted reservoir or the like, or parenterally depending on the severity and type of the disease being treated. The term "parenteral" as used herein includes, but is not limited to, subcutaneous, intravenous, intramuscular, intra-articular, intra-synovial, intrasternal, intrathecal, intrahepatic, intralesional and intracranial injection or infusion techniques.
Preferably, the compositions are administered orally, intraperitoneally or intravenously.
[00175] The pharmaceutical compositions described herein may be orally administered in any orally acceptable dosage form including, but not limited to, capsules, tablets, aqueous suspensions or solutions. Liquid dosage forms for oral administration include, but are not limited to, pharmaceutically acceptable emulsions, microemulsions, solutions, suspensions, syrups and elixirs. In addition to the active compounds, the liquid dosage forms may contain inert diluents commonly used in the art such as, for example, water or other solvents, solubilizing agents and emulsifiers such as ethyl alcohol, isopropyl alcohol, ethyl carbonate, ethyl acetate, benzyl alcohol, benzyl benzoate, propylene glycol, 1,3-butylene glycol, dimethylformamide, oils (in particular, cottonseed, groundnut, corn, germ, olive, castor, and sesame oils), glycerol, tetrahydrofurfuryl alcohol, polyethylene glycols and fatty acid esters of sorbitan, and mixtures thereof. Besides inert diluents, the oral compositions can also include adjuvants such as wetting agents, emulsifying and suspending agents, sweetening, flavoring, and perfuming agents.
[00176] Solid dosage forms for oral administration include capsules, tablets, pills, powders, and granules. In such solid dosage forms, the active compound is mixed with at least one inert, pharmaceutically acceptable excipient or carrier such as sodium citrate or dicalcium phosphate and/or a) fillers or extenders such as starches, lactose, sucrose, glucose, mannitol, and silicic acid, b) binders such as, for example, carboxymethylcellulose, alginates, gelatin, polyvinylpyrrolidinone, sucrose, and acacia, c) humectants such as glycerol, d) disintegrating agents such as agar--agar, calcium carbonate, potato or tapioca starch, alginic acid, certain silicates, and sodium carbonate, e) solution retarding agents such as paraffin, f) absorption accelerators such as quaternary ammonium compounds, g) wetting agents such as, for example, cetyl alcohol and glycerol monostearate, h) absorbents such as kaolin and bentonite clay, and i) lubricants such as talc, calcium stearate, magnesium stearate, solid polyethylene
178 glycols, sodium lauryl sulfate, and mixtures thereof. Tablets may be uncoated or may be coated by known techniques including microencapsulation to mask an unpleasant taste or to delay disintegration and adsorption in the gastrointestinal tract and thereby provide a sustained action over a longer period. For example, a time delay material such as glyceryl monostearate or glyceryl distearate alone or with a wax may be employed. A water soluble taste masking material such as hydroxypropyl-methylcellulose or hydroxypropyl-cellulose may be employed.
[00177] Formulations of a compound of Formula I and Formula I' that are suitable for oral administration may be prepared as discrete units such as tablets, pills, troches, lozenges, aqueous or oil suspensions, dispersible powders or granules, emulsions, hard or soft capsules, e.g. gelatin capsules, syrups or elixirs. Formulations of a compound intended for oral use may be prepared according to any method known to the art for the manufacture of pharmaceutical compositions.
[00178] Compressed tablets may be prepared by compressing in a suitable machine the active ingredient in a free-flowing form such as a powder or granules, optionally mixed with a binder, lubricant, inert diluent, preservative, surface active or dispersing agent.
Molded tablets may be made by molding in a suitable machine a mixture of the powdered active ingredient moistened with an inert liquid diluent.
[00179] Formulations for oral use may also be presented as hard gelatin capsules wherein the active ingredient is mixed with an inert solid diluent, for example, calcium carbonate, calcium phosphate or kaolin, or as soft gelatin capsules wherein the active ingredient is mixed with water soluble carrier such as polyethyleneglycol or an oil medium, for example peanut oil, liquid paraffin, or olive oil.
[00180] The active compounds can also be in microencapsulated form with one or more excipients as noted above.
[00181] When aqueous suspensions are required for oral use, the active ingredient is combined with emulsifying and suspending agents. If desired, certain sweetening and/or flavoring agents may be added. Syrups and elixirs may be formulated with sweetening agents, for example glycerol, propylene glycol, sorbitol or sucrose. Such formulations may also contain a demulcent, a preservative, flavoring and coloring agents and antioxidant.
[00182] Sterile injectable forms of the compositions described herein (e.g.
for parenteral administration) may be aqueous or oleaginous suspension. These suspensions may be formulated according to techniques known in the art using suitable dispersing or wetting agents and suspending agents. The sterile injectable preparation may also be a sterile injectable solution or suspension in a non-toxic parenterally-acceptable diluent or solvent, for example as a solution in 1,3-butanediol. Among the acceptable vehicles and solvents that may be employed are water, Ringer's solution and isotonic sodium chloride solution.
In addition, sterile, fixed oils are conventionally employed as a solvent or suspending medium. For this purpose, any bland fixed oil may be employed including synthetic mono- or di-glycerides.
Fatty acids, such as oleic acid and its glyceride derivatives are useful in the preparation of injectables, as are natural pharmaceutically-acceptable oils, such as olive oil or castor oil, especially in their polyoxyethylated versions. These oil solutions or suspensions may also contain a long-chain alcohol diluent or dispersant, such as carboxymethyl cellulose or similar dispersing agents which are commonly used in the formulation of pharmaceutically acceptable dosage forms including emulsions and suspensions. Other commonly used surfactants, such as Tweens, Spans and other emulsifying agents or bioavailability enhancers which are commonly used in the manufacture of pharmaceutically acceptable solid, liquid, or other dosage forms may also be used for the purposes of injectable formulations.
[00183] Oily suspensions may be formulated by suspending a compound of Formula I and Formula I' in a vegetable oil, for example arachis oil, olive oil, sesame oil or coconut oil, or in mineral oil such as liquid paraffin. The oily suspensions may contain a thickening agent, for example beeswax, hard paraffin or cetyl alcohol. Sweetening agents such as those set forth above, and flavoring agents may be added to provide a palatable oral preparation. These compositions may be preserved by the addition of an anti-oxidant such as butylated hydroxyanisol or alpha-tocopherol.
[00184] Aqueous suspensions of a compound of Formula I and Formula I' contain the active materials in admixture with excipients suitable for the manufacture of aqueous suspensions.
Such excipients include a suspending agent, such as sodium carboxymethylcellulose, croscarmellose, povidone, methylcellulose, hydroxypropyl methylcelluose, sodium alginate, polyvinylpyrrolidone, gum tragacanth and gum acacia, and dispersing or wetting agents such as a naturally occurring phosphatide (e.g., lecithin), a condensation product of an alkylene oxide with a fatty acid (e.g., polyoxyethylene stearate), a condensation product of ethylene oxide with a long chain aliphatic alcohol (e.g., heptadecaethyleneoxycetanol), a condensation product of ethylene oxide with a partial ester derived from a fatty acid and a hexitol anhydride (e.g., polyoxyethylene sorbitan monooleate). The aqueous suspension may also contain one or more preservatives such as ethyl or n-propyl p-hydroxy-benzoate, one or more coloring agents, one or more flavoring agents and one or more sweetening agents, such as sucrose or saccharin.
[00185] The injectable formulations can be sterilized, for example, by filtration through a bacterial-retaining filter, or by incorporating sterilizing agents in the form of sterile solid compositions which can be dissolved or dispersed in sterile water or other sterile injectable medium prior to use.
[00186] In order to prolong the effect of a compound described herein, it is often desirable to slow the absorption of the compound from subcutaneous or intramuscular injection. This may be accomplished by the use of a liquid suspension of crystalline or amorphous material with poor water solubility. The rate of absorption of the compound then depends upon its rate of dissolution that, in turn, may depend upon crystal size and crystalline form.
Alternatively, delayed absorption of a parenterally administered compound form is accomplished by dissolving or suspending the compound in an oil vehicle. Injectable depot forms are made by forming microencapsulated matrices of the compound in biodegradable polymers such as polylactide-polyglycolide. Depending upon the ratio of compound to polymer and the nature of the particular polymer employed, the rate of compound release can be controlled. Examples of other biodegradable polymers include poly(orthoesters) and poly(anhydrides). Depot injectable formulations are also prepared by entrapping the compound in liposomes or microemulsions that are compatible with body tissues.
[00187] The injectable solutions or microemulsions may be introduced into a patient's bloodstream by local bolus injection. Alternatively, it may be advantageous to administer the solution or microemulsion in such a way as to maintain a constant circulating concentration of the instant compound. In order to maintain such a constant concentration, a continuous intravenous delivery device may be utilized. An example of such a device is the Deltec CADD-PLUSTM model 5400 intravenous pump.
[00188] Compositions for rectal or vaginal administration are preferably suppositories which can be prepared by mixing the compounds described herein with suitable non-irritating excipients or carriers such as cocoa butter, beeswax, polyethylene glycol or a suppository wax which are solid at ambient temperature but liquid at body temperature and therefore melt in the rectum or vaginal cavity and release the active compound. Other formulations suitable for vaginal administration may be presented as pessaries, tampons, creams, gels, pastes, foams or sprays.
[00189] The pharmaceutical compositions described herein may also be administered topically, especially when the target of treatment includes areas or organs readily accessible by topical application, including diseases of the eye, the ear, the skin, or the lower intestinal tract.
Suitable topical formulations are readily prepared for each of these areas or organs.
[00190] Dosage forms for topical or transdermal administration of a compound described herein include ointments, pastes, creams, lotions, gels, powders, solutions, sprays, inhalants or patches. The active component is admixed under sterile conditions with a pharmaceutically acceptable carrier and any needed preservatives or buffers as may be required.
Ophthalmic formulation, eardrops, and eye drops are also contemplated as being within the scope of this invention. Additionally, the present invention contemplates the use of transdermal patches, which have the added advantage of providing controlled delivery of a compound to the body.
Such dosage forms can be made by dissolving or dispensing the compound in the proper medium. Absorption enhancers can also be used to increase the flux of the compound across the skin. The rate can be controlled by either providing a rate controlling membrane or by dispersing the compound in a polymer matrix or gel. Topical application for the lower intestinal tract can be effected in a rectal suppository formulation (see above) or in a suitable enema formulation. Topically-transdermal patches may also be used.
[00191] For topical applications, the pharmaceutical compositions may be formulated in a suitable ointment containing the active component suspended or dissolved in one or more carriers. Carriers for topical administration of the compounds of this invention include, but are not limited to, mineral oil, liquid petrolatum, white petrolatum, propylene glycol, polyoxyethylene, polyoxypropylene compound, emulsifying wax and water.
Alternatively, the pharmaceutical compositions can be formulated in a suitable lotion or cream containing the active components suspended or dissolved in one or more pharmaceutically acceptable carriers. Suitable carriers include, but are not limited to, mineral oil, sorbitan monostearate, polysorbate 60, cetyl esters wax, cetearyl alcohol, 2 octyldodecanol, benzyl alcohol and water.
[00192] For ophthalmic use, the pharmaceutical compositions may be formulated as micronized suspensions in isotonic, pH adjusted sterile saline, or, preferably, as solutions in isotonic, pH adjusted sterile saline, either with or without a preservative such as benzylalkonium chloride. Alternatively, for ophthalmic uses, the pharmaceutical compositions may be formulated in an ointment such as petrolatum. For treatment of the eye or other external tissues, e.g., mouth and skin, the formulations may be applied as a topical ointment or cream containing the active ingredient(s) in an amount of, for example, 0.075 to 20%
w/w. When formulated in an ointment, the active ingredients may be employed with either an oil-based, paraffinic or a water-miscible ointment base.
[00193] Alternatively, the active ingredients may be formulated in a cream with an oil-in-water cream base. If desired, the aqueous phase of the cream base may include a polyhydric alcohol, i.e. an alcohol having two or more hydroxyl groups such as propylene glycol, butane 1,3-diol, mannitol, sorbitol, glycerol and polyethylene glycol (including PEG
400) and mixtures thereof. The topical formulations may desirably include a compound which enhances absorption or penetration of the active ingredient through the skin or other affected areas. Examples of such dermal penetration enhancers include dimethyl sulfoxide and related analogs.
[00194] The oily phase of emulsions prepared using a compound of Formula I and Formula I' may be constituted from known ingredients in a known manner. While the phase may comprise merely an emulsifier (otherwise known as an emulgent), it desirably comprises a mixture of at least one emulsifier with a fat or an oil or with both a fat and an oil. A
hydrophilic emulsifier may be included together with a lipophilic emulsifier which acts as a stabilizer. In some embodiments, the emulsifier includes both an oil and a fat. Together, the emulsifier(s) with or without stabilizer(s) make up the so-called emulsifying wax, and the wax together with the oil and fat make up the so-called emulsifying ointment base which forms the oily dispersed phase of the cream formulations. Emulgents and emulsion stabilizers suitable for use in the formulation of a compound of Formula I and Formula I' include TweenTm-60, SpanTm-80, cetostearyl alcohol, benzyl alcohol, myristyl alcohol, glyceryl mono-stearate and sodium lauryl sulfate.
[00195] The pharmaceutical compositions may also be administered by nasal aerosol or by inhalation. Such compositions are prepared according to techniques well-known in the art of pharmaceutical formulation and may be prepared as solutions in saline, employing benzyl alcohol or other suitable preservatives, absorption promoters to enhance bioavailability, fluorocarbons, and/or other conventional solubilizing or dispersing agents.
Formulations suitable for intrapulmonary or nasal administration have a particle size for example in the range of 0.1 to 500 micros (including particles in a range between 0.1 and 500 microns in increments microns such as 0.5, 1, 30, 35 microns, etc) which is administered by rapid inhalation through the nasal passage or by inhalation through the mouth so as to reach the alveolar sacs.
[00196] The pharmaceutical composition (or formulation) for use may be packaged in a variety of ways depending upon the method used for administering the drug.
Generally, an article for distribution includes a container having deposited therein the pharmaceutical formulation in an appropriate form. Suitable containers are well-known to those skilled in the art and include materials such as bottles (plastic and glass), sachets, ampoules, plastic bags, metal cylinders, and the like. The container may also include a tamper-proof assemblage to prevent indiscreet access to the contents of the package. In addition, the container has deposited thereon a label that describes the contents of the container. The label may also include appropriate warnings.
[00197] The formulations may be packaged in unit-dose or multi-dose containers, for example sealed ampoules and vials, and may be stored in a freeze-dried (lyophilized) condition requiring only the addition of the sterile liquid carrier, for example water, for injection immediately prior to use. Extemporaneous injection solutions and suspensions are prepared from sterile powders, granules and tablets of the kind previously described.
Preferred unit dosage formulations are those containing a daily dose or unit daily sub-dose, as herein above recited, or an appropriate fraction thereof, of the active ingredient.
[00198] In another aspect, a compound of Formula I and Formula I' or a pharmaceutically acceptable salt thereof may be formulated in a veterinary composition comprising a veterinary carrier. Veterinary carriers are materials useful for the purpose of administering the composition and may be solid, liquid or gaseous materials which are otherwise inert or accepFormula I and Formula I'n the veterinary art and are compatible with the active ingredient. These veterinary compositions may be administered parenterally, orally or by any other desired route.
Therapeutic methods
[00199] In a third aspect, the invention relates to the treatment of certain disorders by using sGC stimulators, either alone or in combination, or their pharmaceutically acceptable salts or pharmaceutical compositions comprising them, in a patient in need thereof.
[00200] The present disclosure relates to stimulators of soluble guanylate cyclase (sGC), pharmaceutical formulations thereof and their use, alone or in combination with one or more additional agents, for treating and/or preventing various diseases, wherein an increase in the concentration of NO or an increase in the concentration of cGMP might be desirable. The diseases that can be treated include but are not limited to pulmonary hypertension, arterial hypertension, heart failure, atherosclerosis, inflammation, thrombosis, renal fibrosis and failure, liver cirrhosis, erectile dysfunction, female sexual disorders, disorders related to diabetis, ocular disorders and other related cardiovascular disorders.
[00201] Increased concentration of cGMP leads to vasodilation, inhibition of platelet aggregation and adhesion, anti-hypertensive effects, anti-remodeling effects, anti-apoptotic effects, anti-inflammatory effects and neuronal signal transmission effects.
Thus, sGC
stimulators may be used to treat and/or prevent a range of diseases and disorders, including but not limited to a peripheral, pulmonary, hepatic, liver, cardiac or cerebralvascular/endothelial disorders or conditions, a urogenital-gynecological or sexual disorder or condition, a thromboembolic disease, an ischemic disease, a fibrotic disorder, a topical or skin disorder, a pulmonary or respiratory disorder, a renal or hepatic disorder, a metabolic disorder, atherosclerosis, or a lipid related disorder.
[00202] In other embodiments, the compounds here disclosed are sGC stimulators that may be useful in the prevention and/or treatment of diseases and disorders characterized by undesirable reduced bioavailability of and/or sensitivity to NO, such as those associated with conditions of oxidative stress or nitrosative stress.
[00203] Throughout this disclosure, the terms "hypertension", "arterial hypertension" or "high blood pressure (HBP)" are used interchangeable and refer to an extremely common and highly preventable chronic condition in which blood pressure (BP) in the arteries is higher than normal. If not properly controlled, it represents a significant risk factor for several serious cardiovascular and renal conditions. Hypertension may be a primary disease, called "essential hypertension" or "idiopathic hypertension", or it may be caused by other diseases, in which case it is classified as "secondary hypertension". Essential hypertension accounts for 90-95%
of all cases.
[00204] As used herein, the term "resistant hypertension" refers to hypertension that remains above goal blood pressure (usually less than 140/90 mmHg, although a lower goal of less than 130/80 mmHg is recommended for patients with comorbid diabetes or kidney disease), in spite of concurrent use of three antihypertensive agents belonging to different antihypertensive drug classes. People who require four or more drugs to control their blood pressure are also considered to have resistant hypertension. Hypertension is an extremely common comorbid condition in diabetes, affecting ¨20-60% of patients with diabetes, depending on obesity, ethnicity, and age. This type of hypertension is herein refered to as "diabetic hypertension". In type 2 diabetes, hypertension is often present as part of the metabolic syndrome of insulin resistance also including central obesity and dyslipidemia. In type 1 diabetes, hypertension may reflect the onset of diabetic nephropathy.
[00205] "Pulmonary hypertension (PH)", as used herein, is a disease characterized by sustained elevations of blood pressure in the pulmonary vasculature (pulmonary artery, pulmonary vein and pulmonary capillaries), which results in right heart hypertrophy, eventually leading to right heart failure and death. Common symptoms of PH
include shortness of breath, dizziness and fainting, all of which are exacerbated by exertion. Without treatment, median life expectancy following diagnosis is 2.8 years. PH exists in many different forms, which are categorized according to their etiology. Categories include pulmonary arterial hypertension (PAH), PH with left heart disease, PH associated with lung diseases and /or hypoxaemia, PH due to chronic thrombotic and/or embolic disease and miscellaneous PH.
PAH is rare in the general population, but the prevalence increases in association with certain common conditions such as HIV infection, scleroderma and sickle cell disease.
Other forms of PH are generally more common than PAH, and, for instance, the association of PH with chronic obstructive pulmonary disease (COPD) is of particular concern. Current treatment for pulmonary hypertension depends on the stage and the mechanism of the disease.
[00206] As used herein "heart failure" is a progressive disorder of left ventricular (LV) myocardial remodeling that culminates in a complex clinical syndrome in which impaired cardiac function and circulatory congestion are the defining features, and results in insufficient delivery of blood and nutrients to body tissues. The condition occurs when the heart is damaged or overworked and unable to pump out all the blood that returns to it from the systemic circulation. As less blood is pumped out, blood returning to the heart backs up and fluid builds up in other parts of the body. Heart failure also impairs the kidneys' ability to dispose of sodium and water, complicating fluid retention further. Heart failure is characterized by autonomic dysfunction, neurohormonal activation and overproduction of cytokines, which contribute to progressive circulatory failure. Symptoms of heart failure include: dyspnea (shortness of breath) while exercising or resting and waking at night due to sudden breathlessness, both indicative of pulmonary edema; general fatigue or weakness, edema of the feet, ankles and legs, rapid weight gain, chronic cough, including that producing mucus or blood. Depending on its clinical presentation, heart failure is classified as de novo, transient or chronic. Acute heart failure, i.e. the rapid or gradual onset of symptoms requiring urgent therapy, may develop de novo or as a result of chronic heart failure becoming decompensated.
Diabetes is a common comorbidity in patients with heart failure and is associated with poorer outcomes as well as potentially compromising the efficacy of treatments. Other important comorbidities include systemic hypertension, chronic airflow obstruction, sleep apnea, cognitive dysfunction, anemia, chronic kidney disease and arthritis. Chronic left heart failure is frequently associated with the development of pulmonary hypertension. The frequency of certain comorbidities varies by gender: among women, hypertension and thyroid disease are more common, while men more commonly suffer from chronic obstructive pulmonary disease (COPD), peripheral vascular disease, coronary artery disease and renal insufficiency.
Depression is a frequent comorbidity of heart failure and the two conditions can and often do complicate one another. Cachexia has long been recognized as a serious and frequent complication of heart failure, affecting up to 15% of all heart failure patients and being associated with poor prognosis. Cardiac cachexia is defined as the nonedematous, nonvoluntary loss of at least 6% of body weight over a period of six months.
[00207] The term "sleep apnea" refers to the most common of the sleep-disordered breathing disorders. It is a condition characterized by intermittent, cyclical reductions or total cessations of airflow, which may or may not involve obstruction of the upper airway.
There are three types of sleep apnea: obstructive sleep apnea, the most common form, central sleep apnea and mixed sleep apnea.
[00208] "Central sleep apnea (CSA)", is caused by a malfunction in the brain's normal signal to breathe, rather than physical blockage of the airway. The lack ofrespiratory effort leads to an increase in carbon dioxide in the blood, which may rouse the patient. CSA is rare in the general population, but is a relatively common occurrence in patients with systolic heart failure.
[00209] As used herein, the term "metabolic syndrome", "insulin resistance syndrome" or "syndrome X", refers to a group or clustering of metabolic conditions (abdominal obesity, elevated fasting glucose, "dyslipidemia" (i.e,. elevated lipid levels) and elevated blood pressure (HBP)) which occur together more often than by chance alone and that together promote the development of type 2 diabetes and cardiovascular disease.
Metabolic syndrome is characterized by a specific lipid profile of increased triglycerides, decreased high-density lipoprotein cholesterol (HDL-cholesterol) and in some cases moderately elevated low-density lipoprotein cholesterol (LDL-cholesterol) levels, as well as accelerated progression of "atherosclerotic disease" due to the pressure of the component risk factors.
There are several types of dyslipidemias: "hypercholesterolemia" refers to elevated levels of cholesterol.
Familial hypercholesterolemia is a specific form of hypercholesterolemia due to a defect on chromosome 19 (19p13.1-13.3). "Hyperglyceridemia" refers to elevated levels of glycerides (e.g., "hypertrigliceridemia" involves elevated levels of triglycerides).
"Hyperlipoproteinemia" refers to elevated levels of lipoproteins (usually LDL
unless otherwise specified).
[00210] As used herein, the term "peripheral vascular disease (PVD)", also commonly referred to as "peripheral arterial disease (PAD)" or "peripheral artery occlusive disease (PAOD)", refers to the obstruction of large arteries not within the coronary, aortic arch vasculature, or brain. PVD can result from atherosclerosis, inflammatory processes leading to stenosis, an embolism, or thrombus formation. It causes either acute or chronic "ischemia (lack of blood supply)". Often PVD is a term used to refer to atherosclerotic blockages found in the lower extremity. PVD also includes a subset of diseases classified as microvascular diseases resulting from episodal narrowing of the arteries (e.g., "Raynaud's phenomenon"), or widening thereof (erythromelalgia), i.e. vascular spasms.
[00211] The term "thrombosis" refers to the formation of a blood clot ("thrombus") inside a blood vessel, obstructing the flow of blood through the circulatory system.
When a blood vessel is injured, the body uses platelets (thrombocytes) and fibrin to form a blood clot to prevent blood loss. Alternatively, even when a blood vessel is not injured, blood clots may form in the body if the proper conditions present themselves. If the clotting is too severe and the clot breaks free, the traveling clot is now known as an "embolus". The term "thromboembolism" refers to the combination of thrombosis and its main complication, "embolism". When a thrombus occupies more than 75% of surface area of the lumen of an artery, blood flow to the tissue supplied is reduced enough to cause symptoms because of decreased oxygen (hypoxia) and accumulation of metabolic products like lactic acid ("gout").
More than 90% obstruction can result in anoxia, the complete deprivation of oxygen, and "infarction", a mode of cell death.
[00212] An "embolism" (plural embolisms) is the event of lodging of an embolus (a detached intravascular mass capable of clogging arterial capillary beds at a site far from its origin) into a narrow capillary vessel of an arterial bed which causes a blockage (vascular occlusion) in a distant part of the body. This is not to be confused with a thrombus which blocks at the site of origin.
[00213] A "stroke", or cerebrovascular accident (CVA), is the rapid loss of brain function(s) due to disturbance in the blood supply to the brain. This can be due to "ischemia" (lack of blood flow) caused by blockage (thrombosis, arterial embolism), or a hemorrhage (leakage of blood).
As a result, the affected area of the brain cannot function, which might result in an inability to move one or more limbs on one side of the body, inability to understand or formulate speech, or an inability to see one side of the visual field. Risk factors for stroke include old age, hypertension, previous stroke or transient ischemic attack (TIA), diabetes, high cholesterol, cigarette smoking and atrial fibrillation. High blood pressure is the most important modifiable risk factor of stroke. An "ischemic stroke" is occasionally treated in a hospital with thrombolysis (also known as a "clot buster"), and some hemorrhagic strokes benefit from neurosurgery. Prevention of recurrence may involve the administration of antiplatelet drugs such as aspirin and dipyridamole, control and reduction of hypertension, and the use of statins.
Selected patients may benefit from carotid endarterectomy and the use of anticoagulants.
[00214] "Ischemia" is a restriction in blood supply to tissues, causing a shortage of oxygen and glucose needed for cellular metabolism (to keep tissue alive). Ischemia is generally caused by problems with blood vessels, with resultant damage to or dysfunction of tissue. It also means local anemia in a given part of a body sometimes resulting from congestion (such as vasoconstriction, thrombosis or embolism).
[00215] According to the American Psychiatric Association's Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV), the term "sexual dysfunction"
encompasses a series of conditions "characterized by disturbances in sexual desire and in the psychophysiological changes associated with the sexual response cycle"; while problems of this type are common, sexual dysfunction is only considered to exist when the problems cause distress for the patient. Sexual dysfunction can be either physical or psychological in origin. It can exist as a primary condition, generally hormonal in nature, although most often it is secondary to other medical conditions or to drug therapy for said conditions.
All types of sexual dysfunction can be further classified as life-long, acquired, situational or generalized (or combinations thereof).
[00216] The DSM-IV-TR specifies five major categories of "female sexual dysfunction":
sexual desire/interest disorders; "sexual arousal disorders (including genital, subjective and combined)"; orgasmic disorder; dyspareunia and vaginismus; and persistent sexual arousal disorder.
[00217] "Female sexual arousal disorder (FSAD)" is defined as a persistent or recurring inability to attain or maintain sufficient levels of sexual excitement, causing personal distress.
FSAD encompasses both the lack of subjective feelings of excitement (i.e., subjective sexual arousal disorder) and the lack of somatic responses such as lubrication and swelling (i.e., genital/physical sexual arousal disorder). FSAD may be strictly psychological in origin, although it generally is caused or complicated by medical or physiological factors.
Hypoestrogenism is the most common physiologic condition associated with FSAD, which leads to urogenital atrophy and a decrease in vaginal lubrication.
[00218] As used herein, "erectile dysfunction (ED)" is a male sexual dysfunction characterized by the inability to develop or maintain an erection of the penis during sexual performance. A penile erection is the hydraulic effect of blood entering and being retained in sponge-like bodies within the penis. The process is often initiated as a result of sexual arousal, when signals are transmitted from the brain to nerves in the penis. Erectile dysfunction is indicated when an erection is difficult to produce. The most important organic causes are cardiovascular disease and diabetes, neurological problems (for example, trauma from prostatectomy surgery), hormonal insufficiencies (hypogonadism) and drug side effects.
[00219] As used herein, the term "bronchoconstriction" is used to define the constriction of the airways in the lungs due to the tightening of surrounding smooth muscle, with consequent coughing, wheezing, and shortness of breath. The condition has a number of causes, the most common being as well as asthma. Exercise and allergies can bring on the symptoms in an otherwise asymptomatic individual. Other conditions such as chronic obstructive pulmonary disease (COPD) can also present with bronchoconstriction.
[00220] Specific diseases of disorders which may be treated and/or prevented by administering an sGC stimulator of the invention, include but are not limited to: hypertension (e.g., diabetic hypertension, arterial hypertension, pulmonary hypertension, resistant hypertension, peripheral artery disease, etc), heart failure (e.g., left ventricular diastolic dysfunction (LVDD) and left ventricular systolic dysfunction (LVSD), sleep apnea associated with heart failure), arteriosclerotic disease (e.g., atherosclerosis), thromboembolic disorders (e.g., chronic thromboembolic pulmonary hypertension, thrombosis, stroke, embolism, pulmonary embolism), Alzheimer's disease, renal diseases (e.g., renal fibrosis, ischemic renal disease,renal failure, renal insufficiency, chronic kidney disease), hepatic disease (e.g.,liver fibrosis or cirrhosis), respiratory disease (e.g., pulmonary fibrosis, asthma, chronic obstructive pulmonary disease, interstitial lung disease), sexual disorders (e.g., erectile dysfunction, male and female sexual dysfunction, vaginal atrophy), sickle cell anemiaõ neuro inflammatory diseases or disorders and metabolic disorders (e.g., lipid related disorders).
[00221] The compounds of Formula I and Formula I' as well as pharmaceutically acceptable salts thereof, as stimulators of sGC, are useful in the prevention and/or treatment of the following types of diseases, conditions and disorders which can benefit from sGC stimulation:
(1) Peripheral, pulmonary, hepatic, kidney, cardiac or cerebral vascular/endothelial disorders/conditions or diseases otherwise related to circulation:
= disorders related to high blood pressure and decreased coronary blood flow such as increased acute and chronic coronary blood pressure, arterial hypertension and vascular disorder resulting from cardiac and renal complications (e.g. heart disease, stroke, cerebral ischemia, renal failure); resistant hypertension, diabetic hypertension, congestive heart failure;
diastolic or systolic dysfunction; coronary insufficiency; arrhythmias;
reduction of ventricular preload; cardiac hypertrophy; heart failure/cardiorenal syndrome; portal hypertension;
endothelial dysfunction or injury;
= thromboembolic disorders and ischemias such as myocardial infarction, stroke, transient ischemic attacks (TIAs); obstructive thromboanginitis; stable or unstable angina pectoris; coronary spasms, variant angina, Prinzmetal's angina; prevention of restenosis after thrombolysis therapies; thrombogenic disoders;
= Alzheimer's disease; Parkinson's disease; dementia; vascular cognitive impairment;
cerebral vasospasm; traumatic brain injury;
= peripheral arterial disease, peripheral occlusive arterial disease;
peripheral vascular disease; hypertonia; Raynaud's syndrome or phenomenon, critical limb ischemia, vasculitis;
peripheral embolism; intermittent claudication; vaso-occlusive crisis;
Duchene's and Becker muscular dystrophies; microcirculation abnormalities; control of vascular leakage or permeability;
= shock; sepsis; cardiogenic shock; control of leukocyte activation;
inhibition or modulation of platelet aggregation;
= pulmonary/respiratory conditions such as pulmonary hypertension, pulmonary arterial hypertension, and associated pulmonary vascular remodeling (e.g.
localized thrombosis and right heart hypertrophy); pulmonary hypertonia; primary pulmonary hypertension, secondary pulmonary hypertension, familial pulmonary hypertension, sporadic pulmonary hypertension, pre-capillary pulmonary hypertension, idiopathic pulmonary hypertension, thrombotic pulmonary arteriopathy, plexogenic pulmonary arteriopathy; cystic fibrosis; bronchoconstriction or pulmonary bronchoconstriction; acute respiratory distress syndrome; lung fibrosis, lung transplant;
= pulmonary hypertension associated with or related to: left ventricular dysfunction, hypoxemia, WHO groups I, II, III, IV and V hypertensions, mitral valve disease, constrictive pericarditis, aortic stenosis, cardiomyopathy, mediastinal fibrosis, pulmonary fibrosis, anomalous pulmonary venous drainage, pulmonary venooclusive disease, pulmonary vasculitis, collagen vascular disease, congenital heart disease, pulmonary venous hypertension, interstitial lung disease, sleep-disordered breathing, sleep apnea, alveolar hypoventilation disorders, chronic exposure to high altitude, neonatal lung disease, alveolar-capillary dysplasia, sickle cell disease, other coagulation disorders, chronic thromboembolism, pulmonary embolism (due to tumor, parasites or foreign material), connective tissue disease, lupus, schistosomiasis, sarcoidosis, chronic obstructive pulmonary disease, asthma, emphysema, chronic bronchitis, pulmonary capillary hemangiomatosis;
histiocytosis X, lymphangiomatosis and compressed pulmonary vessels (such as due to adenopathy, tumor or fibrosing mediastinitis);
= arterosclerotic diseases or conditions such as atherosclerosis (e.g., associated with endothelial injury, platelet and monocyte adhesion and aggregation, smooth muscle proliferation and migration); restenosis (e.g. developed after thrombolysis therapies, percutaneous transluminal angioplasties (PTAs), percutaneous transluminal coronary angioplasties (PTCAs) and bypass); inflammation;
= cardiovascular disease associated with metabolic syndrome (e.g., obesity, dyslipidemia, diabetis, high blood pressure); lipid related disorders such as dyslipidemia, hypercholesterolemia, hypertriglyceridemia, sitosterolemia, fatty liver disease, and hepatitis;
preeclamsia; polycystic kidney disease progression; subcutaneous fat; obesity;
= liver cirrhosis, associated with chronic liver disease, hepatic fibrosis, hepatic stellate cell activation, hepatic fibrous collagen and total collagen accumulation;
liver disease of necro-inflammatory and/or of immunological origin; andurogenital system disorders, such as renal fibrosis and renal failure resulting from chronic kidney diseases or insufficiency (e.g. due to accumulation/ deposition and tissue injury, progressive sclerosis, glomerulonephritis);
prostate hypertrophy systemic sclerosis; cardiac interstitial fibrosis;
cardiac remodeling and fibrosis; cardiac hypertrophy;
(2) ischemia, reperfussion damage; ischemia/reperfussion associated with organ transplant, lung transplant, pulmonary transplant, cardiac transplant;
conserving blood substituents in trauma patients;
(3) sexual, gynecologicaland urological disorders of conditions: erectile dysfunction;
impotence; premature ejaculation; female sexual dysfunction (e.g., female sexual arousal dysfunction, hypoactive sexual arousal disorder), vaginal atrophy, dyspaneuria, atrophic vaginitis; benign prostatic hyperplasia (BPH) or hypertrophy or enlargement, bladder outlet obstruction; bladder pain syndrome (BPS), interstitial cystitis (IC), overactive bladder, neurogenic bladder andincontinence;diabetic nephropathy;
(4) ocular diseases or disorders: glaucoma, retinopathy, diabetic retinopathy, blepharitis, dry eye syndrome, Sjogren's Syndrome;
(5) hearing diseases or disorders: hearing impairement, partial or total hearing loss;
partial or total deathess; tinnitus; noise-induced hearing loss;
(6) topical or skin disorders or conditions: dermal fibrosis, scleroderma, skin fibrosis;
(7) wound healing: for instance in diabetics; microvascular perfusion improvement (e.g., following injury, to counteract the inflammatory response in perioperative care), anal fissures, diabetic ulcers; and (8) other diseases or conditions: cancer metastasis, osteoporosis, gastroparesis;
functional dyspepsia; diabetic complications, diseases associated with endothelial dysfunction, and neurologic disorders associated with decreased nitric oxide production.
[00222] In other embodiments of the invention, the compounds of Formula I
and Formula I' as well as pharmaceutically acceptable salts thereof are useful in the prevention and/or treatment of the following types of diseases, conditions and disorders which can benefit from sGC stimulation:
hypertension, resistant hypertension, diabetic hypertension, pulmonary hypertension (PH), pulmonary arterial hypertension, PH associated with COPD, chronic airflow obstruction, asthma or pulmonary fibrosis, thrombosis, embolism, thromboembolic disorders, Alzheimer's disease, atherosclerosis, right heart hypertrophy, heart failure, diastolic dysfunction, systolic dysfunction, sleep apnea associated with heart failure, liver cirrhosis, renal fibrosis, renal failure resulting from chronic kidney diseases or insufficiency, metabolic disorder, dyslipidemia, hypercholesterolemia, hypertriglyceridemia, sitosterolemia, fatty liver disease, hepatitis, erectile dysfunction, female sexual dysfunction, female sexual arousal dysfunction and vaginal atrophy.
[00223] In some embodiments, the invention relates to a method of treating a disease, health condition or disorder in a subject, comprising administering a therapeutically effective amount of a compound of any of the above depicted Formulae, or a pharmaceutically acceptable salt thereof, to the subject in need of treatment, wherein the disease, health condition or disorder is selected from one of the diseases listed above.
[00224] In other embodiments the disease, health condition or disorder is selected from a peripheral, pulmonary, hepatic, kidney, cardiac or cerebral vascular/endothelial disorder or condition, or a disease otherwise related to circulation selected from:
increased acute and chronic coronary blood pressure, arterial hypertension and vascular disorder resulting from cardiac and renal complications, heart disease, stroke, cerebral ischemia, renal failure; resistant hypertension, diabetic hypertension, congestive heart failure; diastolic or systolic dysfunction;
coronary insufficiency; arrhythmias; reduction of ventricular preload; cardiac hypertrophy;
heart failure/cardiorenal syndrome; portal hypertension; endothelial dysfunction or injury;
myocardial infarction; stroke or transient ischemic attacks (TIAs);
obstructive thromboanginitis; stable or unstable angina pectoris; coronary spasms, variant angina, Prinzmetal's angina; restenosis as a result of thrombolysis therapies and thrombogenic disoders.
[00225] In still other embodiments, the disease, health condition or disorder is selected from a peripheral vascular/endothelial disorder or condition or a disease otherwise related to circulation selected from: peripheral arterial disease, peripheral occlusive arterial disease;
peripheral vascular disease; hypertonias; Raynaud's syndrome or phenomenon;
critical limb ischemia; vasculitis; peripheral embolism; intermittent claudication; vaso-occlusive crisis;
Duchene's and Becker muscular dystrophies; microcirculation abnormalities; and vascular leakage or permeability issues.
[00226] In further embodimetns, the disease, health condition or disorder is a pulmonary disorder or condition or a disease otherwise related to circulation selected from: pulmonary hypertension; pulmonary arterial hypertension and associated pulmonary vascular remodeling;
localized thrombosis; right heart hypertrophy; pulmonary hypertonia; primary pulmonary hypertension, secondary pulmonary hypertension, familial pulmonary hypertension, sporadic pulmonary hypertension, pre-capillary pulmonary hypertension, idiopathic pulmonary hypertension, thrombotic pulmonary arteriopathy, plexogenic pulmonary arteriopathy; cystic fibrosis; bronchoconstriction or pulmonary bronchoconstriction; acute respiratory distress syndrome; lung fibrosis and lung transplant. In some of these embodiments, the pulmonary hypertension is pulmonary hypertension associated with or related to: left ventricular dysfunction, hypoxemia, WHO groups I, II, III, IV and V hypertensions, mitral valve disease, constrictive pericarditis, aortic stenosis, cardiomyopathy, mediastinal fibrosis, pulmonary fibrosis, anomalous pulmonary venous drainage, pulmonary venooclusive disease, pulmonary vasculitis, collagen vascular disease, congenital heart disease, pulmonary venous hypertension, interstitial lung disease, sleep-disordered breathing, sleep apnea, alveolar hypoventilation disorders, chronic exposure to high altitude, neonatal lung disease, alveolar-capillary dysplasia, sickle cell disease, coagulation disorders, chronic thromboembolism; pulmonary embolism, due to tumor, parasites or foreign material; connective tissue disease, lupus, schistosomiasis, sarcoidosis, chronic obstructive pulmonary disease, asthma, emphysema, chronic bronchitis, pulmonary capillary hemangiomatosis; histiocytosis X;
lymphangiomatosis and compressed pulmonary vessels due to adenopathy, tumor or fibrosing mediastinitis.
[00227] In still other embodiments, the health condition or disorder is a vascular or endothelial disorder or condition or a disease otherwise related to circulation selected from:
arterosclerotic diseases; atherosclerosis, atherosclerosis associated with endothelial injury, atherosclerosis associated with platelet and monocyte adhesion and aggregation, atherosclerosis associated with smooth muscle proliferation and migration;
restenosis, restenosis developed after thrombolysis therapies; restenosis developed after percutaneous transluminal angioplasties; restensosis developed after percutaneous transluminal coronary angioplasties and bypass; inflammation; cardiovascular disease associated with metabolic syndrome, obesity, dyslipidemia, diabetis or high blood pressure; lipid related disorders, dyslipidemia, hypercholesterolemia, hypertriglyceridemia, sitosterolemia, fatty liver disease, and hepatitis; preeclamsia; polycystic kidney disease progression; and subcutaneous fat.
[00228] In yet other embodiments, the disease, health condition or disorder selected from liver cirrhosis, liver cirrhosis associated with chronic liver disease, hepatic fibrosis, hepatic stellate cell activation, hepatic fibrous collagen and total collagen accumulation; and liver disease of necro-inflammatory or of immunological origin.
[00229] In further embodiments, the disease, health condition or disorder is a urogenital system disorder selected from renal fibrosis; renal failure resulting from chronic kidney diseases or insufficiency; renal failure due to accumulation or deposition and tissue injury, progressive sclerosis or glomerulonephritis; and prostatic hypertrophy.
[00230] In further embodiments, the disease, health condition or disorder is systemic sclerosis.
[00231] In further embodiments, the disease, health condition or disorder is a cardiac disorder selected from cardiac interstitial fibrosis; cardiac remodeling and fibrosis and cardiac hypertrophy.
[00232] In further embodiments, the disease, health condition or disorder is a CNS disorder or condition selected from Alzheimer's disease; Parkinson's disease; dementia;
vascular cognitive impairment; cerebral vasospasm; and traumatic brain injury.
[00233] In further embodiments, the disease, health condition or disorder is selected from ischemia, reperfussion damage; ischemia/reperfussion associated with organ transplant, lung transplant, pulmonary transplant or cardiac transplant; conserving blood substituents in trauma patients.
[00234] In further embodiments, the disease, health condition or disorder is a sexual, gynecological or urological disorder of condition selected from erectile dysfunction;
impotence; premature ejaculation; female sexual dysfunction; female sexual arousal dysfunction; hypoactive sexual arousal disorder; vaginal atrophy, dyspaneuria, atrophic vaginitis; benign prostatic hyperplasia (BPH) or hypertrophy or enlargement;
bladder outlet obstruction; bladder pain syndrome (BPS); interstitial cystitis (IC);
overactive bladder, neurogenic bladder and incontinence; diabetic nephropathy.
[00235] In further embodiments, the disease, health condition or disorder is selected from vaginal atrophy, dyspaneuria and atrophic vaginitis.
[00236] In further embodiments, the disease, health condition or disorder is selected from benign prostatic hyperplasia (BPH) or hypertrophy or enlargement; bladder outlet obstruction;

bladder pain syndrome (BPS); interstitial cystitis (IC); overactive bladder, neurogenic bladder and incontinence.
[00237] In further embodiments, the disease, health condition or disorder is a sexual, condition selected from erectile dysfunction; impotence; premature ejaculation; female sexual dysfunction; female sexual arousal dysfunction and hypoactive sexual arousal disorder.
[00238] In further embodiments, the disease or disorder is diabetic nephropathy.
[00239] In further embodiments, the disease, health condition or disorder is Duchene's and Becker muscular dystrophies.
[00240] In further embodiments, the disease is an ocular diseases or disorder selected from glaucoma, retinopathy, diabetic retinopathy, blepharitis, dry eye syndrome and Sjogren's Syndrome.
[00241] In further embodiments, the disease is a hearing diseases or disorder selected from hearing impairement, partial or total hearing loss; partial or total deathess;
tinnitus; and noise-induced hearing loss.
[00242] In further embodiments, the disease is a topical or skin disorders or condition selected from dermal fibrosis, scleroderma and skin fibrosis.
[00243] In further embodiments, the treatment involves wound healing; wound healing in diabetics; improvement of microvascular perfusion; improvement of microvascular perfusion issues following injury; treatment of anal fissures; and treatment of diabetic ulcers.
[00244] In further embodiments, the disease or condition is selected from cancer metastasis;
osteoporosis; gastroparesis; functional dyspepsia; diabetic complications;
diseases associated with endothelial dysfunction and neurologic disorders associated with decreased nitric oxide production.
[00245] In another embodiment, compounds of the invention can be delivered in the form of implanted devices, such as stents. A stent is a mesh 'tube' inserted into a natural passage/conduit in the body to prevent or counteract a disease-induced, localized flow constriction. The term may also refer to a tube used to temporarily hold such a natural conduit open to allow access for surgery.
[00246] A drug-eluting stent (DES) is a peripheral or coronary stent (a scaffold) placed into narrowed, diseased peripheral or coronary arteries that slowly releases a drug to block cell proliferation, usually smooth muscle cell proliferation. This prevents fibrosis that, together with clots (thrombus), could otherwise block the stented artery, a process called restenosis. The stent is usually placed within the peripheral or coronary artery by an Interventional cardiologist or Interventional Radiologist during an angioplasty procedure. Drugs commonly used in DES
in order to block cell proliferation include paclitaxel or rapamycin analogues
[00247] In some embodiments of the invention, a sGC stimulator of the invention can be delivered by means of a drug-eluting stent coated with said sGC stimulator. A
drug-eluting stent coated with a sGC stimulator of the invention may be useful in the prevention of stent restenosis and thrombosis during percutaneous coronary interventions. A drug-eluting stent coated with a sGC stimulator of the invention may be able to prevent smooth cell proliferation as well as to assist re-vascularization and re-generation of the endothelial tissue of the artery in which the stent is inserted.
[00248] An alternative to percutaneous coronary intervention for the treatment of intractable angina due to coronary artery occlusive disease is the procedure named Coronary Artery Bypass Grafting (CABG). CABG provides only palliation of an ongoing process that is further complicated by the rapid development of graft atherosclerosis. The saphenous vein graft is the most commonly used conduit in CABG surgery. The long-term clinical success of venous CABG is hampered for three main reasons: accelerated graft atherosclerosis, incomplete endothelialization and thrombosis.
[00249] In some embodiments, a sGC stimulator of the invention can be used for the prevention of saphenous graft failure during CABG. Compounds of the invention may assist the process of endothelialization and help prevent thrombosis. In this indication, the sGC
stimulator is delivered locally in the form of a gel.
[00250] The terms, "disease", "disorder" and "condition" may be used interchangeably here to refer to an sGC, cGMP and/or NO mediated medical or pathological condition.
[00251] As used herein, the terms "subject" and "patient" are used interchangeably. The terms "subject" and "patient" refer to an animal (e.g., a bird such as a chicken, quail or turkey, or a mammal), specifically a "mammal" including a non-primate (e.g., a cow, pig, horse, sheep, rabbit, guinea pig, rat, cat, dog, and mouse) and a primate (e.g., a monkey, chimpanzee and a human), and more specifically a human. In some embodiments, the subject is a non-human animal such as a farm animal (e.g., a horse, cow, pig or sheep), or a pet (e.g., a dog, cat, guinea pig or rabbit). In some embodiments, the subject is a human.
[00252] The invention also provides a method for treating one of the above diseases, conditions and disorders in a subject, comprising administering a therapeutically effective amount of a compound of Formula I and Formula I', or a pharmaceutically acceptable salt thereof, to the subject in need of the treatment. Alternatively, the invention provides the use of a compound of Formula I and Formula I', or a pharmaceutically acceptable salt thereof, in the treatment of one of these diseases, conditions and disorders in a subject in need of the treatment. The invention further provides a method of making or manufacturing a medicament useful for treating one of these diseases, conditions and disorders comprising using a compound of Formula I and Formula I', or a pharmaceutically acceptable salt thereof.
[00253] The term "biological sample", as used herein, refers to an in vitro or ex vivo sample, and includes, without limitation, cell cultures or extracts thereof; biopsied material obtained from a mammal or extracts thereof; blood, saliva, urine, faeces, semen, tears, lymphatic fluid, ocular fluid, vitreous humour, or other body fluids or extracts thereof.
[00254] "Treat", "treating" or "treatment" with regard to a disorder or disease refers to alleviating or abrogating the cause and/or the effects of the disorder or disease. As used herein, the terms "treat", "treatment" and "treating" refer to the reduction or amelioration of the progression, severity and/or duration of an sGC, cGMP and/or NO mediated condition, or the amelioration of one or more symptoms (preferably, one or more discernable symptoms) of said condition (i.e. "managing" without "curing" the condition), resulting from the administration of one or more therapies (e.g., one or more therapeutic agents such as a compound or composition of the invention). In specific embodiments, the terms "treat";
"treatment" and "treating" refer to the amelioration of at least one measurable physical parameter of an sGC, cGMP and/or NO mediated condition. In other embodiments the terms "treat", "treatment"
and "treating" refer to the inhibition of the progression of an sGC, cGMP
and/or NO mediated condition, either physically by, e.g., stabilization of a discernable symptom or physiologically by, e.g., stabilization of a physical parameter, or both.
[00255] The term "preventing" as used herein refers to administering a medicament beforehand to avert or forestall the appearance of one or more symptoms of a disease or disorder. The person of ordinary skill in the medical art recognizes that the term "prevent" is not an absolute term. In the medical art it is understood to refer to the prophylactic administration of a drug to substantially diminish the likelihood or seriousness of a condition, or symptom of the condition and this is the sense intended in this disclosure.
The Physician's Desk Reference, a standard text in the field, uses the term "prevent" hundreds of times. As used therein, the terms "prevent", "preventing" and "prevention" with regard to a disorder or disease, refer to averting the cause, effects, symptoms or progression of a disease or disorder prior to the disease or disorder fully manifesting itself.
[00256] In one embodiment, the methods of the invention are a preventative or "pre-emptive"
measure to a patient, specifically a human, having a predisposition (e.g. a genetic predisposition) to developing an sGC, cGMP and/or NO related disease, disorder or symptom.
[00257] In other embodiments, the methods of the invention are a preventative or "pre-emptive" measure to a patient, specifically a human, suffering from a disease, disorder or condition that makes him at risk of developing an sGC, cGMP or NO related disease, disorder or symptom.
[00258] The compounds and pharmaceutical compositions described herein can be used alone or in combination therapy for the treatment or prevention of a disease or disorder mediated, regulated or influenced by sGC, cGMP and/or NO.
[00259] Compounds and compositions here disclosed are also useful for veterinary treatment of companion animals, exotic animals and farm animals, including, without limitation, dogs, cats, mice, rats, hamsters, gerbils, guinea pigs, rabbits, horses, pigs and cattle.
[00260] In other embodiments, the invention provides a method of stimulating sGC activity in a biological sample, comprising contacting said biological sample with a compound or composition of the invention. Use of a sGC stimulator in a biological sample is useful for a variety of purposes known to one of skill in the art. Examples of such purposes include, without limitation, biological assays and biological specimen storage.
Combination Therapies
[00261] The compounds and pharmaceutical compositions described herein can be used in combination therapy with one or more additional therapeutic agents. For combination treatment with more than one active agent, where the active agents are in separate dosage formulations, the active agents may be administered separately or in conjunction. In addition, the administration of one element may be prior to, concurrent to, or subsequent to the administration of the other agent.
[00262] When co-administered with other agents, e.g., when co-administered with another pain medication, an "effective amount" of the second agent will depend on the type of drug used. Suitable dosages are known for approved agents and can be adjusted by the skilled artisan according to the condition of the subject, the type of condition(s) being treated and the amount of a compound described herein being used. In cases where no amount is expressly noted, an effective amount should be assumed. For example, compounds described herein can be administered to a subject in a dosage range from between about 0.01 to about 10,000 mg/kg body weight/day, about 0.01 to about 5000 mg/kg body weight/day, about 0.01 to about 3000 mg/kg body weight/day, about 0.01 to about 1000 mg/kg body weight/day, about 0.01 to about 500 mg/kg body weight/day, about 0.01 to about 300 mg/kg body weight/day, about 0.01 to about 100 mg/kg body weight/day.
[00263] When "combination therapy" is employed, an effective amount can be achieved using a first amount of a compound of Formula I and Formula I' or a pharmaceutically acceptable salt thereof and a second amount of an additional suitable therapeutic agent.
[00264] In one embodiment of this invention, a compound of Formula I and Formula I' and the additional therapeutic agent are each administered in an effective amount (i.e., each in an amount which would be therapeutically effective if administered alone). In another embodiment, the compound of Formula I and Formula I' and the additional therapeutic agent are each administered in an amount which alone does not provide a therapeutic effect (a sub-therapeutic dose). In yet another embodiment, the compound of Formula I
and Formula I' can be administered in an effective amount, while the additional therapeutic agent is administered in a sub-therapeutic dose. In still another embodiment, the compound of Formula I and Formula I' can be administered in a sub-therapeutic dose, while the additional therapeutic agent, for example, a suitable cancer-therapeutic agent is administered in an effective amount.
[00265] As used herein, the terms "in combination" or "co-administration" can be used interchangeably to refer to the use of more than one therapy (e.g., one or more prophylactic and/or therapeutic agents). The use of the terms does not restrict the order in which therapies (e.g., prophylactic and/or therapeutic agents) are administered to a subject.
[00266] Co-administration encompasses administration of the first and second amounts of the compounds in an essentially simultaneous manner, such as in a single pharmaceutical composition, for example, capsule or tablet having a fixed ratio of first and second amounts, or in multiple, separate capsules or tablets for each. In addition, such co administration also encompasses use of each compound in a sequential manner in either order. When co-administration involves the separate administration of the first amount of a compound of Formula I and Formula I' and a second amount of an additional therapeutic agent, the compounds are administered sufficiently close in time to have the desired therapeutic effect.
For example, the period of time between each administration which can result in the desired therapeutic effect, can range from minutes to hours and can be determined taking into account the properties of each compound such as potency, solubility, bioavailability, plasma half-life and kinetic profile. For example, a compound of Formula I and Formula I' and the second therapeutic agent can be administered in any order within about 24 hours of each other, within about 16 hours of each other, within about 8 hours of each other, within about 4 hours of each other, within about 1 hour of each other or within about 30 minutes of each other.
[00267] More, specifically, a first therapy (e.g., a prophylactic or therapeutic agent such as a compound described herein) can be administered prior to (e.g., 5 minutes, 15 minutes, 30 minutes, 45 minutes, 1 hour, 2 hours, 4 hours, 6 hours, 12 hours, 24 hours, 48 hours, 72 hours, 96 hours, 1 week, 2 weeks, 3 weeks, 4 weeks, 5 weeks, 6 weeks, 8 weeks, or 12 weeks before), concomitantly with, or subsequent to (e.g., 5 minutes, 15 minutes, 30 minutes, 45 minutes, 1 hour, 2 hours, 4 hours, 6 hours, 12 hours, 24 hours, 48 hours, 72 hours, 96 hours, 1 week, 2 weeks, 3 weeks, 4 weeks, 5 weeks, 6 weeks, 8 weeks, or 12 weeks after) the administration of a second therapy (e.g., a prophylactic or therapeutic agent such as an anti-cancer agent) to a subject.
[00268] Examples of other therapeutic agents that may be combined with a compound of this disclosure, either administered separately or in the same pharmaceutical composition include, but are not limited to:
(1) Endothelium-derived releasing factor (EDRF);
(2) NO donors such as a nitrosothiol, a nitrite, a sydnonimine, a NONOate, a N-nitrosoamine, a N-hydroxyl nitrosamine, a nitrosimine, nitrotyrosine, a diazetine dioxide, an oxatriazole 5-imine, an oxime, a hydroxylamine, a N-hydroxyguanidine, a hydroxyurea or a furoxan. Some examples of these types of compounds include: glyceryl trinitrate (also known as GTN, nitroglycerin, nitroglycerine, and trinitrogylcerin), the nitrate ester of glycerol;
sodium nitroprusside (SNP), wherein a molecule of nitric oxide is coordinated to iron metal forming a square bipyramidal complex; 3-morpholinosydnonimine (SIN-1), a zwitterionic compound formed by combination of a morpholine and a sydnonimine;
S-nitroso-N-acetylpenicillamine (SNAP), an N-acetylated amino acid derivative with a nitrosothiol functional group; diethylenetriamine/NO (DETA/NO), a compound of nitric oxide covalently linked to diethylenetriamine; and NCX 4016, an m-nitroxymethyl phenyl ester of acetyl salicylic acid. More specific examples of some of these classes of NO
donors include:
the classic nitrovasodilators, such as organic nitrate and nitrite esters, including nitroglycerin, amyl nitrite, isosorbide dinitrate, isosorbide 5-mononitrate, and nicorandil;
Isosorbide (Dilatrate0-SR , Imdur0 , Ismo0 , Isordil0 , Isordi10, Titradose0 , Monoket0), (NOR-3); FR 144420 (NOR-4); 3-morpholinosydnonimine; Linsidomine chlorohydrate ("SIN-1"); S-nitroso-N-acetylpenicillamine ("SNAP"); AZD3582 (CINOD lead compound), NCX 4016, NCX 701, NCX 1022, HCT 1026, NCX 1015, NCX 950, NCX 1000, NCX 1020, AZD 4717, NCX 1510/NCX 1512, NCX 2216, and NCX 4040 (all available from NicOx S.A.), S-nitrosoglutathione (GSNO), Sodium Nitroprusside, S-nitrosoglutathione mono-ethyl-ester (GSNO-ester),6-(2-hydroxy-1-methyl-nitrosohydrazino)-N-methyl-1-hexanamine (NOC-9) or diethylamine NONOate. Nitric oxide donors are also as disclosed in U.S. Pat.
Nos. 5,155,137, 5,366,997, 5,405,919, 5,650,442, 5,700,830, 5,632,981, 6,290,981, 5,691,423 5,721,365, 5,714,511, 6,511,911, and 5,814,666, Chrysselis et al. (2002) J Med Chem.
45:5406-9 (such as NO donors 14 and 17), and Nitric Oxide Donors for Pharmaceutical and Biological Research, Eds: Peng George Wang, Tingwei Bill Cai, Naoyuki Taniguchi, Wiley, 2005;
(3) Other substances that enhance cGMP concentrations such as protoporphyrin IX, arachidonic acid and phenyl hydrazine derivatives;
(4) Nitric Oxide Synthase substrates: for example, n-hydroxyguanidine based analogs, such as N[G]-hydroxy-L-arginine (NOHA), 1-(3, 4-dimethoxy-2-chlorobenzylideneamino)-3-hydroxyguanidine, and PR5 (1-(3, 4-dimethoxy-2-chlorobenzylideneamino)-3-hydroxyguanidine); L-arginine derivatives (such as homo-Arg, homo-NOHA, N-tert-butyloxy- and N-(3-methy1-2-butenyl)oxy-L-arginine, canavanine, epsilon guanidine-carpoic acid, agmatine, hydroxyl-agmatine, and L-tyrosyl-L-arginine); N-alkyl-N'-hydroxyguanidines (such as N-cyclopropyl-N'-hydroxyguanidine and N-butyl-N'-hydroxyguanidine), N-aryl-N'-hydroxyguanidines (such as N-phenyl-N'-hydroxyguanidine and its para-substituted derivatives which bear ¨F, -C1, -methyl, -OH substituents, respectively);
guanidine derivatives such as 3-(trifluormethyl) propylguanidine; and others reviewed in Cali et al. (2005, Current Topics in Medicinal Chemistry 5:721-736) and disclosed in the references cited therein;
(5) Compounds which enhance eNOS transcription: for example those described in WO 02/064146, WO 02/064545, WO 02/064546 and WO 02/064565, and corresponding patent documents such as US2003/0008915, US2003/0022935, U52003/0022939 and U52003/0055093. Other eNOS transcriptional enhancers including those described in U520050101599 (e.g. 2,2-difluorobenzo[1,3]dioxo1-5-carboxylic acid indan-2-ylamide, and 4-fluoro-N-(indan-2-y1)-benzamide), and Sanofl-Aventis compounds AVE3085 and (CA Registry NO. 916514-70-0; Schafer et al., Journal of Thrombosis and Homeostasis 2005;
Volume 3, Supplement 1: abstract number P1487);
(6) NO independent heme-independent sGC activators, including, but not limited to: BAY 58-2667 (see patent publication DE19943635) = NOH
=HO

=
/
HMR-1766 (ataciguat sodium, see patent publication W02000002851) ci o o *=%* o o til cisN , Ws/ H *
c/0 H ;

(2-(4-chloro-phenylsulfonylamino)-4,5-dimethoxy-N-(4-(thiomorpholine-4-sulfony1)-phenyl) -benzamide (see patent publications DE19830430 and W02000002851) W/ \V/
r''s 's * 0 HN
N *
s.) VI *
Cl O= ;and HMR-1069 (Sanofl-Aventis).

(7) Heme-dependent sGC stimulators including, but not limited to:
YC-1 (see patent publications EP667345 and DE19744026) =
Nz\N
/o HO ;
=/N=
=
HO ;
Riociguat (BAY 63-2521, Adempas, commercial product, described in DE19834044) T
-H
N
__________________________________ õ


Neliciguat (BAY 60-4552, described in WO 2003095451) , I
F

-õ,- N õ_.,,...,õ..-N
r-õ,=N
, L- I-.-_,_-1- 1[
I NH ¨ C-0Fle Vericiguat (BAY 1021189, clinical backup to Riociguat), BAY 41-2272 (described in DE19834047 and DE19942809) O
F
...-,-- --- N
I I 121xvNH 2 I
N /
;
BAY 41-8543 (described in DE19834044) F ..i.

,. N., .,.
----:-- ' N
r NH 2 Etriciguat (described in WO 2003086407) õ
N
, CFM-1571 (see patent publication W02000027394) H N
N irc A-344905, its acrylamide analogue A-350619 and the aminopyrimidine analogue A-778935.
N
0 T-s N.
ci A350-619;

CI
A-344905;
HO

2r-%
)-N

A-778935;

Compounds disclosed in one of publications: US20090209556, US8455638, (W02009032249), U520100292192, US20110201621, U57947664, U58053455 (W02009094242), U520100216764, US8507512, (W02010099054) US20110218202 (W02010065275), U520130012511 (W02011119518), U520130072492 (W02011149921), U520130210798 (W02012058132)and other compounds disclosed in Tetrahedron Letters (2003), 44(48): 8661-8663.
(8) Compounds that inhibit the degradation of cGMP, such as:
PDE5 inhibitors, such as, for example, Sildenafil (Viagra ) and other related agents such as Avanafil, Lodenafil, Mirodenafil, Sildenafil citrate (Revatio0), Tadalafil (Cialis or Adcirca0), Vardenafil (Levitra ) and Udenafil; Alprostadil; and Dipyridamole;
(9) Calcium channel blockers such as:
Dihydropyridine calcium channel blockers: Amlodipine (Norvasc), Aranidipine (Sapresta), Azelnidipine (Calblock), Barnidipine (HypoCa), Benidipine (Coniel), Cilnidipine (Atelec, Cinalong, Siscard), Clevidipine (Cleviprex), Diltiazem, Efonidipine (Landel), Felodipine (Plendil), Lacidipine (Motens, Lacipil), Lercanidipine (Zanidip), Manidipine (Calslot, Madipine), Nicardipine (Cardene, Carden SR), Nifedipine (Procardia, Adalat), Nilvadipine (Nivadil), Nimodipine (Nimotop), Nisoldipine (Baymycard, Sular, Syscor), Nitrendipine (Cardif, Nitrepin, Baylotensin), Pranidipine (Acalas), Isradipine (Lomir);
Phenylalkylamine calcium channel blockers: Verapamil (Calan, Isoptin) =
Gallopamil (Procorum, D600);
Benzothiazepines: Diltiazem (Cardizem);

H, =
Nonselective calcium channel inhibitors such as: mibefradil, bepridil and fluspirilene, fendiline;
(10) Endothelin receptor antagonists (ERAs): for instance the dual (ETA and ETB) endothelin receptor antagonist Bosentan (marketed as Tracleer0); Sitaxentan, marketed under the name Thelin0; Ambrisentan is marketed as Letairis0 in U.S;
dual/nonselective endothelin antagonist Actelion-1, that entered clinical trials in 2008;
(11) Prostacyclin derivatives or analogues: for instance prostacyclin (prostaglandin 12), Epoprostenol (synthetic prostacyclin, marketed as Flolan0); Treprostinil (Remodulin0), Iloprost (Ilomedin0), Iloprost (marketed as Ventavis0); oral and inhaled forms of Remodulin0 that are under development; Beraprost, an oral prostanoid available in Japan and South Korea;
(12) Antihyperlipidemics such as: bile acid sequestrants (e.g., Cholestyramine, Colestipol, Colestilan and Colesevelam); statins such as Atorvastatin, Simvastatin, Lovastatin, Fluvastatin, Pitavastatin, Rosuvastatin and Pravastatin; ; cholesterol absorption inhibitors such as Ezetimibe; other lipid lowering agents such as Icosapent ethyl ester, Omega-3-acid ethyl esters, Reducol;; fibric acid derivatives such as Clofibrate, Bezafibrate, Clinofibrate, Gemfibrozil, Ronifibrate, Binifibrate, Fenofirate, Ciprofibrate, Cho line fenofibrate; nicotinic acid derivatives such as Acipimox and Niacin; also combinations of statins, niacin, intestinal cholesterol absorption-inhibiting supplements (ezetimibe and others) and fibrates; antiplatelet therapies such as Clopidogrel bisulfate;
(13) Anticoagulants, such as the following types:
= Coumarines (Vitamin K antagonists): Warfarin (Coumadin) mostly used in the US and UK; Acenocoumarol0 and Phenprocoumon0, mainly used in other countries;
Phenindione 0;

= Heparin and derivative substances such as: Heparin; low molecular weight heparin, Fondaparinux and Idraparinux;
= Direct thrombin inhibitors such as: Argatroban, Lepirudin, Bivalirudin and Dabigatran; Ximelagatran (Exanta0), not approved in the US;
= Tissue plasminogen activators, used to dissolve clots and unblock arteries, such as Alteplase;
(14) Antiplatelet drugs: for instance thienopyridines such as Lopidogrel and Ticlopidine;
Dipyridamole; Aspirin;
(15) ACE inhibitors, for example the following types:
= Sulfhydryl-containing agents such as Captopril (trade name Capoten0), the first ACE
inhibitor and Zofenopril;
= Dicarboxylate-containing agents such as Enalapril (Vasotec/Renitec0);
Ramipril (Altace/Tritace/Ramace/Ramiwin0); Quinapril (Accupri10), Perindopril (Coversyl/Aceon0);
Lisinopril (Lisodur/Lopril/Novatec/Prinivil/Zestri10) and Benazepril (Lotensin0);
= Phosphonate-containing agents such as: Fosinopril;
= Naturally occurring ACE inhibitors such as: Casokinins and lactokinins, which are breakdown products of casein and whey that occur naturally after ingestion of milk products, especially cultured milk; The Lactotripeptides Val-Pro-Pro and Ile-Pro-Pro produced by the probiotic Lactobacillus helveticus or derived from casein also have ACE-inhibiting and antihypertensive functions;
= Other ACE inhibitors such as Alacepril, Delapril, Cilazapril, Imidapril, Trandolapril, Temocapril, Moexipril, Spirapril, (16) Supplemental oxygen therapy;
(17) Beta blockers, such as the following types:

= Non-selective agents: Alprenolo10, Bucindolo10, Carteolo10, Carvedilo10 (has additional a-blocking activity), Labetalolt (has additional a-blocking activity), Nadololt, Penbutolo10 (has intrinsic sympathomimetic activity), Pindolo10 (has intrinsic sympathomimetic activity), Oxprenonol, Acebutolol, Sotalol, Mepindolol, Celiprolol, Arotinolol, Tertatolol, Amosulalol, Nipradilol, Propranololt and Timololt;
= 131-Selective agents: Acebutololt (has intrinsic sympathomimetic activity), Atenololt, Betaxololt, Bisoprolo10, Celiprololt, Dobutamine hydrochloride, Irsogladine maleate, Carvedilol, Talinolol, Esmolo10, Metoprolo10 and Nebivolo10;
= 132-Selective agents: Butaxamine0 (weak a-adrenergic agonist activity);
(18) Antiarrhythmic agents such as the following types:
= Type I (sodium channel blockers): Quinidine, Lidocaine, Phenytoin, Propafenone = Type III (potassium channel blockers): Amiodarone, Dofetilide, Sotalol = Type V: Adenosine, Digoxin (19) Diuretics such as: Thiazide diuretics, e.g., Chlorothiazide, Chlorthalidone, and Hydrochlorothiazide, Bendroflumethiazide, Cyclopenthiazide, Methyclothiazide, Polythiazide , Quinethazone, Xipamide, Metolazone, Indapamide, Cicletanine;
Loop diuretics, such as Furosemide and Toresamide; potassium-sparing diuretics such as Amiloride, Spironolactone, Canrenoate potassium, Eplerenone and Triamterene; combinations of these agents; other diuretics such as Acetazolamid and Carperitide (20a) Direct-acting vasodilators such as Hydralazine hydrochloride, Diazoxide, Sodium nitroprusside, Cadralazine; other vasodilators such as Isosorbide dinitrate and Isosorbide 5-mononitrate;
(20b) Exogenous vasodilators such as:
= Adenocard0, an adenosine agonist, primarily used as an anti-arrhythmic;
= Alpha blockers (which block the vasoconstricting effect of adrenaline):
Alpha-l-adrenoceptor antagonists such as Prazosin, Indoramin, Urapidil, Bunazosin, Terazosin, Doxazosin = Atrial natriuretic peptide (ANP);
= Ethanol;

= Histamine-inducers, which complement proteins C3a, C4a and C5a work by triggering histamine release from mast cells and basophil granulocytes;
= Tetrahydrocannabinol (THC), major active chemical in marijuana which has minor vasodilatory effects;
= Papaverine, an alkaloid found in the opium poppy papaver somniferum;b (21) Bronchodilators: there are two major types of bronchodilator, 132 agonists and anticholinergics, exemplified below:
= 132 agonists: Salbutamol0 or albuterol (common brand name: Ventolin) and Terbutaline0 are short acting 132 agonists for rapid relief of COPD symptoms.
Long acting 132 agonists (LABAs) such as Salmeterol0 and Formoterol0;
= anticholinergics: Ipratropium0 is the most widely prescribed short acting anticholinergic drug. Tiotropium0 is the most commonly prescribed long-acting anticholinergic drug in COPD;
= Theophylline0, a bronchodilator and phosphodiesterase inhibitor;
(22) Corticosteroids: such as beclomethasone, methylprednisolone, betamethasone, prednisone, preniso lone, triamcino lone, dexamethasone, fluticasone, flunisolide and hydrocortisone, and corticosteroid analogs such as budesonide (23) Dietary supplements such as, for example: omega-3 oils; folid acid, niacin, zinc, copper, Korean red ginseng root, ginkgo, pine bark, Tribulus terrestris, arginine, Avena sativa, horny goat weed, maca root, muira puama, saw palmetto, and Swedish flower pollen; Vitamin C, Vitamin E, Vitamin K2; Testosterone supplements, Testosterone transdermal patch;
Zoraxel, Naltrexone, Bremelanotide (formerly PT-141), Melanotan II, hMaxi-K;
Prelox: a Proprietary mix/combination of naturally occurring ingredients, L-arginine aspartate and Pycnogenol;
(24) PGD2 receptor antagonists including, but not limited to, compounds described as having PGD2 antagonizing activity in United States Published Applications U520020022218, U520010051624, and U520030055077, PCT Published Applications W09700853, W09825919, W003066046, W003066047, W003101961, W003101981, W004007451, W00178697, W004032848, W003097042, W003097598, W003022814, W003022813, and W004058164, European Patent Applications EP945450 and EP944614, and those listed in:

Torisu et al. 2004 Bioorg Med Chem Lett 14:4557, Torisu et al. 2004 Bioorg Med Chem Lett 2004 14:4891, and Torisu et al. 2004 Bioorg & Med Chem 2004 12:4685;
(25) Immunosuppressants such as cyclosporine (cyclosporine A, Sandimmune@
Neoral@), tacrolimus (FK-506, Prograf@), rapamycin (sirolimus, Rapamune@) and other FK-506 type immunosuppressants, and mycophenolate, e.g., mycophenolate mofetil (CellCept@);
(26) Non-steroidal anti-asthmatics such as I32-agonists (e.g., terbutaline, metaproterenol, fenoterol, isoetharine, albuterol, salmeterol, bitolterol and pirbuterol) and I32-agonist-corticosteroid combinations (e.g., salmeterol-fluticasone (Advair@), formoterol-budesonid (Symbicort )), theophylline, cromolyn, cromolyn sodium, nedocromil, atropine, ipratropium, ipratropium bromide, leukotriene biosynthesis inhibitors (zileuton, BAY1005);
(27) Non-steroidal anti-inflammatory agents (NSAIDs) such as propionic acid derivatives (e.g., alminoprofen, benoxaprofen, bucloxic acid, carprofen, fenbufen, fenoprofen, fluprofen, flurbiprofen, ibuprofen, indoprofen, ketoprofen, miroprofen, naproxen, oxaprozin, pirprofen, pranoprofen, suprofen, tiaprofenic acid and tioxaprofen), acetic acid derivatives (e.g., indomethacin, acemetacin, alclofenac, clidanac, diclofenac, fenclofenac, fenclozic acid, fentiazac, furofenac, ibufenac, isoxepac, oxpinac, sulindac, tiopinac, tolmetin, zidometacin and zomepirac), fenamic acid derivatives (e.g., flufenamic acid, meclofenamic acid, mefenamic acid, niflumic acid and tolfenamic acid), biphenylcarboxylic acid derivatives (e.g., diflunisal and flufenisal), oxicams (e.g., isoxicam, piroxicam, sudoxicam and tenoxican), salicylates (e.g., acetyl salicylic acid and sulfasalazine) and the pyrazolones (e.g., apazone, bezpiperylon, feprazone, mofebutazone, oxyphenbutazone and phenylbutazone);
(28) Cyclooxygenase-2 (COX-2) inhibitors such as celecoxib (Celebrex@), rofecoxib (Vioxx@), valdecoxib, etoricoxib, parecoxib and lumiracoxib;
(opioid analgesics such as codeine, fentanyl, hydromorphone, levorphanol, meperidine, methadone, morphine, oxycodone, oxymorphone, propoxyphene, buprenorphine, butorphanol, dezocine, nalbuphine and pentazocine; and (29) Anti-diabetic agents such as insulin and insulin mimetics, sulfonylureas (e.g., Glyburide, Glybenclamide, Glipizide, Gliclazide, Gliquidone, Glimepiride, Meglinatide, Tolbutamide, Chlorpropamide, Acetohexamide, Tolazamide), biguanides, e.g., metformin (Glucophage@), a-glucosidase inhibitors (such as Acarbose, Epalrestat, Voglibose, Miglitol), thiazolidinone compounds, e.g., rosiglitazone (Avandia@), troglitazone (Rezulin@), ciglitazone, pioglitazone (Actos@) and englitazone; insulin sensitizers such as Pioglitazone and Rosiglitazone; Insulin secretagogues such as Repaglinide, Nateglinide and Mitiglinide;
Incretin mimetics such as Exanatide and Liraglutide; Amylin analogues such as Pramlintide;
glucose lowering agents such as Chromiumm picolinate (optinally combined with biotin);
dipeptidyl peptidase IV inhibitors such as Sitagliptin, Vildagliptin, Saxagliptin, Alogliptin and Linagliptin; vaccines currently being developed for the treatment of diabetes;
AVE-0277, Alum-GAD, BHT-3021, IBC-VS01; cytokine targeted therapies in development for the treatment of diabetes such as Anakinra, Canakinumab, Diacerein,Gevokizumab, LY-2189102, MABP-1, GIT-027; drugs in development for the treatment of diabetes:
Drugs in development for the treatment of diabetes AstraZeneca/ Recommended Dapagliflozin SGLT-2 Inhibitors Bristol-Myers Squibb Approval Alogliptin Insulin Sensitizers/
Dipeptidyl Peptidase bellZOate/MetfOrMill Takeda Pre-Registered IV (CD26; DPP-IV;
hydrochloride DP-IV) Inhibitors Dipeptidyl Peptidase Anagliptin Kowa/ Sanwa IV (CD26; DPP-IV; Pre-Registered DP-IV) Inhibitors Insulin degludec Novo Nordisk Pre-Registered Insulin degludec/insulin Novo Nordisk Pre-Registered aspart Insulin human (rDNA
MannKind Pre-Registered origin) inhalation powder Insulin Lixisenatide Sanofi Secretagogues/ GLP-1 Pre-Registered Receptor Agonists Recombinant human Biodel Pre-Registered insulin Dipeptidyl Peptidase Mitsubishi Tanabe Teneligliptin IV (CD26; DPP-IV; Pre-Registered Pharma DP-IV) Inhibitors Andromeda Biotech/
AVE-0277 Phase III
Teva GLP-1 Receptor Albiglutide GlaxoSmithKline Phase III
Agonists PPARalpha Agonists/
Aleglitazar Roche Phase III
PPARgamma Agonists K(ATP) Channel Blockers/ Dipeptidyl Peptidase IV (CD26;
Atorvastatin DPP-IV; DP-IV) GlaxoSmithKline Phase III
calcium/glimepiride Inhibitors/ HMG-CoA
Reductase Inhibitors/
TNFSF6 Expression In Drugs in development for the treatment of diabetes BYK-324677 Nycomed Phase III
Insulin Sensitizers/
Dr. Reddy's Balaglitazone Laboratories PPARgamma Partial Phase III
Agonists ai CSG-452 Chug SGLT-2 Inhibitors Phase III
Pharmaceutical Johnson & Johnson/
Canagliflozin Mitsubishi Tanabe SGLT-2 Inhibitors Phase III
Pharma CallagliflOZill/MetfOrMill SGLT-2 Inhibitors/
Johnson & Johnson Phase III
hydrochloride Insulin Sensitizers Dapagliflozin/Metformin AstraZeneca/ SGLT-2 Inhibitors/
Phase III
hydrochloride Bristol-Myers Squibb Insulin Sensitizers Insulin Dulaglutide Lilly Secretagogues/ GLP-1 Phase III
Receptor Agonists Boehringer Ingelheim/
Empagliflozin SGLT-2 Inhibitors Phase III
Lilly SGLT-2 Inhibitors/
Boehringer Ingelheim/ Dipeptidyl Peptidase Empagliflozin/linagliptin Phase III
Lilly IV (CD26; DPP-IV;
DP-IV) Inhibitors Dipeptidyl Peptidase Gemigliptin LG Life Sciences IV (CD26; DPP-IV; Phase III
DP-IV) Inhibitors Hepatic-directed vesicle Diasome Phase III
insulin Pharmaceuticals Human isophane insulin Wockhardt Phase III
IN-105 Biocon Phase III
Insulin Insulin Novo Nordisk Secretagogues/ GLP-1 Phase III
degludealiraglutide Receptor Agonists Insulin glargine Sanofi Phase III
Astellas Pharma/
Ipragliflozin L-proline SGLT-2 Inhibitors Phase III
Kotobuki LY-2605541 Lilly Phase III
LY-2963016 Lilly Phase III
Lixisenatide/Insulin Insulin Sanofi Secretagogues/ GLP-1 Phase III
glargine Receptor Agonists PPARalpha Agonists/
Kun Dang Lobeglitazone sulfate Chong PPARgamma Agonists/ Phase III
Pharm (CKD Pharm) Insulin Sensitizers Luseogliflozin Taisho SGLT-2 Inhibitors Phase III
Otelixizumab Tolerx Anti-CD3 Phase III
Sodium Channel Ranolazine Gilead Phase III
Blockers Recombinant human National Institute of Phase III
insulin Health Sciences PPARgamma Agonists/
Sitagliptin phosphate Insulin Sensitizers/
monohydrate/pioglitazone Merck & Co. Dipeptidyl Peptidase Phase III
hydrochloride IV (CD26; DPP-IV;
DP-IV) Inhibitors Drugs in development for the treatment of diabetes Dipeptidyl Peptidase IV (CD26; DPP-IV;
Sitagliptin/atorvastatin DP-IV) Inhibitors/
Merck & Co. Phase III
calcium H MG-CoA Reductase Inhibitors/ TNFSF6 Expression Inhibitors Free Fatty Acid Receptor 1 (FFARI;
TAK-875 Takeda GPR40) Agonists/ Phase III
Insulin Secretagogues Cannabinoid CBI
TT-401 7TM Pharma Phase I
Antagonists Transition TT-401 Phase I
Therapeutics Cadila Healthcare PPARalpha Ligands/
ZYH-2 Phase I
(d/b/a Zydus Cadila) PPARgamma Ligands Cadila Healthcare Cannabinoid CBI
ZYO-1 Phase I
(d/b/a Zydus Cadila) Antagonists Cellonis 701645 Phase I
Biotechnologies Cellonis 701499 Phase I
Biotechnologies University of 743300 California, San Phase I
Francisco University of 448661 Phase I
Pittsburgh National Institute AD-1 Clinical Pharma Res Dev Colesevelam Bile Acid Daiichi Sankyo Clinical hydrochloride Sequestrants National Health DBPR-108 Research Institutes/ IND Filed ScinoPharm Nodlin Biolaxy IND Filed Glucose-Dependent Insulinotropic Receptor (GDIR, PSN-491 Prosidion GPRI19) Agonists/ IND Filed Dipeptidyl Peptidase IV (CD26; DPP-IV;
DP-IV) Inhibitors Tolimidone Melior Discovery Lyn Kinase Activators IND Filed Cadila Healthcare GLP-I Receptor ZYD-1 IND Filed (d/b/a Zydus Cadila) Agonists Cadila Healthcare GLP-I Receptor ZYOG-1 IND Filed (d/b/a Zydus Cadila) Agonists (30) HDL cholesterol-increasing agents such as Anacetrapib, MK-524A, CER-001, DRL-17822, Dalcetrapib, JTT-302, RVX-000222, TA-8995;
(31) Antiobesity drugs such as Methamphetamine hydrochloride, Amfepramone hydrochloride (Tenuate 0), Phentermine (Ionamin 0), Benzfetamine hydrochloride (Didrex 0), Phendimetrazine tartrate (Bontri10, Prelu-2 0, Plegine 0), Mazindol (Sanorex 0), Orlistat (Xenical 0), Sibutramine hydrochloride monohydrate (Meridia 0, Reductil 0), Rimonabant (Acomplia 0), Amfepramone, Chromium picolinate, RM-493, TZP-301; combination such as Phentermine/Topiramate, Bupropion/Naltrexone, Sibutramine/Metformin, Bupropion SR/Zonisamide SR, Salmeterol, xinafoate/fluticasone propionate; Lorcaserin hydrochloride, Phentermine/topiramate, Bupropion/naltrexone, Cetilistat, Exenatide, KI-0803, Liraglutide, Metformin hydrochloride, Sibutramine/Metformin, 876167, ALS-L-1023, Bupropion SR/Zonisamide SR, CORT-108297, Canagliflozin, Chromium picolinate, GSK-1521498, LY-377604, Metreleptin, Obinepitide, P-5 7A3, PSN-821, Salmeterolxinafoate/fluticasone propionate, Sodium tungstate, Somatropin (recombinant), TM-30339, TTP-435, Tesamorelin, Tesofensine, Velneperit, Zonisamide, BMS-830216, ALB-127158, AP-1030, ATHX-105, AZD-2820, AZD-8329, Beloranib hemioxalate, CP-404, HPP-404, ISIS-FGFR4Rx, Insulinotropin, KD-3010PF, 05212389, PP-1420, PSN-842, Peptide YY3-36, Resveratrol, S-234462; S-234462, Sobetirome, TM-38837, Tetrahydrocannabivarin, ZYO-1, beta-Lapachone;
(32) Angiotensin receptor blockers such as Losartan, Valsartan, Candesartan cilexetil, Eprosaran, Irbesartan, Telmisartan, Olmesartran medoxomil, Azilsartan medoxomil;
(33) Renin inhibitors such as Aliskiren hemifumirate;
(34) Centrally acting alpha-2-adrenoceptor agonists such as Methyldopa, Clonidine, Guanfacine;
(35) Adrenergic neuron blockers such as Guanethidine, Guanadrel;
(36) Imidazoline I-1 receptor agonists such as Rimenidine dihydrogen phosphate and Moxonidine hydrochloride hydrate;
(37) Aldosterone antagonists such as Spironolactone and Eplerenone (38) Potassium channel activators such as Pinacidil (39) Dopamine D1 agonists such as Fenoldopam mesilate; Other dopamine agonists such as Ibopamine, Dopexamine and Docarpamine;
(40) 5-HT2 antagonists such as Ketanserin;
(41) Drugs that are currently being developed for the treatment of arterial hypertension:

Drugs in development for the treatment of hypertension Angiotensin AT1 Antagonists/
Azilsartan Takeda Angiotensin AT2 Registered Antagonists/ Insulin Sensitizers Dainippon Angiotensin AT1 Pre-Amlodipine besylate/irbesartan Sumitomo Antagonists/ Calcium Registered Pharma Channel Blockers Angiotensin AT1 Azilsartan/amlodipine besilate Takeda Antagonists/ Insulin Phase III
Sensitizers/ Calcium Channel Blockers Angiotensin AT1 Ajinomoto/
Cilllidipille/ValSartall Mochida Antagonists/ Calcium Phase III
Channel Blockers Fimasartan Boryung Angiotensin AT1 Phase III
Antagonists Angiotensin AT1 Antagonists/ Dipeptidyl Peptidase IV (CD26;
DPP-IV; DP-IV) IrbeSartalliatOrVaStatill Hanmi Phase III
Inhibitors/ HMG-CoA
Reductase Inhibitors/
TNFSF6 Expression In Irbesartan/trichlormethiazide Shionogi Angiotensin AT1 Phase III
Antagonists Losartan Angiotensin AT1 potassium/hydrochlorothiazide/amlodipine Merck & Co.
Antagonists/ Calcium Phase III
besylate Channel Blockers Pratosartan Boryung Angiotensin AT1 Phase III
Antagonists ACT-280778 Actelion Phase II
Mineralocorticoid Receptor (MR) Antagonists/ Na+/H+
Exchanger (NHE) Hemodynamic Inhibitors/ Epithelial Amiloride hydrochlonde/spironolactone Phase II
Therapeutics Sodium Channels (ENaC) Blockers/
K(V)1.5 Channel Blockers/ K(V)4.3 Channel Blockers Angiotensin yaccine/CoVaccine HT BTG Phase II
tos CYT006-AngQb Cy Anti-Angiotensin II Phase II
Biotechnology Cholecalciferol Emory University Phase II
Sucampo CIC-2 Channel Cobiprostone Phase II
Pharmaceuticals Activators Drugs in development for the treatment of hypertension INT-001 IntelGenx Phase II
Angiotensin AT1 Antagonists/ Neprilysin LCZ-696 Novartis (Enkephalinase, Neutral Phase II
Endopeptidase, NEP) In LFF-269 Novartis Phase II
Growth Hormone Octreotide acetate Chiasma Release Inhibitors/ Phase II
Somatostatin Agonists Atrial Natriuretic Peptide Palatin A (NPR1; Guanylate PL-3994 Phase II
Technologies Cyclase A) Receptor Agonists Rostafuroxine Sigma-Tau Phase II
SLx-2101 NT Life Sciences Phosphodiesterase VPhase II
(PDE5A) Inhibitors Encysive Endothelin ETA Receptor TBC-3711 Phase II
Pharmaceuticals Antagonists Dong-A/ Falk Phosphodiesterase V
Udenafil Phase II
Pharma (PDE5A) Inhibitors Angiotensin AT1 Antagonists/ Dipeptidyl Peptidase IV (CD26;
HanAll DPP-IV; DP-IV) Atorvastatin calcium/losartan potassium Phase I
BioPharma Inhibitors/ HMG-CoA
Reductase Inhibitors/
TNFSF6 Expression In Dopamine BIA-5-1058 BIAL beta-monooxygenase Phase I
In CS-3150 Daiichi Sankyo Phase I
Dainippon DSP-9599 Sumitomo Renin Inhibitors Phase I
Pharma Actelion/ Merck &
MK-1597 Renin Inhibitors Phase I
Co.
MK-4618 Merck & Co. Phase I
MK-5478 Merck & Co. Phase I
MK-7145 Merck & Co. Phase I

Drugs in development for the treatment of hypertension MK-8266 Merck & Co. Phase I
MK-8457 Merck & Co. Phase I
Mitsubishi Angiotensin AT2 MP-157 Phase I
Tanabe Pharma Agonists Mineralocorticoid Mitsubishi MT-3995 Receptor (MR) Phase I
Tanabe Pharma Antagonists Mirodenafil hydrochloride SK Chemicals Phosphodiesterase V Phase I
(PDE5A) Inhibitors NV-04 Novogen Antioxidants Phase I
Angiotensin AT1 Nifedipine/Candesartan cilexetil Bayer Antagonists/ CalciumPhase I
Channel Blockers/
Antioxidants Glutamyl Quantum Aminopeptidase QGC-001 Phase I
Genomics (Aminopeptidase A) In Na+/H+ Exchanger type RDX-5791 Ardelyx Phase I
3 (NHE-3) Inhibitors TAK-272 Takeda Renin Inhibitors Phase I
Angiotensin AT2 TAK-591 Takeda Phase I
Antagonists Vitae VTP-27999 Renin Inhibitors Phase I
Pharmaceuticals Vasomera PhaseBio VPAC2 (VIP2) Agonists Phase I
(42) Vasopressin antagonists such as Tolvaptan;
(43) Calcium channel sensitizers such as Levosimendan or activators such as Nicorandil;
(44) PDE-3 inhibitors such as Amrinone, Milrinone, Enoximone, Vesnarinone, Pimobendan, Olprinone;
(45) Adenylate cyclase activators such as Colforsin dapropate hydrochloride;
(46) Positive inotropic agents such as Digoxin and Metildigoxin; metabolic cardiotonic agents such as Ubidecarenone; brain naturetic peptides such as Nesiritide;

(47) Drugs that are currently in development for the treatment of heart failure:
DruEs in development for the treatment of heart failure Bucindolol beta-Adrenoceptor ARCA Pre-Registered hydrochloride Antagonists Aliskiren hemifumarate Novartis Renin Inhibitors Phase III
Ferric carboxymaltose Vifor Phase III
Angiotensin AT1 Antagonists/
Neprilysin LCZ-696 Novartis (Enkephalinase, Phase III
Neutral Endopeptidase, NEP) In Neuregulin-1 Zensun Phase III
Olmesartan medoxomil Tohoku University Angiotensin AT1 Phase III
Antagonists Cardio3 C3BS-CQR-1 Phase II/III
BioSciences MyoCell Bioheart Phase II/III
Serelaxin Novartis Phase II/III
AmpliPhi Biosciences/
AAV1/SERCA2a Celladon/ Mount Phase II
Sinai School of Medicine Albiglutide GlaxoSmithKline GLP-1 Receptor Phase II
Agonists Allogeneic mesenchymal precursor Mesoblast Phase II
cells AlsterMACS Miltenyi Biotec Phase II
Mineralocorticoid BAY-94-8862 Bayer Receptor (MR) Phase II
Antagonists COR-1 Corimmun Phase II
Cardioxyl CXL-1020 Nitric Oxide Donors Phase II
Pharmaceuticals Cenderitide Nile Therapeutics Guanylate Cyclase Phase II
Activators Endometrial ERCell/ Medistem Phase II
regenerative cells JNJ-39588146 Johnson & Johnson Phase II
Amgen/ Cardiac Myosin Omecamtiv mecarbil Phase II
Cytokinetics Activators DruEs in development for the treatment of heart failure Atrial Natriuretic Palatin Peptide A (NPR1;
PL-3994 Phase II
Technologies Guanylate Cyclase A) Receptor Agonists Remestemcel-L Osiris Phase II
TRV-120027 Trevena Angiotensin AT1 Phase II
Receptor Ligands Neurocrine Urocortin 2 CRF2 Agonists Phase II
Biosciences AAV6-CMV-SERCA2a Imperial College Phase I/II
National Institutes IL-1 Receptor Anakinra Phase I/II
of Health (NIH) Antagonists Bioheart/ Instituto LipiCell de Medicina Phase I/II
Regenerativa Cytomedix/ Texas ALD-201 Phase I
Heart Institute BAY-1021189/Vericiguat Bayer Phase I I
Adenine Receptor BAY-1067197 Bayer Phase I
Agonists Drugs Acting on BAY-86-8050 Bayer Vasopressin (AVP) Phase I
Receptors Dopamine BIA-5-1058 BIAL beta-monooxygenase Phase I
In University of CSCS Phase I
Louisville Calcitonin gene related VasoGenix Phase I
peptide Juventas JVS-100 Phase I
Therapeutics MyoCell SDF-1 Bioheart Phase I
Advanced Cell Myoblast Phase I
Technology (ACT) RO-1160367 Serodus 5-HT4 Antagonists Phase I
Recombinant human Acorda/ Vanderbilt Phase I
glial growth factor 2 University Lantheus Medical [18HLMI-1195 Phase I
Imaging Kyoto Prefectural 677950 University of Phase I
Medicine (48) Drugs currently in development for the treatment of pulmonary hypertension:

Drugs in development for the treatment of pulmonary hypertension Breast Cancer-Resistant Protein (BCRP; ABCG2) Inhibitors/ Abl Kinase Inhibitors/ Angiogenesis Inhibitors/
Bcr-Abl Kinase Inhibitors/ CSF1R
Imatinib mesylate Novartis (c-FMS) Inhibitors/ KIT (C-KIT) Pre-Registered Inhibitors/ Apoptosis Inducers/
PDGFRalpha Inhibitors/ PDGFRbeta Inhibitors/ Inhibitors of Signal Transduction Pathways Treprostinil United Prostacyclin Analogs Pre-Registered diethanolamine Therapeutics GSK-1325760A GlaxoSmithKline Phase III
Endothelin ETA Receptor Antagonists/
Macitentan Actelion Phase III
Endothelin ETB Receptor Antagonists Riociguat/Adempas Bayer Guanylate Cyclase Activators Approved 2013 Actelion/ Nippon Selexipag Prostanoid IP Agonists Phase III
Shinyaku Phosphodiesterase V (PDE5A) Udenafil Dong-A Phase III
Inhibitors Nat Heart, Lung, and Blood L-Citrul line Institute/ Phase II/III
Vanderbilt University Brigham &
BQ-123 Women's Endothelin ETA
Receptor Antagonists Phase II
Hospital Cicletanine Gilead Phase II
Fasudil Rho Kinase Inhibitors/ Calcium Asahi Kasei Phase II
hydrochloride Sensitizers Nilotinib Bcr-Abl Kinase Inhibitors/
Apoptosis hydrochloride Novartis Inducers/ Inhibitors of Signal Phase II
monohydrate Transduction Pathways PRX-08066 Clinical Data 5-HT2B Antagonists Phase II
5-HT2A Antagonists/ 5-HT2B
Antagonists/ Dopamine Autoreceptor Terguride ErgoNex Pharma Agonists/ Dopamine D2 Receptor Phase II
Partial Agonists/ Pro!actin Secretion In Tezosentan Endothelin ETA
Receptor Antagonists/
Actelion Phase II
disodium Endothelin ETB Receptor Antagonists Drugs in development for the treatment of pulmonary hypertension Virginia Anakinra Commonwealth IL-1 Receptor Antagonists Phase I/II
University (VCU) HDL-Cholesterol Increasing Agents/
Simvastatin Imperial College Phase I/II
HMG-CoA Reductase Inhibitors 99mTC-PulmoBind Montreal Heart Phase I
Institute (MHI) APD-811 Arena Prostanoid IP Agonists Phase I
Raf kinase B Inhibitors/ Raf kinase C
Inhibitors/ Angiogenesis Inhibitors/
F1t3 (FLK2/STK1) Inhibitors/ VEGFR-1 (Flt-1) Inhibitors/ KIT (C-KIT) Sorafenib Bayer Inhibitors/ VEGFR-2 (FLK-1/KDR) Phase I
Inhibitors/ VEGFR-3 (FLT4) Inhibitors/
PDGFRbeta Inhibitors/ RET Inhibitors/
Inhibitors of Signal Transduction Pathways Triplelastat Proteo Biotech Elastase Inhibitors Phase I
(49) Drugs in current development for the treatment of female sexual dysfunction:
Drugs in active development for the treatment of female sexual dysfunction Apricus Alprostadil Biosciences/ Phase III
VIVUS
EndoCeutics/ HSD1 1B1 Prasterone Monash Expression Phase III
University Inhibitors Testosterone Androgen BioSante Receptor Phase III
transdermal gel Agonists Melanocortin MC3 Receptor Palatin Agonists/
Bremelanotide Phase II
Technologies Melanocortin MC4 Receptor Agonists Pill-Plus Pantarhei Phase II
Bioscience Androgen Testosterone MDTS Acrux Receptor Phase II
Agonists Estrogen Receptor (ER) Estradiol/testosterone BioSante Agonists/ Phase I
Androgen Receptor Agonists Drugs in active development for the treatment of female sexual dysfunction Selective Androgen LGD-2941 Ligand Receptor Phase I
Modulators (SARM) Lidocaine/heparin Urigen Phase I
OnabotulinumtoxinA Allergan Phase I
(50) Drugs used for the treatment of erectile dysfunction such as Alprostadil, Aviptadil, Phentolamine mesilate, Weige, Alprostadil;
(5 1) Drugs currently in development for the treatment of male sexual dysfunction:
Drugs in active development for the treatment of erectile dysfunction Apoptosis Fluvastatin Inducers/
Novartis HMG-CoA Phase III
sodium Reductase In Lodenafil Phosphodiesteras Cristalia e V (PDE5A) Phase III
carbonate Inhibitors Chonbuk National EFLA-400 Phase II/III
University Hospital Apomorphine Dopamine D2 VecturaPhase II
hydrochloride Agonists Phosphodiesteras e V (PDE5A) Inhibitors/
LY-900010 Lilly Selective Phase II
Androgen Receptor Modulators (SARM) Nitroglycerin Futura Medical Phase II
Drugs Acting on Dopaminergic Transmission/
RX-10100 Rexahn Phase II
Drugs Acting on Serotonergic Transmission YHD-1023 Yuhan Phase II
INT-007 IntelGenx Phase I
Selective Androgen LY-2452473 Lilly Receptor Phase I
Modulators (SARM) Drugs in active development for the treatment of erectile dysfunction Albert Einstein College of Medicine/ Ion Channel hMaxi-K Phase I
Innovations/
Mount Sinai School of Medicine KH-204 KMSI Clinical (51) Drugs in development for the treatment of sleep apnea:
Drugs in development for the treatment of sleep apnea CX-1739 Cortex AMPA Receptor Phase II
Modulators Phentermine/topira VIVUS AMPA Phase II
Antagonists/
mate Kainate Antagonists/
Sodium Channel Blockers/
Carbonic Anhydrase Type II Inhibitors AVE-0118 Sanofi Potassium Phase I
Channel Blockers Suvorexant Merck & Co. Orexin Receptor Phase I
Antagonists (52) Drugs currently in development for the treatment of metabolic syndrome:
Antihyperlipidemic drugs under active development for the treatment of patients with metabolic syndrome PPARalpha GFT-505 Genfit Agonists/
Phase II
PPARdelta Agonists MBX-8025 Metabolex PPARdelta Phase II
Agonists Expression Enhancers/
HMG-CoA
Pitavastatin Reductase Kowa.Phase I
calcium Inhbitors/

(Osteopontin) Expression In (53) Antiobesity drugs:
Drugs marketed for the treatment of obesity Noradrenergic, Methamphetamine hydrochloride Abbott alpha- and 1943 (U.S.) beta-adrenoceptor (Desoxyn) agonist Amfepramone hydrochloride Sanofi Noradrenergic 1959 (U.S.) release stimulant (Tenuate) Phentermine UCB Noradrenergic 1959 (U.S.) (Ionamin) Celltech release stimulant Benzfetamine hydrochloride Pfizer Noradrenergic 1960 (U.S.) release stimulant (Didrex) Phendimetrazine tartrate (Bontril, Pfizer Noradrenergic 1961 (U.S.) release stimulant Prelu-2, Plegine) MazindolNoradrenergic Novartis 1973 (U.S.) (Sanorex) reuptake inhibitor Pancreatic lipase 1998 (New Orlistat (Xenical) Roche inhibitor Zealand) (54) Drugs used for the treatment of Alzheimer's disease: e.g., cholinesterase inhibitors prescribed for mild to moderate Alzheimer's disease, including Razadyne (galantamine), Exelon (rivastigmine), and Aricept (donepezil), Cognex (tacrine); Namenda (memantine), an N-methyl D-aspartate (NA,4DA) antagonist, and Aricept , prescribed to treat moderate to severe Alzheimer's disease; vitamin E (an anti-oxidant).
(55) Antidepressants: tricyclic antidepressants such as amitriptyline (Elavit0), desipramine (Norpramin0), imipramine (Tofranit0), amoxapine (Asendin0), nortriptyline; the selective serotonin reuptake inhibitors (SSRI's) such as paroxetine (Paxi110), fluoxetine (Prozac10), sertraline (Zoloft10), and citralopram (Celexa ); and others such as doxepin (SinequanC) and trazodone (Desyrel ); SNRIs (e.g., venlafaxine and reboxetine); dopaminergic antidepressants (e.g., bupropion and amineptine).
(56) Neuroprotective agents: e.g., memantine, L-dopa, bromocriptine, pergolide, talipexol, pramipexol, cabergoline, neuroprotective agents currently under investigation including anti-apoptotic drugs (CEP 1347 and CTCT346), lazaroids, bioenergetics, antiglutamatergic agents and dopamine receptors. Other clinically evaluated neuroprotective agents are, e.g., the monoamine oxidase B inhibitors selegiline and rasagiline, dopamine agonists, and the complex I mitochondrial fortifier coenzyme Q10.
(57) Antipsychotic medications: e.g., ziprasidone (GeodonTm), risperidone (RisperdalTm), and olanzapine (ZyprexaTm).
Kits
[00269] The compounds and pharmaceutical formulations described herein may be contained in a kit. The kit may include single or multiple doses of two or more agents, each packaged or formulated individually, or single or multiple doses of two or more agents packaged or formulated in combination. Thus, one or more agents can be present in first container, and the kit can optionally include one or more agents in a second container. The container or containers are placed within a package, and the package can optionally include administration or dosage instructions. A kit can include additional components such as syringes or other means for administering the agents as well as diluents or other means for formulation. Thus, the kits can comprise: a) a pharmaceutical composition comprising a compound described herein and a pharmaceutically acceptable carrier, vehicle or diluent; and b) a container or packaging.
The kits may optionally comprise instructions describing a method ofusing the pharmaceutical compositions in one or more of the methods described herein (e.g. preventing or treating one or more of the diseases and disorders described herein). The kit may optionally comprise a second pharmaceutical composition comprising one or more additional agents described herein for co therapy use, a pharmaceutically acceptable carrier, vehicle or diluent. The pharmaceutical composition comprising the compound described herein and the second pharmaceutical composition contained in the kit may be optionally combined in the same pharmaceutical composition.
[00270] A kit includes a container or packaging for containing the pharmaceutical compositions and may also include divided containers such as a divided bottle or a divided foil packet. The container can be, for example a paper or cardboard box, a glass or plastic bottle or jar, a re-sealable bag (for example, to hold a "refill" of tablets for placement into a different container), or a blister pack with individual doses for pressing out of the pack according to a therapeutic schedule. It is feasible that more than one container can be used together in a single package to market a single dosage form. For example, tablets may be contained in a bottle which is in turn contained within a box.
[00271] An example of a kit is a so-called blister pack. Blister packs are well known in the packaging industry and are being widely used for the packaging of pharmaceutical unit dosage forms (tablets, capsules, and the like). Blister packs generally consist of a sheet of relatively stiff material covered with a foil of a preferably transparent plastic material. During the packaging process, recesses are formed in the plastic foil. The recesses have the size and shape of individual tablets or capsules to be packed or may have the size and shape to accommodate multiple tablets and/or capsules to be packed. Next, the tablets or capsules are placed in the recesses accordingly and the sheet of relatively stiff material is sealed against the plastic foil at the face of the foil which is opposite from the direction in which the recesses were formed. As a result, the tablets or capsules are individually sealed or collectively sealed, as desired, in the recesses between the plastic foil and the sheet. Preferably the strength of the sheet is such that the tablets or capsules can be removed from the blister pack by manually applying pressure on the recesses whereby an opening is formed in the sheet at the place of the recess. The tablet or capsule can then be removed via said opening.
[00272] It may be desirable to provide written memory aid containing information and/or instructions for the physician, pharmacist or subject regarding when the medication is to be taken. A "daily dose" can be a single tablet or capsule or several tablets or capsules to be taken on a given day. When the kit contains separate compositions, a daily dose of one or more compositions of the kit can consist of one tablet or capsule while a daily dose of another or more compositions of the kit can consist of several tablets or capsules. A kit can take the form of a dispenser designed to dispense the daily doses one at a time in the order of their intended use. The dispenser can be equipped with a memory-aid, so as to further facilitate compliance with the regimen. An example of such a memory-aid is a mechanical counter which indicates the number of daily doses that have been dispensed. Another example of such a memory-aid is a battery-powered micro-chip memory coupled with a liquid crystal readout, or audible reminder signal which, for example, reads out the date that the last daily dose has been taken and/or reminds one when the next dose is to be taken.
EXAMPLES
[00273] All references provided in the Examples are herein incorporated by reference. As used herein, all abbreviations, symbols and conventions are consistent with those used in the contemporary scientific literature. See, e.g. Janet S. Dodd, ed., The ACS
Style Guide: A

Manual for Authors and Editors, 2nd Ed., Washington, D.C.: American Chemical Society, 1997, herein incorporated in its entirety by reference.
Example 1: Syntheses of the Compounds of Table 1A, Table 1B, Table IC and Table ID.
General Procedure A
step 1 Step 2 Step 3 Step 4 RN rR' Na0 -...--, I N
m rR' r ),LI , R' I
0 O'''' 0 LIHMDS H2NHN---...R' N R AlMe3 NH4Cl '----NI F CO2Et NH
, J
___________ - R/11,,,,,,,i0Et IRMe THF/toluene HCI toluene Et0H NIN......0 0 Et0H OEt 1100C -1---NH2 90 C

A Et0T, OEt 70 C
B C D E

Step 1:
Dione enolate formation: To a solution of ketone A in THF cooled to ¨78 C, LiHMDS (e.g., 0.9 equiv, 1.0 M in toluene) was added dropwise via syringe. The reaction was allowed to warm to 0 C, then charged with diethyl oxalate (1.2 equiv). At this time, the reaction was warmed to room temperature and stirred at that temperature until judged complete (e.g., using either TLC or LC/MS analysis). Once the reaction was complete (reaction time was typically 45 minutes), the product dione enolate B was used "as-is" in Step 2, i.e., the cyclization step, without any further purification.
Step 2:
Pyrazole formation: Dione enolate B was diluted with ethanol and consecutively charged with HC1 (e.g., 3 equiv, 1.25 M solution in ethanol) and arylhydrazine hydrate (e.g., 1.15 equiv).
The reaction mixture was heated to 70 C and stirred at this temperature until cyclization was deemed complete (e.g., by LC/MS analysis, typically 30 minutes). Once complete, the reaction mixture was treated carefully with solid sodium bicarbonate (e.g., 4 equiv) and diluted with dichloromethane and water. Layers were separated, and aqueous layer was futher diluted with water before extraction with dichloromethane (3x). The combined organics were washed with brine, dried over Mg504, filtered, and concentrated in vacuo. The resulting pyrazole C was then purified by 5i02 chromatography using an appropriate gradient of Et0Ac in hexanes.
Step 3:

Amidine formation: To a suspension of NH4C1 (e.g., 5 equiv) in toluene cooled to 0 C was added A1Me3 (e.g., 5 equiv, 2.0M solution in toluene) dropwise via syringe.
The reaction was allowed to warm to room temperature, and stirred at this temperature until no more bubbling was observed. Pyrazole C was added in 1 portion to the reaction mixture, heated to 110 C, and stirred at this temperature until judged complete (e.g., using either TLC or LC/MS analysis).
Once complete, the reaction was cooled, treated with excess methanol, and stirred vigorously for 1 hour at room temperature. The thick slurry was filtered, and the resulting solid cake was washed with methanol. The filtrate was concentrated in vacuo, and the resulting solids were re-suspended in an ethyl acetate : isopropyl alcohol = 5:1 solvent mixture.
The reaction was further treated with saturated sodium carbonate solution, and stirred for 10 minutes before the layers are separated. The aqueous layer was extracted with the ethyl acetate :
isopropyl alcohol = 5:1 solvent mixture (3x), and the combined organics were washed with brine.
The organics were further dried over MgSO4, filtered, and the solvent removed in vacuo. The product amidine D was used as-is in subsequent steps without further purification.
Step 4:
Pyrimidone formation: Amidine D was suspended in ethanol, and stirred vigorously at 23 C to encourage full solvation. The reaction was further treated with sodium 3-ethoxy-2-fluoro-3-oxoprop-1-en-1-olate (e.g., 3 equiv.), and the flask was equipped with a reflux condenser. The reaction was placed into a pre-heated oil bath maintained at 90 C and stirred until full consumption of starting material was observed on the LC/MS
(reaction times were typically 1 h). The contents were cooled to 23 C, and the reaction mixture acidified with HC1 (e.g., 3 equiv., 1.25M solution in Et0H). The mixture was stirred for 30 minutes, and the majority of the solvent was removed in vacuo. Contents were re-suspended in ether and water (1:1 mixture), and the resulting slurry was stirred for 20 min. The suspension was vacuum filtered, and the solid cake was rinsed with additional water and ether and dried on high vacuum overnight. The resulting pyrimidone E was used as-is in subsequent steps without further purification.
General procedure B

F F

N N
.........(i /)--N -1.-iR2 ----N
1\1........._ Nv...........N,Ri CI
F k2 F
Intermediate 1
[00274] A solution of amino nucleophile (3 equiv.), triethylamine (10 equiv.), and Intermediate 1 (1 equiv.) was stirred in dioxane and water (2:1 ratio) at 90 C until complete consumption of starting material was observed by LC/MS. The solution was diluted with aqueous 1N hydrochloric acid and dichloromethane. The layers were then separated and the aqueous layer was extracted with dichloromethane. The organics were combined, dried over magnesium sulfate, filtered, and the solvent was removed in vacuo.
Purification yielded the desired product.
General procedure C
F 0, ,o, ,0 F
0C.c,i _ . H3C)II IICH3 CN___ =
0õ0 P
N /-----_/ % N
N s 0 H3C ........./N
.........(1 is Et3N 0 -----N ---N
N\J _____________________________________________ I N \s,...Nõ..\\---R3 ¨NH2 --\---. H
Intermediate 2 A mixture of Intermediate 2 (this intermediate was described in previously published patent application W02012/3405 Al; 1 equivalent) and carboxylic acid (1.1 equivalent) in N,N-dimethylformamide was treated with triethylamine (4 equivalent) followed by a 50% in ethyl acetate solution of propylphosphonic anhydride (T3P, 1.4 equivalent).
The reaction was heated to 80 C for 24 h, after which the reaction was diluted with water and 1N hydrochloric acid solution. Contents were extracted with dichloromethane, then ethyl acetate. The combined organic layers were dried over sodium sulfate, filtered, and concentrated in vacuo. Purification yielded the desired product.
Synthesis of Intermediate 1 F F
O-N
. O-N
*
)1N
N\.,_....0 N\_.........ci F F
Intermediate 1 A suspension of 5-fluoro-2-(1-(2-fluorobenzy1)-5-(isoxazo1-3-y1)-1H-pyrazo1-3-y1)--pyrimidin-4-ol (generated via general procedure A, using 1-(isoxazol-3-ypethanone in step 1 and 2-fluorobenzylhydrazine in step 2, 11.5 g, 32.4 mmol, 1 equiv.) in phosphoryl trichloride (60.3 mL, 647 mmol, 20 equiv.) was heated at 60 C for 3 h. The solution was cooled to 23 C, and poured portionwise over the course of 15 min into ice water (800 mL) with stirring. After completion of addition, contents were stirred for an additional 15 min, and diluted with dichloromethane (500 mL). The layers were separated and the aqueous layer was extracted with dichloromethane (2 x 200 mL). The organics were dried over magnesium sulfate, filtered, and the solvent was removed in vacuo to yield Intermediate 1 (12.5 g, 103 %
yield) as a tan solid.
1H NMR (500 MHz, DMSO-d6) 6 9.11 (d, 1 H), 9.04 (s, 1 H), 7.71-7.68 (m, 1 H), 7.37-7.30 (m, 2 H), 7.25-7.20 (m, 1 H), 7.12 (t, 1 H), 6.92 (td, 1 H), 5.95 (s, 2 H).
Compound 1-248 A mixture of Intermediate 1 (48 mg, 1 equiv.), (R)-3-methyl-2-((methylamino)methyl) butanoic acid, (99 mg, TFA salt, 3 equiv.), and triethylamine (0.177 mL, 10 equiv.) was heated to 100 C as a solution in dioxane/water (2:1) for 20 h, following General Procedure B The contents were treated with 3N HC1, and partitioned between a 1:1 mixture of dichloromethane and water. The layers were separated, and the aqueous layer was treated with a small amount of sodium chloride. The aqueous layer was then extracted with dichloromethane (x3), and the organic portions were combined and washed with brine. The mixture was dried over MgSO4, filtered, and concentrated in vacuo. The crude material was purified via silica gel chromatography utilizing a 0-10% methanol/dichloromethane gradient to deliver the desired compound, Compound 1-248 (20 mg, 93%) as an off-white solid.
1H-NMR (500 MHz, Me0D) 6 8.74 (d, 1 H), 8.09 (d, 1 H), 7.38 (s, 1 H), 7.29-7.23 (m, 1 H), 7.10-7.05 (m, 1 H), 7.02 (td, 1 H), 6.87-6.83 (m, 1 H), 6.83 (d, 1 H), 5.98-5.89 (m, 2 H), 4.15 (dd, 1 H), 3.81 (dd, 1 H), 3.33 (d, 3 H), 2.72-2.65 (m, 1H), 1.94 (dq, 1 H), 1.09 (d, 3 H), 1.01 (d, 3H).

Compound 1-250 The title compound was prepared following general procedure B, except 1-((methylamino)methyl) cyclopropanecarboxylic acid (as the TFA salt) was the amine reactant, contents were heated to 100 C for 20 h, and the aqueous layer during workup was treated with sodium chloride. The crude material was purified via silica gel chromatography utilizing a 0-10% methanol/dichloromethane gradient to deliver the desired compound, Compound 1-250 (40 mg, 54%) as an off-white solid.
1H-NMR (500 MHz, Me0D) 6 8.74 (d, 1 H), 8.07 (d, 1 H), 7.36 (s, 1 H), 7.29-7.23 (m, 1 H), 7.11-7.05 (m, 1 H), 7.03 (td, 1 H), 6.88 (d, 1 H), 6.85 (td, 1 H), 5.93 (s, 2 H), 4.14 (s, 2 H), 3.35 (d, 3 H), 1.30-1.25 (m, 2 H), 1.07-1.03 (m, 2 H).
Compound 1-252 The title compound was prepared following general procedure B, except 2-ethyl-2-((methylamino)methyl)butanoic acid (as the TFA salt) was the amine reactant, contents were heated at 100 C for 20 h, and the aqueous layer during workup was treated with sodium chloride. The crude material was purified via silica gel chromatography utilizing a 0-10% methanol/dichloromethane gradient to deliver the desired compound, Compound 1-252 (33 mg, 39%) as a white solid.
1H-NMR (500 MHz, CD3OD ) 6 8.80 (d, 1 H), 8.25 (d, 1 H), 7.50 (s, 1 H), 7.32-7.26 (m, 1 H), 7.12-7.06 (m, 1 H), 7.04 (t, 1 H), 6.94 (t, 1 H), 6.91 (d, 1 H), 5.97 (s, 2 H), 4.20 (s, 2 H), 3.46 (d, 3 H), 1.86-1.77 (m, 2 H), 1.68 (dq, 2 H), 0.91 (t, 6 H).
Compound 1-253 The title compound was prepared following general procedure B, except (S)-3-methyl-2-((methylamino)methyl)butanoic acid (as the TFA salt) was the amine reactant, contents were heated at 100 C for 20 h, and the aqueous layer during workup was treated with sodium chloride. The crude material was purified via silica gel chromatography utilizing a 0-10% methanol/dichloromethane gradient to deliver the desired compound, Compound 1-253 (26 mg, 64%) as a white solid.
1H-NMR (500 MHz, CD30D) 6 8.74 (d, 1 H), 8.08 (d, 1 H), 7.37 (s, 1 H), 7.28-7.22 (m, 1 H), 7.10-7.05 (m, 1 H), 7.02 (t, 1 H), 6.84 (t, 1 H), 6.82 (d, 1 H), 5.97-5.88 (m, 2 H), 4.15 (dd, 1 H), 3.79 (dd, 1 H), 3.32 (d, 3 H), 2.70-2.64 (m, 1 H), 1.93 (dq, 1 H), 1.08 (d, 3 H), 1.01 (d, 3 H).
Compound 1-260 The title compound was prepared following general procedure B, except 4-benzylpiperidine-4-carboxylic acid was the amine reactant, contents were heated to 100 C
for 20 h, and the aqueous layer during workup was treated with sodium chloride. The crude material was purified via silica gel chromatography utilizing a 0-10%
methanol/dichloromethane gradient to deliver the desired, Compound 1-260 (26 mg, 64%) as a white solid.
1H-NMR (500 MHz, CD30D) 6 8.74 (d, 1 H), 8.11 (d, 1 H), 7.41 (s, 1 H), 7.29-7.22 (m, 3 H), 7.22-7.15 (m, 3 H), 7.11-7.06 (m, 1 H), 7.05-7.00 (m, 1 H), 6.91 (d, 1 H), 6.84-6.79 (m, 1 H), 5.96 (s, 2 H), 4.57 (d, 2 H), 3.29-3.23 (m, 2 H), 2.90 (s, 2 H), 2.19 (d, 2 H), 1.68 - 1.61 (m, 2 H).
Compound 1-262 The title compound was prepared following general procedure B, except ethyl 2-methylpiperidine-2-carboxylate was the amine reactant, contents were heated to 100 C for 19 h, and the aqueous layer during workup was treated with sodium chloride.
The crude material was purified via reverse phase HPLC utilizing a 5-75%
acetonitrile/water gradient to deliver the desired compound, Compound 1-262 (1.1 mg, 8%) as a white solid.
1H-NMR (500 MHz, CD30D) 6 8.82 (d, 1 H), 8.33 (d, 1 H), 7.47 (s, 1 H), 7.32-7.26 (m, 1 H), 7.12-7.07 (m, 1 H), 7.05 (t, 1 H), 6.92 (t, 1 H), 6.88 (d, 1 H), 6.03-5.95 (m, 2 H), 4.32-4.24 (m, 1 H), 3.63 (dt, 1 H), 2.14 (ddd, 1 H), 2.01-1.79 (m, 5 H), 1.76 (s, 3 H).
Compound 1-265 The title compound was prepared following general procedure B, except 3-phenylpyrrolidine-3-carboxylic acid was the amine reactant, contents were heated to 100 C
for 24 h, and the aqueous layer during workup was treated with sodium chloride. The crude material was purified via silica gel chromatography utilizing a 0-10%
methanol/dichloromethane gradient to deliver the desired compound, Compound 1-265 (29 mg, 45%) as an off-white solid.
1H-NMR (500 MHz, CD30D) 6 8.74 (d, 1 H), 8.11 (d, 1 H), 7.51-7.44 (m, 3 H), 7.40-7.36 (m, 2 H), 7.32-7.23 (m, 2 H), 7.12-7.06 (m, 1 H), 7.03 (t, 1 H), 6.92 (s, 1 H), 6.81 (t, 1 H), 5.96 (s, 2 H), 4.03-3.96 (m, 1 H), 3.91 (d, 1 H), 3.87 (br. s., 1 H), 3.07-3.00 (m, 1 H), 2.41-2.32 (m, 1 H).
Compound 1-267 The title compound was prepared following general procedure B, except 3,3-dimethylpiperidine-2-carboxylic acid (as the HC1 salt) was the amine reactant, contents were heated to 100 C for 18 h, and the aqueous layer during workup was treated with sodium chloride. The crude material was purified via silica gel chromatography utilizing a 0-10%

methanol/dichloromethane gradient to deliver the desired compound, Compound 1-267 (15 mg, 17%) as a white solid.
1H-NMR (500 MHz, CD30D) 6 8.81 (d, 1 H), 8.35 (d, 1 H), 7.57 (s, 1 H), 7.32-7.26 (m, 1 H), 7.12-7.07 (m, 1 H), 7.04 (t, 1 H), 6.94-6.90 (m, 2 H), 5.99 (s, 2 H), 4.99 (s, 1 H), 4.62 (d, 1 H), 3.86 (td, 1 H), 2.07-1.96 (m, 1 H), 1.95-1.87 (m, 1 H), 1.81-1.75 (m, 1 H), 1.50 (d, 1 H), 1.22 (s, 3 H), 1.17 (s, 3 H).
Compoud 1-269 The title compound was prepared following general procedure B, except 3-aminobicyclo[1.1.1]pentane-1-carboxylic acid (as the TFA salt) was the amine reactant, contents were heated at 100 C for 18 h, and the aqueous layer during workup was treated with sodium chloride.
The crude material was purified via silica gel chromatography utilizing a 0-10%
methanol/dichloromethane gradient to deliver the desired compound, Compound 1-269 (11 mg, 16%) as a white solid.
1H-NMR (500 MHz, CD3OD 6 8.76 (d, 1 H), 8.08 (d, 1 H), 7.36 (s, 1 H), 7.30-7.23 (m, 1 H), 7.12-7.06 (m, 1 H), 7.04 (t, 1 H), 6.96 (d, 1 H), 6.91 (t, 1 H), 5.94 (s, 2 H), 2.53 (s, 6 H).
Compound 1-80 The title compound was prepared following general procedure B, except L-phenylalanine was the amine reactant and the contents were heated to 90 C for 48 h as a solution in THF/water (2:1). The contents were concentrated in vacuo, and the crude material was purified via reverse phase HPLC utilizing a 5-75% acetonitrile/water gradient to deliver the desired product, Compound 1-80 (1.3 mg, 4%) as a white solid.
1H-NMR (500 MHz, CD3ODMe0D) 6 8.81 (s, 1 H), 8.20 (d, 1 H), 7.51-7.48 (m, 1 H), 7.34-7.26 (m, 3 H), 7.22 (t, 2 H), 7.17-7.03 (m, 3 H), 6.96 (s, 1 H), 6.90 (t, 1H), 6.00 (s, 2 H), 5.36-5.29 (m, 1 H), 3.48 (d, 1 H), 3.24-3.18 (m, 1 H).
Compound 1-81 The title compound was prepared following general procedure B, except L-tryptophan was the amine reactant and the contents were heated at 90 C for 48 h as a solution in THF/water (2:1).
The contents were concentrated in vacuo, and theresidue was purified via reverse phase HPLC
utilizing a 5-75% acetonitrile/water gradient to deliver the desired compound, Compound 1-81 (7.3 mg, 18%) as a brown solid.
1H-NMR (500 MHz, CD30D) 6 8.86-8.83 (m, 1 H), 8.16 (d, 1 H), 7.69 (d, 1 H), 7.33-7.27 (m, 1 H), 7.16 (d, 1 H), 7.13-7.04 (m, 4 H), 7.01-6.96 (m, 1 H), 6.95-6.88 (m, 3 H), 5.96 (s, 2 H), 5.51 (dd, 1 H), 3.74-3.67 (m, 1 H), 3.30-3.25 (m, 1 H).

Compound 1-85 The title compound was prepared following general procedure B, except 1-aminocyclopropanecarboxylic acid was the amine reactant and the contents were heated at 90 C for 48 h as a solution in THF/water (2:1). The contents were concentrated in vacuo, and the residue was purified via reverse phase HPLC utilizing a 5-95%
acetonitrile/water gradient to deliver the desired compound, Compound 1-85 (7.3 mg, 18%) as a clear oil.
1H-NMR (500 MHz, CD30D) 6 8.83 (d, 1 H), 8.38 (d, 1 H), 7.47 (s, 1 H), 7.34-7.28 (m, 1 H), 7.13-7.04 (m, 2 H), 6.99-6.95 (m, 2 H), 6.02 (s, 2 H), 1.84-1.79 (m, 2 H), 1.43-1.38 (m, 2 H).
Compound 1-93 The title compound was prepared following general procedure B, except (3-aminooxetan-3-yl)methanol was the amine reactant and the contents were heated at 170 C
for 15 min in the microwave as a solution in THF/water (2:1). The contents were concentrated in vacuo, and the residue was purified via reverse phase HPLC utilizing a 5-75%
acetonitrile/water gradient to deliver the desired compound, Compound 1-93 (0.6 mg, 4%) as a clear oil.
1H-NMR (500 MHz, CD30D) 6 8.85 (d, 1 H), 8.55 (s, 1 H), 7.69 (s, 1 H), 7.32 -7.37 (m, 1 H), 7.09 - 7.17 (m, 3 H), 6.97 (d, 1 H), 6.01 (s, 2 H), 5.00 (s, 2 H), 3.76 (q, 4 H).
Compound 1-102 The title compound was prepared following general procedure B, except methyl 2-amino-2-(oxetan-3-yl)acetate was the amine reactant and the contents were heated at 100 C
for 42 h as a solution in THF/water (2:1). The contents were concentrated in vacuo, and the residue was purified via reverse phase HPLC utilizing a 5-75%
acetonitrile/water gradient to deliver the desired compound, Compound 1-102 (0.6 mg, 2%) as a clear oil.
1H-NMR (500 MHz, CD30D) 6 8.80 (d, 1 H), 8.30 (d, 1 H), 7.50 (s, 1 H), 7.32-7.27 (m, 1 H), 7.12-7.03 (m, 2 H), 6.92 (t, 1 H), 6.89 (d, 1 H), 5.99 (s, 2 H), 5.23 (d, 1 H), 4.65 (t, 1 H), 4.31 (t, 1 H), 3.83-3.74 (m, 2 H), 3.02 (dtd, 1 H).
Compound 1-109 The title compound was prepared following general procedure B, except no amine reactant was used, DBU was used in place of triethylamine, and the contents were heated at 100 C for 18 h as a solution in THF/water (2:1). The contents were concentrated in vacuo, and the residue was purified via reverse phase HPLC utilizing a 5-75 % acetonitrile/water gradient to deliver the desired compound, Compound 1-109 (7 mg, 35 %) as a clear oil.

1H-NMR (500 MHz, CD30D) 6 8.84 (d, 1 H), 8.26 (d, 1 H), 7.67 (s, 1 H), 7.25-7.28 (m, 1 H), 7.14-7.05 (m, 2 H), 7.02 (d, 1 H), 7.01- 6.97 (m, 1 H), 6.03 (s, 2 H), 3.79 (t, 2 H), 3.56-3.47 (m, 4 H), 2.56-2.50 (m, 2 H), 1.99 (quintet, 2 H), 1.80-1.73 (m, 2 H), 1.72 -1.61 (m, 4 H).
Compound 1-108 The title compound was prepared following general procedure B, except D-tryptophan was the amine reactant and the contents were heated at 100 C for 18 h as a solution in THF/water (2:1).
The contents were treated with 3N HC1 solution, solvent was removed in vacuo, and the resulting solid was washed with H20, then purified via reverse phase HPLC
utilizing a 5-75 %
acetonitrile/water gradient to deliver the desired compound, Compound 1-108 (3.5 mg, 16 %) as a clear oil.
1H-NMR (500 MHz, CD30D) 6 8.85 (d, 1 H), 8.16 (d, 1 H), 7.69 (d, 1 H), 7.33-7.27 (m, 1 H), 7.17 (d, 1 H), 7.13-7.05 (m, 4 H), 7.01-6.96 (m, 1 H), 6.95-6.89 (m, 3 H), 5.97 (s, 2 H), 5.50 (dd, 1 H), 3.70 (dd, 1 H), 3.28 (d, 1 H).
Compound 1-116 The title compound was prepared following general procedure B, except D-phenylalanine was the amine reactant and the contents were heated to 100 C for 18 h as a solution in THF/water (2:1). The contents were treated with 3N HC1 solution, solvent was removed in vacuo, and the resulting residue was purified via reverse phase HPLC utilizing a 5-75 %
acetonitrile/water gradient to deliver the desired compound, Compound 1-116 (25 mg, 61 %) as a solid.
1H-NMR (500 MHz, CD30D, Me0D) 6 8.77 (s, 1 H), 8.13 (d, 1 H), 7.43 (s, 1 H), 7.31 (d, 2 H), 7.28-7.18 (m, 3 H), 7.16-7.11 (m, 1 H), 7.09-7.03 (m, 1 H), 7.01 (t, 1 H), 6.91 (s, 1 H), 6.85 (t, 1 H), 5.94 (s, 2 H), 5.26 (dd, 1 H), 3.45 (dd, 1 H), 3.19 (dd, 1 H).
Compound 1-117 The title compound was prepared following general procedure B, except L-phenylglycine was the amine reactant and the contents were heated to 100 C for 18 h as a solution in THF/water (2:1). The contents were treated with 3N HC1 solution, solvent was removed in vacuo, and the resulting solid was purified via reverse phase HPLC utilizing a 5-75 %
acetonitrile/water gradient to deliver the desired compound, Compound 1-117 (26 mg, 63 %) as a solid.
1H-NMR (500 MHz, CD30D) 6 8.81 (s, 1 H), 8.29 (d, 1 H), 7.61 (d, 2 H), 7.52 (s, 1 H), 7.46-7.36 (m, 3 H), 7.27 (q, 1 H), 7.10-7.05 (m, 1 H), 7.03 (t, 1 H), 6.95-6.90 (m, 2 H), 6.02 (s, 1 H), 5.97 (s, 2 H).
Compound 1-118 The title compound was prepared following general procedure B, except D-phenylglycine was the amine reactant and the contents were heated to 100 C for 18 h as a solution in THF/water (2:1). The contents were treated with 3N HC1 solution, solvent was removed in vacuo, and the resulting solid was purified via reverse phase HPLC utilizing a 5-75 %
acetonitrile/water gradient to deliver the desired compound, Compound 1-118 (22 mg, 53 %) as a solid.
1H-NMR (500 MHz, CD30D) 6 8.81 (s, 1 H), 8.30 (d, 1 H), 7.60 (d, 2 H), 7.53 (s, 1 H), 7.46-7.37(m, 3 H), 7.28 (q, 1 H), 7.11-7.06(m, 1 H), 7.04(t, 1 H), 6.96-6.91 (m, 2 H), 6.02(s, 1 H), 5.99 (s, 2 H).
Compound 1-142 The title compound was prepared following general procedure B, except N-methyl phenylglycine was the amine reactant and the contents were heated to 100 C
for 18 h as a solution in THF/water (2:1). The contents were treated with 3N HC1 solution, solvent was removed in vacuo, and the resulting solid was purified via reverse phase HPLC
utilizing a 5-75 % acetonitrile/water gradient to deliver the desired compound (15 mg, 52 %) as a solid.
1H-NMR (500 MHz, Me0D) 6 8.80 (d, 1 H), 8.45-8.39 (m, 1 H), 7.58-7.55 (m, 1 H), 7.50-7.44 (m, 5 H), 7.34-7.27 (m, 1 H), 7.14-7.04 (m, 2 H), 7.00-6.94 (m, 1 H), 6.90 (d, 1 H), 6.61-6.55 (m, 1 H), 6.02 (s, 2 H), 3.25-3.20 (m, 3 H).
Compound 1-120 The title compound was prepared following general procedure B, except 1-(aminomethyl)cyclopropanecarboxylic acid was the amine reactant, contents were heated at 100 C for 22 h, and the aqueous layer during workup was treated with sodium chloride. The crude material was purified via silica gel chromatography utilizing a 0-10%
methanol/dichloromethane gradient to deliver the desired compound, Compound 1-120 (20 mg, 42%) as a white solid.
1H-NMR (500 MHz, CD30D) 6 8.75 (d, 1 H), 8.05 (d, 1 H), 7.39 (s, 1 H), 7.30-7.24 (m, 1 H), 7.12-7.06 (m, 1 H), 7.03 (t, 1 H), 6.89 (d, 1 H), 6.84 (t, 1 H), 5.95 (s, 2 H), 3.88 (s, 2 H), 1.25-1.20 (m, 2 H), 1.15-1.10 (m, 2 H).
Compound 1-207 The title compound was prepared following general procedure B, except N-methyl-L-alanine was the amine reactant, contents were heated to 100 C for 22 h, and the aqueous layer during workup was treated with sodium chloride. The crude material was purified via silica gel chromatography utilizing a 0-10% methanol/dichloromethane gradient to deliver the desired compound, Compound 1-207(20 mg, 57%) as a white solid.
1H-NMR (500 MHz, CD30D) 6 8.74 (d, 1 H), 8.16 (d, 1 H), 7.40 (s, 1 H), 7.29-7.23 (m, 1 H), 7.11-7.05 (m, 1 H), 7.02 (t, 1 H), 6.87 (d, 1 H), 6.82 (t, 1 H), 5.94 (s, 2 H), 5.10 (q, 1 H), 3.33 (d, 3 H), 1.59 (d, 3 H).

Compound 1-217 The title compound was prepared following general procedure B, except 2-(aminomethyl)-2-ethylbutanoic acid was the amine reactant, contents were heated to 100 C
for 22 h, and the aqueous layer during workup was treated with sodium chloride. The crude material was purified via silica gel chromatography utilizing a 0-10%
methanol/dichloromethane gradient to deliver the desired compound, Compound 1-217 (20 mg, 50%) as a clear oil.
1H-NMR (500 MHz, CD30D) 6 8.76-8.72 (m, 1 H), 8.07-8.03 (m, 1 H), 7.42-7.39 (m, 1 H), 7.29-7.22 (m, 1 H), 7.11-7.04 (m, 1 H), 7.02 (t, 1 H), 6.89-6.81 (m, 2 H), 5.94 (s, 2 H), 3.91 (s, 2 H), 1.68 (q, 4 H), 0.98-0.90 (t, 6 H).
Compound 1-224 and Compound 1-225 The title compounds were prepared following general procedure B, except 2-amino-5,5,5-trifluoro-4-methylpentanoic acid was the amine reactant, contents were heated to 100 C for 18 h, and the aqueous layer during workup was treated with sodium chloride. The crude material was purified via reverse phase HPLC utilizing a 5-75%
acetonitrile/water gradient to deliver the desired diastereomers, Compound 1-224 (3.3 mg, 7%, eluting first on the LCMS) as a white solid and Compound 1-225 (2 mg, 5%, eluting second on the LCMS) as a white solid.
1H-NMR for Compound 1-224 (500 MHz, CD30D) 6 8.75 (d, 1 H), 8.15 (d, 1 H), 7.38 (s, 1 H), 7.29-7.24 (m, 1 H), 7.11-7.06 (m, 1 H), 7.03 (t, 1 H), 6.86 (d, 1 H), 6.83 (t, 1 H), 5.95 (s, 2 H), 4.94 (t, 1 H), 2.60 (dd, 1 H), 2.45-2.38 (m, 1 H), 1.96-1.89 (m, 1 H), 1.25 (d, 3 H).
1H-NMR for Compound 1-225 (500 MHz, CD30D) 6 8.81 (d, 1 H), 8.34 (d, 1 H), 7.58 (s, 1 H), 7.33-7.27 (m, 1 H), 7.13-7.08 (m, 1 H), 7.06 (t, 1 H), 6.99-6.92 (m, 2 H), 6.01 (s, 2 H), 5.26 (dd, 1 H), 2.53-2.42 (m, 1 H), 2.42-2.33 (m, 1 H), 2.13 (ddd, 1 H), 1.24 (d, 3 H).
Compound 1-226 The title compound was prepared following general procedure B, except 2-amino-3-fluoro-3-methylbutanoic acid was the amine reactant, contents were heated to 100 C for 20 h, and the aqueous layer during workup was treated with sodium chloride. The crude material was purified via silica gel chromatography utilizing a 0-10%
methanol/dichloromethane gradient to deliver the desired compound, Compound 1-226 (11 mg, 42%) as a white solid.
1H-NMR (500 MHz, CD30D) 6 8.75 (d, 1 H), 8.16 (d, 1 H), 7.44 (s, 1 H), 7.30-7.22 (m, 1 H), 7.11-7.06 (m, 1 H), 7.02 (t, 1 H), 6.90 (d, 1 H), 6.81 (t, 1 H), 5.95 (s, 2 H), 5.13 (d, 1 H), 1.65-1.58 (m, 3 H), 1.58-1.51 (m, 3 H).

Compound 1-227 The title compound was prepared following general procedure B, except (S)-2-amino-2-cyclopropylacetic acid was the amine reactant, contents were heated to 100 C
for 20 h, and the aqueous layer during workup was treated with sodium chloride. The crude material was purified via silica gel chromatography utilizing a 0-10%
methanol/dichloromethane gradient to deliver the desired compound, Compound 1-227 (21 mg, 86%) as a white solid.
1H-NMR (500 MHz, Me0D) 6 8.74 (d, 1 H), 8.10 (d, 1 H), 7.37 (s, 1 H), 7.28-7.22 (m, 1 H), 7.11-7.05 (m, 1 H), 7.02 (t, 1 H), 6.85 (d, 1 H), 6.82 (t, 1 H), 5.93 (s, 2 H), 3.96 (d, 1 H), 1.38-1.28 (m, 1 H), 0.75-0.64 (m, 3 H), 0.53-0.47 (m, 1 H).
Compound 1-239 The title compound was prepared following general procedure B, except (S)-N-methyl-2-amino-2-cyclopropylacetic acid was the amine reactant, contents were heated to 100 C for 20 h, and the aqueous layer during workup was treated with sodium chloride. The crude material was purified via silica gel chromatography utilizing a 0-10%
methanol/dichloromethane gradient to deliver the desired compound, Compound 1-239 (4 mg, 20%) as a white solid.
1H-NMR (500 MHz, CD30D) 6 8.75 (d, 1 H), 8.16 (d, 1 H), 7.39 (s, 1 H), 7.26 (ddd, 1 H), 7.08 (ddd, 1 H), 7.04-7.00 (m, 1 H), 6.86 (d, 1 H), 6.82 (td, 1 H), 5.94 (s, 2 H), 4.19 (d, 1 H), 3.48 (d, 3 H), 1.53-1.44 (m, 1 H), 0.91-0.83 (m, 1 H), 0.76-0.64 (m, 2 H), 0.44 (dq, 1 H).
Compound 1-240 The title compound was prepared following general procedure B, excep (R)-2-amino-2-cyclopropylacetic acid was the amine reactant, contents were heated to 100 C
for 2 h, and the aqueous layer during workup was treated with sodium chloride.
The crude material was purified via silica gel chromatography utilizing a 0-10%
methanol/dichloromethane gradient to deliver the desired compound, Compound 1-240 (46 mg, 93%) as a white solid.
1H-NMR (500 MHz, CD30D) 6 8.74 (d, 1 H), 8.10 (d, 1 H), 7.36 (s, 1 H), 7.28-7.22 (m, 1 H), 7.07 (ddd, 1 H), 7.01 (td, 1 H), 6.84 (d, 1 H), 6.81 (td, 1 H), 5.93 (s, 2 H), 3.96 (d, 1 H), 1.38-1.30 (m, 1 H), 0.74-0.65 (m, 3 H), 0.52-0.47 (m, 1 H).
Compound 1-241 The title compound was prepared following general procedure B, excep (R)-N-methyl-2-amino-2-cyclopropylacetic acid (as the TFA salt) was the amine reactant, contents were heated to 100 C for 20 h, and the aqueous layer during workup was treated with sodium chloride. The crude material was purified via silica gel chromatography utilizing a 0-10% methanol/dichloromethane gradient to deliver the desired compound, Compound 1-241 (20 mg, 93%) as a white solid.
1H-NMR (500 MHz, CD30D) 6 8.74 (d, 1 H), 8.15 (d, 1 H), 7.38 (s, 1 H), 7.28-7.22 (m, 1 H), 7.10-7.04 (m, 1 H), 7.04-6.99 (m, 1 H), 6.85 (d, 1 H), 6.82 (t, 1 H), 5.93 (s, 2 H), 4.18 (d, 1 H), 3.48 (d, 3 H), 1.53-1.44 (m, 1 H), 0.91-0.82 (m, 1 H), 0.76-0.64 (m, 2 H), 0.48-0.41 (m, 1 H).
Compound 1-90 The title compound was prepared following general procedure B, except (S)-indoline-2-carboxylic acid was the amine reactant (1 equiv.), and the contents were heated at 90 C for 12 h as a solution in THF/water (1:1), followed by heating at 125 C for 15 min in the microwave. The contents extracted with ethyl acetate during workup. The crude material was purified via by reverse phase HPLC using 5 to 95% acetonitrile in water spiked with 0.1%
trifluoroacetic acid to afford the desired compound, Compound 1-90 (3.9 mg, 15% yield) as an off-white solid.
1H-NMR (500 MHz, DMSO-d6) 6 (ppm): 9.10 - 9.21 (d, 1H), 8.61 - 8.75 (m, 1H), 8.47 - 8.57 (d, 1H), 7.49 - 7.58 (s, 1H), 7.33 - 7.41 (m, 1H), 7.22 - 7.33 (m, 4H), 7.10 -7.20 (m, 2H), 6.98 - 7.10 (m, 1H), 5.95 (s, 2H), 5.39 - 5.53 (m, 1H), 3.64 - 3.74 (dd, 1H), 3.20 -3.32 (dd, 2H).
Compound 1-91 The title compound was prepared following general procedure B, except (R)-indoline-2-carboxylic acid was the amine reactant (1 equiv.), and the contents were heated to 90 C for 12 h as a solution in THF/water (1:1), followed by heating at 125 C for 15 min in the microwave. Contents extracted with ethyl acetate during workup. The crude material was purified via reverse phase HPLC using a 5-95% acetonitrile in water gradient (in 0.1% TFA) to deliver the desired compound, Compound 1-91 Compound obtained following usual procedure (1.9 mg, 7%).
1H NMR (500 MHz, CD3CN) 6 (ppm): 8.68 - 8.75 (d, 1H), 8.35 - 8.49 (m, 2H), 7.42 -7.49 (m, 1H), 7.27 - 7.41 (m, 3H), 7.05 - 7.24 (m, 4H), 6.91 - 6.96 (m, 1H), 5.97 (s, 2H), 5.38 - 5.48 (m, 1H), 3.65 - 3.79 (dd, 1H), 3.31 - 3.44 (dd, 1H).
Compound 1-114 Purification was achieved by reverse phase HPLC using 5-75% acetonitrile in water over 30 minutes (spiked with 0.1% trifluoroacetic acid) to afford the desired compound (1.6 mg, 4%

yield) as a clear oil. Only the later running diastereomer (Compound 1-114) was purified from this reaction mixture.
1H NMR (500 MHz, 500 MHz, CD3CN) 6 (ppm): 8.85 (s, 1H), 8.33 (d, 1H), 7.40 -7.48 (m, 1H), 7.28 - 7.38 (m, 1H), 7.04 - 7.19 (m, 2H), 6.90 - 7.00 (m, 2H), 6.03 (s, 2H), 3.13 - 3.17 (m, 1H), 2.47 - 2.59 (m, 1H), 2.36 - 2.42 (m, 1H), 2.03 - 2.17 (m, 1H), 1.77 -1.85 (m, 1H), 1.65 -1.74 (m, 2H), 1.49 - 1.60 (m, 2H), 1.38 - 1.47 (m, 1H).
Compound 1-107 The title compound was prepared following general procedure B, except (1S,2S,5R)-3-azabicyclo[3.1.0]hexane-2-carboxylic acid was the amine reactant (1 equiv.), 3 equivalents of triethyl amine was used, and the contents were heated to 70 C
for 14 h as a solution in THF/water (10:1). Contents extracted with ethyl acetate during workup, dried, filtered, and concentrated to deliver the desired compound. Compound 1-107 (38.3 mg, 100 %
yield) was obtained as a light-tan solid. No purification was necessary for this compound.
1H NMR (500 MHz, CD30D) 6 ppm: 8.79 (s, 1 H), 8.23 (d, 1 H), 7.36-7.46 (br. s, 1 H), 7.25 -7.31 (m, 1 H), 7.06 - 7.12 (m, 1 H), 7.01 - 7.06 (m, 1 H), 6.83 - 6.90 (m, 2 H, 2 shifts overlapping), 5.96 (s, 2 H), 4.18 (dd, 1 H), 4.02 -4.08 (m, 1 H), 1.93 - 2.02 (m, 1 H), 0.83 -0.93 (m, 4 H).
Compound 1-129 Purification was achieved by silica gel chromatography using 1 to 10% methanol in dichloromethane over 30 minutes to afford Compound 1-129 (21.7 mg, 57% yield) as a white solid.
1H NMR (400 MHz, CDC13) 6 (ppm): 8.45 - 8.57 (m, 2H, 2 shifts isochronous) 7.40 - 7.48 (m, 3H), 7.24 - 7.40 (m, 1H), 6.93 - 7.09 (m, 2H), 6.58 - 6.68 (m, 1H), 5.90 (s, 2H), 3.74 - 3.90 (m, 2H), 1.99 - 2.20 (m, 2H),1.70 - 1.89 (m, 4H), 1.55 - 1.69 (m, 2H).
Compound 1-124 The title compound was prepared following general procedure B, except 4-methylpiperidine-4-carboxylic acid (as the HC1 salt) was the amine reactant (1.1 equiv.), 4 equivalents of triethyl amine was used, and the contents were heated to 80 C
for 18 h as a solution in THF/water (10:1). Contents extracted with ethyl acetate during workup. The crude material was purified via silica gel chromatography utilizing a 1-10%
methanol/dichloromethane gradient over 30 minutes to deliver the desired compound, Compound 1-124 as an off-white solid (36.1 mg, 95% yield).
1H NMR (400 MHz, CDC13) 6 (ppm): 8.49 (s, 1H), 8.16 - 8.28 (d, 1H), 7.35 -7.44 (m, 1H), 7.17 - 7.26 (m, 1H), 6.95 - 7.10 (m, 2H), 6.87 (m, 1H), 6.62 (s, 1 H), 6.00 (s, 2H), 4.34 - 4.48 (m, 1H), 3.36 - 3.48 (m, 1H), 2.36 - 2.41 (m, 1H), 1.58 - 1.68 (m, 1H), 1.34 (s, 3H), 0.71 -0.81 (m, 4H).
Compound 1-143 The title compound was prepared following general procedure B, except 3-methylpyrrolidine-3-carboxylic acid was the amine reactant (1.05 equiv.), 4 equivalents of triethyl amine was used, and the contents were heated to 80 C for 4 h as a solution in THF/water (10:1). Contents extracted with ethyl acetate during workup. The crude material was purified via silica gel chromatography utilizing a 1-10%
methanol/dichloromethane gradient over 30 minutes to deliver the desired compound, Compound 1-143 as a white solid (18.9 mg, 48% yield).
1H NMR (500 MHz, CDC13) 6 (ppm): 8.45 (s, 1H), 8.12 - 8.19 (d, 1H), 7.30 (s, 1H), 7.27 (s, 1H), 7.14 - 7.22 (m, 1H), 6.98 - 7.05 (m, 1H), 6.93 - 6.98 (m, 1H), 6.80 -6.87 (m, 1H), 6.57 (d, 1H), 5.96 (s, 2H), 4.24 - 4.36 (m, 1H), 3.84 - 4.00 (m, 2H), 3.59 - 3.70 (m, 1H), 2.45 - 2.58 (m, 1H), 1.84 - 2.00 (m, 1H), 1.47 (s, 3H).
Compound 1-152 The title compound was prepared following general procedure B, except 4,4-Dimethyl-pyrrolidine-3-carboxylic acid was the amine reactant (1.05 equiv.), 4 equivalents of triethyl amine was used, and the contents were heated to 90 C for 14 h as a solution in THF/water (10:1). Contents extracted with ethyl acetate during workup. The crude material was purified via silica gel chromatography utilizing a 1-7%
methanol/dichloromethane gradient over 30 minutes to deliver the desired compound, Compound 1-152 as an off-white solid (14.3 mg, 37% yield).
1H NMR (400 MHz, CDC13) 6 (ppm): 8.45 (s, 1H), 8.05 - 8.20 (d, 1H), 7.29 -7.34 (m, 1H), 7.14 - 7.25 (m, 1H), 6.91 - 7.08 (m, 2H), 6.79 - 6.87 (m, 1H), 6.56 - 6.63 (m, 1 H), 5.96 (s, 2H), 4.01 - 4.23 (m, 2H), 3.71 - 3.87 (dd, 1H), 3.53 - 3.65 (dd, 1H), 2.85 - 2.97 (m, 1H), 1.34 (s, 3H), 1.15 (s, 3H).
Compound 1-186 The title compound was prepared following general procedure B, except 4-phenylpiperidine-4-carboxylic acid (as the HC1 salt) was the amine reactant (1.05 equiv.), 4 equivalents of triethyl amine was used, and the contents were heated to 70 C
for 24 h as a solution in THF/water (10:1). Contents extracted with ethyl acetate during workup. The crude material was purified via silica gel chromatography utilizing a 4-7%
methanol/dichloromethane gradient over 40 minutes to deliver the desired compound, Compound 1-186 as a white solid (22.3 mg, 51% yield).

1H NMR (400 MHz, CDC13) 6 (ppm): 8.46 (s, 1H), 8.19 (d, 1 H), 7.44 -7.49 (m, 2H, 2 shifts overlapping), 7.36 - 7.41 (m, 2H), 7.29 - 7.34 (m, 2H), 7.16 - 7.22 (m, 2H), 6.99 - 7.05 (m, 1H), 6.93 - 6.98 (m, 1H), 6.81 - 6.86 (m, 1H), 6.59(m, 1H), 5.97 (s, 2H), 4.50 -4.58 (m, 2H), 3.42 -3.50 (m, 2H), 2.69 - 2.75 (m, 2H), 2.07-2.14 (m, 2H).
Compound 1-194 This compound was prepared following the general procedure B described above, except 4-(aminomethyl)tetrahydro-2H-pyran-4-carboxylic acid was the amine reactant (1.05 equiv.), 4 equivalents of triethyl amine was used, and the contents were heated at 70 C for 6 h as a solution in THF/water (10:1), followed by heating at 90 C for 12 h. Contents extracted with ethyl acetate during workup. and purification was achieved by silica gel chromatography using 4 to 7% methanol in dichloromethane over 40 minutes to deliver the desired compound, Compound 1-194 ((26.8 mg, 66% yield) as a white solid 1H NMR (500 MHz, CDC13) 6 (ppm): 8.46 (s, 1H), 8.10 (d, 1H), 7.28 (s, 1H), 7.18 - 7.24 (m, 1H), 6.94 - 7.07 (m, 3H), 6.58(d, 1H), 5.95 (s, 2H), 5.50 - 5.57 (m, 1H), 3.86 - 3.94 (m, 2H), 3.79 - 3.85 (m, 2H), 3.51 - 3.60 (m, 2H), 2.12 - 2.20 (m, 2H), 1.53 - 1.62 (m, 2H).
Compound 1-228 The title compound was prepared in 4 steps:
Step 1: 1-((4-methylphenylsulfonamido)methyl)cyclopentanecarboxylic acid co2H
04' o HN1 lip Me A slurry of 1-(aminomethyl)cyclopentanecarboxylic acid (316 mg, 1.0 equiv.), p-toluenesulfonyl chloride (505 mg, 1.2 equiv) and 1M aqueous sodium hydroxide solution (6.62 mL, 3.0 equiv.) was heated in water (10 mL) at 90 C for 1 hour, after which the reaction mixture was cooled to 0 C and acidified by the addition of 3M aqueous hydrochloric acid solution. The resulting white precipitate was filtered then washed successively with water and ethanol to afford 1-((4-methylphenylsulfonamido)methyl)cyclopentanecarboxylic acid (383 mg, 58% yield) as a white solid.
1H-NMR (500 MHz, DMSO-d6) 6 (ppm): 12.14 - 12.38 (s, 1H), 7.64 - 7.75 (d, 2H), 7.47 - 7.56 (t, 1H), 7.33 - 7.45 (d, 2H), 2.79 - 2.90 (d, 2H), 2.38 (s, 3H), 1.81 - 1.95 (m, 2H), 1.47 -1.65 (m, 6H).
Step 2: 1-((N,4-dimethylphenylsulfonamido)methyl)cyclopentanecarboxylic acid co2H
'C) 9 N-s Me ii *
0 Me A solution of 1-((4-methylphenylsulfonamido)methyl)cyclopentanecarboxylic acid (383 mg, 1.0 equiv.), iodomethane (0.254 mL, 3.15 equiv.), and 1M aqueous sodium hydroxide solution (5.15 mL, 4.0 equiv.) in water (5 mL) was heated to 75 C for 1.5 hours, after which LCMS
analysis indicated that the reaction was complete. The reaction mixture was cooled to room temperature, washed with dichloromethane (3 x 30 mL), acidified by the addition of 3M
aqueous hydrochloric acid solution, extracted with diethyl ether (3 x 30 mL), dried (sodium sulfate), filtered, and concentrated to afford 14(N,4-dimethylphenylsulfonamido)methyl)cyclopentanecarboxylic acid (343 mg, 86 %
yield) as a yellow-gold solid. No purification was necessary.
1H NMR (500 MHz, CDC13) 6 (ppm): 7.59 - 7.73 (d, 2H), 7.30 - 7.41 (d, 2H), 3.24 -3.39 (s, 2H), 2.71 (s, 3H), 2.45 (s, 3H), 2.06 - 2.22 (m, 2H), 1.69 - 1.88 (m, 6H).
Step 3: 1-((methylamino)methyl)cyclopentanecarboxylic acid hydrobromide /NH HBr Me A solution of 14(N,4-dimethylphenylsulfonamido)methyl)cyclopentanecarboxylic acid (343 mg, 1.0 equiv.) was heated in a 33% glacial acetic acid solution of hydrogen bromide (6.0 mL, 30 equiv.) for 2 hours at 75 C. The reaction was then cooled to room temperature, diluted in water (10 mL), and washed with diethyl ether (3 x 40 mL). The aqueous layer was concentrated to dryness and the resulting solid was recrystallized in acetone to afford 1-((methylamino)methyl)cyclopentanecarboxylic acid hydrobromide (127 mg, 48%
yield) as a crystalline white solid.
1H-NMR (500 MHz, DMSO-d6) 6 (ppm): 12.76 - 13.15 (s, 1H), 8.12 - 8.39 (m, 2H), 2.98 -3.11 (m, 2H), 2.55 (s, 3H), 1.86 - 2.01 (m, 2H), 1.62 (m, 6H).
Step 4: compound 1-228 The title compound was prepared following general procedure B, except 1-((methylamino)methyl)cyclopentanecarboxylic acid (as the HBr salt) was the amine reactant (1.3 equiv.), 4 equivalents of triethyl amine was used, and the contents were heated at 90 C for 6 h as a solution in THF/water (10:1). Contents were extracted with ethyl acetate during workup. Purification was achieved by silica gel chromatography using 2 to 5%
methanol in dichloromethane over 40 minutes. The desired compound was obtained as a white solid (13.4 mg, 45% yield).
1H NMR (400 MHz, CDC13) 6 (ppm): 8.44 (s, 1H), 8.08 (d, 1H), 7.29 (s, 1H), 7.15 - 7.25 (m, 1H), 6.95 - 7.08 (m, 3H), 6.55 - 6.58 (m, 1H), 5.95 (s, 2H), 4.02 (s, 2H), 3.35 (d, 3H), 2.18 -2.29 (m, 2H), 1.57 - 1.79 (m, 6H).

Compound 1-238 The title compound was prepared in 4 steps:

ii HN-0s ii ip Me Step 1: 4-((4-methylphenylsulfonamido)methyl)tetrahydro-2H-pyran-4-carboxylic acid A slurry of 4-(aminomethyl)tetrahydro-2H-pyran-4-carboxylic acid (500 mg, 1.0 equiv.), p-toluenesulfonyl chloride (719 mg, 1.2 equiv.) and 1M aqueous sodium hydroxide solution (9.4 mL, 3.0 equiv.) was heated at 90 C for 1 hour after which the reaction mixture was cooled to 0 C and acidified by the addition of 3M aqueous hydrochloric acid solution. The resulting white precipitate was filtered then washed successively with water and ethanol to afford 4-((4-methylphenylsulfonamido)methyl)tetrahydro-2H-pyran-4-carboxylic acid (840 mg, 85%
yield) as a white solid. No purification was necessary.
1H-NMR (400 MHz, DMSO-d6) 6 (ppm): 12.6 (br. s, 1H), 7.68 (d, 2H), 7.66 (t, 1H), 7.39 (d, 2H), 3.63 - 3.72 (m, 2H), 3.27 - 3.32 (m, 2H), 2.81 (d, 2H), 2.38 (s, 3H), 1.76 - 1.85 (m, 2H), 1.33 - 1.46 (m, 2 H).
Step 2: 4-((N,4-dimethylphenylsulfonamido)methyl)tetrahydro-2H-pyran-4-carboxylic acid ac:\:)2H
o o ii *
N-s Me' il 0 Me A suspension of 4-((4-methylphenylsulfonamido)methyl)tetrahydro-2H-pyran-4-carboxylic acid (840 mg, 1.0 equiv.) in 1M aqueous sodium hydroxide solution (10.7 mL, 4.0 equiv.) and iodomethane (0.528 mL, 3.15 equiv.) was heated to 100 C for two hours after which the reaction mixture was diluted in 3M aqueous hydrochloric acid solution, extracted with dichloromethane (3 x 30 mL), dried (sodium sulfate), filtered and concentrated to afford 44(N,4-dimethylphenylsulfonamido)methyptetrahydro-2H-pyran-4-carboxylic acid (197 mg, 22% yield) as a creme-colored solid. No purification was necessary.
1H NMR (500 MHz, CDC13) 6 (ppm): 7.63 - 7.72 (d, 2H), 7.31 - 7.39 (d, 2H), 3.87 -3.97 (m, 2H), 3.50 - 3.61 (m, 2H), 3.25 (s, 2H), 2.76 (s, 3H), 2.45 (s, 3H), 2.13 -2.23 (m, 2H), 1.62 - 1.74 (m, 2H).
Step3: 4-((methylamino)methyl)tetrahydro-2H-pyran-4-carboxylic acid hydrobromide O
/NH HBr Me A solution of 4-4N,4-dimethylphenylsulfonamido)methyptetrahydro-2H-pyran-4-carboxylic acid (197 mg, 1.0 equiv.) was heated in a 33% glacial acetic acid solution of hydrogen bromide (1 mL, 31 equiv.) at 85 C for 3 hours, after which LCMS analysis indicated that the starting material had been consumed. After cooling the reaction mixture to room temperature, water was added, and the reaction mixture was washed with diethyl ether (3 x 30 mL).
The water layer was concentrated to dryness, and the resulting solid was recrystallized from acetone to afford 4-((methylamino)methyl)tetrahydro-2H-pyran-4-carboxylic acid hydrobromide (54.8 mg, 36% yield) as a white solid.
1H NMR (500 MHz, D20) 6 (ppm): 3.71 - 3.89 (m, 2H), 3.50 - 3.64 (m, 2H), 3.17 (s, 2H), 2.66 (s, 3H), 1.96 - 2.09 (m, 2H), 1.48 - 1.66 (m, 2H).
Step 4: Compound 1-238 This compound was prepared following general procedure B, with the exception that 4-((methylamino)methyl)tetrahydro-2H-pyran-4-carboxylic acid (as the HBr salt) was the amine reactant (1.05 equiv.), 4 equivalents of triethyl amine was used, andthe reaction was conducted in dioxane/water (3:1) at 90 C for 18 hours. Contents extracted with ethyl acetate during workup.and the purification was achieved by silica gel chromatography using 2 to 7%
methanol in dichloromethane over 40 minutes to deliver the desired compound, Compound 1-238, as a white solid (31.0 mg, 43% yield) following the procedure described for above.
1H NMR (400 MHz, CDC13) 6 (ppm): 8.47 (s, 1H), 8.06 (d, 1H), 7.31 (s, 1H), 7.23 - 7.27 (m, 1H), 7.22 (br. s, 1H), 7.00 - 7.09 (m, 3H), 6.59 (d, 1H), 5.96 (s, 2 H), 3.83 -3.95 (m, 4H), 3.47 - 3.56 (m, 2H), 3.40 (d, 3H), 2.20 - 2.26 (m, 2H), 1.51 - 1.64 (m, 2H).
Compound 1-244 The title compound was prepared in 4 steps:
Step 1: 4,4,4-trifluoro-2-(4-methylphenylsulfonamido)butanoic acid F3c\........( co2H

HN-4 Ali 0 lir Me A slurry of 2-amino-4,4,4-trifluorobutanoic acid (300 mg, 1.0 equiv.), p-toluenesulfonyl chloride (437 mg, 1.2 equiv.) and 1M aqueous sodium hydroxide solution (5.73 ml, 3.0 equiv.) was heated in water (4 mL) at 90 C for 1 hour, after the reaction mixture was cooled to 0 C, and acidified by the addition of 3M aqueous hydrochloric acid solution, extracted with dichloromethane (3 x 40 mL), dried (sodium sulfate), filtered and concentrated to afford 4,4,4-trifluoro-2-(4-methylphenylsulfonamido)butanoic acid (175 mg, 29% yield) as a white solid.

1H NMR (500 MHz, CDC13) 6 (ppm): 7.71 - 7.80 (d, 2H), 7.28 (d, 2H, isochronous with chloroform), 5.72 - 5.91 (br. s, 1H), 4.16 - 4.29 (m, 1H), 2.64 - 2.76 (m, 1H), 2.52 - 2.63 (m, 1H), 2.43 (s, 3H).
Step 2: 2-(N, 4-dimethylphenylsulfonamido)-4,4,4-trifluorobutanoic acid F,C
' \ ,CO2H
'-----( 0 ii ip N-s Me/ i/
0 Me A mixture of 4,4,4-trifluoro-2-(4-methylphenylsulfonamido)butanoic acid (175 mg, 1.0 equiv.) and iodomethane (146 L, 3.15 equiv.) in 1M aqueous sodium hydroxide solution (2.81 mL, 4.0 equiv.) was heated at 85 C for 2.5 hour after which LCMS analysis indicated the presence of the desired product and the methyl ester of the desired product.
The reaction mixture was acidified with 3M hydrochloric acid solution, extracted with dichloromethane (3 x 30 mL), dried (sodium sulfate), filtered and concentrated to a residue. This residue was reconstituted in tetrahydrofuran (2 mL), then treated with 1M aqueous sodium hydroxide solution (0.5 mL). After 30 minutes of stirring at room temperature, the reaction mixture was acidified with 3M hydrochloric acid solution, extracted with dichloromethane (3 x 30 mL), dried (sodium sulfate), and concentrated to afford 2-(N,4-dimethylphenylsulfonamido)-4,4,4-trifluorobutanoic acid (66 mg, 36%
yield) as a gum with about 90% purity by 1H NMR. Used as is in the next step without further purification.
1H NMR (500 MHz, CDC13) 6 (ppm): 7.60 - 7.70 (d, 2H), 7.19 (d, 2H), 4.90 -4.99 (m, 1H), 2.75 - 2.89 (m, 1H), 2.66 - 2.72 (s, 3H), 2.30 - 2.44 (m, 1H), 2.29 (s, 3H).
Step 3: 4,4,4-trifluoro-2-(methylamino)butanoic acid hydrobromide NH HBr Me/
A solution of 2-(N,4-dimethylphenylsulfonamido)-4,4,4-trifluorobutanoic acid (66 mg, 1.0 equiv.) in a 33% glacial acetic acid solution of hydrogen bromide (1.0 mL, 91 equiv.) was heated to 85 C for 2 hours. Starting material still remained. Allowed to stir at 60 C for 72 hours after which the deprotection was nearly complete. The reaction mixture was diluted in water, washed with diethyl ether (3 x 30 mL), and the the water layer was concentrated to dryness. This crude material was used as is in the next step without any purification.
Step 4: Compond 1-244 This compound was prepared following the procedure B described above with the exception that 4,4,4-trifluoro-2-(methylamino)butanoic acid (as the HBr salt) was the amine reactant (1.2 equiv.), 4 equivalents of triethyl amine was used and the reaction was conducted in dioxane/water (3:1) at 90 C for 5 days. The crude material was purified via silica gel chromatography utilizing a 2-10% methanol/dichloromethane gradient over 40 minutes to deliver the desired compound, Compound 1-244 (24.7 mg, 32% yield) as a tan solid.
1H NMR (500 MHz, CDC13) 6 (ppm): 8.77 (s, 1H), 8.21 (d, 1H), 7.41 (m, 1H), 7.24 - 7.33 (m, 1H), 6.07 - 7.13 (m, 1H), 7.02 - 7.07 (m, 1H), 6.90 (d, 1H), 6.82-6.88 (m, 1H), 5.97 (s, 2H), 3.38 - 3.46 (m, 2H), 3.33 - 3.36 (m, 1H), 3.03 - 3.19 (m, 3H).
Compound 1-94 Compound was prepared following general procedure B, with the exception that methyl 1-aminocyclobutanecarboxylate was the amine reactant, 5 equivalents of triethylamine was used, the reaction was heated at 90 C as a solution in THF/water (10:1) for 14 h, followed by heating at 170 C for 10 minutes in the microwave. The contents were then treated with water and solid 1N HC1 and dried in vacuo. The crude material was purified via preparative reverse-phase HPLC to afford the desired compound, Compound 1-94 (0.30mg, 1.5%
yield) as a white solid.
1H NMR (500 MHz, METHANOL-d4) 6 (ppm): 8.81 (d, 1 H), 8.23 (d, 1H), 7.34 (s, 1 H), 7.25 - 7.31 (m, 1 H), 7.01 - 7.13 (m, 2 H), 6.86 - 6.94 (m, 2 H), 5.97 (s, 2H)õ
2.89 (ddd, 2H), 2.45 -2.54(m, 2 H), 2.07 - 2.14 (m, 1 H), 1.95 - 2.03 (m, 1 H).
Compound 1-138 This compound was prepared as above with the exception that methyl 1-aminocyclopentanecarboxylate (as the HC1 salt) was the amine reactant, the mixture was heated for 5 hours at 140 C in DMA (Volume: 142 1) to give the ester. The reaction then allowed to stir at room temperature (23 C) for 16 hrs. Sodium hydroxide (14.2 mg,) was added and reaction and heated at 40 for 1 hr, then cooled, water added, reaction neutralized with 1N
HC1 and extracted with ethyl acetate (3 times). The organics were combined and dried, purified via reverse phase prepartative HPLC to afford the desired compound, Compound 1-138 (0.5 mg, 1.5% yield).
1H NMR (500 MHz, METHANOL-d4) 6 (ppm): 8.84 (s, 1H), 8.29 (d, 1H), 7.40 (s, 1H), 7.28 -7.35 (m, 1H), 7.04 - 7.16 (m, 2H) , 6.91 - 7.00 (m, 2H), 6.01 (s, 2H), 2.50 -2.62 (m,3H), 2.17 - 2.26 (m, 2H), 1.90 (br. s., 3H).
Compound 1-156 A mixture of Intermediate 1 (30.8 mg), (1S,2R)-2-aminocyclopentanecarboxylic acid (31.9 mg, 3equiv.) and triethylamine (115 1, 10 equiv.) were heated to 80 C for 16 hours in a 10 : 1 mixture of THF/Water. Contents were concentrated in vacuo, andpurified via Preparative reverse-phase HPLC to afford the desired compound, Compound 1-156, as a white solid (6.2 mg, 16% yield).
1H NMR (500 MHz, CDC13) 6 (ppm): 8.52 (s, 1H), 8.46 (br. s., 1H), 7.44 (br.
s., 2H), 7.22 -7.27 (m, 1H), 7.15 (t, 1H), 7.00 - 7.09 (m, 2H), 6.66 (s, 1 H), 5.94 (s, 2H), 4.88 (br. s., 1H), 3.13 - 3.21 (m, 1H), 2.23 (d,1H), 2.15 (br. s., 2H), 1.85 - 2.03 (m, 2H), 1.76 (d, 1H).
Compound 1-154 The title compound was prepared following general procedure B, except cis-2-aminocyclohexanecarboxylic acid was the amine reactant and the mixture was heated at 80 C for 24 h as a solution in THF/water (10:1). Contents were concentrated in vacuo, and purified via reverse phase HPLC to deliver the desired compound, Compound 1-154 (8.5 mg, 26% yield) as a white solid.
1H NMR (500 MHz, CDC13) 6 ppm: 8.62 (d, 1H), 8.53 (d,1H), 7.79 (br. s., 1H), 7.45 (s, 1 H), 7.19 - 7.27 (m, 2H), 7.00 - 7.10 (m, 2H), 6.67 (s, 1H), 5.94 (s, 2H), 4.58 (br. s.,1H), 2.94 (d, 1H), 2.33 (d, 1H), 1.87 (br. s., 2H), 1.81 (d, 1H), 1.61 - 1.74 (m, 2H), 1.36 -1.57 (m, 2H).
Compound 1-159 The title compound was prepared following general procedure B, except 3-(4-Hydroxypheny1)-L-alanine was the amine reactant and the mixture was heated at 80 C
for 18 h as a solution in THF/water (10:1). Contents were concentrated in vacuo, and purified via reverse phase HPLC to deliver the desired compound, Compound 1-159 as a brown oil.
1H NMR (500 MHz, CD30D) 6 ppm: 8.82 (d, 1H), 8.22 (d, 1H), 7.52 (s, 1H), 7.25 -7.33 (m, 1H), 7.02 - 7.15 (m, 4H), 6.97 (d, 1H), 6.92 (t, 1H), 6.64 (d, 2H), 6.00 (s, 2H), 5.29 (dd, 1H), 3.40 (dd, 1H), 3.09 (dd, 1H).
Compound 1-165 The title compound was prepared following general procedure B, except 3-(4-Hydroxypheny1)-D-alanine was the amine reactant and the mixture was heated at 80 C
for 90 h as a solution in THF/water (10:1). Contents were concentrated in vacuo, and purified via reverse phase HPLC to deliver the desired compound, Compound 1-165 (4.7 mg, 13%
yield) as a brown oil.
1H NMR (500 MHz, CD30D) 6 ppm: 8.82 (d, 1H), 8.24 (d, 1H), 7.53 (s, 1H), 7.26 -7.38 (m, 1H), 7.13 (d, 2H), 7.04 - 7.11 (m, 2H), 6.98 (d, 1H), 6.93 (t, 1H), 6.64 (d, 2H), 6.01 (s, 2H), 5.30 (dd, 1H), 3.41 (dd, 1H), 3.09 (dd, 1H).
Compound 1-179 The title compound was prepared following general procedure B, except (1S,3R)-3-aminocyclopentanecarboxylic acid was the amine reactant and the mixture was heated at 80 C for 48 h as a solution in THF/water (10:1). Contents were concentrated in vacuo, and purified via reverse phase HPLC to deliver the desired compound, Compound 1-179 (1.7 mg, 5% yield).
1H NMR (400 MHz, CD30D) 6 ppm: 8.83 (d, 1H), 8.23 (d, 1H), 7.67 (s, 1H), 7.26 -7.35 (m, 1H), 7.12 (d, 1H), 7.05 - 7.10 (m, 1H), 7.01 (d, 1H),) 6.94 - 7.00 (m, 1H), 6.03 (s, 2H), 2.96 -3.06 (m, 1H), 2.42 - 2.54 (m, 1H), 2.21 (td,1H), 1.97 - 2.15 (m, 4H), 1.80 -1.96 (m, 1H).
Compound 1-188 The title compound was prepared following general procedure B, except 4-Fluoro-4-piperidinecarboxylic acid (as the HC1 salt) was the amine reactant and the mixture was heated at 80 C for 8 h as a solution in THF/water (10:1) followed by stirring at 23 C for an additional 8 h. Contents were concentrated in vacuo, and purified via reverse phase HPLC to deliver the desired compound, Compound 1-188 (7 mg, 18% yield) as a white solid.
1H NMR (500 MHz, CD30D) 6 ppm: 8.81 (d, 1H), 8.32 (d, 1H), 7.63 (s, 1H), 7.26 -7.33 (m, 1H), 7.03 - 7.14 (m, 2H), 6.91 - 6.98 (m, 2H), 6.01 (s, 2H), 4.82 (br. s., 1H), 3.59 - 3.73 (m, 2H), 2.26 - 2.41 (m, 2H), 2.16 - 2.23 (m, 2H), 0.10 (m, 1H).
Compound 1-199 The title compound was prepared following general procedure B, except (S)-2-Amino-4-(methylmercapto)butyric acid was the amine reactant and the mixture was heated at 80 C for 16 h as a solution in THF/water (10:1). Contents were concentrated in vacuo, and purified via reverse phase HPLC to deliver the desired compound, Compound 1-199 (4 mg, 9% yield) as a white solid.
1H NMR (500 MHz, CD30D) 6 ppm: 8.82 (d, 1H), 8.34 (d, 1H), 7.58 (s, 1H), 7.27 -7.34 (m, 1H), 7.04 -7.14 (m, 2H), 6.93 - 7.00 (m, 2H), 6.02 (s, 2H), 5.24 (dd, 1H), 2.59 - 2.79 (m, 2 H), 2.36 - 2.46 (m, 1H), 2.22 - 2.31 (m, 1H), 2.12 (s, 3 H).
Compound 1-192 The title compound was prepared following general procedure B, except 3-(Methanesulfonyl)pyrrolidine was the amine reactant and the mixture was heated at 80 C for 48 h as a solution in THF/water (10:1). Contents acidified with 1N
hydrochloric acid, concentrated in vacuo, and purified via reverse phase HPLC to deliver the desired compound, Compound 1-192 (6.3 mg, 18% yield) as a white solid.
1H NMR (500 MHz, CD30D) 6 ppm: 8.81 (d, 1H), 8.30 (d, 1H), 7.61 (s, 1H), 7.30 (ddd,1H), 7.03 - 7.14 (m, 2H), 6.88 - 6.98 (m, 2 H), 6.01 (s, 2 H), 4.41 - 4.54 (m, 1H), 4.27 - 4.38 (m, 1H), 4.06 - 4.27 (m, 3H), 3.11 (s, 3H), 2.52 - 2.68 (m, 2H).
Compound 1-220 The title compound was prepared following general procedure B, except 13-cyano-L-a1anine was the amine reactant and the mixture was heated at 80 C for 18 h as a solution in THF/water (10:1). Contents concentrated in vacuo, and purified via reverse phase HPLC to deliver the desired compound, Compound 1-220 (2.5 mg, 8% yield) as a white solid.
1H NMR (500 MHz, CD30D) 6 ppm: 8.79 (d, 1 H), 8.30 (d, 1 H), 7.52 (s, 1 H), 7.25 - 7.31 (m, 1 H), 7.02 - 7.13 (m, 2 H), 6.86 - 6.95 (m, 2 H), 5.99 (s, 2 H), 5.34 (dd, 1 H), 3.15 - 3.25 (m, 2 H).
Compound 1-198 The title compound was prepared following general procedure B, except trans-2-aminocyclohexanecarboxylic acid was the amine reactant and the mixture was heated at 80 C for 16 h as a solution in THF/water (10:1). Contents acidified with 1N hydrochloric acid solution, and the solids were filtered, re-suspended in dichloromethane, and filtered to deliver the desired compound, Compound 1-198 (14.5 mg, 31% yield) as a white solid.
1H NMR (500 MHz, METHANOL-d4) 6 ppm: 8.75 (d, 1H), 8.00 (d, 1H), 7.42 (s, 1H), 7.23 -7.29 (m, 1H), 7.05 - 7.11 (m, 1H), 7.02 (t, 1H), 6.89 - 6.92 (m, 1H), 6.81 (t, 1H), 5.95 (s, 2H), 4.58 (td, 1H), 2.56 (td, 1H), 1.98 - 2.14 (m, 2H), 1.78 - 1.90 (m, 2H), 1.67 (qd, 1H), 1.48 - 1.61 (m, 1H), 1.28 - 1.47 (m, 2H).
Compound 1-208 The title compound was prepared following general procedure B, except octahydrocyclopenta[c]pyrrole-3a-carboxylic acid (4 equiv.) was the amine reactant and the mixture was heated at 80 C for 5 h as a solution in THF/water (10:1).
Contents were blown dry with nitrogen, and the crude mixture was re-suspended in methanol and filtered to deliver the desired compound, Compound 1-208 (37 mg, 93% yield).
1H NMR (500 MHz, METHANOL-d4) 6 ppm: 8.74 (d, 1H), 8.06 - 8.13 (m, 1H), 7.39 -7.45 (m, 1H), 7.26 (m, 1H), 7.09 (m, 1H), 7.02 (d, 1H), 6.91 (d, 1H), 6.82 (m, 1H), 5.96 (s., 2H), 4.40 (d, 1H), 4.06 (m, 1H), 3.79 (d, 2H), 3.06 (br. s., 1H), 2.31 (m, 1H), 2.11 (m, 1H), 1.90 (m, 2H), 1.64 (m, 1H),1.30 (m, 1H) Compound 1-233 The title compound was prepared following general procedure B, except methyl L-cyclohexylglycine methyl ester (as the HC1 salt) was the amine reactant, and the contents were heated to 90 C as a solution in THF/water (10:1) for 16 h. Contents cooled, treated with solid sodium hydroxide, and stirred at 23 C for 2 h. The organic solvent was removed from the reaction mixture, upon completion and the precipitate was filtered to furnish desired compound, Compound 1-233 as a white solid (26.0 mg, 0.047 mmol, 70.7 % yield).

1H NMR (500 MHz, METHANOL-d4) 6 ppm: 9.08 (d,1H), 8.12 (d, 1H), 7.42 (s, 1H), 7.29-7.35 (m, 1H), 7.25 (d, 1H), 7.18-7.24 (m, 1H), 7.09 (t, 1H), 6.93 (t, 1H), 6.77 (d, 1H), 5.82-5.92 (dd, 2H), 4.17 (br. s., 1H), 3.30 (s., 1H), 1.79 - 1.91 (m, 2 H), 1.50 - 1.69 (m, 3 H), 0.89 - 1.24 (m, 5 H).
Compound 1-243 A mixture of Intermediate 1 (25 mg, (S)-methyl 2-amino-2-cyclohexylacetate hydrochloride (41.7 mg, 3equiv.) and triethylamine (93 1, 10 equiv), was heated at 90 C
for 16 hours in a mixture of THF/water. The reaction mixture was cooled, NaOH (5.35 mg, 2 equiv) was added, and the mixture stirred at room temperature for 2 hours. The organic solvent was removed, and the resulting precipitate was filtered to furnish (R)-2-cyclohexy1-2-45-fluoro-2-(1-(2-fluorobenzy1)-5-(isoxazo1-3-y1)-1H-pyrazo1-3-y1)pyrim idin-4-yl)amino)acetic acid as a white solid (26.0 mg, 0.047 mmol, 70.7 %
yield).
1FINMR (500 MHz, METHANOL-d4) 6 ppm: 8.75 (d, 1H), 8.11 (d, 1 H), 7.41 (s, 1H), 7.23 -7.29 (m, 1H), 7.00 - 7.11 (m, 1H), 7.02 (t, 1H), 6.88 (d, 1H), 6.83 (t, 1H), 5.95 (s, 2H), 4.73 (d,1H), 1.97 - 2.04 (m, 1H), 1.88 (t, 2 H), 1.80 (d, 2 H), 1.70 (d, 1 H), 1.17 - 1.39 (m, 5 H). The title compound was also prepared following general procedure B, except methyl D-cyclohexylglycine methyl ester (as the HC1 salt) was the amine reactant (1 equiv.), and the contents were heated to 90 C for 16 h as a solution in THF/water (10:1).
Contents cooled, treated with solid sodium hydroxide, and stirred at 23 C for 18 h. Contents concentrated in vacuo, and purified via reverse phase HPLC to deliver the desired compound, Compound 1-243 (1 mg, 3% yield) as a white solid.
Compound 1-242 The title compound was prepared in 4 steps:
Step 1: Trans-2-(4-methylphenylsulfonamido)cyclohexanecarboxylic acid Me ilfr .0 HN µ`
a002H
A slurry of trans-2-aminocyclohexanecarboxylic acid (318 mg, 1.0 equiv.), p-toluenesulfonyl chloride (508 mg, 1.2 equiv.) and 1M aqueous sodium hydroxide solution (6.7 mL, 3.0 equiv) was heated in water (5 mL) at 90 C for 1 hour. The reaction mixture was cooled to 0 C, and acidified by the addition of 3M aqueous hydrochloric acid solution. The resulting white precipitate was filtered and washed successively with water then ethanol to afford racemic trans-2-(4-methylphenylsulfonamido)cyclohexanecarboxylic acid as a white solid (179.6 mg, 27% yield).
1H NMR (400 MHz, CDC13) 6 (ppm): 7.73 (d, 2H), 7.27 (d, 2H), 4.98 - 5.16 (m, 1H), 3.24 -3.46 (br. s, 1H), 2.39 (s, 3H), 2.23 - 2.34 (m, 1H), 1.87 - 2.03 (m, 2H), 1.58 - 1.78 (m, 2H), 1.42 - 1.58 (m, 1H), 1.08 - 1.35 (m, 3H).
Step 2: Synthesis of trans-2-(N,4-dimethylphenylsulfonamido)cyclohexanecarboxylic acid Me .0 MNA

A solution of trans-2-(4-methylphenylsulfonamido)cyclohexanecarboxylic acid (187 mg, 0.629 mmol), iodomethane (0.124 mL, 3.0 equiv) and 1M aqueous sodium hydroxide solution (2.52 mL, 4.0 equiv) solution in water (5 mL) was heated at 75 C for 1.5 hours, after which the reaction mixture was cooled to room temperature, washed with dichloromethane (2 x 30 mL), acidified by the addition of 3M aqueous hydrochloric acid solution, extracted with dichloromethane (3 x 30 mL), dried (sodium sulfate), filtered, and concentrated to afford the crude N-methyl amino acid product. Purification was achieved using silica gel chromatography with 2 to 5% methanol in dichloromethane as the eluent over 40 minutes. This afforded trans-2-(N,4-dimethylphenylsulfonamido)cyclohexanecarboxylic acid as a white foam (130 mg, 66% yield).
1H NMR (500 MHz, CDC13) 6 (ppm): 7.69 - 7.76 (d, 2H), 7.28 (d, 2H), 4.03 -4.16 (m, 1H), 2.78 (s, 3H), 2.49 - 2.61 (m, 1H), 2.43 (s, 3H), 2.02 - 2.13 (m, 1H), 1.73 -1.84 (m, 2H), 1.63 -1.73 (m, 1H), 1.55 - 1.63 (m, 1H), 1.35 - 1.45 (m, 2H), 1.10 - 1.22 (m, 1H).
Step 3: trans-2-(methylamino)cyclohexanecarboxylic acid hydrobromide Me,NH

To a vial containing trans-2-(N,4-dimethylphenylsulfonamido)cyclohexanecarboxylic acid (130 mg, 1.0 equiv) was added a 33% glacial acetic acid solution of hydrogen bromide (1.2 ml, 53 equiv). The suspension was heated at 85 C for 2.5 hours after which it was diluted in water and washed with diethyl ether (2 x 30 mL), then concentrated to a gold foamy residue.
Recrystallization of this material from acetone afforded trans-2 (methylamino)cyclohexanecarboxylic acid hydrobromide as a cream-colored solid (54.4 mg, 55% yield).
1H NMR (500 MHz, D20) 6 (ppm): 3.24 - 3.37 (m, 1H), 2.65 (s, 3 H), 2.47 - 2.60 (m, 1H), 2.06 - 2.20 (m, 2H), 1.76 - 1.84 (m, 1H), 1.15 - 1.51 (m, 5H).
Step 4: Compound 1-242 The title compound was prepared following general procedure B, except trans-2(methylamino) cyclohexanecarboxylic acid (as the HBr salt) was the amine reactant, and the contents were heated to 85 C for 18 h as a solution in THF/water (10:1). Contents cooled, concentrated in vacuo, and purified via reverse phase HPLC to deliver the desired compound, Compound 1-242 (1 mg, 3% yield) as a white solid.
1H NMR (500 MHz, METHANOL-d4) 6 ppm: 8.75 (d, 1H), 8.09 (d,1H), 7.38 (s, 1H), 7.23 -7.30 (m, 1H), 7.06 - 7.11 (m, 1H), 7.00 - 7.05 (m, 1H), 6.89 (d, 1H), 6.83 (t, 1H), 5.94 (s, 2H), 3.16 -3.24 (m, 3H), 2.79 (br. s., 1H), 2.08 (d,1H), 1.86 - 1.97 (m, 2H), 1.81 (d, 2H), 1.45 - 1.70 (m, 2H), 1.34 (dt,1H) Compound 1-31 The title compound was prepared following general procedure B, except 2-amino-1-morpholinoethanone (5 equiv.) was the amine reactant, 3 equivalents of triethylamine was used, and the contents were heated to 80 C for 1 h as a solution in THF.
Solvent was removed in vacuo, and contents were taken up in ethyl acetate. The organic layer was washed with 1N hydrochloric acid solution, water, and brine, dried over sodium sulfate, filtered, and concentrated in vacuo. The crude material was purified via silica gel chromatography utilizing a 0 to 100% ethyl acetate/hexane gradient to deliver the desired compound, Compound 1-31 (4.7 mg, 23% yield).
1H NMR (500 MHz, CDC13) 6 8.44-8.52 (m, 1H), 8.14-8.25 (m, 1H), 7.19-7.27 (m, 1H), 6.97-7.12 (m, 2H), 6.83-6.91 (m, 1H), 6.61-6.66 (m, 1H), 6.00 (s, 2H), 4.39-4.47 (m, 2H), 3.71-3.82 (m, 7H), 3.56-3.63 (m, 2H).
Compound 1-33 The title compound was prepared following general procedure B, except 3-methylmorpholine was the amine reactant, 5 equivalents of triethylamine was used, and the contents were heated to 60 C for 18 h as a solution in THF, followed by 80 C for 18 h. Solvent was removed in vacuo, and contents were taken up in ethyl acetate. The organic layer was washed with 1N
hydrochloric acid, water, and brine, dried over sodium sulfate, filtered, and concentrated in vacuo. The crude material was purified via silica gel chromatography utilizing a 0-5%

methanol/dichloromethane gradient to deliver the desired compound, Compound 1-33 (8 mg, 41% yield).
1H NMR (500 MHz, CDC13) 6 8.48 (m, 1H), 8.22 (m, 1H), 7.31 (s, 1H), 7.1822 (m, 1H), 6.99 (s, 2H), 6.87 (m, 1H), 6.61 (d, 1H), 5.98 (s, 2H), 4.69 (m, 1H), 4.37 (m, 1H), 4.05 (m, 1H), 3.83 (m, 2H), 3.69 (m, 1H), 3.4752 (m, 1H), 1.45 (d, 3H).
Compound 1-34 The title compound was prepared following general procedure B, except methyl pyrrolidine-2-carboxylate was the amine reactant, 2 equivalents of triethylamine was used, and the contents were heated to 60 C for 18 h as a solution in THF. Solvent was removed in vacuo, and contents were taken up in ethyl acetate. The organic layer was washed with hydrochloric acid solution, water, and brine, dried over sodium sulfate, filtered, and concentrated in vacuo. The crude material was purified via silica gel chromatography utilizing a 0-5% methanol/dichloromethane gradient to deliver the desired compound, Compound 1-34 (10.6 mg, 57% yield).
1H NMR (500 MHz, CDC13) 6 8.47 (m, 1H), 8.20 (m, 1H), 8.17.29 (s, 1H), 7.21 (m, 1H), 7.04 (m, 1H), 6.98 (m, 1H), 6.87 (m, 1H), 6.59 (dm, 1H), 5.98 (m, 2H), 4.76 (m, 1H), 4.05 (m, 1H), 3.94 (m, 1H), 3.73 (s, 3H), 2.35 (m, 1H), 2.17 (m, 3H)..
Compound 1-35 The title compound was prepared following general procedure B, except tert-butyl pyrrolidin-3-ylcarbamate was the amine reactant (5 equiv.), 3 equivalents of triethylamine was used, and the contents were heated to 80 C for 1 h as a solution in THF.
Solvent was removed in vacuo, and contents were purified via silica gel chromatography utilizing a 0-100% ethyl acetate/hexanes gradient to deliver the desired compound, Compound 1-35 (30 mg, 68% yield).
1H NMR (500 MHz, CDC13) 6 8.44-8.48 (m, 1H), 8.14-8.19 (m, 1H), 7.32 (s, 1H), 7.17-7.24 (m, 1H), 6.95-7.08 (m, 2H), 6.82-6.89 (m, 1H), 6.57-6.63 (m, 1H), 5.99 (s, 2H), 4.72-4.79 (m, 1H), 4.32-4.43 (m, 1H), 4.00-4.07 (m, 1H), 3.86-3.95 (m, 2H), 3.68-3.75 (m, 1H), 2.23-2.33 (m, 1H), 1.96-2.05 (m, 1H), 1.48 (s, 9H).
Compound 1-41 The title compound was prepared following general procedure B, except methyl pyrrolidine-2-carboxylate was the amine reactant, 2 equivalents of triethylamine was used, and the contents were heated to 60 C for 18 h as a solution in THF. Solvent was removed in vacuo, and contents were taken up in ethyl acetate. The organic layer was washed with hydrochloric acid solution, water, and brine, dried over sodium sulfate, filtered, and concentrated in vacuo. The crude material was purified via silica gel chromatography utilizing a 0-5% methanol/dichloromethane gradient to deliver the desired compound, Compound 1-41 (4 mg, 22% yield).
1H NMR (500 MHz, CDC13) 6 8.44-8.49 (m, 1H), 8.19-8.26 (m, 1H), 7.34-7.39 (m, 1H), 7.18-7.25 (m, 1H), 6.92-7.10 (m, 3H), 6.74-6.80 (m, 1H), 5.95-6.00 (m, 2H), 4.45-4.51 (m, 2H), 2.42-2.51 (m, 3H), 2.16-2.23 (m, 4H).
Compound 1-46 The title compound was prepared by treating a solution of Compound 1-35 in dichloromethane with an equal volume oftrifluroacetic acid. After stirring at 23 C for 1 h, solvent was removed under a stream of nitrogen, and contents were dried under vacuum for 18 h to deliver the desired compound, Compound 1-46 (29 mg) as a solid.
1H NMR (500 MHz, CD30D) 6 8.83-8.87 (m, 1H), 8.37-8.42 (m, 1H), 7.59-7.63 (m, 1H), 7.29-7.37 (m, 1H), 7.05-7.16 (m, 2H), 6.94-7.02 (m, 2H), 6.04 (s, 2H), 4.13-4.33 (m, 5H), 2.53-2.64 (m, 1H), 2.27-2.39 (m, 1H).
Compound 1-48 The title compound was prepared following general procedure B, except methyl piperidine-2-carboxylate was the amine reactant, 2 equivalents of triethylamine was used, and the contents were heated to 60 C for 18 h as a solution in THF. Solvent was removed in vacuo, and contents were taken up in ethyl acetate. The organic layer was washed with hydrochloric acid solution, water, and brine, dried over sodium sulfate, filtered, and concentrated in vacuo. The crude material was purified via reverse phase HPLC
to deliver the desired compound, Compound 1-48 (3.7 mg, 18% yield).
1H NMR (400 MHz, CDC13) 6 8.46-8.50 (m, 1H), 8.37-8.44 (m, 1H), 7.32-7.37 (m, 1H), 7.17-7.23 (m, 1H), 6.97-7.09 (m, 3H), 6.59-6.62 (m, 1H), 5.91 (s, 2H), 5.46-5.57 (m, 1H), 4.54-4.67 (m, 1H), 3.75 (s, 3H), 3.38-3.47 (m, 1H), 2.34-2.45 (m, 1H), 1.78-1.89 (m, 3H), 1.61-1.72 (m, 1H), 1.45-1.55 (m, 1H).
Compound 1-53 The title compound was prepared following general procedure B, except azetidine-3-carboxylic acid was the amine reactant (5 equiv.), 3 equivalents of triethylamine was used, and the contents were heated to 75 C for 18 h as a solution in THF.
Solvent was removed under a stream of nitrogen. Product isolated via reverse phase HPLC to deliver the desired compound, Compound 1-53 (15.4 mg, 88% yield).
1H NMR (500 MHz, METHANOL-d4) 6 8.81-8.85 (m, 1H), 8.22-8.27 (m, 1H), 7.55-7.59 (m, 1H), 7.29-7.36 (m, 1H), 7.05-7.16 (m, 2H), 6.93-6.99 (m, 2H), 5.99-6.05 (m, 2H), 4.65-4.84 (m, 4H), 3.75-3.84 (m, 1H).

Compound 1-54 The title compound was prepared following general procedure B, except 3-methylpiperazin-2-one was the amine reactant (5 equiv.), 3 equivalents of triethylamine was used, and the contents were heated to 75 C for 18 h as a solution in THF.
Solvent was removed under a stream of nitrogen. Product isolated via reverse phase HPLC to deliver the desired compound, Compound 1-54 (1.4 mg, 8% yield).
1H NMR (500 MHz, CDC13) 6 8.53-8.55 (m, 1H), 8.49-8.53 (m, 1H), 7.43-7.48 (m, 1H), 7.31-7.37 (m, 1H), 7.24-7.28 (m, 1H), 7.09-7.14 (m, 1H), 7.02-7.08 (m, 2H), 6.67-6.70 (m, 1H), 5.97 (s, 2H), 5.34-5.47 (m, 1H), 4.89-4.95 (m, 1H), 3.62-3.78 (m, 2H), 3.50-3.60 (m, 1H), 1.70 (d, 3H).
Compound 1-55 The title compound was prepared following general procedure B, except azetidine-2-carboxylic acid (5 equiv.) was the amine reactant, 5 equivalents of triethylamine was used, and the contents were heated to 75 C for 18 h as a solution in THF.
Solvent was removed in vacuo, and contents were purified via reverse phase HPLC to deliver the desired compound, Compound 1-55 (1.3 mg, 2% yield).
1H NMR (500 MHz, CD30D) 6 8.82 (s, 1H), 8.23-8.29 (m, 1H), 7.40-7.52 (m, 1H), 7.28-7.35 (m, 1H), 7.04-7.16 (m, 2H), 6.93 (br. s., 2H), 5.98-6.03 (m, 2H), 5.23-5.36 (m, 1H), 4.42-4.67 (m, 2H), 2.92-3.07 (m, 1H), 2.50-2.62 (m, 1H).
Compound 1-56 The title compound was prepared following general procedure B, except 3-fluoropiperidine (5 equiv.) was the amine reactant, 5 equivalents of triethylamine was used, and the contents were heated to 75 C for 18 h as a solution in THF. Solvent was removed in vacuo, and contents were purified via reverse phase HPLC to deliver the desired compound, Compound 1-56 (1.3 mg, 2% yield).
1H NMR (500 MHz, CHLOROFORM-d) 6 8.52-8.56 (m, 1H), 8.45-8.50 (m, 1H), 7.49-7.54 (m, 1H), 7.24-7.28 (m, 1H), 7.13-7.20 (m, 1H), 7.01-7.11 (m, 2H), 6.68 (s, 1H), 5.95 (s, 2H), 4.85-5.03 (m, 1H), 4.56-4.81 (m, 2H), 3.71-3.89 (m, 1H), 3.47-3.60 (m, 1H), 1.75-2.26 (m, 4H).
Compound 1-57 The title compound was prepared following general procedure B, except 3,3-difluoropiperidine (5 equiv.) was the amine reactant, 5 equivalents of triethylamine was used, and the contents were heated to 75 C for 18 h as a solution in THF. Solvent was removed in vacuo, and contents were purified via reverse phase HPLC to deliver the desired compound, Compound 1-57 (4.5 mg, 5% yield).
1H NMR (500 MHz, CDC13) 6 8.52-8.55 (m, 1H), 8.47-8.52 (m, 1H), 7.40-7.45 (m, 1H), 7.24-7.28 (m, 1H), 7.11-7.17 (m, 1H), 7.02-7.10 (m, 2H), 6.65-6.68 (m, 1H), 5.93-5.98 (m, 2H), 4.20-4.30 (m, 2H), 4.00-4.08 (m, 2H), 2.16-2.27 (m, 2H), 1.96-2.05 (m, 2H).
Compound 1-58 A solution of Compound 1-48 was dissolved in THF, and an aqueous solution of lithium hydroxide (3 equiv.) was added. The solution was stirred at 25 C for 18 h.
Contents were concentrated and the remaining aqueous layer was acidified with 1N
hydrochloric acid solution which resulted in a white precipitate. The aqueous layer was extracted with ethyl acetate, and the combined organic layers were washed with water and brine. Contents dried over sodium sulfate, filtered, and concentrated to deliver the desired compound, Compound 1-58 (29 mg, 100% yield).
1H NMR (400 MHz, CD30D) 6 8.75 (m, 1H), 8.20 (m, 1H), 7.42 (m, 1H), 7.26 (m, 1H), 6.98-7.11 (m, 2H), 6.84 (m, 2H), 5.95 (s, 2H), 5.47 (m, 1H), 4.52 (m, 1H), 3.44 (m, 1H), 2.31-2.40 (m, 1H), 1.93 (m, 1 H), 1.81 (m, 2 H), 1.68 (m, 1 H), 1.54 (m, 1 H).
Compound 1-59 The title compound was prepared following general procedure B, except piperazin-2-one was the amine reactant (5 equiv.), 5 equivalents of triethylamine was used, and the contents were heated to 75 C for 18 h as a solution in THF. Solvent was removed under a stream of nitrogen and contents were purified via reverse phase HPLC to deliver the desired compound, Compound 1-59 (1.6 mg, 2% yield).
1H NMR (500 MHz, CDC13,) 6 8.51-8.54 (m, 1H), 8.45-8.49 (m, 1H), 7.69-7.73 (m, 1H), 7.23-7.27 (m, 1H), 7.03-7.09 (m, 3H), 6.69-6.73 (m, 2H), 6.00-6.03 (m, 2H), 4.70-4.73 (m, 2H), 4.26-4.32 (m, 2H), 3.64-3.69 (m, 2H).
Compound 1-60 The title compound was prepared following general procedure B, except triethylamine was the amine reactant (2 equiv.), and the contents were heated to 60 C for 18 h as a solution in THF.
Solvent was removed in vacuo, and contents were taken up in ethyl acetate. The organic layer was washed with 1N hydrochloric acid solution, water, and brine, dried over sodium sulfate, filtered, and concentrated in vacuo. The crude material was purified via reverse phase HPLC to deliver the desired compound, Compound 1-60 (1.9 mg, 11% yield).

1H NMR (400 MHz, CD30D) 6 8.77-8.81 (m, 1H), 8.17-8.22 (m, 1H), 7.48-7.52 (m, 1H), 7.23-7.32 (m, 1H), 7.01-7.13 (m, 2H), 6.89-6.98 (m, 2H), 5.96-6.01 (m, 2H), 3.81-3.90 (m, 4H), 1.34 (s, 6H).
Compound 1-66 The title compound was prepared following general procedure B, except piperidine-3-carboxamide was the amine reactant (5 equiv.), 8 equivalents of triethylamine was used, and the contents were heated to 75 C for 18h as a solution in THF.
Solvent was removed and crude material was purified via reverse phase HPLC to deliver the desired compound, Compound 1-66 (7 mg, 36% yield).
1H NMR (500 MHz, CDC13) 6 8.51-8.55 (m, 1H), 8.25-8.31 (m, 1H), 7.47-7.52 (m, 1H), 7.22-7.27 (m, 1H), 7.09-7.16 (m, 1H), 7.00-7.09 (m, 2H), 6.83-6.90 (m, 1H), 6.67-6.72 (m, 1H), 6.17-6.22 (m, 1H), 5.90-5.95 (m, 2H), 4.52-4.60 (m, 1H), 4.30-4.43 (m, 1H), 3.81-3.90 (m, 1H), 3.60-3.69 (m, 1H), 2.69-2.81 (m, 1H), 2.05-2.13 (m, 2H), 1.92-2.00 (m, 1H), 1.69-1.81 (m, 1H).
Compound 1-75 The title compound was prepared following general procedure B, except methyl azepane-2-carboxylate was the amine reactant (1.5 equiv.), potassium carbonate (4 equiv.) was used instead of triethylamine, and the contents were heated to 150 C for 10 min in the microwave as a solution in NMP. The resulting mixture was filtered to remove the solid potassium carbonate, and concentrated in vacuo. The crude material was purified via reverse phase HPLC using a 20-70% acetonitrile/water (with 0.1% TFA) gradient to deliver the desired compound, Compound 1-75 (1 mg, 3% yield).
1FINMR (500 MHz, CDC13) 6 8.83 (m, 1 H), 8.33 (m, 1 H), 7.48 (m, 1 H), 7.31 (m, 1 H), 7.10 (m, 2 H), 6.91 (m, 2 H), 6.01 (s, 2 H), 5.04 (m, 1 H), 4.18 (m, 1 H), 3.73 (m, 1 H), 2.58 (m, 1 H), 2.04 (m, 3 H), 1.92 (m, 1 H), 1.79 (m, 1 H), 1.53 (m, 2 H).
Compound 1-82 The title compound was prepared following general procedure B, except (1R,3S,5S)-8-azabicyclo[3.2.1]octan-3-ylmethanol (as the HC1 salt) was the amine reactant (3.5 equiv.), 5 equivalents of triethylamine was used, and the contents were heated to 120 C
for 30 min in the microwave as a solution in NMP. The resulting mixture was purified via reverse phase HPLC to deliver the desired compound, Compound 1-82 (10.8 mg, 42% yield).
1H NMR (500 MHz, METHANOL-d4) 6 8.82-8.86 (m, 1H), 8.25-8.29 (m, 1H), 7.62-7.66 (m, 1H), 7.30-7.36 (m, 1H), 7.05-7.15 (m, 2H), 6.92-7.02 (m, 2H), 6.00-6.06 (m, 2H), 3.66-3.72 (m, 2H), 2.10-2.40 (m, 4H), 1.78-2.07 (m, 5H).

Compound 1-83 The title compound was prepared following general procedure B, except morpholine-2-carboxylic acid (as the HC1 salt) was the amine reactant (2 equiv.), Hunig's base (3 equiv.) was used in place of triethylamine, and contents were heated to 120 C for 30 min in the microwave as a solution in NMP. The resulting mixture was purified via reverse phase HPLC using a 0-95% acetonitrile/water (with 0.1% TFA) gradient to deliver the desired compound, Compound 1-83 (10.8 mg, 42% yield) as a clear glass.
1H NMR (500 MHz, METHANOL-d4) 6 8.81-8.85 (m, 1H), 8.35-8.44 (m, 1H), 7.64 (s, 1H), 7.26-7.35 (m, 1H), 7.04-7.14 (m, 2H), 6.97 (d, 2H), 6.02 (s, 2H), 4.73 (m, 1H), 4.46 (m, 2H), 4.14-4.20 (m, 1H), 3.97 (m, 1H), 3.89 (d, 2H).
Compound 1-87 The title compound was prepared following general procedure B, except (R)-piperidine-2-carboxylic acid (4 equiv.) was the amine reactant, 5 equivalents of triethylamine was used, and the contents were heated to 90 C for 18 h as a solution in THF/water (9:1). Solvent was removed under a stream of nitrogen, and the crude material was purified via reverse phase HPLC using a 20-51% acetonitrile/water (in 0.1%
TFA) gradient to deliver the desired compound, Compound 1-87 (12 mg, 48% yield).
1H NMR (500 MHz, METHANOL-d4) 6 8.79-8.83 (m, 1H), 8.34-8.39 (m, 1H), 7.60 (s, 1H), 7.27-7.35 (m, 1H), 7.03-7.15 (m, 2H), 6.90-6.98 (m, 2H), 6.02 (s, 2H), 4.61-4.83 (m, 1H), 3.43-3.58 (m, 1H), 2.43-2.51 (m, 1H), 1.69-2.02 (m, 5H), 1.55-1.69 (m, 1H).
Compound 1-84 The title compound was prepared following general procedure B, except (S)-piperidine-2-carboxylic acid (4 equiv.) was the amine reactant, 5 equivalents of triethylamine was used, and the contents were heated to 90 C for 18 h as a solution in THF/water (9:1). Solvent was removed under a stream of nitrogen, and the crude material was purified via reverse phase HPLC using a 20-51% acetonitrile/water (in 0.1%
TFA) gradient to deliver the desired compound, Compound 1-84 (9.6 mg, 39% yield).
1H NMR (500 MHz, METHANOL-d4) 6 8.79-8.83 (m, 1H), 8.31-8.36 (m, 1H), 7.54-7.58 (m, 1H), 7.27-7.34 (m, 1H), 7.04-7.15 (m, 2H), 6.89-6.97 (m, 2H), 6.01 (s, 2H), 5.65 (br. s., 1H), 4.58-4.80 (m, 1H), 3.42-3.57 (m, 1H), 2.41-2.50 (m, 1H), 1.67-2.02 (m, 4H), 1.55-1.66 (m, 1H).
Compound 1-95 The title compound was prepared following general procedure B, except (R)-morpholine-3-carboxylic acid (4 equiv.) was the amine reactant, Hunig's base (5 equiv.) was used instead of triethylamine, and the contents were heated to 90 C for 18 h as a solution in THF/water (9:1). Solvent was removed under a stream of nitrogen, and the crude material was purified via reverse phase HPLC using a 20-51% acetonitrile/water (in 0.1%
TFA) gradient to deliver the desired compound, Compound 1-95 (19 mg, 76% yield).
1H NMR (500 MHz, CD30D) 6 8.81 (d, 1 H), 8.39 (d, 1 H), 7.57 (s, 1 H), 7.26 -7.34 (m, 1 H), 7.02 - 7.16 (m, 2 H), 6.93 (d, 2 H), 6.00 (s, 2 H), 5.26 - 5.59 (m, 1 H), 4.55 (d, 2 H), 4.04 (s, 1 H), 3.93 (dd, 1 H), 3.62 - 3.80 (m, 2 H).
Compound 1-96 The title compound was prepared following general procedure B, except (S)-morpholine-3-carboxylic acid (4 equiv.) was the amine reactant, Hunig's base (5 equiv.) was used instead of triethylamine, and the contents were heated to 90 C for 18 h as a solution in THF/water (9:1). Solvent was removed under a stream of nitrogen, and the crude material was purified via reverse phase HPLC using a 20-51% acetonitrile/water (in 0.1%
TFA) gradient to deliver the desired compound, Compound 1-96 (8 mg, 31% yield).
1H NMR (500 MHz, METHANOL-d4) 6 8.81 (s, 1H), 8.34-8.42 (m, 1H), 7.51-7.59 (m, 1H), 7.27-7.35 (m, 1H), 7.02-7.15 (m, 2H), 6.94 (s, 2H), 6.01 (s, 2H), 5.37-5.54 (m, 1H), 4.56 (d, 2H), 4.01-4.09 (m, 1H), 3.89-3.96 (m, 1H), 3.61-3.81 (s, 2H).
Compound 1-97 The title compound was prepared following general procedure B, except 1,2,3,4-tetrahydroisoquinoline-1-carboxylic acid (4 equiv.) was the amine reactant, Hunig's base (5 equiv.) was used instead of triethylamine, and the contents were heated to 90 C for 18 h as a solution in THF/water (9:1). Solvent was removed under a stream of nitrogen, and contents were taken up in ethyl acetate. The organic layer was washed with 1N
hydrochloric acid solution, water, and brine, dried over sodium sulfate, filtered, and concentrated in vacuo.
The crude material was purified via reverse phase HPLC to deliver the desired compound, Compound 1-97 (3.4 mg, 12% yield) as a solid.
1H NMR (500 MHz, METHANOL-d4) 6 8.84-8.89 (m, 1H), 8.42-8.49 (m, 1H), 7.62-7.69 (m, 2H), 7.30-7.40 (m, 4H), 7.06-7.16 (m, 2H), 6.97(m, 2H), 6.12-6.18 (m, 1H), 6.05 (s, 2H), 4.48-4.58 (m, 1H), 4.14-4.23 (m, 2H), 3.05-3.15 (m, 1H).
Compound 1-98 The title compound was prepared following general procedure B, except 3-methyl-5-(piperidin-2-y1)-1,2,4-oxadiazole (4 equiv.) was the amine reactant, Hunig's base (5 equiv.) was used instead of triethylamine, and the contents were heated to 90 C for 18 h as a solution in THF/water (9:1). Solvent was removed under a stream of nitrogen, and contents were taken up in ethyl acetate. The organic layer was washed with 1N
hydrochloric acid solution, water, and brine, dried over sodium sulfate, filtered, and concentrated in vacuo. The crude material was purified via reverse phase HPLC to deliver the desired compound, Compound 1-98 (5.3 mg, 20% yield) as a solid.
1H NMR (500 MHz, METHANOL-d4) 6 8.77-8.83 (m, 1H), 8.37-8.45 (m, 1H), 7.54 (s, 1H), 7.26-7.36 (m, 1H), 7.03-7.17 (m, 2H), 6.93 (s, 2H), 6.48-6.55 (m, 1H), 6.00 (s, 2H), 4.60-4.75 (m, 1H), 3.45-3.55 (m, 1H), 2.49-2.58 (m, 1H), 2.38 (s, 3H), 2.15-2.27 (m, 1H), 1.74-1.94 (m, 3H), 1.59-1.73 (m, 1H).
Compound 1-99 The title compound was prepared following general procedure B, except methyl morpholine-3-carboxylate (4 equiv.) was the amine reactant, Hunig's base (3 equiv.) was used instead of triethylamine, and the contents were heated to 120 C for 2 h as a solution in NMP.
Solvent was removed and the crude material was purified via reverse phase HPLC
to deliver the desired compound, Compound 1-99 (7 mg, 25% yield) as a solid.
1H NMR (400 MHz, CD30D) 6 8.71-8.75 (m, 1H), 8.21-8.26 (m, 1H), 7.39-7.43 (m, 1H), 7.19-7.29 (m, 1H), 6.97-7.12 (m, 2H), 6.85-6.88 (m, 1H), 6.75-6.82 (m, 1H), 5.90-5.95 (m, 2H), 5.20-5.31 (m, 1H), 4.45 (s, 1H), 3.93-4.01 (m, 1H), 3.82-3.93 (m, 2H), 3.66-3.75 (m, 2H).
Compound 1-105 The title compound was prepared following general procedure B, except piperidine-2-carboxamide (4 equiv.) was the amine reactant, 6 equivalents of triethylamine was used, and the contents were heated to 60 C for 48 h as a solution in THF/water (9:1).
Solvent was removed under a stream of nitrogen, and the crude material was purified via reverse phase HPLC using a 20-51% acetonitrile/water (in 0.1% TFA) gradient to deliver the desired compound, Compound 1-105 (12 mg, 48% yield) as a solid.
1H NMR (500 MHz, METHANOL-d4) 6 8.80-8.87 (m, 1H), 8.35-8.41 (m, 1H), 7.58-7.65 (m, 1H), 7.28-7.36 (m, 1H), 7.05-7.16 (m, 2H), 6.91-7.02 (m, 2H), 6.03 (s, 2H), 5.53-5.61 (m, 1H), 4.65-4.77 (m, 1H), 3.56-3.69 (m, 1H), 2.37-2.46 (m, 1H), 1.62-2.07 (m, 6H).
Compound 1-106 The title compound was prepared following general procedure B, except 4-aminotetrahydro-2H-pyran-4-carboxylic acid (3.5 equiv.) was the amine reactant, 5 equivalents oftriethylamine was used, and the contents were heated to 200 C
for 10 min in the microwave as a solution in NMP. The reaction mixture was diluted with water and filtered. The filtrate was basified to pH 10 with 3N sodium hydroxide solution, and extracted with dichloromethane. The filtrate was then acidified to pH 1 with 1N hydrochloric acid solution and extracted with dichloromethane. The organic layer was concentrated in vacuo, and the crude material was purified via reverse phase HPLC to deliver the desired compound, Compound 1-106 (2.3 mg, 9% yield) as a solid.
1H NMR (500 MHz, METHANOL-d4) 6 8.81-8.87 (m, 1H), 8.31-8.35 (m, 1H), 7.38-7.41 (m, 1H), 7.25-7.34 (m, 1H), 7.04-7.15 (m, 2H), 6.89-6.98 (m, 2H), 6.01 (s, 2H), 3.87-3.96 (m, 2H), 3.76-3.87 (m, 2H), 2.36-2.45 (m, 2H), 2.23-2.33 (m, 2H).
Compound 1-110 The title compound was prepared following general procedure B, except 4-amino-1-(tert-butoxycarbonyl)piperidine-4-carboxylic acid (3 equiv.) was the amine reactant, 5 equivalents oftriethylamine was used, and the contents were heated to 120 C for 18 h as a solution in DMSO. Without workup, the crude material was purified via reverse phase HPLC to deliver the desired compound, Compound 1-110 (8.2 mg, 26% yield) as a solid.
1H NMR (500 MHz, METHANOL-d4) 6 8.83 (s, 1H), 8.31-8.36 (m, 1H), 7.39 (s, 1H), 7.26-7.36 (m, 1H), 7.02-7.14 (m, 2H), 6.91 (s, 2H), 6.00 (s, 2H), 3.75-3.88 (m, 2H), 3.36-3.49 (m, 2H), 2.29 (br. s., 4H), 1.50 (s, 9H).
Compound 1-111 The title compound was prepared following general procedure B, except 1,2,3,4-tetrahydroisoquinoline (2.5 equiv.) was the amine reactant, no triethylamine was used, and the contents were heated to 120 C for 18 h as a solution in THF. Solvent was removed under a stream ofnitrogen, and the crude material was purified via reverse phase HPLC using a 20-51% acetonitrile/water (in 0.1% TFA) gradient to deliver the desired compound, Compound 1-111 (13.9 mg, 55% yield) as a solid.
1H NMR (500 MHz, METHANOL-d4) 6 8.82-8.86 (m, 1H), 8.28-8.34 (m, 1H), 7.68-7.73 (m, 1H), 7.24-7.35 (m, 6H), 6.93-7.15 (m, 5H), 6.00-6.06 (m, 2H), 5.24 (s, 2H), 4.27-4.33 (m, 2H), 3.10-3.16 (m, 2H).
Compound 1-122 In a 25 ml flask was dissolved Compound 1-110 (0056 g, 0.096 mmol) in DCM
(Volume: 2 ml), and TFA (2 mL, 26.0 mmol). After stirring for 3h at room temperature, the reaction was complete. The solvent was removed in vacuo to give pure product, Compound 1-122 (13.9 mg, 55% yield) as a white solid.
1H NMR (500 MHz, METHANOL-d4) 6 8.78-8.86 (m, 1H), 8.30-8.38 (m, 1H), 7.26-7.38 (m, 2H), 7.01-7.15 (m, 2H), 6.84-6.96 (m, 2H), 5.97 (s, 2H), 3.36-3.51 (m, 4H), 2.50-2.67 (m, 4H).

Compound 1-126 The title compound was prepared following general procedure B, except 6-methoxy-1,2,3,4-tetrahydroisoquinoline-1-carboxylic acid (3 equiv.) was the amine reactant, no triethylamine was used, and the contents were heated to 120 C for 18 h as a solution in DMSO. The reaction mixture was filtered, and directly purified via reverse phase HPLC to deliver the desired compound, Compound 1-126 (11 mg, 38% yield) as a solid.
1H NMR (500 MHz, METHANOL-d4) 6 8.82-8.85 (m, 1H), 8.33-8.37 (m, 1H), 7.53-7.59 (m, 2H), 7.27-7.34 (m, 1H), 7.10 (m, 2H), 6.86-6.97 (m, 4H), 5.01 (s, 2H), 5.96 (m, 1H), 4.35-4.45 (m, 1H), 4.04-4.15 (m, 1H), 3.84 (s, 3H), 3.04 (m, 2H).
Compound 1-127 The title compound was prepared following general procedure B, except 6-hydroxy-1,2,3,4-tetrahydroisoquinoline-1-carboxylic acid (3 equiv.) was the amine reactant, no triethylamine was used, and the contents were heated to 120 C for 18 h as a solution in DMSO. The reaction mixture was filtered, and directly purified via reverse phase HPLC to deliver the desired compound, Compound 1-127 (5.2 mg, 18% yield) as a solid.
1H NMR (500 MHz, METHANOL-d4) 6 8.83-8.87 (m, 1H), 8.37-8.42 (m, 1H), 7.57-7.63 (m, 1H), 7.42-7.48 (m, 1H), 7.28-7.36 (m, 1H), 7.05-7.16 (m, 2H), 6.90-7.00 (m, 2H), 6.71-6.80 (m, 2H), 6.02 (s, 2H), 5.94-5.99 (m, 1H), 4.42-4.51 (m, 1H), 3.99-4.13 (m, 1H), 3.16-3.27 (m, 2H), 2.94-3.02 (m, 1H).
Compound 1-128 The title compound was prepared following general procedure B, except 5-fluoro-1,2,3,4-tetrahydroisoquinoline-1-carboxylic acid (3 equiv.) was the amine reactant, no triethylamine was used, and the contents were heated to 60 C for 18 h as a solution in DMSO, followed by heating to 120 C for 1 h. The reaction mixture was filtered, and directly purified via reverse phase HPLC to deliver the desired compound, Compound 1-128 (5.7 mg, 20% yield) as a solid.
1H NMR (500 MHz, CD30D) 6 8.83 (m, 1 H), 8.31 (m, 1 H), 7.68 (m, 1 H), 7.28 (m, 2 H), 7.03 (m, 6 H), 6.02 (s, 2 H), 5.21 (s, 2 H), 4.27 (m, 2 H), 3.08 (m, 2 H).
Compound 1-130 A solution of Compound 1-122 (as the TFA salt) in dichloromethane was treated with triethylamine (2 equiv.) and propionyl chloride (1.1 equiv.) at 25 C.
Reaction was stirred at 25 C for 18 h. A slurry remained, so contents treated with 5 drops of NMP
(contents go clear), and 1 additional equivalents of both propionyl chloride and triethylamine.
Contents were then stirred at 25 C for 18 h. Solvent was removed in vacuo and the crude material was purified via reverse phase HPLC to deliver the desired compound, Compound 1-130 (5.5 mg, 47% yield) as a solid.
1H NMR (500 MHz, METHANOL-d4) 6 8.82-8.86 (m, 1H), 8.33-8.38 (m, 1H), 7.38-7.42 (m, 1H), 7.28-7.36 (m, 1H), 7.05-7.15 (m, 2H), 6.89-6.99 (m, 2H), 6.00 (s, 2H), 4.04-4.13 (m, 1H), 3.82-3.92 (m, 1H), 3.55-3.64 (m, 1H), 3.44-3.52 (m, 1H), 2.21-2.52 (m, 7H), 1.16 (t, 3H).
Compound 1-131 A solution of Compound 1-122 (as the TFA salt) in dichloromethane was treated with triethylamine (2 equiv.) and methyl carbonochloridate (1.1 equiv.) at 25 C.
Reaction was stirred at 25 C for 18 h. A slurry remained, so contents treated with 5 drops ofNMP (contents go clear), and 1 additional equivalents of both methyl carbonochloridate and triethylamine.
Contents were then stirred at 25 C for 18 h. Solvent was removed in vacuo and the crude material was purified via reverse phase HPLC to deliver the desired compound, Compound 1-131 (3.8 mg, 32% yield) as a solid.
1H NMR (500 MHz, METHANOL-d4) 6 8.81-8.86 (m, 1H), 8.30-8.37 (m, 1H), 7.39 (s, 1H), 7.26-7.34 (m, 1H), 7.04-7.15 (m, 2H), 6.93 (m, 2H), 6.00 (s, 2H), 3.88 (m, 2H), 3.73 (s, 3H), 3.42-3.52 (m, 2H), 2.28-2.34 (br.s., 4H).
Compound 1-132 A solution of Compound 1-122 (as the TFA salt) in dichloromethane was treated with triethylamine (2 equiv.) and ethyl isocyanate (1.1 equiv.) at 25 C. Reaction was stirred at 25 C for 18 h. A slurry remained, so contents treated with 5 drops of NMP
(contents go clear), and 1 additional equivalents of both ethyl isocyanate and triethylamine.
Contents were then stirred at 25 C for 18 h. Solvent was removed in vacuo and the crude material was purified via reverse phase HPLC to deliver the desired compound, Compound 1-132 (5.9 mg, 49% yield) as a solid.
1H NMR (500 MHz, METHANOL-d4) 6 8.83-8.86 (m, 1H), 8.32-8.37 (m, 1H), 7.38-7.41 (m, 1H), 7.28-7.34 (m, 1H), 7.05-7.15 (m, 2H), 6.89-6.99 (m, 2H), 6.00 (s, 2H), 3.74-3.83 (m, 2H), 3.37-3.45 (m, 2H), 3.19-3.26 (m, 2H), 2.30 (s, 4H), 1.14 (s, 3H).
Compound 1-153 The title compound was prepared following general procedure B, except 2-(methylamino)benzoic acid was the amine reactant, 5 equivalents of triethylamine was used, and the contents were heated to 120 C for 12 h as a solution in THF. Solvent was removed under vacuum and the crude material was purified via reverse phase HPLC to deliver the desired compound, Compound 1-153 (5.5 mg, 40% yield) as a solid.

1H NMR (500 MHz, METHANOL-d4) 6 8.80-8.85 (m, 1H), 8.12-8.21 (m, 2H), 7.71-7.78 (m, 1H), 7.53-7.64 (m, 3H), 7.28-7.36 (m, 1H), 7.06-7.17 (m, 2H), 6.91-7.02 (m, 2H), 6.04 (s, 2H), 3.72 (s, 3H).
Compound 1-161 and Compound 1-162 The title compounds were prepared following general procedure B, except 3-methylpiperidine-2-carboxylic acid was the amine reactant, Hunig's base (5 equiv.) was used instead of triethylamine, and the contents were heated to 120 C for 18 h as a solution in THF/water (5:1). Solvent was removed under vacuum and the crude material was purified via reverse phase HPLC to deliver the desired compounds, Compound 1-161 (cis, racemic, 5.1 mg, 20% yield) as a solid and Compound 1-162 (trans, racemic, 1.3 mg, 5%) as a solid.
1H NMR (400 MHz, CD30D) Compound 1-161 6 8.77-8.80 (m, 1H), 8.30-8.34 (m, 1H), 7.52-7.56 (m, 1H), 7.23-7.32 (m, 1H), 6.99-7.12 (m, 2H), 6.87-6.94 (m, 2H), 5.98 (s, 2H), 5.24-5.30 (m, 1H), 4.50-4.61 (m, 1H), 3.72-3.83 (m, 1H), 2.09-2.21 (m, 1H), 1.91-2.00 (m, 1H), 1.72-1.81 (m, 2H), 1.48-1.62 (m, 1H), 1.22 (d, J=7.43 Hz, 3H).
1H NMR (400 MHz, CD30D) Compound 1-162 6 8.78-8.80 (m, 1H), 8.31-8.35 (m, 1H), 7.55-7.58 (m, 1H), 7.24-7.32 (m, 1H), 7.01-7.12 (m, 2H), 6.87-6.96 (m, 2H), 5.99 (s, 2H), 5.29-5.39 (m, 1H), 3.44-3.57 (m, 1H), 2.67-2.75 (m, 1H), 1.78-2.03 (m, 3H), 1.54-1.72 (m, 2H), 1.19 (d, 3H).
Compound 1-197 The title compound was prepared following general procedure B, except 2-(piperidin-4-yloxy)acetic acid was the amine reactant, Hunig's base (5 equiv.) was used instead of triethylamine, and the contents were heated to 100 C for 18 h as a solution in THF/water (10:1). Solvent was removed in vacuo and the crude material was purified via reverse phase HPLC to deliver the desired compound, Compound 1-197 (3 mg, 11%
yield) as a solid.
1H NMR (500 MHz, METHANOL-d4) 6 8.80-8.84 (m, 1H), 8.24-8.30 (m, 1H), 7.57-7.64 (m, 1H), 7.29-7.35 (m, 1H), 7.05-7.16 (m, 2H), 6.92-7.01 (m, 2H), 6.00-6.05 (m, 2H), 4.28-4.36 (m, 2H), 4.23 (s, 2H), 3.97-4.05 (m, 2H), 3.82-3.89 (m, 1H), 2.05-2.16 (m, 2H), 1.87-1.95 (m, 2H).
Compound 1-214 The title compound was prepared following general procedure B, except 4-aminobutanoic acid was the amine reactant, and the contents were stirred for 14 h. The crude material was purified via silica gel chromatography utilizing a 0-10% methanol/dichloromethane gradient to deliver the desired compound, Compound 1-214 (20 mg, 57% yield) as a white solid.

1H-NMR (400 MHz, DMSO-d6) 6 12.09 (bs, 1H), 9.08 (d, 1H), 8.21 (d, 1H), 8.19 (bs, 1H), 7.55 (s, 1H), 7.33-7.27 (m, 1H), 7.21-7.18 (m, 2H), 7.08 (ddd, 1H), 6.82 (t, 1H), 5.88 (s, 2H), 3.50 (dd, 2H), 2.30 (dd, 2H), 1.86-1.79 (m, 2H).
Compound 1-215 The title compound was prepared following general procedure B, except 4-(methylamino)butanoic acid was the amine reactant. The crude material was purified via silica gel chromatography utilizing a 0-10% methanol/dichloromethane gradient to deliver the desired compound, Compound 1-215 (31 mg, 81% yield) as a solid.
1H-NMR (400 MHz, DMSO-d6) 6 9.10 (d, 1H), 8.35 (d, 1H), 7.67 (s, 1H), 7.33-7.28 (m, 1H), 7.22-7.18 (m, 2H), 7.08 (t, 1H), 6.86 (t, 1H), 5.90 (s, 2H), 1.88 (t, 2H), 3.30 (d, 3H), 2.30 (t, 2H), 1.90-1.82 (m, 2H).
Compound 1-219 The title compound was prepared following general procedure B, except N-methyl-D-valine was the amine reactant. The crude material was purified via silica gel chromatography utilizing a 0-10% methanol/dichloromethane gradient to deliver the desired compound, Compound 1-219 (17 mg, 43% yield) as a solid.
1H-NMR (400 MHz, CD30D) 6 8.74 (d, 1H), 8.17 (d, 1H), 7.41 (s, 1H), 7.27-7.22 (m, 1H), 7.09-6.98 (m, 2H), 6.87 (d, 1H), 6.81 (t, 1H), 5.93 (s, 2H), 4.71 (d, 1H), 3.31 (s, 3H), 2.51-2.43 (m, 1H), 1.14 (d, 3H), 0.96 (d, 3H).
Compound 1-221 The title compound was prepared following general procedure B, except N-methyl-D-leucine was the amine reactant. The crude material was purified via silica gel chromatography utilizing a 0-10% methanol/dichloromethane gradient to deliver the desired compound, Compound 1-221 (31 mg, 76% yield) as a solid.
1H-NMR (400 MHz, DMSO-d6) 6 12.86 (bs, 1H), 9.07 (d, 1H), 8.29 (d, 1H), 7.44 (s, 1H), 7.32-7.27 (m, 1H), 7.20-7.15 (m, 1H), 7.16 (d, 1H), 7.08-7.05 (m, 1H), 6.85 (t, 1H), 5.83 (dd, 2H), 3.12 (d, 3H), 3.05-3.00 (m, 1H), 1.91-1.82 (m, 1H), 1.76-1.68 (m, 1H), 1.51-1.47 (m, 1H), 0.89 (d, 3H), 0.85 (d, 3H).
Compound 1-185 The title compound was prepared following general procedure B, except 3-(trifluoromethyl)pyrrolidine-3-carboxylic acid was the amine reactant. The crude material was purified via silica gel chromatography utilizing a 0-10%
methanol/dichloromethane gradient to deliver the desired compound, Compound 1-185 (51 mg, 87% yield) as a solid.

1H-NMR (400 MHz, DMSO-d6) 6 9.05 (d, 1H), 8.29 (d, 1H), 7.53 (s, 1H), 7.29 (q, 1H), 7.24 (d, 1H), 7.21-7.16 (m, 1H), 7.07 (t, 1H), 6.78 (t, 1H), 5.88 (s, 2H), 4.29 (d, 1H), 3.98 (d, 1H), 3.95-3.75 (m, 2H), 2.64-2.37 (m, 2H).
Compound 1-180 The title compound was prepared following general procedure B, except 2-amino-4,4,4-trifluorobutanoic acid was the amine reactant. The crude material was purified via silica gel chromatography utilizing a 0-10% methanol/dichloromethane gradient to deliver the desired compound, Compound 1-180 (24 mg, 58% yield) as a solid.
1H-NMR (400 MHz, DMSO-d6) 6 13.29 (bs, 1H), 9.07 (d, 1H), 8.26 (d, 1H), 8.15-8.12 (m, 1H), 7.39 (s, 1H), 7.28 (q, 1H), 7.18 (t, 1H), 7.15 (s, 1H), 7.07 (t, 1H), 6.83 (t, 1H), 5.84 (s, 2H), 4.95-4.92 (m, 1H), 3.03-2.94 (m, 2H).
Compound 1-178 The title compound was prepared following general procedure B, except 2-amino-4-(methylsulfonyl)butanoic acid was the amine reactant. The crude material was purified via silica gel chromatography utilizing a 0-10%
methanol/dichloromethane gradient to deliver the desired compound, Compound 1-178 (6 mg, 14% yield) as a solid.
Fil NMR (400 MHz, CD30D) 6 8.78 (d, 1H), 8.29 (d, 1H), 7.57 (s, 1H), 7.29-7.23 (m, 1H), 7.10-7.04 (m, 1H), 7.03 (t, 1H), 6.91 (d, 1H), 6.89 (t, 1H), 5.98 (s, 2H), 5.24 (dd, 1H), 3.38-3.25 (m, 1H), 3.22-3.16 (m, 1H), 2.29 (s, 3H), 2.67-2.58 (m, 1H), 2.47-2.38 (m, 1H).
Compound 1-72 This compound was prepared following the procedure described above for Compound 1-71, except the reaction solvent was THF and the work up was carried out with DCM
and brine (22 mg, 31%).
1H-NMR (400 MHz, DMSO-d6) 6 9.06 (d, 1H), 8.23 (d, 1H), 7.48 (s, 1H), 7.33-7.27 (m, 1H), 7.23-7.17 (m, 2H), 7.08-7.03 (m, 1H), 6.77-6.73 (m, 1H), 5.86 (s, 2H), 4.33-4.24 (m, 2H), 4.11-4.03 (m, 2H), 3.60-3.55 (m, 1H), 3.14-3.07 (m, 2H), 2.85-2.78 (m, 2H).
Compound 1-103 The title compound was prepared following general procedure B, except D-leucine was the amine reactant. The crude material was purified via silica gel chromatography utilizing a 0-10% methanol/dichloromethane gradient to deliver the desired compound, Compound 1-103 (18 mg, 46% yield) as a solid.
1H-NMR (400 MHz, DMSO-d6) 6 12.67 (bs, 1H), 9.07 (d, 1H), 8.23 (d, 1H), 8.04 (d, 1H), 7.39 (s, 1H), 7.28 (dd, 1H), 7.20-7.14 (m, 1H), 7.14 (d, 1H), 7.07 (t, 1H), 6.84 (t, 1H), 5.89-5.80 (m, 2H), 4.74-4.64 (m, 1H), 1.86-1.79 (m, 1H), 1.70-1.58 (m, 2H), 0.90 (d, 3H), 0.67 (d, 3H).

Compound 1-148 The title compound was prepared following general procedure B, except (R)-2-amino-3,3-dimethylbutanoic acid was the amine reactant. The crude material was purified via silica gel chromatography utilizing a 0-10%
methanol/dichloromethane gradient to deliver the desired compound, Compound 1-148 (33 mg, 83% yield) as a solid.
1H-NMR (400 MHz, DMSO-d6) 6 12.84 (br. s, 1 H), 9.09 (d, 1 H), 8.27 (d, 1 H), 7.43-7.27 (m, 2 H), 7.33-7.27 (m, 1 H), 7.18 (t, 1 H), 7.15 (d, 1 H), 7.08 (t, 1 H), 6.85 (t, 1 H), 5.85 (s, 2 H), 4.58 (d, 1 H), 0.96 (s, 9 H).
Compound 1-151 The title compound was prepared following general procedure B, except (S)-2-amino-3,3-dimethylbutanoic acid was the amine reactant. The crude material was purified via silica gel chromatography utilizing a 0-10%
methanol/dichloromethane gradient to deliver the desired compound, Compound 1-151 (22 mg, 59% yield) as a solid.
1H-NMR (400 MHz, DMSO-d6) 6 12.84 (br. s, 1 H), 9.09 (d, 1 H), 8.27 (d, 1 H), 7.43-7.27 (m, 2 H), 7.33-7.27 (m, 1 H), 7.18 (t, 1 H), 7.15 (d, 1 H), 7.08 (t, 1 H), 6.85 (t, 1 H), 5.85 (s, 2 H), 4.58 (d, 1 H), 0.96 (s, 9 H).
Compound 1-137 The title compound was prepared following general procedure B, except N-methyl-L-leucine was the amine reactant. The crude material was purified via silica gel chromatography utilizing a 0-10% methanol/dichloromethane gradient to deliver the desired compound, Compound 1-137 (14 mg, 36% yield) as a solid.
1H-NMR (400 MHz, CD30D) 6 8.79 (d, 1H), 8.34 (d, 1H), 7.52 (s, 1H), 7.27 (dd, 1H), 7.10-7.01 (m, 2H), 6.95-6.90 (m, 2H), 5.98 (s, 2H), 5.57-5.47 (m, 1H), 3.44 (d, 3H), 2.03-1.98 (m, 2H), 1.74-1.51 (m, 1H), 1.00 (d, 3H), 0.98 (d, 3H).
Compound 1-115 The title compound was prepared following general procedure B, except ethyl 5,6,7,8-tetrahydro-[1,2,4]triazolo[4,3-a]pyrazine-3-carboxylate (4 equiv.) was the amine reactant, and the reaction was run in THF. The workup was carried out in dichloromethane and brine. The crude material was purified via silica gel chromatography utilizing a 0-10%
methanol/dichloromethane gradient to deliver the desired compound, Compound 1-115 (42 mg, 37% yield) as a solid.
1H-NMR (400 MHz, CDC13) 6 8.47 (d, 1H), 8.35 (d, 1H), 7.40 (s, 1H), 7.21-7.16(m, 1H), 7.01 (t, 1H), 6.95 (t, 1H), 6.84 (t, 1H), 6.65 (d, 1H), 5.98 (s, 2H), 5.35 (s, 2H), 4.59 (t, 2H), 4.48 (q, 2H), 4.30 (t, 2H), 1.44 (t, 3H).

Compound 1-16 Intermediate 1 (0.030 g, 0.080 mmol) was diluted with THF (2.0 ml) then charged with 3-(trifluoromethyl)-5,6,7,8-tetrahydro-[1,2,4]triazolo[4,3-a]pyrazine (0.031 g, 0.161 mmol).
Reaction was heated to 50 C and stirred for 1 hour. At this time, the LC/MS
did not show product forming - therefore, at this time TEA (0.056 ml, 0.401 mmol) was added and the resulting reaction mixture was heated to 80 C overnight. In the morning, clean reaction was detected by LC/MS. The crude reaction was concentrated and purified using Si02 chromatography employing a 0-50% (7:1 ACN/Me0H) in DCM gradient to deliver the desired material as a white solid (32 mg, 72%).
1H-NMR (400 MHz, DMSO-d6) 6 9.08 (d, 1H), 8.43 (d, 1H), 7.62 (s, 1H), 7.30 (dd, 1H), 7.23 (d, 1H), 7.19 (t, 1H), 7.07 (t, 1H), 6.81 (t, 1H), 5.89 (s, 2H), 5.24 (s, 2H), 4.33-4.25 (m, 4H).
Compound 1-112 The title compound was prepared following general procedure B, except D-serine was the amine reactant and the reaction was run in THF/water. The crude material was purified via reverse phase HPLC to deliver the desired compound, Compound 1-112 (4 mg, 15%
yield) as a solid.
1H-NMR (400 MHz, CD30D) 6 8.78 (d, 1H), 8.27 (dd, 1H), 7.51 (s, 1H), 7.29-7.23 (m, 1H), 7.07 (t, 1H), 7.02 (t, 1H), 6.92-6.91 (m, 1H), 6.88 (t, 1H), 5.97 (s, 2H), 5.13 (t, 1H), 4.09 (d, 2H).
Compound 1-86 The title compound was prepared following general procedure B, except D-valine was the amine reactant and the reaction was run in THF/water. The crude material was purified via reverse phase HPLC to deliver the desired compound, Compound 1-86 (2 mg, 7%
yield) as a solid.
1H-NMR (400 MHz, CD30D) 6 8.80 (d, 1 H), 8.32 (d, 1 H), 7.57 (s, 1 H), 7.31-7.25 (m, 1 H), 7.10-7.02 (m, 2 H), 6.95 (s, 1 H), 6.95-6.91 (m, 1 H), 6.00 (s, 2 H), 4.85 (d, 1 H), 2.45-2.36 (m, 1 H), 1.11 (d, 3 H), 1.10 (d, 3 H).
Compound 1-88 The title compound was prepared following general procedure B, except L-leucine was the amine reactant and the reaction was run in THF/water. The crude material was purified via reverse phase HPLC to deliver the desired compound, Compound 1-88 (3 mg, 10%
yield) as a solid.

1H-NMR (400 MHz, DMSO-d6) 6 12.67 (bs, 1H), 9.07 (d, 1H), 8.23 (d, 1H), 8.04 (d, 1H), 7.39 (s, 1H), 7.28 (dd, 1H), 7.20-7.14 (m, 1H), 7.14 (d, 1H), 7.07 (t, 1H), 6.84 (t, 1H), 5.89-5.80 (m, 2H), 4.74-4.64 (m, 1H), 1.86-1.79 (m, 1H), 1.70-1.58 (m, 2H), 0.90 (d, 3H), 0.67 (d, 3H).
Compound 1-67 The title compound was prepared following general procedure B, except glycine was the amine reactant and the reaction was run in THF/water. The crude material was purified via reverse phase HPLC to deliver the desired compound, Compound 1-67 (8 mg, 33% yield) as a solid.
1H-NMR (400 MHz, DMSO-d6) 6 12.72 (bs, 1H), 9.07 (d, 1H), 8.25 (d, 1H), 8.14 (bs, 1H), 7.45 (s, 1H), 7.32-7.27 (m, 1H), 7.21-7.16 (m, 1H), 7.16 (d, 1H), 7.07 (t, 1H), 6.80 (t, 1H), 5.86 (s, 2H), 4.15 (d, 2H).
Compound 1-69 The title compound was prepared following general procedure B, except L-valine was the amine reactant and the reaction was run in THF/water. The crude material was purified via reverse phase HPLC to deliver the desired compound, Compound 1-69 (24 mg, 66%
yield) as a solid.
1H-NMR (400 MHz, CD30D) 6 8.80 (d, 1H), 8.32 (d, 1H), 7.57 (s, 1H), 7.31-7.25 (m, 1H), 7.10-7.02 (m, 2H), 6.95 (s, 1H), 6.95-6.91 (m, 1H), 6.00 (s, 2H), 4.85 (d, 1H), 2.45-2.36 (m, 1H), 1.11 (d, 3H), 1.10 (d, 3H).
Compound 1-89 The title compound was prepared following general procedure B, except N-methyl-L-valine was the amine reactant and the reaction was run in THF/water. The crude material was purified via reverse phase HPLC to deliver the desired compound, Compound 1-89 (22 mg, 76% yield) as a solid.
1H-NMR (400 MHz, CD30D) 6 8.74 (d, 1H), 8.17 (d, 1H), 7.41 (s, 1H), 7.27-7.22 (m, 1H), 7.09-6.98 (m, 2H), 6.87 (d, 1H), 6.81 (t, 1H), 5.93 (s, 2H), 4.71 (d, 1H), 3.31 (s, 3H), 2.51-2.43 (m, 1H), 1.14 (d, 3H), 0.96 (d, 3H).
Compound 1-79 The title compound was prepared following general procedure B, except thiomorpholine 1,1-dioxide was the amine reactant and the reaction was run in THF/water. The workup was carried out in dichloromethane and brine. The crude material was purified via reverse phase HPLC to deliver the desired compound, Compound 1-79 (4 mg, 16% yield).
1H-NMR (400 MHz, CDC13) 6 8.47-8.45 (m, 1H), 8.33 (d, 1H), 7.24 (s, 1H), 7.19 (dd, 1H), 7.02 (t, 1H), 6.96 (t, 1H), 6.84 (t, 1H), 6.57 (d, 1H), 5.94 (s, 2H), 4.36 (dd, 2H), 3.19 (dd, 2H).
Compound 1-68 The title compound was prepared following general procedure B, except L-serine was the amine reactant and the reaction was run in THF/water. The crude material was purified via reverse phase HPLC to deliver the desired compound, Compound 1-68 (12 mg, 48%
yield) as a solid.
1H-NMR (400 MHz, CD30D) 6 8.78 (d, 1H), 8.27 (dd, 1H), 7.51 (s, 1H), 7.29-7.23 (m, 1H), 7.07 (t, 1H), 7.02 (t, 1H), 6.92-6.91 (m, 1H), 6.88 (t, 1H), 5.97 (s, 2H), 5.13 (t, 1H), 4.09 (d, 2H).
Compound 1-65 The title compound was prepared following general procedure B, except tert-butylamine (50 equiv.) was the amine reactant and the reaction was heated to 60 C for 48 h as a solution in THF. The reaction was concentrated in vacuo, and the crude material was purified via silica gel chromatography utilizing a 0-30% (7:1 acetonitrile/methanol) in dichloromethane gradient to deliver the desired compound, Compound 1-65 (19 mg, 96% yield) as a solid1H-NMR (400 MHz, CDC13) 6 8.45 (d, 1H), 8.14 (d, 1H), 7.40 (bs, 1H), 7.21-7.16 (m, 1H), 7.03-6.91 (m, 3H), 6.61 (d, 1H), 5.93 (s, 2H), 1.58 (s, 9H).
Compound 1-113 This compound was prepared by treating Compound 1-115 with LiOH=H20 in a 2:1:1 solvent mixture of THF:MeOH:water . Once decarboxylation was complete, the reaction was acidified using 1N HC1, and was then extracted (3 times) with dichloromethane. The organic portions were combined, dried (Na2SO4), filtered, and then concentrated. The crude material was purified via silica gel chromatography using a 0-10% Me0H in dichloromethane gradient to deliver the title compound, Compound 1-113, as a white solid (5 mg, 5%). .
1H-NMR (400 MHz, DMSO-d6) 6 9.07 (d, 1H), 8.50 (s, 1H), 8.41 (d, 1H), 7.61 (s, 1H), 7.32-7.28 (m, 1H), 7.24 (d, 1H), 7.19 (t, 1H), 7.07 (t, 1H), 6.81 (t, 1H), 5.89 (s, 2H), 5.14 (s, 2H), 4.28-4.16 (m, 4H).
Compound 1-174 The title compound was prepared following general procedure B, except 3-aminopropanoic acid was the amine reactant, and contents were heated to 110 C for 14 h as a solution in THF/water (10:1). The crude material was purified via reverse-phase prep-HPLC
to deliver the desired compound, Compound 1-174 (17 mg, 56%) as a white solid.
1H NMR (500 MHz, CD30D) 6 ppm 8.80 (br. s., 1 H), 8.17 (br. s., 1 H), 7.55 (s, 1 H), 7.29 (d, 1 H), 7.01 - 7.15 (m, 2 H), 6.95 (br. s., 1 H), 6.91 (d, 1 H), 6.00 (br. s., 2 H), 3.96 (t, 2 H), 2.77 (t, 2H).
Compound 1-169 The title compound was prepared following general procedure B, except 3-(methylamino)propanoic acid was the amine reactant, and contents were heated to 110 C for 4 h as a solution in THF/water (10:1). Reaction was concentrated in vacuo, and the crude material was purified via reverse phase HPLC to deliver the desired compound, Compound 1-169 (14 mg, 56% yield) as a solid.
1H NMR (500 MHz, CD30D) 6 ppm 8.71 (d, 1 H), 8.17 (d, 1 H), 7.48 (s, 1 H), 7.19 (d, 1 H), 6.89 - 7.05 (m, 2 H), 6.84 (d, 2 H), 5.90 (s, 2 H), 4.05 (t, 2 H), 3.42 (d, 3 H), 2.71 (t, 2 H).
Compound 1-170 The title compound was prepared following general procedure B, except 2-methyl-3-(methylamino)propanoic acid was the amine reactant, and contents were heated to 110 C for 18 h as a solution in THF/water (10:1). Reaction was concentrated in vacuo, and the crude material was purified via reverse phase HPLC to deliver the desired compound, Compound 1-170 (13 mg, 51% yield) as a solid.
1H NMR (500 MHz, CD30D) 6 ppm 8.68 (d, 1 H), 8.09 (d, 1 H), 7.38 (s, 1 H), 7.14 - 7.21 (m, 1 H), 6.90 - 7.02 (m, 2 H), 6.76 - 6.83 (m, 2 H), 5.87 (s, 2 H), 4.01 (dd, 1 H), 3.77 (dd, 1 H), 3.34 (d, 3 H), 2.92 (m, 1 H), 1.14 (d, 3 H).
Compound 1-171 The title compound was prepared following general procedure B, except (R)-2-(aminomethyl)-3-methylbutanoic acid was the amine reactant, and contents were heated to 110 C for 18 h as a solution in THF/water (10:1). Reaction was concentrated in vacuo, methanol was added, and the crude material was purified via reverse phase HPLC
to deliver the desired compound, Compound 1-171 (15 mg, 57% yield) as a solid.
1H NMR (500 MHz, METHANOL-d4) 6 ppm 8.86 (d, 1 H), 8.29 (d, 1 H), 7.60 (s, 1 H), 7.33 (d, 1 H), 7.06 - 7.17 (m, 2 H), 6.99 - 7.05 (m, 1 H), 6.95 (d, 1 H), 6.04 (s, 2 H), 3.93 - 4.08 (m, 2 H), 2.71 (ddd, 1 H), 2.10 (dq, 1 H), 1.07 - 1.20 (m, 6 H).
Compound 1-173 The title compound was prepared following general procedure B, except (S)-2-(aminomethyl)-3-methylbutanoic acid was the amine reactant, and contents were heated to 110 C for 18 h as a solution in THF/water (10:1). Reaction was concentrated in vacuo, and the crude material was purified via reverse phase HPLC to deliver the desired compound, Compound 1-173 (18 mg, 68% yield) as a solid.
1H NMR (500 MHz, CD30D) 6 ppm 8.84 (d, 1 H), 8.25 (d, 1 H), 7.56 (s, 1 H), 7.31 (d, 1 H), 7.04 - 7.15 (m, 2 H), 6.96 - 7.01 (m, 1 H), 6.93 (d, 1 H), 6.01 (s, 2 H), 3.91 - 4.04 (m, 2 H), 2.71 (dt, 1 H), 2.04 - 2.14 (m, 1 H), 1.14 (d, 3 H), 1.10 (d, 3 H).
275 Compound 1-181 The title compound was prepared following general procedure B, except (R)-3-amino-4-methylpentanoic acid was the amine reactant, and contents were heated to 100 C for 18 h as a solution in THF/water (10:1). Reaction was concentrated in vacuo, and the crude material was purified via reverse phase HPLC to deliver the desired compound, Compound 1-181 (7 mg, 21% yield).
1H NMR (500 MHz, CD30D) 6 ppm 8.85 (d, 1 H), 8.29 (d, 1 H), 7.65 (s, 1 H), 7.30 - 7.37 (m, 1 H), 7.07 - 7.16 (m, 2 H), 6.98 - 7.03 (m, 2 H), 6.05 (s, 2 H), 4.91 -4.96 (m, 1 H), 2.71 - 2.86 (m, 2 H), 2.05 - 2.13 (m, 1 H), 1.08 (dd, 6 H).
Compound 1-182 The title compound was prepared following general procedure B, except (S)-3-amino-4-methylpentanoic acid was the amine reactant, and contents were heated to 100 C for 18 h as a solution in THF/water (10:1). Reaction was concentrated in vacuo, and the crude material was purified via reverse phase HPLC to deliver the desired compound, Compound 1-182 (7 mg, 24% yield).
1H NMR (500 MHz, CD30D) 6 ppm 8.79 - 8.85 (m, 1 H), 8.23 - 8.28 (m, 1 H), 7.63 (d, 1 H), 7.30 (br. s., 1 H), 7.03 - 7.15 (m, 2 H), 6.94 - 7.02 (m, 2 H), 6.03 (br. s., 2 H), 2.66 - 2.85 (m, 2 H), 2.01 - 2.13 (m, 2 H), 1.00 - 1.10 (m, 6 H).
Compound 1-195 and Compound 1-196 The title compounds were prepared following general procedure B, except 4-methyl-3-(methylamino)pentanoic acid was the amine reactant, and contents were heated at 100 C for 18 h as a solution in THF/water (10:1). Reaction was concentrated in vacuo, and the crude material was purified via reverse phase HPLC to deliver two compounds, Compound 1-195 (5 mg, 16% yield), and Compound 1-196 (12 mg, 41% yield).
1H NMR for Compound 1-195 (500 MHz, CD30D) 6 ppm 8.82 (d, 1 H), 8.28 (d, 1 H), 7.57 (s, 1 H), 7.29 - 7.34 (m, 1 H), 7.05 - 7.15 (m, 2 H), 6.93 - 6.98 (m, 2 H), 6.02 (s, 2 H), 2.92 (m, 2 H), 2.75 - 2.82 (m, 3 H), 2.10 - 2.19 (m, 2 H), 1.13 (d, 3 H) 1.00 (d, 3 H).
1H NMR for Compound 1-196 (500 MHz, CD30D) 6 ppm 8.83 (d, 1 H), 8.21 (d, 1 H), 7.64 (s, 1 H), 7.29 - 7.35 (m, 1 H), 7.05 -7.14 (m, 2 H), 6.95 - 7.01 (m, 2 H), 6.03 (s, 2 H), 3.27 (s, 3 H).
Compound 1-202 The title compound was prepared in 3 steps:
Step 1: Synthesis of (R)-methyl 3-05-fluoro-2-(1-(2-fluorobenzy1)-5-(isoxazol-3-y1)-
276 1H-pyrazol-3-yl)pyrimidin-4-yl)amino)-4-methylpentanoate To a stirred solution of Compound 1-181 in ether/methanol (3:1) was added TMS-diazomethane (2 equiv.) slowly at 23 C. The mixture was stirred for 30 min, and the solvent was removed in vacuo. The crude material was purified via silica gel chromatography to deliver the desired intermediate, (R)-methyl 3-45-fluoro-2-(1-(2-fluorobenzy1)-5-(isoxazo1-3-y1)-1H-pyrazo1-3-y1)pyrimidin-4-ypamino)-4-methylpentanoate (58 mg, 56%
yield).
Step 2: Synthesis of (R)-methyl 3-05-fluoro-2-(1-(2-fluorobenzy1)-5-(isoxazol-3-y1)-1H-pyrazol-3-yl)pyrimidin-4-y1)(methyl)amino)-4-methylpentanoate To a 0 C solution of (R)-methyl 3-45-fluoro-2-(1-(2-fluorobenzy1)-5-(isoxazo1-3-y1)-1H-pyrazo1-3-yl)pyrimidin-4-y1)amino)-4-methylpentanoate in DMF was added sodium hydride (1.2 equiv.) followed by iodomethane (1.1 equiv.). The mixture was stirred and warmed to 23 C. Reaction quenched with water, and layers separated. Aqueous layer extracted with dichloromethane, and organic layer dried, filtered, and concentrated.
Residue taken onto the next step without further purification.
Step 3: Synthesis of Compound 1-202 To a stirred solution of (R)-methyl 3-45-fluoro-2-(1-(2-fluorobenzy1)-5-(isoxazo1-3-y1)-1H-pyrazo1-3-y1)pyrimidin-4-y1)(methypamino)-4-methylpentanoate in THF/water/methanol (3:1:1) was added solid sodium hydroxide (3 equiv.). Contents stirred at 23 C
for 18 h. Solvent was removed in vacuo, and the crude material was purified via reverse phase HPLC to deliver Compound 1-202 (0.5 mg, 12% yield) as a solid.
1H NMR (500 MHz, CD30D) 6 ppm 8.83 (d, 1 H), 8.29 (d, 1 H), 7.58 (s, 1 H), 7.32 (dd, 2 H), 7.06 - 7.15 (m, 1 H), 6.93 - 6.99 (m, 2 H), 6.02 (s, 2 H), 2.90 (dd, 2 H), 2.75 - 2.82 (m, 3 H), 2.14 (m, 2 H), 1.13 (d, 3 H), 1.00 (d, 3 H).
Compound 1-206 The title compound was prepared following general procedure B, except 3-amino-2,2-difluoropropanoic acid was the amine reactant, and contents were heated to 110 C for 18 h as a solution in dioxane/water (10:1). Reaction was concentrated in vacuo, methanol was added, and the crude material was purified via reverse phase HPLC
to deliver the desired compound, Compound 1-206 (20 mg, 22% yield).
1FINMR (500 MHz, CD30D) 6 ppm 8.78 (d, 1 H), 8.22(d, 1 H), 7.61 (s, 1 H), 7.25 - 7.31(m, 1 H), 7.07 - 7.12 (m, 1 H), 7.05 (t, 1 H), 6.96 (d, 1 H), 6.89 (t, 1 H), 6.00 (s, 2 H), 4.35 (t, 2 H).
Compound 1-251
277 The title compound was prepared following general procedure B, except (S)-3-amino-4,4-dimethylpentanoic acid was the amine reactant, and contents were heated to 110 C for 18 h as a solution in dioxane/water (10:1). Reaction was concentrated in vacuo, methanol was added, and the crude material was purified via reverse phase HPLC
to deliver the desired compound, Compound 1-251 (15 mg, 44% yield).
1H NMR (500 MHz, CD30D) 6 ppm 8.83 (d, 1 H), 8.26 (d, 1 H), 7.63 (s, 1 H), 7.29 - 7.35 (m, 1 H), 7.06 - 7.16 (m, 2 H), 7.02 (d, 1 H), 6.95 - 7.00 (m, 1 H), 6.04 (s, 2 H), 2.82 - 2.88 (m, 1 H), 2.72 (dd, 2 H), 1.08 (s, 9 H).
Compound 1-266 A solution of 5,5-difluoropiperidine-2-carboxylic acid (2.5-3.0 equivalents), triethylamine (8.0-10 equivalents) and Intermediate 1 was stirred in dioxane/water (2:1 ratio) at 100 C until complete consumption of starting material by LC/MS, following general procedure B. The solution was poured into 1N HC1 and extracted with dichloromethane. The organic phases were dried over sodium sulfate, filtered and concentrated in vacuo.
Purification by silica gel chromatography (3-8% methanol/dichloromethane gradient) yielded the desired compound, Compound 1-266, (29 mg, combined yield from 2 experiments) as an off-white solid.
1H-NMR (400 MHz, CDC13) 6 8.46 (d, 1H), 8.25 (d, 1H), 7.36 (s, 1H), 7.20 (app.
q, 1H), 7.03 (app. t, 1H), 6.96 (app. t, 1H), 6.69 (app. t, 1H), 6.58 (d, 1H), 6.22 (d, 1H), 6.08 (d, 1H), 5.95 (m, 1H), 4.59 (m, 1H), 3.53 (dd, 1H), 2.37 (br. d, 1H), 2.08 (m, 2H), 1.57 (m, 1H).
Compound 1-263 The title compound was prepared in 4 steps:
Step 1: Synthesis of tert-butyl 4,4-dffluoropiperidine-1-carboxylate BocN
F
F
A suspension of 4,4-difluoropiperidine hydrochloride and triethylamine (2.2 equivalents) in dichloromethane was added to a solution of di-tert-butyl dicarbonate (1.1 equivalents) in dichloromethane slowly via a pipet (note: gas evolution was observed). The reaction was stirred at ambient temperature until complete consumption of starting material as indicated by NMR. The reaction mixture was diluted with dichloromethane and washed with half-saturated ammonium chloride solution. The organic layer was dried over sodium sulfate, filtered, and the solvent was removed in vacuo. Purification by silica gel chromatography (2% ethyl acetate/hexane) yielded tert-butyl 4,4-difluoropiperidine-l-carboxylate (73%).
Step 2: Synthesis of 1-(tert-butoxycarbony1)-4,4-dffluoropiperidine-2-carboxylic acid
278 BocN
F
A 0.5 M solution of tert-butyl 4,4-difluoropiperidine-1-carboxylate, tetramethylethylenediamine (TMEDA, 1.0 equivalent) in anhydrous ether at -78 C
was treated dropwise with sec-butylithium (1.2 equivalents) and stirred for 2 hours.
Carbon dioxide gas was then introduced via bubbling for 2 min. The reaction was stirred at -78 C
for 10 min, warmed to ambient temperature and stirred for an additional hour. The resulting mixture was then quenched with water, acidified to pH 2 with 1N HCl and extracted with ethyl acetate. The combined organic layers were dried over sodium sulfate, filtered, and the solvent was removed in vacuo. Purification by silica gel chromatography (20-50% ethyl acetate/hexane gradient) yielded 1-(tert-butoxycarbony1)-4,4-difluoropiperidine-2-carboxylic acid (87%).
Step 3: Synthesis of 2-carboxy-4,4-difluoropiperidinium trifluoroacetate co,H
e H, ) F3C 0 .A-N
y ^ \...- F

A solution of trifluoroacetic acid (20 equivalents) and 1-(tert-butoxycarbony1)-4,4-difluoropiperidine-2-carboxylic acid was stirred in dichloromethane at ambient temperature until complete consumption of starting material by LC/MS. The reaction mixture was concentrated in vacuo to afford 2-carboxy-4,4-difluoropiperidinium trifluoroacetate (Intermediate WW) as a sticky pale orange solid (>99%) which was used without further manipulation.
Step 4: Synthesis of Compound 1-263 The title compound was prepared following general procedure B, except 2-carboxy-4,4-difluoropiperidinium trifluoroacetate (2.4 equiv.) was the amine reactant, and contents were heated to 100 C. The crude material was purified via silica gel chromatography utilizing a 2-7% methanol/dichloromethane gradient to deliver the desired compound, Compound 1-263 (26 mg, 56% yield) as an off-white solid.
1H-NMR (400 MHz, acetone-d6) 6 8.88 (s, 1H), 8.30 (d, 1H), 7.50 (s, 1H), 7.31 (app. q, 1H), 7.14 (app. t, 1H), 7.08 (app. t, 1H), 7.01 (s, 1H), 6.90 (app. t, 1H), 5.96 (s, 2H), 5.70 (br. d, 1H), 4.69 (br. d, 1H), 3.68 (app. t, 1H), 2.84 (m, 1H), 2.52 (m, 1H), 2.23 (m, 2H).
Compound 1-247 A mixture of Intermediate-1 (26.0 mg,) , (2S)-3-methyl-2-(methylamino)pentanoic acid (.030 g, 3equiv and triethylamine (0.096 ml, 10 equiv) in a 10:1 mixture of THF/Water was heated at 85 C for 16 hrs, following procedure B. The reaction was cooled, the solvent
279 removed, and the resulting crude purified via preparative reverse-phase HPLC
to afford the desired product, Compound I-247as a solid (2.4 mg, 7.2% yield). d 1H NMR (500 MHz, CD30D) 6 8.80 (d, 1 H), 8.32 (d, 1 H), 7.51 (s, 1 H), 7.26 -7.32 (m, 1 H), 7.02 - 7.13 (m, 2 H), 6.92 - 6.95 (m, 1 H), 6.91 (d, 1 H), 5.99 (s, 2 H), 5.49 (s, 1 H) , 3.44 (d, 3 H), 2.03 (s, 1 H), 1.03 (t, 3 H), 0.98 (dd, 2 H), 0.85 - 0.92 (m, 3 H).
Compound 1-255 A mixture of Intermediate-1 (36.0 mg), 4-isopropylpiperidine-4-carboxylic acid (3equiv.), and TEA (10 equiv.), in a 10:1 mixture of THF/Water was heated at 90 C for 3 hrs, following general procedure B. The reaction was cooled, the solvent removed, and the resulting crude to afford the desired product, Compound 1-255, as a white solid (22 mg49% yield) 1H NMR (500 MHz, CHLOROFORM-d) 6 ppm 8.49 (d, 1H), 8.35 (d, 1H), 7.64 (s, 1H), 7.48 (s, 1H), 7.20 - 7.25 (m, 1H), 7.05 (s, 1H), 7.01- 7.05 (m, 3H), 6.67 (d, 1H), 5.98 (s, 2H), 4.80 (d, 2H), 3.72 - 3.79 (m, 1H), 3.23 (t, 2H), 2.35 (d, 3H), 1.80 - 1.92 (m, 2H), 1.62 (td, 2H), 1.41 (t, 1H), 0.97 (d, 6H) Compound 1-254 A mixture of Intermediate-1 (35.0 mg), 4 2-(piperidin-4-yl)benzoic acid (3equiv.), and TEA
(10equiv.), in a 10:1 mixture of THF/Water was heated at 90 C for 2 hrs. The reaction mixture was cooled, the solvent removed, and the mixture treated with 1N HC1 and the resulting crude was purified via preparative reverse-phase HPLC to afford the desired product, Compound 1-254, as a white solid (1 mg, 2% yield).
1H NMR (500 MHz, CDC13) 6 ppm 8.45 (d, 1H), 8.22 (d, 1H), 7.99 (dd, 1H), 7.51 -7.56 (m, 1H), 7.39 - 7.44(m, 2H), 7.32 (t, 1H), 7.17 - 7.24 (m, 1H), 6.95 - 7.09 (m, 2H), 6.86 - 6.93 (m, 1H), 6.61 (s, 1H), 5.98 (s, 2H), 4.90 (br. s., 2H), 3.94 (br. s., 1H), 3.21 (t, 2H), 2.03 - 2.09 (m, 2H), 1.80 - 1.90 (m, 2H) Compound 1-256 A mixture of Intermediate 1 (20.0 mg), 4-(tert-pentyl)piperidine-4-carbonxylic acid (3equiv., as the TFA salt), and TEA (10equiv.), in a 10:1 mixture of THF/Water was heated at 90 C for 2 hrs. The reaction was cooled, the organic solvent removed, 1N HC1 added, and the resulting precipitate was filtered to afford the desired product, Compound 1-256, as a white solid (13.4 mg, 47% yield).
1H NMR (500 MHz, CDC13) 6 ppm: 8.45 (d, 1H), 8.17 (d, 1H), 7.29 (s, 1H), 7.15 -7.22 (m, 1H), 6.99 - 7.07 (m, 1H), 6.96 (t, 1H), 6.85 (t, 1H), 6.58 (d, 1H), 5.97 (s, 2H), 4.69 (d, 2H), 3.04 (t, 2H), 2.25 (d, 2H), 1.71 (td, 2H), 1.35- 1.45 (m, 2H), 0.90 - 0.95 (m, 6H), 0.87 (t, 3H) Compound 1-258
280 To a solution of (S)-2-45-fluoro-2-(1-(2-fluorobenzy1)-5-(isoxazol-3-y1)-1H-pyrazol-3-yl)pyrimidin-4-y1)ami no)-3-methylbutanoic acid (Compound 1-69, .040 g, 0.088 mmol) in DCM (1.8 ml) was added CDI (0.043 g, 0.264 mmol). The reaction was heated at 45 C for 60 minutes.
After this, DBU
(0.013 ml, 0.088 mmol) and cyclopropanesulfonamide (0.053 g, 0.440 mmol) were added.
Reaction was continuedfor an additional 40 minutes at the same temperature, until it was deemed to be complete. At this time, the reaction was quenched with 1N HC1.
The layers were separated and the aqueous portion was extracted two times with DCM. The organic portions were combined, dried (Na2SO4), filtered, and concentrated. The crude material was purified using silica chromatography 0-10% Me0H/DCM gradient to afford the desired compound, Compound 1-258, as a white solid (10.8 mg, 80% yield).
1H NMR (500 MHz, CHLOROFORM-d) 6 ppm: 9.93 (br. s., 1H), 8.46 (d, 1H), 8.21 (d,1H), 7.32 (s, 1H), 7.21 - 7.25 (m, 1H), 6.99 - 7.09 (m, 2H), 6.91 - 6.97 (m, 1H), 6.61 (d, 1H), 6.03 -6.08 (m, 1H), 5.93 - 5.99 (m, 1H), 5.45 (d, 1H), 4.35 (t, 1H), 2.77 - 2.88 (m, 1H), 2.52 - 2.62 (m, 1H), 1.12 - 1.15 (m, 6 H), 1.05 - 1.07 (m, 2 H), 0.88 - 0.90 (m, 2 H).
Compound 1-259 To a solution of Compound 1-88 in dichloromethane was added CDI (3 equiv.).
Reaction heated to 45 C for 30 min, after which DBU (1 equiv.) and methanesulfonamide (5 equiv.) were added. Reaction was heated for an additional 40 min until reaction was complete. At this time, the reaction was quenched with 1N hydrochloric acid solution. The layers were separated, and the aqueous portion was extracted with dichloromethane (2x).
The organic portions were combined, dried (Na2SO4), filtered, and concentrated. The crude material was purified via silica gel chromatography utilizing a 0-10%
methanol/dichloromethane gradient to deliver the desired compound, Compound 1-259 (15.8 mg, 44% yield) as a white solid.
1H NMR (500 MHz, CDC13) 6 ppm 10.14 (br. s., 1 H), 8.47 (d, 1 H), 8.22 (d, 1 H), 7.33 (s, 1 H), 7.21 - 7.26 (m, 1 H), 6.99 - 7.08 (m, 2 H), 6.91 - 6.96 (m, 1 H), 6.63 (d, 1 H), 5.96- 6.09 (m, 2 H), 5.3 (br. s., 1 H) 4.51 - 4.60 (m, 1 H), 3.06 - 3.11 (m, 3 H), 1.90 - 2.00 (m, 1 H), 1.71 - 1.87 (m, 2 H), 1.05 (d, 3 H), 0.96 - 0.99 (m, 3 H).
Compound 1-261 To a solution of Compound 1-103 in dichloromethane was added CDI (3 equiv.).
Reaction was heated to 45 C for 1.5 h, after which DBU (1 equiv.) and cyclopropanesulfonamide (5 equiv.) were added. Reaction was heated for an additional 40 minutes, until reaction was complete.
The reaction was quenched with 1N hydrochloric acid solution, the layers were separated, and the aqueous portion was extracted with dichloromethane (2x). The organic portions were
281 combined, dried (Na2SO4), filtered, and concentrated. The crude material was purified using silica gel chromatography utilizing a 0-10% methanol/dichloromethane gradient to deliver the desired compound, Compound 1-261 (40 mg, 80% yield) as a solid.
1H NMR (500 MHz, CDC13) 6 ppm: 10.20 (br. s., 1 H), 8.47 (s, 1 H), 8.22 (br.
s., 1 H), 7.35 (s, 1 H), 7.17 - 7.26 (m, 1 H), 6.91 - 7.09 (m, 3 H), 6.64 (s, 1 H), 5.92 - 6.09 (m, 2 H), 5.39 (br. s., 1 H), 4.59 - 4.70 (m, 1 H), 2.76 - 2.89 (m, 1 H), 2.50 - 2.65 (m, 1 H), 1.95 (dt, 1H), 1.69 - 1.86 (m, 2 H), 1.04 (d, 2 H), 0.98 (d, 3 H), 0.85 - 0.95 (m, 3 H), 0.74 - 0.83 (m, 1 H).
Compound 1-264 A mixture of Intermediate-1 (38.8 mg), 2,2-dimethylthiomorpholine 1,1-dioxide, (3equiv.), and TEA (10equiv.), in a 10:1 mixture of THF/Water was heated at 90 C for 3 hrs, following general procedure B. The reaction was cooled, poured into a 1:1 mixture of 1N
HC1 and DCM, the rrganics extracted (three times) combined, dried, purified by silica chromatography utilizing a 0-10% methanol/dichloromethane gradient to deliver the desired compound, Compound 1-264 (40 mg, 77% yield) as a white solid.
1H NMR (500 MHzõ CDC13) 6 ppm 8.48 (d, 1H), 8.31 (d, 1H), 7.26 (s, 1H), 7.22 (q, 1H), 7.02 - 7.07 (m, 1H), 6.99 (t,1H), 6.86 - 6.91 (m, 1H), 6.59 (d,1H), 5.97 (s, 2H), 4.41 (br.s., 2H), 4.09 (br.s., 2H), 3.26 (t, 2H), 1.43 (s, 6H).
Compound 1-270 A mixture of Intermediate-1 (313 mg), (S)-4-methyl-3-(methylamino)pentanoic acid (3equiv.), and TEA (10equiv.), in a 10:1 mixture of THF/Water was heated at 85 C for 3 hrs, following procedure B. The reaction was cooled, poured into a 1:1 mixture of 1N HC1 and DCM, the organics extracted (three times) combined, dried, purified via silica gel chromatography utilizing a 0-10% methanol/dichloromethane gradient to deliver the desired compound, Compound 1-270 (56 mg, 14% yield) as a white solid.
1H NMR (500 MHz, CDC13) 6 ppm 8.48 - 8.53 (m, 1H), 8.31 (br. s., 1H), 7.39 (s, 1H), 7.20 -7.26 (m, 1H), 7.13 (t, 1H), 6.99 - 7.05 (m, 2H), 6.66 (br. s., 1H), 5.86 -5.94 (m, 2H), 3.19 (d, 3H) , 2.85 (dd, 1H), 2.60 - 2.73 (m, 1H), 1.93 - 2.05 (m, 1H), 1.26 (s, 1H), 0.93 (d, 3H), 1.08 (d, 3H).
Compound 1-271 A mixture of Intermediate 1 (313 mg), (1R,5S,6R)-3-azabicyclo[3.1.0]hexane-6-carboxylic acid (3equiv.), and TEA (10equiv.), in a 10:1 mixture of THF/Water was heated at 85 C for 3 hrs, following general procedure B. The reaction was cooled, poured into a 1:1 mixture of 1N
HC1 and DCM, the organics extracted (three times) combined, dried, purified via silica gel
282 chromatography utilizing a 0-10% methanol/dichloromethane gradient to deliver the desired compound, Compound 1-271 (22 mg, 33% yield) as a white solid.
1H NMR (500 MHz, CDC13) 6 ppm : 8.49 (d, 1H), 8.35 (d, 1H), 7.45 (br. s., 1H), 7.23 (td, 1H), 7.05 (d, 1H), 7.01 (d, 2H), 6.63 (d, 1H), 5.97(s, 2H), 4.32 (d, 2H), 3.95 (d, 2H), 2.40 (br. s., 2H, 1.65 (t, 1H), 0.97 (d, 1H).
Compound 1-268 The title compound was prepared in 2 steps:
Step 1: Synthesis of 2-carboxy-5,5-dimethylpiperidinium trifluoroacetate co2H
e H,C) F3C0 H -Tx 2-carboxy-5,5-dimethylpiperidinium trifluoroacetate was prepared as a white solid following the procedure for the synthesis of 2-carboxy-4,4-difluoropiperidinium trifluoroacetate, as described in the preparation of Compound 1-263, with the exception of using 3,3-dimethylpiperidine hydrochloride in step 1.
Step 2: Synthesis of Compound 1-268 The title compound was prepared following general procedure B, except 2-carboxy-5,5-dimethylpiperidinium trifluoroacetate was the amine reactant, and contents were heated to 100 C. The resulting solution was poured into water and acidified to pH 3 with aqueous 1N hydrochloric acid solution. The resulting precipitate was collected by vaccum filtration, washed with HC1 solution (pH 3) and ether to deliver the desired compound, Compound 1-268 (38 mg, 62% yield) as a white solid.
1H-NMR (400 MHz, DMSO-d6) 6 13.0 (br. s, 1 H), 9.10 (d, 1 H), 8.33 (d, 1 H), 7.50 (s, 1 H), 7.33 (app. q, 1 H), 7.22 (m, 2 H), 7.10 (app. t, 1 H), 6.85 (app. t, 1 H), 5.89 (s, 2 H), 5.38 (m, 1 H), 3.99 (m, 1 H), 3.03 (m, 1 H), 2.11 (m, 1 H), 2.01 (m, 1 H), 1.44 (br. d, 1 H), 1.32 (td, 1 H), 0.97 (s, 3 H), 0.95 (s, 3 H).
Compound 1-245 A solution of methyl 2-(4-aminotetrahydro-2H-pyran-4-yl)acetate hydrochloride (3.0 equivalents), triethylamine (10 equivalents) and Intermediate 1 was stirred in dioxane/water (2:1 ratio) at 100 C until complete consumption of starting material by LC/MS, following general procedure B. The solution was poured into water and acidified to pH 3 with 1N HC1 and extracted with dichloromethane. The organic phases were dried over sodium sulfate, filtered and concentrated in vacuo. Purification by reverse-phase HPLC (20-65%
acetonitrile
283 in water with 0.1% trifluoroacetic acid, 20 minute gradient) yielded Compound 1-245 (8.8 mg, 13%) as a white solid.
1H-NMR (400 MHz, CD30D) 6 8.82 (d, 1H), 8.31 (d, 1H), 7.53 (s, 1H), 7.30 (app.
q, 1H), 7.09 (m, 1H), 7.05 (app. t, 1H), 7.01 (d, 1H), 6.97 (app. t, 1H), 6.00 (s, 2H), 3.82 (dt, 2H), 3.74 (td, 2H), 3.20 (s, 2H), 2.65 (br. d, 2H), 2.06 (m, 2H).
Compound 1-155 The title compound was prepared following general procedure B, except (R)-pyrrolidin-2-ylmethanol was the amine reactant, and contents were heated to 40 C for 18 min as a solution in THF. The reaction was diluted with ethyl acetate and washed with water and brine. The organic phase was dried over Na2SO4, filtered, and concentrated in vacuo. The crude material was purified via silica gel chromatography utilizing a 20-60%
ethyl acetate/hexanes gradient to deliver the desired compound, Compound 1-155 (11 mg, 44%
yield) as a white solid.
1H-NMR (400 MHz, CDC13) 6 8.43 (d, 1H), 8.14(d, 1H), 7.27 (s, 1H), 7.19(m, 1H), 7.01 (app.
t, 1H), 6.97 (app. t, 1H), 6.89 (app. t, 1H), 6.57 (d, 1H), 5.94 (s, 2H), 5.29 (br. s, 1H), 4.52 (m, 1H), 3.88 (m, 2H), 3.78 (m, 2H), 2.13 (m, 1H), 2.07-1.92 (m, 2H), 1.79 (m, 1H).
Compound 1-160 The title compound was prepared following general procedure B, except piperidin-2-ylmethanol was the amine reactant, and contents were heated to 55 C for 4 d as a solution in THF/DMSO (2:1). The reaction was diluted with ethyl acetate and washed with water and brine. The organic phase was dried over Na2SO4, filtered, and concentrated in vacuo.
The crude material was purified via silica gel chromatography utilizing a 30-60% ethyl acetate/hexanes gradient to deliver the desired compound, Compound 1-160 (9.6 mg, 70%
yield) as a clear oil.
1H-NMR (400 MHz, CDC13) 6 8.44 (d, 1H), 8.17(d, 1H), 7.26 (s, 1H), 7.19(m, 1H), 7.02 (app.
t, 1H), 6.97 (app. t, 1H), 6.86 (app. t, 1H), 6.58 (d, 1H), 5.97 (d, 1H), 5.93 (d, 1H), 4.81 (m, 1H), 4.25 (m, 1H), 4.14 (m, 1H), 3.83 (br. s, 1H), 3.79 (m, 1H), 3.28 (m, 1H), 1.85-1.65 (m, 6H).
Compound 1-183 The title compound was prepared following general procedure B, except tert-butyl pyrazolidine-l-carboxylate (1.1 equiv.) was the amine reactant, and contents were heated to 70 C for 5 d as a solution in THF/DMSO (4:1). The reaction was poured into water and extracted with ethyl acetate. The organic phase was dried over Na2504, filtered, and concentrated in vacuo. The crude material was purified via silica gel chromatography utilizing a 20% ethyl
284 acetate/hexanes gradient to deliver the desired compound, Compound 1-183 (53 mg, 75%
yield).
1H-NMR (400 MHz, CDC13) 6 8.44 (d, 1H), 8.26(d, 1H), 7.30 (s, 1H), 7.18 (m, 1H), 7.01 (app.
t, 1H), 6.95 (app. t, 1H), 6.84 (app. t, 1H), 6.56 (d, 1H), 5.96 (s, 2H), 4.40-3.60 (br. m, 4H), 2.13 (app. quintet, 2H), 1.45 (s, 9H).
Compound 1-193 A solution of trifluoroacetic acid (20 equivalents) and Compound 1-183 was stirred in dichloromethane at ambient temperature until complete consumption of starting material by LC/MS. The solution was carefully poured into saturated sodium bicarbonate and dichloromethane. The layers were separated and the organic layer was dried over sodium sulfate, filtered, and the solvent was removed in vacuo to yield Compound 1-193 (35 mg, 85%) as a white solid.
1H-NMR (400 MHz, CDC13) 6 8.43 (d, 1H), 8.17 (d, 1H), 7.31 (s, 1H), 7.18 (m, 1H), 7.01 (app.
t, 1H), 6.95 (app. t, 1H), 6.82 (app. t, 1H), 6.57 (d, 1H), 5.96 (s, 2H), 4.58 (br. s, 1H), 3.87 (m, 2H), 3.19 (app. t, 2H), 2.19 (app. quintet, 2H).
Compound 1-213 A solution of ethyl bromoacetate (1.0 equivalent), N, N-diisopropylethylamine (1.5 equivalents) and Compound 1-193 was stirred in dimethylformamide at ambient temperature until complete consumption of starting material by LC/MS. The solution was diluted with water and extracted with ethyl acetate. The combined organic layers were dried over sodium sulfate, filtered, and the solvent was removed in vacuo. Purification by silica gel chromatography (50% ethyl acetate/hexanes) yielded Compound 1-213 (20 mg, 59%) as a clear oil.
1H-NMR (400 MHz, CDC13) 6 8.44 (d, 1H), 8.21 (d, 1H), 7.32 (s, 1H), 7.17(m, 1H), 7.01 (app.
t, 1H), 6.95 (app. t, 1H), 6.83 (app. t, 1H), 6.57 (d, 1H), 5.96 (s, 2H), 4.22 (q, 2H), 3.98 (app. t, 2H), 3.70 (s, 2H), 3.28 (app. t, 2H), 2.25 (app. quintet, 2H), 1.28 (t, 3H).
Compound 1-216 A solution of sodium hydroxide (3.0 N in water, 8.0 equivalents) and Compound 1-213 was stirred in methanol at ambient temperature until complete consumption of starting material by LC/MS. The reaction mixture was concentrated, diluted with water and neutralized to pH 6-7 by addition of 1N HC1. Crude product was collected by vacuum filtration and purification by reverse-phase HPLC (5-95% acetonitrile in water with 0.1% trifluoroacetic acid, 20 minute gradient) yielded Compound 1-216 (13 mg, 72%) as an off-white solid.
285 1H-NMR (400 MHz, CD30D) 6 9.09 (d, 1H), 8.29 (d, 1H), 7.53 (s, 1H), 7.33 (m, 1H), 7.22 (m, 2H), 7.10 (app. t, 1H), 6.84 (app. t, 1H), 5.90 (s, 2H), 3.84 (m, 2H), 3.57 (s, 2H), 3.12 (m, 2H), 2.17 (app. quintet, 2H).
Compound 1-222 A solution of 2-(pyrrolidin-2-yl)acetic acid hydrochloride (2.3 equivalents), triethylamine (10 equivalents) and Intermediate 1 was stirred in dioxane/water (2:1 ratio) at 100 C until complete consumption of starting material by LC/MS following procedure B. The solution was diluted with water and neutralized to pH 3 by addition of 1N HC1.
Resultant solid was collected by filtration and dried in vacuo to yield Compound 1-222 (63 mg, 94%).
1H-NMR (400 MHz, DMSO-d6) 6 12.3 (s, 1H), 9.11 (d, 1H), 8.24 (d, 1H), 7.48 (s, 1H), 7.33 (m, 1H), 7.21 (m, 1H), 7.11 (m, 2H), 6.90 (m, 1H), 5.87 (s, 2H), 4.62 (m, 1H), 3.80 (m, 1H), 3.65 (m, 1H), 2.82 (m, 1H), 2.39 (m, 1H), 2.12-1.90 (m, 3H), 1.84 (m, 1H).
Compound 1-184 Compound was obtained by General Procedure B, starting from Intermediate 1.
Purification by silica gel chromatography (20-50% ethyl acetate/hexanes gradient) yielded Compound 1-184 (62 mg, 81%) as a clear oil.
1H-NMR (400 MHz, CDC13) 6 8.45 (d, 1H), 8.22 (d, 1H), 7.27 (s, 1H), 7.19 (m, 1H), 7.02 (app.
t, 1H), 6.97 (app. t, 1H), 6.87 (app. t, 1H), 6.59 (d, 1H), 5.97 (d, 1H), 5.93 (d, 1H), 4.76 (br. m, 1H), 4.34-3.96 (br. m, 3H), 3.96-3.74 (br. m, 2H), 3.50-3.10 (br. m, 4H), 1.49 (s, 9H).
Compound 1-211 and Compound 1-212 A solution of trifluoroacetic acid (20 equivalents) and Compound 1-184 was stirred in dichloromethane at ambient temperature until complete consumption of starting material by LC/MS. The solution was carefully poured into saturated sodium bicarbonate and extracted with dichloromethane. The combined organic layers were dried over sodium sulfate, filtered, and the solvent was removed in vacuo. Purification by reverse-phase HPLC (5-75%
acetonitrile in water with 0.1% trifluoroacetic acid, 20 minute gradient) yielded two products:
Compound 1-211 (17 mg, 28% as TFA salt) as a clear oil. 1H-NMR (400 MHz, CD30D) 6 8.79 (m, 1H), 8.35 (m, 1H), 7.52 (s, 1H), 7.28 (m, 1H), 7.10 (m, 1H), 7.04 (m, 1H), 6.90 (m, 1H), 6.85 (m, 1H), 5.97 (s, 2H), 5.08 (m, 1H), 4.91 (m, 1H), 4.09 (m, 1H), 4.01 (m, 1H), 3.85 (app. t, 1H), 3.71 (app. d, 1H), 3.52 (app. d, 1H), 3.45 (m, 1H), 3.40 (m, 1H).
Compound 1-212 (19 mg, 32%) as a clear oil. 1H-NMR (400 MHz, CD30D) 6 8.80 (s, 1H), 8.34 (d, 1H), 7.61 (d, 1H), 7.29 (m, 1H), 7.10 (app. t, 1H), 7.05 (app. t, 1H), 6.94 (m, 1H), 6.91
286 (app. t, 1H), 6.00 (s, 2H), 5.12-4.98 (m, 1H*), 4.82 (m, 1H), 4.59-4.32 (m, 1H*), 4.17 (m, 1H*), 3.93-3.58 (m, 4H*), 3.65-3.33 (m, 1H*). Sets of rotamer peaks (-0.5H
each) seen for select protons marked with *.
Compound 1-150 The title compound was prepared in 3 steps:
Step 1: Synthesis of 5-fluoro-2-(1-(2-fluorobenzy1)-5-(isoxazol-3-y1)-1H-pyrazol-3-y1)-6-hydroxypyrimidin-4(3H)-one (the preparation of this compound was described in a published patent application, W02013/101830).
A mixture of 1-(2-fluorobenzy1)-5-(isoxazo1-3-y1)-1H-pyrazole-3-carboximidamide, diethyl 2-fluoromalonate (1 equiv.) and DBU (1 equiv.) in ethanol was heated to 70 C
for 24 h. The mixture was concentrated under vacuum to give an oil. The oil was purified by column chromatography (0 to 20% dichloromethane in methanol) to give 5-fluoro-2-(1-(2-fluorobenzy1)-5-(isoxazo1-3-y1)-1H-pyrazo1-3-y1)-6-hydroxypyrimidin-4(3H
)-one (145 mg, 100 % yield) as a white solid.
1H NMR (500 MHz, CD30D) 6 ppm 8.81 (d, 1 H), 7.42 (s, 1 H), 7.26 - 7.36 (m, 1 H) 7.05 -7.18 (m, 2 H), 6.97 (t, 1 H), 6.92 (d, 1 H), 5.97 (s, 2 H).
Step 2: Synthesis of 3-(3-(4,6-dichloro-5-fluoropyrimidin-2-y1)-1-(2-fluorobenzy1)-1H-pyrazol-5-yl)isoxazole A mixture of 5-fluoro-2-(1-(2-fluorobenzy1)-5-(isoxazo1-3-y1)-1H-pyrazol-3-y1)-6-hydroxypyrimidin-4(3H)-one (1 equiv.) and POC13 (40 equiv.) was heated to 70 C for 24 h.
The mixture was concentrated under vacuum to give a white solid. It was diluted in ethyl acetate and washed with water. The organic layer was dried, filtered and evaporated to give 3-(3-(4,6-dichloro-5-fluoropyrimidin-2-y1)-1-(2-fluorobenzy1)-1H-pyrazo1-5-ypisoxazole (61 mg, 38 % yield) as a white solid.
1H NMR (500 MHz, CDC13) 6 ppm 8.40 (s, 1 H) 7.37 (s, 1 H) 7.10 - 7.18 (m, 1 H) 6.88 - 7.00 (m, 2 H) 6.76 (t, 1 H) 6.53 (d, 1 H) 5.96 (s, 2 H).
Step 3: Synthesis of Compound 1-150 A mixture of 3-(3-(4,6-dichloro-5-fluoropyrimidin-2-y1)-1-(2-fluorobenzy1)-1H-pyrazol-5-ypisoxazole (1 equiv.), morpholine [1M in THF]
(1 equiv.) and Hunig's base (1 equiv.) in THF was stirred at 23 C for 24 h. The mixture was diluted in ethyl acetate and washed with 1N HC1 solution. The organic layer was dried, filtered and evaporated to give a white solid. The solid was purified by column chromatography (0-100%
ethyl acetate in hexanes) to deliver the desired compound, Compound 1-150 (32 mg, 47 %
yield) as a white solid.
287 1H NMR (500 MHz, CDC13) 6 ppm 8.47 (d, 1 H), 7.31 - 7.34 (m, 1 H), 7.19 - 7.26 (m, 1 H), 7.02 - 7.09 (m, 1 H), 6.99 (t, 1 H), 6.84 (t, 1 H), 6.59 (d, 1 H), 6.00 (s, 2 H), 3.89 - 3.96 (m, 4 H), 3.81 - 3.89 (m, 4 H).
Compound 1-172 This compound was prepared in two steps.
Step 1: Synthesis of 3-(3-(4-chloro-5-fluoro-6-methoxypyrimidin-2-y1)-1-(2-fluorobenzy1)-1H-pyrazol-5-yl)isoxazole.
To a suspension of 3-(3-(4,6-dichloro-5-fluoropyrimidin-2-y1)-1-(2-fluorobenzyl) -1H-pyrazol-5-ypisoxazole (1 equiv.) in methanol was added sodium methoxide [0.5 M in methanol] (1 equiv.). The mixture was stirred at 23 C for 4 h. The mixture was treated with HC1 (4.0 M in dioxane, 1 equiv.). The mixture was concentrated under vacuum.
The resulting solid was dissolved in ethyl acetate and washed with brine. The organic layer was dried, filtered and evaporated to give 3-(3-(4-chloro-5-fluoro-6-methoxypyrimidin-2-y1)-1-(2-fluorobenzy1)-1H-pyrazol-5-ypisoxazole (42 mg, 85 % yield) as a white solid.
1H NMR (500 MHz, CD30D) 6 ppm 8.67 (d, 1 H), 7.45 (s, 1 H), 7.16 - 7.21 (m, 1 H), 6.97 -7.04 (m, 1 H), 6.94 (t, 1 H), 6.83 (d, 1 H), 6.74 (t, 1 H), 5.88 (s, 2 H), 4.12 (s, 3 H).
Step 2: Synthesis of Compound 1-172 A mixture of 3-(3-(4-chloro-5-fluoro-6-methoxypyrimidin-2-y1)-1-(2-fluorobenzy1)-1H-pyrazol-5-ypisoxazole (1 equiv.), triethylamine (2 equiv.) and morpholine (2 equiv.) in THF was stirred at 100 C for 24 h. The mixture was diluted in ethyl acetate and washed with water. The organic layer was dried, filtered and evaporated to give an oil. The oil was purified by column chromatography (0-100% ethyl acetate in hexanes) to give a light brown solid. The solid was rinsed with methanol to deliver the desired compound, Compound 1-172 (19 mg, 41 % yield) as a white solid.
1H NMR (500 MHz, DMSO-d6) 6 ppm 9.08 (d, 1 H), 7.56 (s, 1 H), 7.29 - 7.36 (m, 1 H), 7.18 -7.26 (m, 2 H), 7.09 (t, 1 H), 6.72 (t, 1 H), 5.92 (s, 2 H), 4.01 (s, 3 H), 3.72 (s, 8 H).
Compound 1-23 A suspension of 2-(1-(2-fluorobenzy1)-5-(isoxazo1-3-y1)-1H-pyrazol-3-y1)-5-(trifluoromethyl) pyrimidin-4(3H)-one (this intermediate was described in a published patent application, W02012/3405 Al) in phosphoryl trichloride (75 equiv.) was heated to 70 C for 1 h. The phosphoryl trichloride was removed under a stream of nitrogen and the resulting crude intermediate was dissolved in tetrahydrofuran. Morpholine (30 equiv.) was added, and the solution was stirred at room temperature until the reaction was complete by LC/MS. The solution was poured into saturated aqueous ammonium chloride solution and dichloromethane.
288 The layers were separated and the aqueous layer was extracted with dichloromethane. The organics were washed with saturated aqueous sodium chloride, dried over magnesium sulfate, filtered, and the solvent was removed in vacuo. The residue was suspended in diethyl ether and then resulting solid was filtered off to deliver the desired compound, Compound 1-23 (6.5 mg, 69% yield) as a white solid.
1H-NMR (400 MHz, CD30D) 6 8.77 (m, 1 H), 8.66 (s, 1 H), 7.57 (s, 1 H), 7.31-7.26 (m, 1 H), 7.12-7.02 (m, 2 H), 6.94 (m, 1 H), 6.84 (t, 1 H), 5.99 (s, 2 H), 3.85-3.81 (m, 8 H).
Compound 1-24 The title compound was synthesized according to the procedure described for Compound 1-23, with the exception o f using 2-(1-(2-fluorobenzy1)-5 -(iso xazol-3 -y1)-1H-pyrazol-3 -y1) pyrimidin-4(3H)-one (this intermediate was described in previous patent application publication W02012/3405 Al) as the starting pyrimidone. The final residue was suspended in diethyl ether and then the resulting solid was filtered off to deliver the desired compound, Compound 1-24 (42 mg, quantitative yield) as a white solid.
1H-NMR (400 MHz, CD30D) 6 8.74 (m, 1H), 8.21 (d, 1H), 7.46 (s, 1H), 7.27-7.22 (m, 1H), 7.10-6.99 (m, 2H), 6.89 (m, 1H), 6.79 (t, 1H), 6.70 (d, 1H), 5.95 (s, 2H), 3.77 (br s, 8H).
Compound 1-28 The title compound was synthesized according to the procedure described for Compound 1-23, with the exception o f using 5 -chloro -2-(1-(2-fluorobenzy1)-5 -(iso xazol-3 -y1)-1H-pyrazo1-3-yl)pyrimidin-4(3H)-one (this intermediate was described in published patent application W02012/3405 Al) as the starting pyrimidone. The final residue was suspended in diethyl ether and then resulting solid was filtered off to deliver the desired compound, Compound 1-28 (7.5 mg, 32% yield) as a solid.
1H-NMR (400 MHz, CDC13) 6 8.44 (m, 1H), 8.38 (s, 1H), 7.30 (s, 1H), 7.21-7.15 (m, 1H), 7.03-6.98 (s, 1H), 6.95 (t, 1H), 6.82 (t, 1H), 6.57 (m, 1H), 5.95 (s, 2H), 3.85-3.81 (m, 8H).
Compound 1-29 The title compound was synthesized according to the procedure described for Compound 1-23, with the exception o f using 2-(1-(2-fluorobenzy1)-5 -(iso xazol-3 -y1)-1H-pyrazol-3 -y1)-6-oxo-1,6-dihydropyrimidine-5-carbonitrile (this intermediate was described in a previous patent application publication, W02012/3405 Al) as the starting pyrimidone.
The final residue was suspended in diethyl ether and then resulting solid was filtered off to deliver the desired compound, Compound 1-29 (18 mg, 84% yield) as a white solid.
289 1H-NMR (400 MHz, DMSO-d6) 6 9.11 (m, 1H), 8.78 (s, 1H), 7.71 (s, 1H), 7.36-7.31 (m, 1H), 7.27-7.20 (m, 2H), 7.11 (t, 1H), 6.83 (t, 1H), 5.93 (s, 2H), 4.02-4.00 (m, 4H), 3.76-3.74 (m, 4H).
Compound 1-73 The title compound was prepared in 2 steps:
Sten 1: Synthesis of 2-(1-(2-fluorobenzy1)-5-(isoxazol-3-y1)-1H-pyrazol-3-y1)-methoxypyrimidin-4(3H)-one A solution of 1-(2-fluorobenzy1)-5-(isoxazo1-3-y1)-1H-pyrazole-3-carboximidamide (1 equiv.), methyl 3-(dimethylamino)-2-methoxyacrylate (3.1 equiv.), and 1,8-diazabicycloundec-7-ene (2 equiv.) was stirred at 100 C for 6 h. The reaction solution was diluted with dichloromethane and saturated ammonium chloride. The layers were separated and the aqueous layer was extracted with dichloromethane (2x). The organics were washed with saturated ammonium chloride and brine, dried over magnesium sulfate, filtered, and the solvent was remove in vacuo. Purification of the crude material via silica gel chromatography (0-5% methanol in dichloromethane gradient) provided 2-(1-(2-fluorobenzy1)-5-(isoxazo1-3-y1)-1H-pyrazol-3-y1)-5-methoxypyrimidin-4-ol (49 mg, 35% yield) as a white solid.
1H-NMR (400 MHz, CD30D) 6 8.77 (d, 1 H), 7.58 (s, 1 H), 7.38 (s, 1 H), 7.29-7.24 (m, 1 H), 7.10-7.02 (m, 2 H), 6.92-6.85 (m, 2 H), 5.96 (s, 2 H), 3.87 (s, 3 H).
Step 2: Synthesis of Compound 1-73 The title compound was synthesized according to the procedure described for Compound 1-23, with the exception of using 2-(1-(2-fluorobenzy1)-5-(isoxazo1-3-y1)-1H-pyrazol-3-y1)-5-methoxypyrimidin-4(3H)-one as the starting pyrimidone. The final residue was suspended in diethyl ether and then resulting solid was filtered off to deliver the desired compound, Compound 1-73 (50 mg, 86% yield) as a white solid.
1H-NMR (400 MHz, DMSO-d6) 6 9.08 (m, 1 H), 8.11 (s, 1 H), 7.51 (s, 1 H), 7.35-7.29 (m, 1 H), 7.24-7.20 (m, 2 H), 7.10 (t, 1 H), 6.79 (t, 1 H), 5.89 (s, 2 H), 3.88 (s, 3 H), 3.75-3.71 (m, 8 H).
Compound 1-77 A solution of piperidine-4-carboxylic acid (3 equivalents), triethylamine (10 equivalents), and Intermediate 1 was stirred in tetrahydrofuran and water (1:1 ratio) at 100 C
until complete consumption of starting material by LC/MS, following general procedure B. The solution was diluted with aqueous 1N hydrochloric acid and ethyl acetate. The layers were separated and the aqueous layer was extracted with ethyl acetate and 5:1 dichloromethane/isopropyl alcohol.
290 The organics were combined, dried over magnesium sulfate, filtered, and the solvent was removed in vacuo. Purification by reverse-phase HPLC (5-75% acetonitrile in water with 0.1% triefluoroacetic acid, 20 minute gradient) yielded Compound 1-77 (11 mg, 44% yield) as a white solid.
1H-NMR (400 MHz, CD30D) 6 8.79 (m, 1H), 8.23 (d, 1H), 7.57 (m, 1H), 7.31-7.26 (m, 1H), 7.12-7.03 (m, 2H), 6.96 (m, 1H), 6.90 (t, 1H), 5.99 (s, 2H), 4.70 (d, 2H), 3.51-3.45 (m, 2H), 2.79-2.74 (m, 1H), 2.15-2.11 (m, 2H), 1.90-1.80 (m, 2H).
Compound 1-78 The title compound was prepared following general procedure B, except piperidine-3-carboxylic acid was the amine reactant, and contents were heated to 90 C for 1.5 h as a solution in THF/water (1:1). The solution was diluted with 1N
hydrochloric acid solution and ethyl acetate. The layers were separated and the aqueous layer was extracted with ethyl acetate and 5:1 dichloromethane/isopropyl alcohol. The organics were combined, dried over magnesium sulfate, filtered, and the solvent was removed in vacuo. The crude material was purified via reverse phase HPLC (5-75% acetonitrile in water with 0.1%
triefluoroacetic acid, 20 minute gradient) to deliver the desired compound, Compound 1-78 (7 mg, 28%
yield) as a white solid.
1H-NMR (400 MHz, CD30D) 6 8.81 (m, 1H), 8.28 (d, 1H), 7.60 (m, 1H), 7.33-7.27 (m, 1H), 7.13-7.04 (m, 2H), 6.97-6.92 (m, 2H), 6.01 (s, 2H), 4.52 (d, 1H), 4.31-4.26 (m, 1H), 4.00 (dd, 1H), 3.93-3.84 (m, 1H), 2.84-2.78 (m, 1H), 2.23-2.12 (m, 1H), 2.04-1.88 (m, 2H), 1.82 -1.73 (m, 1H).
Compound 1-76 The title compound was prepared following general procedure B, except pyrrolidine-3-carboxylic acid was the amine reactant, and contents were heated to 60 C for 2.5 h as a solution in THF/water (1:1). The solution was diluted with 1N
hydrochloric acid solution and ethyl acetate. The layers were separated and the aqueous layer was extracted with ethyl acetate and 5:1 dichloromethane/isopropyl alcohol. The organics were combined, dried over magnesium sulfate, filtered, and the solvent was removed in vacuo. The crude material was purified via reverse phase HPLC (5-75% acetonitrile in water with 0.1%
triefluoroacetic acid, 20 minute gradient) to deliver the desired compound, Compound 1-76 (11 mg, 45%
yield) as a white solid.
1H-NMR (400 MHz, CD30D) 6 8.83 (m, 1H), 8.29-8.27 (m, 1H), 7.63 (s, 1H), 7.33-7.29 (m, 1H), 7.13-7.05 (m, 2H), 6.99-6.96 (m, 2H), 6.03 (s, 2H), 4.23-4.03 (m, 5H), 2.34 (br s, 2H).
291 Compound 1-92 The title compound was prepared following general procedure B, except 2-azabicyclo[2.2.1]heptane-3-carboxylic acid was the amine reactant, and contents were heated to 90 C for 16 h as a solution in THF/water (10:1). Upon completion of the reaction, 3N
hydrochloric acid solution was added and the solvent was removed in vacuo. The crude residue was brought up in water and the solid was filtered and rinsed with water to deliver the desired compound, Compound 1-92 (12 mg, 47% yield) as a brown solid.
1H-NMR (400 MHz, CD30D) exists as >3 diastereomers 6 8.80 (m, 1H), 8.25-8.16 (m, 1H), 7.32-7.28 (m, 2H), 7.12-7.03 (m, 2H), 6.97-6.83 (m, 2H), 6.00-5.96 (m, 2H), 4.51-4.36 (m, 1H), 2.99-2.90 (m, 1H), 2.25 (d, 1H), 1.94-1.57 (m, 6H).
Compound I-100 Sodium hydride (1.0 equivalent) and ethyl 1H-pyrrole-2-carboxylate (1 equivalent) were dissolved in tetrahydrofuran. After stirring for 15 minutes, 0.5 equivalents ofpyrrolidine anion was added to a solution of Intermediate 1 (1.0 equivalent) in tetrahydrofuran at room temperature. After 5 minutes, an additional 0.5 equivalents of anion was added. The solution was stirred at room temperature for 45 minutes, 45 C for 2 hours, and then 65 C for 15 hours.
An additional 1 equivalent ofpyrrole anion was added, and after 1.5 hours at 65 C the solution was diluted with saturated aqueous ammonium chloride solution and dichloromethane. The layers were separated and the aqueous layer was extracted with dichloromethane. The organics were dried over magnesium sulfate, filtered, and the solvent was removed in vacuo.
Purification by silica gel chromatography (0-50% ethyl acetate in hexanes) provided Compound I-100 (16 mg, 42% yield) as a white solid.
1H-NMR (400 MHz, CDC13) 6 8.71 (m, 1H), 8.45 (m, 1H), 7.40 (s, 1H), 7.33-7.32 (m, 1H), 7.22-7.14 (m, 2H), 7.04-6.95 (m, 2H), 6.84 (t, 1H), 6.57 (m, 1H), 6.43-6.41 (m, 1H), 6.00 (s, 2H), 4.23 (q, 2H), 1.25 (t, 3H).
Compound 1-104 A solution of Compound I-100 (1 equivalent) in tetrahydrofuran, methanol, and water (3:1:1 ratio) was treated with lithium hydroxide hydrate (1.5 equivalents). The solution was stirred at room temperature for 45 minutes and 45 C for 3 hours. The solution was diluted with ethyl acetate, aqueous 1N sodium hydroxide, and water. The layers were separated and the aqueous layer was acidified with aqueous 1N hydrochloric acid to pH ¨ 1. The acidified aqueous layer was extracted with ethyl acetate, dried over magnesium sulfate, filtered, and the solvent was removed in vacuo. Purification by reverse-phase HPLC (5-75% acetonitrile in water w/0.1%
292 trifluoroacetic acid, 20 minute gradient) provided Compound 1-104 (1 mg, 6%
yield) as a white solid.
1H-NMR (400 MHz, CD30D) 6 8.83 (m, 1H), 8.77 (m, 1H), 7.59 (s, 1H), 7.47 (m, 1H), 7.31-7.25 (m, 1H), 7.16-7.03 (m, 3H), 6.94 (m, 1H), 6.87 (t, 1H), 6.48-6.46 (m, 1H), 6.00 (s, 2H).
Compound 1-119 The title compound was prepared following general procedure B, except 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid (as the HC1 salt) was the amine reactant, and the reaction heated as a solution in THF/water (10:1) for 16 h. The solvent was removed in vacuo and the residue brought up in water. The solid was filtered off and the filtrate was purified by reverse-phase HPLC (5-75% acetonitrile in water w/0.1%
trifluoroacetic acid, 20 minute gradient) to deliver the desired compound, Compound 1-119 (20 mg, 48%
yield) as a white solid.
1H-NMR (400 MHz, CD30D) 6 8.80 (m, 1H), 8.33 (d, 1H), 7.55 (br s, 1H), 7.30-7.27 (m, 5H), 7.12-7.03 (m, 2H), 6.93 (s, 1H), 6.89 (t, 1H), 5.99 (s, 2H), 5.58 (br s, 1H), 5.21 (d, 1H), 5.10 (d, 1H), 3.42-3.40 (m, 2H).
Compound 1-140 This was synthesized according to General Procedure B utilizing 1,2,3,4-tetrahydroquinoline-2-carboxylic acid and a 10:1 ratio of tetrahydrofuran : water as solvent. Following consumption of starting material, the solvent was removed in vacuo and the resulting residue was purified by reverse phase HPLC (5-75% acetonitrile in water w/0.1%TFA, 20 minute gradient) to provide Compound 1-140 (9 mg, 22% yield) as an orange solid.
1H-NMR (400 MHz, CD30D) 6 8.79 (m, 1H), 8.35 (d, 1H), 7.47 (s, 1H), 7.30-7.19 (m, 3H), 7.16-7.02 (m, 4H), 6.90-6.85 (m, 2H), 5.97 (s, 2H), 5.04 (t, 1H), 2.85-2.81 (m, 1H), 2.75-2.69 (m, 2H), 1.88-1.80 (m, 1H).
Compound 1-120 The title compound was prepared following general procedure B, except (S)-1,2,3,4-tetrahydroisoquinoline-l-carboxylic acid was the amine reactant, and the reaction was heated to 80 C for 2 h as a solution in THF/water (10:1). Following consumption of starting material, the solvent was removed in vacuo and the resulting residue was brought up in methanol, the solids were filtered off, and the filtrate was purified by reverse phase HPLC
(5-75% acetonitrile in water w/0.1%TFA, 20 minute gradient) to deliver the desired compound, Compound 1-120 (27 mg, 65% yield) as a white solid.
293 1H-NMR (400 MHz, CD30D) 6 8.80 (m, 1H), 8.34 (d, 1H), 7.67-7.64 (m, 1H), 7.55 (s, 1H), 7.34-7.26 (m, 4H), 7.12-7.03 (m, 2H), 6.91 (t, 1H), 6.87 (s, 1H), 6.02 (s, 1H), 5.98 (s, 2H), 4.45-3.37 (m, 1H), 4.13-4.04 (m, 1H), 3.26-3.20 (m, 1H), 3.05 (dt, 1H).
Compound 1-121 The title compound was prepared following general procedure B, except (R) - 1,2,3,4-tetrahydroisoquinoline-1-carboxylic acid was the amine reactant, and the reaction was heated to 80 C for 2 h as a solution in THF/water (10:1). Following consumption of starting material, the solvent was removed in vacuo and the resulting residue was brought up in methanol, the solids were filtered off, and the filtrate was purified by reverse-phase HPLC
(5-75% acetonitrile in water w/0.1%TFA, 20 minute gradient) to deliver the desired compound, Compound 1-121 (17 mg, 62% yield) as a white solid.
1H-NMR (400 MHz, CD30D) 6 8.80 (m, 1H), 8.34 (d, 1H), 7.67-7.64 (m, 1H), 7.55 (s, 1H), 7.34-7.26 (m, 4H), 7.12-7.03 (m, 2H), 6.91 (t, 1H), 6.87 (s, 1H), 6.02 (s, 1H), 5.98 (s, 2H), 4.45-3.37 (m, 1H), 4.13-4.04 (m, 1H), 3.26-3.20 (m, 1H), 3.05 (dt, 1H).
Compound 1-123 The title compound was prepared following general procedure B, except piperidine-4-carbonitrile was the amine reactant, and the reaction was heated to 80 C for 2 h as a solution in THF/water (10:1). Following consumption of starting material, the reaction solution was diluted with dichloromethane and the solvent was dried over magnesium sulfate.
After filtering and removing the solvent in vacuo, the crude material was purified by silica gel chromatography (0-70% ethyl acetate in hexanes) to deliver the desired compound, Compound 1-123 (28 mg, 94% yield) as a white solid.
1H-NMR (400 MHz, CD30D) 6 8.75 (m, 1H), 8.16 (d, 1H), 7.42 (s, 1H), 7.29-7.24 (m, 1H), 7.11-7.06 (m, 1H), 7.02 (t, 1H), 6.90 (m, 1H), 6.80 (t, 1H), 5.95 (s, 2H), 4.24-4.18 (m, 2H), 3.76-3.70 (m, 2H), 3.13 (tt, 1H), 2.08 (ddd, 2H), 1.96-1.87 (m, 2H).
Compound 1-141 The title compound was prepared following general procedure B, except 2-aminoacetonitrile (as the HC1 salt) was the amine reactant, and the reaction was heated to 90 C
as a solution in THF/water (10:1). After stirring for 15 h, an additional two equivalents of 2-aminoacetonitrile (as the HC1 salt) was added and the solution was stirred for another 24 h at which point the solution was diluted with water and ethyl acetate. The layers were separated and the organic layer was washed with water. The organics were dried over magnesium sulfate, filtered, and the solvent was removed in vacuo. Methanol was added, and the resulting desired solid product was filtered off. The methanol filtrate contained dissolved product and was purified by reverse
294 phase HPLC (5-75% acetonitrile in water, 0.1% trifluoroacetic acid, 20 minute gradient) to give additional product, which was combined with the filtered solids to deliver the desired compound, Compound 1-141 (11 mg, 35% yield) as a tan solid.
1H-NMR (400 MHz, DMSO-d6) 6 9.11 (m, 1H), 8.43 (t, 1H), 8.36 (d, 1H), 7.61 (s, 1H), 7.36-7.30 (m, 1H), 7.25-7.20 (m, 2H), 7.11 (t, 1H), 6.86 (t, 1H), 5.90 (s, 2H), 4.55 (d, 2H).
Compound 1-145 A suspension of sodium azide (1 equivalent), ammonium chloride (1 equivalent), and Compound 1-141 (1 equivalent) in N,N-dimethylformamide was heated to 80 C for 1 hour and then 110 C for 16 hours. Additional ammonium chloride and sodium azide were added, and after 20 hours the solution was diluted with methanol and water.
Purification by reverse-phase HPLC (5-75% acetonitrile in water with 0.1% trifluoroacetic acid, 20 minute gradient) provided Compound 1-145 (6 mg, 43%) as a yellow solid.
1H-NMR (400 MHz, DMS0- d6) 6 9.10 (m, 1H), 8.37 (d, 1H), 7.59 (s, 1H), 7.35-7.30 (m, 1H), 7.25-7.20 (m, 2H), 7.10 (t, 1H), 6.81 (t, 1H), 5.90 (s, 2H), 3.93-3.91 (m, 4H), 3.28-3.26 (m, 4H), 2.91 (br s, 2H).
Compound 1-139 To a 0 C solution of 2-methylpropan-2-ol (165 equivalents) in dichloromethane was added sulfurisocyanatidic chloride (150 equivalents). The solution was maintained at 0 C for 20 minutes, and then 3 equivalents of the resulting sulfonyl chloride was added to a room temperature solution of Compound 1-4 (1 equivalent) and triethylamine (3 equivalents) in dichloromethane. The solution was maintained at room temperature for 30 minutes, at which point the solution was diluted with saturated aqueous sodium bicarbonate and ethyl acetate.
The layers were separated and the aqueous layer was extracted with ethyl acetate. The organics were combined, dried over magnesium sulfate, filtered, and the solvent was removed in vacuo.
Purification by silica gel chromatography (hexanes in ethyl acetate) gave Compound 1-139 (8 mg, quantitative yield) as a tan solid.
1H-NMR (400 MHz, CD30D) 6 8.76 (m, 1H), 8.21 (d, 1H), 7.46 (s, 1H), 7.29-7.24 (m, 1H), 7.12-7.07 (m, 1H), 7.02 (t, 1H), 6.91 (m, 1H), 6.80 (t, 1H), 5.96 (s, 2H), 4.02-3.99 (m, 4H), 3.49-3.47 (m, 2H), 1.46-1.43 (m, 9H).
Compound 1-125 To a solution of Compound 1-4 (1 equivalent) in dichloromethane was added triethylamine (2 equivalents) followed by methanesulfonyl chloride (1.5 equivalents). The solution was stirred at room temperature for 15 minutes and then diluted with water and ethyl acetate. The layers were separated and the organic layer was washed with water. The organics were dried over
295 magnesium sulfate, filtered, and the solvent was removed in vacuo to Compound 1-125 (8.5 mg, quantitative yield) as a tan solid.
1H-NMR (400 MHz, DMSO-d6) 6 9.06 (m, 1H), 8.34 (d, 1H), 7.56 (s, 1H), 7.32-7.27 (m, 1H), 7.22-7.17 (m, 2H), 7.07 (t, 1H), 6.78 (t, 1H), 5.87 (s, 2H), 3.90-3.88 (m, 4H), 3.25-3.22 (m, 4H), 2.88 (s, 3H).
Compound 1-146 The title compound was prepared following general procedure B, (1H-tetrazol-5-yl)methanamine (as the HC1 salt) was the amine reactant, and the reaction was heated to 90 C for 3 h as a solution in dioxane/water (3:1). After workup, the organics were washed with water, dried over magnesium sulfate, filtered, and the solvent was removed in vacuo to deliver the desired compound, Compound 1-146 (21 mg, 60% yield) as a white solid.
1H-NMR (400 MHz, CD30D) 6 8.81 (m, 1H), 8.34 (d, 1H), 7.45 (s, 1H), 7.32-7.26 (m, 1H), 7.12-7.03 (m, 2H), 6.94-6.90 (m, 2H), 6.00 (s, 2H), 5.23 (s, 2H).
Compound 1-147 A solution of Compound 1-139 (1 equiv.) in dichloromethane and trifluoroacetic acid (200 equiv.) was stirred at 23 C for 2 h, at which point the solvent was removed in vacuo and the residue was brought up in methanol. The solid product was filtered off.
Purification of the filtrate by reverse phase HPLC (5-75% acetonitrile in water w/0.1%
trifluoroacetic acid, 20 minute gradient) and combining with the previously filtered product delivered the desired compound, Compound 1-147 (2.4 mg, 41% yield) as a white solid.
1H-NMR (400 MHz, DMSO-d6) 6 9.10 (m, 1H), 8.37 (d, 1H), 7.59 (s, 1H), 7.36-7.30 (m, 1H), 7.24-7.20 (m, 2H), 7.10 (t, 1H), 6.88 (s, 2H), 6.81 (t, 1H), 5.90 (s, 2H), 3.91-3.89 (m, 4H), 3.11-3.09 (m, 4H).
Compound 1-149 The title compound was prepared following general procedure B, isoindoline-l-carboxylic acid was the amine reactant, and the reaction was heated to 80 C for 1.5 h as a solution in THF/water (10:1). Upon completion by LC/MS, the solvent was removed under a stream of nitrogen and the resulting solid was brought up in methanol and water (5:1).
The resulting solids were filtered off and the filtrate was purified by reverse-phase HPLC
(5-75% acetonitrile in water w/0.1% trifluoroacetic acid, 20 minute gradient) to deliver the desired compound, Compound 1-149 (14.5 mg, 54% yield) as a tan solid.
1H-NMR (400 MHz, DMSO-d6) 6 9.13 (br s, 1H), 8.39 (br s, 1H), 7.51 (br s, 2H), 7.45-7.39 (m, 2H), 7.36-7.31 (m, 1H), 7.27-7.21 (m, 1H), 7.14-7.05 (m, 2H), 6.96-6.75 (m, 2H), 6.03-5.82 (m, 3H), 5.23-5.07 (m, 2H).
296 Compound 1-158 To a solution of Compound 1-139 (1 equiv) in methanol was added (diazomethyl)trimethylsilane (-15 equiv) until the yellow color persisted. The solvent was removed under a stream of nitrogen to give an intermediate that was not isolated.
Dichloromethane and trifluoroacetic acid (200 equivalents) were added, and after stirring at room temperature for 2 hours, the solvent was removed under a stream of nitrogen.
Purification by silica gel chromatography (0-5% methanol in dichloromethane) provided Compound 1-158 (2.1 mg, 31% yield) as a white solid.
1H-NMR (400 MHz, CD30D) 6 8.74 (m, 1H), 8.19 (d, 1H), 7.44 (s, 1H), 7.28-7.22 (m, 1H), 7.10-7.05 (m, 1H), 7.01 (t, 1H), 6.90 (m, 1H), 6.78 (t, 1H), 5.94 (s, 2H), 4.01-3.98 (m, 4H), 2.66 (s, 3H).
Compound 1-177 To a 0 C solution of Compound 1-147 (1 equivalent) and pyridine (100 equivalents) in dichloromethane was added acetyl chloride (5 equivalents). After five minutes, the solution was warmed to room temperature and maintained at that temperature for 1 hour.
Additional acetyl chloride (5 equiv) was added and stirred at room temperature for 2.5 hours. The solution was then poured into saturated aqueous ammonium chloride and dichloromethane.
The layers were separated and the aqueous layer was extracted with dichloromethane. The organics were dried over magnesium sulfate, filtered, and the solvent was removed in vacuo.
Purification by reverse-phase HPLC (5-75% acetonitrile in water w/ 0.1% trifluoroacetic acid, 20 minute gradient) provided Compound 1-177 (7.9 mg, 29% yield) as a yellow solid.
1H-NMR (400 MHz, CD30D) 6 8.83 (m, 1H), 8.36 (d, 1H), 7.67 (s, 1H), 7.33-7.28 (m, 1H), 7.13-7.04 (m, 2H), 6.97-6.92 (m, 2H), 6.02 (s, 2H), 4.22-4.20 (m, 4H), 3.60-3.58 (m, 4H), 2.03 (s, 3H).
Compound 1-175 The title compound was prepared following general procedure B, 4-(methylsulfonyl)piperidine was the amine reactant, and the reaction was heated to 80 C for 1.5 h as a solution in THF.
Upon completion by LC/MS, the solution was diluted with ethyl acetate and saturated aqueous ammonium chloride. The layers were separated and the organic layer was washed with additional ammonium chloride solution, dried over magnesium sulfate, filtered, and the solvent was removed in vacuo to deliver the desired compound, Compound 1-175 (25 mg, 93% yield) as a yellow solid.
297 11-1-NMR (400 MHz, CDC13) 6 8.44 (m, 1H), 8.21 (d, 1H), 7.26 (s, 1H), 7.20-7.15 (m, 1H), 7.03-6.96 (m, 1H), 6.95 (t, 1H), 6.82 (t, 1H), 6.57 (m, 1H), 5.95 (s, 2H), 4.83 (d, 2H), 3.18-3.05 (m, 3H), 3.07 (s, 3H), 2.26 (d, 2H), 1.93 (qd, 2H).
Compound 1-192 The title compound was prepared following general procedure B, N-methyl-1-(1H-tetrazol-5-yl)methanamine (as the HC1 salt) was the amine reactant, and the reaction was heated to 90 C for 1.5 h as a solution in dioxane/water (3:1).
Following completion of the reaction as judged by LC/MS, the solution was diluted with 1 N hydrochloric acid solution and ethyl acetate. The layers were separated and the aqueous layer was extracted with dichloromethane. The organics were washed with water, dried over magnesium sulfate, filtered, and the solvent was removed in vacuo to deliver the desired compound, Compound 1-192 (30 mg, 83%) as a white solid.
11-1-NMR (400 MHz, DMSO-d6) 6 9.11 (m, 1H), 8.34 (d, 1H), 7.44 (s, 1H), 7.35-7.30 (m, 1H), 7.23-7.17 (m, 2H), 7.10 (t, 1H), 6.84 (t, 1H), 5.88 (s, 2H), 5.21 (s, 2H), 3.35 (m, 3H).
Compound 1-201 The title compound was prepared following general procedure B, ethyl 2-((cyclopropylmethyl)amino)acetate was the amine reactant, and the reaction was heated to 90 C for 16 h as a solution in dioxane. The crude material was purified via silica gel chromatography (0-70% ethyl acetate in hexanes) to deliver the desired compound, Compound 1-201 (32 mg, 81% yield) as a clear oil.
11-1-NMR (400 MHz, CDC13) 6 8.43 (m, 1H), 8.17 (d, 1H), 7.21 (s, 1H), 7.19-7.13 (m, 1H), 7.01-6.92 (m, 2H), 6.81 (t, 1H), 6.54 (m, 1H), 5.92 (s, 2H), 4.37 (s, 2H), 4.17 (q, 2H), 3.63 (d, 2H), 1.21 (t, 3H), 1.15-1.09 (m, 1H), 0.59-0.54 (m, 2H), 0.31-0.26 (m, 2H).
Compound 1-203 A solution of Compound 1-201 (1 equivalent) in tetrahydrofuran, ethanol, and water (ratio 3:1:1) was treated with lithium hydroxide monohydrate (1.5 equivalents) and stirred at room temperature for 4 hours, at which point the solution was diluted with water and dichloromethane. The layers were separated and the aqueous layer was acidified to pH ¨1.
The acidified aqueous layer was extracted with dichloromethane, dried over magnesium sulfate, filtered, and the solvent was removed in vacuo to give Compound 1-203 (18.5 mg, 65% yield) as a white solid.
11-1-NMR (400 MHz, CD30D) 6 8.76 (d, 1H), 8.15 (d, 1H), 7.36 (s, 1H), 7.29-7.24 (m, 1H), 7.10-7.01 (m, 2H), 6.86-6.82 (m, 2H), 5.94 (s, 2H), 4.47 (s, 2H), 3.96 (d, 2H), 1.22-1.15 (m, 1H), 0.59-0.55 (m, 2H), 0.38-0.34 (m, 2H).
298 Compound 1-204 The title compound was prepared following general procedure B, 2-(isopropylamino)acetic acid was the amine reactant, and the reaction was heated to 100 C for 16 h as a solution in dioxane/water (3:1). The crude material was purified via silica gel chromatography (0-10%
methanol in dichloromethane) to deliver the desired compound, Compound 1-204 (8 mg, 33%
yield) as a white solid.
1H-NMR (400 MHz, CDC13) 6 8.40 (br s, 1H), 8.11 (br s, 1H), 7.22 (s, 1H), 7.20-7.15 (m, 1H), 7.20-6.92 (m, 2H), 6.83 (br s, 1H), 6.60 (br s, 1H), 5.91 (br s, 2H), 4.75 (br s, 1H), 4.14 (br s, 2H), 1.29 (d, 6H).
Compound 1-205 The title compound was prepared following general procedure B, ethyl 2-(isobutylamino)acetate was the amine reactant, and the reaction was heated to 90 C for 44 h as a solution in dioxane. Following completion of the reaction as judged by LC/MS, the solution was diluted with water and dichloromethane. The layers were separated and the aqueous layer was extracted with dichloromethane. The organics were dried over magnesium sulfate, filtered, and the solvent was removed in vacuo. The crude material was purified via silica gel chromatography (0-50% ethyl acetate in hexanes) to deliver the desired compound, Compound 1-205 (19 mg, 57% yield) as a yellow solid.
1H-NMR (400 MHz, CDC13) 6 8.43 (m, 1H), 8.16 (d, 1H), 7.20-7.14 (m, 2H), 7.02-6.98 (m, 1H), 6.94 (t, 1H), 6.81 (t, 1H), 6.54 (m, 1H), 6.54 (m, 1H), 5.93 (s, 2H), 4.26 (s, 2H), 4.16 (q, 2H), 3.54 (d, 2H), 2.09-2.03 (m, 1H), 1.19 (t, 3H), 0.97 (d, 6H).
Compound 1-209 A solution of Compound 1-205 (1 equivalent) in tetrahydrofuran, ethanol, and water (ratio 3:1:1) was treated with lithium hydroxide monohydrate (2 equivalents) and stirred at room temperature until complete consumption of starting material as judged by LC/MS. The solution was diluted with water and diethyl ether. The layers were separated and the aqueous layer was acidified to pH ¨1. The acidified aqueous layer was extracted with ethyl acetate, dried over magnesium sulfate, filtered, and the solvent was removed in vacuo to give Compound 1-209 (13 mg, 86% yield) as a white solid.
1H-NMR (400 MHz, CD30D) 6 8.76 (m, 1H), 8.15 (d, 1H), 7.36 (s, 1H), 7.29-7.24 (m, 1H), 7.10-7.01 (m, 2H), 6.86-6.82 (m, 2H), 5.92 (s, 2H), 4.38 (s, 2H), 3.61 (d, 2H), 2.15-2.08 (m, 1H), 1.00 (d, 6H).
Compound 1-257 The title compound was prepared in 4 steps:
299 Step 1: Synthesis of (S)-2-(4-methylphenylsulfonamido)-3-(pyridin-2-yl)propanoic acid Ts,N c"1 .)H

A suspension of (S)-2-amino-3-(pyridin-2-yl)propanoic acid, p-toluenesulfonyl chloride (1.2 equiv.) in water was treated with sodium hydroxide (1N solution, 3 equiv.).
The reaction was stirred at 90 C for 18 h. The resulting mixture was cooled to room temperature, neutralized to pH 6 with 1N HC1 solution. Sodium chloride was added to saturate the solution which was then extracted with dichloromethane/iso-propanol (4:1 v/v). The combined organic phases were dried over sodium sulfate, filtered, and the solvent was removed in vacuo to afford (S)-2-(4-methylphenylsulfonamido)-3-(pyridin-2-yl)propanoic acid an off-white solid (35%
yield).
Step 2: Synthesis of (S)-2-(N,4-dimethylphenylsulfonamido)-3-(pyridin-2-yl)propanoic acid cN
Ts,N OH

A suspension of (S)-2-(4-methylphenylsulfonamido)-3-(pyridin-2-yl)propanoic acid and methyl iodide (3.2 equiv.) in 1N aqueous sodium hydroxide solution (4.0 equiv.) was heated at 100 C for 6 h. The resulting mixture was cooled to room temperature, neutralized to pH 6 with 1N HC1 solution and extracted with dichloromethane/iso-propanol (4:1 v/v). The combined organic phases were dried over sodium sulfate, filtered, and the solvent was removed in vacuo.
Purification by silica gel chromatography (20-50% acetonitrile/methanol (7:1) in dichloromethane gradient) yielded (S)-2-(N,4-dimethylphenylsulfonamido)-3-(pyridin-2-y1) propanoic acid as a yellow foam solid (39% yield).
Step 3: Synthesis of (S)-2-(methylamino)-3-(pyridin-2-yl)propanoic acid (as HBr salt) 4o'T
cN
HN
OH = 2HBr To (S)-2-(N,4-dimethylphenylsulfonamido)-3-(pyridin-2-yl)propanoic acid was added HBr (33 wt% in glacial acetic acid, 25 equiv.). The reaction was stirred at 85 C
for 6 h and then at 60 C for 3 d. Additional amount of HBr solution (3.3 equiv.) was added and the resulting mixture was stirred at 85 C for 6 h. The reaction was cooled to room temperature, diluted with water and washed with ether. The aqueous phase was concentrated in vacuo to afford crude
300 (S)-2-(methylamino)-3-(pyridin-2-yl)propanoic acid dihydrobromide as a thick red oil (>99%
yield) which was used in the next step without further manipulation.
Step 4: Synthesis of Compound 1-257 The title compound was prepared following general procedure B, except (S)-2-(methylamino)-3-(pyridin-2-yl)propanoic acid (as the HBr salt) was the amine reactant, 1.1 equivalents of Intermediate 1 was used, and contents were heated to 100 C. The crude material was purified via reverse phase HPLC (20-75% acetonitrile in water with 0.1%
trifluoroacetic acid, 20 minute gradient) to deliver the desired compound, Compound 1-257 (123 mg, 73% yield) as a tan solid.
1H-NMR (400 MHz,CD30D) d 8.81 (d, 1 H), 8.49 (d, 1 H), 8.24 (d, 1 H), 8.13 (app. t, 1 H), 7.88 (d, 1 H), 7.58 (app. t, 1 H), 7.42 (s, 1 H), 7.29 (app. q, 1 H), 7.11 (m, 1 H), 7.06 (app. t, 1 H), 6.90 (d, 1 H), 6.89 (m, 1 H), 6.01 (d, 1 H), 5.97 (d, 1 H), 5.65 (br. m, 1 H), 3.88 (dd, 1 H), 3.67 (dd, 1 H), 3.35 (d, 3 H).
1H-NMR (400 MHz, CD30D) 6 8.81 (d, 1H), 8.49 (d, 1H), 8.24 (d, 1H), 8.13 (app.
t, 1H), 7.88 (d, 1H), 7.58 (app. t, 1H), 7.42 (s, 1H), 7.29 (app. q, 1H), 7.11 (m, 1H), 7.06 (app. t, 1H), 6.90 (d, 1H), 6.89 (m, 1H), 6.01 (d, 1H), 5.97 (d, 1H), 5.65 (br. m, 1H), 3.88 (dd, 1H), 3.67 (dd, 1H), 3.35 (d, 3H).
Compound 1-200 The title compound was synthesized in 8 steps:
O
<2 ' Ni)N,N1-12 o H
---C)i).NH2 o2,--0Et o Step 1: Synthesis of ethyl 3-(isoxazol-3-y1)-1H-1,2,4-triazole-5-carboxylate A suspension of isoxazole-3-carbohydrazide (1 equiv.), ethyl 2-amino-2-thioxoacetate (1 equiv.) and ammonium chloride (10 equiv.) in absolute ethanol in a sealed vial was heated at 110 C for 7 d. The crude mixture was concentrated in vacuo. Water was added and the aqueous phase was extracted with ethyl acetate. The combined organic phases were dried over sodium sulfate, filtered, and the solvent was removed in vacuo. Purification via silica gel chromatography (10-20% acetonitrile/methanol (7:1) in dichloromethane gradient) yielded ethyl 3-(isoxazo1-3-y1)-1H-1,2,4-triazole-5-carboxylate as an orange solid (24% yield).
301 \
N
I 'NI N
N,t N
027-- OEt o)/"----0Et Step 2: Synthesis of ethyl 1-(2-fluorobenzy1)-5-(isoxazol-3-y1)-1H-1,2,4-triazole-3-carboxylate and ethyl 1-(2-fluorobenzy1)-3-(isoxazol-3-y1)-1H-1,2,4-triazole-5-carboxylate To ethyl 3-(isoxazol-3-y1)-1H-1,2,4-triazole-5-carboxylate in DMF was added sodium hydride (60 wt% in mineral oil, 1.2 equiv.). After 10 min, 2-fluorobenzyl bromide (1.2 equiv.) was added and the reaction was stirred for 2 h. Water was added and the resulting mixture was extracted with ethyl acetate. The combined organic phases were washed with water and brine, dried over sodium sulfate, filtered, and the solvent was removed in vacuo.
Purification via silica gel chromatography (10-40% ethyl acetate/hexanes gradient) yielded ethyl 1-(2-fluorobenzy1)-5-(isoxazo1-3-y1)-1H-1,2,4-triazole-3-carboxylate and ethyl 1-(2-fluorobenzy1)-3-(isoxazol-3-y1)-1H-1,2,4-triazole-5-carboxylate (63%
yield, 42:58 ratio).
jiìs.S0 N 0 *
!It o N HO y.'' N
'N
NI
IN N
o N 0 N
Step 3: Synthesis of 1-(2-fluorobenzy1)-5-(isoxazol-3-y1)-1H-1,2,4-triazole-3-carboxylic acid and 1-(2-fluorobenzy1)-3-(isoxazol-3-y1)-1H-1,2,4-triazole-5-carboxylic acid To a solution of ethyl 1-(2-fluorobenzy1)-5-(isoxazol-3-y1)-1H-1,2,4-triazole-3-carboxylate and ethyl 1-(2-fluorobenzy1)-3-(isoxazo1-3-y1)-1H-1,2,4-triazole-5-carboxylate in tetrahydrofuran/methanol/water (3:1:1 ratio) was added lithium hydroxide hydrate (1.5 equivalents). After 1 h, water and 1N HC1 solution (50:8 ratio) were added and the resultant mixture was extracted with ethyl acetate. Note: Product was not completely soluble and was collected by vacuum filtration. The aqueous layer was extracted with dichloromethane/iso-propanol (4:1 v/v). The combined organic phases were concentrated in vacuo and triturated with ether to give additional product. The combined solids (88%, mixture of regioisomers) were used in the next step without further manipulation.
302 O'N

c\N
HO-kn.-% =
N II sN

CN
HO N N
0 µ0' Step 4: Synthesis of 1-(2-fluorobenzy1)-5-(isoxazol-3-y1)-1H-1,2,4-triazole-3-carbonitrile To a suspension of 1-(2-fluorobenzy1)-5-(isoxazo1-3-y1)-1H-1,2,4-triazole-3-carboxylic acid and 1-(2-fluorobenzy1)-3-(isoxazo1-3-y1)-1H-1,2,4-triazole-5-carboxylic acid, 2-methylpropan-2-amine (2 equiv.), and triethylamine (2 equiv.) in ethyl acetate was added n-propylphosphonic anhydride (T3P, 50 wt% solution in ethyl acetate, 3 equiv.). The resultant yellow solution was heated at 65 C for 2.5 h. The solvent was removed in vacuo. Phosphoryl trichloride (18 equiv.) was added and the resulting mixtures was stirred at 70 C for 50 min.
The reaction was quenched by carefully pouring into a mixture of water and ice, neutralized to pH 7 by addition of saturated sodium bicarbonate solution and extracted with dichloromethane.
The combined organic phases were dried over sodium sulfate, filtered, and the solvent was removed in vacuo. Purification by silica gel chromatography (10-60% ethyl acetate/hexanes gradient) yielded 1-(2-fluorobenzy1)-5-(isoxazo1-3-y1)-1H-1,2,4-triazole-3-carbonitrile (39%
yield). Note: One of the regioisomers decarboxylated to form 3-(1-(2-fluorobenzy1)-1H-1,2,4-triazo1-3-ypisoxazole. The structural assignment is consistent with the nOe's observed. This side-reaction may have occurred during the saponification step (Step 3).
0,N mkt sN sN
Step 5: Synthesis of 1-(2-fluorobenzy1)-5-(isoxazol-3-y1)-1H-1,2,4-triazole-3-carboximidamide A solution of 1-(2-fluorobenzy1)-5-(isoxazo1-3-y1)-1H-1,2,4-triazole-3-carbonitrile in methanol was treated sodium methoxide (25 wt% solution in methanol, 5 equiv.) and stirred for 1 h. Ammonium chloride (10 equiv.) was added. After 18 h, the reaction mixture was concentrated in vacuo and partitioned between half-saturated sodium bicarbonate/1N sodium hydroxide solution (10:1 ratio) and ethyl acetate. The organic phases were dried over sodium sulfate, filtered, and the solvent was removed in vacuo to afford
303 1-(2-fluorobenzy1)-5-(isoxazo1-3-y1)-1H-1,2,4-triazole-3-carboximidamide (>99%
yield) which was used without further purification.
F
F uNi10- et N
I 'N
N N...,.
I 'N _,..
ISI-.... .---N1H
HN 2,--NH2 F
Step 6: Synthesis of 5-fluoro-2-(1-(2-fluorobenzy1)-5-(isoxazol-3-y1)-1H-1,2,4-triazol-3-y1) pyrimidin-4(3H)-one A suspension of 1-(2-fluorobenzy1)-5-(isoxazo1-3-y1)-1H-1,2,4-triazole-3-carboximidamide was treated with sodium (Z)-3-ethoxy-2-fluoro-3-oxoprop-1-en-1-olate (3.0 equiv.) and heated at 90 C for 1 h. After cooling to ambient temperature, the reaction mixture was neutralized by addition of HCl (1.25 M solution in ethanol). The resultant pale yellow suspension was stirred for 5 min and then concentrated in vacuo. The residue was partitioned between dichloromethane and water and the aqueous layer was back-extracted with dichloromethane.
The combined organic phases were dried over sodium sulfate, filtered, and the solvent was removed in vacuo. Purification by silica gel chromatography (5-20%
acetonitrile/methanol (7:1) in dichloromethane gradient) yielded 5-fluoro-2-(1-(2-fluorobenzy1)-5-(isoxazol-3-y1)-1H-1,2,4-triazol-3-y1)-pyrimidin-4(3H)-one (61 mg, 74% yield) as a pale yellow solid.
1H-NMR (400 MHz, CD30D) 6 8.95 (d, 1H), 8.09 (d, 1H), 7.35 (app. q, 1H), 7.23 (app. t, 1H), 7.17 (d, 1H), 7.15 (m, 2H), 6.07 (s, 2H).
F F
01- et vo.. 4k, N N
N -..... ,.. N ......
.---NH N
N\______o CI
F F
Step 7: Synthesis of 3-(3-(4-chloro-5-fluoropyrimidin-2-y1)-1-(2-fluorobenzy1)-1H-1,2,4-triazol-5-yl)isoxazole A suspension of 5-fluoro-2-(1-(2-fluorobenzy1)-5-(isoxazo1-3-y1)-1H-1,2,4-triazo1-3-y1) pyrimidin-4(3H)-one in phosphoryl trichloride (77 equiv.) was heated to 65 C
for 2 h. The reaction mixture was carefully poured into ice and stirred for 20 min. The resultant mixture was basicified to pH 8 by addition of saturated sodium bicarbonate and extracted with
304 dichloromethane. The combined organic layers were dried over sodium sulfate, filtered, and the solvent was removed in vacuo to afford 3 -(3 -(4-chloro -5-fluoropyrimidin-2-y1)-1-(2- fluorobenzy1)-1H-1,2,4-triazo1-5 -yl)iso xazo le as an off-white solid (>99% yield).
Step 8: Synthesis of Compound 1-200 The title compound was prepared following general procedure B, except (S)-3-methyl-2-(methylamino)butanoic acid was the amine reactant, 3 -(3 -(4-chloro -5-fluoropyrimidin-2-y1)-1-(2- fluorobenzy1)-1H-1,2,4-triazo1-5 -yl)iso xazo le was used in place of Intermediate 1, and contents were heated to 100 C. The crude material was purified via silica gel chromatography (20-50% (acetonitrile/methano1=7:1) in dichloromethane gradient) yielded impure product. The sample was re-purified by reverse phase HPLC (5-95% acetonitrile in water with 0.1% trifluoroacetic acid, 20 minute gradient) to deliver the desired compound, Compound 1-200 (23 mg, 66% over two steps) as a white solid.
1H-NMR (400 MHz, CDC13) 6 8.56 (d, 1 H), 8.34 (d, 1 H), 7.27 (app. q, 1 H), 7.21 (app. t, 1 H), 7.15 (d, 1 H), 7.06 (m, 2 H), 6.09 (d, 1 H), 6.02 (d, 1 H), 4.27 (d, 1 H), 3.07 (d, 3 H), 2.55 (m, 1 H), 1.10 (d, 3 H), 0.95 (d, 3 H).
Compound 1-249 The title compound was prepared following general procedure B, except 4-methylpiperidine-4-carboxylic acid (as the HC1 salt) was the amine reactant, 3 -(3 -(4-chloro -5-fluoropyrimidin-2-y1)-1-(2- fluorobenzy1)-1H-1,2,4-triazo1-5 -yl)iso xazo le (the synthesis of which is described in the procedure for Compound 1-200) was used in place of Intermediate 1, and contents were heated to 100 C for 19 h. The reaction was cooled and diluted with water, and neutralized with aqueous 1N HC1. The resulting solids were collected via vacuum filtration, washed with water, and dried in vacuo to deliver the desired compound, Compound 1-249 (29 mg, 85% yield) as an off-white solid.
1H-NMR (400 MHz, CDC13) 6 8.54 (d, 1H), 8.22 (d, 1H), 7.24 (m, 1H), 7.17 (d, 1H), 7.07-7.00 (m, 3H), 6.08 (s, 2H), 4.41 (br. d, 2H), 3.38 (app. t, 2H), 2.28 (br. d, 2H), 1.59 (m, 2H), 1.31 (s, 3H).
Compound 1-1 The title compound was prepared following general procedure B, except pyrrolidine (7 equiv.) was the amine reactant, no triethylamine was used, and contents were heated to 40 C for 10 min as a solution in THF, then at 23 C for 18 h. The reaction was cooled and diluted with ethyl acetate, and washed with water and brine. Solvent was removed in vacuo to deliver the desired compound, Compound 1-1 (23 mg, 76% yield) as a solid.
305 1H NMR (400 MHz, DMSO-d6) 6 ppm 9.08 (d, 1 H), 8.20 (d, 1 H), 7.52 (s, 1 H), 7.30 - 7.40 (m, 1 H), 7.18 - 7.28 (m, 2 H), 7.10 (t, 1 H), 6.82 (t, 1 H), 5.89 (s, 2 H), 3.65 - 3.70 (m, 4 H), 1.92 (d, 4 H).
Compound 1-2 The title compound was prepared following general procedure B, except piperidine (7 equiv.) was the amine reactant, no triethylamine was used, and contents were heated to 40 C for 10 min as a solution in THF, then at 23 C for 18 h. The reaction was cooled and diluted with ethyl acetate, and washed with water and brine. Solvent was removed in vacuo to deliver the desired compound, Compound 1-2 (25 mg, 80% yield) as a solid.
1H NMR (400 MHz, DMSO-d6) 6 ppm 9.09 (s, 1 H), 8.26 (d, 1 H), 7.54 (s, 1 H), 7.32 (s, 2 H), 7.20 - 7.27 (m, 2 H), 7.10 (t, 1 H), 6.81 (t, 1 H), 5.90 (s, 2 H), 3.74 - 3.80 (m, 4 H), 1.58 - 1.62 (m, 6 H).
Compound 1-3 The title compound was prepared following general procedure B, except morpholine (7 equiv.) was the amine reactant, no triethylamine was used, and contents were heated to 40 C for 10 min as a solution in THF, then at 23 C for 18 h. The reaction was cooled and diluted with ethyl acetate, and washed with water and brine. Solvent was removed in vacuo to deliver the desired compound, Compound 1-3 (24 mg, 76% yield) as a solid.
1H NMR (400 MHz, DMSO-d6) 6 ppm 9.08 (s, 1 H), 8.33 (d, 1 H), 7.57 (s, 1 H), 7.32 (d, 2 H), 7.20 - 7.27 (m, 2 H), 7.10 (t, 2 H), 6.81 (t, 1 H), 5.90 (s, 2 H), 3.79 (d, 4 H), 3.74 (d, 4 H).
Compound 1-4 The title compound was prepared following general procedure B, except piperazine (7 equiv.) was the amine reactant, no triethylamine was used, and contents were heated to 40 C for 10 min as a solution in THF, then at 23 C for 18 h. The reaction was cooled and diluted with ethyl acetate, and washed with water and brine. Solvent was removed in vacuo to deliver the desired compound, Compound 1-4 (20 mg, 64% yield) as a solid.
1H NMR (400 MHz, DMSO-d6) 6 ppm 9.09 (s, 1 H), 8.33 (d, 1 H), 7.56 (s, 1 H), 7.32 (s, 1 H), 7.20 - 7.28 (m, 2 H), 7.10 (t, 1 H), 6.81 (t, 1 H), 5.90 (s, 2 H), 3.78 - 3.84 (m, 4 H), 2.90 - 3.00 (m, 3 H).
Compound 1-5 The title compound was prepared following general procedure B, except N-methylpiperazine (7 equiv.) was the amine reactant, no triethylamine was used, and contents were heated to 40 C for 10 min as a solution in THF, then at 23 C for 18 h. The reaction was cooled and diluted
306 with ethyl acetate, and washed with water and brine. Solvent was removed in vacuo to deliver the desired compound, Compound 1-5 (23 mg, 71% yield) as a solid.
1H NMR (400 MHz, DMSO-d6) 6 ppm 9.09 (s, 1 H), 8.31 (d, 1 H), 7.56 (s, 1 H), 7.32 (s, 1 H), 7.18 - 7.27 (m, 2 H), 7.10 (t, 1 H), 6.80 (s, 1 H), 5.90 (s, 2 H), 3.74 - 3.81 (m, 4 H), 3.25 - 3.35 (s, 3 H), 2.20 - 2.30 (m, 4 H).
Compound 1-6 The title compound was prepared following general procedure B, except 2-morpholinoethanamine (7 equiv.) was the amine reactant, no triethylamine was used, and contents were heated to 40 C for 10 min as a solution in THF, then at 23 C
for 18 h. The reaction was cooled and diluted with ethyl acetate, and washed with water and brine. Solvent was removed in vacuo to deliver the desired compound, Compound 1-6 (25 mg, 72%
yield) as a gum.
1FINMR (400 MHz, DMSO-d6) 6 ppm 9.09 (d, 1 H), 8.17 (d, 1 H), 7.59 (s, 1 H), 7.48 (s, 1 H), 7.28 - 7.38 (m, 1 H), 7.17 - 7.26 (m, 2 H), 7.10 (t, 1 H), 6.86 (t, 1 H), 5.88 (s, 2 H), 3.56 - 3.62 (m, 4 H), 3.48 (t, 4 H), 2.44(m, 2 H), 2.29 - 2.40 (m, 2 H).
Compound 1-7 The title compound was prepared following general procedure B, except N,N-dimethylethane-1,2-diamine (7 equiv.) was the amine reactant, no triethylamine was used, and contents were heated to 40 C for 10 min as a solution in THF, then at 23 C for 18 h. The reaction was cooled and diluted with ethyl acetate, and washed with water and brine. Solvent was removed in vacuo to deliver the desired compound, Compound 1-7 (24 mg, 76%
yield) as a gum.
1FINMR (400 MHz, DMSO-d6) 6 ppm 9.09 (d, 1 H), 8.17 (d, 1 H), 7.54 (s, 1 H), 7.48 (s, 1 H), 7.29 - 7.38 (m, 1 H), 7.18 - 7.27 (m, 2 H), 7.11 (t, 1 H), 6.88 (t, 1 H), 5.89 (s, 2 H), 3.57 (q, 2 H), 2.43 - 2.49 (m, 2 H), 2.19 (s, 6 H).
Compound 1-9 The title compound was prepared following general procedure B, except cyclohexylamine (7 equiv.) was the amine reactant, no triethylamine was used, and contents were heated to 40 C
for 10 min as a solution in THF, then at 23 C for 18 h. The reaction was cooled and diluted with ethyl acetate, and washed with water and brine. Solvent was removed in vacuo to deliver the desired compound, Compound 1-9 (20 mg, 62% yield) as a solid.
1H NMR (400 MHz, DMSO-d6) 6 ppm 9.09 (d, 1 H), 8.14 (d, 1 H), 7.51 (d, 1 H), 7.45 (s, 1 H), 7.33 (d, 1 H), 7.18 - 7.28 (m, 2 H), 7.10 (t, 1 H), 6.85 (t, 1 H), 5.88 (s, 2 H), 4.03-4.08 (m, 1 H), 1.89-1.92 (m, 2 H), 1.72-1.76 (m, 2 H), 1.63 (d, 2 H), 1.32 - 1.43 (m, 4 H).
307 Compound 1-8 The title compound was prepared following general procedure B, except dimethylamine (7 equiv.) was the amine reactant, no triethylamine was used, and contents were heated to 40 C
for 10 min as a solution in THF, then at 23 C for 18 h. The reaction was cooled and diluted with ethyl acetate, and washed with water and brine. Solvent was removed in vacuo to deliver the desired compound, Compound 1-8 (19 mg, 67% yield) as a solid.
1H NMR (400 MHz, DMSO-d6) 6 ppm 9.09 (s, 1 H), 8.18 (d, 1 H), 7.52 (s, 1 H), 7.39 - 7.45 (m, 1 H), 7.18 - 7.27 (m, 2 H), 7.10 (t, 1 H), 6.82 - 6.88 (m, 1 H), 5.90 (s, 2 H), 3.24 (d, 6 H).
Compound 1-11 The title compound was prepared following general procedure B, except 2-methylpyrrolidine was the amine reactant, no triethylamine was used, and contents were heated to 40 C for 10 min as a solution in THF, then at 23 C for 18 h. The reaction was cooled and diluted with ethyl acetate, and washed with water and brine. Solvent was removed in vacuo, and the crude material was purified via silica gel chromatography, utilizing a 0-10%
methanol/dichloromethane gradient to deliver the desired compound, Compound 1-11 (16 mg, 51% yield) as a solid.
1H NMR (400 MHz, DMSO-d6) 6 ppm 9.09 (d, 1 H), 8.21 (d, 1 H), 7.49 (s, 1 H), 7.29 - 7.38 (m, 1 H), 7.17 - 7.27 (m, 2 H), 7.10 (t, 1 H), 6.84 (t 1 H), 5.92 (s, 2 H), 4.40-4.48 (m, 1 H), 3.75 - 3.90 (m, 1 H), 3.56 - 3.69 (m, 1 H), 2.00 - 2.07 (m, 2 H), 1.93 (d, 1 H), 1.65-1.73 (m, 1 H), 1.23 (d, 3 H).
Compound 1-10 The title compound was prepared following general procedure B, except piperidin-4-ol was the amine reactant, no triethylamine was used, and contents were heated to 40 C
for 10 min as a solution in THF, then at 23 C for 18 h. The reaction was cooled and diluted with ethyl acetate, and washed with water and brine. Solvent was removed in vacuo to deliver the desired compound, Compound 1-10 (19 mg, 58% yield) as a solid.
1H NMR (400 MHz, DMSO-d6) 6 ppm 9.08 (d, 1 H), 8.27 (d, 1 H), 7.54 (s, 1 H), 7.21 - 7.39 (m, 3 H), 7.10 (t, 1 H), 6.81 (t, 1 H), 5.90 (s, 2 H), 4.78-4.84 (m, 1 H), 4.18 (d, 2 H), 3.74-3.79 (m, 1 H), 3.37 - 3.47 (m, 2 H), 1.81-8.89 (m, 2 H), 1.40 - 1.54 (m, 2 H).
Compound 1-12 The title compound was prepared following general procedure B, except tert-butyl 4-aminopiperidine-1-carboxylate (1.5 equiv.) was the amine reactant, no triethylamine was used, and contents were heated to 40 C for 10 min as a solution in THF, then at 23 C for 18 h.
The reaction was cooled and diluted with ethyl acetate, and washed with water and brine.
308 Solvent was removed in vacuo, and the crude material was purified via silica gel chromatography, utilizing a 0-10% methanol/dichloromethane gradient to deliver the desired compound, Compound 1-12 (36 mg, 90% yield) as a solid.
1H NMR (400 MHz, DMSO-d6) 6 ppm 9.04 - 9.15 (m, 1 H), 8.18 (d, 1 H), 7.53 -7.65 (m, 1 H), 7.47 (s, 1 H), 7.30 - 7.39 (m, 1 H), 7.19 - 7.27 (m, 2 H), 7.07 - 7.16 (m, 1 H), 6.85 (t, 1 H), 5.83 - 5.91 (m, 2 H), 4.25 (d, 1 H), 3.96 (d, 2 H), 2.87 - 2.91 (m, 2 H), 1.87 (d, 2 H), 1.44 - 1.51 (m, 2 H) ,1.41 (s, 9 H).
Compound 1-13 The title compound was prepared following general procedure B, except (S)-pyrrolidin-2-ylmethanol was the amine reactant, no triethylamine was used, and contents were heated to 40 C for 10 min as a solution in THF, then at 23 C for 18 h.
The reaction was cooled and diluted with ethyl acetate, and washed with water and brine.
Solvent was removed in vacuo, and the crude material was purified via silica gel chromatography, utilizing a 0-10%
methanol/dichloromethane gradient to deliver the desired compound, Compound 1-13 (18 mg, 55% yield) as a solid.
1H NMR (400 MHz, DMSO-d6) 6 ppm 9.09 (d, 1 H), 8.21 (d, 1 H), 7.49 (s, 1 H), 7.28 - 7.37 (m, 1 H), 7.18 - 7.26 (m, 2 H), 7.10 (t, 1 H), 6.83 (t, 1 H), 5.85 - 5.93 (m, 2 H), 4.86 (t, 1 H), 4.32 - 4.39 (m, 1 H), 3.74 - 3.79 (m, 1 H), 3.62 - 3.69 (m, 1 H), 3.52 - 3.59 (m, 1 H), 3.44 - 3.50 (m, 1 H), 1.98 - 2.04 (m, 2 H), 1.91 (d, 2 H).
Compound 1-17 The title compound was prepared following general procedure B, except 3-methoxypyrrolidine (4 equiv.) was the amine reactant, 4 equivalents of triethylamine was used, and contents were heated to 40 C for 1 h as a solution in THF. The reaction was cooled and diluted with ethyl acetate, and washed with water and brine. Solvent was removed in vacuo to deliver the desired compound, Compound 1-17 (12 mg, 61% yield) as a solid.
1H NMR (400 MHz, DMSO-d6) 6 ppm 9.09 (d, 1 H), 8.23 (d, 1 H), 7.53 (s, 1 H), 7.29 - 7.40 (m, 1 H), 7.18 - 7.28 (m, 2 H), 7.10 (t, 1 H), 6.82 (t, 1 H), 5.90 (s, 2 H), 4.03 -4.12 (m, 1 H), 3.70 -3.87 (m, 3 H), 3.66 (d, 1 H), 3.28 (s, 3 H), 1.96 - 2.15 (m, 2 H).
Compound 1-18 The title compound was prepared following general procedure B, except piperidin-3-ol (4 equiv.) was the amine reactant, no triethylamine was used, and contents were heated to 40 C
for 1 h as a solution in THF. The reaction was cooled and diluted with ethyl acetate, and
309 washed with water and brine. Solvent was removed in vacuo to deliver the desired compound, Compound 1-18 (14 mg, 72% yield) as a solid.
1H NMR (400 MHz, DMSO-d6) 6 ppm 9.09 (d, 1 H), 8.25 (d, 1 H), 7.53 (s, 1 H), 7.28 - 7.39 (m, 1 H), 7.17 - 7.27 (m, 2 H), 7.10 (t, 1 H), 6.81 (t, 1 H), 5.90 (s, 2 H), 4.97 (d, 1 H), 4.18 (d, 1 H), 3.56 - 3.68 (m, 1 H), 3.37 - 3.48 (m, 2 H), 3.21 (dd, 1 H), 1.73 - 1.96 (m, 2 H), 1.43-1.58 (m, 2H).
Compound 1-25 The title compound was prepared following general procedure B, except tert-butyl piperidin-3-ylcarbamate (4 equiv.) was the amine reactant, no triethylamine was used, and contents were heated to 40 C for 1 h as a solution in THF. The reaction was cooled and diluted with ethyl acetate, and washed with water and brine. Solvent was removed in vacuo, and the crude material was purified via silica gel chromatography, utilizing a 0-10%
methanol/dichloromethane gradient to deliver the desired compound, Compound 1-25 (25 mg, 66% yield) as a solid.
1H NMR (500 MHz, CD30D) 6 ppm 8.75 (d, 1 H), 8.16 (d, 1 H), 7.58 (s, 1 H), 7.23 - 7.38 (m, 1 H), 7.08 - 7.17 (m, 1 H), 7.05 (t, 1 H), 6.95 (s, 1 H), 6.84 (t, 1 H), 6.78 (d, 1 H), 5.98 (s, 2 H), 4.40 (d, 1 H), 4.13 - 4.24 (m, 1 H), 3.69 (br. s., 1 H), 3.56 (d, 1 H), 3.35 -3.42 (m, 1 H), 2.00 -2.09 (m, 1 H), 1.91 (dd, 1 H), 1.59 - 1.72 (m, 2 H), 1.45 (s, 9 H).
Compound 1-26 The title compound was prepared following general procedure B, except tert-butyl 3-aminoazetidine-1-carboxylate (4 equiv.) was the amine reactant, 2 equivalents of triethylamine was used, and contents were heated to 40 C for 1 h as a solution in THF, followed by heating to 75 C until full consumption of starting material was observed on the LC/MS. The reaction was cooled and diluted with ethyl acetate, and washed with water and brine. Solvent was removed in vacuo, and the crude material was purified via silica gel chromatography, utilizing a 0-10% methanol/dichloromethane gradient to deliver the desired compound, Compound 1-26 (24 mg, 67% yield) as a solid.
1H NMR (400 MHz, DMSO-d6) 6 ppm 9.10 (d, 1 H), 8.31 (d, 1 H), 8.25 (d, 1 H), 7.48 - 7.57 (m, 1 H), 7.29 - 7.38 (m, 1 H), 7.15 - 7.28 (m, 2 H), 7.11 (t, 1 H), 6.85 (t, 1 H), 5.89 (s, 2 H), 4.76 - 4.93 (m, 1 H), 4.15 - 4.25 (m, 2 H), 3.91 (dd, 2 H), 1.39 (s, 9 H).
Compound 1-27 The title compound was prepared following general procedure B, except tert-butyl 3-aminopiperidine-1-carboxylate (4 equiv.) was the amine reactant, 2 equivalents of triethylamine was used, and contents were heated to 40 C for 1 h as a solution in THF,
310 followed by heating to 75 C until full consumption of starting material was observed on the LC/MS. The reaction was cooled and diluted with ethyl acetate, and washed with water and brine. Solvent was removed in vacuo, and the crude material was purified via silica gel chromatography, utilizing a 0-10% methanol/dichloromethane gradient to deliver the desired compound, Compound 1-27 (24 mg, 57% yield) as a solid.
1H NMR (500 MHz, CD30D) 6 ppm 8.78 (d, 1 H), 8.15 (d, 1 H), 7.58 (s, 1 H), 7.25 - 7.33 (m, 1 H), 7.08 - 7.17 (m, 1 H), 7.05 (t, 1 H), 6.95 (s, 1 H), 6.84 (t, 1 H), 6.78 (d, 1 H), 5.98 (s, 2 H), 4.40 (d, 1 H), 4.18 (d, 1 H), 3.69 (m, 1 H), 3.56 (d, 1 H), 3.39 (d, 1 H), 1.99 - 2.08 (m, 1H), 1.91 (dd, 1 H), 1.57 - 1.76 (m, 2 H), 1.45 (s, 9 H).
Compound 1-19 The title compound was prepared following general procedure B, except 3-methoxypiperidine (4 equiv.) was the amine reactant, 2 equivalents of triethylamine was used, and contents were heated to 40 C for 1 h as a solution in THF, followed by heating to 75 C
until full consumption of starting material was observed on the LC/MS. The reaction was cooled and filtered, and the solids were washed with ethyl acetate. The filtrate was collected and washed with water and brine. Solvent was removed in vacuo to deliver the desired compound, Compound 1-19 (15 mg, 74% yield) as a solid.
1H NMR (400 MHz, DMSO-d6) 6 ppm 9.06 (d, 1 H), 8.23 (d, 1 H), 7.49 (s, 1 H), 7.25 - 7.35 (m, 1 H), 7.13 - 7.24 (m, 2 H), 7.07 (t, 1 H), 6.78 - 6.87 (m, 1 H), 5.86 (s, 2 H), 3.91 (d, 1 H), 3.62 - 3.81 (m, 3 H), 3.34 (dd, 1 H), 3.23 (s, 3 H), 1.83 - 1.94 (m, 1 H), 1.72 - 1.81 (m, 1 H), 1.56 - 1.65 (m, 1 H), 1.44 - 1.54 (m, 1 H).
Compound 1-20 The title compound was prepared following general procedure B, except pyrrolidin-3-ol (4 equiv.) was the amine reactant, no triethylamine was used, and contents were heated to 40 C
for 1 h as a solution in THF. The reaction was cooled and filtered, and the solids were washed with ethyl acetate. The filtrate was collected and washed with water and brine. Solvent was removed in vacuo to deliver the desired compound, Compound 1-20 (10 mg, 53%
yield) as a solid.
1H NMR (400 MHz, DMSO-d6) 6 ppm 9.08 (d, 1 H), 8.21 (d, 1 H), 7.52 (s, 1 H), 7.29 - 7.37 (m, 1 H), 7.18 - 7.28 (m, 2 H), 7.10 (t, 1 H), 6.82 (t, 1 H), 5.90 (s, 2 H), 5.04 (d, 1 H), 4.32-4.39 (m, 1 H), 3.81 (d, 1 H), 3.69-3.77 (m, 1 H), 3.60 - 3.68 (m, 1 H), 1.96-2.05 (m, 1 H), 1.88 - 1.95 (m, 1 H).
Compound 1-21
311 The title compound was prepared following general procedure B, except tert-butyl azetidin-3-ylcarbamate (4 equiv.) was the amine reactant, no triethylamine was used, and contents were heated to 40 C for 1 h as a solution in THF. The reaction was cooled and filtered, and the solids were collected and dried in vacuo to deliver the desired compound, Compound 1-21 (30 mg, 79% yield) as a solid.
1H NMR (400 MHz, DMSO-d6) 6 ppm 9.08 (s, 1 H), 8.25 (m, 1 H), 7.62 - 7.66 (m, 2 H), 7.51 (s, 1 H), 7.29 - 7.34 (m, 1 H), 7.15 - 7.27 (m, 2 H), 7.07 - 7.14 (m, 1 H), 6.79 - 6.84 (m, 1 H), 5.90 (s, 2 H), 4.35 - 4.44 (m, 2 H), 4.01 - 4.12 (m, 2 H), 3.84-3.90 (m, 1 H), 1.39 (s, 9 H).
Compound 1-22 The title compound was prepared following general procedure B, except 4-methoxypiperidine (4 equiv.) was the amine reactant, no triethylamine was used, and contents were heated to 40 C for 1 h as a solution in THF. The reaction was cooled and diluted with ethyl acetate, and washed with water and brine. Solvent was removed in vacuo to deliver the desired compound, Compound 1-22 (15 mg, 74% yield) as a solid.
1H NMR (400 MHz, DMSO-d6) 6 ppm 9.05 (d, 1 H), 8.25 (d, 1 H), 7.51 (s, 1 H), 7.26 - 7.31 (m, 1 H), 7.14 - 7.25 (m, 2 H), 7.07 (t, 1 H), 6.74 - 6.82 (m, 1 H), 5.87 (s, 2 H), 4.06 - 4.11 (m, 2 H), 3.42 - 3.50 (m, 2 H), 3.25 (s, 3 H), 1.89-1.95 (m, 2 H), 1.46 - 1.51 (m, 3 H).
Compound 1-64 The title compound was prepared following general procedure B, except 4-methyltetrahydro-2H-pyran-4-amine (as the HC1 salt) (5 equiv.) was the amine reactant, 10 equivalents of Hunig's base was used in place of triethylamine, and contents were heated to 175 C for 1 h in the microwave as a solution in THF/DMF (1:1). The reaction was cooled and diluted with ethyl acetate, and washed with water and brine. Solvent was removed in vacuo, and the crude material was purified via silica gel chromatography, utilizing a 5-90% ethyl acetate/hexanes gradient to deliver the desired compound, Compound 1-64 (4 mg, 20% yield) as a solid.
1H NMR (500 MHz, CD30D) 6 ppm 8.74 (s, 1 H), 8.05 (d, 1 H), 7.19 - 7.33 (m, 2 H), 6.97 -7.12 (m, 2 H), 6.79 - 6.93 (m, 2 H), 5.92 (s, 2 H), 3.67 - 3.81 (m, 4 H), 2.49 (d, 2 H), 1.77 - 1.91 (m, 2 H), 1.63 (s, 3 H).
Compound 1-101 The title compound was prepared following general procedure B, except 4-(tert butoxycarbonyl)piperazine-2-carboxylic acid hydrate (4 equiv.) was the amine reactant, 5 equivalents oftriethylamine was used, and contents were heated to 90 C for 5 h as a solution in THF/water (9:1). Workup was carried out with ethyl acetate instead of dichloromethane. The
312 crude material was purified via reverse phase HPLC to deliver the desired compound, Compound 1-101 (12 mg, 26% yield) as a solid.
1H NMR (500 MHz, DMSO-d6) 6 ppm 9.10 (d, 1 H), 8.39 (d, 1 H), 7.54 (s, 1H), 7.28 - 7.39 (m, 1 H), 7.15 - 7.25 (m, 2 H), 7.11 (t, 1 H), 6.85 (t, 1 H), 5.85 - 5.97 (m, 2 H), 5.17 (br. s., 1 H), 4.45 (d, 1 H), 4.33 (br. s., 1 H), 3.91 - 4.02 (m, 1 H), 3.33 - 3.39 (m, 2 H), 3.05 - 3.17 (m, 1 H), 1.41 (s, 9 H).
Compound 1-163 The title compound was prepared following general procedure B, except 4,5,6,7-tetrahydro-3H-imidazo[4,5-c]pyridine-4-carboxylic acid (4 equiv.) was the amine reactant, 3 equivalents of triethylamine was used, and contents were heated to 175 C for 10 min as a solution in NMP. Contents were diluted with diethyl ether, and the resulting precipitate was filtered and collected. The crude material was further purified via reverse phase HPLC to deliver the desired compound, Compound 1-163 (5 mg, 15% yield) as a solid.
1H NMR (500 MHz, methanol-d4) 6 ppm 9.03 (d, 1 H), 8.82 - 8.89 (m, 1 H), 8.58 (s, 1 H), 7.58 (s, 1 H), 7.28 - 7.37 (m, 1 H), 7.11 - 7.18 (m, 1 H), 7.02 - 7.10 (m, 1 H), 6.94 (s, 1 H), 6.83 - 6.92 (m, 1 H), 6.01 (s, 2 H), 5.12 (d, 1 H), 5.00 (d, 1 H), 4.55 - 4.64 (m, 1 H), 3.43 (dd, 1 H), 3.20 (d, 1H).
Compound 1-189 The title compound was prepared following general procedure B, except 4-ethylpiperidine-4-carboxylic acid (as the HC1 salt) was the amine reactant, 4 equivalents of triethylamine was used, and contents were heated to 40 C for 18 h as a solution in THF. The reaction was incomplete, so additional amine reactant (3 equiv.), triethylamine (4 equiv.) and DMF (equivalent volume as THF) was introduced into the vessel, and the resulting mixture was heated to 85 C for 18 h. The reaction was cooled and diluted with ethyl acetate, and washed with water and brine. Solvent was removed in vacuo, and the crude material was purified via reverse phase HPLC to deliver the desired compound, Compound 1-189 as a solid.
1H NMR (500 MHz, methanol-d4) 6 ppm 8.79 (d, 1 H), 8.20 (d, 1 H), 7.54 (s, 1 H), 7.21 - 7.35 (m, 1 H), 7.07 - 7.13 (m, 1 H), 7.05 (t, 1 H), 6.95 (d, 1 H), 6.89 (t, 1 H), 5.99 (s, 2 H), 4.65 (d, 2 H), 3.33 - 3.43 (m, 2 H), 2.32 (d, 2 H), 1.63 - 1.68 (m, 2 H), 1.55 - 1.63 (m, 2 H), 0.91 (t, 3 H).
Compound 1-190 The title compound was prepared following general procedure B, except 3-methylpiperidine-4-carboxylic acid was the amine reactant, 4 equivalents of triethylamine was used, and contents were heated to 40 C for 18 h as a solution in THF. The reaction was incomplete, so additional amine reactant (3 equiv.), triethylamine (4 equiv.) and DMF
313 (equivalent volume as THF) was introduced into the vessel, and the resulting mixture was heated to 85 C for 18 h. The reaction was cooled and diluted with ethyl acetate, and washed with water and brine. Solvent was removed in vacuo, and the crude material was purified via reverse phase HPLC to deliver the desired compound, Compound 1-190 as a solid.
1H NMR (500 MHz, methanol-d4) 6 ppm 8.79 (d, 1 H), 8.22 - 8.29 (m, 1 H), 7.59 (s, 1 H), 7.24 -7.34 (m, 1 H), 7.02 -7.15 (m, 2 H), 6.96 - 7.00 (m, 1 H), 6.93 (t, 1 H), 6.01 (m, 2 H), 4.76 (d, 1 H), 4.58 (d, 1 H), 3.70 (dd, 1 H), 3.52 - 3.58 (m, 1 H), 2.87 - 2.94 (m, 1 H), 2.45 - 2.54 (m, 1 H), 2.00 - 2.11 (m, 1 H), 1.90 - 1.99 (m, 1 H), 1.02 (d, 3 H).
Compound 1-235 The title compound was prepared in 3 steps:
Step 1: Synthesis of 2-(1-(2,3-difluorobenzy1)-5-(isoxazol-3-y1)-1H-pyrazol-3-y1)-5-fluoropyrimidin-4(3H)-one The above compound was prepared following general procedure A, using 1-(isoxazol-3-ypethanone in step 1 and 2,3-difluorobenzylhydrazine in step 2.
Step 2: Preparation of 3-(3-(4-chloro-5-fluoropyrimidin-2-y1)-1-(2,3-difluorobenzy1)-1H-pyrazol-5-yl)isoxazole A suspension of 2-(1-(2,3-difluorobenzy1)-5-(isoxazol-3-y1)-1H-pyrazol-3-y1)-5-fluoropyrimidin-4(3H)-one in phosphoryl trichloride (47 equiv) was heated at 65 C for 2 hour.
The reaction mixture was carefully poured into ice and stirred for 20 min. The resultant mixture was basicified to pH 8 by addition of saturated sodium bicarbonate and extracted with dichloromethane. The combined organic layers were dried over sodium sulfate, filtered, and the solvent was removed in vacuo to afford 3-(3-(4-chloro-5-fluoropyrimidin-2-y1)-1-(2,3-difluorobenzy1)-1H-pyrazol-5-ypisoxazole as a light yellow solid which was used in the next step without further manipulation.
Step 3:. Synthesis of Compound 1-235 A solution of (S)-3-methy1-2-(methylamino)butanoic acid (3.0 equivalents), triethylamine (10 equivalents). and3-(3-(4-chloro-5-fluoropyrimidin-2-y1)-1-(2,3-difluorobenzyl) 1H-pyrazol-5-ypisoxazolewas stirred in dioxane/water (2:1 ratio) at 100 C for 23 h, following general procedure B. The solution was diluted with water, neutralized to pH 3 by addition of 1N HC1 and extracted with dichloromethane. The combined organic layers were dried over sodium sulfate, filtered, and the solvent was removed in vacuo. Purification by silica gel chromatography (0-10% acetonitrile/methanol (7:1) in dichloromethane gradient) yielded Compound 1-235 (38 mg, 61% over 2 steps) as an off-white solid.
314 1H-NMR (400 MHz, CDC13) 6 8.46 (d, 1H), 8.22 (d, 1H), 7.23 (s, 1H), 7.04 (dd, 1H), 6.92 (dd 1H), 6.77 (app. t, 1H), 6.58 (d, 1H), 5.99 (d, 1H), 5.94 (d, 1H), 4.27 (d, 1H), 3.24 (d, 3H), 2.52 (m, 1H), 1.11 (d, 3H), 0.94 (d, 3H).
Compound 1-236 The title compound was prepared in 3 steps:
Step 1: Synthesis of 5-fluoro-2-(1-(2-fluorobenzy1)-5-(oxazol-2-y1)-1H-pyrazol-3-y1) pyrimidin-4(3H)-one The above compound was prepared following general procedure A, using 1-(oxazol-2-ypethanone in Step 1 and 2-fluorobenzylhydrazine in Step 2.
Step 2: Synthesis of 2-(3-(4-chloro-5-fluoropyrimidin-2-y1)-1-(2-fluorobenzy1)-pyrazol-5-yl)oxazole The above compound was prepared following a process analogous to Step 2 of the synthesis of Compound 1-235, using 5-fluoro-2-(1-(2-fluorobenzy1)-5-(oxazol-2-y1)-1H-pyrazo1-3-y1)-pyrimidin-4(3H)-one as the starting pyrimidone.
Step 3: Synthesis of Compound 1-236 The title compound was prepared following general procedure B, except (S)-3-methyl-2-(methylamino)butanoic acid was the amine reactant, 2-(3-(4-chloro-5-fluoropyrimidin-2-y1)-1-(2-fluorobenzy1)-1H-pyrazo1-5-yl)oxazole was used in place of Intermediate 1, and contents were heated to 100 C for 41 h. The crude material was purified via silica gel chromatography (0-20% (acetonitrile/methano1=7:1) in dichloromethane gradient) delivered the desired compound, Compound 1-236 (8.9 mg, 49%
over two steps) as an off-white solid.
1H-NMR (400 MHz, CDC13) 6 8.25 (d, 1H), 7.70 (s, 1H), 7.46 (s, 1H), 7.24 (s, 1H), 7.21 (m 1H), 7.07-6.95 (m, 3H), 6.11 (d, 1H), 6.04 (d, 1H), 4.27 (d, 1H), 3.23 (d, 3H), 2.52 (m, 1H), 1.11 (d, 3H), 0.94 (d, 3H).
Compound 1-36 Into a stirred solution of Compound 1-12 dissolved in dichloromethane was added and equivalent volume of trifluoroacetic acid at 23 C. Contents stirred until full consumption of starting material was observed via LC/MS. The reaction was diluted with dichloromethane and quenched with saturated sodium bicarbonate solution. The layers were separated, and the organic layer was washed with saturated sodium bicarbonate solution, water, and brine. The organic layer was further dried over Na2504, filtered, and concentrated in vacuo to deliver the desired compound, Compound 1-36 (19.5 mg, 75% yield) as a solid.
315 lti NMR (500 MHz, CDC13) 6 8.46 (s, 1 H), 8.15 (d, 1 H), 7.27 - 7.30(m, 1 H), 7.13 - 7.23 (m, 1 H), 7.00 - 7.09 (m, 1 H), 6.91 - 7.00 (m, 1 H), 6.81 - 6.90 (m, 1 H), 6.54 -6.62 (m, 1 H), 5.95 (s, 2 H), 5.19 (d, 1 H), 4.26 - 4.40 (m, 1 H), 3.23 - 3.35 (m, 2 H), 3.03 (br.
s, 1H), 2.92 (td, 2 H), 2.10-2.20 (m, 2 H), 1.59 - 1.77 (m, 2 H).
Compound 1-37 Into a stirred solution of Compound 1-25 dissolved in dichloromethane was added and equivalent volume of trifluoroacetic acid at 23 C. Contents stirred until full consumption of starting material was observed via LC/MS. The reaction was diluted with dichloromethane and quenched with saturated sodium bicarbonate solution. The layers were separated, and the organic layer was washed with saturated sodium bicarbonate solution, water, and brine. The organic layer was further dried over Na2SO4, filtered, and concentrated in vacuo to deliver the desired compound, Compound 1-37 (14 mg, 79% yield) as a solid.
1H NMR (500 MHz, CDC13) 6 8.45 (d, 1 H), 8.16 (d, 1 H), 7.30 (s, 1 H), 7.14 -7.23 (m, 1 H), 7.00 - 7.07 (m, 1 H), 6.96 (td, 1 H), 6.78 - 6.89 (m, 1 H), 6.60 (d, 1 H), 5.96 (s, 2 H), 4.39 - 4.51 (m, 1 H), 4.22 - 4.36 (m, 1 H), 3.25 (ddd, 1 H), 2.93 - 3.08 (m, 2H), 1.99 -2.11 (m, 1 H), 1.83 -1.92 (m, 1 H), 1.59 - 1.72 (m, 1 H), 1.37 - 1.50 (m, 1 H).
Compound 1-38 Into a stirred solution of Compound 1-26 dissolved in dichloromethane was added and equivalent volume of trifluoroacetic acid at 23 C. Contents stirred until full consumption of starting material was observed via LC/MS. The reaction was diluted with dichloromethane and quenched with saturated sodium bicarbonate solution. The layers were separated, and the organic layer was washed with saturated sodium bicarbonate solution, water, and brine. The organic layer was further dried over Na2SO4, filtered, and concentrated in vacuo to deliver the desired compound, Compound 1-38 (11 mg, 55% yield) as a solid.
1H NMR (500 MHz, CDC13) 6 8.46 (d, 1 H) , 8.16 - 8.22 (m, 1 H), 7.30 (m, 1 H), 7.17 - 7.25 (m, 2 H), 7.00 - 7.09 (m, 1 H), 6.91 - 6.98 (m, 1 H), 6.85 (d, 1 H), 6.56 - 6.68 (m, 1 H), 5.96 - 6.03 (m, 1 H), 5.95 (s, 2 H), 4.94 - 5.01 (m, 1 H), 4.39 (t, 2 H), 3.99 (dd, 2 H).
Compound 1-39 Into a stirred solution of Compound 1-27 dissolved in dichloromethane was added and equivalent volume of trifluoroacetic acid at 23 C. Contents stirred until full consumption of starting material was observed via LC/MS. The reaction was diluted with dichloromethane and quenched with saturated sodium bicarbonate solution. The layers were separated, and the organic layer was washed with saturated sodium bicarbonate solution, water, and brine. The
316 organic layer was further dried over Na2SO4, filtered, and concentrated in vacuo to deliver the desired compound, Compound 1-39 (12.2 mg, 69% yield) as a solid.
1H NMR (500 MHz, CDC13) 6 8.45 (d, 1H), 8.13 (d, 1 H), 7.35 (s, 1 H), 7.14 -7.24 (m, 1 H), 6.99 - 7.08 (m, 1 H), 6.92 - 6.99 (m, 1 H), 6.79 - 6.89 (m, 1 H), 6.64 (d, 1 H), 5.97 (s, 2 H), 5.55 (br. s., 1 H), 4.34 - 4.49 (m, 1 H), 3.29 (dd, 1 H), 2.88 - 3.01 (m, 1 H), 2.79 - 2.87 (m, 1 H), 2.75 (dd, 1 H), 1.90 - 2.02 (m, 1 H), 1.77 - 1.88 (m, 1 H), 1.58 - 1.76 (m, 2 H).
Compound 1-40 Into a stirred solution of Compound 1-21 dissolved in dichloromethane was added and equivalent volume of trifluoroacetic acid at 23 C. Contents stirred until full consumption of starting material was observed via LC/MS. The reaction was diluted with dichloromethane and quenched with saturated sodium bicarbonate solution. The layers were separated, and the organic layer was washed with saturated sodium bicarbonate solution, water, and brine. The organic layer was further dried over Na2SO4, filtered, and concentrated in vacuo to deliver the desired compound, Compound 1-40 (22 mg, 90% yield) as a solid.
1H NMR (500 MHz, methanol-d4) 6 8.73 (d, 1 H), 8.06 (d, 1 H), 7.37 (s, 1 H), 7.19 - 7.30 (m, 1 H), 7.04 - 7.11 (m, 1 H), 7.00 (t, 1 H), 6.86 (d, 1 H), 6.77 (t, 1 H), 5.93 (s, 2 H), 4.58 (t, 2 H), 4.13 (dd, 2 H), 3.98 - 4.09 (m, 1 H).
Compound 1-133 Into a stirred solution of Compound 1-101 dissolved in dichloromethane was added and equivalent volume of trifluoroacetic acid at 23 C. Contents stirred until full consumption of starting material was observed via LC/MS. The mixture was concentrated in vacuo, and the resulting gum was triturated with diethyl ether, filtered, and the solids were washed with diethyl ether. The solids were collected and dried in vacuo to deliver the desired compound, Compound 1-133 (as the TFA salt, 100 mg, 83% yield) as a white solid.
1H NMR (500 MHz, DMSO-d6) 6 9.11 (s, 1 H), 8.87 (s, 1 H), 8.47 (d, 1 H), 7.58 (s, 1 H), 7.29 - 7.40 (m, 1 H), 7.17 - 7.27 (m, 2 H), 7.11 (t, 1 H), 6.83 (t, 1 H), 5.89 (s, 2 H), 5.44-5.49 (m, 1 H), 4.59 - 4.64 (m, 1 H), 3.79 (d, 1 H), 3.41 - 3.46 (m, 1 H), 3.11-3.18 (m, 1 H), 3.01 - 3.12 (m, 1H).
Compound 1-30 The title compound was prepared following general procedure B, except 2,8-diazaspiro[4.5]decan-3-one (2 equiv.) was the amine reactant, no triethylamine was used, and contents were heated to 40 C for 2 d as a solution in THF. The reaction was cooled, solvent was removed in vacuo, and the resulting solid was rinsed with 1N HC1 solution to deliver the desired compound, Compound 1-30 (57.8 mg, 83% yield) as a white solid.
317 1H NMR (500 MHz, METHANOL-d4) 6 ppm 8.86 (s, 1 H) 8.36 (d, 1 H) 7.71 (s, 1 H) 7.31 -7.37 (m, 1 H) 7.13 (dd, 2 H) 6.99 - 7.04 (m, 2 H) 6.06 (s, 2 H) 4.32 (br. s., 2 H) 4.13 (br. s., 2 H) 3.37 (br. s., 2 H) 2.42 (s, 2 H) 1.95 (t, 4 H).
Compound 1-42 The title compound was prepared following general procedure B, except 2-oxa-7-azaspiro[3.5]nonane oxalate (2 equiv.) was the amine reactant, 8 equivalents of triethylamine was used, and contents were heated to 40 C for 24 h as a solution in NMP. The reaction was cooled, diluted with ethyl acetate, and the mixture was rinsed with water.
Contents were dried, filtered, and concentrated in vacuo. The crude material was purified via silica gel chromatography utilizing a 0-80% ethyl acetate/hexanes gradient to deliver the desired compound, Compound 1-42 (42 mg, 52% yield) as a white solid.
1H NMR (500 MHz, METHANOL-d4) 6 ppm 8.75 (s, 1 H) 8.13 (d, 1 H) 7.41 (s, 1 H) 7.20 -7.32 (m, 1 H) 6.97 - 7.14 (m, 2 H) 6.90 (s, 1 H) 6.81 (t, 1 H) 5.95 (s, 2 H) 4.52 (s, 4 H) 3.80 -3.88 (m, 4 H) 1.90 - 2.05 (m, 4 H).
Compound 1-43 The title compound was prepared following general procedure B, except 8-oxa-2-azaspiro[4.5]decane (2 equiv.) was the amine reactant, no triethylamine was used, and contents were heated to 40 C for 24 h as a solution in THF. The reaction was cooled and concentrated to yield a solid, which was dissolved in ethyl acetate. The organic layer was washed with aqueous 1N HC1, dried, filtered, and concentrated in vacuo. The crude material was purified via silica gel chromatography utilizing a 0-100% ethyl acetate/hexanes gradient to deliver the desired compound, Compound 1-42 (6.4 mg, 17% yield) as a white solid.
1H NMR (500 MHz, METHANOL-d4) 6 ppm 8.77 (s, 1 H) 8.09 (d, 1 H) 7.44 (s, 1 H) 7.25 -7.33 (m, 1 H) 7.11 (t, 1 H) 7.05 (s, 1 H) 6.93 (s, 1 H) 6.82 (s, 1 H) 5.98 (s, 2 H) 3.92 (br. s., 2 H) 3.71 - 3.84 (m, 6 H) 2.00 (t, 2 H) 1.64 - 1.75 (m, 4 H).
Compound 1-32 The title compound was prepared following general procedure B, except 2-oxa-6-azaspiro[3.3]heptane oxalate (2 equiv.) was the amine reactant, 6 equivalents of triethylamine was used, and contents were heated to 40 C for 2 d as a solution in THF. The reaction was cooled and concentrated to yield a solid, which was dissolved in ethyl acetate. The organic layer was washed with 1N HC1 solution, dried, filtered, and concentrated in vacuo to deliver the desired compound, Compound 1-32 (19 mg, 33% yield) as a white solid.
318 1H NMR (500 MHz, METHANOL-d4) 6 ppm 8.83 (s, 1 H) 8.24 (br. s, 1 H) 7.57 (br.
s., 1 H) 7.29 - 7.33 (m, 1 H) 7.03 - 7.16 (m, 2 H) 6.91 - 7.01 (m, 2 H) 5.99 - 6.05 (m, 2 H) 4.28 - 4.61 (m, 4 H) 3.99 (s, 2 H) 3.88 (s, 2 H).
Compound 1-47 The title compound was prepared following general procedure B, except 2-oxa-6-azaspiro[3.5]nonane oxalate (2 equiv.) was the amine reactant, 4 equivalents of triethylamine was used, and contents were heated to 40 C for 2 h as a solution in NMP. The reaction was cooled and concentrated to yield a solid, which was dissolved in ethyl acetate. The organic layer was washed with water, dried, filtered, and concentrated in vacuo. The crude material was purified via silica gel chromatography utilizing a 0-100% ethyl acetate/hexanes gradient to deliver the desired compound, Compound 1-47 (42.3 mg, 66% yield) as a white solid.
1H NMR (400 MHz, METHANOL-d4) 6 ppm 8.67 - 8.76 (m, 1 H) 8.12 (d, 1 H) 7.40 (s, 1 H) 7.19 - 7.28 (m, 1 H) 7.02 - 7.10 (m, 1 H) 6.99 (t, 1 H) 6.88 (d, 1 H) 6.79 (t, 1 H) 5.89 - 5.95 (m, 2 H) 4.38 - 4.49 (m, 4 H) 4.05 - 4.10 (m, 2 H) 3.71 - 3.79 (m, 2 H) 1.92 -1.98 (m, 2 H) 1.58 -1.68 (m, 2 H).
Compound 1-44 The title compound was prepared following general procedure B, except tert-butyl 2,8-diazaspiro[4.5]decane-2-carboxylate (2 equiv.) was the amine reactant, no triethylamine was used, and contents were heated to 40 C for 2 d as a solution in THF. The reaction was cooled and diluted with ethyl acetate. The organic layer was washed with water, dried, filtered, and concentrated in vacuo. The crude material was purified via silica gel chromatography utilizing a 0-100% ethyl acetate/hexanes gradient to deliver the desired compound, Compound 1-44 (51.6 mg, 67% yield) as a white solid.
1H NMR (500 MHz, METHANOL-d4) 6 ppm 8.77 (s, 1 H) 8.15 (d, 1 H) 7.43 (s, 1 H) 7.23 -7.33 (m, 1 H) 7.11 (t, 1 H) 7.05 (t, 1 H) 6.92 (s, 1 H) 6.83 (t, 1 H) 5.97 (s, 2 H) 3.79 - 4.09 (m, 4 H) 3.43 - 3.52 (m, 2 H) 3.30 (s, 2 H) 1.89 (t, 2 H) 1.72 (br. s., 4 H) 1.49 (s, 9 H).
Compound 1-45 The title compound was prepared following general procedure B, except tert-butyl 2,7-diazaspiro[4.4]nonane-2-carboxylate (2 equiv.) was the amine reactant, 1 equivalent of triethylamine was used, and contents were heated to 40 C for 2 d as a solution in THF. The reaction was cooled and diluted with ethyl acetate. The organic layer was washed with water, dried, filtered, and concentrated in vacuo. The crude material was purified via silica gel
319 chromatography utilizing a 0-100% ethyl acetate/hexanes gradient to deliver the desired compound, Compound 1-45 (48.3 mg, 64% yield) as a white solid.
1H NMR (500 MHz, METHANOL-d4) 6 ppm 8.75 (s, 1 H) 8.04 - 8.13 (m, 1 H) 7.40 (s, 1 H) 7.24 - 7.32 (m, 1 H) 7.10 (t, 1 H) 7.03 (t, 1 H) 6.89 (s, 1 H) 6.82 (t, 1 H) 5.96 (s, 2 H) 3.85 - 3.98 (m, 2 H) 3.69 - 3.82 (m, 2 H) 3.49 (br. s., 2 H) 3.30 - 3.43 (m, 4 H) 1.48 (d, 9 H).
Compound 1-61 The title compound was prepared following general procedure B, except 3,3-difluoroazetidine (as the HC1 salt, 1 equiv.) was the amine reactant, 2 equivalents of Hunig's base was used instead of triethylamine, and contents were heated to 40 C for 3 h as a solution in NMP. The reaction was cooled and diluted with ethyl acetate. The organic layer was washed with water, dried, filtered, and concentrated in vacuo. The crude material was purified via silica gel chromatography utilizing a 0-30% ethyl acetate/hexanes gradient to deliver the desired compound, Compound 1-61 (37 mg, 71% yield) as a white solid.
lti NMR (400 MHz, CDC13) 6 ppm 8.44 (d, 1 H) 8.22 (d, 1 H) 7.30 (s, 1 H) 7.14 -7.21 (m, 1 H) 6.91 - 7.04 (m, 2 H) 6.81 (t, 1 H) 6.54 - 6.59 (m, 1 H) 5.95 (s, 2 H) 4.60 -4.71 (m, 4 H).
Compound 1-62 The title compound was prepared following general procedure B, except 4,4-Difluoropiperidine (as the HC1 salt, 1 equiv.) was the amine reactant, 2 equivalents of Hunig's base was used instead of triethylamine, and contents were heated to 40 C for 3 h as a solution in NMP. The reaction was cooled and diluted with ethyl acetate. The organic layer was washed with water, dried, filtered, and concentrated in vacuo. The crude material was purified via silica gel chromatography utilizing a 0-30% ethyl acetate/hexanes gradient to deliver the desired compound, Compound 1-62 (40.4 mg, 71% yield) as a white solid.
1H NMR (400 MHz, CDC13) 6 ppm 8.43 (d, 1 H) 8.22 (d, 1 H) 7.24 - 7.25 (m, 1 H) 7.12 - 7.21 (m, 1 H) 6.91 - 7.04 (m, 2 H) 6.82 (t, 1 H) 6.56 (d, 1 H) 5.94 (s, 2 H) 3.94 -4.02 (m, 4 H) 2.04 - 2.17 (m, 4 H).
Compound 1-63 The title compound was prepared following general procedure B, except 3,3-difluoro-pyrrolidine (as the HC1 salt, 1 equiv.) was the amine reactant, 2 equivalents of Hunig's base was used instead of triethylamine, and contents were heated to 40 C for 3 h as a solution in NMP. The reaction was cooled and diluted with ethyl acetate. The organic layer was washed with water, dried, filtered, and concentrated in vacuo. The crude material was purified via silica gel chromatography utilizing a 0-30% ethyl acetate/hexanes gradient to deliver the desired compound, Compound 1-63 (41.5 mg, 71% yield) as a white solid.
320 1FINMR (400 MHz, CDC13) 6 ppm 8.43 (d, 1 H) 8.19 (d, 1 H) 7.29 (s, 1 H) 7.11 -7.22(m, 1 H) 6.90 - 7.04 (m, 2 H) 6.78 - 6.87 (m, 1 H) 6.56 (d, 1 H) 5.94 (s, 2 H) 3.98 -4.18 (m, 4 H) 2.40 -2.54 (m, 2 H).
Compound 1-166 The title compound was prepared following general procedure B, except N-benzylglycine ethyl ester (1 equiv.) was the amine reactant, 2 equivalents of triethylamine was used, and contents were heated to 80 C for 24 h as a solution in THF/water (10:1). The reaction was cooled and diluted with ethyl acetate. The organic layer was washed with saturated ammonium chloride solution, dried, filtered, and concentrated in vacuo. The crude material was purified via silica gel chromatography to deliver the desired compound, Compound 1-166 (33 mg, 47%) as a white solid.
1H NMR (400 MHz, CDC13) 6 ppm 8.42 (d, 1 H) 8.23 (d, 1 H) 7.28 - 7.39 (m, 5 H) 7.23 (d, 1 H) 7.12 - 7.21 (m, 1 H) 6.91 - 7.05 (m, 2 H) 6.83 (t, 1 H) 6.53 (d, 1 H) 5.94 (s, 2 H) 5.00 (s, 2 H) 4.20 - 4.24 (m, 2 H) 4.14 - 4.20 (m, 2 H) 1.21 (t, 3 H).
Compound 1-167 The title compound was prepared following general procedure B, except ethyl N-methylaminoacetate (as the HC1 salt, 1 equiv.) was the amine reactant, 2 equivalents of triethylamine was used, and contents were heated to 90 C for 24 h as a solution in THF. The reaction was cooled and diluted with ethyl acetate and water. The layers were separated, and the the organic layer was dried, filtered, and concentrated in vacuo. The crude material was purified via silica gel chromatography utilizing a 0-100% ethyl acetate/hexanes gradient to deliver the desired compound, Compound 1-167 (77 mg, 79% yield) as a white solid.
1H NMR (500 MHz, CDC13) 6 ppm 8.46 (d, 1 H) 8.22 (d, 1 H) 7.28 (d, 1 H) 7.15 -7.25 (m, 1 H) 6.95 - 7.06 (m, 2 H) 6.81 - 6.89 (m, 1 H) 6.58 (d, 1 H) 5.95 - 6.00 (m, 2 H) 4.35 (s, 2 H) 4.23 (q, 2 H) 3.43 (d, 3 H) 1.25 (t, 3 H).
Compound 1-176 A mixture of Compound 1-167 (70 mg, 1 equiv.) and sodium hydroxide [1.0 N
aqueous solution] (770 1, 5 eqiuv.) in THF (385 1) and Me0H (385 1) was stirred at rt for 24 h. The mixture was quenched with 1N HC1 (5 equiv.). The white precipitate formed was collected by filtration, rinsed with a minimal amount of ether and dried to give Compound 1-176 (52 mg, 79 % yield) as a white solid.
1H NMR (500 MHz, DMSO-d6) 6 ppm 9.11 (d, 1 H) 8.34 (d, 1 H) 7.54 (s, 1 H) 7.30 - 7.37 (m, 1 H) 7.19- 7.25 (m, 2H) 7.11 (t, 1 H) 6.86 (t, 1 H) 5.90 (s, 2 H) 4.41 -4.45 (m, 2H) 3.32(d, 3 H).
321 Compound 1-168 A mixture of Compound 1-167 (30 mg, 1 equiv.) and sodium hydroxide [1.0 N
aqueous solution] (57 IA, 1 equiv) in THF (141 IA) and Me0H (141 IA) was stirred at rt for 24 h. It was treated with 1N HC1 (1 equiv.). The mixture was diluted in dichloromethane (100 ml) and washed with water (50 ml). The organic layer was dried, filtered and evaporated to give an oil.
The oil was purified by column chromatography (0 to 10% methanol in dichloromethane) to give Compound 1-168 (10 mg, 36 % yield) as a white solid.
1H NMR (400 MHz, METHANOL-d4) 6 ppm 8.74 (d, 1 H) 8.20 (d, 1 H) 7.33 - 7.43 (m, 5 H) 7.22 - 7.32 (m, 3 H) 6.99 - 7.13 (m, 3 H) 6.84 (d, 2 H) 5.95 (s, 2 H) 5.05 (s, 2 H).
Compound 1-218 A mixture of Compound 1-176 (48 mg, 1 equiv.), 0-methylhydroxylamine hydrochloride (14 mg, 1.5 equiv), EDC (32 mg, 1.5 equiv.) and DMAP (21 mg, 1.5 equiv) in DMF
(563 1) was stirred at rt for 2 h. The mixture was diluted in ethyl acetate (100 ml) and washed with water (50 ml x 3). The organic layer was dried, filtered and evaporated to give an oil. The oil was purified by column chromatography to give Compound 1-218 (26 mg, 51 % yield) as a white solid.
1H NMR (500 MHz, METHANOL-d4) 6 ppm 8.63 - 8.68 (m, 1 H) 8.08 (d, 1 H) 7.30 (s, 1 H) 7.13 - 7.20 (m, 1 H) 6.96 - 7.02 (m, 1 H) 6.92 (t, 1 H) 6.77 (s, 1 H) 6.71 (t, 1 H) 5.85 (s, 2 H) 4.17 (s, 2 H) 3.55 (s, 3 H) 3.30 - 3.34 (m, 3 H).
Compound 1-223 The title compound was prepared following general procedure B, except N-methyl-1-(3-methyl-1,2,4-oxadiazol-5-y1)methanamine (as the HC1 salt, 1 equiv.) was the amine reactant, 4 equivalents of triethylamine was used, and contents were heated to 85 C for 24 h as a solution in dioxane. The reaction was cooled and diluted with ethyl acetate. The the organic layer was washed with 1N HC1 solution, dried, filtered, and concentrated in vacuo. The crude material was purified via silica gel chromatography utilizing a 0-100%
ethyl acetate/hexanes gradient to deliver the desired compound, Compound 1-223 (16.3 mg, 21%
yield) as a white solid.
1H NMR (500 MHz, CDC13) 6 ppm 8.46 (d, 1 H) 8.25 (d, 1 H) 7.15 - 7.22 (m, 2 H) 6.96 (t, 1 H) 6.84 (t, 1 H) 6.61 (d, 1 H) 5.95 (s, 2 H) 5.03 (s, 2 H) 3.52 (d, 3 H) 2.38 (s, 3 H).
Compound 1-14 2-(1-(2-fluorobenzy1)-5 -(iso xazol-3 -y1)-1H-pyrazol-3 -y1)-5 -nitropyrimidin-4-ol (1 equiv.) (this intermediated was in a previous patent: W02012/3405 Al) (25 mg, 1 equiv.) was treated with POC13 (457 1, 75 equiv.) and stirred at reflux for 1.5 h. Contents were concentrated in
322 vacuo, and residue was azeotroped with toluene (x2). The residue was re-dissolved in THF (0.7 mL) and treated with morpholine (171 1, 30 equiv.). The contents were heated to 40 C, and reaction stirred for 1.5 h. Residue was transferred to 1:1 mixture of ethyl acetate and water.
The layers were separated, and the aqueous layer was extracted with ethyl acetate (x3). The organic portions were combined and washed with brine. The mixture was dried over MgSO4, filtered, and concentrated in vacuo to deliver the desired Compound 1-14 (30 mg, 97%) as a pale yellow solid.
1H-NMR (400 MHz, CDC13) 6 8.47 (d, 1 H), 8.36 (d, 1 H), 8.09 - 8.16 (m, 1 H), 7.69 (dd, 1 H), 7.41 (d, 1 H), 7.20 (t, 1 H), 6.66 - 6.70 (m, 1 H), 6.45 (d, 1 H), 6.06 (s, 2 H), 3.79 - 3.86 (m, 4 H), 3.74 (m, 4 H).
Compound 1-15 A solution of Compound 1-14 (30 mg, 1 equiv.) in methanol was treated with palladium on carbon (7 mg, 10% wt palladium, 0.1 equiv) and placed under at atmosphere of hydrogen.
Contents were stirred for 2 h at 23 C. Contents were filtered over celite, and eluted with methanol. Contents were concentrated in vacuo, and the crude material was purified via silica gel chromatography utilizing a 0-70%
(acetonitrile:methano1=7:1)/dichloromethane gradient to deliver the desired Compound 1-15 (11.5 mg, 39%) as a white solid.
1H-NMR (400 MHz, CDC13) 6 8.43 (d, 1 H), 8.36 (d, 1 H), 7.35 (d, 1 H), 6.80 (t, 1 H), 6.59-6.53 (m, 1 H), 6.49-6.40 (m, 2 H), 6.11 (dd, 1 H), 5.93-5.82 (m, 2 H), 3.87-3.76 (m, 4 H), 3.72 (d, 4 H).
Compound 1-70 A solution of Compound 1-37 in toluene was treated with ethyl isocyanate (3 equiv.) and heated to 90 C for 20 min. The resulting precipitates were filtered and rinsed with toluene. The solids were collected and dried in vacuo to deliver the desired compound, Compound 1-70 (7 mg, 36% yield) as a solid.
1H NMR (500 MHz, DMSO-d6) 6 9.09 (d, 1 H), 8.27 (d, 1 H), 7.77 (s, 1 H), 7.30 -7.36 (m, 1 H), 7.14 - 7.27 (m, 2 H), 7.07 - 7.12 (m, 1 H), 6.83 (t, 1 H), 5.94 (d, 1 H), 5.91 (s, 2 H), 5.76 (t, 1 H), 4.17 (d, 1 H), 3.94 (d, 1 H), 3.69 (dt, 1 H), 3.52 (t, 1 H), 3.22 (dd, 1 H), 3.02 (quin, 2 H), 1.85 (d, 1 H), 1.71 - 1.81 (m, 1 H), 1.43 - 1.62 (m, 2 H), 0.97 (t, 3 H).
Compound 1-71 A solution of Compound 1-40 in toluene was treated with ethyl isocyanate (3 equiv.) and heated to 90 C for 20 min. The resulting precipitates were filtered and rinsed with toluene. The
323 solids were collected and dried in vacuo to deliver the desired compound, Compound 1-71 (3 mg, 16% yield) as a solid.
1H NMR (500 MHz, DMSO-d,) 6 9.10 (d, 1 H), 8.25 (d, 1 H), 7.49 - 7.55 (m, 1 H) 7.29 - 7.37 (m, 1 H), 7.19 - 7.27 (m, 2 H), 7.10 (t, 1 H), 6.81 (t, 1 H), 6.52 - 6.61 (m, 1 H), 6.02 (t, 1 H), 5.90 (s, 2 H), 4.51 - 4.59 (m, 1 H), 4.47 (m, 2 H), 4.06 (d, 2 H), 2.94 - 3.07 (m, 2 H), 0.99 (t, 3 H).
Compound 1-136 A solution of Compound 1-133 in dichloromethane was treated with ethyl isocyanate (1.1 equiv.) and triethylamine (2 equiv.), and stirred at 23 C for 1 h. Solvent removed in vacuo, and residue re-suspended in diethyl ether. The resulting precipitates were filtered and rinsed with diethyl ether. The solids were collected and dried in vacuo to deliver the desired compound, Compound 1-136 (2.9 mg, 28% yield) as a solid.
1H NMR (500 MHz, DMSO-d,) 6 9.09 (s, 1 H), 8.26 - 8.39 (m, 1 H), 7.52 (s, 1 H) 7.32 (m, 1 H), 7.17 - 7.27 (m, 2 H), 7.10 (t, 1 H), 6.78-6.88 (m, 1 H), 6.63 (br.s., 1 H), 5.90 (m, 2 H), 4.90 -5.19 (m, 1 H) 4.43 (d, 1 H), 4.30 (br.s., 1 H), 3.91 (d, 1 H), 3.48 (d, 1 H), 3.22 (d, 1 H), 2.99 -3.05 (m, 3 H), 1.01 (t, 3 H).
Compound 1-134 A solution of Compound 1-133 in dichloromethane was treated with propionyl chloride (1.1 equiv.) and triethylamine (2 equiv.), and stirred at 23 C for 1 h. Solvent removed in vacuo, and residue re-suspended in diethyl ether. The resulting precipitates were filtered and rinsed with diethyl ether. The solids were collected and dried in vacuo to deliver the desired compound, Compound 1-134 (3.5 mg, 35% yield) as a solid.
1H NMR (500 MHz, DMSO-d,) 6 9.10 (s, 1 H), 8.40 (d, 1 H), 7.49 - 7.64 (m, 1 H), 7.28 - 7.39 (m, 1 H), 7.15 - 7.26 (m, 2 H), 7.11 (t, 1 H), 6.84 (br. s., 1 H), 5.89 (s, 2 H), 4.79 (d, 1 H), 4.24 - 4.45 (m, 2 H), 3.91 (d, 1 H), 3.67 (br. s., 1 H), 3.58 (d, 1 H), 2.87 - 3.00 (m, 1 H), 2.31 - 2.40 (m, 2 H), 0.93 - 1.04 (m, 3 H).
Compound 1-135 A solution of Compound 1-133 in dichloromethane was treated with methyl chloroformate (1.1 equiv.) and triethylamine (2 equiv.), and stirred at 23 C for 1 h.
Sovlent removed in vacuo, and residue re-suspended in diethyl ether. The resulting precipitates were filtered and rinsed with diethyl ether. The solids were collected purified via reverse phase HPLC to deliver the desired compound, Compound 1-135 (3.5 mg, 37% yield) as a solid.
1H NMR (500 MHz, CD30D) 6 8.82 (s, 1 H), 8.41 (d, 1 H), 7.58 (s, 1 H), 7.26 -7.35 (m, 1 H), 7.12 (t, 1 H), 7.07 (t, 1 H), 6.88 - 6.97 (m, 2 H), 6.01 (s, 2 H), 5.51 (br.
s., 1 H), 4.68 (d, 1 H),
324 4.58 (br. s., 1 H), 4.09 (d, 1 H), 3.79 - 3.95 (m, 1 H), 3.76 (s, 3 H), 3.52 -3.62 (m, 1 H), 3.35 -3.45 (m, 1 H).
Compound 1-49 and Compound 1-50 A solution of 1-methylcyclopropanecarboxylic acid (141 mg, 10 equiv.) in dichloromethane (1 mL) was treated with oxalyl chloride (0.11 mL, 9 equiv.), and contents were stirred until no more bubbling was observed. The resulting solution was then added portionwise over 5 minutes to a cooled (0 C) solution of 5-fluoro-2-(1-(2-fluorobenzy1)-5-(isoxazo1-3-y1)-1H-pyrazol-3-y1)-pyrimidin-4-amine (1 equiv, 50 mg this intermediate was described in a previous patent application publication, W02012/3405 Al) in dichloromethane (0.35 mL) and pyridine (0.35 mL). The mixture was heated to 60 C and stirred for 24 h. The reaction mixture was diluted with ethyl acetate and washed with saturated aqueous ammonium chloride solution. The layers were separated, and the aqueous layer was extracted with ethyl acetate (x3) and dichloromethane (x1). The organic portions were combined and washed with brine. The mixture was dried over MgSO4, filtered, and concentrated in vacuo. The crude material was purified via silica gel chromatography utilizing a 0-60% ethyl acetate/hexanes gradient to deliver the desired Compound 1-49 (18.5 mg, 30%) as a white solid, along with 1-50 (16.2 mg, 22%) as a clear oil.
Compound 1-49 Fil NMR (400 MHz, CDC13) 6 8.57 (d, 1 H), 8.43 (d, 1 H), 8.01 (s, 1 H), 7.38 (s, 1 H), 7.22-7.13 (m, 1 H), 7.00 (t, 1 H), 6.98-6.90 (m, 1 H), 6.78 (t, 1 H), 6.57 (d, 1 H), 5.99 (s, 2 H), 1.48 (s, 3 H), 1.38-1.32 (m, 2 H), 0.79-0.73 (m, 2 H).
Compound 1-50 Fil NMR (400 MHz, CDC13) 6 8.64 (d, 1 H), 8.47-8.44 (m, 1 H), 7.28 (s, 1 H), 7.22-7.15 (m, 1 H), 7.02 (d, 1 H), 6.97 (t, 1 H), 6.93-6.87 (m, 1 H), 6.55-6.53 (m, 1 H), 5.95 (s, 2 H), 1.53-1.48 (m, 4 H), 1.22 (s, 6 H), 0.85-0.79 (m, 4 H).
Compound 1-51 and Compound 1-52 A solution of 5 - fluoro -2-(1-(2-fluorobenzy1)-5 -(iso xazol-3 -y1)-1H-pyrazol-3 -y1)-pyrimidin-4-amine (1 equiv, this intermediate in a previous patent application publication; W02012/3405 Al) (see above) (50 mg, 1 equiv.) in THF (0.7 mL) was cooled to 0 C and treated with LiHMDS (0.16 mL, 1.1 equiv., 1M solution) and stirred for 20 minutes. The reaction was then treated with methyl chloroformate (44 L, 4 equiv.). The reaction mixture was stirred at 0 C
for 20 minutes, then warmed to 23 C, over 1 h. The reaction was diluted with ethyl acetate and quenched with saturated aqueous ammonium chloride solution. The layers were separated, and the aqueous layer was extracted with ethyl acetate (twice) and dichloromethane (three times).
The organic portions were combined and washed with brine. The mixture was dried over MgSO4, filtered, and concentrated in vacuo. The crude material was purified via silica gel
325 chromatography utilizing a 0-100% ethyl acetate/hexanes gradient to deliver the desired Compound 1-51 (5.3 mg, 9%) as an off-white solid, along with Compound 1-52 (13.1 mg, 20%) as a white solid.
Compound 1-51 1H-NMR (500 MHz, CDC13) 6 8.56 (s, 1 H), 8.45 (s, 1 H), 7.41 (s, 1 H), 7.38 (s, 1 H), 7.19 (m, 1 H), 7.02 (t, 1 H), 6.95 (m, 1 H), 6.81 (m, 1 H), 6.61 (s, 1 H), 6.00 (s, 2 H), 3.87 (s, 3 H).
Compound 1-52 1H-NMR (500 MHz, CDC13) 6 8.77 (s., 1 H), 8.47 (s, 1 H), 7.40 (s, 1 H), 7.21 (m, 1 H), 7.07-6.93 (m, 2 H), 6.84 (m, 1 H), 6.59 (s, 1 H), 6.02 (s, 2 H), 3.83 (s, 6 H).
Compound 1-144 In a small vial, Compound 1-58 (0.022 g, 0.047 mmol) was diluted with DCM
(Volume: 2.0 ml) then charged with CDI (28 mg, 0.173 mmol). The reaction mixture was then heated to 45 C until complete consumption of starting acid was noted by LC/MS. At this time, cyclopropanesulfonamide (22.86 mg, 0.189 mmol) and DBU (7.11 1, 0.047 mmol) were added and the reaction was heated for an additional 30 minutes. At this time, the reaction was quenched with 1N HC1, then diluted with DCM. The layers were separated and the aqueous portion was extracted an addition two times with DCM. The organic portions were combined, dried (Na2SO4), filtered, and concentrated. The crude material was purified using Si02 chromatography employing a 0-10% Me0H/DCM gradient to deliver the desired acyl sulfonamide, Compound 1-144 (16mg, 54% yield).
1H-NMR (400 MHz, CDC13) 6 10.62 (bs, 1H), 8.43 (d, 1H), 8.23 (d, 1H), 7.45 (s, 1H), 7.19 (dd, 1H), 7.03-6.95 (m, 2H), 6.85 (t, 1H), 6.69 (s, 1H), 5.96 (dd, 2H), 4.20-4.12 (m, 1H), 2.87-2.79 (m, 1H), 2.30-2.24 (m, 1H), 2.02-1.92 (m, 1H), 1.86-1.70 (m, 4H), 1.30-0.86 (m, 6H).
Compound 1-157 The title compound was prepared using the same procedure described for Compound 1-144, with the exception of using Compound 1-88 as the starting carboxylic acid.
Purification via silica gel chromatography delivered the desired compound, Compound 1-157 (10 mg, 55%
yield) as a solid.
1H-NMR (400 MHz, CD30D) 6 8.76 (d, 1H), 8.18 (d, 1H), 7.55 (s, 1H), 7.25 (dd, 1H), 7.07 (t, 1H), 7.00 (t, 1H), 6.92 (d, 1H), 6.81 (t, 1H), 5.96 (dd, 2H), 4.66-4.62 (m, 1H), 2.88-2.83 (m, 1H), 1.93-1.83 (m, 2H), 1.31-1.27 (m, 2H), 1.16-1.10 (m, 1H), 1.04 (d, 3H), 0.97 (d, 3H), 0.92-0.78 (m, 2H).
Compound 1-187 The title compound was prepared using the same procedure described for Compound 1-144, with the exception of using Compound 1-89 as the starting carboxylic acid.
Purification via
326 silica gel chromatography delivered the desired compound, Compound 1-187 (33 mg, 80%
yield) as a solid.
1H-NMR (400 MHz, DMSO-d6) 6 11.92 (s, 1H), 9.09 (d, 1H), 8.33 (d, 1H), 7.55 (s, 1H), 7.29 (dd, 1H), 7.18 (t, 1H), 7.12 (d, 1H), 7.07 (t, 1H), 6.84 (t, 1H), 5.87 (s, 2H), 4.50 (d, 1H), 3.19 (d, 3H), 2.95-2.87 (m, 1H), 2.42-2.35 (m, 1H), 1.05 (d, 3H), 1.02-0.94 (m, 2H), 0.89 (d, 3H), 0.87-0.83 (m, 2H).
Compound 1-272 The title compound was prepared following general procedure B, except (S)-3-methyl-2-(methylamino)butanoic acid was the amine reactant, 3-(3-(4-chloropyrimidin-2-y1)-1-(2-fluorobenzy1)-1H-pyrazo1-5-yl)isoxazole (synthesis described in procedure towards Compound 1-24) was used in place of Intermediate 1, and the contents were heated to 110 C for 72 h. The crude material was purified via silica gel chromatography utilizing a 0-10% methanol/dichloromethane gradient to deliver the desired compound, Compound 1-272 (4 mg, 8% yield) as a solid.
1H-NMR (400 MHz, DMSO-d6) 6 12.98 (bs, 1H), 9.07 (s, 1H), 8.24 (bs, 2H), 7.48 (bs, 1H), 7.30 (dd, 1H), 7.19 (t, 1H), 7.07 (t, 1H), 6.84 (bs, 1H), 6.60 (bs, 1H), 5.86 (s, 2H), 5.24 (bs, 1H), 2.94 (bs, 3H), 2.30 (bs, 1H), 1.02 (d, 3H), 0.77 (d, 3H).
Compound 1-74 Intermediate 1 was dissolved in THF and cooled to 0 C. In a separate vial, 1H-pyrazole (1 equiv.) was diluted with THF then charged with sodium hydride (60% in dispersion oil, 1 equiv.) to generate the sodium salt. The contents were allowed to stir for 15 min. At this time, the sodium salt was added portion-wise to the solution of Intermediate 1. Once starting material was consumed as observed on the LC/MS, the reaction was quenched with aqueous 1N HC1 and the mixture was extracted with dichloromethane (three times). The organic portions were combined dried, filtered, and concentrated. The crude material was then purified using a 0-10% methanol/dichloromethane gradient to deliver the desired compound, Compound 1-74 (41 mg, 72% yield).
1H-NMR (400 MHz, DMSO-d6) 6 9.10 (t, 1H), 9.03 (dd, 1H), 8.80-8.79 (m, 1H), 8.02-8.00 (m, 1H), 7.81 (d, 1H), 7.34-7.28 (m, 1H), 7.24 (t, 1H), 7.23-7.18 (m, 1H), 7.09 (t, 1H), 6.88 (t, 1H), 6.72-6.70 (m, 1H), 5.93 (s, 2H).
327 Compound 1-273 This compound was synthesized according to the general procedure B using 2-((2,2,2-trifluoroethypamino)acetic acid hydrochloride. Following complete consumption of starting material, the solution was diluted with aqueous 1N sodium hydroxide until pH ¨ 10.
Diethyl ether was added and the layers were separated. The aqueous layer was acidified with aqueous 1N hydrochloric acid until pH ¨ 2. Ethyl acetate was added, and the layers were again separated. The aqueous layer was extracted with ethyl acetate and the combined organics were dried over magnesium sulfate, filtered, and the solvent was removed under vacuum.
Purification by silica gel chromatography (0-15% methanol in dichloromethane) provided compound 1-273 (6 mg, 23%) as a white solid.
1H-NMR (400 MHz, CD30D) 6 8.73 (m, 1H), 8.27 (d, 1H), 7.40 (s, 1H), 7.27-7.22 (m, 1H), 7.09-6.99 (m, 2H), 6.87-6.86 (m, 1H), 6.80 (t, 1H), 5.94 (s, 2H), 4.61-4.55 (m, 2H), 4.45 (s, 2H).
Compound 1-274 The title compound was prepared following general procedure B, except 3-((methylamino)methyl)benzoic acid (as the HC1 salt) was the amine reactant, and contents were heated to 90 C for 2 h as a solution in dioxane. Ethyl acetate was used as the extraction solvent during workup. The crude compound Compound 1-274 (20 mg, 68% yield) was isolated as a white solid that did not require additional purification.
1H-NMR (400 MHz, CD30D) 6 8.76 (m, 1H), 8.29 (d, 1H), 8.08 (s, 1H), 7.97 (d, 1H), 7.65-7.63 (m, 1H), 7.54 (s, 1H), 7.48 (t, 1H), 7.30-7.24 (m, 1H), 7.10-7.01 (m, 2H), 6.94-6.88 (m, 2H), 5.99 (s, 2H), 5.16 (s, 2H), 3.48 (d, 3H).
Compound 1-275 The title compound was prepared following general procedure B, except 4-((methylamino)methyl)benzoic acid (as the HC1 salt) was the amine reactant.
Ethyl acetate was used as the extraction solvent during workup. The crude compound Compound 1-275 (17 mg, 63% yield) was isolated as a white solid that did not require additional purification.
1H-NMR (400 MHz, DMSO-d6) 6 12.88 (br s, 1H), 9.05 (m, 1H), 8.25 (d, 1H), 7.87 (d, 2H), 7.48 (s, 1H), 7.44 (d, 2H), 7.32-7.27 (m, 1H), 7.21-7.19 (m, 2H), 7.07 (t, 1H), 6.83 (t, 1H), 5.86 (s, 2H), 4.95 (s, 2H), 3.24 (d, 3H).
Compound 1-276 This compound was synthesized according to the general procedure B using 1H-tetrazol-5-amine and dioxane as solvent. The crude residue was suspended in
328 dichloromethane and filtered. The filtrate was purified by silica gel chromatography (0-10%
methanol in dichloromethane) to provide compound 1-276 (0.4 mg, 2% yield) as a white film.
1H-NMR (400 MHz, CD30D) 6 8.75 (m, 1H), 8.42 (d, 1H), 7.48 (s, 1H), 7.29-7.24 (m, 1H), 7.11-7.06 (m, 1H), 7.05-7.01 (m, 1H), 6.89-6.83 (m, 2H), 5.97 (s, 2H).
Compound 1-277 This compound was synthesized according to the general procedure B using 3-amino-3-methylbutanoic acid and contents were heated to 80 C for 68 h.
Purification by silica gel chromatography (0-10% methanol in dichloromethane) provided compound 1-277 (1.3 mg, 5% yield) as a white film.
1H-NMR (400 MHz, CD30D) 6 8.74 (m, 1H), 8.02 (d, 1H), 7.34 (d, 1H), 7.27-7.22 (m, 1H), 7.09-7.00 (m, 2H), 6.89-6.83 (m, 2H), 5.93 (s, 2H), 3.03 (s, 2H), 1.66 (s, 6H).
Compound 1-278 This compound was synthesized according to the general procedure B using 5-(aminomethyl)pyridin-2(1H)-one and contents were stirred at 90 C for 40 h.
The crude reaction mixture was diluted with 1N aqueous hydrochloric acid and ethyl acetate. The layers were separated and the aqueous layer was concentrated under vaccum.
Purification by reverse phase HPLC (20-50% acetonitrile in water w/ 0.1% TFA, 20 min gradient) provided compound 1-278 (13 mg, 35% yield) as a tan solid.
1H-NMR (400 MHz, CD30D) 6 8.82 (s, 1H), 8.28 (d, 1H), 7.73-7.64 (m, 3H), 7.32-7.26 (m, 1H), 7.11-7.03 (m, 2H), 6.99-6.95 (m, 2H), 6.54 (d, 1H), 6.01 (s, 2H), 4.73 (s, 2H).
Compound 1-279 This compound was synthesized according to the general procedure B using the trifluoroacetic acid salt of 2-((methylamino)methyl)benzoic acid with dioxane as solvent and contents were heated at 90 C for 2 d. Purification of the crude reaction mixture by reverse phase HPLC
(5-75% acetonitrile in water w/ 0.1% TFA, 20 min gradient) provided compound 1-279 (15 mg, 37% yield) as a white solid.
1H-NMR (400 MHz, DMSO-d6) 6 13.17 (br s, 1H), 9.10 (m, 1H), 8.25 (d, 1H), 7.94 (d, 1H), 7.56-7.52 (m, 1H), 7.44 (s, 1H), 7.41-7.29 (m, 3H), 7.24-7.19 (m, 2H), 7.12-7.08 (m, 1H), 6.85-6.81 (m, 1H), 5.89 (s, 2H), 5.24 (s, 2H), 3.30 (s, 3H).
Compound 1-280 This compound was synthesized according to the general procedure B using 4-(aminomethyl)benzoic acid with ethyl acetate as the extraction solvent.
Purification of the crude reaction mixture by reverse phase HPLC (5-75% acetonitrile in water w/
0.1% TFA, 20 min gradient) provided Compound 1-280 (3.4 mg, 9% yield) as a white solid.
329 1H-NMR (400 MHz, CD30D) 6 8.81 (s, 1H), 8.26 (d, 1H), 8.02 (d, 2H), 7.58 (d, 2H), 7.53 (s, 1H), 7.33-7.27 (m, 1H), 7.13-7.04 (m, 2H), 6.95-6.91 (m, 2H), 6.01 (s, 2H), 5.01 (s, 2H).
Compound 1-281 This compound was synthesized according to the general procedure B using 6-methylpiperidine-2-carboxylic acid. Purification of the crude reaction mixture by silica gel chromatography (0-10% methanol in dichloromethane) provided Compound 1-281 (3.4 mg, 9% yield) as a white solid.
1H-NMR (400 MHz, CD30D) 6 8.75 (d, 1H), 8.15 (d, 1H), 7.40 (s, 1H), 7.29-7.23 (m, 1H), 7.11-7.06 (m, 1H), 7.02 (td, 1H), 6.88 (d, 1H), 6.82-6.78 (m, 1H), 5.95 (s, 2H), 5.46 (br s, 1H), 2.46-2.43 (m, 1H), 1.91-1.72 (m, 4H), 1.63-1.60 (m, 2H), 1.35 (d, 3H).
Compound 1-282 and 1-283 These were synthesized according to the general procedure B using a mixture of (1R,48)-4-methylpiperidine-2-carboxylic acid and (1S,4S)-4-methylpiperidine-2-carboxylic acid. Purification of the crude reaction mixture by silica gel chromatography (0-10% methanol in dichloromethane) provided Compound 1-282 (15 mg, 39% yield) as a white solid.
Repurification of the mixed fractions by reverse phase HPLC (5-75%
acetonitrile in water w/0.1% TFA) provided Compound 1-283 (4 mg, 10% yield).
Compound 1-282: 1H-NMR (400 MHz,CD30D) 6 8.74 (m, 1H), 8.22 (d, 1H), 7.41 (s, 1H), 7.26-7.21 (m, 1H), 7.08-7.04 (m, 1H), 7.01-6.98 (m, 1H), 6.84 (m, 1H), 6.81-6.78 (m, 1H), 5.93 (s, 2H), 4.44 (dd, 1H), 4.04-3.98 (m, 1H), 3.65-3.60 (m, 1H), 2.19 (dt, 1H), 1.93-1.70 (m, 3H), 1.46-1.38 (m, 1H), 1.04 (d, 3H).
Compound 1-283: 1H-NMR (400 MHz, CD30D) 6 8.77 (d, 1H), 8.28 (d, 1H), 7.52 (s, 1H), 7.29-7.23 (m, 1H), 7.10-7.00 (m, 2H), 6.92 (d, 1H), 6.88-6.85 (m, 1H), 5.97 (s, 2H), 5.68 (br s, 1H), 4.74 (br s, 1H), 3.41 (br s, 1H), 2.44-2.39 (m, 1H), 1.87-1.82 (m, 1H), 1.74-1.65 (m, 1H), 1.58-1.50 (m, 1H), 1.38-1.28 (dq, 1H), 1.00 (d, 3H).
Compound 1-237 This compound was synthesized according to the general procedure B using (R)-N,2-dimethy1-1-(1H-tetrazol-5-y1)propan-1-amine (2 equivalents).
Purification of the crude reaction mixture by reverse phase HPLC (5-75% acetonitrile in water w/0.1% TFA) provided Compound 1-237 (4 mg, 23% yield) as a clear oil.
1H-NMR (400 MHz, CD30D) 6 8.80 (m, 1H), 8.31 (d, 1H), 7.53 (s, 1H), 7.28-7.25 (m, 1H), 7.09-7.01 (m, 3H), 6.96 (m, 1H), 6.05 (d, 1H), 5.98 (d, 1H), 5.76 (br s, 1H), 3.35 (d, 3H), 2.86-2.80 (m, 1H), 1.07 (d, 3H), 0.90 (d, 3H).
Compound 1-284
330 This compound was synthesized according to the general procedure B using (R)-2-methyl-1-(1H-tetrazol-5-y1)propan-1-amine. Purification of the crude reaction mixture by silica gel chromatography (0-10% methanol in dichloromethane) provided Compound 1-284 (16 mg, 37% yield) as a white solid.
1H-NMR (400 MHz, CD30D) 6 8.75 (m, 1H), 8.12 (d, 1H), 7.27-7.21 (m, 2H), 7.06-7.03 (m, 1H), 7.01-6.98 (m, 1H), 6.88 (d, 1H), 6.82-6.78 (m, 1H), 5.96 (d, 1H), 5.91 (d, 1H), 5.50 (d, 1H), 2.61-2.52 (m, 1H), 1.14 (d, 3H), 0.93 (d, 3H).
Compound 1-285 To a solution of compound 1-147 (previously described, 1 equivalent) and pyridine (50 equivalents) in dichloromethane at 0 C was added cyclopropanecarbonyl chloride (1.2 equivalents) over 30 seconds. The solution was immediately warmed to room temperature and stirred for an additional 2.5 hours. After diluting with saturated aqueous ammonium chloride and dichloromethane, the layers were separated and the aqueous layer was extracted with dichloromethane. The organics were dried over magnesium sulfate, filtered, and the solvent was removed under vacuum. Purification by silica gel chromatography (0-5%
methanol in dichloromethane) gave Compound 1-285 (11 mg, 34% yield) as a white solid.
1H-NMR (400 MHz, CD30D) 6 8.73 (m, 1H), 8.18 (d, 1H), 7.43 (s, 1H), 7.27-7.22 (m, 1H), 7.09-7.04 (m, 1H), 7.00 (t, 1H), 6.90 (m, 1H), 6.77 (t, 1H), 5.95 (s, 2H), 3.98-3.95 (m, 4H), 3.46-3.44 (m, 4H), 1.65-1.59 (m, 1H), 0.92-0.84 (m, 4H).
Compound 1-229 The title compound was prepared following general procedure B, except 2-(piperidin-3-yl)acetic acid was the amine reactant, 6 equivalents of Hunig's base was used instead of triethylamine, and contents were heated to 120 C for 18 h as a solution in THF/water (10:1). Solvent was removed under a stream of nitrogen, and the resulting crude material was purified via reverse phase HPLC to deliver the desired compound, Compound 1-229 (8.1 mg, 32% yield) as a solid.
1H NMR (500 MHz, CD30D) 6 ppm 8.84 (m, 1 H), 8.28 (m, 1 H), 7.73 (m, 1 H), 7.32 (m, 1 H), 7.12 (m, 2 H), 6.98 (m, 2 H), 6.04 (s, 2 H), 4.96 (m, 1 H), 4.67 (m, 1 H), 3.54 (m, 1 H), 3.27 (m, 1 H), 2.42 (m, 2 H), 2.25 (m, 1 H), 2.00 (m, 2 H), 1.79 (m, 1 H), 1.54 (m, 1 H), Compound 1-230 and Compound 1-231 The title compound was prepared following general procedure B, except a mixture of 2-(piperidin-4-yl)acetic acid and methyl 2-(piperidin-4-yl)acetate was the amine reactant, 6 equivalents of Hunig's base was used instead of triethylamine, and contents were heated to 120 C for 18 h as a solution in THF/water (10:1). Solvent was removed under a stream of nitrogen,
331 and the resulting crude material was purified via reverse phase HPLC to deliver the desired compounds, Compound 1-230 (6.5 mg, 25% yield) as a solid, and Compound 1-231 (16.2 mg, 61% yield) as a solid.
1H NMR for Compound 1-230 (500 MHz, METHANOL-d4) 6 ppm 8.83 (m, 1 H), 8.26 (m, H), 7.63 (m, 1 H), 7.30 (m, 1 H), 7.10 (m, 2 H), 6.97 (m, 2 H), 6.03 (s, 2 H), 4.98 (m, 2 H), 3.40 (m, 1 H), 2.35 (m, 2 H), 2.25 (m, 1 H), 2.04 (m, 2 H), 1.50 (m, 2 H).
1H NMR for Compound 1-231 (500 MHz, METHANOL-d4) 6 ppm 8.84 (m, 1 H), 8.30 (m, H), 7.66 (m, 1 H), 7.28-7.37 (m, 1 H), 7.05-7.17 (m, 2 H), 7.00 (d, 2 H), 6.04 (s, 2 H), 4.93-5.02 (m, 2 H), 3.70 (s, 3 H), 3.35-3.45 (m, 2H), 2.358 (d, 2 H), 2.22-2.34 (m, 1 H), 1.99-2.08 (m, 2 H), 1.50 (br.s., 2 H).
Compound 1-232 The title compound was prepared following general procedure B, except 2-amino-4-methoxybutanoic acid was the amine reactant, 6 equivalents of Hunig's base was used instead of triethylamine, and contents were heated to 120 C for 18 h as a solution in THF/water (10:1). Solvent was removed under a stream of nitrogen, and the resulting crude material was purified via reverse phase HPLC to deliver the desired compound, Compound 1-232 (10 mg, 40% yield) as a solid.
1H NMR (500 MHz, CD30D) 6 ppm 8.80 (m, 1 H), 8.32 (m, 1 H), 7.55 (s, 1 H), 7.29 (m, 1 H), 7.08 (m, 2 H), 6.96 (m, 2 H), 6.01 (s, 2 H), 5.11 (m, 1 H), 3.61 (m, 2 H), 3.35 (s, 3 H), 2.43 (m, 1 H), 2.21 (m, 1 H).
Compound 1-234 The title compound was prepared following general procedure B, except 3-(piperidin-4-yl)propanoic acid was the amine reactant. Solvent was removed under a stream ofnitrogen, and the resulting crude material was purified via reverse phase HPLC to deliver the desired compound, Compound 1-234 (13 mg, 49% yield) as a solid.
1FINMR (500 MHz, CD30D) 6 ppm 8.81 - 8.86(m, 1 H), 8.25 - 8.31 (m, 1 H), 7.61 -7.67(m, 1 H), 7.29 - 7.36 (m, 1 H), 7.05 - 7.16 (m, 2 H), 6.95 - 7.02 (m, 2 H), 6.04 (s, 2 H), 4.93 - 5.02 (m, 2 H), 3.37 (s, 2 H), 2.36 - 2.45 (m, 2 H), 1.96 - 2.06 (m, 2 H), 1.76 -1.88 (m, 1 H), 1.61 -1.70 (m, 2 H), 1.35 - 1.48 (m, 2 H).
Compound 1-286 The title compound was prepared following general procedure B, except 4-(aminomethyl)phenol was the amine reactant (1.1 equiv.), 4 equivalents oftriethylamine was used, and contents were heated to 90 C for 12 h as a solution in dioxane/water (10:1). The crude material was purified via silica gel chromatography utilizing a 1-5%
332 methanol/dichloromethane gradient over 40 min to deliver the desired compound, Compound 1-286 (17.7 mg, 48% yield) as a white solid.
lti NMR (500 MHz, CDC13) 6 (ppm): 8.45 (d, 1H), 8.16 (d, 1H), 7.34 (s, 1H), 7.16- 7.24(m, 3H), 6.99 - 7.04 (m, 1H), 6.94 ¨ 6.99 (m, 1H), 6.85 - 6.90 (m, 1H), 6.79 ¨
6.83 (m, 2H), 6.58 (d, 1H), 5.97 (s, 2H), 5.67 (br. s, 1H), 5.28 ¨ 5.30 (m, 1H), 4.72 (d, 2H).
Compound 1-287 The title compound was prepared following general procedure B, except (4-(methylsulfonyl)phenyl)methanamine was the amine reactant (1 equiv.), 4 equivalents of triethylamine was used, and contents were heated to 90 C for 12 h as a solution in dioxane/water (10:1). The crude material was purified via silica gel chromatography utilizing a 1-5% methanol/dichloromethane gradient over 40 min to deliver the desired compound, Compound 1-287 (23.3 mg, 56% yield) as a white solid.
1H NMR (500 MHz, CDC13) 6 (ppm): 8.47 (d, 1H), 8.22 (m, 1H), 7.90 ¨ 7.96 (m, 2H), 7.64 -7.68 (m, 2H), 7.20 - 7.25 (m, 2H), 6.98 ¨ 7.08 (m, 2H), 6.88 - 6.93 (m, 1H), 6.57 (d, 1H), 5.98 (s, 2H), 5.52 ¨ 5.63 (br. d, 1H), 4.93 ¨ 4.97 (m, 2H), 3.06 (s, 3H).
Compound 1-288 The title compound was prepared following general procedure B, except 2-(aminomethyl)phenolwas the amine reactant (1.1 equiv.), 4 equivalents of triethylamine was used, and contents were heated to 90 C for 12 h as a solution in dioxane/water (10:1). The crude material was purified via silica gel chromatography utilizing a 1-5%
methanol/dichloromethane gradient over 40 min to deliver the desired compound, Compound 1-288 (4.5 mg, 12% yield) as a white solid.
1H NMR (500 MHz, CDC13) 6 (ppm): 9.52 (s, 1H), 8.49 (d, 1H), 8.15 (d, 1H), 7.42 (s, 1H), 7.21 ¨ 7.27 (m, 3H), 7.02 - 7.11 (m, 3H), 6.89 ¨ 6.95 (m, 2H), 6.64 (d, 1H), 6.03 (s, 2H), 5.80 ¨
5.85 (m, 1H), 4.75 (d, 2H).
Compound 1-289 The title compound was prepared following general procedure B, except 2-(4-methylpiperidin-4-yl)acetic acid (as the HC1 salt, 1.15 equiv.) was the amine reactant, 4 equivalents of triethylamine was used, and contents were heated to 90 C for 12 h as a solution in dioxane/water (3:1). A dichloromethane/isopropanol mix (5:1) was used as the extraction solvent. The crude material was purified via silica gel chromatography utilizing a 1-5%
333 methanol/dichloromethane gradient over 40 min to deliver the desired compound, Compound 1-289 (37.4 mg, 70% yield) as a foamy white solid.
1H NMR (500 MHz, CDC13) 6 (ppm): 8.45 (s, 1H), 8.12 (d, 1H), 7.30 (s, 1H), 7.16 - 7.22 (m, 1H), 7.00 ¨ 7.06 (m, 1H), 6.94 ¨ 6.98 (m, 1H), 6.82 - 6.88 (m, 1H), 6.59 (d, 1H), 5.97 (s, 2H), 3.83 - 3.96 (m, 2H), 3.59 (s, 2H), 2.42 ¨ 2.49 (m, 2H), 1.76 - 1.86 (m, 4H), 1.15 (s, 3H).
Compound 1-290 The title compound was prepared following general procedure B, except 4-cyclohexylpiperidine-4-carboxylic acid (as the TFA salt, 1.2 equiv.) was the amine reactant, 4 equivalents of triethylamine was used, and contents were heated to 90 C for 12 h as a solution in dioxane/water (3:1). A dichloromethane/isopropanol mix (5:1) was used as the extraction solvent. The crude material was purified via silica gel chromatography utilizing a 1-5% methanol/dichloromethane gradient over 40 min to deliver the desired compound, Compound 1-290 (44.6 mg, 76% yield) as a white solid.
1H NMR (500 MHz, CDC13) 6 (ppm): 8.47 (s, 1H), 8.17 (d, 1H), 7.31 (s, 1H), 7.16 - 7.24 (m, 1H), 7.01 ¨ 7.08 (m, 1H), 6.95 ¨ 7.00 (m, 1H), 6.83 - 6.88 (m, 1H), 6.60 (d, 1H), 5.99 (s, 2H), 4.58 ¨ 4.65 (m, 2H), 3.07 ¨ 3.18 (m, 2H), 2.24 ¨ 2.32 (m, 2H), 1.77 - 1.86 (m, 4H), 1.45 ¨ 1.70 (m, 3H), 1.13 ¨ 1.26 (m, 3H), 1.03 ¨ 1.13 (m, 3H).
Compound 1-291 The title compound was prepared following general procedure B, except methyl 2-phenylpiperidine-2-carboxylate was the amine reactant, 4 equivalents of sodium biocarbonate instead of triethylamine was used, and contents were heated to 110 C for 48 h.
Ethyl acetate was used as the extraction solvent. First pass purification was achieved by silica gel chromatography using 1 to 5% methanol in dichloromethane gradient over 40 minutes to afford the product with 80% purity. Further purification was achieved using by reverse phase HPLC using a 5 to 95% acetonitrile in water gradient over 30 minutes to deliver the analytically pure desired compound, Compound 1-291 (2 mg, 3% yield) as a white solid.
1H NMR (500 MHz, CDC13) 6 (ppm): 8.41 (s, 1H), 8.35 (br. s, 1H), 7.24 - 7.27 (m, 2H), 7.09 ¨ 7.18 (m, 3H), 7.02 ¨ 7.09 (m, 1H), 6.90 ¨ 7.00 (m, 2H), 6.79 ¨ 6.87 (m, 1H), 6.67 ¨ 6.74 (m, 1H), 6.44 ¨ 6.51 (m, 1H), 5.86 (d, 1H), 5.74 (d, 1H), 3.72 ¨ 3.85 (m, 1H), 3.36 ¨ 3.51 (m, 1H), 2.47 ¨ 2.56 (m, 1H), 1.70 ¨ 1.99 (m, 5H).
Compound 1-292 The title compound was prepared following general procedure B, except 4-amino-2-phenylbutanoic acid (as the HC1 salt) was the amine reactant, 4 equivalents of
334 triethylamine was used, and contents were heated to 95 C for 12 h. Ethyl acetate was used as the extraction solvent. The crude material was purified via silica gel chromatography using a 1 to 5% methanol in dichloromethane gradient over 40 minutes to deliver the desired compound, Compound 1-292 (37.9 mg, 50% yield) as a white solid.
1H NMR (500 MHz, CDC13) 6 (ppm): 8.47 (d, 1H), 8.13 (d, 1H), 7.29 - 7.36 (m, 6H), 7.15 ¨
7.23 (m, 1H), 6.99 ¨ 7.04 (m, 1H), 6.92 - 6.97 (m, 1H), 6.86 ¨ 6.91 (m, 1H), 6.60 (d, 1H), 6.01 (d, 1H), 5.94 (d, 1H), 5.21 ¨5.28 (m, 1H), 3.85 - 3.94 (m, 1H), 3.62 ¨ 3.80 (m, 2H), 2.51 ¨ 2.61 (m, 1H), 2.11 ¨ 2.19 (m, 1H).
Compound 1-293 The title compound was prepared following general procedure B, except 4-methoxypiperidine-4-carboxylic acid (as the TFA salt) was the amine reactant (2 equiv.), 4 equivalents of triethylamine was used, and contents were heated to 105 C as a solution in dioxane/water (3:1) for 12 h. Ethyl acetate was used as the extraction solvent. The crude material was purified via silica gel chromatography using a 1 to 5% methanol in dichloromethane gradient over 40 minutes to deliver the desired compound, Compound 1-293 (52.7 mg, 56% yield) as a white solid.
1H NMR (500 MHz, CDC13) 6 (ppm): 8.47 (s, 1H), 8.22 (d, 1H), 7.31 (s, 1H), 7.16 - 7.25 (m, 1H), 7.01 ¨ 7.09 (m, 1H), 6.95 - 7.01 (m, 1H), 6.84 - 6.89 (m, 1H), 6.60 (d, 1H), 5.98 (s, 2H), 4.33 ¨ 4.41 (m, 2H), 3.53 - 3.62 (m, 2H), 3.41 (s, 3H), 2.05 - 2.20 (m, 4H).
Compound 1-294 The title compound was prepared following general procedure B, except 2-(piperidin-4-yl)propanoic acid was the amine reactant (2 equiv.), 4 equivalents of triethylamine was used, and contents were heated to 90 C for 12 h as a solution in dioxane/water (3:1). A dichloromethane/isopropanol mix (5:1) was used as the extraction solvent. The crude material was purified via silica gel chromatography using a 1 to 5%
methanol in dichloromethane gradient over 40 minutes to deliver the desired compound, Compound 1-294 (42.8 mg, 68% yield) as an off-white solid.
1H NMR (500 MHz, CDC13) 6 (ppm): 8.47 (s, 1H), 8.20 (d, 1H), 7.31 (s, 1H), 7.17 - 7.23 (m, 1H), 7.00 ¨ 7.07 (m, 1H), 6.94 ¨ 7.02 (m, 1H), 6.81 - 6.89 (m, 1H), 6.60 (d, 1H), 5.98 (s, 2H), 4.70 ¨ 4.84 (m, 2H), 3.01 ¨ 3.06 (t, 2H), 2.39 ¨ 2.44 (m, 1H), 1.93 ¨ 2.01 (m, 1H), 1.82 ¨ 1.93 (m, 2H), 1.37 ¨ 1.54 (m, 2H), 1.24 (d, 3H).
Compound 1-295 The title compound was prepared following general procedure B, except 4-phenylpiperidine-2-carboxylic acid (as the TFA salt) was the amine reactant (2 equiv.), 4
335 equivalents of triethylamine was used, and contents were heated to 110 C for 64 h. Ethyl acetate was used as the extraction solvent. The crude material was purified via silica gel chromatography using a 1 to 5% methanol in dichloromethane gradient over 40 minutes to deliver the desired compound, Compound 1-295 (12.0 mg, 18% yield) as a racemic mixture with a relative cis configuration (an off-white solid).
1H NMR (500 MHz, CD30D) 6 (ppm): 8.76 (s, 1H), 8.21 (d, 1H), 7.45 (s, 1H), 7.25 - 7.36 (m, 5H), 7.19 ¨ 7.25 (m, 1H), 7.08 ¨ 7.14 (m, 1H), 7.02 ¨ 7.07 (m, 1H), 6.91 (d, 1H), 6.80 ¨ 6.86 (m, 1H), 5.97 (s, 2H), 5.62 ¨ 5.77 (m, 1H), 2.77 ¨ 2.89 (m, 1H), 2.55 ¨ 2.62 (m, 1H), 2.03 ¨ 2.12 (m, 1H), 1.96 ¨ 2.02 (m, 1H), 1.83 ¨ 1.96 (m, 1H), 1.25 ¨ 1.35 (m, 1H), 0.84 -0.98 (m, 1H).
Compound 1-296 The title compound was prepared following general procedure B, except 4-(4-methoxyphenyl)piperidine-4-carboxylic acid (as the TFA salt) was the amine reactant (2 equiv.), 4 equivalents of triethylamine was used, and contents were heated to 110 C for 17 h as a solution in dixoane/water (3:1). Ethyl acetate was used as the extraction solvent. The crude material was purified via silica gel chromatography using a 1 to 5% methanol in dichloromethane gradient over 40 minutes to deliver the desired compound, Compound 1-296 (41.1 mg, 66% yield) as a white solid.
1H NMR (400 MHz, CDC13) 6 (ppm): 8.43 (s, 1H), 8.12 (d, 1H), 7.34 (d, 2H), 7.28 (s, 1H), 7.12 ¨ 7.16 (m, 1H), 6.94 - 7.02 (m, 1H), 6.88 - 6.93 (m, 1H), 6.86 (d, 2H), 6.75- 6.80 (m, 1H), 6.56 (d, 1H), 5.94 (s, 2H), 4.44 ¨ 4.52 (m, 2H), 3.78 (s, 3H), 3.36 - 3.41 (m, 2H), 2.63 - 2.72 (m, 2H), 1.96 ¨ 2.08 (m, 2H).
Compound 1-298 The title compound was prepared following general procedure B, except 4-aminopiperidine-4-carboxylic acid (as the HC1 salt) was the amine reactant (2 equiv.), and contents were heated to 100 C for 18 h as a solution in THF/DMF/triethylamine (1:1:1). After complete consumption of the starting material, the reaction was cooled to 0 C
and an excess of 2M solution of trimethylsilyldiazomethane was added and stirred at 23 C for 3 d until complete conversion to the amino ester. Contents were diluted with 1N NaOH
solution, and extracted with dichloromethane. The organic layer was dried, filtered, and concentrated in vacuo. The crude material was purified via silica gel chromatography using a 20 to 100% ethyl acetate in hexanes gradient to deliver the desired compound, Compound 1-298 (22 mg, 63%
yield) as a solid.
336 1H NMR (500 MHz, DMSO-d6) 6 ppm 9.08 (d, 1 H), 8.28 (d, 1 H), 7.54 (s, 1 H), 7.29 - 7.39 (m, 1 H), 7.18 - 7.27 (m, 2 H), 7.10 (t, 1 H), 6.83 (t, 1 H), 5.90 (s, 2 H), 4.02 - 4.09 (m, 2 H), 3.66 - 3.74 (m, 2 H), 3.63 - 3.65 (m, 3 H), 1.99 - 2.04 (m, 2 H), 1.91 - 1.98 (m2 H), 1.62 (d, 2 H).
Compound 1-299 The title compound was prepared following general procedure B, except 4-aminopiperidine-4-carboxylic acid (as the HC1 salt) was the amine reactant (5 equiv.), 8 equivalents of triethylamine was used, and contents were heated to 90 C for 18 h as a solution in THF/water (5:1). After complete consumption of the starting material, the reaction was cooled and filtered. The resulting solids were collected and purified via reverse phase HPLC to deliver the desired compound, Compound 1-299 (2 mg, 7% yield) as a solid.
1H NMR (500 MHz, METHANOL-d) 6 ppm 8.80 (d, 1 H), 8.31 (d, 1 H), 7.54 (s, 1 H), 7.23 -7.35 (m, 1 H), 7.08 - 7.15 (m, 1 H), 7.05 (t, 1 H), 6.92 (d, 1 H), 6.81 - 6.90 (m, 1 H), 5.99 (s, 2 H), 4.45 (dt, 2 H), 3.96 - 4.13 (m, 2 H), 2.44 (dt, 2 H), 2.02 (ddd, 2 H).
Compound 1-300 The title compound was prepared following general procedure B, except 4-hydroxypiperidine-4-carboxylic acid (as the HC1 salt) was the amine reactant (5 equiv.), 8 equivalents of triethylamine was used, and contents were heated to 90 C as a solution in THF/water (5:1) for 18 h. After complete consumption ofthe starting material, the reaction was cooled and filtered. The filtrated was collected and concentrated in vacuo.
The crude material was purified via reverse phase HPLC to deliver the desired compound, Compound 1-300 (22 mg, 81% yield) as a solid.
1H NMR (500 MHz, METHANOL-d) 6 ppm 8.83 (d, 1 H), 8.22 - 8.35 (m, 1 H), 7.58 -7.70 (m, 1 H), 7.25 - 7.37 (m, 1 H), 7.04 - 7.18 (m, 2 H), 6.90 - 7.02 (m, 2 H), 6.03 (s, 2 H), 4.76 (d, 2 H), 3.69 - 3.82 (m, 2 H), 2.16 - 2.33 (m, 2 H), 1.94 (d, 2 H).
Compound 1-301 The title compound was prepared following general procedure B, except (S)-4,4-difluoropyrrolidine-2-carboxylic acid was the amine reactant (5 equiv.), 8 equivalents of triethylamine was used, and contents were heated to 90 C for 18 h as a solution in THF/water (5:1). After complete consumption of the starting material, the reaction was concentrated in vacuo. The crude material was purified via reverse phase HPLC
to deliver the desired compound, Compound 1-301 (20 mg, 67% yield) as a solid.
1H NMR (500 MHz, CD30D) 6 ppm 8.80 (d, 1 H), 8.34 (d, 1 H), 7.35 - 7.42 (m, 1 H), 7.24 -7.34 (m, 1 H), 7.10 (dd, 1 H), 7.01 - 7.07 (m, 1 H), 6.91 (td, 2 H), 5.98 (s, 2 H), 5.44 - 5.69 (m, 2 H) 4.76 - 4.87 (m, 3 H).
337 Compound 1-302 The title compound was prepared following general procedure B, except (S)-2-amino-3-ethoxypropanoic acid was the amine reactant (4 equiv.), 6 equivalents of triethylamine was used, and contents were heated to 100 C for 18 h as a solution in dioxane/water (3:1). After workup, the crude material was suspended in ethyl acetate and diluted with hexanes until precipitation occurred. The precipitate was filtered and collected to deliver the desired compound, Compound 1-302 (9 mg, 24% yield) as a solid.
1H NMR (500 MHz, DMSO-d6) 6 ppm 9.08 (s, 1 H), 8.20 (d, 1 H), 7.47 (s, 1 H), 7.27 - 7.40 (m, 2 H), 7.17 - 7.26 (m, 2 H), 7.10 (t, 1 H), 6.84 (t, 1 H), 5.81 - 5.98 (m, 2 H), 4.59 (br. s., 1 H), 3.83 - 3.90 (m, 1 H), 3.75 - 3.83 (m, 1 H), 3.45 - 3.54 (m, 1 H), 3.37 - 3.44 (m, 1 H), 0.92 - 1.08 (m, 3 H).
Compound 1-303 The title compound was prepared following general procedure B, except 2-amino-3-methoxypropanoic acid was the amine reactant (4 equiv.), 6 equivalents of triethylamine was used, and contents were heated to 100 C for 18 h as a solution in dioxane/water (3:1). After workup, the crude material was suspended in ethyl acetate and diluted with hexanes until precipitation occurred. The precipitate was filtered and collected to deliver the desired compound, Compound 1-303 (8 mg, 22% yield) as a solid.
1H NMR (500 MHz, DMSO-d6) 6 ppm 9.09 (d, 1 H) 8.22 (d, 1 H), 7.47 (s, 1 H), 7.28 - 7.39 (m, 1 H), 7.17 - 7.27 (m, 2 H), 7.10 (t, 1 H), 6.85 (t, 1 H), 6.63 (br. s., 1 H), 5.81 - 5.94 (m, 2 H), 4.54 - 4.88 (m, 1 H), 3.72 - 3.87 (m, 2 H), 3.57 (s, 2 H), 3.25 (s, 3 H).
Compound 1-304 The title compound was prepared following step 3 of the procedure described for Compound 1-235, except 1-((methylamino)methyl)cyclopropanecarboxylic acid (as the TFA
salt) was the amine reactant, and contents were heated to 100 C for 6 h. The crude material was purified via silica gel chromatography (1-4% methanol in dichloromethane gradient) to deliver the desired compound, Compound 1-304 (67 mg, 72% yield) as a white solid.
1H-NMR (400 MHz, CDC13) 6 8.77 (d, 1H), 8.10 (d, 1H), 7.39 (s, 1H), 7.16 (app.
q, 1H), 7.03 (app. q, 1H), 6.92 (d, 1H), 6.68 (app. t, 1H), 5.98 (s, 2H), 4.15 (s, 2H), 3.37 (d, 3H), 1.28 (m, 2H), 1.07 (m, 2H).
Compound 1-305 The title compound was prepared following step 3 of the procedure described for Compound 1-235, except (2R,35)-3-methylpiperidine-2-carboxylic acid (as the acetic acid salt) was the amine reactant, and contents were heated to 100 C for 21 h. The crude material was purified
338 via silica gel chromatography (2-4% methanol in dichloromethane gradient) to deliver the desired compound, Compound 1-305 (24 mg, 46% yield) as a white solid.
1H-NMR (400 MHz, CDC13) 6 8.77 (d, 1H), 8.21 (d, 1H), 7.47 (s, 1H), 7.15 (app.
q, 1H), 7.02 (app. q, 1H), 6.89 (d, 1H), 6.66 (app. t, 1H), 5.98 (s, 2H), 5.04 (d, 1H), 4.37 (br. d, 1H), 3.70 (app. t, 1H), 2.10 (m, 1H), 1.90 (br. d, 1H), 1.80-1.69 (m, 2H), 1.52 (app. q, 1H), 1.21 (d, 3H).
Compound 1-306 The title compound was prepared following general procedure B, except 4-isopropylpiperidine-4-carboxylic acid was the amine reactant, and the contents were heated to 90 C for 3 h as a solution in THF/water (10:1). The contents were cooled to 23 C, and organic solvents were removed in vacuo. Solids were treated with 1N HC1 solution, and the resulting precipitate was filtered and dried in vacuo to deliver the desired compound, Compound 1-306 (42 mg, 86% yield) as a white solid.
1H-NMR (500 MHz, CDC13) 6 8.49 (d, 1 H), 8.35 (d, 1H), 7.64 (s, 1 H), 7.25-7.20 (m, 1 H), 7.05-7.01 (m, 3 H), 6.67 (d, 1 H), 5.98 (s, 2 H), 4.80 (d, 2 H), 3.79-3.72 (m, 1 H), 3.23 (t, 1 H), 2.35 (d, 2 H), 1.92-1.80 (m, 1 H), 1.62 (td, 1 H), 1.41 (t, 1 H), 0.97 (d, 6 H).
Compound 1-307 The title compound was prepared following general procedure B, except 3-(methylamino)bicyclo[1.1.1]pentane-1-carboxylic acid was the amine reactant, and the contents were heated to 90 C for 18 h as a solution in THF/water (10:1). The crude material was purified via silica gel chromatography utilizing a 0-10%
methanol/dichloromethane gradient to deliver the desired compound, Compound 1-307 (74 mg, 53% yield) as an off-white solid.
1H-NMR (500 MHz, CDC13) 6 8.53 (d, 1 H), 8.45 (d, 1 H), 7.49 (s, 1 H), 7.26-7.21 (m, 2 H), 7.09-7.01 (m, 2 H), 6.67 (d, 1 H), 5.93 (s, 2 H), 3.36 (d, 3 H), 2.68 (s, 6 H).
Compound 1-308 The title compound was prepared following general procedure B, except 2-azabicyclo[4.1.0]heptane-1-carboxylic acid (as the HC1 salt) was the amine reactant, and the contents were heated to 90 C for 3 h as a solution in THF/water (10:1). The crude material was purified via silica gel chromatography utilizing a 0-10%
methanol/dichloromethane gradient to deliver the desired compound, Compound 1-308 (32 mg, 17% yield) as an off-white solid.
1H-NMR (500 MHz, CDC13) 6 8.46 (d, 1 H), 8.21 (d, 1 H), 7.27 (s, 1 H), 7.23-7.18 (m, 1 H), 7.04 (t, 1 H), 6.98 (t, 1 H), 6.87 (t, 1 H), 6.59 (d, 1 H), 5.98 (s, 2 H), 4.62 (br. s., 1 H), 3.01 (br.
339 s., 1 H), 2.20-2.11 (m, 1 H), 2.08-1.98 (m, 2 H), 1.83-1.72 (m, 2 H), 1.57-1.49 (m, 1 H), 1.04 (br. s., 1 H).
Compound 1-309 The title compound was prepared following general procedure B, except (1R,35)-3-(Boc-amino)cyclopentane-1-carboxylic acid (as the TFA salt) was the amine reactant, and the contents were heated to 90 C for 3 h as a solution in THF/water (10:1). The crude material was purified via silica gel chromatography utilizing a 0-10%
methanol/dichloromethane gradient to deliver an intermediate. This intermediate was immediately dissolved in THF, and cooled to 0 C. Contents treated with sodium hydride (60%
in mineral oil, 2 equiv.) followed by methyl iodide (10 equiv.). Reaction was allowed to warm to 23 C over 3 d. Contents poured over water, and extracted with ethyl acetate (3x). The organic portions were combined and washed with brine. The mixture was dried over MgSO4, filtered, and concentrated in vacuo. The crude material was purified via silica gel chromatography utilizing a 0-15% methanol/dichloromethane gradient to deliver the desired compound, Compound 1-309 (0.9 mg, 1% yield) as an off-white solid.
1H-NMR (500 MHz, CDC13) 6 8.45 (s, 1 H), 8.13 (d, 1 H), 7.32 (s, 1 H), 7.23-7.15 (m, 1 H), 7.03 (t, 1H), 6.97 (t, 1 H), 6.86 (t, 1 H), 6.60 (s, 1 H), 5.97 (s, 2 H), 4.75 (d, 1 H), 3.74 (s, 3 H), 3.08-2.94 (m, 1 H), 2.42-2.30 (m, 1 H), 2.17-1.84 (m, 5 H).
Compound 1-310 The title compound was prepared following general procedure B, except (2S, 3S)-2-Methyl-piperidine-3-carboxylic acid was the amine reactant, and the contents were heated to 90 C as a solution in THF/water (10:1) for 3 d. The crude material was purified via silica gel chromatography utilizing a 0-50% (acetonitrile:methanol = 9:1 with 0.1%
TFA)/dichloromethane gradient to deliver the desired compound, Compound 1-310 (4.9 mg, 2% yield) as an off-white solid.
1H-NMR (500 MHz, CDC13) 6 8.46 (d, 1 H), 8.22 (d, 1 H), 7.31 (s, 1 H), 7.24-7.18 (m, 1 H), 7.13-7.01 (m, 1 H), 6.98 (t, 1 H), 6.87 (t, 1 H), 6.59 (d, 1 H), 5.97 (s, 2 H), 5.38 (br. s., 1 H), 4.42 (d, 1 H), 3.22 (t, 1 H), 2.99-2.87 (m, 1 H), 2.05-1.96 (m, 2 H), 1.93-1.84 (m, 2 H), 1.32 (d, 3H).
Compound 1-311 The title compound was prepared following general procedure B, except (2R, 3R)-2-Methyl-piperidine-3-carboxylic acid was the amine reactant, and the contents were heated to 90 C for 18 h as a solution in THF/water (10:1). The crude material was purified via
340 silica gel chromatography utilizing a 0-10% methanol/dichloromethane gradient to deliver the desired compound, Compound 1-311 (17.2 mg, 12% yield) as an off-white solid.
1H-NMR (500 MHz, DMSO-d6) 6 12.51 (br. s., 1 H), 9.09 (d, 1 H), 8.31 (d, 1 H), 7.50 (s, 1 H), 7.36-7.29 (m, 1 H), 7.25-7.18 (m, 2 H), 7.10 (t, 1 H), 6.84 (t, 1 H), 5.89 (s, 2 H), 5.09 (br. s., 1 H), 4.37 (br. s., 1 H), 3.10 (t, 1 H), 2.74 (br. s., 1 H), 1.84-1.72 (m, 3 H), 1.50 (br. s., 1 H), 1.19 (d, 3 H).
Compound 1-312 The title compound was prepared following general procedure B, except 3-azabicyclo[3.1.0]hexane-1-carboxylic acid (as the HC1 salt) was the amine reactant, the contents were heated to 100 C for 18 h, and the aqueous layer during workup was treated with sodium chloride. The crude material was purified via silica gel chromatography utilizing a 0-10% methanol/dichloromethane gradient to deliver the desired compound, Compound 1-312 (44 mg, 70% yield) as an off-white solid.
1H-NMR (500 MHz, DMSO-d6) 6 12.65 (br. s., 1 H), 9.08 (d, 1 H), 8.26 (d, 1 H), 7.53 (s, 1 H), 7.35-7.30 (m, 1 H), 7.26 (d, 1 H), 7.25-7.20 (m, 1 H), 7.10 (td, 1 H), 6.83-6.79 (m, 1 H), 5.91 (s, 2 H), 4.09-3.98 (m, 3 H), 3.81 (br. s., 1 H), 2.22-2.17 (m, 1 H), 1.51 (dd, 1 H), 0.97 (t, 1 H).
Compound 1-313 The title compound was prepared following general procedure B, except (S)-3-aminopropane-1,2-diolwas the amine reactant, the contents were heated to 100 C for 20 h, and the aqueous layer during workup was treated with sodium chloride. The crude material was purified via silica gel chromatography utilizing a 0-10%
methanol/dichloromethane gradient to deliver the desired compound, Compound 1-313 (39 mg, 85% yield) as an off-white solid.
1H-NMR (500 MHz, CD30D) 6 8.74 (d, 1 H), 8.07 (d, 1 H), 7.42 (s, 1 H), 7.29-7.22 (m, 1 H), 7.11-7.05 (m, 1 H), 7.02 (td, 1 H), 6.88 (d, 1 H), 6.81 (td, 1 H), 5.95 (s, 2 H), 3.88 (quin, 1 H), 3.81-3.74 (m, 1 H), 3.69-3.62 (m, 1 H), 3.59 (s, 1 H), 3.58 (s, 1 H).
Compound 1-314 The title compound was prepared following general procedure B, except cis-4-methylpyrrolidine-3-carboxylic acid was the amine reactant, the contents were heated to 100 C for 20 h, and the aqueous layer during workup was treated with sodium chloride. The crude material was purified via silica gel chromatography utilizing a 0-10%
methanol/dichloromethane gradient to deliver the desired compound, Compound 1-314 (50 mg, 72% yield) as an off-white solid.
341 1H-NMR (500 MHz, CD30D) 6 8.74 (d, 1 H), 8.09 (d, 1 H), 7.41 (s, 1 H), 7.29-7.23 (m, 1 H), 7.11-7.06 (m, 1 H), 7.02 (t, 1 H), 6.91 (d, 1 H), 6.81 (t, 1 H), 5.95 (s, 2 H), 4.22-4.13 (m, 2 H), 3.98-3.92 (m, 1 H), 3.41 (t, 1 H), 2.84-2.77 (m, 1 H), 2.58 (d, 1 H), 1.24 (d, 3 H).
Compound 1-315 The title compound was prepared following general procedure B, except serinol was the amine reactant, the contents were heated to 100 C for 20 h, and the aqueous layer during workup was treated with sodium chloride. The crude material was purified via silica gel chromatography utilizing a 0-10% methanol/dichloromethane gradient to deliver the desired compound, Compound 1-315 (49 mg, 84% yield) as an off-white solid.
1H-NMR (500 MHz, CD30D) 6 8.75 (t, 1 H), 8.08 (dd, 1 H), 7.46 (d, 1 H), 7.30-7.23 (m, 1 H), 7.09 (dd, 1 H), 7.03 (t, 1 H), 6.91-6.88 (m, 1 H), 6.80 (t, 1 H), 5.96 (s, 2 H), 4.54 (quin, 1 H), 3.75-3.82 (m, 4 H).
Compound 1-316 The title compound was prepared following general procedure B, except (R)-3-aminopropane-1,2-diol (2 equiv.) was the amine reactant, the contents were heated to 100 C for 20 h, and the aqueous layer during workup was treated with sodium chloride. The crude material was purified via silica gel chromatography utilizing a 0-10%
methanol/dichloromethane gradient to deliver the desired compound, Compound 1-316 (36 mg, 78% yield) as an off-white solid.
1H-NMR (500 MHz, CD30D) 6 8.73 (d, 1 H), 8.06 (d, 1 H), 7.41 (s, 1 H), 7.27-7.22 (m, 1 H), 7.10-7.04 (m, 1 H), 7.01 (t, 1 H), 6.86 (d, 1 H), 6.83-6.78 (m, 1 H), 5.94 (s, 2 H), 3.88 (quin, 1 H), 3.80-3.74 (m, 1 H), 3.68-3.62 (m, 1 H), 3.58 (d, 2 H).
Compound 1-317 The title compound was prepared following general procedure B, except 4-(aminomethyl)-2,6-difluorophenol was the amine reactant, the contents were heated to 100 C for 20 h, and the aqueous layer during workup was treated with sodium chloride. The crude material was purified via silica gel chromatography utilizing a 0-30%
(acetonitrile:methano1=7:1)/dichloromethane gradient to deliver the desired compound, Compound 1-317 (38 mg, 30% yield) as an off-white solid.
1H-NMR (500 MHz, CD30D) 6 8.77-8.74 (m, 1 H), 8.08 (d, 1 H), 7.37 (s, 1 H), 7.26 (dd, 1 H), 7.11-7.06 (m, 1 H), 7.06-7.01 (m, 3 H), 6.88 (d, 1 H), 6.84 (t, 1 H), 5.96 (s, 2 H), 4.69 (s, 2 H).
Compound 1-318 The title compound was prepared following general procedure B, except cis-piperidine-2,4-diyldimethanol was the amine reactant and the contents were heated to 100
342 C for 20 h. The reaction was poured into a 1:1 mix of dichloromethane and water for workup, and the aqueous layer was treated with sodium chloride before extraction with dichloromethane. The crude material was purified via silica gel chromatography utilizing a 0-70% (acetonitrile:methano1=7:1) /dichloromethane gradient to deliver the desired compound, Compound 1-318 (39 mg, 25% yield) as an off-white solid.
1H-NMR (500 MHz, CD30D) 6 8.75 (d, 1 H), 8.12 (d, 1 H), 7.40 (s, 1 H), 7.29-7.23 (m, 1 H), 7.11-7.05 (m, 1 H), 7.04-6.99 (m, 1 H), 6.90 (d, 1 H), 6.82 (td, 1 H), 5.99-5.91 (m, 2 H), 4.52-4.45 (m, 1 H), 4.35-4.26 (m, 1 H), 3.86-3.76 (m, 2 H), 3.58-3.42 (m, 3 H), 2.09-1.99 (m, 2 H), 1.85-1.75 (m, 1 H), 1.65-1.55 (m, 1 H), 1.45-1.36 (m, 1 H).
Compound 1-319 The title compound was prepared following general procedure B, except 3-phenylpiperidine-2-carboxylic acid (as the AcOH salt) was the amine reactant, the contents were heated to 100 C for 20 h, and the aqueous layer during workup was treated with sodium chloride. A portion of the crude material was purified via reverse phase HPLC
utilizing a 5-75% acetonitrile/water gradient to deliver the desired compound, Compound 1-319 (30 mg, 9% yield) as an off-white solid.
1H-NMR (500 MHz, CDC13) 6 8.37 (d, 1 H), 8.27 (d, 1 H), 7.34-7.28 (m, 4 H), 7.26-7.22 (m, 1 H), 7.20 (s, 1 H), 7.15 (ddd, 1 H), 6.99-6.88 (m, 3 H), 6.45 (d, 1 H), 5.91-5.82 (m, 2 H), 5.18 (d, 1 H), 4.31 (d, 1 H), 3.59 (td, 1 H), 3.26-3.17 (m, 1 H), 2.49 (qd, 1 H), 2.06-1.99 (m, 1 H), 1.98-1.81 (m, 2 H).
Compound 1-320 The title compound was prepared following general procedure B, except (S)-3-(methylamino)propane-1,2-diol was the amine reactant and the contents were heated to 100 C for 20 h. The reaction was poured into a 1:1 mix of dichloromethane and water for workup, and the aqueous layer was treated with sodium chloride before extraction with dichloromethane. The crude material was purified via silica gel chromatography utilizing a 0-10% methanol/dichloromethane gradient to deliver the desired compound, Compound 1-320 (81 mg, 84% yield) as a white solid.
1H-NMR (500 MHz, CD30D) 6 8.75 (d, 1 H), 8.10 (d, 1 H), 7.42 (s, 1 H), 7.29-7.23 (m, 1 H), 7.11-7.06 (m, 1 H), 7.02 (t, 1 H), 6.88 (d, 1 H), 6.85-6.80 (m, 1 H), 5.95 (s, 2 H), 4.03-3.94 (m, 2 H), 3.73-3.66 (m, 1 H), 3.58 (d, 2 H), 3.42 (d, 3 H).
Compound 1-321 The title compound was prepared following general procedure B, except (R)-3-(methylamino)propane-1,2-diol was the amine reactant and the contents were heated to
343 DEMANDE OU BREVET VOLUMINEUX
LA PRESENTE PARTIE DE CETTE DEMANDE OU CE BREVET COMPREND
PLUS D'UN TOME.

NOTE : Pour les tomes additionels, veuillez contacter le Bureau canadien des brevets JUMBO APPLICATIONS/PATENTS
THIS SECTION OF THE APPLICATION/PATENT CONTAINS MORE THAN ONE
VOLUME

NOTE: For additional volumes, please contact the Canadian Patent Office NOM DU FICHIER / FILE NAME:
NOTE POUR LE TOME / VOLUME NOTE:

Claims (169)

1. A
compound according to Formula I', or a pharmaceutically acceptable salt thereof, wherein X1 is selected from N, CH, C(C1-4 alkyl), C(C1-4 haloalkyl), CCl and CF;
X2 is independently selected from N or C;
W is either i) absent, with J B connected directly to the carbon atom bearing two J
groups, each J is independently selected from hydrogen or methyl, n is 1 and J B is a C1-7 alkyl chain optionally substituted by up to 9 instances of fluorine; wherein, optionally, one -CH2-unit of said C1-7 alkyl chain can be replaced by -O- or -S-.
ii) a ring B that is a phenyl or a 5 or 6-membered heteroaryl ring, containing 1 or 2 ring heteroatoms selected from N, O or S; wherein with ring B being the phenyl or 5 or 6-membered heteroaryl ring; each J is hydrogen; n is an integer selected from 0 to 3; and each J B is independently selected from halogen, -CN, a C1-6 aliphatic, -OR B or a C3-8 cycloaliphatic group; wherein each said C1-6 aliphatic and each said C3-8 cycloaliphatic group is optionally and independently substituted with up to 3 instances of R3; each R B is independently selected from hydrogen, a C1-6 aliphatic or a C3-8 cycloaliphatic; wherein each of said R B
that is a C1-6 aliphatic and each of said R B that is a C3-8 cycloaliphatic ring is optionally and independently substituted with up to 3 instances of R3a;
each R3 is independently selected from halogen, -CN, C1-4 alkyl, C1-4 haloalkyl, -O(C1-4 alkyl) or -O(C1-4 haloalkyl);
each R3a is independently selected from halogen, -CN, C1-4 alkyl, C1-4 haloalkyl, -O(C1-4 alkyl) or -O(C1-4 haloalkyl);

o is an integer selected from 1, 2 and 3;
each J D is independently selected from J A, halogen, -CN, -NO2, -OR D, -SR D, -C(O)R D, -C(O)OR D, -OC(O)R D, -C(O)N(R D)2, N(R D)2, N(R d)C(O)R D, -N(R d)C(O)OR D, -N(R d)C(O)N(R D)2, -OC(O)N(R D)2, -SO2R D, -SO2N(R D)2, -N(R d)SO2R D, a C1-6 aliphatic, -(C1-6 aliphatic)-R D, a C3-8 cycloaliphatic ring, a 6 to 10-membered aryl ring, a 4 to 8-membered heterocyclic ring or a 5 to 10-membered heteroaryl ring; wherein each said 4 to 8-membered heterocylic ring and each said 5 to 10-membered heteroaryl ring contains between 1 and 3 heteroatoms independently selected from O, N or S; and wherein each said C1-6 aliphatic, each said C1-6 aliphatic portion of the -(C1-6 aliphatic)-R D
moiety, each said C3-8 cycloaliphatic ring, each said 6 to 10-membered aryl ring, each said 4 to 8-membered heterocyclic ring and each said 5 to 10-membered heteroaryl ring is optionally and independently substituted with up to 5 instances of R5d, wherein at least one J D is not hydrogen;
J A is selected from hydrogen, halogen, methyl, hydroxyl, methoxy, trifluoromethyl, trifluoromethoxy or -NR a R b; wherein R a and R b are each independently selected from hydrogen, C1-6 alkyl or a 3-6 cycloalkyl ring; or wherein R a and R b, together with the nitrogen atom to which they are both attached, form a 4-8 membered heterocyclic ring, or a 5-membered heteroaryl ring optionally containing up to two additional heteroatoms selected from N, O and S; wherein each of said 4-8 membered heterocyclic ring and 5-membered heteroaryl ring is optionally and independently substituted by up to 6 instances of fluorine;
each R D is independently selected from hydrogen, a C1-6 aliphatic, -(C1-6 aliphatic)-R f, a C3-8 cycloaliphatic ring, a 4 to 10-membered heterocyclic ring, phenyl or a 5 to 6-membered heteroaryl ring; wherein each said 4 to 10-membered heterocylic ring and each said 5 to 6-membered heteroaryl ring contains between 1 and 3 heteroatoms independently selected from O, N or S; and wherein each said C1-6 aliphatic, each said C1-6 aliphatic portion of the -(C1-6 aliphatic)-R f moiety, each said C3-8 cycloaliphatic ring, each said 4 to 10-membered heterocyclic ring, each said phenyl and each said 5 to 6-membered heteroaryl ring is optionally and independently substituted with up to 5 instances of R5a; wherein when any R D is one of a C1-6 aliphatic or a -(C1-6 aliphatic)-R f group, one or two -CH2- units that form said C1-6 aliphatic chains may, optionally, be replaced by a group independently selected from -N(R d)-, -CO- or -O-; provided that when X1 is one of CH, C(C1-4 alkyl), C(C1-4 haloalkyl), CCl or CF;
X2 is C; and at least one J D is -N(R D)2 and is attached to one of the pyrimidine ring D carbons ortho to the two nitrogen atoms of said ring D, one instance of R D is not a pyridine or a pyrimidine;

each R d is independently selected from hydrogen, a C1-6 aliphatic, -(C1-6 aliphatic)-R f, a C3-8 cycloaliphatic ring, a 4 to 8-membered heterocyclic ring, phenyl or a 5 to 6-membered heteroaryl ring; wherein each said 4 to 8-membered heterocylic ring and each said 5 or 6-membered heteroaryl ring contains between 1 and 3 heteroatoms independently selected from O, N or S; and wherein each said C1-6 aliphatic, each said C1-6 aliphatic portion of the -(C1-6 aliphatic)-R f moity, each said C3-8 cycloaliphatic ring, each said 4 to 8-membered heterocyclic ring, each said phenyl and each said 5 to 6-membered heteroaryl ring is optionally and independently substituted by up to 5 instances of R5b; wherein when any R
d is one of a C1-6 aliphatic or a -(C1-6 aliphatic)-R f group, one or two -CH2- units that form said C1-6 aliphatic chains may, optionally, be replaced by a group independently selected from -N(R d)-, -CO- or -O- ;
each R f is independently selected from a C1-3 alkyl, a C3-8 cycloaliphatic ring, a 4 to 10-membered heterocyclic ring, phenyl or a 5 to 6-membered heteroaryl ring;
wherein each said 4 to 10-membered heterocylic ring and each said 5 to 6-membered heteroaryl ring contains between 1 and 4 heteroatoms independently selected from O, N or S; and wherein each said C3-8 cycloaliphatic ring, each said 4 to 10-membered heterocyclic ring, each said phenyl and each said 5 to 6-membered heteroaryl ring is optionally and independently substituted by up to instances of R5c;
when J D is -C(O)N(R D)2, -N(R D)2, -N(R d)C(O)N(R D)2, -OC(O)N(R D)2 or -SO2N(R D)2, the two R D groups together with the nitrogen atom attached to the two R D groups may form a 4 to 8-membered heterocyclic ring or a 5-membered heteroaryl ring; wherein each said 4 to 8-membered heterocyclic ring and each said 5-membered heteroaryl ring optionally contains up to 3 additional heteroatoms independently selected from N, O or S, in addition to the nitrogen atom to which the two R D groups are attached; and wherein each said 4 to 8-membered heterocyclic ring and each said 5-membered heteroaryl ring is optionally and independently substituted by up to 5 instances of R5;
when J D is -N(R d)C(O)R D, the R D group together with the carbon atom attached to the R D
group, with the nitrogen atom attached to the R d group, and with the R d group may form a 4 to 8-membered heterocyclic ring or a 5-membered heteroaryl ring; wherein each said 4 to 8-membered heterocyclic ring and each said 5-membered heteroaryl ring optionally contains up to 2 additional heteroatoms independently selected from N, O or S, in addition to the nitrogen atom to which the R d group is attached; and wherein each said 4 to 8-membered heterocyclic ring and each said 5-membered heteroaryl ring is optionally and independently substituted by up to 5 instances of R5;
when J D is -N(R d)C(O)OR D, the R D group together with the oxygen atom attached to the R D
group, with the carbon atom of the -C(O)- portion of the -N(R d)C(O)OR D
group, with the nitrogen atom attached to the R d group, and with said R d group, may form a 4 to 8-membered heterocyclic ring; wherein said 4 to 8-membered heterocyclic ring optionally contains up to 2 additional heteroatoms independently selected from N, O or S, and is optionally and independently substituted by up to 5 instances of R5;
when J D is -N(R d)C(O)N(R D)2, one of the R D groups attached to the nitrogen atom, together with said nitrogen atom, and with the N atom attached to the R d group and said R d group may form a 4 to 8-membered heterocyclic ring; wherein said 4 to 8-membered heterocyclic ring optionally contains up to 2 additional heteroatoms independently selected from N, O or S, and is optionally and independently substituted by up to 5 instances of R5;
when J D is -N(R d)SO2R D, the R D group together with the sulfur atom attached to the R D group, with the nitrogen atom attached to the R d group, and with said R d group may combine to form a 4 to 8-membered heterocyclic ring; wherein said 4 to 8-membered heterocyclic ring optionally contains up to 2 additional heteroatoms independently selected from N, O or S, and is optionally and independently substituted by up to 5 instances of R5;
each R5 is independently selected from halogen, -CN, C1-6 alkyl, -( C1-6 alkyl)-R6, -OR6, -SR6, -COR6, -OC(O)R6, -C(O)OR6, -C(O)N(R6)2, -C(O)N(R6)SO2R6, -N(R6)C(O)R6, -N(R6)C(O)OR6, -N(R6)C(O)N(R6)2, -N(R6)2, -SO2R6, -SO2OH, -SO2NHOH, -SO2N(R6)2, -SO2N(R6)COOR6, -SO2N(R6)C(O)R6, -N(R6)SO2R6, -(C=O)NHOR6, a C3-8 cycloalkyl ring, a 4 to 7-membered heterocyclic ring, a 5 or 6-membered heteroaryl ring, phenyl, benzyl, an oxo group or a bicyclic group; wherein each of said 5 or 6-membered heteroaryl ring or 4 to 7-membered heterocyclic ring contains up to 4 ring heteroatoms independently selected from N, O and S; and wherein each of said C1-6 alkyl, C1-6 alkyl portion of the -( C1-6 alkyl)-R6 moiety, C3-8 cycloalkyl ring, 4 to 7-membered heterocyclic ring, 5 or 6-membered heteroaryl ring, benzyl or phenyl group is optionally and independently substituted with up to 3 instances of halogen, C1-4 alkyl, -OH, -NH2, -NH(C1-4 alkyl), -N(C1-4 alkyl)2, -CN, -COOH, -CONH2, -COO(C1-4 alkyl), -O(C1-4 alkyl), -O(C1-4 haloalkyl) or oxo; wherein said bicyclic group contains ring one and ring two in a fused or bridged relationship, said ring one is a 4 to 7-membered heterocyclic ring, a 5 or 6-membered heteroaryl ring, phenyl or benzyl, and said ring two is a phenyl ring or a 5 or 6-membered heteroaryl ring containing up to 3 ring heteroatoms selected from N, O or S; and wherein said bicyclic group is optionally and independently substituted by up to six instances of halogen, C1-4 alkyl, -OH, -NH2, -NH(C1-4 alkyl), -N(C1-4 alkyl)2, -CN, -COOH, -CONH2, -COO(C1-4 alkyl), -O(C1-4 alkyl), -O(C1-4 haloalkyl) or oxo;
two instances of R5, attached to the same or different atoms of J D, together with said atom or atoms to which they are attached, may optionally form a C3-8 cycloalkyl ring, a 4 to 6-membered heterocyclic ring; a phenyl or a 5 or 6-membered heteroaryl ring, resulting in a bicyclic system wherein the two rings of the bicyclic system are in a spiro, fused or bridged relationship, wherein said 4 to 6-membered heterocycle or said 5 or 6-membered heteroaryl ring contains up to four ring heteroatoms independently selected from N, O or S; and wherein said C3-8 cycloalkyl ring, 4 to 6-membered heterocyclic ring, phenyl or 5 or 6-membered heteroaryl ring is optionally and independently substituted by up to 3 instances of C1-4 alkyl, C1-4 haloalkyl, C1-4 alkoxy, C1-4 haloalkoxy, oxo, -C(O)O(C1-4 alkyl), -C(O)OH, -NR(CO)O(C1-4 alkyl), -CONH2, -OH or halogen; wherein R is hydrogen or a C1-2 alkyl;
each R5a and each R5b is independently selected from halogen, -CN, C1-6 alkyl, -(C1-6 alkyl)R6a, -OR6a, -SR6a, -COR6a, -OC(O)R6a, -C(O)OR6a, -C(O)N(R6a)2, -C(O)N(R6a)SO2R6a, -N(R6a)C(O)R6a, -N(R6a)C(O)OR6a, -N(R6a)C(O)N(R6a)2, -N(R6a)2, -SO2R6a, -SO2OH, -SO2NHOH, -SO2N(R6a)2, -SO2N(R6a)COOR6a, -SO2N(R6a)C(O)R6a, -N(R6a)SO2R6a, -(C=O)NHOR6a, a C3-8 cycloalkyl ring, a 4 to 7-membered heterocyclic ring, a 5 or 6-membered heteroaryl ring, phenyl, benzyl, an oxo group or a bicyclic group; wherein each 5 or 6-membered heteroaryl ring or 4 to 7-membered heterocyclic ring contains up to 4 ring heteroatoms independently selected from N, O and S, wherein each of said C1-6 alkyl, C1-6 alkyl portion of the -(C1-6 alkyl)R6a moiety, C3-8 cycloalkyl ring, 4 to 7-membered heterocyclic ring, 5 or 6-membered heteroaryl ring, benzyl or phenyl group is optionally and independently substituted with up to 3 instances of halogen, C1-4 alkyl, C1-4 haloalkyl, -OH, -NH2, -NH(C1-4 alkyl), -N(C1-4 alkyl)2, -CN, -COOH, -CONH2, -COO(C1-4 alkyl), -O(C1-4 alkyl), -O(C1-4 haloalkyl) or oxo; wherein said bicyclic group contains ring one and ring two in a fused or bridged relationship, said ring one is a 4 to 7-membered heterocyclic ring, a 5 or 6-membered heteroaryl ring, phenyl or benzyl, and said ring two is a phenyl ring or a 5 or 6-membered heteroaryl ring containing up to 3 ring heteroatoms selected from N, O or S;
and wherein said bicyclic group is optionally and independently substituted by up to six instances of halogen, C1-4 alkyl, -OH, -NH2, -NH(C1-4 alkyl), -N(C1-4 alkyl)2, -CN, -COOH, -CONH2, -COO(C1-4 alkyl), -O(C1-4 alkyl), -O(C1-4 haloalkyl) or oxo;
two instances of R5a or two instances of R5b attached to the same or different atoms of R D or R d, respectively, together with said atom or atoms to which they are attached, may optionally form a C3-8 cycloalkyl ring, a 4 to 6-membered heterocyclic ring; a phenyl or a 5 or 6-membered heteroaryl ring, resulting in a bicyclic system wherein the two rings of the bicyclic system are in a spiro, fused or bridged relationship with respect to each other; wherein said 4 to 6-membered heterocycle or said 5 or 6-membered heteroaryl ring contains up to four ring heteroatoms independently selected from N, O or S; and wherein said C3-8 cycloalkyl ring, 4 to 6-membered heterocyclic ring, phenyl or 5 or 6-membered heteroaryl ring is optionally and independently substituted by up to 3 instances of C1-4 alkyl, C1-4 haloalkyl, C1-4 alkoxy, C1-4 haloalkoxy, oxo, -C(O)O(C1-4 alkyl), -C(O)OH, -C(O)NH2, -NR(CO)O(C1-4 alkyl), -OH or halogen; wherein R is hydrogen or a C1-2 alkyl;
each R5c is independently selected from halogen, -CN, C1-6 alkyl, -(C1-6 alkyl)-R6b, -OR6b, -SR6b, -COR6b, -OC(O)R6b, -C(O)OR6b, -C(O)N(R6b)2, -C(O)N(R6b)SO2R6b, -N(R6b)C(O)R6b, -N(R6b)C(O)OR6b, -N(R6b)C(O)N(R6b)2, -N(R6b)2, -SO2R6b, -SO2OH, -SO2NHOH, -SO2N(R6b)2, -SO2N(R6b)COOR6b, -SO2N(R6b)C(O)R6b, -N(R6b)SO2R6b, -(C=O)NHOR6b, a C3-8 cycloalkyl ring, a 4 to 7-membered heterocyclic ring, a 5 or 6-membered heteroaryl ring, phenyl, benzyl, an oxo group, or a bicyclic group;
wherein each of said 5 or 6-membered heteroaryl ring and each of said 4 to 7-membered heterocyclic ring contains up to 4 ring heteroatoms independently selected from N, O and S; and wherein each of said C1-6 alkyl, C1-6 alkyl portion of said -(C1-6 alkyl)-R6b moiety, each of said C3-8 cycloalkyl ring, each of said 4 to 7-membered heterocyclic ring, each of said 5 or 6-membered heteroaryl ring, each of said benzyl and each of said phenyl group is optionally and independently substituted with up to 3 instances of halogen, C1-4 alkyl, -OH, -NH2, -NH(C1-4 alkyl), -N(C1-4 alkyl)2, -CN, -COOH, -CONH2, -COO(C1-4 alkyl), -O(C1-4 alkyl), -O(C1-4 haloalkyl) or oxo;
wherein said bicyclic group contains a first ring and a second ring in a fused or bridged relationship, said first ring is a 4 to 7-membered heterocyclic ring, a 5 or 6-membered heteroaryl ring, phenyl or benzyl, and said second ring is a phenyl ring or a 5 or 6-membered heteroaryl ring containing up to 3 ring heteroatoms selected from N, O or S;
and wherein said bicyclic group is optionally and independently substituted by up to six instances of halogen, C1-4 alkyl, -OH, -NH2, -NH(C1-4 alkyl), -N(C1-4 alkyl)2, -CN, -COOH, -CONH2, -COO(C1-4 alkyl), -O(C1-4 alkyl), -O(C1-4 haloalkyl) or oxo;
two instances of R5c attached to the same or different atoms of Rf, together with said atom or atoms to which it is attached, may optionally form a C3-8 cycloalkyl ring, a 4 to 6-membered heterocyclic ring; a phenyl or a 5 or 6-membered heteroaryl ring, resulting in a bicyclic system wherein the two rings of the bicyclic system are in a spiro, fused or bridged relationship with respect to each other; wherein said 4 to 6-membered heterocycle or said 5 or 6-membered heteroaryl ring contains up to four ring heteroatoms independently selected from N, O or S; and wherein said C3-8 cycloalkyl ring, 4 to 6-membered heterocyclic ring, phenyl or 5 or 6-membered heteroaryl ring is optionally and independently substituted by up to 3 instances of C1-4 alkyl, C1-4 haloalkyl, C1-4 alkoxy, C1-4 haloalkoxy, oxo, -C(O)O(C1-4 alkyl), -C(O)OH, -CONH2, -NR(CO)O(C1-4 alkyl), -OH or halogen; wherein R is hydrogen or a C1-2 alkyl;
each R5d is independently selected from halogen, -CN, C1-6 alkyl, -(C1-6 alkyl)-R6, -OR6, -SR6, -COR6, -OC(O)R6, -C(O)OR6, -C(O)N(R6)2, -N(R6)C(O)R6, -N(R6)C(O)OR6, -N(R6)C(O)N(R6)2, -N(R6)2, -SO2R6, -SO2OH, -SO2NHOH, -SO2N(R6)COR6, -SO2N(R6)2, -N(R6)SO2R6, a C7-12 aralkyl, a C3-8 cycloalkyl ring, a 4 to 7-membered heterocyclic ring, a 5 or 6-membered heteroaryl ring, phenyl or an oxo group;
wherein each 5 or 6-membered heteroaryl ring or 4 to 7-membered heterocyclic ring contains up to four ring heteroatoms independently selected from N, O and S, wherein each of said C1-6 alkyl, C1-6 alkyl portion of the -(C1-6 alkyl)-R6 moiety, C7-12 aralkyl, C3-8 cycloalkyl ring, 4 to 7-membered heterocyclic ring, 5 or 6-membered heteroaryl ring or phenyl group is optionally and independently substituted with up to 3 instances of halogen, C1-4 alkyl, C1-4 (haloalkyl), -OH, -NH2, -NH(C1-4 alkyl), -N(C1-4 alkyl)2, -CN, -COOH, -CONH2, -COO(C1-4 alkyl), -O(C1-4 alkyl), -O(C1-4 haloalkyl) or oxo;
two instances of R5d attached to the same or different atoms of J D, together with said atom or atoms of J D to which they are attached, may optionally form a C3-8 cycloalkyl ring, a 4 to 6-membered heterocyclic ring; a phenyl or a 5 or 6-membered heteroaryl ring, resulting in a bicyclic system wherein the two rings of the bicyclic system are in a spiro, fused or bridged relationship with respect to each other; wherein said 4 to 6-membered heterocycle or said 5 or 6-membered heteroaryl ring contains up to four ring heteroatoms independently selected from N, O or S; and wherein said C3-8 cycloalkyl ring, 4 to 6-membered heterocyclic ring, phenyl or or 6-membered heteroaryl ring is optionally and independently substituted by up to 3 instances of C1-4 alkyl, C1-4 haloalkyl, C1-4 alkoxy, C1-4 haloalkoxy, oxo, ¨C(O)O(C1-4 alkyl), ¨C(O)OH, ¨NR(CO)O(C1-4 alkyl), ¨C(O)NH2, ¨OH or halogen; wherein R is hydrogen or a C1-2 alkyl;
each R6 is independently selected from hydrogen, a C1-6 alkyl, phenyl, benzyl, a C3-8 cycloalkyl ring, a 4 to 7-membered heterocyclic ring or a 5 or 6-membered heteroaryl ring, wherein each of said C1-6 alkyl, each of said phenyl, each of said benzyl, each of said C3-8 cycloalkyl group, each of said 4 to 7-membered heterocyclic ring and each of said 5 or 6-membered heteroaryl ring is optionally and independently substituted with up to 3 instances of halogen, C1-4 alkyl, ¨OH, ¨NH2, ¨NH(C1-4 alkyl), ¨N(C1-4 alkyl)2, ¨CN, ¨COOH, ¨C(O)NH2, ¨COO(C1-4 alkyl), -O(C1-4 alkyl), -O(C1-4 haloalkyl) or oxo, wherein each of said 5 or 6-membered heteroaryl ring or 4 to 7-membered heterocyclic ring contains up to 4 ring heteroatoms independently selected from N, 0 and S;
each R6a is independently selected from hydrogen, a C1-6 alkyl, phenyl, benzyl, a C3-8 cycloalkyl ring, a 4 to 7-membered heterocyclic ring or a 5 or 6-membered heteroaryl ring, wherein each of said C1-6 alkyl, each of said phenyl, each of said benzyl, each of said C3-8 cycloalkyl group, each of said 4 to 7-membered heterocyclic ring and each of said 5 or 6-membered heteroaryl ring is optionally and independently substituted with up to 3 instances of halogen, C1-4 alkyl, ¨OH, ¨NH2, ¨NH(C1-4 alkyl), ¨N(C1-4 alkyl)2, ¨CN, ¨COOH, ¨C(O)NH2, ¨C(O)N(C1-6 alkyl)2, ¨C(O)NH(C1-6 alkyl), ¨C(O)N(C1-6 haloalkyl)2, ¨C(O)NH(C1-6 haloalkyl), C(O)N(C1-6 alkyl)(C1-6 haloalkyl), ¨COO(C1-6 alkyl), ¨COO(C1-6 haloalkyl), -O(C1-4 alkyl), -O(C1-4 haloalkyl) or oxo, wherein each of said 5 or 6-membered heteroaryl ring or 4 to 7-membered heterocyclic ring contains up to 4 ring heteroatoms independently selected from N, 0 and S;
each R6b is independently selected from hydrogen, a C1-6 alkyl, phenyl, benzyl, a C3-8 cycloalkyl ring, a 4 to 7-membered heterocyclic ring or a 5 or 6-membered heteroaryl ring, wherein each of said C1-6 alkyl, each of said phenyl, each of said benzyl, each of said C3-8 cycloalkyl group, each of said 4 to 7-membered heterocyclic ring and each of said 5 or 6-membered heteroaryl ring is optionally and independently substituted with up to 3 instances of halogen, C1-4 alkyl, ¨OH, ¨NH2, ¨NH(C1-4 alkyl), ¨N(C1-4 alkyl)2, ¨CN, ¨COOH, ¨C(O)NH2, ¨COO(C1-4 alkyl), -O(C1-4 alkyl), -O(C1-4 haloalkyl) or oxo, wherein each of said or 6-membered heteroaryl ring or 4 to 7-membered heterocyclic ring contains up to 4 ring heteroatoms independently selected from N, O and S; wherein two instances of R6 linked to the same nitrogen atom of R5 or R5d, together with said nitrogen atom of R5 or R5d, respectively, may form a 5 to 8-membered heterocyclic ring or a 5-membered heteroaryl ring; wherein each said 5 to 8-membered heterocyclic ring and each said 5-membered heteroaryl ring optionally contains up to 2 additional heteroatoms independently selected from N, O or S;
two instances of R6a linked to a nitrogen atom of R5a or R5b, together with said nitrogen, may form a 5 to 8-membered heterocyclic ring or a 5-membered heteroaryl ring;
wherein each said 5 to 8-membered heterocyclic ring and each said 5-membered heteroaryl ring optionally contains up to 2 additional heteroatoms independently selected from N, O or S;
two instances of R6b linked to a nitrogen atom of R5c, together with said nitrogen, may form a 5 to 8-membered heterocyclic ring or a 5-membered heteroaryl ring; wherein each said 5 to 8-membered heterocyclic ring and each said 5-membered heteroaryl ring optionally contains up to 2 additional heteroatoms independently selected from N, O or S;
two J D groups attached to two vicinal ring D atoms, taken together with said two vicinal ring D
atoms, may form a 5 to 7-membered heterocycle or a 5-membered heteroaryl ring that is fused to ring D; wherein said 5 to 7-membered heterocycle or said 5-membered ring heteroaryl contains from 1 to 3 heteroatoms independently selected from N, O or S; and wherein said 5 to 7-membered heterocycle or said 5-membered heteroaryl ring is optionally and independently substituted by up to 3 instances of oxo or -(Y)-R9;
wherein Y is either absent or is a linkage in the form of a C1-6alkyl chain, optionally substituted by up to 6 instances of fluoro; and wherein when Y is said C1-6 alkyl chain, up to 3 methylene units of this alkyl chain, can be replaced by a group selected from -O-, -C(O) - or -N((Y)-R90)-, wherein i) when Y is absent, each R90 is independently selected from hydrogen, -COR10, -C(O)OR10, -C(O)N(R10)2, -C(O)N(R10)SO2R10,-SO2R10, -SO2N(R10)2, -SO2N(R10)COOR10, -SO2N(R10)C(O)R10, -(C=O)NHOR10, C3-6 cycloalkyl ring, a 4-8-membered heterocyclic ring, a phenyl ring or a 5-6 membered heteroaroaryl ring; wherein each said 4 to 8-membered heterocyclic ring or 5 to 6-membered heteroaryl ring contains up to 4 ring heteroatoms independently selected from N, O or S; and wherein each of said C3-6 cycloalkyl rings, each of said 4 to 8-membered heterocyclic rings, each of said phenyl and each of said to 6-membered heteroaryl rings is optionally and independently substituted with up to 3 instances of R11; and ii) when Y is present, each R90 is independently selected from hydrogen, halogen, -CN, -OR10, -COR10, -OC(O)R10, -C(O)OR10, -C(O)N(R10)2, -C(O)N(R10)SO2R10, -N(R10)C(O)R10, -N(R10)C(O)OR10, -N(R10)C(O)N(R10)2, -N(R10 ) 2, -SO2N(R10), -SO2N(R10)COOR10, -SO2N(R10)C(O)R10, - N(R10)SO2R10 (C=O)NHOR10, C3-6 cycloalkyl ring, a 4-8-membered heterocyclic ring, a phenyl ring or a 5-6 membered heteroaroaryl ring; wherein each said 4 to 8-membered heterocyclic ring or 5 to 6-membered heteroaryl ring contains up to 4 ring heteroatoms independently selected from N, O or S; and wherein each of said C3-6 cycloalkyl rings, each of said 4 to 8-membered heterocyclic rings, each of said phenyl and each of said 5 to 6-membered heteroaryl rings is optionally and independently substituted with up to 3 instances of R11;
each R9 is independently selected from hydrogen, halogen, -CN, -OR10, -COR10, -OC(O)10, -C(O)OR10, -C(O)N(R10)SO2R10 N(R10)C(O)R10, -N(R10)C(O)OR10, -N(R10)C(O)N(R10)2, N(R10 ) 2, -SO2N(R10), -SO2N(R10)COOR10, -SO2N(R10)C(O)R10 N(R10)SO2R10, -(C=O)NHOR10, C3-6 cycloalkyl ring, a 4-8-membered heterocyclic ring, a phenyl ring or a 5-6 membered heteroaroaryl ring; wherein each said 4 to 8-membered heterocyclic ring or 5 to 6-membered heteroaryl ring contains up to 4 ring heteroatoms independently selected from N, O or S; and wherein each of said C3-6 cycloalkyl rings, each of said 4 to 8-membered heterocyclic rings, each of said phenyl and each of said 5 to 6-membered heteroaryl rings is optionally and independently substituted with up to 3 instances of R11;
each R10 is independently selected from hydrogen, a C1-6 alkyl, -(C1-6 alkyl)-R13, phenyl, benzyl, a C3-8 cycloalkyl ring, a 4 to 7-membered heterocyclic ring or a 5 or 6-membered heteroaryl ring, wherein each 5 or 6-membered heteroaryl ring or 4 to 7-membered heterocyclic ring contains up to 4 ring heteroatoms independently selected from N, O and S;
and wherein each of said C1-6 alkyl , C1-6 alkyl portion of said -(C1-6 alkyl)-R13 moiety, each said phenyl, each said benzyl, each said C3-8 cycloalkyl group, each said 4 to 7-membered heterocyclic ring and each 5 or 6-membered heteroaryl ring is optionally and independently substituted with up to 3 instances of R11a;
each R13 is independently selected from a phenyl, a benzyl, a C3-6 cycloalkyl ring, a 4 to 7-membered heterocyclic ring or a 5 or 6-membered heteroaryl ring, wherein each 5 or 6-membered heteroaryl ring or 4 to 7-membered heterocyclic ring contains up to 4 ring heteroatoms independently selected from N, O and S; and wherein each said phenyl, each of said benzyl, each said C3-8 cycloalkyl group, each said 4 to 7-membered heterocyclic ring and each 5 or 6-membered heteroaryl ring is optionally and independently substituted with up to 3 instances of R11b;
each R11 is independently selected from halogen, oxo, C1-6 alkyl, -CN, -OR12, -COR12, -C(O)OR12, -C(O)N(R12)2, -N(R12)C(O)R12, -N(R12)C(O)OR12, -N(R12)C(O)N(R12)2, -N(R12)2, -SO2R12, -SO2N(R12)2 or -N(R12)SO2R12; wherein each of said C1-6 alkyl is optionally and independently substituted by up to 6 instances of fluoro and/or 3 instances of R12;
each R11a is independently selected from halogen, oxo, C1-6 alkyl, -CN, -OR12, -COR12, -C(O)OR12, -C(O)N(R12)2, -N(R12)C(O)R12, -N(R12)C(O)OR12, -N(R12)C(O)N(R12)2, -N(R12)2, -SO2R12, -SO2N(R12)2 or -N(R12)SO2R12; wherein each of said C1-6 alkyl is optionally and independently substituted by up to 6 instances of fluoro and/or 3 instances of R12; and each R11b is independently selected from halogen, C1-6 alkyl, oxo, -CN, -OR12, -COR12, -C(O)OR12, -C(O)N(R12)2, -N(R12)C(O)R12, -N(R12)C(O)OR12, -N(R12)C(O)N(R12)2, -N(R12)2, -SO2R12, -SO2N(R12)2 or -N(R12)SO2R12; wherein each of said C1-6 alkyl is optionally and independently substituted by up to 6 instances of fluoro and/or 3 instances of R12;
each R12 is selected from hydrogen, a C1-6 alkyl, phenyl, benzyl, a C3-8 cycloalkyl ring, a 4 to 7-membered heterocyclic ring or a 5 or 6-membered heteroaryl ring, wherein each 5 or 6-membered heteroaryl ring or 4 to 7-membered heterocyclic ring contains up to 4 ring heteroatoms independently selected from N, O and S; and wherein each of said C1-6 alkyl, each said phenyl, each said benzyl, each said C3-8 cycloalkyl group, each said 4 to 7-membered heterocyclic ring and each 5 or 6-membered heteroaryl ring is optionally and independently substituted with up to 3 instances of halogen, C1-4 alkyl, C1-4 (fluoroalkyl), -OH, -NH2, -NH(C1-4 alkyl), -N(C1-4 alkyl)2, -CN, -COOH, -CONH2, -COO(C1-4 alkyl), -O(C1-4 alkyl), -O(C1-4 fluoroalkyl) or oxo.
R C is either i) a ring C; or ii) is selected from halogen, -CN, C1-6 alkyl, -(C1-6 alkyl)-R N, -COR7, -C(O)OR7, -C(O)N(R7)2, -N(R7)C(O)R7, -N(R7)C(O)OR7, -N(R7)C(O)N(R7)2, -N(R7)2, -SO2R7, -SO2N(R7)2, -C(O)N(R7)SO2R7, -SO2N(R7)COOR7, -SO2N(R7)C(O)R7 or -N(R7)SO2R7;
wherein each said C1-6 alkyl, each C1-6 alkyl portion of said -(C1-6 alkyl)-R
N, is optionally and independently substituted with up to 6 instances of fluoro and up to 2 instances of -CN, -OR8, oxo, -N(R8)2, -N(R8)C(O)R8, -N(R8)C(O)R8, -C(O)N(R8)2, , -N(R8)C(O)N(R8)2, -SO2R8, -SO2N(R8)2, -NHOR8, -SO2N(R8)COOR8, -SO2N(R8)C(O)R8, -N(R8)SO2R8;
wherein each R7 is independently selected from hydrogen, C1-6 alkyl, C1-6 fluoroalkyl, a C3-8 cycloalkyl ring, phenyl, a 4 to 7-membered heterocyclic ring or a 5 or 6-membered heteroaryl ring; wherein each of said 5 or 6-membered heteroaryl ring or 4 to 7-membered heterocyclic ring contains up to 4 ring heteroatoms independently selected from N, O and S;
and wherein each of said C1-6 alkyl, each of said phenyl, each of said C3-8 cycloalkyl group, each of said 4 to 7-membered heterocyclic ring and each of said 5 or 6-membered heteroaryl ring is optionally and independently substituted with up to 3 instances of halogen, C1-4 alkyl, -OH, -NH2, -NH(C1-4 alkyl), -N(C1-4 alkyl)2, -CN, -COOH, -COO(C1-4 alkyl), -O(C1-4 alkyl), -O(C1-4 haloalkyl) or oxo;
each R8 is independently selected from hydrogen, C1-6 alkyl, C1-6 fluoroalkyl, a C3-8 cycloalkyl ring, a 4 to 7-membered heterocyclic ring or a 5 or 6-membered heteroaryl ring; wherein each of said 5 or 6-membered heteroaryl ring or 4 to 7-membered heterocyclic ring contains up to 4 ring heteroatoms independently selected from N, O and S; and wherein each of said C1-6 alkyl, each of said phenyl, each of said C3-8 cycloalkyl group, each of said 4 to 7-membered heterocyclic ring and each of said 5 or 6-membered heteroaryl ring is optionally and independently substituted with up to 3 instances of halogen, C1-4 alkyl, -OH, -NH2, -NH(C1-4 alkyl), -N(C1-4 alkyl)2, -CN, -COOH, -COO(C1-4 alkyl), -O(C1-4 alkyl), -O(C1-4 haloalkyl) or oxo;
each R N is independently selected from a phenyl ring, a monocyclic 5 or 6-membered heteroaryl ring, a monocyclic C3-6 cycloaliphatic ring, or a monocyclic 4 to 6-membered heterocycle; wherein said monocyclic 5 or 6-membered heteroaryl ring or said monocyclic 4 to 6-membered heterocycle contain between 1 and 4 heteroatoms selected from N, O
or S;
wherein said monocyclic 5 or 6-membered heteroaryl ring is not a 1,3,5-triazinyl ring; and wherein said phenyl, said monocyclic 5 to 6-membered heteroaryl ring, said monocyclic C3-6 cycloaliphatic ring, or said monocyclic 4 to 6-membered heterocycle is optionally and independently substituted with up to 6 instances of fluoro and/or up to 3 instances of J M;
each J M is independently selected from -CN, a C1-6 aliphatic, -OR M, -SR M, -N(R M)2, a C3-8 cycloaliphatic ring or a 4 to 8-membered heterocyclic ring; wherein said 4 to 8-membered heterocyclic ring contains 1 or 2 heteroatoms independently selected from N, O
or S; wherein each said C1-6 aliphatic, each said C3-8 cycloaliphatic ring and each said 4 to 8-membered heterocyclic ring, is optionally and independently substituted with up to 3 instances of R7c;
each R M is independently selected from hydrogen, a C1-6 aliphatic, a C3-8 cycloaliphatic ring or a 4 to 8-membered heterocyclic ring; wherein each said 4 to 8-membered heterocylic ring contains between 1 and 3 heteroatoms independently selected from O, N or S;
and wherein ring C is a phenyl ring, a monocyclic 5 or 6-membered heteroaryl ring, a bicyclic 8 to 10-membered heteroaryl ring, a monocyclic 3 to 10-membered cycloaliphatic ring, or a monocyclic 4 to 10-membered heterocycle; wherein said monocyclic 5 or 6-membered heteroaryl ring, said bicyclic 8 to 10-membered heteroaryl ring, or said monocyclic 4 to 10-membered heterocycle contain between 1 and 4 heteroatoms selected from N, O
or S;
wherein said monocyclic 5 or 6-membered heteroaryl ring is not a 1,3,5-triazinyl ring; and wherein said phenyl, monocyclic 5 to 6-membered heteroaryl ring, bicyclic 8 to 10-membered heteroaryl ring, monocyclic 3 to 10-membered cycloaliphatic ring, or monocyclic 4 to 10-membered heterocycle is optionally and independently substituted with up to p instances of J C'; wherein p is 0 or an integer selected from 1 to 3;
each f is independently selected from halogen, -CN, -NO2, a C1-6 aliphatic, -OR H, -SR H, -N(R H)2, a C3-8 cycloaliphatic ring or a 4 to 8-membered heterocyclic ring;
wherein said 4 to 8-membered heterocyclic ring contains 1 or 2 heteroatoms independently selected from N, O or S; wherein each said C1-6 aliphatic, each said C3-8 cycloaliphatic ring and each said 4 to 8-membered heterocyclic ring, is optionally and independently substituted with up to 3 instances of R7d; or alternatively, two J C' groups attached to two vicinal ring C atoms, taken together with said two vicinal ring C atoms, form a 5 to 7-membered heterocycle that is a new ring fused to ring C;

wherein said 5 to 7-membered heterocycle contains from 1 to 2 heteroatoms independently selected from N, O or S;
each R H is independently selected from hydrogen, a C1-6 aliphatic, a C3-8 cycloaliphatic ring or a 4 to 8-membered heterocyclic ring ; wherein each said 4 to 8-membered heterocylic ring contains between 1 and 3 heteroatoms independently selected from O, N or S;alternatively, two instances of R H linked to the same nitrogen atom of -N(R H)2, together with said nitrogen atom of -N(R H)2, form a 4 to 8-membered heterocyclic ring or a 5-membered heteroaryl ring;
wherein each said 4 to 8-membered heterocyclic ring and each said 5-membered heteroaryl ring optionally contains up to 2 additional heteroatoms independently selected from N, O or S;
each R7c is independently selected from hydrogen, halogen, -CN, -NO2, C1-4 alkyl, C1-4 haloalkyl, C3-8 cycloalkyl ring, -OR8b, -SR8b, -N(R8b)2, -C(O)O(C1-4 alkyl), -C(O)OH, -NR(CO)CO(C1-4 alkyl) or an oxo group; wherein each said cycloalkyl group is optionally and independently substituted with up to 3 instances of halogen;
each R7d is independently selected from hydrogen, halogen, -CN, -NO2, C1-4 alkyl, C1-4 haloalkyl, C3-8 cycloalkyl ring, -OR8c, -SR8c, -N(R8c)2, or an oxo group;
wherein each said cycloalkyl group is optionally and independently substituted with up to 3 instances of halogen;
each R8b is independently selected from hydrogen, C1-6 alkyl, C1-6 fluoroalkyl, a C3-8 cycloalkyl ring, a 4 to 7-membered heterocyclic ring or a 5 or 6-membered heteroaryl ring; wherein each of said 5 or 6-membered heteroaryl ring or 4 to 7-membered heterocyclic ring contains up to 4 ring heteroatoms independently selected from N, O and S; and wherein each of said C1-6 alkyl, each of said phenyl, each of said C3-8 cycloalkyl group, each of said 4 to 7-membered heterocyclic ring and each of said 5 or 6-membered heteroaryl ring is optionally and independently substituted with up to 3 instances of halogen, C1-4 alkyl, -OH, -NH2, -NH(C1-4 alkyl), -N(C1-4 alkyl)2, -CN, -COOH, -COO(C1-4 alkyl), -O(C1-4 alkyl), -O(C1-4 haloalkyl) or oxo;
each R8' is independently selected from hydrogen, C1-6 alkyl, C1-6 fluoroalkyl, a C3-8 cycloalkyl ring, a 4 to 7-membered heterocyclic ring or a 5 or 6-membered heteroaryl ring; wherein each of said 5 or 6-membered heteroaryl ring or 4 to 7-membered heterocyclic ring contains up to 4 ring heteroatoms independently selected from N, O and S; and wherein each of said C1-6 alkyl, each of said phenyl, each of said C3-8 cycloalkyl group, each of said 4 to 7-membered heterocyclic ring and each of said 5 or 6-membered heteroaryl ring is optionally and independently substituted with up to 3 instances of halogen, C1-4 alkyl, -OH, -NH2, -NH(C1-4 alkyl), -N(C1-4 alkyl)2, -CN, -COOH, -COO(C1-4 alkyl), -O(C1-4 alkyl), -O(C1-4 haloalkyl) or oxo; and provided that the compound is not a compound depicted below:
wherein J D is either an ethylene or -N(Me)2;
J A is either hydrogen or methyl ;and J B is either fluoro or C1-2 alkoxy.
2. The compound of claim 1, or a pharmaceutically acceptable salt thereof, wherein W
is absent.
3. The compound of claim 2, or a pharmaceutically acceptable salt thereof, wherein the compound is represented by Formula II'a:
wherein Q represents a C1-7 alkyl group, optionally substituted with up to 9 instances of fluorine.
4. The compound according to claim 3, or a pharmaceutically acceptable salt thereof, wherein Q is substituted with up to 5 instances of fluorine.
5. The compound according to any one of claims 1 to 4, represented by Formula III'a:

wherein, Q' is a C1-6 alkyl chain, optionally substituted by up to 6 instances of fluorine;
when X2 is N, the moiety ¨N(R1)(R2) is absent;
when X2 is C, the moiety ¨N(R1)(R2) is present;
R1 and R2, together with the nitrogen atom to which they are attached, form a 4 to 8-membered heterocyclic ring or 5-membered heteroaryl ring; wherein said 4 to 8-membered heterocyclic ring or 5-membered heteroaryl ring optionally contains, in addition to the nitrogen atom to which R1 and R2 are attached, up to 3 ring heteroatoms independently selected from N, O or S, and is optionally substituted by up to 5 instances of R5e;
each R5e is independently selected from halogen, ¨CN, C1-6 alkyl, ¨(C1-4 alkyl)-R6, a C3-8 cycloalkyl ring, C1-4 cyanoalkyl, -OR6, ¨SR6, -OCOR6, ¨COR6, ¨C(O)OR6, ¨C(O)N(R6)2, ¨N(R6)C(O)R6, ¨N(R6)2, ¨SO2R6, ¨SO2OH, ¨SO2NHOH, -SO2N(R6)COR6, -SO2N(R6)2, ¨N(R6)SO2R6, benzyl, phenyl or an oxo group; wherein each said phenyl ring and each said benzyl group, is optionally and independently substituted with up to 3 instances of halogen, ¨OH, ¨NH2, ¨NH(C1-4 alkyl), ¨N(C1-4 alkyl)2, ¨CN, C1-4 alkyl, C1-4 haloalkyl, -O(C1-4 alkyl) or -O(C1-4 haloalkyl); and wherein each said C1-6 alkyl, each C1-4 alkyl portion of said ¨(C1-4 alkyl)-R6 moiety, and each said C3-8 cycloalkyl ring is optionally and independently substituted with up to 3 instances of halogen; wherein each R6 is independently selected from hydrogen, a C1-6 alkyl, a C2-4 alkenyl, phenyl, benzyl, or a C3-8 cycloalkyl ring; wherein each said C1-6 alkyl, each said C2-4 alkenyl, each said phenyl, each said benzyl and each said C3-8 cycloalkyl group is optionally and independently substituted with up to 3 instances of halogen;
two of the instances of R5e attached to the same or different atoms of said ring formed by R1, R2 and the nitrogen to which R1 and R2 are attached, together with said atom or atoms, may optionally form a C3-8 cycloalkyl ring, a 4 to 6-membered heterocyclic ring; a phenyl or a 5 or 6-membered heteroaryl ring, resulting in a bicyclic system wherein the two rings of the bicyclic system are in a spiro, fused or bridged relationship, wherein said 4 to 6-membered heterocycle or said 5 or 6-membered heteroaryl ring contains up to three ring heteroatoms independently selected from N, O or S; and wherein said C3-8 cycloalkyl ring, 4 to 6-membered heterocyclic ring, phenyl or 5 or 6-membered heteroaryl ring is optionally and independently substituted by up to 3 instances of C1-4 alkyl, C1-4 haloalkyl, C1-4 alkoxy, C1-4 haloalkoxy, oxo, -C(O)O(C1-4 alkyl), -C(O)OH, -C(O)NH2, -NR(CO)O(C1-4 alkyl), -OH or halogen; wherein R is hydrogen or a C1-2 alkyl;
alternatively, R1 and R2 are each independently selected from hydrogen, C1-6 alkyl, a C3-8 cycloalkyl ring, a 4 to 8-membered heterocyclic ring, a 5 or 6-membered heteroaryl, phenyl or a C1-6 alkyl-R Y; wherein each of said 4 to 8-membered heterocyclic ring and each of said 5 or 6-membered heteroaryl ring contains up to 3 ring heteroatoms independently selected from N, O and S; and wherein each of said C1-6 alkyl, C1-6 alkyl portion of each said C1-6 alkyl-R Y
moiety, C3-8 cycloalkyl ring, 4 to 8-membered heterocyclic ring group, 5 or 6-membered heteroaryl, phenyl and C1-6 alkyl-R Y is optionally and independently substituted with up to 5 instances of R5f;
R Y is selected from a C3-8 cycloalkyl ring, a 4 to 8-membered heterocyclic ring, phenyl, or a 5 to 6-membered heteroaryl ring; wherein each of said 4 to 8-membered heterocyclic ring or 5 to 6-membered heteroaromatic ring contains between 1 and 4 ring heteroatoms independently selected from N, O or S; and wherein each of said C3-8 cycloalkyl ring, each of said 4 to 8-membered heterocyclic ring, each of said phenyl, and each of said 5 to 6-membered heteroaryl ring is optionally substituted with up to 5 instances of R5g;
each R5f is independently selected from halogen, -CN, C1-6 alkyl, -(C1-4 alkyl)-R6a, a C7-12 aralkyl, C3-8 cycloalkyl ring, C1-4 cyanoalkyl, -OR6a, -SR6a, -OCOR6a, -COR6a, -C(O)OR6a, -C(O)N(R6a)2, -N(R6a)C(O)R6a, -N(R6a)2, -SO2R6a, -SO2N(R6a)2, -N(R6a)SO2R6a, -SO2OH, -SO2NHOH, -SO2N(R6a)COR6a, phenyl or an oxo group; wherein each said phenyl group is optionally and independently substituted with up to 3 instances of halogen, -OH, -NH2, -NH(C1-4 alkyl), -N(C1-4 alkyl)2, -NO2, -CN, C1-4 alkyl, C1-4 haloalkyl, -O(C1-4 alkyl) or -O(C1-4 haloalkyl); and wherein each said C7-12 aralkyl, C1-6 alkyl, C1-4 alkyl portion of each said -(C1-4 alkyl)-R6a and each said C3-8 cycloalkyl group is optionally and independently substituted with up to three instances of halogen;

each R6a is independently selected from hydrogen, a C1-6 alkyl, a C2-4 alkenyl, phenyl, benzyl, or a C3-8 cycloalkyl ring; wherein each said C1-6 alkyl, each said C2-4 alkenyl, each said phenyl, each said benzyl and each said C3-8 cycloalkyl group is optionally and independently substituted with up to 3 instances of halogen;
when one of R1 or R2 is the C3-8 cycloalkyl ring, 4 to 8-membered heterocyclic ring or 5 or 6-membered heteroaryl substituted with up to 5 instances of R5f, two of the instances of R5f attached to the same or different ring atoms of said R1 or R2, together with said atom or atoms, form a C3-8 cycloalkyl ring, a 4 to 6-membered heterocyclic ring, a phenyl or a 5 or 6-membered heterocyclic ring, resulting in a bicyclic system wherein the two rings are in a spiro, fused or bridged relationship, wherein said 4 to 6-membered heterocycle or said 5 or 6-membered heterocyclic ring contains up to two ring heteroatoms independently selected from N, O or S; and wherein said C3-8 cycloalkyl ring, 4 to 6-membered heterocyclic ring, phenyl or 5 or 6-membered heterocyclic ring is optionally substituted by up to 2 instances of C1-4 alkyl, C1-4 haloalkyl, oxo, -(CO)O(C1-4 alkyl), -NR'(CO)O(C1-4 alkyl) or halogen; wherein R' is hydrogen or a C1-2 alkyl;
each R5g is independently selected from halogen, -CN, C1-6 alkyl, -(C1-4 alkyl)-R6b, a benzyl, C3-8 cycloalkyl ring, C1-4 cyanoalkyl, -OR6b, -SR6b, -OCOR6b, -COR6b, -C(O)OR6b, -C(O)N(R6b)2, -N(R6b)C(O)R6b, -N(R6b)2, -SO2R6b, -SO2N(R6b)2, -N(R6b)SO2R6b, -SO2OH, -SO2NHOH, -SO2N(R6b)COR6b, phenyl or an oxo group; wherein each said phenyl and each said benzyl group is optionally and independently substituted with up to 3 instances of halogen, -OH, -NH2, -NH(C1-4 alkyl), -N(C1-4 alkyl)2, -NO2, -CN, C1-4 alkyl, C1-4 haloalkyl, -O(C1-4 alkyl) or -O(C1-4 haloalkyl); and wherein each said C1-6 alkyl, C1-4 alkyl portion of each said (C1-4 alkyl)-R6b moiety and each said C3-8 cycloalkyl group is optionally and independently substituted with up to 3 instances of halogen;
each R6b is independently selected from hydrogen, a C1-6 alkyl, a C2-4 alkenyl, phenyl, benzyl, or a C3-8 cycloalkyl ring; wherein each said C1-6 alkyl, each said C2-4 alkenyl, each said phenyl, each said benzyl and each said C3-8 cycloalkyl group is optionally and independently substituted with up to 3 instances of halogen;
alternatively, two instances of R5g attached to the same or different ring atoms of R Y, together with said ring atom or atoms, form a C3-8 cycloalkyl ring, a 4 to 6-membered heterocyclic ring;
a phenyl or a 5 or 6-membered heteroaryl ring, resulting in a bicyclic system wherein the two rings are in a spiro, fused or bridged relationship, wherein said 4 to 6-membered heterocycle or said 5 or 6-membered heteroaryl ring contains up to three heteroatoms independently selected from N, O or S; and wherein said C3-8 cycloalkyl ring, 4 to 6-membered heterocyclic ring, phenyl or 5 or 6-membered heteroaryl ring is optionally and independently substituted by up to 3 instances of C1-4 alkyl, C1-4 haloalkyl, C1-4 alkoxy, C1-4 haloalkoxy, oxo, -C(O)O(C1-4 alkyl), -C(O)OH, -C(O)NH2, -NR"(CO)O(C1-4 alkyl), -OH or halogen;
R" is hydrogen or a C1-2 alkyl;
the two J D groups attached to two vicinal ring D atoms, taken together with said two vicinal ring D atoms, may optionally form a 5 to 6-membered heterocycle or a 5-membered heteroaryl ring that is fused to ring D; wherein said 5 to 6-membered heterocycle or said 5-membered ring heteroaryl contains from 1 to 3 heteroatoms independently selected from N, O
or S; and wherein said 5 to 6-membered heterocycle or said 5-membered heteroaryl ring is optionally and independently substituted by up to 3 instances of oxo or -(Y)-R9.
6. The compound according to claim 5, or a pharmaceutically acceptable salt thereof, wherein at least one of the two instances of X1 and X2 is N.
7. The compound according to claim 6, or a pharmaceutically acceptable salt thereof, wherein only one instance of X1 and X2 is N and the other one is C with a substituent.
8. The compound according to claim 6 or claim 7, or a pharmaceutically acceptable salt thereof, wherein X2 is C on ring D and is optionally substituted with J D.
9. The compound according to any one of claims 1 to 4, represented by Formula IV'a:
wherein, J A is selected from hydrogen, halogen, methyl, hydroxyl, methoxy, trifluoromethyl, trifluoromethoxy or -NR a R b; wherein R a and R b are each independently selected from hydrogen, C1-6 alkyl or a 3-6 cycloalkyl ring; or wherein R a and R b, together with the nitrogen atom to which they are both attached, form a 4-8 membered heterocyclic ring, or a 5-membered heteroaryl ring optionally containing up to two additional heteroatoms selected from N, O and S; wherein each of said 4-8 membered heterocyclic ring and 5-membered heteroaryl ring is optionally and independently substituted by up to 6 instances of fluorine; and J D is selected from hydrogen or fluorine;
R1 and R2, together with the nitrogen atom to which they are attached, form a 4 to 8-membered heterocyclic ring or 5-membered heteroaryl ring; wherein said 4 to 8-membered heterocyclic ring or 5-membered heteroaryl ring optionally contains, in addition to the nitrogen atom to which R1 and R2 are attached, up to 3 ring heteroatoms independently selected from N, O or S, and is optionally substituted by up to 5 instances of R5e;
each R5e is independently selected from halogen, -CN, C1-6 alkyl, -(C1-4 alkyl)-R6, a C3-8 cycloalkyl ring, C1-4 cyanoalkyl, -OR6, -SR6, -OCOR6, -COR6, -C(O)OR6, -C(O)N(R6)2, -N(R6)C(O)R6, -N(R6)2, -SO2R6, -SO2OH, -SO2NHOH, -SO2N(R6)COR6, -SO2N(R6)2, -N(R6)SO2R6, benzyl, phenyl or an oxo group; wherein each said phenyl ring and each said benzyl group, is optionally and independently substituted with up to 3 instances of halogen, -OH, -NH2, -NH(C1-4 alkyl), -N(C1-4 alkyl)2, -CN, C1-4 alkyl, C1-4 haloalkyl, -O(C1-4 alkyl) or -O(C1-4 haloalkyl); and wherein each said C1-6 alkyl, each C1-4 alkyl portion of said -(C1-4 alkyl)-R6 moiety, and each said C3-8 cycloalkyl ring is optionally and independently substituted with up to 3 instances of halogen; wherein each R6 is independently selected from hydrogen, a C1-6 alkyl, a C2-4 alkenyl, phenyl, benzyl, or a C3-8 cycloalkyl ring; wherein each said C1-6 alkyl, each said C2-4 alkenyl, each said phenyl, each said benzyl and each said C3-8 cycloalkyl group is optionally and independently substituted with up to 3 instances of halogen;
two of the instances of R5e attached to the same or different atoms of said ring formed by R1, R2 and the nitrogen to which R1 and R2 are attached, together with said atom or atoms, may optionally form a C3-8 cycloalkyl ring, a 4 to 6-membered heterocyclic ring; a phenyl or a 5 or 6-membered heteroaryl ring, resulting in a bicyclic system wherein the two rings of the bicyclic system are in a spiro, fused or bridged relationship, wherein said 4 to 6-membered heterocycle or said 5 or 6-membered heteroaryl ring contains up to three ring heteroatoms independently selected from N, O or S; and wherein said C3-8 cycloalkyl ring, 4 to 6-membered heterocyclic ring, phenyl or 5 or 6-membered heteroaryl ring is optionally and independently substituted by up to 3 instances of C1-4 alkyl, C1-4 haloalkyl, C1-4 alkoxy, C1-4 haloalkoxy, oxo, -C(O)O(C1-4 alkyl), -C(O)OH, -C(O)NH2, -NR(CO)O(C1-4 alkyl), -OH or halogen; wherein R is hydrogen or a C1-2 alkyl;
alternatively, R1 and R2 are each independently selected from hydrogen, C1-6 alkyl, a C3-8 cycloalkyl ring, a 4 to 8-membered heterocyclic ring, a 5 or 6-membered heteroaryl, phenyl or a C1-6 alkyl-R Y; wherein each of said 4 to 8-membered heterocyclic ring and each of said 5 or 6-membered heteroaryl ring contains up to 3 ring heteroatoms independently selected from N, O and S; and wherein each of said C1-6 alkyl, C1-6 alkyl portion of each said C1-6 alkyl-R Y
moiety, C3-8 cycloalkyl ring, 4 to 8-membered heterocyclic ring group, 5 or 6-membered heteroaryl, phenyl and C1-6 alkyl-R Y is optionally and independently substituted with up to 5 instances of R5f;
R Y is selected from a C3-8 cycloalkyl ring, a 4 to 8-membered heterocyclic ring, phenyl, or a 5 to 6-membered heteroaryl ring; wherein each of said 4 to 8-membered heterocyclic ring or 5 to 6-membered heteroaromatic ring contains between 1 and 4 ring heteroatoms independently selected from N, O or S; and wherein each of said C3-8 cycloalkyl ring, each of said 4 to 8-membered heterocyclic ring, each of said phenyl, and each of said 5 to 6-membered heteroaryl ring is optionally substituted with up to 5 instances of R5g;
each R5f is independently selected from halogen, -CN, C1-6 alkyl, -(C1-4 alkyl)-R6a, a C7-12 aralkyl, C3-8 cycloalkyl ring, C1-4 cyanoalkyl, -OR6a, -SR6a, -OCOR6a, -COR6a, -C(O)OR6a, -C(O)N(R6a)2, -N(R6a)C(O)R6a, -N(R6a)2, -SO2R6a, -SO2N(R6a)2, -N(R6a)SO2R6a, -SO2OH, -SO2NHOH, -SO2N(R6a)COR6a, phenyl or an oxo group; wherein each said phenyl group is optionally and independently substituted with up to 3 instances of halogen, -OH, -NH2, -NH(C1-4 alkyl), -N(C1-4 alkyl)2, -NO2, -CN, C1-4 alkyl, C1-4 haloalkyl, -O(C1-4 alkyl) or -O(C1-4 haloalkyl); and wherein each said C7-12 aralkyl, C1-6 alkyl, C1-4 alkyl portion of each said -(C1-4 alkyl)-R6a and each said C3-8 cycloalkyl group is optionally and independently substituted with up to three instances of halogen;
each R6a is independently selected from hydrogen, a C1-6 alkyl, a C2-4 alkenyl, phenyl, benzyl, or a C3-8 cycloalkyl ring; wherein each said C1-6 alkyl, each said C2-4 alkenyl, each said phenyl, each said benzyl and each said C3-8 cycloalkyl group is optionally and independently substituted with up to 3 instances of halogen;
when one of R1 or R2 is the C3-8 cycloalkyl ring, 4 to 8-membered heterocyclic ring or 5 or 6-membered heteroaryl substituted with up to 5 instances of R5f, two of the instances of R5f attached to the same or different ring atoms of said R1 or R2, together with said atom or atoms, form a C3-8 cycloalkyl ring, a 4 to 6-membered heterocyclic ring, a phenyl or a 5 or 6-membered heterocyclic ring, resulting in a bicyclic system wherein the two rings are in a spiro, fused or bridged relationship, wherein said 4 to 6-membered heterocycle or said 5 or 6-membered heterocyclic ring contains up to two ring heteroatoms independently selected from N, O or S; and wherein said C3-8 cycloalkyl ring, 4 to 6-membered heterocyclic ring, phenyl or 5 or 6-membered heterocyclic ring is optionally substituted by up to 2 instances of C1-4 alkyl, C1-4 haloalkyl, oxo, ¨(CO)O(C1-4 alkyl), ¨NR'(CO)O(C1-4 alkyl) or halogen; wherein R' is hydrogen or a C1-2 alkyl;
each R5g is independently selected from halogen, ¨CN, C1-6 alkyl, ¨(C1-4 alkyl)-R6b, a benzyl, C3-8 cycloalkyl ring, C1-4 cyanoalkyl, ¨OR6b, ¨SR6b5 ¨OCOR6b, ¨COR6b, ¨C(O)OR6b, ¨C(O)N(R6b)2, ¨N(R6b)C(O)R6b, ¨N(R6b)2, ¨SO2R6b, ¨SO2N(R6b)2, ¨N(R6b)SO2R6b, ¨SO2OH, ¨SO2NHOH, ¨SO2N(R6b)COR6b, phenyl or an oxo group; wherein each said phenyl and each said benzyl group is optionally and independently substituted with up to 3 instances of halogen, ¨OH, ¨NH2, ¨NH(C1-4 alkyl), ¨N(C1-4 alkyl)2, ¨NO2, ¨CN, C1-4 alkyl, C1-4 haloalkyl, ¨O(C1-4 alkyl) or ¨O(C1-4 haloalkyl); and wherein each said C1-6 alkyl, C1-4 alkyl portion of each said (C1-4 alkyl)-R6b moiety and each said C3-8 cycloalkyl group is optionally and independently substituted with up to 3 instances of halogen;
each R6b is independently selected from hydrogen, a C1-6 alkyl, a C2-4 alkenyl, phenyl, benzyl, or a C3-8 cycloalkyl ring; wherein each said C1-6 alkyl, each said C2-4 alkenyl, each said phenyl, each said benzyl and each said C3-8 cycloalkyl group is optionally and independently substituted with up to 3 instances of halogen;
alternatively, two instances of R5g attached to the same or different ring atoms of R Y, together with said ring atom or atoms, form a C3-8 cycloalkyl ring, a 4 to 6-membered heterocyclic ring;
a phenyl or a 5 or 6-membered heteroaryl ring, resulting in a bicyclic system wherein the two rings are in a spiro, fused or bridged relationship, wherein said 4 to 6-membered heterocycle or said 5 or 6-membered heteroaryl ring contains up to three heteroatoms independently selected from N, O or S; and wherein said C3-8 cycloalkyl ring, 4 to 6-membered heterocyclic ring, phenyl or a 5 or 6-membered heteroaryl ring is optionally and independently substituted by up to 3 instances of C1-4 alkyl, C1-4 haloalkyl, C1-4 alkoxy, C1-4 haloalkoxy, oxo, ¨C(O)O(C1-4 alkyl), ¨C(O)OH, ¨C(O)NH2, ¨NR"(CO)O(C1-4 alkyl), ¨OH or halogen;

R" is hydrogen or a C1-2 alkyl.
10. The compound according to claim 1, represented by Formula II'b, or a pharmaceutically acceptable salt thereof:
wherein, ring B is a phenyl or a 5 or 6-membered heteroaryl ring, containing 1 or 2 ring heteroatoms selected from N, O or S.
11. The compound according to claim 10, or a pharmaceutically acceptable salt thereof, wherein X2 on ring D is carbon, optionally substituted by J D.
12. The compound according to claim 10, or a pharmaceutically acceptable salt thereof, wherein X2 on ring D is nitrogen.
13. The compound of claim 11 or claim 12, or a pharmaceutically acceptable salt thereof, wherein each J D is independently selected from J A, halogen, a C1-6 aliphatic, ¨N(R D)2, ¨N(R d)COR D, ¨N(R d)COOR D, ¨OR D , ¨N(R d)SO2R D, or an optionally substituted C3-8 cycloaliphatic ring.
14. The compound of claim 13, or a pharmaceutically acceptable salt thereof, wherein o is 2 and each J D is independently selected from a halogen atom or ¨N(R D)2, ¨N(R
d)COR D, ¨OH, ¨N(R d)COOR D or ¨N(R d)SO2R D.
15. The compound of claim 13, or a pharmaceutically acceptable salt thereof, wherein o is 2 and one instance ofJ D is fluoro or chloro and the other instance ofJ D
is ¨OH.
16. The compound of claim 13, or a pharmaceutically acceptable salt thereof, wherein o is 2 and one instance ofJ D is ¨NH2 and the other one is independently selected from ¨N(R D)2, ¨NHCOR D, ¨N(R d)COOR D or ¨N(R d)SO2R D, wherein at least one instance of R D
in ¨N(R D)2 is not hydrogen.
17. The compound of claim 13, or a pharmaceutically acceptable salt thereof, wherein o is 2 and one instance J D is independently selected from ¨N(R D)2 or ¨NHCOR D
and the other instance of J D is selected from fluoro or chloro.
18. The compound of claim 13, or a pharmaceutically acceptable salt thereof, wherein o is 1 and J D is amino.
19. The compound of any one of claims 1 and 10-18, or a pharmaceutically acceptable salt thereof, wherein the compound is represented by one of Formula III'b or III'c:
20. The compound according to claim 1 or claim 10, or a pharmaceutically acceptable salt thereof, represented by Formula IV'b or Formula IV'c:
wherein, when X2 is N, the moiety ¨N(R1)(R2) is absent;
when X2 is C, the moiety ¨N(R1)(R2) is present;
R1 and R2, together with the nitrogen atom to which they are attached, form a 4 to 8-membered heterocyclic ring or 5-membered heteroaryl ring; wherein said 4 to 8-membered heterocyclic ring or 5-membered heteroaryl ring optionally contains, in addition to the nitrogen atom to which R1 and R2 are attached, up to 3 ring heteroatoms independently selected from N, O or S, and is optionally substituted by up to 5 instances of R5e;
each R5e is independently selected from halogen, ¨CN, C1-6 alkyl, ¨(C1-4 alkyl)-R6, a C3-8 cycloalkyl ring, C1-4 cyanoalkyl, ¨OR6, ¨SR6, ¨OCOR6, ¨COR6, ¨C(O)OR6, ¨C(O)N(R6)2, ¨N(R6)C(O)R6, ¨N(R6)2, ¨SO2R6, ¨SO2OH, ¨SO2NHOH, ¨SO2N(R6)COR6, ¨SO2N(R6)2, ¨N(R6)SO2R6, benzyl, phenyl or an oxo group; wherein each said phenyl ring and each said benzyl group, is optionally and independently substituted with up to 3 instances of halogen, ¨OH, ¨NH2, ¨NH(C1-4 alkyl), ¨N(C1-4 alkyl)2, ¨CN, C1-4 alkyl, C1-4 haloalkyl, ¨O(C1-4 alkyl) or ¨O(C1-4 haloalkyl); and wherein each said C1-6 alkyl, each C1-4 alkyl portion of said ¨(C1-4 alkyl)-R6 moiety, and each said C3-8 cycloalkyl ring is optionally and independently substituted with up to 3 instances of halogen; wherein each R6 is independently selected from hydrogen, a C1-6 alkyl, a C2-4 alkenyl, phenyl, benzyl, or a C3-8 cycloalkyl ring; wherein each said C1-6 alkyl, each said C2-4 alkenyl, each said phenyl, each said benzyl and each said C3-8 cycloalkyl group is optionally and independently substituted with up to 3 instances of halogen;
two of the instances of R5e attached to the same or different atoms of said ring formed by R1, R2 and the nitrogen to which R1 and R2 are attached, together with said atom or atoms, may optionally form a C3-8 cycloalkyl ring, a 4 to 6-membered heterocyclic ring; a phenyl or a 5 or 6-membered heteroaryl ring, resulting in a bicyclic system wherein the two rings of the bicyclic system are in a spiro, fused or bridged relationship, wherein said 4 to 6-membered heterocycle or said 5 or 6-membered heteroaryl ring contains up to three ring heteroatoms independently selected from N, O or S; and wherein said C3-8 cycloalkyl ring, 4 to 6-membered heterocyclic ring, phenyl or 5 or 6-membered heteroaryl ring is optionally and independently substituted by up to 3 instances of C1-4 alkyl, C1-4 haloalkyl, C1-4 alkoxy, C1-4 haloalkoxy, oxo, ¨C(O)O(C1-4 alkyl), ¨C(O)OH, ¨C(O)NH2, ¨NR(CO)O(C1-4 alkyl), ¨OH or halogen; wherein R is hydrogen or a C1-2 alkyl;
alternatively, R1 and R2 are each independently selected from hydrogen, C1-6 alkyl, a C3-8 cycloalkyl ring, a 4 to 8-membered heterocyclic ring, a 5 or 6-membered heteroaryl, phenyl or a C1-6 alkyl¨R Y; wherein each of said 4 to 8-membered heterocyclic ring and each of said 5 or 6-membered heteroaryl ring contains up to 3 ring heteroatoms independently selected from N, O and S; and wherein each of said C1-6 alkyl, C1-6 alkyl portion of each said C1-6 alkyl¨R Y
moiety, C3-8 cycloalkyl ring, 4 to 8-membered heterocyclic ring group, 5 or 6-membered heteroaryl, phenyl and C1-6 alkyl¨R Y is optionally and independently substituted with up to 5 instances of R5f; provided that when the compound is of Formula IV'b; wherein X2 is C; one instance of R1 or R2 is not a pyridine or a pyrimidine;
R Y is selected from a C3-8 cycloalkyl ring, a 4 to 8-membered heterocyclic ring, phenyl, or a 5 to 6-membered heteroaryl ring; wherein each of said 4 to 8-membered heterocyclic ring or 5 to 6-membered heteroaromatic ring contains between 1 and 4 ring heteroatoms independently selected from N, O or S; and wherein each of said C3-8 cycloalkyl ring, each of said 4 to 8-membered heterocyclic ring, each of said phenyl, and each of said 5 to 6-membered heteroaryl ring is optionally substituted with up to 5 instances of R5g;
each R5f is independently selected from halogen, ¨CN, C1-6 alkyl, ¨(C1-4 alkyl)-R6a, a C7-12 aralkyl, C3-8 cycloalkyl ring, C1-4 cyanoalkyl, ¨OR6a, ¨SR6a, ¨OCOR6a, ¨COR6a, ¨C(O)OR6a, ¨C(O)N(R6a)2, ¨N(R6a)C(O)R6a, ¨N(R6a)2, ¨SO2R6a, ¨SO2N(R6a)2, ¨N(R6a)SO2R6a, ¨SO2OH, ¨SO2NHOH, ¨SO2N(R6a)COR6a, phenyl or an oxo group; wherein each said phenyl group is optionally and independently substituted with up to 3 instances of halogen, ¨OH, ¨NH2, ¨NH(C1-4 alkyl), ¨N(C1-4 alkyl)2, ¨NO2, ¨CN, C1-4 alkyl, C1-4 haloalkyl, ¨O(C1-4 alkyl) or ¨O(C1-4 haloalkyl); and wherein each said C7-12 aralkyl, C1-6 alkyl, C1-4 alkyl portion of each said ¨(C1-4 alkyl)-R6a and each said C3-8 cycloalkyl group is optionally and independently substituted with up to three instances of halogen;
each R6a is independently selected from hydrogen, a C1-6 alkyl, a C2-4 alkenyl, phenyl, benzyl, or a C3-8 cycloalkyl ring; wherein each said C1-6 alkyl, each said C2-4 alkenyl, each said phenyl, each said benzyl and each said C3-8 cycloalkyl group is optionally and independently substituted with up to 3 instances of halogen;
when one of R1 or R2 is the C3-8 cycloalkyl ring, 4 to 8-membered heterocyclic ring or 5 or 6-membered heteroaryl substituted with up to 5 instances of R5f, two of the instances of R5f attached to the same or different ring atoms of said R1 or R2, together with said atom or atoms, form a C3-8 cycloalkyl ring, a 4 to 6-membered heterocyclic ring, a phenyl or a 5 or 6-membered heterocyclic ring, resulting in a bicyclic system wherein the two rings are in a spiro, fused or bridged relationship, wherein said 4 to 6-membered heterocycle or said 5 or 6-membered heterocyclic ring contains up to two ring heteroatoms independently selected from N, O or S; and wherein said C3-8 cycloalkyl ring, 4 to 6-membered heterocyclic ring, phenyl or 5 or 6-membered heterocyclic ring is optionally substituted by up to 2 instances of C1-4 alkyl, C1-4 haloalkyl, oxo, ¨(CO)O(C1-4 alkyl), ¨NR'(CO)O(C1-4 alkyl) or halogen; wherein R' is hydrogen or a C1-2 alkyl;
each R5g is independently selected from halogen, ¨CN, C1-6 alkyl, ¨(C1-4 alkyl)-R6b, a benzyl, C3-8 cycloalkyl ring, C1-4 cyanoalkyl, ¨OR6b, ¨SR6b, ¨OCOR6b, ¨COR6b, ¨C(O)OR6b, ¨C(O)N(R6b)2, ¨N(R6b)C(O)R6b, ¨N(R6b)2, ¨SO2R6b, ¨SO2N(R6b)2, ¨N(R6b)SO2R6b, ¨SO2OH, ¨SO2NHOH, ¨SO2N(R6b)COR6b, phenyl or an oxo group; wherein each said phenyl and each said benzyl group is optionally and independently substituted with up to 3 instances of halogen, ¨OH, ¨NH2, ¨NH(C1-4 alkyl), ¨N(C1-4 alkyl)2, ¨NO2, ¨CN, C1-4 alkyl, C1-4 haloalkyl, ¨O(C1-4 alkyl) or ¨O(C1-4 haloalkyl); and wherein each said C1-6 alkyl, C1-4 alkyl portion of each said (C1-4 alkyl)-R6b moiety and each said C3-8 cycloalkyl group is optionally and independently substituted with up to 3 instances of halogen;
each R6b is independently selected from hydrogen, a C1-6 alkyl, a C2-4 alkenyl, phenyl, benzyl, or a C3-8 cycloalkyl ring; wherein each said C1-6 alkyl, each said C2-4 alkenyl, each said phenyl, each said benzyl and each said C3-8 cycloalkyl group is optionally and independently substituted with up to 3 instances of halogen;
alternatively, two instances of R5g attached to the same or different ring atoms of R Y, together with said ring atom or atoms, form a C3-8 cycloalkyl ring, a 4 to 6-membered heterocyclic ring;
a phenyl or a 5 or 6-membered heteroaryl ring, resulting in a bicyclic system wherein the two rings are in a spiro, fused or bridged relationship, wherein said 4 to 6-membered heterocycle or said 5 or 6-membered heteroaryl ring contains up to three heteroatoms independently selected from N, O or S; and wherein said C3-8 cycloalkyl ring, 4 to 6-membered heterocyclic ring, phenyl or 5 or 6-membered heteroaryl ring is optionally and independently substituted by up to 3 instances of C1-4 alkyl, C1-4 haloalkyl, C1-4 alkoxy, C1-4 haloalkoxy, oxo, ¨C(O)O(C1-4 alkyl), ¨C(O)OH, ¨C(O)NH2, ¨NR"(CO)O(C1-4 alkyl), ¨OH or halogen;
R" is hydrogen or a C1-2 alkyl;
the two J D groups attached to two vicinal ring D atoms, taken together with said two vicinal ring D atoms, may optionally form a 5 to 6-membered heterocycle or a 5-membered heteroaryl ring that is fused to ring D; wherein said 5 to 6-membered heterocycle or said 5-membered ring heteroaryl contains from 1 to 3 heteroatoms independently selected from N, O
or S; and wherein said 5 to 6-membered heterocycle or said 5-membered heteroaryl ring is optionally and independently substituted by up to 3 instances of oxo or ¨(Y)¨R9.
21. The compound according to claim 20, or a pharmaceutically acceptable salt thereof, wherein X2 is nitrogen and the moiety -NR1R2 is absent.
22. The compound according to claim 20, or a pharmaceutically acceptable salt thereof, wherein X2 is carbon and the moiety -NR1R2 is present.
23. The compound according to any one of claims 1, 10 to 20 and 22, or a pharmaceutically acceptable salt thereof, represented by Formula V'b:
wherein, J A is selected from hydrogen, halogen, methyl, hydroxyl, methoxy, trifluoromethyl, trifluoromethoxy or -NR a R b; wherein R a and R b are each independently selected from hydrogen, C1-6 alkyl or a 3-6 cycloalkyl ring; or wherein R a and R b, together with the nitrogen atom to which they are both attached, form a 4-8 membered heterocyclic ring, or a 5-membered heteroaryl ring optionally containing up to two additional heteroatoms selected from N, O and S; wherein each of said 4-8 membered heterocyclic ring and 5-membered heteroaryl ring is optionally and independently substituted by up to 6 instances of fluorine;
and J D is either absent or is fluorine.
24. The compound of any one of claims 1 and 10-18, or a pharmaceutically acceptable salt thereof, wherein ring B is phenyl or a 6-membered heteroaryl ring.
25. The compound of claim 24, or a pharmaceutically acceptable salt thereof, wherein n is an integer selected from 1 to 3 and wherein each J B is independently selected from halogen, a C1-6 aliphatic or -OR B.
26. The compound of claim 25, or a pharmaceutically acceptable salt thereof, wherein each J B is independently selected from halogen.
27. The compound of claim 26, or a pharmaceutically acceptable salt thereof, wherein each J B is independently selected from fluoro or chloro.
28. The compound of claim 27, or a pharmaceutically acceptable salt thereof, wherein each J B is fluoro.
29. The compound of claim 25, or a pharmaceutically acceptable salt thereof, wherein each J B is methyl or ethyl.
30. The compound of claim 25, or a pharmaceutically acceptable salt thereof, wherein n is 1.
31. The compound of claim 30, or a pharmaceutically acceptable salt thereof, wherein J B is selected from halogen atoms.
32. The compound of claim 31, or a pharmaceutically acceptable salt thereof, wherein J B is fluoro or chloro.
33. The compound of claim 32, or a pharmaceutically acceptable salt thereof, wherein J B is fluoro.
34. The compound of claim 25, or a pharmaceutically acceptable salt thereof, wherein at least one J B is ortho to the attachment of the methylene linker between ring B and ring A.
35. The compound of claim 34, or a pharmaceutically acceptable salt thereof, wherein each J B is independently selected from halogen.
36. The compound of claim 35, or a pharmaceutically acceptable salt thereof, wherein each J B is independently selected from fluoro or chloro.
37. The compound of claim 36, or a pharmaceutically acceptable salt thereof, wherein each J B is fluoro.
38. The compound of claim 37, or a pharmaceutically acceptable salt thereof, wherein n is 1 and the J B ortho to the attachment of the methylene linker between ring B
and the pyrazolyl ring is fluoro.
39. The compound of any one of claims 1, 10-18 and 24-38, or a pharmaceutically acceptable salt thereof, wherein ring B is a 6-membered heteroaryl ring.
40. The compound of claim 39, or a pharmaceutically acceptable salt thereof, wherein ring B is a pyridyl ring.
41. The compound of claim 39, or a pharmaceutically acceptable salt thereof, wherein ring B is a pyrimidinyl ring.
42. The compound of any one of claims 1-4, 10-19, or 24-41, or a pharmaceutically acceptable salt thereof, wherein o is an integer selected from 1, 2 and 3.
43. The compound of claim 42, or a pharmaceutically acceptable salt thereof, wherein each J D is independently selected from halogen, a C1-6 aliphatic, -N(R D)2, -N(R
d)C(O)R D, -N(R d)C(O)OR D, -N(R d)C(O)N(R D)2, -SO2R D, -SO2N(R D)2, -N(R d)SO2R D, -OR
D or an optionally substituted C3-8 cycloaliphatic ring.
44. The compound of claim 43, or a pharmaceutically acceptable salt thereof, wherein o is 1 or 2 and each J D is independently selected from a halogen atom or -N(R D)2, -N(R d)COR D, -OH, -N(R d)COOR D or -N(R d)SO2R D
45. The compound of claim 44, or a pharmaceutically acceptable salt thereof, wherein each R d is independently selected from hydrogen or C1-4 alkyl.
46. The compound of claim 45, or a pharmaceutically acceptable salt thereof, wherein, o is 1 or 2 and at least one instance of J D is independently selected from fluoro, chloro, hydroxyl or amino.
47. The compound according to claims 3 or 4, or a pharmaceutically acceptable salt thereof, represented by one of Formulae Va or VI'a:

wherein ring E is a 5 or 6-membered heterocyclic ring, containing up to 3 heteroatoms selected from N, O and S; and wherein each J E is independently selected from oxo or -(Y)-R9; and J A is selected from hydrogen, halogen, methyl, hydroxyl, methoxy, trifluoromethyl, trifluoromethoxy or -NR a R b; wherein R a and R b are each independently selected from hydrogen, C1-6 alkyl or a 3-6 cycloalkyl ring; or wherein R a and R b, together with the nitrogen atom to which they are both attached, form a 4-8 membered heterocyclic ring, or a 5-membered heteroaryl ring optionally containing up to two additional heteroatoms selected from N, O and S; wherein each of said 4-8 membered heterocyclic ring and 5-membered heteroaryl ring is optionally and independently substituted by up to 6 instances of fluorine;
48. The compound according to claim 1 or 10, or a pharmaceutically acceptable salt thereof, represented by one of Formulae VI'b or VII'b:
wherein ring E is a 5 or 6-membered heterocyclic ring, containing up to 3 heteroatoms selected from N, O and S; and wherein each J E is independently selected from oxo or -(Y)-R9.
49. The compound according to claim 47 or claim 48, or a pharmaceutically acceptable salt thereof, wherein J A is selected from halogen, -NH2, -OH, or hydrogen.
50. The compound of any one of claims 47 to 49, wherein ring E is a heterocyclic ring containing one nitrogen ring atom and wherein at least one instance of J E is oxo.
51. The compound of any one of claim 50, wherein one J E is oxo and two other instances of J E are independently selected from -(Y)-R9.
52. The compound of any one of claims 47 to 51, wherein each -(Y)-R9 is independently selected from a C1-6 alkyl; a 5 or 6-membered heteroaryl ring containing between 1 and 3 heteroatoms independently selected from N, O or S and optionally substituted by one or more instances of C1-6 alkyl or halogen; and -(CO)NH-R10.
53. The compound according to claim 52, wherein R10 is a C3-6 cycloalkyl ring.
54. The compound according to claim 3 or 4, or a pharmaceutically acceptable salt thereof, represented by FormulaVII'a:
wherein each J E is independently selected from oxo or -(Y)-R9.
55. The compound according to claim 1 or 10, or a pharmaceutically acceptable salt thereof, represented by FormulaVIII'b:
wherein ring E is a 5 or 6-membered heterocyclic ring, containing up to 3 heteroatoms selected from N, O and S; and wherein each J E is independently selected from oxo or -(Y)-R9.
56. The compound according to claim 54 or claim 55, or a pharmaceutically acceptable salt thereof, wherein one instance of J E is oxo and two other instances of J
E are independently selected from C1-6 alkyl; a 5 or 6-membered heteroaryl ring, containing between 1 and 3 heteroatoms independently selected from N, O or S and optionally substituted by one or more instances of C1-6 alkyl or halogen; and -(CO)NH-R10.
57. The compound according to claim 56, wherein le is a C3-6 cycloalkyl ring.
58. The compound according to one of claims 1 and 54, or a pharmaceutically acceptable salt thereof, represented by Formula VIII'a or Formula VIII'd:
59. The compound according to one of claims 1 and 55, or a pharmaceutically acceptable salt thereof, represented by Formula XIX'b or Formula XIX'd:
60. The compound according to claim 1, or a pharmaceutically acceptable salt thereof, represented by one of Formulae XIX'a or X'a, Formula XIX'a Formula X'a;
wherein each J A is independently selected from -NH2 or hydrogen;
wherein each J D is alternatively:
i) when R1 and R2 are not simultaneously hydrogen, each J D is either absent or independently selected from a halogen; or ii) when R1 and R2 are both simultaneously hydrogen, each J D is independently selected from -C(O)R D, -C(O)OR D, -OC(O)R D, -C(O)N(R D)2, -N(R D)2, -N(R d)C(O)R D, -N(R d)C(O)OR D, -N(R d)C(O)N(R D)2, -OC(O)N(R D)2, -SO2RD, -SO2N(R D)2 or -N(R d)SO2R D.
61. The compound according to claim 1, or a pharmaceutically acceptable salt thereof, represented by one of Formulae X'b or XI'b:
wherein each J A is independently selected from -NH2 or hydrogen;
wherein each J D is alternatively:
i) when R1 and R2 are not simultaneously hydrogen, each J D is either absent or independently selected from a halogen; or ii) when R1 and R2 are both simultaneously hydrogen, each J D is independently selected from -C(O)R D, -C(O)OR D, -OC(O)R D, -C(O)N(R D)2, -N(R D)2, -N(R d)C(O)R D, -N(R d)C(O)OR D, -N(R d)C(O)N(R D)2, -OC(O)N(R D)2, -SO2R D, -5O2N(R D)2 or -N(R d)SO2R D.
62. The compound according to one of claims 1 and 60 or 61, or a pharmaceutically acceptable salt thereof, wherein J D is -NH2, -OH, or is absent.
63. The compound according to any one of claims 1 to 62, or a pharmaceutically acceptable salt thereof, wherein R C is not a ring.
64. The compound of claim 63, or a pharmaceutically acceptable salt thereof, wherein R C
is selected from halogen, -CN, C1-6 alkyl, -(C1-6 alkyl)-R N, -COOR7, -COR7, -C(O)OR7, -C(O)N(R7)2, -N(R7)C(O)R7, -N(R7)C(O)OR7, -N(R7)C(O)N(R7)2, -N(R7)2, -SO2R7, -SO2N(R7)2, or -N(R7)SO2R7; wherein when said R C is a C1-6 alkyl or -(C1-6 alkyl)-R N, the C1-6 alkyl or the (C1-6 alkyl) portion of the -(C1-6 alkyl)-R N moiety is optionally and independently substituted with up to 6 instances of fluoro and/or up to 2 instances of R7c.
65. The compound according to claim 64, or a pharmaceutically acceptable salt thereof, wherein R C is -CN, C1-6 alkyl, -COR7, -C(O)OR7, -C(O)N(R7)2, -N(R7)2, -SO2R7, or -SO2N(R7)2 ; wherein when said R C is a C1-6 alkyl or -(C1-6 alkyl)-R N, the C1-6 alkyl or the (C1-6 alkyl) portion of the -(C1-6 alkyl)-R N moiety is optionally and independently substituted with up to 6 instances of fluoro and/or up to 2 instances of R7c.
66. The compound according to claim 65, or a pharmaceutically acceptable salt thereof, wherein R C is C1-6 alkyl, -COR7, -C(O)OR7, -C(O)N(R7)2, -N(R7)2, -SO2R7 or -SO2N(R7)2.
67. The compound according to any one of claims 1-62, wherein R C is a ring.
68. The compound according to claim 1 or claim 10, represented by Formula I, or a pharmaceutically acceptable salt thereof wherein:
X1 is selected from N, CH, C(C1-4 alkyl), C(C1-4 haloalkyl), CCl and CF;
ring B is a phenyl or a 6-membered heteroaryl ring containing 1 or 2 ring nitrogen atoms, or ring B is a thiophene;
n is 0 or an integer selected from 1 to 3;

each J B is independently selected from halogen, ¨CN, a C1-6 aliphatic, ¨OR B
or a C3-8 cycloaliphatic ring; wherein each of said C1-6 aliphatic and each of said C3-8 cycloaliphatic group is optionally substituted with up to 3 instances of halogen;
each R B is independently selected from hydrogen, a C1-6 aliphatic or a C3-8 cycloaliphatic ring;
wherein each of said R B that is a C1-6 aliphatic and each of said R B that is a C3-8 cycloaliphatic ring is optionally substituted with up to 3 instances of halogen;
J A is selected from hydrogen, halogen, methyl, methoxy, trifluoromethyl, trifluoromethoxy or ¨NR a R b, wherein R a and R b are each independently selected from hydrogen, C1-6 alkyl or a 3-6 cycloalkyl ring;
J D is absent or selected from halogen, ¨CN, ¨CF3, methoxy, trifluoromethoxy, nitro, amino or methyl;
R1 and R2, together with the nitrogen atom to which they are attached, form a 4 to 8-membered heterocyclic ring or 5 or 6-membered heteroaryl ring; wherein said 4 to 8-membered heterocyclic ring or 5 or 6-membered heteroaryl ring optionally contains in addition to the nitrogen atom up to 3 ring heteroatoms independently selected from N, O or S, and is optionally substituted by up to 5 instances of R5; or alternatively, R1 and R2 are each independently selected from hydrogen, C1-6 alkyl, a C3-8 cycloalkyl ring, a 4 to 8-membered heterocyclic ring, a 5 or 6-membered heteroaryl or a C1-6 alkyl¨R Y; wherein each of said 4 to 8-membered heterocyclic ring and each of said or 6-membered heteroaryl ring contains up to 3 ring heteroatoms independently selected from N, O and S; and wherein each of said C1-6 alkyl, C3-8 cycloalkyl ring, 4 to 8-membered heterocyclic ring group, 5 or 6-membered heteroaryl and the C1-6 alkyl portion of said C1-6 alkyl¨R Y is optionally and independently substituted with up to 5 instances of R5a; provided that R1 and R2 are never simultaneously hydrogen;
alternatively, J D and one of R1 or R2 can form a 5-6 membered heterocyclic ring containing up to two heteroatoms selected from O, N and S and optionally substituted with up to 3 instances of oxo or ¨(Y)¨R9;
wherein Y is either absent or is a linkage in the form of a C1-6 alkyl chain, optionally substituted by up to 6 instances of fluoro;
each R9 is independently selected from hydrogen, fluoro, ¨CN, ¨OR10, ¨SR10, ¨COR10, ¨OC(O)R10, ¨C(O)OR10, ¨C(O)N(R10)2, -C(O)N(R10)SO2R10, -N(R10)C(O)R10, ¨N(R10)C(O)OR10, ¨N(R10)C(O)N(R10)2, -N(R10)2, -SO2R10, -SO2N(R10)2, -SO2N(R10)COOR10, -SO2N(R10)C(O)R10, -N(R10)SO2R10, ¨(C=O)NHOR10, a C3-6 cycloalkyl ring, a 4-8-membered heterocyclic ring or a 5-6 membered heteroaroaryl ring; wherein each said 4 to 8-membered heterocyclic ring or 5 to 6-membered heteroaromatic ring contains up to 4 ring heteroatoms independently selected from N, O or S; and wherein each of said C3-6 cycloalkyl rings, each of said 4 to 8-membered heterocyclic rings and each of said 5 to 6-membered heteroaromatic rings is optionally substituted with up to 3 instances of R11;
each R11 is independently selected from halogen, C1-6 alkyl, -CN, -OR12, -SR12, -COR12, -OC(O)R12, -C(O)OR12, -C(O)N(R12)2, -C(C)N(R12)SO2R12, -N(R12)C(O)R12, -N(R12)C(O)OR12, -N(R12)C(O)N(R12)2, -N(R12)2, -SO2R12, -SO2N(R12)2, -SO2N(R12)COOR12, -SO2N(R12)C(O)R12, -N(R12)SO2R12 and -N=OR12; wherein each of said C1-6 alkyl is optionally and independently substituted by up to 3 instances of fluoro, -OH, -O(C1-4 alkyl), phenyl and -O(C1-4 fluoroalkyl) wherein each R10 is independently selected from hydrogen, a C1-6 alkyl, phenyl, benzyl, a C3-8 cycloalkyl ring, a 4 to 7-membered heterocyclic ring or a 5 or 6-membered heteroaryl ring, wherein each 5 or 6-membered heteroaryl ring or 4 to 7-membered heterocyclic ring contains up to 4 ring heteroatoms independently selected from N, O and S;
and wherein each of said C1-6 alkyl, each said phenyl, each said benzyl, each said cycloalkyl group, each said 4 to 7-membered heterocyclic ring and each 5 or 6-membered heteroaryl ring is optionally and independently substituted with up to 3 instances of halogen, C1-4 alkyl, C1-4 (fluoroalkyl), -OH, -NH2, -NH(C1-4 alkyl), -N(C1-4 alkyl)2, -CN, -COOH, -COO(C1-4 alkyl), -O(C1-4 alkyl), -O(C1-4 fluoroalkyl) or oxo; and wherein each R12 is independently selected from hydrogen, a C1-6 alkyl, phenyl, benzyl, a C3-8 cycloalkyl ring, a 4 to 7-membered heterocyclic ring or a 5 or 6-membered heteroaryl ring, wherein each 5 or 6-membered heteroaryl ring or 4 to 7-membered heterocyclic ring contains up to 4 ring heteroatoms independently selected from N, O and S;
and wherein each of said C1-6 alkyl, each said phenyl, each said benzyl, each said cycloalkyl group, each said 4 to 7-membered heterocyclic ring and each 5 or 6-membered heteroaryl ring is optionally and independently substituted with up to 3 instances of halogen, C1-4 alkyl, C1-4 (fluoroalkyl), -OH, -NH2, -NH(C1-4 alkyl), -N(C1-4 alkyl)2, -CN, -COOH, -COO(C1-4 alkyl), -O(C1-4 alkyl), -O(C1-4 fluoroalkyl) or oxo;
R Y is selected from a C3-8 cycloalkyl ring, a 4 to 8-membered heterocyclic ring, phenyl, or a 5 to 6-membered heteroaromatic ring; wherein each of said 4 to 8-membered heterocyclic ring or 5 to 6-membered heteroaromatic ring contains up to 4 ring heteroatoms independently selected from N, O or S; and wherein each of said C3-8 cycloalkyl ring, each of said 4 to 8-membered heterocyclic ring, each of said phenyl, and each of said 5 to 6-membered heteroaromatic ring is optionally substituted with up to 5 instances of R5c;
each R5c is independently selected from halogen, -CN, C1-6 alkyl, -OR6b, -SR6b, -COR6b, -OC(O)R6b, -C(O)OR6b, -C(O)N(R6b)2, -C(O)N(R6b)SO2R6b, -N(R6b)C(O)R6b, -N(R6b)C(O)OR6b, -N(R6b)C(O)N(R6b)2, -N(R6b)2, -SO2R6b, -SO2N(R6b)2, -SO2N(R6b)COOR6b, -SO2N(R6b)C(O)R6b, -N(R6b)SO2R6b, -(C=O)NHOR6b, a C3-8 cycloalkyl ring, a 4 to 7-membered heterocyclic ring, a 5 or 6-membered heteroaryl ring, phenyl, benzyl, an oxo group, or a bicyclic group; wherein each of said 5 or 6-membered heteroaryl ring and each of said 4 to 7-membered heterocyclic ring contains up to 4 ring heteroatoms independently selected from N, O and S; and wherein each of said C1-6 alkyl, each of said C3-8 cycloalkyl ring, each of said 4 to 7-membered heterocyclic ring, each of said 5 or 6-membered heteroaryl ring, each of said benzyl and each of said phenyl group is optionally and independently substituted with up to 3 instances of halogen, C1-4 alkyl, -OH, -NH2, -NH(C1-4 alkyl), -N(C1-4 alkyl)2, -CN, -COOH, -COO(C1-4 alkyl), -O(C1-4 alkyl), -O(C1-4 haloalkyl) or oxo; wherein said bicyclic group contains a first ring and a second ring in a fused or bridged relationship, said first ring is a 4 to 7-membered heterocyclic ring, a 5 or 6-membered heteroaryl ring, phenyl or benzyl, and said second ring is a phenyl ring or a 5 or 6-membered heteroaryl ring containing up to 3 ring heteroatoms selected from N, O or S;
and wherein said bicyclic group is optionally and independently substituted by up to six instances of halogen, C1-4 alkyl, -OH, -NH2, -NH(C1-4 alkyl), -N(C1-4 alkyl)2, -CN, -COOH, -COO(C1-4 alkyl), -O(C1-4 alkyl), -O(C1-4 haloalkyl) or oxo;
each R6b is independently selected from hydrogen, a C1-6 alkyl, phenyl, benzyl, a C3-8 cycloalkyl ring, a 4 to 7-membered heterocyclic ring or a 5 or 6-membered heteroaryl ring, wherein each 5 or 6-membered heteroaryl ring or 4 to 7-membered heterocyclic ring contains up to 4 ring heteroatoms independently selected from N, O and S;
and wherein each of said C1-6 alkyl, each said phenyl, each said benzyl, each said cycloalkyl group, each said 4 to 7-membered heterocyclic ring and each 5 or 6-membered heteroaryl ring is optionally and independently substituted with up to 3 instances of halogen, C1-4 alkyl, -OH, -NH2, -NH(C1-4 alkyl), -N(C1-4 alkyl)2, -CN, -COOH, -COO(C1-4 alkyl), -O(C1-4 alkyl), -O(C1-4 haloalkyl) or oxo; or two instances of R5c attached to the same or different ring atoms of R Y, together with said ring atom or atoms, may form a C3-8 cycloalkyl ring, a 4 to 6-membered heterocyclic ring; a phenyl or a 5 or 6-membered heteroaryl ring, resulting in a bicyclic system wherein the two rings are in a spiro, fused or bridged relationship, wherein said 4 to 6-membered heterocycle or said 5 or 6-membered heteroaryl ring contains up to three heteroatoms independently selected from N, O or S; and wherein said C3-8 cycloalkyl ring, 4 to 6-membered heterocyclic ring, phenyl or a 5 or 6-membered heteroaryl ring is optionally and independently substituted by up to 3 instances of C1-4 alkyl, haloalkyl, C1-4 alkoxy, C1-4 haloalkoxy, oxo, -C(O)O(C1-4 alkyl), -C(O)OH, -NR"(CO)CO(C1-4 alkyl), -OH or halogen; wherein R" is hydrogen or a C1-2 alkyl;
each R5a is independently selected from halogen, -CN, C1-6 alkyl, -OR6a, -SR6a, -COR6a, -OC(O)R6a, -C(O)OR6a, -C(O)N(R6a)2, C(O)N(R6a)SO2R6a, N(R6a)C(O)R6a, -N(R6a)C(O)OR6a, N(R6a)c(c)N(R6a)2, N(R6a)2, -SO2R6a, -SO2N(R6a)2, -SO2N(R6a)COOR6a, -SO2N(R6a)C(O)R6a, N(R6a)SO2R6a, -(C=C)NHOR6a, a C3-8 cycloalkyl ring, a 4 to 7-membered heterocyclic ring, a 5 or 6-membered heteroaryl ring, phenyl, benzyl, an oxo group or a bicyclic group; wherein each 5 or 6-membered heteroaryl ring or 4 to 7-membered heterocyclic ring contains up to 4 ring heteroatoms independently selected from N, O and S, wherein each of said C1-6 alkyl, C3-8 cycloalkyl ring, 4 to 7-membered heterocyclic ring, 5 or 6-membered heteroaryl ring, benzyl or phenyl group is optionally and independently substituted with up to 3 instances of halogen, C1-4 alkyl, C1-4 haloalkyl, -OH, -NH2, -NH(C1-4 alkyl), -N(C1-4 alkyl)2, -CN, -COOH, -COO(C1-4 alkyl), -O(C1-4 alkyl), -O(C1-4 haloalkyl) or oxo; wherein said bicyclic group contains ring one and ring two in a fused or bridged relationship, said ring one is a 4 to 7-membered heterocyclic ring, a 5 or 6-membered heteroaryl ring, phenyl or benzyl, and said ring two is a phenyl ring or a 5 or 6-membered heteroaryl ring containing up to 3 ring heteroatoms selected from N, O or S; and wherein said bicyclic group is optionally and independently substituted by up to six instances of halogen, C1-4 alkyl, -OH, -NH2, -NH(C1-4 alkyl), -N(C1-4 alkyl)2, -CN, -COOH, -COO(C1-4 alkyl), -O(C1-4 alkyl), -O(C1-4 haloalkyl) or oxo;
each R6a is independently selected from hydrogen, a C1-6 alkyl, phenyl, benzyl, a C3-8 cycloalkyl ring, a 4 to 7-membered heterocyclic ring or a 5 or 6-membered heteroaryl ring, wherein each of said C1-6 alkyl, each of said phenyl, each of said benzyl, each of said C3-8 cycloalkyl group, each of said 4 to 7-membered heterocyclic ring and each of said 5 or 6-membered heteroaryl ring is optionally and independently substituted with up to 3 instances of halogen, C1-4 alkyl, -OH, -NH2, -NH(C1-4 alkyl), -N(C1-4 alkyl)2, -CN, -COOH, -C(O)NH2, -C(O)N(C1-6 alkyl)2, -C(O)NH(C1-6 alkyl), -C(O)N(C1-6 haloalkyl)2, -C(O)NH(C1-6 halo alkyl), C(O)N(C1-6 alkyl)(C1-6 haloalkyl), -COO(C1-6 alkyl), -COO(C1-6 haloalkyl), -O(C1-4 alkyl), -O(C1-4 haloalkyl) or oxo, wherein each of said 5 or 6-membered heteroaryl ring or 4 to 7-membered heterocyclic ring contains up to 4 ring heteroatoms independently selected from N, O and S; or when one of R1 or R2 is the C3-8 cycloalkyl ring, 4 to 8-membered heterocyclic ring or 5 or 6-membered heteroaryl substituted with up to 5 instances of R5a, two of the instances of R5a attached to the same or different ring atoms of said R1 or R2, together with said atom or atoms, may optionally form a C3-8 cycloalkyl ring, a 4 to 6-membered heterocyclic ring, a phenyl or a 5 or 6-membered heterocyclic ring, resulting in a bicyclic system wherein the two rings are in a spiro, fused or bridged relationship, wherein said 4 to 6-membered heterocycle or said 5 or 6-membered heterocyclic ring contains up to two ring heteroatoms independently selected from N, O or S; and wherein said C3-8 cycloalkyl ring, 4 to 6-membered heterocyclic ring, phenyl or 5 or 6-membered heterocyclic ring is optionally substituted by up to 2 instances of C1-4 alkyl, C1-4 haloalkyl, oxo, -(CO)CO(C1-4 alkyl), -NR'(CO)CO(C1-4 alkyl) or halogen;
wherein R' is hydrogen or a C1-2 alkyl;
each R5 is independently selected from halogen, -CN, C1-6 alkyl, -OR6, -SR6, -COR6, -OC(O)R6, -C(O)OR6, -C(O)N(R6)2, -C(O)N(R6)SO2R6, -N(R6)C(O)R6, -N(R6)C(O)OR6, -N(R6)C(O)N(R6)2, -N(R6)2, -SO2R6, -SO2N(R6)2, -SO2N(R6)COOR6, -SO2N(R6)C(O)R6, -N(R6)SO2R6, -(C=O)NHOR6, a C3-8 cycloalkyl ring, a 4 to 7-membered heterocyclic ring, a 5 or 6-membered heteroaryl ring, phenyl, benzyl, an oxo group or a bicyclic group; wherein each of said 5 or 6-membered heteroaryl ring or 4 to 7-membered heterocyclic ring contains up to 4 ring heteroatoms independently selected from N, O and S; and wherein each of said alkyl, C3-8 cycloalkyl ring, 4 to 7-membered heterocyclic ring, 5 or 6-membered heteroaryl ring, benzyl or phenyl group is optionally and independently substituted with up to 3 instances of halogen, C1-4 alkyl, -OH, -NH2, -NH(C1-4 alkyl), -N(C1-4 alkyl)2, -CN, -COOH, -COO(C1-4 alkyl), -O(C1-4 alkyl), -O(C1-4 haloalkyl) or oxo;
wherein said bicyclic group contains ring one and ring two in a fused or bridged relationship, said ring one is a 4 to 7-membered heterocyclic ring, a 5 or 6-membered heteroaryl ring, phenyl or benzyl, and said ring two is a phenyl ring or a 5 or 6-membered heteroaryl ring containing up to 3 ring heteroatoms selected from N, O or S; and wherein said bicyclic group is optionally and independently substituted by up to six instances of halogen, C1-4 alkyl, -OH, -NH2, -NH(C1-4 alkyl), -N(C1-4alkyl)2, -CN, -COOH, -COO(C1-4 alkyl), -O(C1-4 alkyl), -O(C1-4haloalkyl) or oxo;
each R6 is independently selected from hydrogen, a C1-6 alkyl, phenyl, benzyl, a C3-8 cycloalkyl ring or a 4 to 7-membered heterocyclic ring, a 5 or 6-membered heteroaryl ring;
wherein each of said 5 or 6-membered heteroaryl ring or 4 to 7-membered heterocyclic ring contains up to 4 ring heteroatoms independently selected from N, O and S;
and wherein each of said C1-6 alkyl, each of said phenyl, each of said benzyl, each of said C3-8 cycloalkyl group, each of said 4 to 7-membered heterocyclic ring and each of said or 6-membered heteroaryl ring is optionally and independently substituted with up to 3 instances of halogen, C1-4 alkyl, -OH, -NH2, -NH(C1-4 alkyl), -N(C1-4alkyl)2, -CN, -COOH, -COO(C1-4 alkyl), -O(C1-4 alkyl), -O(C1-4haloalkyl) or oxo; or when R1 and R2 attached to the nitrogen atom form the 4 to 8-membered heterocyclic ring or 5 or 6-membered heteroaryl ring substituted with up to 5 instances of R5, two of the instances of R5 attached to the same or different atoms of said ring, together with said atom or atoms, may optionally form a C3-8 cycloalkyl ring, a 4 to 6-membered heterocyclic ring; a phenyl or a 5 or 6-membered heteroaryl ring, resulting in a bicyclic system wherein the two rings of the bicyclic system are in a spiro, fused or bridged relationship, wherein said 4 to 6-membered heterocycle or said 5 or 6-membered heteroaryl ring contains up to three ring heteroatoms independently selected from N, O
or S; and wherein said C3-8 cycloalkyl ring, 4 to 6-membered heterocyclic ring, phenyl or 5 or 6-membered heteroaryl ring is optionally and independently substituted by up to 3 instances of C1-4 alkyl, C1-4haloalkyl, C1-4alkoxy, C1-4haloalkoxy, oxo, -C(O)O(C1-4 alkyl), -C(O)OH, -NR(CO)CO(C1-4 alkyl), -OH or halogen; wherein R is hydrogen or a C1-2 alkyl;
p is an integer selected from 0, 1 or 2;
ring C is a monocyclic 5-membered heteroaryl ring containing up to 4 ring heteroatoms selected from N, O or S; wherein said monocyclic 5-membered heteroaryl ring is not a 1,3,5-triazinyl ring;
each J C is independently selected from halogen or a C1-4 aliphatic optionally and independently substituted by up to 3 instances of C1-4 alkoxy, C1-4haloalkoxy, oxo, -C(O)O(C1-4 alkyl), -C(O)OH, -NR(CO)CO(C1-4 alkyl), -OH or halogen.
69. The compound of claim 68, or a pharmaceutically acceptable salt thereof, wherein n is an integer selected from 1 or 2 and wherein each J B is independently selected from halogen, a C1-4 alkyl or -OR B.
70. The compound of claim 69, or a pharmaceutically acceptable salt thereof, wherein each J B is independently selected from halogen atoms.
71. The compound of claim 70, or a pharmaceutically acceptable salt thereof, wherein each J B is independently selected from fluoro or chloro.
72. The compound of claim 71, or a pharmaceutically acceptable salt thereof, wherein each J B is fluoro.
73. The compound of claim 70, or a pharmaceutically acceptable salt thereof, wherein each J B is a C1-4 alkyl.
74. The compound of claim 73, or a pharmaceutically acceptable salt thereof, wherein each J B is methyl or ethyl.
75. The compound of claim 69, or a pharmaceutically acceptable salt thereof, wherein n is 1.
76. The compound of claim 75, or a pharmaceutically acceptable salt thereof, wherein J B is selected from halogen atoms.
77. The compound of claim 76, or a pharmaceutically acceptable salt thereof, wherein J B is fluoro or chloro.
78. The compound of claim 77, or a pharmaceutically acceptable salt thereof, wherein J B is fluoro.
79. The compound of claim 69, or a pharmaceutically acceptable salt thereof, wherein at least one J B is ortho to the attachment of the methylene linker between ring B and the ring bearing X1.
80. The compound of claim 79, or a pharmaceutically acceptable salt thereof, wherein each J B is independently selected from halogen atoms.
81. The compound of claim 80, or a pharmaceutically acceptable salt thereof, wherein each J B is independently selected from fluoro or chloro.
82. The compound of claim 81, or a pharmaceutically acceptable salt thereof, wherein each J B is fluoro.
83. The compound of claim 79, or a pharmaceutically acceptable salt thereof, wherein n is 1 and the J B ortho to the attachment of the methylene linker between ring B
and the ring bearing X1 is fluoro.
84. The compound of claim 79, or a pharmaceutically acceptable salt thereof, wherein n is 2 and each J B is a halogen atom.
85. The compound of claim 84, or a pharmaceutically acceptable salt thereof, wherein each J B is fluoro.
86. The compound of claim 84, or a pharmaceutically acceptable salt thereof, wherein one J B is fluoro and the other J B is chloro.
87. The compound of any one of claims 1, 10 and 68 to 86, or a pharmaceutically acceptable salt thereof, wherein ring B is phenyl.
88. The compound of any one of claims 1, 10 and 68 to 86, or a pharmaceutically acceptable salt thereof, wherein ring B is a 6-membered heteroaryl ring or a thiophene ring.
89. The compound of claim 88, or a pharmaceutically acceptable salt thereof, wherein ring B is a pyridyl ring.
90. The compound of claim 88, or a pharmaceutically acceptable salt thereof, wherein ring B is a pyrimidinyl ring.
91. The compound of claim 88, or a pharmaceutically acceptable salt thereof, wherein ring B is a thiophene ring.
92. The compound of any one of claims 89 to 91, or a pharmaceutically acceptable salt thereof, wherein J D is fluoro, chloro or is absent.
93. The compound of claim 92, or a pharmaceutically acceptable salt thereof, wherein J D is fluoro.
94. The compound of any one of claims 1, 10 and 68-93, or a pharmaceutically acceptable salt thereof, wherein J A is hydrogen.
95. The compound of any one of claims 1, 10 and 68 to 94, or a pharmaceutically acceptable salt thereof, wherein ring C is a monocyclic 5-membered heteroaryl ring containing 1 or 2 ring heteroatoms selected from N, O or S.
96. The compound of claim 95, or a pharmaceutically acceptable salt thereof, wherein ring C is an oxazole or isoxazole ring.
97. The compound of claim 96, or a pharmaceutically acceptable salt thereof, wherein ring C is unsubstituted.
98. The compound of any one of claims 1, 10 or 68 to 97, or a pharmaceutically acceptable salt thereof, wherein X1 is N.
99. The compound of claim 98, or a pharmaceutically acceptable salt thereof, wherein ring C is an oxazolyl or isoxazolyl group.
100. The compound of claim 99, or a pharmaceutically acceptable salt thereof, wherein p is 0.
101. The compound of claim 100, or a pharmaceutically acceptable salt thereof, wherein ring B is phenyl.
102. The compound of claim 101, or a pharmaceutically acceptable salt thereof, wherein J B
is halogen.
103. The compound of claim 102, or a pharmaceutically acceptable salt thereof, wherein J B
is fluoro.
104. The compound of claim 103, or a pharmaceutically acceptable salt thereof, wherein n is 1.
105. The compound of claim 104, or a pharmaceutically acceptable salt thereof, wherein ring B is substituted with J B ortho to the methylene bridge between the ring bearing X1 and ring B.
106. The compound of claim 101, or a pharmaceutically acceptable salt thereof, wherein J D
is halogen.
107. The compound of claim 106, or a pharmaceutically acceptable salt thereof, wherein J D
is fluoro.
108. The compound of claim 99, or a pharmaceutically acceptable salt thereof, wherein ring C is an isoxazolyl group.
109. The compound of claim 108, or a pharmaceutically acceptable salt thereof, wherein ring B is phenyl and J B is halogen.
110. The compound of claim 109, or a pharmaceutically acceptable salt thereof, wherein J B
is fluoro and n is 1.
111. The compound of claim 110, or a pharmaceutically acceptable salt thereof, wherein ring B is substituted with J B ortho to the methylene bridge between the ring bearing X1 and ring B.
112. The compound of claim 111, or a pharmaceutically acceptable salt thereof, wherein J D
is halogen.
113. The compound of claim 112, or a pharmaceutically acceptable salt thereof, wherein J D
is fluoro.
114. The compound of any one of claims 1, 10 and 68 to 97, or a pharmaceutically acceptable salt thereof, wherein X1 is CH, C(C1-4 alkyl), or CF.
115. The compound of claim 114 or a pharmaceutically acceptable salt thereof, wherein ring C is an oxazolyl or isoxazolyl group.
116. The compound of claim 115 or a pharmaceutically acceptable salt thereof, wherein p is 0.
117. The compound of claim 116 or a pharmaceutically acceptable salt thereof, wherein ring B is phenyl.
118. The compound of claim 117 or a pharmaceutically acceptable salt thereof, wherein J B is halogen.
119. The compound of claim 118, or a pharmaceutically acceptable salt thereof, wherein J B
is fluoro.
120. The compound of claim 119, or a pharmaceutically acceptable salt thereof, wherein n is 1.
121. The compound of claim 120, or a pharmaceutically acceptable salt thereof, wherein ring B is substituted with J B ortho to the methylene bridge between the ring bearing X
and ring B.
122. The compound of claim 121, or a pharmaceutically acceptable salt thereof, wherein J D
is halogen.
123. The compound of claim 122, or a pharmaceutically acceptable salt thereof, wherein J D
is fluoro.
124. The compound of claim 115, or a pharmaceutically acceptable salt thereof, wherein ring C is an isoxazolyl group.
125. The compound of claim 124, or a pharmaceutically acceptable salt thereof, wherein ring B is phenyl and J B is halogen.
126. The compound of claim 125, or a pharmaceutically acceptable salt thereof, wherein J B
is fluoro and n is 1.
127. The compound of claim 126, or a pharmaceutically acceptable salt thereof, wherein wherein ring B is substituted with J B ortho to the methylene bridge between the ring bearing X1 and ring B.
128. The compound of claim 127, or a pharmaceutically acceptable salt thereof, wherein J D
is halogen.
129. The compound of claim 128, or a pharmaceutically acceptable salt thereof, wherein J D
is fluoro.
130. The compound of any one of claims 1, 10 or 68, or a pharmaceutically acceptable salt thereof, having Formulae IIa or IIb wherein J D is halogen and Ring C is an unsubstituted oxazole or isoxazole ring.
131. The compound of any one of claims 1 and 10-23, or a pharmaceutically acceptable salt thereof, having Formula IIIa to IIId:
wherein J B is halogen and Ring C is an unsubstituted oxazole or isoxazole ring;
J C is selected from halogen, -CN, C1-6 alkyl, -(C1-6 alkyl)-RN, -OR7, -SR7, -COR7, -OC(O)R7, -C(O)OR7, -C(O)N(R7)2, -N(R7)C(O)R7, -N(R7)C(O)OR7, -N(R7)C(O)N(R7)2, -N(R7)2, -SO2R7, -SO2N(R7)2, -C(O)N(R7)SO2R7, -SO2N(R7)COOR7, -SO2N(R7)C(O)R7, -N(R7)SO2R7 or -(C=O)NHOR7; wherein each said C1-6 alkyl, each C1-6 alkyl portion of said -(C1-6 alkyl)-R N, is optionally and independently substituted with up to 6 instances of fluoro and up to 2 instances of -CN, -OR8, oxo, -N(R8)2, -N(R8)C(O)R8, -N(R8)C(O)OR8, -N(R8)C(O)N(R8)2, -SO2R8, -SO2N(R8)2, -NHOR8, -SO2N(R8)COOR8, -SO2N(R8)C(O)R8, -N(R8)SO2R8;
R1 and R2, together with the nitrogen atom to which they are attached, form a 4 to 8-membered heterocyclic ring or 5-membered heteroaryl ring; wherein said 4 to 8-membered heterocyclic ring or 5-membered heteroaryl ring optionally contains, in addition to the nitrogen atom to which R1 and R2 are attached, up to 3 ring heteroatoms independently selected from N, O or S, and is optionally substituted by up to 5 instances of R5e;
each R5e is independently selected from halogen, -CN, C1-6 alkyl, -(C1-4 alkyl)-R6, a C3-8 cycloalkyl ring, C1-4 cyanoalkyl, -OR6, -SR6, -OCOR6, -COR6, -C(O)OR6, -C(O)N(R6)2, -N(R6)C(O)R6, -N(R6)2, -SO2R6, -SO2OH, -SO2NHOH, -SO2N(R6)COR6, -SO2N(R6)2, -N(R6)SO2R6, benzyl, phenyl or an oxo group; wherein each said phenyl ring and each said benzyl group, is optionally and independently substituted with up to 3 instances of halogen, -OH, -NH2, -NH(C1-4 alkyl), -N(C1-4 alkyl)2, -CN, C1-4 alkyl, C1-4 haloalkyl, -O(C1-4 alkyl) or -O(C1-4 haloalkyl); and wherein each said C1-6 alkyl, each C1-4 alkyl portion of said -(C1-4 alkyl)-R6 moiety, and each said C3-8 cycloalkyl ring is optionally and independently substituted with up to 3 instances of halogen; wherein each R6 is independently selected from hydrogen, a C1-6 alkyl, a C2-4 alkenyl, phenyl, benzyl, or a C3-8 cycloalkyl ring; wherein each said C1-6 alkyl, each said C2-4 alkenyl, each said phenyl, each said benzyl and each said C3-8 cycloalkyl group is optionally and independently substituted with up to 3 instances of halogen;
two of the instances of R5e attached to the same or different atoms of said ring formed by R1, R2 and the nitrogen to which R1 and R2 are attached, together with said atom or atoms, may optionally form a C3-8 cycloalkyl ring, a 4 to 6-membered heterocyclic ring; a phenyl or a 5 or 6-membered heteroaryl ring, resulting in a bicyclic system wherein the two rings of the bicyclic system are in a spiro, fused or bridged relationship, wherein said 4 to 6-membered heterocycle or said 5 or 6-membered heteroaryl ring contains up to three ring heteroatoms independently selected from N, O or S; and wherein said C3-8 cycloalkyl ring, 4 to 6-membered heterocyclic ring, phenyl or 5 or 6-membered heteroaryl ring is optionally and independently substituted by up to 3 instances of C1-4 alkyl, C1-4 haloalkyl, C1-4 alkoxy, C1-4 haloalkoxy, oxo, -C(O)O(C1-4 alkyl), -C(O)OH, -C(O)NH2, -NR(CO)O(C1-4 alkyl), -OH or halogen; wherein R is hydrogen or a C1-2 alkyl;
alternatively, R1 and R2 are each independently selected from hydrogen, C1-alkyl, a C3-8 cycloalkyl ring, a 4 to 10-membered heterocyclic ring, a 5 or 6-membered heteroaryl, phenyl or a C1- alkyl-R Y; wherein each of said 4 to 10-membered heterocyclic ring and each of said 5 or 6-membered heteroaryl ring contains up to 3 ring heteroatoms independently selected from N, O and S; and wherein each of said C1-6 alkyl, C1-6 alkyl portion of each said C1-6 alkyl-R Y
moiety, C3-8 cycloalkyl ring, 4 to 10-membered heterocyclic ring group, 5 or 6-membered heteroaryl, phenyl and C1-6 alkyl-R Y is optionally and independently substituted with up to 5 instances of R5f; provided that one of R1 or R2 may not be pyridine or pyrimidine;
R Y is selected from a C3-8 cycloalkyl ring, a 4 to 8-membered heterocyclic ring, phenyl, or a 5 to 6-membered heteroaryl ring; wherein each of said 4 to 8-membered heterocyclic ring or 5 to 6-membered heteroaromatic ring contains between 1 and 4 ring heteroatoms independently selected from N, O or S; and wherein each of said C3-8 cycloalkyl ring, each of said 4 to 8-membered heterocyclic ring, each of said phenyl, and each of said 5 to 6-membered heteroaryl ring is optionally substituted with up to 5 instances of R5g;
each R5f is independently selected from halogen, -CN, C1_6 alkyl, -(C1-4 alkyl)-R6a, a C7-12 aralkyl, C3-8 cycloalkyl ring, C1-4 cyanoalkyl, -OR6a, -SR6a, -OCOR6a, -COR6a, -C(O)OR6a, -(CO)N(R6a)2, N(R6a)C(O)R6a, N-(R6a,)2, SO2R6a, -SO2N(R6a)2, -N(R6a)SO2R6a, SO2OH, -SO2NOH,-SO2-N(R6a)COR6a, phenyl or an oxo group; wherein each said phenyl group is optionally and independently substituted with up to 3 instances of halogen, -OH, -NH2, -NH(C1-4 alkyl), -N(C1-4 alkyl)2, -NO2, -CN, C1-4 alkyl, C1-4 haloalkyl, -O(C1-4 alkyl) or -O(C1-4 haloalkyl); and wherein each said C7-12 aralkyl, C1-6 alkyl, C1-4 alkyl portion of each said -(C1-4 alkyl)-R6a and each said C3-8 cycloalkyl group is optionally and independently substituted with up to three instances of halogen;
each R6a is independently selected from hydrogen, a C1-6 alkyl, a C2-4 alkenyl, phenyl, benzyl, or a C3-8 cycloalkyl ring; wherein each said C1-6 alkyl, each said C2-4 alkenyl, each said phenyl, each said benzyl and each said C3-8 cycloalkyl group is optionally and independently substituted with up to 3 instances of halogen;
when one of R1 or R2 is the C3-8 cycloalkyl ring, 4 to 8-membered heterocyclic ring or 5 or 6-membered heteroaryl substituted with up to 5 instances of R5f, two of the instances of R5f attached to the same or different ring atoms of said R1 or R2, together with said atom or atoms, form a C3-8 cycloalkyl ring, a 4 to 6-membered heterocyclic ring, a phenyl or a 5 or 6-membered heterocyclic ring, resulting in a bicyclic system wherein the two rings are in a spiro, fused or bridged relationship, wherein said 4 to 6-membered heterocycle or said 5 or 6-membered heterocyclic ring contains up to two ring heteroatoms independently selected from N, O or S; and wherein said C3-8 cycloalkyl ring, 4 to 6-membered heterocyclic ring, phenyl or 5 or 6-membered heterocyclic ring is optionally substituted by up to 2 instances of C1-4 alkyl, C1-4 haloalkyl, oxo, -(CO)O(C1-4 alkyl), -NR'(CO)O(C1-4 alkyl) or halogen; wherein R' is hydrogen or a C1-2 alkyl;
each R5g is independently selected from halogen, -CN, C1-6 alkyl, -(C1-4 alkyl)-R6b, a benzyl, C3-8 cycloalkyl ring, C1-4 cyanoalkyl, -OR6b, -SR6b, -OCOR6b, -COR6b, -C(O)OR6b, -C(O)N(R6b)2, -N(R6b)C(O)R6b, N(R6b)2,-SO2R6b, -SO2N(R6b)2, N(R6b)SO2R6b, -SO2OH, -SO2NHOH, -SO2N(R6b)COR6b, phenyl or an oxo group; wherein each said phenyl and each said benzyl group is optionally and independently substituted with up to 3 instances of halogen, -OH, -NH2, -NH(C1-4 alkyl), -N(C1-4alkyl)2, -NO2, -CN, C1-4 alkyl, C1-4 haloalkyl, -O(C1-4 alkyl) or -O(C1-4haloalkyl); and wherein each said C1-6 alkyl, C1-4 alkyl portion of each said (C1-4 alkyl)-R6b moiety and each said C3-8 cycloalkyl group is optionally and independently substituted with up to 3 instances of halogen;
each R6b is independently selected from hydrogen, a C1-6 alkyl, a C2-4 alkenyl, phenyl, benzyl, or a C3-8 cycloalkyl ring; wherein each said C1-6 alkyl, each said C2-4 alkenyl, each said phenyl, each said benzyl and each said C3-8 cycloalkyl group is optionally and independently substituted with up to 3 instances of halogen;
alternatively, two instances of R5g attached to the same or different ring atoms of R Y, together with said ring atom or atoms, form a C3-8 cycloalkyl ring, a 4 to 6-membered heterocyclic ring;
a phenyl or a 5 or 6-membered heteroaryl ring, resulting in a bicyclic system wherein the two rings are in a spiro, fused or bridged relationship, wherein said 4 to 6-membered heterocycle or said 5 or 6-membered heteroaryl ring contains up to three heteroatoms independently selected from N, O or S; and wherein said C3-8 cycloalkyl ring, 4 to 6-membered heterocyclic ring, phenyl or 5 or 6-membered heteroaryl ring is optionally and independently substituted by up to 3 instances of C1-4 alkyl, C1-4 haloalkyl, C1-4 alkoxy, C1-4 haloalkoxy, oxo, -C(O)O(C1-4 alkyl), -C(O)OH, -C(O)NH2, -NR"(CO)O(C1-4 alkyl), -OH or halogen; and R" is hydrogen or a C1-2 alkyl.
132. The compound of claim 131, or a pharmaceutically acceptable salt thereof, having Formula IVa or Formula IVb:
wherein:
J B is halogen and ring F is a monocyclic or bicyclic 4 to 10-membered heterocyclic ring or a monocyclic or bicyclic 5 to 10-membered heteroaryl ring; wherein said 4 to 10-membered heterocyclic ring or 5 to 10-membered heteroaryl ring optionally contains up to 3 ring heteroatoms independently selected from N, O or S, and is optionally and independently substituted by up to 3 instances of R5.
133. The compound of claim 130, or a pharmaceutically acceptable salt thereof, wherein ring F is substituted by:
(i) 3 instances of R5; wherein at least two of said instances are the same, or (ii) 0, 1 or 2 instances of R5; wherein, when ring F is substituted by 2 instances of R5, then each of the instances of R5 is independently selected;
wherein each R5 is selected from fluoro, methyl, ethyl, methoxy, trifluoromethyl, trifluoromethoxy, hydroxyl, C1-6 (hydroxy)alkyl, oxo, -CN, -O(C1-6alkyl)-COOR
Z, -NH(C1-6alkyl)-COOR Z, -(C1-6 alkyl)-COOR Z , -COOR Z, -COR Z, -CON(R Z)2, -NHCOOR Z, -NHCON(R Z)2, -CONHSO2R Z, -NHCOR Z, -NH(C1-6 alkyl)-CON(R Z)2, -N(R Z)2, -SO2R Z, -SO2N(R Z)2, -SO2NHCOR Z, -SO2NHCOOR Z, phenyl, benzyl, or a 5 or 6 membered heterocyclic or heteroaryl ring; wherein each of said phenyl, benzyl or 5-6 membered heteroaryl or heterocyclic ring is optionally substituted by 1 or 2 instances of R Za;
wherein each R Z is independently selected from hydrogen, a C3-6 cycloalkyl, a alkyl, a C1-6 fluoroalkyl; and wherein each R Za is independently selected from hydrogen, halogen, a C3-6 cycloalkyl, a C1-6 alkyl, a C1-6 fluoroalkyl, oxo and -COOH.
134. The compound of claim 133, or a pharmaceutically acceptable salt thereof, wherein at least one instance of R5 is a -COOH moiety or at least one instance of R5 is substituted by a -COOH moiety.
135. The compound of claim 133, or a pharmaceutically acceptable salt thereof having Formula Va or Formula Vb:

wherein ring F is optionally and independently further substituted by 1 or 2 instances of R5.
136. The compound of claim 131, or a pharmaceutically acceptable salt thereof, having Formula VIa or Formula VIb:
wherein J B is halogen;
R1 is hydrogen or C1-6 alkyl;
and ring G is a monocyclic or bicyclic 4 to 10-membered heterocyclic ring or a monocyclic or bicyclic 5 to 10-membered heteroaryl ring; wherein said 4 to 10-membered heterocyclic ring or 5 to 10-membered heteroaryl ring optionally contains up to 3 ring heteroatoms independently selected from N, O or S, and is optionally and independently substituted by up to 3 instances of R5a.
137. The compound of claim 136, or a pharmaceutically acceptable salt thereof, wherein at least one instance of R5a is a -COOH moiety or at least one instance of R5a comprises a -COOH moiety.
138. The compound of claim 137, or a pharmaceutically acceptable salt thereof, having Formula VIIa or Formula VIIb:

wherein ring G is optionally and independently further substituted by 1 or 2 instances of R5a.
139. The compound of claim 131, or a pharmaceutically acceptable salt thereof, having Formula VIIIa or Formula VIIIb:
wherein J B is halogen;
R1 is hydrogen or C1-6 alkyl;
L is a C1-6 alkyl group optionally and independently substituted by up to three instances of R5a;
and ring R Y is a monocyclic or bicyclic 4 to 10-membered heterocyclic ring or a monocyclic or bicyclic 5 to 10-membered heteroaryl ring; wherein said 4 to 10-membered heterocyclic ring or 5 to 10-membered heteroaryl ring optionally contains up to 3 additional heteroatoms independently selected from N, O or S, and is optionally and independently substituted by up to 3 instances of R5a.
140. The compound of claim 131 or a pharmaceutically acceptable salt thereof having one of Formula IXa or Formula IXb, or Formula Xa or Formula Xb:

wherein in Formula IXa and Formula IXb, the linker L is further optionally and independently substituted by up to two instances of R5a; and in Formula Xa and Formula Xb, ring R Y is further optionally and independently substituted by up to two instances of R5b.
141. The compound of claim 131 or a pharmaceutically acceptable salt thereof, having Formula XIa or Formula XIb:
wherein J B is halogen;
R1 is hydrogen or C1-6 alkyl;
R2 is a C1-6 alkyl group optionally and independently substituted by up to three instances of R5a.
142. The compound of claim 141, or a pharmaceutically acceptable salt thereof, wherein R2 is a C1-3 alkyl group optionally and independently substituted by up to three instances of R5a ;
wherein each instance of R5a is independently selected from hydroxyl, C1-2haloalkyl or -CONH2.
143. The compound of claim 1 or claim 68, selected from those depicted in Table IA or Table 1B or Table IC or Table ID, or a pharmaceutically acceptable salt thereof:
144. A pharmaceutical composition comprising a compound of any one of claims 1 to 143, or a pharmaceutically acceptable salt thereof, and one or more excipients.
145. A method of treating a disease, health condition or disorder in a subject in need of treatment, comprising administering a therapeutically effective amount of the compound of claim 1 or claim 68, or a pharmaceutically acceptable salt thereof, to the subject in need of treatment, wherein the disease, health condition or disorder is selected from:
(1) a peripheral, pulmonary, hepatic, kidney, cardiac or cerebral vascular/endothelial disorders/conditions or diseases otherwise related to circulation selected from:
.cndot. disorders related to high blood pressure and decreased coronary blood flow; increased acute and chronic coronary blood pressure; arterial hypertension; vascular disorder resulting from cardiac and renal complications, heart disease, stroke, cerebral ischemia or renal failure;
resistant hypertension; diabetic hypertension; congestive heart failure;
diastolic or systolic dysfunction; coronary insufficiency; arrhythmias; reduction of ventricular preload; cardiac hypertrophy; heart failure/cardiorenal syndrome; portal hypertension;
endothelial dysfunction or injury;
.cndot. thromboembolic disorders and ischemias; myocardial infarction;
stroke; transient ischemic attacks (TIAs); obstructive thromboanginitis; stable or unstable angina pectoris;
coronary spasms; variant angina; Prinzmetal's angina; restenosis resulting from thrombolysis therapies; thrombogenic disorders;
.cndot. Alzheimer's disease; Parkinson's disease; dementia; vascular cognitive impairment;
cerebral vasospasm; traumatic brain injury;

.cndot. peripheral arterial disease; peripheral occlusive arterial disease;
peripheral vascular disease; hypertonias; Raynaud's syndrome or phenomenon; critical limb ischemia; vasculitis;
peripheral embolism; intermittent claudication; vaso-occlusive crisis;
Duchene's muscular dystrophy; Becker muscular dystrophy; microcirculation abnormalities; vascular leakage or permeability issues;
.cndot. shock; sepsis; cardiogenic shock; control of leukocyte activation;
inhibition or modulation of platelet aggregation;
.cndot. pulmonary/respiratory conditions; pulmonary hypertension; pulmonary arterial hypertension and associated pulmonary vascular remodeling; localized thrombosis and right heart hypertrophy; pulmonary hypertonia; primary pulmonary hypertension;
secondary pulmonary hypertension; familial pulmonary hypertension; sporadic pulmonary hypertension, pre-capillary pulmonary hypertension; idiopathic pulmonary hypertension;
thrombotic pulmonary arteriopathy; plexogenic pulmonary arteriopathy; cystic fibrosis;
bronchoconstriction or pulmonary bronchoconstriction; acute respiratory distress syndrome;
lung fibrosis; lung transplant;
.cndot. pulmonary hypertension associated with or related to left ventricular dysfunction, hypoxemia, WHO groups I, II, III, IV and V hypertensions, mitral valve disease, constrictive pericarditis, aortic stenosis, cardiomyopathy, mediastinal fibrosis, pulmonary fibrosis, anomalous pulmonary venous drainage, pulmonary venooclusive disease, pulmonary vasculitis, collagen vascular disease, congenital heart disease, pulmonary venous hypertension, interstitial lung disease, sleep-disordered breathing, sleep apnea, alveolar hypoventilation disorders, chronic exposure to high altitude, neonatal lung disease, alveolar-capillary dysplasia, sickle cell disease; coagulation disorders; chronic thromboembolism, pulmonary embolism due to tumor, parasites or foreign material, connective tissue disease, lupus, schistosomiasis, sarcoidosis, chronic obstructive pulmonary disease, asthma, emphysema, chronic bronchitis, pulmonary capillary hemangiomatosis; histiocytosis X, lymphangiomatosis and compressed pulmonary vessels due to adenopathy, tumor or fibrosing mediastinitis;
.cndot. arterosclerotic diseases or conditions; atherosclerosis;
atherosclerosis associated with endothelial injury, platelet and monocyte adhesion and aggregation, smooth muscle proliferation and migration; restenosis; restenosis developed after thrombolysis therapies, percutaneous transluminal angioplasties (PTAs), percutaneous transluminal coronary angioplasties (PTCAs) and bypass; inflammation;

.cndot. cardiovascular disease associated with metabolic syndrome,obesity, dyslipidemia, diabetes, high blood pressure; lipid related disorders such as dyslipidemia, hypercholesterolemia, hypertriglyceridemia, sitosterolemia, fatty liver disease, and hepatitis;
preeclamsia; polycystic kidney disease progression; subcutaneous fat accumulation;
.cndot. liver cirrhosis; liver cirrhosis associated with chronic liver disease; hepatic fibrosis, hepatic stellate cell activation, hepatic fibrous collagen; total collagen accumulation; liver disease of necro-inflammatory and/or of immunological origin;
.cndot. urogenital system disorders; renal fibrosis; renal failure resulting from chronic kidney diseases or insufficiency; renal failure due to accumulation/ deposition and tissue injury, progressive sclerosis and glomerulonephritis; prostatic hypertrophy;
.cndot. systemic sclerosis;
.cndot. cardiac interstitial fibrosis; cardiac remodeling and fibrosis;
cardiac hypertrophy;
(2) ischemia, reperfussion damage; ischemia/reperfussion associated with organ transplant, lung transplant, pulmonary transplant or cardiac transplant;
conserving blood substituents in trauma patients;
(3) a sexual, gynecologicaland urological disorders selected from erectile dysfunction;
impotence; premature ejaculation; female sexual dysfunction; female sexual arousal dysfunction; hypoactive sexual arousal disorder; vaginal atrophy; dyspaneuria;

atrophic vaginitis; benign prostatic hyperplasia (BPH) or hypertrophy or enlargement;
bladder outlet obstruction; bladder pain syndrome (BPS); interstitial cystitis (IC);
overactive bladder, neurogenic bladder and incontinence; diabetic nephropathy;
(4) ocular diseases or disorders selected from glaucoma, retinopathy, diabetic retinopathy, blepharitis, dry eye syndrome, Sjögren's Syndrome;
(5) hearing diseases or disorders selected from hearing impairment; partial or total hearing loss; partial or total deathess; tinnitus; noise-induced hearing loss;
(6) topical or skin disorders or conditions selected from dermal fibrosis, scleroderma, skin fibrosis;

(7) wound healing; wound healing in diabetics; microvascular perfusion improvement;
microvascular perfusion improvement following injury, to counteract the inflammatory response in perioperative care; anal fissures; diabetic ulcers; and (8) other diseases or conditions selected from cancer metastasis;
osteoporosis, gastroparesis; functional dyspepsia; diabetic complications; diseases associated with endothelial dysfunction; and neurologic disorders associated with decreased nitric oxide production.
146. The method of claim 145, wherein the disease, health condition or disorder is a peripheral, pulmonary, hepatic, kidney, cardiac or cerebral vascular/endothelial disorder or condition, or a disease otherwise related to circulation selected from:
increased acute and chronic coronary blood pressure; arterial hypertension; vascular disorder resulting from cardiac and renal complications, heart disease, stroke, cerebral ischemia, renal failure; resistant hypertension, diabetic hypertension; congestive heart failure; diastolic or systolic dysfunction;
coronary insufficiency; arrhythmias; reduction of ventricular preload; cardiac hypertrophy;
heart failure/cardiorenal syndrome; portal hypertension; endothelial dysfunction or injury;
myocardial infarction; stroke; transient ischemic attacks (TIAs); obstructive thromboanginitis;
stable or unstable angina pectoris; coronary spasms, variant angina, Prinzmetal's angina;
restenosis as a result of thrombolysis therapies and thrombogenic disoders.
147. The method of claim 145, wherein the disease, health condition or disorder is a peripheral vascular/endothelial disorder or condition or a disease otherwise related to circulation selected from: peripheral arterial disease, peripheral occlusive arterial disease;
peripheral vascular disease; hypertonias; Raynaud's syndrome or phenomenon;
critical limb ischemia; vasculitis; peripheral embolism; intermittent claudication; vaso-occlusive crisis;
Duchene's and Becker muscular dystrophies; microcirculation abnormalities; and vascular leakage or permeability issues.
148. The method of claim 145, wherein the disease, health condition or disorder is a pulmonary disorder or condition or a disease otherwise related to circulation selected from:
pulmonary hypertension; pulmonary arterial hypertension and associated pulmonary vascular remodeling; localized thrombosis; right heart hypertrophy; pulmonary hypertonia; primary pulmonary hypertension; secondary pulmonary hypertension; familial pulmonary hypertension, sporadic pulmonary hypertension; pre-capillary pulmonary hypertension;

idiopathic pulmonary hypertension; thrombotic pulmonary arteriopathy;
plexogenic pulmonary arteriopathy; cystic fibrosis; bronchoconstriction or pulmonary bronchoconstriction; acute respiratory distress syndrome; lung fibrosis and lung transplant.
149. The method of claim 148, wherein the pulmonary hypertension is pulmonary hypertension associated with or related to: left ventricular dysfunction, hypoxemia, WHO
groups I, II, III, IV and V hypertensions, mitral valve disease, constrictive pericarditis, aortic stenosis, cardiomyopathy, mediastinal fibrosis, pulmonary fibrosis, anomalous pulmonary venous drainage, pulmonary venooclusive disease, pulmonary vasculitis, collagen vascular disease, congenital heart disease, pulmonary venous hypertension, interstitial lung disease, sleep-disordered breathing, sleep apnea, alveolar hypoventilation disorders, chronic exposure to high altitude, neonatal lung disease, alveolar-capillary dysplasia, sickle cell disease, coagulation disorders, chronic thromboembolism; pulmonary embolism, due to tumor, parasites or foreign material; connective tissue disease, lupus, schistosomiasis, sarcoidosis, chronic obstructive pulmonary disease, asthma, emphysema, chronic bronchitis, pulmonary capillary hemangiomatosis; histiocytosis X; lymphangiomatosis and compressed pulmonary vessels due to adenopathy, tumor or fibrosing mediastinitis.
150. The method of claim 145, wherein the disease, health condition or disorder is a vascular or endothelial disorder or condition or a disease otherwise related to circulation selected from:
arterosclerotic diseases; atherosclerosis, atherosclerosis associated with endothelial injury, atherosclerosis associated with platelet and monocyte adhesion and aggregation, atherosclerosis associated with smooth muscle proliferation and migration;
restenosis, restenosis developed after thrombolysis therapies; restenosis developed after percutaneous transluminal angioplasties; restensosis developed after percutaneous transluminal coronary angioplasties and bypass; inflammation; cardiovascular disease associated with metabolic syndrome, obesity, dyslipidemia, diabetes or high blood pressure; lipid related disorders, dyslipidemia, hypercholesterolemia, hypertriglyceridemia, sitosterolemia, fatty liver disease, and hepatitis; preeclamsia; polycystic kidney disease progression; and subcutaneous fat.
151. The method of claim 145, wherein the disease, health condition or disorder selected from liver cirrhosis, liver cirrhosis associated with chronic liver disease, hepatic fibrosis, hepatic stellate cell activation, hepatic fibrous collagen; total collagen accumulation; liver disease of necro-inflammatory or of immunological origin.
152. The method of claim 145, wherein the disease, health condition or disorder is a urogenital system disorder selected from renal fibrosis; renal failure resulting from chronic kidney diseases or insufficiency; renal failure due to accumulation or deposition and tissue injury, progressive sclerosis or glomerulonephritis; and prostatic hypertrophy.
153. The method according to claim 145, wherein the disease, health condition or disorder is systemic sclerosis.
154. The method of claim 145, wherein the disease, health condition or disorder is a cardiac disorder selected from cardiac interstitial fibrosis; cardiac remodeling and fibrosis and cardiac hypertrophy.
155. The method of claim 145, wherein the disease, health condition or disorder is selected from Alzheimer's disease; Parkinson's disease; dementia; vascular cognitive impairment;
cerebral vasospasm; and traumatic brain injury.
156. The method of claim 145, wherein the disease, health condition or disorder is selected from ischemia, reperfussion damage; ischemia/reperfussion associated with organ transplant, lung transplant, pulmonary transplant or cardiac transplant; and conserving blood substituents in trauma patients.
157. The method of claim 145, wherein the disease, health condition or disorder is a sexual, gynecological or urological disorder of condition selected from erectile dysfunction;
impotence; premature ejaculation; female sexual dysfunction; female sexual arousal dysfunction; hypoactive sexual arousal disorder; vaginal atrophy, dyspaneuria, atrophic vaginitis; benign prostatic hyperplasia (BPH) or hypertrophy or enlargement;
bladder outlet obstruction; bladder pain syndrome (BPS); interstitial cystitis (IC);
overactive bladder, neurogenic bladder and incontinence; and diabetic nephropathy.
158. The method according to claim 157, wherein the disease, health condition or disorder is selected from vaginal atrophy, dyspaneuria and atrophic vaginitis.
159. The method according to claim 157, wherein the disease, health condition or disorder is selected from benign prostatic hyperplasia (BPH) or hypertrophy or enlargement; bladder outlet obstruction; bladder pain syndrome (BPS); interstitial cystitis (IC);
overactive bladder, neurogenic bladder and incontinence.
160. The method of claim 157, wherein the disease, health condition or disorder is a sexual, condition selected from erectile dysfunction; impotence; premature ejaculation; female sexual dysfunction; female sexual arousal dysfunction and hypoactive sexual arousal disorder.
161. The method of claim 157, wherein the disease or disorder is diabetic nephropathy.
162. The method of claim 147, wherein the disease, health condition or disorder is selected from Duchene's muscular dystrophy and Becker muscular dystrophy.
163. The method of claim 145, wherein the disease is an ocular diseases or disorder selected from glaucoma, retinopathy, diabetic retinopathy, blepharitis, dry eye syndrome and Sjögren's Syndrome.
164. The method of claim 145, wherein the disease is a hearing diseases or disorder selected from hearing impairment, partial or total hearing loss; partial or total deafness; tinnitus; and noise-induced hearing loss.
165. The method of claim 145, wherein the disease is a topical or skin disorders or condition selected from dermal fibrosis, scleroderma and skin fibrosis.
166. The method of claim 145, wherein the treatment involves wound healing;
wound healing in diabetics; improvement of microvascular perfusion; improvement of microvascular perfusion issues following injury; treatment of anal fissures; and treatment of diabetic ulcers.
167. The method of claim 145, wherein the disease or condition is selected from cancer metastasis; osteoporosis; gastroparesis; functional dyspepsia; diabetic complications; diseases associated with endothelial dysfunction; and neurologic disorders associated with decreased nitric oxide production.
168. The method of one of claims 145-167, further comprising administering an effective amount of one or more additional therapeutic agents to the subject.
169. The method of claim 168, wherein the one or more additional therapeutic agents are selected from endothelium-derived releasing factor, NO donors, substances that enhance cGMP concentrations, nitric oxide synthase substrates, compounds which enhance eNOS

transcription, NO-independent heme-independent sGC activators, heme-dependent sGC
stimulators, inhibitors of cGMP degradation, calcium channel blockers, endothelin receptor antagonists, prostacyclin derivatives, antihyperlipidemics, anticoagulants, antiplatelet drugs, ACE inhibitors, supplemental oxygen, beta blockers, antiarrhythmic agents, diuretics, exogenous vasodilators, bronchodilators, corticosteroids, dietary supplements, PGD2 receptor antagonists, immunosuppressants, non-steroidal antiasthmatics, non-steroidal anti-inflammatory agents, cyclooxygenase-2 inhibitors and anti-diabetic agents.
CA2907111A 2013-03-15 2014-03-14 Sgc stimulators Active CA2907111C (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201361790637P 2013-03-15 2013-03-15
US61/790,637 2013-03-15
US201361914915P 2013-12-11 2013-12-11
US61/914,915 2013-12-11
PCT/US2014/028370 WO2014144100A2 (en) 2013-03-15 2014-03-14 Sgc stimulators

Publications (2)

Publication Number Publication Date
CA2907111A1 true CA2907111A1 (en) 2014-09-18
CA2907111C CA2907111C (en) 2023-10-24

Family

ID=50513493

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2907111A Active CA2907111C (en) 2013-03-15 2014-03-14 Sgc stimulators

Country Status (24)

Country Link
US (8) US9481689B2 (en)
EP (3) EP3660013B1 (en)
JP (5) JP2016517432A (en)
KR (3) KR102502937B1 (en)
CN (5) CN109384778B (en)
AU (4) AU2014227862C1 (en)
BR (1) BR112015023349A2 (en)
CA (1) CA2907111C (en)
CY (1) CY1122919T1 (en)
DK (2) DK3660013T3 (en)
EA (2) EA031746B1 (en)
ES (3) ES2911276T3 (en)
HK (2) HK1213541A1 (en)
HR (2) HRP20220376T1 (en)
HU (2) HUE059178T2 (en)
IL (4) IL285564B2 (en)
LT (2) LT2970243T (en)
ME (1) ME03664B (en)
MX (2) MX361208B (en)
PL (2) PL2970243T3 (en)
PT (2) PT2970243T (en)
RS (2) RS63108B1 (en)
SI (2) SI3660013T1 (en)
WO (1) WO2014144100A2 (en)

Families Citing this family (78)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003053288A1 (en) 2001-12-20 2003-07-03 Trivascular, Inc. Advanced endovascular graft
JP6010545B2 (en) 2010-12-23 2016-10-19 トゥエルヴ, インコーポレイテッド System for mitral valve repair and replacement
WO2012177942A2 (en) 2011-06-21 2012-12-27 Hanson Gifford, Iii Prosthetic heart valve devices and associated systems and methods
US9655722B2 (en) 2011-10-19 2017-05-23 Twelve, Inc. Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods
US9763780B2 (en) 2011-10-19 2017-09-19 Twelve, Inc. Devices, systems and methods for heart valve replacement
CN107028685B (en) 2011-10-19 2019-11-15 托尔福公司 Artificial heart valve film device, artificial mitral valve and related systems and methods
US9039757B2 (en) 2011-10-19 2015-05-26 Twelve, Inc. Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods
US11202704B2 (en) 2011-10-19 2021-12-21 Twelve, Inc. Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods
AU2012325809B2 (en) 2011-10-19 2016-01-21 Twelve, Inc. Devices, systems and methods for heart valve replacement
EP2797915B1 (en) * 2011-12-27 2016-07-13 Ironwood Pharmaceuticals, Inc. 2-benzyl-3-(oxazole/thiazole)-5-(pyrimidin-2-yl)-1(H)-pyrazole derivatives as stimulators of the soluble guanylate cyclase (sGC) for the treatment of e.g. hypertension or heart failure
US9579198B2 (en) 2012-03-01 2017-02-28 Twelve, Inc. Hydraulic delivery systems for prosthetic heart valve devices and associated methods
CA2885645A1 (en) 2012-09-19 2014-03-27 Ironwood Pharmaceuticals, Inc. Sgc stimulators
LT2970243T (en) 2013-03-15 2020-03-10 Cyclerion Therapeutics, Inc. Sgc stimulators
US10111747B2 (en) 2013-05-20 2018-10-30 Twelve, Inc. Implantable heart valve devices, mitral valve repair devices and associated systems and methods
EP3092231B1 (en) * 2013-12-11 2018-06-27 Ironwood Pharmaceuticals, Inc. Sgc stimulators
EP3094327A1 (en) 2014-01-13 2016-11-23 Ironwood Pharmaceuticals, Inc. USE OF sGC STIMULATORS FOR THE TREATMENT OF NEUROMUSCULAR DISORDERS
WO2016044445A2 (en) * 2014-09-17 2016-03-24 Ironwood Pharmaceuticals, Inc. sGC STIMULATORS
KR20170055531A (en) * 2014-09-17 2017-05-19 아이언우드 파마슈티컬스, 인코포레이티드 Sgc stimulators
US20170291889A1 (en) 2014-09-17 2017-10-12 Ironwood Pharmaceuticals, Inc. Pyrazole derivatives as sgc stimulators
US10844064B2 (en) * 2014-09-17 2020-11-24 Cyclerion Therapeutics, Inc. sGC stimulators
KR102336926B1 (en) 2014-10-06 2021-12-08 버텍스 파마슈티칼스 인코포레이티드 Modulators of cystic fibrosis transmembrane conductance regulator
WO2017013010A1 (en) 2015-07-23 2017-01-26 Bayer Pharma Aktiengesellschaft Stimulators and/or activators of soluble guanylate cyclase (sgc) in combination with an inhibitor of neutral endopeptidase (nep inhibitor) and/or an angiotensin aii antagonist and the use thereof
CN107920895B (en) 2015-08-21 2020-06-26 托尔福公司 Implantable heart valve devices, mitral valve repair devices, and associated systems and methods
AU2016364976B2 (en) * 2015-11-30 2022-08-25 Cyclerion Therapeutics, Inc. Solid dispersions comprising a sGC stimulator
EA201891416A1 (en) 2015-12-14 2018-12-28 Айронвуд Фармасьютикалз, Инк. APPLICATION of sGC STIMULATORS FOR THE TREATMENT OF GASTRIC AND INTESTINAL SPINKLIN TREATMENT
US11420944B2 (en) 2016-01-12 2022-08-23 Nippon Chemiphar Co., Ltd. Voltage-dependent t-type calcium channel blocker
KR20180104123A (en) * 2016-02-01 2018-09-19 아이언우드 파마슈티컬스, 인코포레이티드 Use of sGC stimulants for the treatment of nonalcoholic steatohepatitis (NASH)
WO2017173274A1 (en) 2016-03-31 2017-10-05 Vertex Pharmaceuticals Incorporated Modulators of cystic fibrosis transmembrane conductance regulator
CN105753783B (en) * 2016-04-08 2017-12-15 李文淏 A kind of method for synthesizing celecoxib
WO2017189276A1 (en) 2016-04-29 2017-11-02 Medtronic Vascular Inc. Prosthetic heart valve devices with tethered anchors and associated systems and methods
MX2019000105A (en) 2016-07-07 2019-04-22 Ironwood Pharmaceuticals Inc Novel processes for preparation of soluble guanylate cyclase stimulators.
WO2018009596A1 (en) * 2016-07-07 2018-01-11 Ironwood Pharmaceuticals, Inc. Phosphorus prodrugs of sgc stimulators
JP7054395B2 (en) * 2016-07-07 2022-04-13 サイクレリオン・セラピューティクス,インコーポレーテッド A novel method for preparing a soluble guanylate cyclase stimulant
IL263996B2 (en) * 2016-07-07 2024-03-01 Ironwood Pharmaceuticals Inc Solid forms of an sgc stimulator
JP7050759B2 (en) * 2016-09-02 2022-04-08 サイクレリオン・セラピューティクス,インコーポレーテッド Condensation bicyclic SGC stimulant
EA038096B1 (en) * 2016-09-23 2021-07-06 Сайклерион Терапьютикс, Инк. USE OF sGC STIMULATORS FOR THE TREATMENT OF NONALCOHOLIC STEATOHEPATITIS (NASH)
PL3519401T3 (en) 2016-09-30 2022-01-31 Vertex Pharmaceuticals Incorporated Modulator of cystic fibrosis transmembrane conductance regulator, pharmaceutical compositions, methods of treatment, and process for making the modulator
WO2018069148A1 (en) 2016-10-11 2018-04-19 Bayer Pharma Aktiengesellschaft Combination containing sgc activators and mineralocorticoid receptor antagonists
JP7101688B2 (en) 2016-10-11 2022-07-15 バイエル・ファルマ・アクティエンゲゼルシャフト Combinations containing sGC stimulants and mineral corticoid receptor antagonists
EP3538520A2 (en) 2016-11-08 2019-09-18 Cyclerion Therapeutics, Inc. Sgc stimulators
CN110267948B (en) 2016-12-09 2023-12-08 弗特克斯药品有限公司 Modulators of cystic fibrosis transmembrane conductance regulator, pharmaceutical compositions, methods of treatment, and methods for preparing the modulators
EP3554488A2 (en) 2016-12-13 2019-10-23 Cyclerion Therapeutics, Inc. Use of sgc stimulators for the treatment of esophageal motility disorders
US10433961B2 (en) 2017-04-18 2019-10-08 Twelve, Inc. Delivery systems with tethers for prosthetic heart valve devices and associated methods
US10575950B2 (en) 2017-04-18 2020-03-03 Twelve, Inc. Hydraulic systems for delivering prosthetic heart valve devices and associated methods
US10702378B2 (en) 2017-04-18 2020-07-07 Twelve, Inc. Prosthetic heart valve device and associated systems and methods
US10792151B2 (en) 2017-05-11 2020-10-06 Twelve, Inc. Delivery systems for delivering prosthetic heart valve devices and associated methods
US10646338B2 (en) 2017-06-02 2020-05-12 Twelve, Inc. Delivery systems with telescoping capsules for deploying prosthetic heart valve devices and associated methods
US10709591B2 (en) 2017-06-06 2020-07-14 Twelve, Inc. Crimping device and method for loading stents and prosthetic heart valves
WO2018227049A1 (en) 2017-06-08 2018-12-13 Vertex Pharmaceuticals Incorporated Methods of treatment for cystic fibrosis
US10786352B2 (en) 2017-07-06 2020-09-29 Twelve, Inc. Prosthetic heart valve devices and associated systems and methods
US10729541B2 (en) 2017-07-06 2020-08-04 Twelve, Inc. Prosthetic heart valve devices and associated systems and methods
US11517564B2 (en) 2017-07-17 2022-12-06 Vertex Pharmaceuticals Incorporated Methods of treatment for cystic fibrosis
CA3071278A1 (en) 2017-08-02 2019-02-07 Vertex Pharmaceuticals Incorporated Processes for preparing pyrrolidine compounds
US11389449B2 (en) 2017-09-14 2022-07-19 Cyclerion Therapeutics, Inc. Treatment of metabolic syndrome with an sGC stimulator
IL273831B1 (en) 2017-10-19 2024-06-01 Vertex Pharma Crystalline forms and compositions of cftr modulators
WO2019081456A1 (en) 2017-10-24 2019-05-02 Bayer Aktiengesellschaft Use of activators and stimulators of sgc comprising a beta2 subunit
US11465985B2 (en) 2017-12-08 2022-10-11 Vertex Pharmaceuticals Incorporated Processes for making modulators of cystic fibrosis transmembrane conductance regulator
EP3498298A1 (en) 2017-12-15 2019-06-19 Bayer AG The use of sgc stimulators and sgc activators alone or in combination with pde5 inhibitors for the treatment of bone disorders including osteogenesis imperfecta (oi)
CA3086207A1 (en) 2017-12-19 2019-06-27 Cyclerion Therapeutics, Inc. Sgc stimulators
WO2019161534A1 (en) * 2018-02-22 2019-08-29 Ironwood Pharmaceuticals, Inc. Novel processes and intermediates for preparation of soluble guanylate cyclase stimulators
JOP20200165A1 (en) * 2018-01-10 2022-10-30 Cyclerion Therapeutics Inc Novel processes and intermediates for the preparation of soluble guanylate cyclase stimulators
CN108129387B (en) * 2018-01-31 2020-05-22 南京药石科技股份有限公司 Preparation method for synthesizing 2-azabicyclo [4.1.0] heptane-1-formic acid hydrochloride
TWI810243B (en) 2018-02-05 2023-08-01 美商維泰克斯製藥公司 Pharmaceutical compositions for treating cystic fibrosis
EP3774825A1 (en) 2018-04-13 2021-02-17 Vertex Pharmaceuticals Incorporated Modulators of cystic fibrosis transmembrane conductance regulator, pharmaceutical compositions, methods of treatment, and process for making the modulator
CA3098475A1 (en) 2018-04-30 2019-11-07 Bayer Aktiengesellschaft The use of sgc activators and sgc stimulators for the treatment of cognitive impairment
EP3574905A1 (en) 2018-05-30 2019-12-04 Adverio Pharma GmbH Method of identifying a subgroup of patients suffering from dcssc which benefits from a treatment with sgc stimulators and sgc activators in a higher degree than a control group
KR20210031931A (en) 2018-07-11 2021-03-23 사이클리온 테라퓨틱스, 인크. Use of sGC stimulants for the treatment of mitochondrial disorders
CA3115190A1 (en) * 2018-12-05 2020-06-11 Urovant Sciences Gmbh Vibegron for the treatment of overactive bladder symptoms
US11096692B2 (en) * 2018-12-13 2021-08-24 Nxt Biomedical, Llc Blood oxygenation treatment methods and devices
CN113330030A (en) 2019-01-17 2021-08-31 拜耳公司 Method for determining whether a subject is suitable for treatment with an agonist of soluble guanylate cyclase (sGC)
BR102019016950A2 (en) * 2019-08-15 2021-02-23 Inst De Pesquisa Ensino Ciencia E Tecnologia Aplicada Inst Galzu intraurethral dosage form of medication; and device
US20230087609A1 (en) 2020-02-21 2023-03-23 Universiteit Maastricht USE OF A SOLUBLE GUANYLATE CYCLASE (sGC) STIMULATOR OR OF A COMBINATION OF A sGC STIMULATOR AND AN sGC ACTIVATOR FOR CONDITIONS WHEREIN THE HEME GROUP OF sGC IS OXIDIZED OR WHEREIN sGC IS DEFICIENT IN HEME
CA3170508A1 (en) 2020-02-26 2021-09-02 Universiteit Maastricht Therapeutic combination for the treatment of brain ischemia and said therapeutic combination for use in the treatment of brain ischemia
CN111440315B (en) * 2020-04-28 2021-07-02 中国科学院长春应用化学研究所 Self-repairing thermoplastic polyurea elastomer and preparation method thereof
CN112142716B (en) * 2020-10-29 2021-08-31 山东新时代药业有限公司 5-membered heteroaryl substituted pyrazine derivative and application thereof
CN112569179B (en) * 2020-12-25 2022-12-27 上海交通大学医学院附属第九人民医院 Injectable hydrogel system and preparation method thereof
CN114957087A (en) * 2022-04-13 2022-08-30 湖南复瑞生物医药技术有限责任公司 Preparation method of intermediate of palovaried
CN117582909B (en) * 2024-01-19 2024-04-02 天津凯莱英医药科技发展有限公司 System and method for continuously producing 5-isosorbide mononitrate

Family Cites Families (86)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3773919A (en) 1969-10-23 1973-11-20 Du Pont Polylactide-drug mixtures
US3995631A (en) 1971-01-13 1976-12-07 Alza Corporation Osmotic dispenser with means for dispensing active agent responsive to osmotic gradient
US4203440A (en) 1978-10-23 1980-05-20 Alza Corporation Device having variable volume chamber for dispensing useful agent
US4627850A (en) 1983-11-02 1986-12-09 Alza Corporation Osmotic capsule
EP0192963B1 (en) 1985-02-27 1988-07-20 Werkzeugmaschinenfabrik Oerlikon-Bührle AG Apparatus for measuring the vibrations of a spiral bevel gear transmission in a gear-testing machine
IL92966A (en) 1989-01-12 1995-07-31 Pfizer Dispensing devices powered by hydrogel
US5721365A (en) 1989-09-15 1998-02-24 Us Health N-substituted piperazine NONOates
US5304121A (en) 1990-12-28 1994-04-19 Boston Scientific Corporation Drug delivery system making use of a hydrogel polymer coating
US5324280A (en) 1990-04-02 1994-06-28 Alza Corporation Osmotic dosage system for delivering a formulation comprising liquid carrier and drug
US5155137A (en) 1990-09-20 1992-10-13 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Complexes of nitric oxide with polyamines
JP3190340B2 (en) 1991-09-24 2001-07-23 アメリカ合衆国 Oxygen-Substituted Derivatives of Nucleophiles-Nitric Oxide Adducts as Nitric Oxide Donor Prodrugs
DE69131206T2 (en) 1991-12-05 2000-01-05 Wallac Oy LUMINESCENT LANTHANIDE CHELATES
US5814666A (en) 1992-04-13 1998-09-29 The United States As Represented By The Department Of Health And Human Services Encapsulated and non-encapsulated nitric oxide generators used as antimicrobial agents
US5632981A (en) 1992-08-24 1997-05-27 The United States Of America As Represented By The Department Of Health And Human Services Biopolymer-bound nitric oxide-releasing compositions, pharmaceutical compositions incorporating same and methods of treating biological disorders using same
US5691423A (en) 1992-08-24 1997-11-25 The United States Of America As Represented By The Department Of Health And Human Services Polysaccharide-bound nitric oxide-nucleophile adducts
US5910316A (en) 1992-08-24 1999-06-08 The United States Of America, As Represented By The Department Of Health And Human Services Use of nitric oxide-releasing agents to treat impotency
US5405919A (en) 1992-08-24 1995-04-11 The United States Of America As Represented By The Secretary Of Health And Human Services Polymer-bound nitric oxide/nucleophile adduct compositions, pharmaceutical compositions and methods of treating biological disorders
US5716981A (en) 1993-07-19 1998-02-10 Angiogenesis Technologies, Inc. Anti-angiogenic compositions and methods of use
DE69425331D1 (en) 1993-10-08 2000-08-24 Us Health USE OF NITROGEN OXID RELEASING COMPOUNDS AS A MEDICINE FOR RADIATION SENSITIZATION FOR HYPOXIC CELLS
JP2928079B2 (en) 1994-02-14 1999-07-28 永信薬品工業股▲ふん▼有限公司 1- (Substituted benzyl) -3- (substituted aryl) condensed pyrazoles, their production and use
US5700830A (en) 1994-11-22 1997-12-23 The United States Of America As Represented By The Department Of Health And Human Services Use of nitric oxide-releasing agents for reducing metastasis risk
US5470862A (en) * 1995-02-03 1995-11-28 Ohmeda Pharmaceutical Products Division Inc. Substituted pyrazolyl compounds and methods employing such compounds
US6099562A (en) 1996-06-13 2000-08-08 Schneider (Usa) Inc. Drug coating with topcoat
ES2270438T3 (en) 1995-06-21 2007-04-01 SHIONOGI &amp; CO., LTD. BICYCLE AMINO DERIVATIVES AND PGD2 AGONIST CONTAINING THE SAME.
US5714511A (en) 1995-07-31 1998-02-03 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Selective prevention of organ injury in sepsis and shock using selection release of nitric oxide in vulnerable organs
ATE295360T1 (en) 1996-12-12 2005-05-15 Shionogi & Co CONDENSED HETEROCYCLIC BENZENECARBONIC ACID AMIDE DERIVATIVES AND PGD2 ANTAGONISTS CONTAINING SAME
CZ297324B6 (en) 1996-12-13 2006-11-15 Shionogi & Co., Ltd. Benzothiophenecarboxamide derivatives and PGD2 antagonists comprising them
DE19744026A1 (en) 1997-10-06 1999-04-08 Hoechst Marion Roussel De Gmbh Pyrazole derivatives, their preparation and their use in medicinal products
DE19830430A1 (en) 1998-07-08 2000-01-13 Hoechst Marion Roussel De Gmbh New sulfur-substituted sulfonylamino-carboxylic acid N-arylamide derivatives useful as guanylate cyclase activators in treatment of e.g. cardiovascular disorders, asthma and diabetes
CZ302691B6 (en) 1998-07-08 2011-09-07 Sanofi - Aventis Deutschland GmbH N-arylamide compound, process for its preparation, pharmaceutical composition containing thereof, the compound for use as activator and for use in therapy or prophylaxis
DE19834044A1 (en) 1998-07-29 2000-02-03 Bayer Ag New substituted pyrazole derivatives
DE19834047A1 (en) 1998-07-29 2000-02-03 Bayer Ag Substituted pyrazole derivatives
GB9824310D0 (en) * 1998-11-05 1998-12-30 Univ London Activators of soluble guanylate cyclase
IL143691A0 (en) 1998-12-17 2002-04-21 Alza Corp Conversion of liquid filled gelatin capsules into controlled release systems by multiple coatings
US6342249B1 (en) 1998-12-23 2002-01-29 Alza Corporation Controlled release liquid active agent formulation dosage forms
DE19942809A1 (en) 1999-09-08 2001-03-15 Bayer Ag Process for the preparation of substituted pyrimidine derivatives
DE19943635A1 (en) 1999-09-13 2001-03-15 Bayer Ag Novel aminodicarboxylic acid derivatives with pharmaceutical properties
WO2003022814A1 (en) 2001-09-07 2003-03-20 Ono Pharmaceutical Co., Ltd. Indole derivatives
US20010051624A1 (en) 2000-04-12 2001-12-13 Jones Thomas R. Method and compositions for the treatment of allergic conditions using PGD2 receptor antagonists
AU2001250206A1 (en) 2000-04-12 2001-10-30 Merck Frosst Canada Ltd Method and compositions for the treatment of allergic conditions using pgd2 receptor antagonists
US6878522B2 (en) 2000-07-07 2005-04-12 Baiyong Li Methods for the identification of compounds useful for the treatment of disease states mediated by prostaglandin D2
AR031176A1 (en) * 2000-11-22 2003-09-10 Bayer Ag NEW DERIVATIVES OF PIRAZOLPIRIDINA SUBSTITUTED WITH PIRIDINE
TWI243164B (en) 2001-02-13 2005-11-11 Aventis Pharma Gmbh Acylated indanyl amines and their use as pharmaceuticals
AR035431A1 (en) 2001-02-13 2004-05-26 Aventis Pharma Gmbh 6,7,8,9-TETRAHIDRO-5H-BENZOCICLOHEPTENIL ACILATED AMINES, A METHOD FOR SYNTHESIS, PHARMACEUTICAL COMPOSITIONS AND THE USE OF SUCH COMPOUNDS FOR THE MANUFACTURE OF MEDICINES
TWI241190B (en) 2001-02-13 2005-10-11 Aventis Pharma Gmbh 4-Fluoro-N-indan-2-yl benzamide and its use as pharmaceutical
PE20020856A1 (en) 2001-02-13 2002-11-11 Aventis Pharma Gmbh 1,2,3,4-TETRAHYDRONAFTIL ACILATED AMINES
US6511911B1 (en) 2001-04-03 2003-01-28 Advanced Micro Devices, Inc. Metal gate stack with etch stop layer
US7153852B2 (en) 2001-09-07 2006-12-26 Ono Pharmaceutical Co., Ltd. Indole compounds, process for producing the same and drugs containing the same as the active ingredient
SE0200356D0 (en) 2002-02-05 2002-02-05 Astrazeneca Ab Novel use
SE0200411D0 (en) 2002-02-05 2002-02-05 Astrazeneca Ab Novel use
DE10216145A1 (en) 2002-04-12 2003-10-23 Bayer Ag Use of stimulators of soluble guanylate cyclase to produce a medicament for treating glaucoma
DE10220570A1 (en) 2002-05-08 2003-11-20 Bayer Ag Carbamate-substituted pyrazolopyridines
WO2003097598A1 (en) 2002-05-16 2003-11-27 Shionogi & Co., Ltd. Compound exhibiting pgd 2 receptor antagonism
WO2003097042A1 (en) 2002-05-16 2003-11-27 Shionogi & Co., Ltd. Pgd2 receptor antagonist
SE0201635D0 (en) 2002-05-30 2002-05-30 Astrazeneca Ab Novel compounds
TW200307542A (en) 2002-05-30 2003-12-16 Astrazeneca Ab Novel compounds
SE0202241D0 (en) 2002-07-17 2002-07-17 Astrazeneca Ab Novel Compounds
DE10244810A1 (en) * 2002-09-26 2004-04-08 Bayer Ag New morpholine-bridged indazole derivatives
KR20050055747A (en) 2002-10-04 2005-06-13 밀레니엄 파머슈티컬스 인코퍼레이티드 Pgd2 receptor antagonists for the treatment of inflammatory diseases
ES2401079T3 (en) 2002-12-20 2013-04-16 Amgen Inc. Asthma and allergic inflammation modulators
CN100439371C (en) * 2003-04-29 2008-12-03 辉瑞大药厂 5,7-diaminopyrazolo[4,3-d]pyrimidines useful in the traetment of hypertension
EP1479679A1 (en) 2003-05-19 2004-11-24 Aventis Pharma Deutschland GmbH Triazole-derivatives as factor Xa inhibitors
MXPA06001506A (en) 2003-08-04 2006-05-15 Pfizer Prod Inc Dosage forms providing controlled release of cholesteryl ester transfer protein inhibitors and immediate release of hmg-coa reductase inhibitors.
US8309608B2 (en) 2003-11-06 2012-11-13 Sanofi-Aventis Deutschland Gmbh Use of eNOS transcription enhancers in the cell therapy of ischemic heart diseases
US20100144864A1 (en) 2007-04-05 2010-06-10 Ironwood Pharmaceuticals, Inc. Soluble guanylate cyclase (sgc) modulators for treatment of lipid related disorders
AU2008296974B2 (en) 2007-09-06 2013-10-10 Merck Sharp & Dohme Corp. Soluble guanylate cyclase activators
EP2244575B1 (en) 2008-01-24 2013-07-17 Merck Sharp & Dohme Corp. Angiotensin ii receptor antagonists
KR20110013388A (en) * 2008-05-10 2011-02-09 바이엘 쉐링 파마 악티엔게젤샤프트 Sgc stimulators, sgc activators and combinations thereof for the treatment of hearing impairment
US8741910B2 (en) 2008-11-25 2014-06-03 Merck Sharp & Dohme Corp. Soluble guanylate cyclase activators
BRPI1008793A2 (en) 2009-02-26 2016-03-08 Merck Sharp & Dohme compound use of a compound and pharmaceutical composition
WO2011115804A1 (en) 2010-03-17 2011-09-22 Ironwood Pharmaceuticals, Inc. Sgc stimulators
US9284301B2 (en) 2010-03-25 2016-03-15 Merck Sharp & Dohme Corp. Soluble guanylate cyclase activators
CN102859483B (en) 2010-04-27 2016-10-19 日本电气株式会社 The information processing terminal and control method thereof
US9365574B2 (en) 2010-05-27 2016-06-14 Merck Sharp & Dohme Corp. Soluble guanylate cyclase activators
BR112012033341B1 (en) * 2010-06-30 2022-08-23 Cyclerion Therapeutics, Inc SGC STIMULATORS
US8895583B2 (en) 2010-10-28 2014-11-25 Merck Sharp & Dohme Corp. Soluble guanylate cyclase activators
US9061030B2 (en) * 2010-11-09 2015-06-23 Ironwood Pharmaceuticals, Inc. sGC stimulators
US9284298B2 (en) * 2011-04-11 2016-03-15 Nerviano Medical Sciences S.R.L. Pyrazolyl-pyrimidine derivatives as kinase inhibitors
JP6141866B2 (en) * 2011-12-21 2017-06-07 バイエル・インテレクチュアル・プロパティ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツングBayer Intellectual Property GmbH Substituted benzylpyrazoles
EP2797915B1 (en) 2011-12-27 2016-07-13 Ironwood Pharmaceuticals, Inc. 2-benzyl-3-(oxazole/thiazole)-5-(pyrimidin-2-yl)-1(H)-pyrazole derivatives as stimulators of the soluble guanylate cyclase (sGC) for the treatment of e.g. hypertension or heart failure
DE102012200352A1 (en) 2012-01-11 2013-07-11 Bayer Intellectual Property Gmbh Substituted, fused imidazoles and pyrazoles and their use
US9309235B2 (en) 2012-09-18 2016-04-12 Ironwood Pharmaceuticals, Inc. SGC stimulators
CA2885645A1 (en) 2012-09-19 2014-03-27 Ironwood Pharmaceuticals, Inc. Sgc stimulators
LT2970243T (en) 2013-03-15 2020-03-10 Cyclerion Therapeutics, Inc. Sgc stimulators
EP3092231B1 (en) 2013-12-11 2018-06-27 Ironwood Pharmaceuticals, Inc. Sgc stimulators
EP3094327A1 (en) 2014-01-13 2016-11-23 Ironwood Pharmaceuticals, Inc. USE OF sGC STIMULATORS FOR THE TREATMENT OF NEUROMUSCULAR DISORDERS

Also Published As

Publication number Publication date
PL3660013T3 (en) 2022-05-02
US11207323B2 (en) 2021-12-28
CN110016020B (en) 2022-07-26
IL270646B (en) 2021-01-31
MX2021008281A (en) 2022-06-14
IL285564A (en) 2021-09-30
EP3998260C0 (en) 2023-11-01
CN109384778A (en) 2019-02-26
PL2970243T3 (en) 2020-06-01
EP2970243B1 (en) 2019-11-27
EP2970243A2 (en) 2016-01-20
JP6267385B2 (en) 2018-01-24
BR112015023349A2 (en) 2017-07-18
US20160031903A1 (en) 2016-02-04
US9481689B2 (en) 2016-11-01
CN109369635B (en) 2023-06-30
HUE059178T2 (en) 2022-10-28
JP2017160225A (en) 2017-09-14
US10517874B2 (en) 2019-12-31
EA201591743A8 (en) 2017-12-29
EP3660013A1 (en) 2020-06-03
CN110016020A (en) 2019-07-16
KR102362835B1 (en) 2022-02-14
EP3660013B1 (en) 2022-01-19
WO2014144100A3 (en) 2014-11-06
ES2966517T3 (en) 2024-04-22
CN105408328A (en) 2016-03-16
ME03664B (en) 2020-10-20
AU2014227862B2 (en) 2019-02-28
IL285564B1 (en) 2024-02-01
US20170136019A1 (en) 2017-05-18
IL241641B (en) 2019-11-28
AU2019203606A1 (en) 2019-06-13
US10639308B2 (en) 2020-05-05
US9586937B2 (en) 2017-03-07
US20160375022A1 (en) 2016-12-29
CA2907111C (en) 2023-10-24
CN108912111B (en) 2021-09-14
US20200316065A1 (en) 2020-10-08
JP2020143092A (en) 2020-09-10
US20160347738A1 (en) 2016-12-01
HRP20200276T1 (en) 2020-05-29
CY1122919T1 (en) 2021-10-29
AU2014227862A1 (en) 2015-11-12
JP6709000B2 (en) 2020-06-10
LT3660013T (en) 2022-04-11
JP2017178946A (en) 2017-10-05
JP2019034952A (en) 2019-03-07
CN109384778B (en) 2022-12-13
DK2970243T3 (en) 2020-03-02
PT3660013T (en) 2022-04-12
KR20210020181A (en) 2021-02-23
US20230106002A1 (en) 2023-04-06
HK1221723A1 (en) 2017-06-09
HK1213541A1 (en) 2016-07-08
SI3660013T1 (en) 2022-05-31
JP2016517432A (en) 2016-06-16
IL285564B2 (en) 2024-06-01
MX2015012473A (en) 2016-04-19
CN109369635A (en) 2019-02-22
AU2021204292A1 (en) 2021-07-22
RS63108B1 (en) 2022-04-29
WO2014144100A2 (en) 2014-09-18
EA033168B1 (en) 2019-09-30
RS59981B1 (en) 2020-03-31
CN105408328B (en) 2018-11-16
MX361208B (en) 2018-11-30
EA031746B1 (en) 2019-02-28
AU2023202058A2 (en) 2023-05-25
EA201890641A3 (en) 2018-11-30
US20170137439A1 (en) 2017-05-18
AU2019203606B2 (en) 2021-03-25
DK3660013T3 (en) 2022-03-28
AU2023202058A1 (en) 2023-05-04
HUE048543T2 (en) 2020-07-28
JP6267384B2 (en) 2018-01-24
EA201591743A1 (en) 2016-02-29
EA201890641A2 (en) 2018-07-31
EP3998260A1 (en) 2022-05-18
ES2774295T3 (en) 2020-07-20
US20190167679A1 (en) 2019-06-06
PT2970243T (en) 2020-03-05
CN108912111A (en) 2018-11-30
AU2014227862C1 (en) 2019-05-30
EP3998260B1 (en) 2023-11-01
KR102502937B1 (en) 2023-02-23
SI2970243T1 (en) 2020-04-30
KR20150129002A (en) 2015-11-18
JP7072602B2 (en) 2022-05-20
AU2021204292B2 (en) 2023-01-05
AU2019203606B9 (en) 2021-04-01
IL279695A (en) 2021-01-31
KR20220025191A (en) 2022-03-03
LT2970243T (en) 2020-03-10
ES2911276T3 (en) 2022-05-18
IL279695B (en) 2021-08-31
HRP20220376T1 (en) 2022-07-22
US10183021B2 (en) 2019-01-22
KR102218771B1 (en) 2021-02-19

Similar Documents

Publication Publication Date Title
AU2021204292B2 (en) sGC Stimulators
US10844064B2 (en) sGC stimulators
AU2011272800B2 (en) sGC stimulators
EP3194382B1 (en) Pyrazole derivatives as sgc stimulators
EP3092231B1 (en) Sgc stimulators
EP3194395B1 (en) Sgc stimulators
CA2885645A1 (en) Sgc stimulators
US20150274712A1 (en) sGC STIMULATORS
AU2011326241A1 (en) sGC stimulators
AU2017356887B2 (en) sGC stimulators
US20170298055A1 (en) sGC STIMULATORS

Legal Events

Date Code Title Description
EEER Examination request

Effective date: 20190312

EEER Examination request

Effective date: 20190312

EEER Examination request

Effective date: 20190312

EEER Examination request

Effective date: 20190312

EEER Examination request

Effective date: 20190312

EEER Examination request

Effective date: 20190312

EEER Examination request

Effective date: 20190312

EEER Examination request

Effective date: 20190312

EEER Examination request

Effective date: 20190312