US8741910B2 - Soluble guanylate cyclase activators - Google Patents

Soluble guanylate cyclase activators Download PDF

Info

Publication number
US8741910B2
US8741910B2 US13/127,334 US200913127334A US8741910B2 US 8741910 B2 US8741910 B2 US 8741910B2 US 200913127334 A US200913127334 A US 200913127334A US 8741910 B2 US8741910 B2 US 8741910B2
Authority
US
United States
Prior art keywords
pyrimidin
amino
dihydro
dimethyl
pyrrolo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US13/127,334
Other versions
US20110218202A1 (en
Inventor
Linda L. Brockunier
Jian Guo
Emma R. Parmee
Subharekha Raghavan
Keith Rosauer
Darby Schmidt
John E. Stelmach
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Merck Sharp and Dohme LLC
Original Assignee
Merck Sharp and Dohme LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Merck Sharp and Dohme LLC filed Critical Merck Sharp and Dohme LLC
Priority to US13/127,334 priority Critical patent/US8741910B2/en
Assigned to MERCK SHARP & DOHME CORP. reassignment MERCK SHARP & DOHME CORP. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SCHMIDT, DARBY RYE, BROCKUNIER, LINDA L., GUO, JIAN, PARMEE, EMMA R., RAGHAVAN, SUBHAREKHA, ROSAUER, KEITH, STELMACH, JOHN E.
Publication of US20110218202A1 publication Critical patent/US20110218202A1/en
Assigned to SCHERING CORPORATION reassignment SCHERING CORPORATION MERGER (SEE DOCUMENT FOR DETAILS). Assignors: MERCK SHARP & DOHME CORP.
Assigned to MERCK SHARP & DOHME CORP. reassignment MERCK SHARP & DOHME CORP. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: SCHERING CORPORATION
Application granted granted Critical
Publication of US8741910B2 publication Critical patent/US8741910B2/en
Assigned to MERCK SHARP & DOHME LLC reassignment MERCK SHARP & DOHME LLC MERGER (SEE DOCUMENT FOR DETAILS). Assignors: MERCK SHARP & DOHME CORP.
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/06Antiasthmatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • A61P15/10Drugs for genital or sexual disorders; Contraceptives for impotence
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/02Antithrombotic agents; Anticoagulants; Platelet aggregation inhibitors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/04Inotropic agents, i.e. stimulants of cardiac contraction; Drugs for heart failure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/12Antihypertensives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D519/00Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00

Definitions

  • Cyclic GMP is an important intracellular messenger which triggers a multitude of different effects via the modulation of cGMP-dependent protein kinases, phosphodiesterases and ion channels. Examples are the relaxation of smooth muscles, the inhibition of thrombocyte activation and the inhibition of the proliferation of smooth-muscle cells and of leukocyte adhesion.
  • cGMP is produced by particulate and soluble guanylate cyclases as a response to a number of extracellular and intracellular stimuli. In the case of the particulate guanylate cyclases, stimulation is essentially effected by peptidic messengers, such as the atrial natriuretic peptide or the cerebral natriuretic peptide.
  • sGC soluble guanylate cyclases
  • sGC soluble guanylate cyclases
  • the most important stimulant is nitrogen monoxide (“NO”) or a closely related species.
  • NO nitrogen monoxide
  • the function of other factors such as carbon monoxide or the hydroxyl radical is still largely unclear.
  • the binding of NO to the heme with formation of a penta-coordinate heme-nitrosyl complex is proposed as the mechanism of the activation by NO.
  • the associated release of the histidine which is bound in the basal state to the iron converts the enzyme into the active conformation.
  • Active soluble guanylate cyclases are composed of an ⁇ and a ⁇ subunit each.
  • Several subunit subtypes have been described which differ from one another with respect to sequence, tissue-specific distribution and expression in different development stages.
  • the subtypes ⁇ 1 and ⁇ 1 are mainly expressed in brain and lung, while ⁇ 2 is found in particular in liver and kidney.
  • the subtype ⁇ 2 was shown to be present in human fetal brain.
  • the subunits referred to as ⁇ 3 and ⁇ 3 were isolated from human brain and are homologous to ⁇ 1 and ⁇ 1 .
  • More recent works indicate an ⁇ 2i subunit which contains an insert in the catalytic domain. All subunits show great homologies in the region of the catalytic domain.
  • the enzymes presumably contain one heme per heterodimer, which is bound via ⁇ 1 -Cys-78 and/or ⁇ 1 -His-105 and is part of the regulatory center.
  • guanylate-cyclase-activating factors can be reduced, or their degradation may be promoted owing to the increased occurrence of free radicals.
  • the resulting reduced activation of the sGC leads, via a weakening of the respective cGMP-mediated cellular response, for example to an increase of the blood pressure, to platelet activation or to increased cell proliferation and cell adhesion.
  • a weakening of the respective cGMP-mediated cellular response for example to an increase of the blood pressure, to platelet activation or to increased cell proliferation and cell adhesion.
  • endothelial dysfunction, atherosclerosis, hypertension, stable or unstable angina pectoris, thromboses, myocardial infarction, strokes or erectile dysfunction results.
  • Pharmacological stimulation of sGC offers a possibility to normalize cGMP production and therefore makes possible the treatment and/or prevention of such disorders.
  • the compounds of the present invention effect a strong activation of guanylate cyclase and are therefore suitable for the therapy and prophylaxis of disorders which are associated with a low cGMP level.
  • the present invention relates to compounds which activate soluble guanylate cyclase which are valuable pharmaceutically active compounds for the therapy and prophylaxis of diseases, for example for cardiovascular diseases such as hypertension, heart failure, pulmonary hypertension, angina pectoris, diabetes, cardiac insufficiency, thromboses or atherosclerosis.
  • cardiovascular diseases such as hypertension, heart failure, pulmonary hypertension, angina pectoris, diabetes, cardiac insufficiency, thromboses or atherosclerosis.
  • the invention furthermore relates to processes for preparing compounds of the Formula I, to their use for the therapy and prophylaxis of the above-mentioned diseases and for preparing pharmaceuticals for this purpose, and to pharmaceutical preparations which comprise compounds of Formula I.
  • the invention concerns compounds of Formula I which activate soluble guanylate cyclase:
  • R a and R b are independently selected at each occurrence from the group consisting of —H and —C 1 -C 6 alkyl;
  • R c is independently selected at each occurrence from the group consisting of —C 1 -C 6 alkyl, —CF 3 , and aryl;
  • R 1 is independently selected at each occurrence from the group consisting of —H, halo, aryl, heteroaryl, —C 1 -C 6 alkyl, —C 3-10 cycloalkyl, —OR, —NO 2 , —CN, —CO 2 R a , —NR a R b , —S(O) p R c , thioxo, azido, —C( ⁇ O)R a , —OC(O) n R a , —OC( ⁇ O)OR a , —OC( ⁇ O)NR a R b , —SO
  • the invention is directed to compounds of Formula II:
  • R a is independently selected at each occurrence from the group consisting of —H and —C 1 -C 6 alkyl
  • R 1 is independently selected at each occurrence from the group consisting of —H, halo, aryl, heteroaryl, —C 1 -C 6 alkyl and —C 3-10 cycloalkyl, said aryl, heteroaryl, alkyl and cycloalkyl optionally being substituted with one to three substituents selected from halo, —C 1 -C 6 alkyl, and —CF 3
  • R 2 is selected from the group consisting of —C 1 -C 6 alkyl, —(CR a 2 ) r CF 3 , —(CR a 2 ) r C 3-10 cycloalkyl, —(CR a 2 ) r aryl, —(CR a 2 ) r heteroaryl, —(CR a 2 )
  • X 1 , X 2 , X 3 and X 4 are independently selected from N or CH, provided that no more than one of X 1 , X 2 , X 3 and X 4 is N; and all other variables are as previously defined.
  • X 1 , X 2 , X 3 and X 4 are independently selected from N or CH, provided that no more than one of X 1 , X 2 , X 3 and X 4 is N; and all other variables are as previously defined.
  • R 3 is —C 1 -C 6 alkyl.
  • R 4 is —C 1 -C 6 alkyl.
  • R 3 and R 4 are methyl.
  • the invention is directed to compounds of Formula II:
  • X 4 is selected from the group consisting of CH and N;
  • R a is independently selected at each occurrence from the group consisting of —H and —C 1 -C 6 alkyl;
  • R 1 is independently selected at each occurrence from the group consisting of —H, halo and —C 1 -C 6 alkyl, said alkyl optionally being substituted with one to three substituents selected from halo, —C 1 -C 6 alkyl, and —CF 3 ;
  • R 2 is selected from the group consisting of —C 1 -C 6 alkyl, —(CR a 2 ) r CF 3 , —(CR a 2 ) r C 3-10 cycloalkyl, and —(CR a 2 ) r aryl, said alkyl, cycloalkyl and aryl being optionally substituted with one to three substituents selected from halo, —C 1 -C 6 alkyl and —CF 3
  • compounds of the invention are selected from the group consisting of
  • Example IUPAC NAME 1 4-amino-2-[5-chloro-3-(3,3,3-trifluoropropyl)-1H-indazol-1-yl]-5,5-dimethyl-5,7- dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one 2 4-amino-5,5-dimethyl-2-[3-(3,3,3-trifluoropropyl)-1H-indazol-1-yl]-5,7-dihydro-6H- pyrrolo[2,3-d]pyrimidin-6-one 3 4-amino-2-[5-chloro-3-(2,3,6-trifluorobenzyl)-1H-indazol-1-yl]-5,5-dimethyl-5,7- dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one 4 4-amino-5,5-dimethyl-2-[3-(2,3,6-trifluorobenzyl)-1H-ind
  • a compound of the instant invention is selected from:
  • the atoms may exhibit their natural isotopic abundances, or one or more of the atoms may be artificially enriched in a particular isotope having the same atomic number, but an atomic mass or mass number different from the atomic mass or mass number predominantly found in nature.
  • the present invention is meant to include all suitable isotopic variations of the compounds of Formula I.
  • different isotopic forms of hydrogen (H) include protium (1H) and deuterium (2H).
  • Protium is the predominant hydrogen isotope found in nature. Enriching for deuterium may afford certain therapeutic advantages, such as increasing in vivo half-life or reducing dosage requirements, or may provide a compound useful as a standard for characterization of biological samples.
  • Isotopically-enriched compounds within Formula I can be prepared without undue experimentation by conventional techniques well known to those skilled in the art or by processes analogous to those described in the Schemes and Examples herein using appropriate isotopically-enriched reagents and/or intermediates.
  • alkyl is intended to include both branched- and straight-chain saturated aliphatic hydrocarbon groups having the specified number of carbon atoms.
  • the term “cycloalkyl” means carbocycles containing no heteroatoms. Examples of cycloalkyl include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, decahydronaphthyl and the like.
  • Commonly used abbreviations for alkyl groups are used throughout the specification, e.g. methyl may be represented by conventional abbreviations including “Me” or CH 3 or a symbol that is an extended bond without defined terminal group, e.g.
  • C 1-6 alkyl (or “C 1 -C 6 alkyl”) for example, means linear or branched chain alkyl groups, including all isomers, having the specified number of carbon atoms.
  • C 1-6 alkyl includes all of the hexyl alkyl and pentyl alkyl isomers as well as n-, iso-, sec- and t-butyl, n- and isopropyl, ethyl and methyl.
  • C 1-4 alkyl means n-, iso-, sec- and t-butyl, n- and isopropyl, ethyl and methyl. If no number is specified, 1-10 carbon atoms are intended for linear or branched alkyl groups.
  • the phrase “C 1-6 alkyl, wherein the alkyl group may be unsubstituted or substituted with 1-3 fluorine atoms” refers to alkyl groups having 0, 1, 2 or 3 fluorine atoms attached to one or more carbon atoms.
  • the group “CF 3 ”, for example, is a methyl group having three fluorine atoms attached the same carbon atom.
  • alkenyl unless otherwise indicated, means carbon chains which contain at least one carbon-carbon double bond, and which may be linear or branched or combinations thereof. Examples of alkenyl include, but are not limited to, vinyl, allyl, isopropenyl, pentenyl, hexenyl, heptenyl, 1-propenyl, 2-butenyl, 2-methyl-2-butenyl, and the like.
  • cycloalkenyl means carbocycles containing no heteroatoms having at least one carbon-carbon double bond.
  • Aryl unless otherwise indicated, means mono- and bicyclic aromatic rings containing 6-12 carbon atoms. Examples of aryl include, but are not limited to, phenyl, naphthyl, indenyl and the like. “Aryl” also includes monocyclic rings fused to an aryl group. Examples include tetrahydronaphthyl, indanyl and the like. The preferred aryl is phenyl.
  • Heteroaryl unless otherwise indicated, means a mono- or bicyclic aromatic ring or ring system having 5 to 10 atoms and containing at least one heteroatom selected from O, S and N. Examples include, but are not limited to, pyrrolyl, isoxazolyl, isothiazolyl, pyrazolyl, pyridyl, oxazolyl, oxadiazolyl, thiadiazolyl, thiazolyl, imidazolyl, triazolyl, tetrazolyl, furanyl, triazinyl, thienyl, pyrimidyl, pyridazinyl, pyrazinyl, and the like.
  • Heteroaryl also includes aromatic heterocyclic groups fused to heterocycles that are non-aromatic or partially aromatic, and aromatic heterocyclic groups fused to cycloalkyl rings. Additional examples of heteroaryls include, but are not limited to, indazolyl, thienopyrazolyl, imidazopyridazinyl, pyrazolopyrazolyl, pyrazolopyridinyl, imidazopyridinyl and imidazothiazolyl. Heteroaryl also includes such groups in charged form, e.g., pyridinium.
  • Heterocyclyl unless otherwise indicated, means a 5- or 6-membered monocyclic saturated ring containing at least one heteroatom selected from N, S and O, in which the point of attachment may be carbon or nitrogen.
  • heterocyclyl include, but are not limited to, pyrrolidinyl, piperidinyl, piperazinyl, morpholinyl, imidazolidinyl, 2,3-dihydrofuro(2,3-b)pyridyl, benzoxazinyl, and the like.
  • the term also includes partially unsaturated monocyclic rings that are not aromatic, such as 2- or 4-pyridones attached through the nitrogen or N-substituted-(1H, 3H)-pyrimidine-2,4-diones (N-substituted uracils).
  • Heterocyclyl moreover includes such moieties in charged form, e.g., piperidinium.
  • Halogen or halo
  • fluorine fluoro
  • chlorine chloro
  • bromine bromine
  • iodine iodo
  • substitution by a named substituent is permitted on any atom in a ring (e.g., aryl, a heteroaryl ring, or a saturated heterocyclic ring) provided such ring substitution is chemically allowed and results in a stable compound.
  • a “stable” compound is a compound which can be prepared and isolated and whose structure and properties remain or can be caused to remain essentially unchanged for a period of time sufficient to allow use of the compound for the purposes described herein (e.g., therapeutic or prophylactic administration to a subject).
  • the present invention includes all stereoisomeric forms of the compounds of the Formula I. Centers of asymmetry that are present in the compounds of Formula I can all independently of one another have S configuration or R configuration.
  • the invention includes all possible enantiomers and diastereomers and mixtures of two or more stereoisomers, for example mixtures of enantiomers and/or diastereomers, in all ratios.
  • enantiomers are a subject of the invention in enantiomerically pure form, both as levorotatory and as dextrorotatory antipodes, in the form of racemates and in the form of mixtures of the two enantiomers in all ratios.
  • the invention includes both the cis form and the trans form as well as mixtures of these forms in all ratios.
  • the preparation of individual stereoisomers can be carried out, if desired, by separation of a mixture by customary methods, for example by chromatography or crystallization, by the use of stereochemically uniform starting materials for the synthesis or by stereoselective synthesis.
  • a derivatization can be carried out before a separation of stereoisomers.
  • the separation of a mixture of stereoisomers can be carried out at the stage of the compounds of the Formula I or at the stage of an intermediate during the synthesis.
  • the present invention also includes all tautomeric forms of the compounds of Formula I.
  • the invention also includes the corresponding physiologically or toxicologically acceptable salts, in particular the pharmaceutically utilizable salts.
  • the compounds of the Formula I which contain acidic groups can be present on these groups and can be used according to the invention, for example, as alkali metal salts, alkaline earth metal salts or as ammonium salts.
  • Examples of such salts are sodium salts, potassium salts, calcium salts, magnesium salts or salts with ammonia or organic amines such as, for example, ethylamine, ethanolamine, triethanolamine or amino acids.
  • Compounds of the Formula I which contain one or more basic groups i.e.
  • the invention also includes, in addition to the salt forms mentioned, inner salts or betaines (zwitterions). Salts can be obtained from the compounds of the Formula I by customary methods which are known to the person skilled in the art, for example by combination with an organic or inorganic acid or base in a solvent or dispersant, or by anion exchange or cation exchange from other salts.
  • the present invention also includes all salts of the compounds of the Formula I which, owing to low physiological compatibility, are not directly suitable for use in pharmaceuticals but which can be used, for example, as intermediates for chemical reactions or for the preparation of physiologically acceptable salts.
  • the 8- or 9-membered heteroaryl is composed of a first ring which is a 5-membered ring containing two nitrogens, fused to a second ring that optionally contains one or more heteroatoms (N, O or S).
  • the two nitrogens of the first ring may be fully in the first ring, or one of the two nitrogens may be shared at a fusion point with the second ring.
  • the 8- or 9-membered bicyclic heteroaryl is attached to the pyrmidinyl ring and the —CH 2 —R 2 group of structural Formula I or II via the first ring, and more specifically via each of the atoms in the first ring that are adjacent to each of the two atoms shared by both rings in the bicyclic heteroaryl.
  • X 1 , X 3 and X 4 are selected from CH or N, provided no more than one is N.
  • X 1 and X 4 are CH.
  • * indicates attachment to the pyrmidinyl ring and ** indicates attachment to the —CH 2 —R 2 of structural Formula I or II.
  • R 1 is independently selected from H, halo, aryl, heteroaryl, —C 1 -C 6 alkyl, and —C 3-10 cycloalkyl, said aryl, heteroaryl, alkyl and cycloalkyl optionally being substituted with one to three substituents selected from halo, —C 1 -C 6 alkyl, —OR, oxo and —CF 3 .
  • R 1 is aryl or —C 1 -C 6 alkyl, wherein said aryl or —C 1 -C 6 alkyl is optionally substituted with one to three substituents selected from halo or —CF 3 .
  • R 2 is selected from —C 1 -C 6 alkyl, —(CR a 2 ) r —C 3-10 cycloalkyl, —(CR a 2 ) r aryl, —(CR a 2 ) r heteroaryl, and —(CR a 2 ) r C(O)Oalkyl, said alkyl, cycloalkyl, aryl, and heteroaryl being optionally substituted with one to three substituents selected from halo, —C 1 -C 6 alkyl, —CF 3 , —CN and —OR.
  • R 2 is selected from —C 1 -C 6 alkyl and —(CR a 2 ) r aryl, said alkyl and aryl being optionally substituted with one to three substituents selected from halo, —C 1 -C 6 alkyl and —CF 3 .
  • R 3 and R 4 are both alkyl, they may be joined together with the carbon to which they are commonly attached to form a 3-6 membered cycloalkyl ring.
  • R 3 and R 4 are each C 1 -C 6 alkyl. In a further embodiment, R 3 and R 4 are each methyl.
  • the present invention also relates to processes for the preparation of the compounds of the Formula I which are described in the following and by which the compounds of the invention are obtainable.
  • the compounds of the Formula I according to the invention effect an increase of the cGMP concentration via the activation of the soluble guanylate cyclase (sGC), and they are therefore useful agents for the therapy and prophylaxis of disorders which are associated with a low or decreased cGMP level or which are caused thereby, or for whose therapy or prophylaxis an increase of the present cGMP level is desired.
  • the activation of the sGC by the compounds of the Formula I can be examined, for example, in the activity assay described below.
  • disorders and pathological conditions which are associated with a low cGMP level or in which an increase of the cGMP level is desired and for whose therapy and prophylaxis it is possible to use compounds of the Formula I are, for example, cardiovascular diseases, such as endothelial dysfunction, diastolic dysfunction, atherosclerosis, hypertension, heart failure, pulmonary hypertension, stable and unstable angina pectoris, thromboses, restenosis, myocardial infarction, strokes, cardiac insufficiency or pulmonary hypertonia, or, for example, erectile dysfunction, asthma bronchiale, chronic kidney insufficiency and diabetes.
  • cardiovascular diseases such as endothelial dysfunction, diastolic dysfunction, atherosclerosis, hypertension, heart failure, pulmonary hypertension, stable and unstable angina pectoris, thromboses, restenosis, myocardial infarction, strokes, cardiac insufficiency or pulmonary hypertonia, or, for example, erectile dysfunction, asthma bron
  • the compounds of the Formula I and their physiologically acceptable salts can be administered to animals, preferably to mammals, and in particular to humans, as pharmaceuticals by themselves, in mixtures with one another or in the form of pharmaceutical preparations.
  • the term “patient” includes animals, preferably mammals and especially humans, who use the instant active agents for the prevention or treatment of a medical condition. Administering of the drug to the patient includes both self-administration and administration to the patient by another person.
  • the patient may be in need of treatment for an existing disease or medical condition, or may desire prophylactic treatment to prevent or reduce the risk of said disease or medical condition.
  • a subject of the present invention therefore also are the compounds of the Formula I and their physiologically acceptable salts for use as pharmaceuticals, their use for activating soluble guanylate cyclase, for normalizing a disturbed cGMP balance and in particular their use in the therapy and prophylaxis of the abovementioned syndromes as well as their use for preparing medicaments for these purposes.
  • a therapeutically effective amount is intended to mean that amount of a drug or pharmaceutical agent that will elicit the biological or medical response of a tissue, a system, animal or human that is being sought by a researcher, veterinarian, medical doctor or other clinician.
  • a prophylactically effective amount is intended to mean that amount of a pharmaceutical drug that will prevent or reduce the risk of occurrence of the biological or medical event that is sought to be prevented in a tissue, a system, animal or human by a researcher, veterinarian, medical doctor or other clinician. It is understood that a specific daily dosage amount can simultaneously be both a therapeutically effective amount, e.g., for treatment of hypertension, and a prophylactically effective amount, e.g., for prevention of myocardial infarction.
  • a subject of the present invention are pharmaceutical preparations (or pharmaceutical compositions) which comprise as active component an effective dose of at least one compound of the Formula I and/or a physiologically acceptable salt thereof and a customary pharmaceutically acceptable carrier, i.e., one or more pharmaceutically acceptable carrier substances and/or additives.
  • a subject of the invention are, for example, said compound and its physiologically acceptable salts for use as a pharmaceutical, pharmaceutical preparations which comprise as active component an effective dose of said compound and/or a physiologically acceptable salt thereof and a customary pharmaceutically acceptable carrier, and the uses of said compound and/or a physiologically acceptable salt thereof in the therapy or prophylaxis of the abovementioned syndromes as well as their use for preparing medicaments for these purposes.
  • the pharmaceuticals according to the invention can be administered orally, for example in the form of pills, tablets, lacquered tablets, sugar-coated tablets, granules, hard and soft gelatin capsules, aqueous, alcoholic or oily solutions, syrups, emulsions or suspensions, or rectally, for example in the form of suppositories. Administration can also be carried out parenterally, for example subcutaneously, intramuscularly or intravenously in the form of solutions for injection or infusion.
  • Suitable administration forms are, for example, percutaneous or topical administration, for example in the form of ointments, tinctures, sprays or transdermal therapeutic systems, or the inhalative administration in the form of nasal sprays or aerosol mixtures, or, for example, microcapsules, implants or rods.
  • the preferred administration form depends, for example, on the disease to be treated and on its severity.
  • the amount of active compound of the Formula I and/or its physiologically acceptable salts in the pharmaceutical preparations normally is from 0.2 to 200 mg, preferably from 1 to 200 mg, per dose, but depending on the type of the pharmaceutical preparation it can also be higher.
  • the pharmaceutical preparations usually comprise 0.5 to 90 percent by weight of the compounds of the Formula I and/or their physiologically acceptable salts.
  • the preparation of the pharmaceutical preparations can be carried out in a manner known per se.
  • one or more compounds of the Formula I and/or their physiologically acceptable salts together with one or more solid or liquid pharmaceutical carrier substances and/or additives (or auxiliary substances) and, if desired, in combination with other pharmaceutically active compounds having therapeutic or prophylactic action, are brought into a suitable administration form or dosage form which can then be used as a pharmaceutical in human or veterinary medicine.
  • Carriers for soft gelatin capsules and suppositories are, for example, fats, waxes, semisolid and liquid polyols, natural or hardened oils, etc.
  • Suitable carriers for the preparation of solutions, for example of solutions for injection, or of emulsions or syrups are, for example, water, physiologically sodium chloride solution, alcohols such as ethanol, glycerol, polyols, sucrose, invert sugar, glucose, mannitol, vegetable oils, etc.
  • Suitable carriers for microcapsules, implants or rods are, for example, copolymers of glycolic acid and lactic acid.
  • the pharmaceutical preparations can also contain customary additives, for example fillers, disintegrants, binders, lubricants, wetting agents, stabilizers, emulsifiers, dispersants, preservatives, sweeteners, colorants, flavorings, aromatizers, thickeners, diluents, buffer substances, solvents, solubilizers, agents for achieving a depot effect, salts for altering the osmotic pressure, coating agents or antioxidants.
  • customary additives for example fillers, disintegrants, binders, lubricants, wetting agents, stabilizers, emulsifiers, dispersants, preservatives, sweeteners, colorants, flavorings, aromatizers, thickeners, diluents, buffer substances, solvents, solubilizers, agents for achieving a depot effect, salts for altering the osmotic pressure, coating agents or antioxidants.
  • the dosage of the active compound of the Formula I to be administered and/or of a physiologically acceptable salt thereof depends on the individual case and is, as is customary, to be adapted to the individual circumstances to achieve an optimum effect. Thus, it depends on the nature and the severity of the disorder to be treated, and also on the sex, age, weight and individual responsiveness of the human or animal to be treated, on the efficacy and duration of action of the compounds used, on whether the therapy is acute or chronic or prophylactic, or on whether other active compounds are administered in addition to compounds of the Formula I.
  • a daily dose of approximately 0.01 to 100 mg/kg, preferably 0.01 to 10 mg/kg, in particular 0.3 to 5 mg/kg (in each case mg per kg of bodyweight) is appropriate for administration to an adult weighing approximately 75 kg in order to obtain the desired results.
  • the daily dose can be administered in a single dose or, in particular when larger amounts are administered, be divided into several, for example two, three or four individual doses. In some cases, depending on the individual response, it may be necessary to deviate upwards or downwards from the given daily dose.
  • the compounds of the Formula I activate the soluble guanylate cyclase.
  • They can also be employed as a scientific tool or as aid for biochemical investigations in which such an effect on guanylate cyclase is intended, and also for diagnostic purposes, for example in the in vitro diagnosis of cell samples or tissue samples.
  • the compounds of the Formula I and salts thereof can furthermore be employed, as already mentioned above, as intermediates for the preparation of other pharmaceutically active compounds.
  • angiotensin converting enzyme inhibitors e.g, alacepril, benazepril, captopril, ceronapril, cilazapril, delapril, enalapril, enalaprilat, fosinopril, imidapril, lisinopril, moveltipril, perindopril, quinapril, ramipril, spirapril, temocapril, or trandolapril), angiotensin II receptor antagonists (e.g., losratan, valsartan, candesartan, olmesartan, telmesartan) neutral endopeptidase inhibitors (e.g., thiorphan and phosphoramidon), aldosterone antagonists, renin inhibitors (e.g.
  • angiotensin converting enzyme inhibitors e.g, alacepril, benazepril, capto
  • urea derivatives of di- and tri-peptides See U.S. Pat. No. 5,116,835), amino acids and derivatives (U.S. Pat. Nos. 5,095,119 and 5,104,869), amino acid chains linked by non-peptidic bonds (U.S. Pat. No. 5,114,937), di- and tri-peptide derivatives (U.S. Pat. No. 5,106,835), peptidyl amino diols (U.S. Pat. Nos. 5,063,208 and 4,845,079) and peptidyl beta-aminoacyl aminodiol carbamates (U.S. Pat. No. 5,089,471); also, a variety of other peptide analogs as disclosed in the following U.S.
  • statone-containing peptides U.S. Pat. No. 5,066,643
  • enalkrein RO 42-5892
  • a 65317 A 65317
  • CP 80794 ES 1005
  • ES 8891 SQ 34017
  • aliskiren (2(S),4(S),5(S),7(S)—N-(2-carbamoyl-2-methylpropyl)-5-amino-4-hydroxy-2,7-diisopropyl-8-[4-methoxy-3-(3-methoxypropoxy)-phenyl]-octanamid hemifumarate) SPP600, SPP630 and SPP635)
  • endothelin receptor antagonists e.g., amlodipine, nifedipine, verastrial, diltiazem, gallopamil, niludipine,
  • lipid lowering agents e.g., simvastatin, lovastatin, ezetamibe, atorvastatin, pravastatin
  • metabolic altering agents including insulin sensitizing agents and related compounds (e.g., muraglitazar, glipizide, metformin, rosiglitazone) or with other drugs beneficial for the prevention or the treatment of the above-mentioned diseases including nitroprusside and diazoxide.
  • HPLC High pressure liquid chromatography HOAc - acetic acid
  • iPA isopropyl alcohol
  • iPr isopropyl
  • i-PrOH isopropanol
  • LDA lithium diisopropyl amide
  • LCMS liquid chromatography - mass spectroscopy
  • MeOH methanol min, min.
  • compounds with structure 1 may be prepared by the sequence depicted in Scheme 1.
  • Ring structure Z represents a five or six membered aryl or heteroaryl ring.
  • Deprotonation of malononitrile 2 with a base such as sodium hydride, potassium t-butoxide or potassium carbonate in the presence of the alpha bromo ester 3 affords the compound 4.
  • the reaction is typically done in a solvent such as DMF or THF.
  • compound 3 may be prepared from the corresponding ester by bromination with N-bromosuccinimide in a solvent such as carbon tetrachloride.
  • the reaction may also be carried out in the absence of a base.
  • Compound 1 is prepared by treating compound 6 with CuI and a ligand such as trans-N,N′-dimethylcyclohexane-1,2-diamine or N,N′-dimethylethylenediamine in a solvent such as DMF or NMP at ambient temperature to 160° C.
  • the reaction may also be carried out in the absence of a ligand.
  • the copper mediated cyclization of hydrazones to form indazoles may also be carried out using the conditions described by Liu, R. et al Synthetic Communications 2008, 32(2), 249.
  • the copper mediated cyclization shown in Scheme 1 may also be carried out on the corresponding chloride or iodide.
  • Compound 5 is prepared by treatment of the ketone 9 with aminoguanidine hydrochloride and boron trifluoride etherate in an alcohol solvent such as methanol at 100° C.
  • the ketone 9 may be prepared using methods familiar to those skilled in the art. Some of the methods are depicted in Scheme 3. Addition of the alkyl or aryl magnesium chloride 11 (or bromide, iodide) to the aldehyde 10 gives the benzyl alcohol 12. The compound 11, if not commercial, may be prepared from the corresponding halide using magnesium metal as described by Lai, Y. H. Synthesis 1981, 585. Ketone 9 is prepared by treating compound 12 with an oxidizing reagent such as chromium trioxide. Ketone 9 may also prepared by the addition of 11 to the amide 15.
  • ketone 9 may be prepared from the acid chloride 13 and the zinc compound 14 using a palladium catalyst such as Pd(PPh 3 ) 4 as described by Zhu, L. et al Journal of Organic Chemistry 1991, 56(4), 1445.
  • the ketone 9 where R 2 is CH 2 CO 2 Et may be prepared from the acid chloride 13 and (1-ethoxycyclopropoxy)trimethylsilane using a palladium catalyst such as PdCl 2 (PPh 3 ) 2 as described by Aoki, S. et al Tetrahedron Letters 1989, 30(47), 6541.
  • compounds with structure 18 may be prepared by the sequence depicted in Scheme 4.
  • Conversion of the nitrile 16 to the amidine 17 can be accomplished with a reagent such as amino(chloro)methylaluminum in a non-polar solvent such as toluene at 100° C. as described by Garigipati, R. S. Tetrahedron Letters 1990, 31(14), 1969.
  • Reaction of amidine 17 with the malononitrile 4 as described in Scheme 1 affords 18.
  • Scheme 5 outlines the preparation of nitrile intermediate 16.
  • Amino methyl compound 19 can be coupled with the carboxylic acid 8 and a coupling reagent such as EDC and an organic base such as DIEA or TEA in a solvent like DCM to afford the amide 20.
  • This can be converted to the imidazopyridine 21 with phosphorous oxychloride in a chlorinated solvent such DCE under refluxing conditions.
  • Iodination of 21 to afford 22 can be accomplished with MS in solvents like DCM or acetonitrile at ambient temperature or under reflux conditions.
  • the nitrile 16 can be prepared by treatment of the iodide 22 with zinc cyanide in the presence of a suitable catalyst such as Pd(PPh 3 ) 4 or Pd 2 (dba) 3 and ligand such as dppf in a polar solvent such as DMF.
  • a suitable catalyst such as Pd(PPh 3 ) 4 or Pd 2 (dba) 3 and ligand such as dppf in a polar solvent such as DMF.
  • the amino methyl compound 19D may be prepared as outlined in Scheme 6.
  • Pyridazine 23 can be converted to 2-cyano pyridazine 25 using the chemistry described by Dostal, W. and Heinisch, G. Heterocycles 1986, 793.
  • Reduction of the nitrile 25 can be accomplished under high pressure hydrogenation conditions using a suitable catalyst such as palladium on carbon in an alcoholic solvent such as methanol or ethanol and a suitable acid such as hydrochloric acid to afford the 2-amino methylpyridazine hydrochloride 19D.
  • the amino methyl compounds 19B and 19C may be prepared as outlined in Scheme 7. Addition of diethyl acetamidomalonate to 2-chloro-5-nitropyridine affords compound 27. Reduction of 27 with hydrogen and palladium on carbon gives the amine 28. Sandmeyer reaction of 28 using the indicated conditions gives the halo (chloro or fluoro) pyridine 29. Saponification of 29 with base followed by treatment with hydrochloric acid gives amino methyl compounds 19B and 19C.
  • compounds with structure 36 are prepared as outlined in Scheme 8.
  • the ketone 30 may be prepared as described for compound 9 in Schemes 2 and 3. Reaction of compound 30 with hydroxylamine in an alcohol solvent affords the oxime 31. Reduction with zinc metal followed by reaction with methyl oxalyl chloride gives compound 33. Cyclization of 33 using phosphorous oxychloride to give 34 may be carried out as described in Scheme 5. Conversion of the ester 34 to the amidine 35 can be accomplished with a reagent such as amino(chloro)methylaluminum in a non-polar solvent such as toluene at 100° C. Reaction of amidine 35 with the malononitrile 4 as described in Scheme 1 affords 36.
  • compounds with the structure 40 are prepared as outlined in Scheme 9. Alkylation of nitrile indazole 37 with a base such as cesium carbonate or sodium hydride and an alkyl halide in a solvent such as DMF affords the compound 38. Compound 38 can be converted to compound 40 as described in Scheme 4.
  • compounds with the structure 44 are prepared as outlined in Scheme 10. Reaction of the unsaturated nitrile 41 with ethyl bromoacetate, zinc and titanium biscyclopentadienyl dichloride catalyst as described by Ding, Y. et al Tetrahedron 1997, 53(8), 249 affords the compound 42.
  • Compound 44 is prepared from compound 42 using the conditions described in Scheme 1.
  • compound 4 may be substituted with compound 42 in Schemes 4, 8 and 9 to afford the corresponding 6-membered ring amides.
  • Compounds of the present invention may be prepared using methods familiar to those skilled in the art.
  • One such method is the palladium mediated coupling of a boronic acid or ester and an aryl halide.
  • An example of this method is shown in Scheme 11.
  • the imidazopyridine 45 can be coupled to any suitable boronic acid or boronic ester such as phenyl boronic acid with a catalyst such as dichlorobis[1,1′-bis(diphenylphosphino)ferrocene]palladium (II) dichloromethane adduct to give 46.
  • MS data were recorded on a Waters Micromass unit, interfaced with a Hewlett-Packard (Agilent 1100) HPLC instrument, and operating on MassLynx/OpenLynx software; electrospray ionization was used with positive (ES+) or negative ion (ES ⁇ ) detection; and diode array detection; the various methods used for analytical HPLC mass spectrometery conditions are listed below:
  • a DMF (4 mL) solution containing malononitrile (0.484 g, 7.32 mmol) was added dropwise to a DMF (3 mL) suspension of sodium hydride (60 wt %, 0.30 g, 7.49 mmol) cooled in an ice bath. After 10 min a DMF (3 mL) solution containing the intermediate from Step A (1.099 g, 5.63 mmol) was added. The ice bath was removed and the solution stirred overnight at room temperature. The solution was partitioned between ethyl ether and aqueous 1N HCl. The organic phase was washed with aqueous 1N HCl, brine and dried over MgSO 4 . The solution was filtered and concentrated.
  • Zinc powder (1.23 g, 18.85 mmol) was added to a THF (20 mL) solution of isopropylidenemalononitrile (1.0 g, 9.42 mmol), ethyl bromoacetate (3.15 g, 18.85 mmol) and titanium bis(cyclopentadienyl)dichloride (235 mg, 0.94 mmol). After stirring for 1 hour the solution was partitioned between ethyl acetate and aqueous 1N HCl. The organic phase was washed with water, brine, dried over MgSO 4 and filtered.
  • THF solution of sodium bis(trimethylsilyl)amide (1.0M, 194 mL, 194 mmol) was added dropwise to a ⁇ 78° C. THF (400 mL) solution containing methyl 2-bromo-5-chlorobenzoate (16.10 g, 64.5 mmol) and 4,4,4-trifluorobutyric acid (9.17 g, 64.5 mmol). After stirring for 15 min at ⁇ 78° C. the solution was warmed to 0° C. and stirred for an additional 2 hours. The reaction was quenched with an excess of aqueous 1N HCl (ca 400 mL) and stirred overnight at room temperature. The solution was concentrated to remove the majority of the THF.
  • Example 2 The compound of Example 1 (9 mg, 0.02 mmol) and palladium hydroxide on carbon (20 wt %, 15 mg) in MeOH (ca 10 mL) were stirred under a hydrogen atmosphere (balloon). After stirring for several hours the solution was filtered through celite and concentrated. The residue was purified by preparative TLC using 5% MeOH/DCM as the eluent to give the indicated compound.
  • Trimethylaluminum (2.0M toluene, 10 mL, 20 mmol) was added to ammonium chloride (1.07 g, 20 mmol) suspended in toluene (30 mL) at 0° C. The solution was then stirred at room temperature for 2 hours to give a 0.5M amino(chloro)methylaluminum solution in toluene.
  • Potassium t-butoxide (0.972 g, 8.66 mmol) was added to 3-cyano indazole (1.24 g, 8.66 mmol) in 8 mL THF. After 5 min 1,1,1-trifluoro-3-iodopropane (1.94 g, 8.66 mmol) was added. The solution was then heated to 60° C. After 1 hour 6 mL of DMF, potassium t-butoxide (0.972 g, 8.66 mmol) and 1,1,1-trifluoro-3-iodopropane (1.94 g, 8.66 mmol) were added. After stirring for an additional 2 hours at 60° C.
  • sGC is a heme-containing enzyme that converts GTP to secondary messenger cGMP. Increases in cGMP levels affect several physiological processes including vasorelaxation through multiple downstream pathways. The rate by which sGC catalyzes cGMP formation is greatly increased by NO and by recently discovered NO-independent activators and stimulators. Heme-dependent activators (HDAs) preferentially activate sGC containing a ferrous heme group. To determine the effect of sGC activators on enzyme activity, the CASA assay was developed to monitor the generation of cGMP in a cell line that stably expresses the heterodimeric sGC protein.
  • HDAs Heme-dependent activators
  • a CHO-K1 cell line stably expressing the sGC ⁇ 1/ ⁇ 1 heterodimer was generated using a standard transfection protocol.
  • CHO-K1 cells were transfected with plasmids pIREShyghsGC ⁇ 1 and pIRESneo-hsGC ⁇ 1 simultaneously using FUGENE reagent.
  • Clones that stably express both subunits were selected with hygromycin and neomycin for ⁇ 2 weeks. Clone #7 was chosen for the assay and was designated CHO-K1/sGC.
  • CHO-K1/sGC cells were maintained in F-K12 medium containing 10% heat-inactivated Fetal Bovine Serum (FBS), 100 ⁇ g/mL penicillin/streptomycin, 0.5 mg/mL hygromycin and 0.25 mg/mL G418.
  • FBS Fetal Bovine Serum
  • FBS heat-inactivated Fetal Bovine Serum
  • cells were harvested in EBSS Assay Buffer (EAB) containing 5 mM MgCl2, 10 mM HEPES and 0.05% BSA and cell density was adjusted to 2 ⁇ 10 6 /mL with EAB.
  • IBMX (3-isobutyl-1-methylxanthin, 0.5 mM) was added to inhibit degradation of cGMP.
  • Compounds of the instant invention had EC 50s less than or equal to about 1 ⁇ M. Preferable compounds had an EC 50s less than or equal to about 500 nM. Results for specific compounds are as follows:
  • Example IUPAC NAME EC 50 1 4-amino-2-[5-chloro-3-(3,3,3-trifluoropropyl)-1H-indazol-1-yl]-5,5-dimethyl- 86 nM 5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one 3

Abstract

Compounds of Formula I are capable of modulating the body's production of cyclic guanosine monophosphate (“cGMP”) and are generally suitable for the therapy and prophylaxis of diseases which are associated with a disturbed cGMP balance. The invention furthermore relates to processes for preparing compounds of the Formula I, to their use for the therapy and prophylaxis of the abovementioned diseases and for preparing pharmaceuticals for this purpose, and to pharmaceutical preparations which comprise compounds of the Formula I.
Figure US08741910-20140603-C00001

Description

CROSS REFERENCE TO RELATED APPLICATIONS
This application is a 35 U.S.C. §371 filing from International Application No. PCT/US2009/064570, filed Nov. 16, 2009, which claims priority to U.S. Provisional Application No. 61/200,221, filed Nov. 25, 2008.
Cyclic GMP is an important intracellular messenger which triggers a multitude of different effects via the modulation of cGMP-dependent protein kinases, phosphodiesterases and ion channels. Examples are the relaxation of smooth muscles, the inhibition of thrombocyte activation and the inhibition of the proliferation of smooth-muscle cells and of leukocyte adhesion. cGMP is produced by particulate and soluble guanylate cyclases as a response to a number of extracellular and intracellular stimuli. In the case of the particulate guanylate cyclases, stimulation is essentially effected by peptidic messengers, such as the atrial natriuretic peptide or the cerebral natriuretic peptide. The soluble guanylate cyclases (“sGC”), which are cytosolic heterodimeric heme proteins, in contrast, are essentially regulated by a family of low-molecular-weight factors which are formed enzymatically. The most important stimulant is nitrogen monoxide (“NO”) or a closely related species. The function of other factors such as carbon monoxide or the hydroxyl radical is still largely unclear. The binding of NO to the heme with formation of a penta-coordinate heme-nitrosyl complex is proposed as the mechanism of the activation by NO. The associated release of the histidine which is bound in the basal state to the iron converts the enzyme into the active conformation.
Active soluble guanylate cyclases are composed of an α and a β subunit each. Several subunit subtypes have been described which differ from one another with respect to sequence, tissue-specific distribution and expression in different development stages. The subtypes α1 and β1 are mainly expressed in brain and lung, while β2 is found in particular in liver and kidney. The subtype α2 was shown to be present in human fetal brain. The subunits referred to as α3 and β3 were isolated from human brain and are homologous to α1 and β1. More recent works indicate an α2i subunit which contains an insert in the catalytic domain. All subunits show great homologies in the region of the catalytic domain. The enzymes presumably contain one heme per heterodimer, which is bound via β1-Cys-78 and/or β1-His-105 and is part of the regulatory center.
Under pathologic conditions, the formation of guanylate-cyclase-activating factors can be reduced, or their degradation may be promoted owing to the increased occurrence of free radicals. The resulting reduced activation of the sGC leads, via a weakening of the respective cGMP-mediated cellular response, for example to an increase of the blood pressure, to platelet activation or to increased cell proliferation and cell adhesion. As a consequence, formation of endothelial dysfunction, atherosclerosis, hypertension, stable or unstable angina pectoris, thromboses, myocardial infarction, strokes or erectile dysfunction results. Pharmacological stimulation of sGC offers a possibility to normalize cGMP production and therefore makes possible the treatment and/or prevention of such disorders.
For the pharmacological stimulation of the sGC, use has been made of compounds whose activity is based on an intermediate NO release, for example organic nitrates. The drawback of this treatment is the development of tolerance and a reduction of activity, and the higher dosage which is required because of this.
Various sGC stimulators which do not act via NO release were described by Vesely in a series of publications. However, the compounds, most of which are hormones, plant hormones, vitamins or natural compounds such as, for example, lizard poisons predominantly only have weak effects on the cGMP formation in cell lysates. D. L. Vesely, Eur. J. Clin. Invest., vol. 15, 1985, p. 258; D. L. Vesely, Biochem. Biophys. Res. Comm., vol. 88, 1979, p. 1244. A stimulation of heme-free guanylate cyclase by protoporphyrin IX was demonstrated by Ignarro et al., Adv. Pharmacol., vol. 26, 1994, p. 35. Pettibone et al., Eur. J. Pharmacol., vol. 116, 1985 p. 307, described an antihypertensive action of diphenyliodonium hexafluorophosphate and attributed this to a stimulation of sGC. According to Yu et al., Brit. J. Pharmacol, vol. 114, 1995, p. 1587, isoliquiritigenin, which has a relaxing action on isolated rat aortas, also activates sGC. Ko et al., Blood vol. 84, 1994, p. 4226, Yu et al., Biochem. J. vol. 306, 1995, p. 787, and Wu et al., Brit. J. Pharmacol. vol. 116, 1995, p. 1973, demonstrated a sGC-stimulating activity of 1-benzyl-3-(5-hydroxymethyl-2-furyl)indazole and demonstrated an antiproliferative and thrombocyte-inhibiting action. Pyrazoles and fused pyrazoles which exhibit a sGC-stimulating activity are described in European Patent Application No. 908,456 and German Patent Application No. 19,744,027.
A series of 2-sulfonylaminobenzoic acid N-arylamides, the N-aryl group of which carries a thio substituent, have been mentioned in the literature. These compounds in which the N-aryl group generally carries as further substituents groups which are readily oxidizable such as, for example, two hydroxy groups being in para position with respect to one another and which in this case can be regarded as hydroquinone derivatives, are auxiliaries for the preparation of photographic materials (see, for example, Chemical Abstracts 119, 105757; 120, 41858; 123, 70224; or 126, 257007). British patent publication No. 876,526 (Chemical Abstracts 56, 15432e) discloses 3,5-dichloro-2-methylsulfonylaminobenzoic acid N-(5-chloro-2-(4-chlorophenylmercapto)-phenyl)-amide which can be used for the protection of wool against moths.
It has now been found that the compounds of the present invention effect a strong activation of guanylate cyclase and are therefore suitable for the therapy and prophylaxis of disorders which are associated with a low cGMP level.
SUMMARY OF THE INVENTION
The present invention relates to compounds which activate soluble guanylate cyclase which are valuable pharmaceutically active compounds for the therapy and prophylaxis of diseases, for example for cardiovascular diseases such as hypertension, heart failure, pulmonary hypertension, angina pectoris, diabetes, cardiac insufficiency, thromboses or atherosclerosis. The compounds of the Formula I
Figure US08741910-20140603-C00002

are capable of modulating the body's production of cyclic guanosine monophosphate (“cGMP”) and are generally suitable for the therapy and prophylaxis of diseases which are associated with a disturbed cGMP balance. The invention furthermore relates to processes for preparing compounds of the Formula I, to their use for the therapy and prophylaxis of the above-mentioned diseases and for preparing pharmaceuticals for this purpose, and to pharmaceutical preparations which comprise compounds of Formula I.
DETAILED DESCRIPTION OF THE INVENTION AND PREFERRED EMBODIMENTS
The invention concerns compounds of Formula I which activate soluble guanylate cyclase:
Figure US08741910-20140603-C00003

and pharmaceutically acceptable salts thereof, wherein
Figure US08741910-20140603-C00004

is an 8- or 9-membered heteroaryl;
Ra and Rb are independently selected at each occurrence from the group consisting of —H and —C1-C6 alkyl;
Rc is independently selected at each occurrence from the group consisting of —C1-C6 alkyl, —CF3, and aryl;
R1 is independently selected at each occurrence from the group consisting of —H, halo, aryl, heteroaryl, —C1-C6 alkyl, —C3-10 cycloalkyl, —OR, —NO2, —CN, —CO2Ra, —NRaRb, —S(O)pRc, thioxo, azido, —C(═O)Ra, —OC(O)nRa, —OC(═O)ORa, —OC(═O)NRaRb, —SO2NRaNRb, —NRa(C═O)nRb, —NRaSO2Rb, —NRaC(═O)ORb, —NRaC(O)NRaRb, —NRaSO2NRaRb, —C2-10alkenyl, and —C2-10alkynyl, said aryl, heteroaryl, alkyl, cycloalkyl, alkenyl and alkynyl optionally being substituted with one to three substituents selected from halo, —C1-C6 alkyl, —OR, oxo, aryl, heteroaryl, —C3-10 cycloalkyl, —NO2, —CN, —CO2Ra, NRaRb, —S(O)pRc, thioxo, azido, —C(═O)Ra, —O(C═O)nRa, —OC(═O)ORa, —OC(═O)NRaRb, —SO2NRaNRb, —NRa(C═O)nRb, —NRaSO2Rb, —NRaC(═O)ORb, —NRaC(═O)NRaRb, —NRaSO2NRaRb and —CF3;
R2 is selected from the group consisting of —C1-C6 alkyl, —(CRa 2)rOR, —(CRa 2)rS(O)pRc, —(CRa 2)rCF3, —(CRa 2)r—C3-10cycloalkyl, —(CRa 2)raryl, —(CRa 2)rheteroaryl, —(CRa 2)r—C2-10alkenyl, —(CRa 2)r—C2-10alkyl, and —(CRa 2)rC(O)Oalkyl, said alkyl, cycloalkyl, aryl, hetetoaryl, alkenyl and alkynyl being optionally substituted with one to three substituents selected from halo, —C1-C6 alkyl, —CF3, —CN and —OR;
R is independently selected at each occurrence from the group consisting of —H, —C1-C6 alkyl, —CF3, and aryl;
R3 and R4 are independently selected from the group consisting of —H and —C1-C6 alkyl; when R3 and R4 are C1-C6 alkyl they may optionally be joined to form a cycloalkyl;
m is 0 (zero), 1, 2, or 3;
p is 0 (zero), 1 or 2;
r is 0 (zero), 1, 2, 3, 4, 5, or 6; and
z is 0 (zero) or 1.
In a further embodiment, the invention is directed to compounds of Formula II:
Figure US08741910-20140603-C00005

and pharmaceutically acceptable salts thereof, wherein
Figure US08741910-20140603-C00006

is an 8- or 9-membered heteroaryl;
Ra is independently selected at each occurrence from the group consisting of —H and —C1-C6 alkyl;
R1 is independently selected at each occurrence from the group consisting of —H, halo, aryl, heteroaryl, —C1-C6 alkyl and —C3-10 cycloalkyl, said aryl, heteroaryl, alkyl and cycloalkyl optionally being substituted with one to three substituents selected from halo, —C1-C6 alkyl, and —CF3;
R2 is selected from the group consisting of —C1-C6 alkyl, —(CRa 2)rCF3, —(CRa 2)rC3-10cycloalkyl, —(CRa 2)raryl, —(CRa 2)rheteroaryl, —(CRa 2)ralkenyl, —(CRa 2)ralkynyl, and —(CRa 2)rC(O)Oalkyl, said alkyl, cycloalkyl, aryl, hetetoaryl, alkenyl and alkynyl being optionally substituted with one to three substituents selected from halo, —C1-C6 alkyl, —CF3, —CN, and —OR;
R is independently selected at each occurrence from the group consisting of —H, —C1-C6 alkyl and aryl;
R3 and R4 are independently selected from the group consisting of H and C1-C6 alkyl; when R3 and R4 are C1-C6 alkyl they may optionally be joined to form a cycloalkyl;
m is 0, 1, 2 or 3; and
r is 0, 1, 2, 3, 4, 5, or 6.
In another embodiment,
Figure US08741910-20140603-C00007

is
Figure US08741910-20140603-C00008

where * indicates attachment to the pyrmidinyl ring and ** indicates attachment to the —CH2—R2 of structural Formula I or II;
X1, X2, X3 and X4 are independently selected from N or CH, provided that no more than one of X1, X2, X3 and X4 is N; and all other variables are as previously defined.
In another embodiment,
Figure US08741910-20140603-C00009

is
Figure US08741910-20140603-C00010

where * indicates attachment to the pyrmidinyl ring and ** indicates attachment to the —CH2—R2 of structural Formula I or II;
X1, X2, X3 and X4 are independently selected from N or CH, provided that no more than one of X1, X2, X3 and X4 is N; and all other variables are as previously defined.
In an embodiment, R3 is —C1-C6 alkyl. In an embodiment, R4 is —C1-C6 alkyl. In a further embodiment, R3 and R4 are methyl.
In a further embodiment, the invention is directed to compounds of Formula II:
Figure US08741910-20140603-C00011

and pharmaceutically acceptable salts thereof, wherein
Figure US08741910-20140603-C00012

is
Figure US08741910-20140603-C00013

X4 is selected from the group consisting of CH and N;
Ra is independently selected at each occurrence from the group consisting of —H and —C1-C6 alkyl;
R1 is independently selected at each occurrence from the group consisting of —H, halo and —C1-C6 alkyl, said alkyl optionally being substituted with one to three substituents selected from halo, —C1-C6 alkyl, and —CF3;
R2 is selected from the group consisting of —C1-C6 alkyl, —(CRa 2)rCF3, —(CRa 2)rC3-10cycloalkyl, and —(CRa 2)raryl, said alkyl, cycloalkyl and aryl being optionally substituted with one to three substituents selected from halo, —C1-C6 alkyl and —CF3;
R is independently selected from —H, —C1-C6 alkyl and aryl;
R3 and R4 are each C1-C6 alkyl;
M is 0, 1, 2 or 3; and
r is 0, 1, 2, or 3.
In another embodiment, compounds of the invention are selected from the group consisting of
Example IUPAC NAME
1 4-amino-2-[5-chloro-3-(3,3,3-trifluoropropyl)-1H-indazol-1-yl]-5,5-dimethyl-5,7-
dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one
2 4-amino-5,5-dimethyl-2-[3-(3,3,3-trifluoropropyl)-1H-indazol-1-yl]-5,7-dihydro-6H-
pyrrolo[2,3-d]pyrimidin-6-one
3 4-amino-2-[5-chloro-3-(2,3,6-trifluorobenzyl)-1H-indazol-1-yl]-5,5-dimethyl-5,7-
dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one
4 4-amino-5,5-dimethyl-2-[3-(2,3,6-trifluorobenzyl)-1H-indazol-1-yl]-5,7-dihydro-
6H-pyrrolo[2,3-d]pyrimidin-6-one
5 4-amino-2-(5-fluoro-3-hexyl-1H-indazol-1-yl)-5,5-dimethyl-5,7-dihydro-6H-
pyrrolo[2,3-d]pyrimidin-6-one
6 4-amino-2-[5-bromo-3-(2,3,6-trifluorobenzyl)-1H-indazol-1-yl]-5,5-dimethyl-5,7-
dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one
7 4-amino-5,5-dimethyl-2-[5-pyridin-4-yl-3-(2,3,6-trifluorobenzyl)-1H-indazol-1-yl]
5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one
8 4-amino-5,5-dimethyl-2-[3-(4,4,4-trifluorobutyl)-1H-thieno[3,4-c]pyrazol-1-yl]-5,7-
dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one
9 4-amino-5,5-dimethyl-2-[3-(2,3,6-trifluorobenzyl)-1H-thieno[3,4-c]pyrazol-1-yl]-
5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one
10 4-amino-5,5-dimethyl-2-[3-(2,3,6-trifluorobenzyl)-4,6-dihydro-1H-thieno[3,4-
c]pyrazol-1-yl]-5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one
11 4-amino-2-[3-(2-cyclopentylethyl)-1H-indazol-1-yl]-5,5-dimethyl-5,7-dihydro-6H-
pyrrolo[2,3-d]pyrimidin-6-one
12 4-amino-2-[3-(2-fluorobenzyl)-1H-indazol-1-yl]-5,5-dimethyl-5,7-dihydro-6H-
pyrrolo[2,3-d]pyrimidin-6-one
13 4-amino-2-[5-chloro-3-(2-fluorobenzyl)-1H-indazol-1-yl]-5,5-dimethyl-5,7-dihydro-
6H-pyrrolo[2,3-d]pyrimidin-6-one
14 4-amino-2-[5-fluoro-3-(2-fluorobenzyl)-1H-indazol-1-yl]-5,5-dimethyl-5,7-dihydro-
6H-pyrrolo[2,3-d]pyrimidin-6-one
15 4-amino-2-[5-chloro-3-(2,3-difluorobenzyl)-1H-indazol-1-yl]-5,5-dimethyl-5,7-
dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one
16 4-amino-2-[3-(2,3-difluorobenzyl)-5-fluoro-1H-indazol-1-yl]-5,5-dimethyl-5,7-
dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one
17 4-amino-2-[3-(2,3-difluorobenzyl)-1H-indazol-1-yl]-5,5-dimethyl-5,7-dihydro-6H-
pyrrolo[2,3-d]pyrimidin-6-one
18 4-amino-2-[3-(2-fluorobenzyl)-5-phenyl-1H-indazol-1-yl]-5,5-dimethyl-5,7-dihydro-
6H-pyrrolo[2,3-d]pyrimidin-6-one
19 4-amino-2-[5-fluoro-3-(2,3,6-trifluorobenzyl)-1H-indazol-1-yl]-5,5-dimethyl-5,7-
dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one
20 4-amino-5,5-dimethyl-2-[5-pyridin-3-yl-3-(2,3,6-trifluorobenzyl)-1H-indazol-1-yl]-
5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one
21 4-amino-5,5-dimethyl-2-[5-(1-methyl-1H-pyrazol-4-yl)-3-(2,3,6-trifluorobenzyl)-
1H-indazol-1-yl]-5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one
22 4-amino-2-[5-(3,5-dimethyl-1H-pyrazol-4-yl)-3-(2,3,6-trifluorobenzyl)-1H-indazol-
1-yl]-5,5-dimethyl-5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one
23 4-amino-2-[5-(3-furyl)-3-(2,3,6-trifluorobenzyl)-1H-indazol-1-yl]-5,5-dimethyl-5,7-
dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one
24 4-amino-5,5-dimethyl-2-[5-(4-methyl-3-thienyl)-3-(2,3,6-trifluorobenzyl)-1H-
indazol-1-yl]-5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one
25 4-amino-2-[5-cyclopropyl-3-(2,3,6-trifluorobenzyl)-1H-indazol-1-yl]-5,5-dimethyl-
5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one
26 4-amino-5,5-dimethyl-2-[5-pyridin-4-yl-3-(2,3,6-trifluorobenzyl)-1H-indazol-1-yl]-
5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one
27 4-amino-5,5-dimethyl-2-[5-phenyl-3-(2,3,6-trifluorobenzyl)-1H-indazol-1-yl)-5,7-
dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one
28 4-amino-2-[5-chloro-3-(pyrimidin-5-ylmethyl)-1H-indazol-1-yl]-5,5-dimethyl-5,7-
dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one
29 4-amino-5,5-dimethyl-2-[5-(3-thienyl)-3-(2,3,6-trifluorobenzyl)-1H-indazol-1-yl]-
5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one
30 4-amino-2-[5-(5-fluoropyridin-3-yl)-3-(2,3,6-trifluorobenzyl)-1H-indazol-1-yl]-5,5-
dimethyl-5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one
31 4-amino-2-[5-(6-fluoropyridin-3-yl)-3-(2,3,6-trifluorobenzyl)-1H-indazol-1-yl]-5,5-
dimethyl-5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one
32 4-amino-5,5-dimethyl-2-{3-(2,3,6-trifluorobenzyl)-5-[5-(trifluoromethyl)pyridin-3-
yl]-1H-indazol-1-yl}-5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one
33 4-amino-2-[3-(6-bromo-2,3-difluorobenzyl)-5-chloro-1H-indazol-1-yl]-5,5-
dimethyl-5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one
34 4-amino-2-[3-(2-cyclopentylethyl)-1H-indazol-1-yl]-5,5-dimethyl-5,7-dihydro-6H-
pyrrolo[2,3-d]pyrimidin-6-one
35 4-amino-2-(5-fluoro-3-pentyl-1H-indazol-1-yl)-5,5-dimethyl-5,7-dihydro-6H-
pyrrolo[2,3-d]pyrimidin-6-one
36 4-amino-2-[5-fluoro-3-(3,3,3-trifluoropropyl)-1H-indazol-1-yl]-5,5-dimethyl-5,7-
dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one
37 4-amino-2-[3-(2-cyclopentylethyl)-5-fluoro-1H-indazol-1-yl]-5,5-dimethyl-5,7-
dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one
38 4-amino-2-[3-(2-cyclopentylethyl)-5-fluoro-1H-indazol-1-yl]-5,5-dimethyl-5,7-
dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one
39 4-amino-2-[5-fluoro-3-(4,4,4-trifluorobutyl)-1H-indazol-1-yl]-5,5-dimethyl-5,7-
dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one
40 4-amino-2-(5-chloro-3-pentyl-1H-indazol-1-yl)-5,5-dimethyl-5,7-dihydro-6H-
pyrrolo[2,3-d]pyrimidin-6-one
41 4-amino-2-(3-butyl-5-chloro-1H-indazol-1-yl)-5,5-dimethyl-5,7-dihydro-6H-
pyrrolo[2,3-d]pyrimidin-6-one
42 4-amino-2-[5-chloro-3-(4,4,4-trifluorobutyl)-1H-indazol-1-yl]-5,5-dimethyl-5,7-
dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one
43 4-amino-2-(5-chloro-3-pent-4-en-1-yl-1H-indazol-1-yl)-5,5-dimethyl-5,7-dihydro-
6H-pyrrolo[2,3-d]pyrimidin-6-one
44 4-amino-2-(3-but-3-en-1-yl-5-chloro-1H-indazol-1-yl)-5,5-dimethyl-5,7-dihydro-
6H-pyrrolo[2,3-d]pyrimidin-6-one
45 4-amino-2-(5-chloro-3-propyl-1H-indazol-1-yl)-5,5-dimethyl-5,7-dihydro-6H-
pyrrolo[2,3-d]pyrimidin-6-one
46 ethyl 3-[1-(4-amino-5,5-dimethyl-6-oxo-6,7-dihydro-5H-pyrrolo[2,3-d]pyrimidin-2-
yl)-5-chloro-1H-indazol-3-yl]propanoate
47 4-amino-2-[5-chloro-3-(3,3-dimethylbutyl)-1H-indazol-1-yl]-5,5-dimethyl-5,7-
dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one
48 4-amino-2-[3-(2,3-difluorobenzyl)-1H-thieno[3,4-c]pyrazol-1-yl]-5,5-dimethyl-5,7-
dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one
49 4-amino-2-[6-chloro-3-(2,3-difluorobenzyl)-1H-thieno[3,4-c]pyrazol-1-yl]-5,5-
dimethyl-5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one
50 4-amino-2-[5-chloro-3-(2,3-difluorobenzyl)-1H-thieno[2,3-c]pyrazol-1-yl]-5,5 -
dimethyl-5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one
51 4-amino-2-[3-(2,3-difluorobenzyl)-1H-thieno[3,2-c]pyrazol-1-yl]-5,5-dimethyl-5,7-
dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one
52 4-amino-2-[5-chloro-3-(2,3,6-trifluorobenzyl)-1H-thieno[2,3-c]pyrazol-1-yl]-5,5-
dimethyl-5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one
53 4-amino-5,5-dimethyl-2-[3-(2,3,6-trifluorobenzyl)-1H-thieno[3,2-c]pyrazol-1-yl]-
5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one
54 4-amino-5,5-dimethyl-2-[5-methyl-3-(2,3,6-trifluorobenzyl)pyrazolo[4,3-c]pyrazo-
1(5H)-yl]-5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one
55 4-amino-5,5-dimethyl-2-[3-(2,3,6-trifluorobenzyl)-1H-thieno[2,3-c]pyrazol-1-yl]-
5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one
56 4-amino-5,5-dimethyl-2-[6-methyl-3-(2,3,6-trifluorobenzyl)pyrazolo[3,4-c]pyrazo-
1(6H)-yl]-5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one
57 4-amino-5,5-dimethyl-2-[3-(2,3,6-trifluorobenzyl)-1H-pyrazolo[4,3-c]pyridin-1-yl]-
5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one
58 4-amino-5,5-dimethyl-2-[7-(2,3,6-trifluorobenzyl)imidazo[1,5-b]pyridazin-5-yl]-5,7-
dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one
59 4-amino-2-[6-chloro-3-(2,3,6-trifluorobenzyl)imidazo[1,5-a]pyridin-1-yl]-5,5-
dimethyl-5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one
60 4-amino-2-[6-fluoro-3-(2,3,6-trifluorobenzyl)imidazo[1,5-a]pyridin-1-yl]-5,5-
dimethyl-5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one
61 4-amino-5,5-dimethyl-2-[5-(2,3,6-trifluorobenzyl)imidazo[5,1-b][1,3]thiazol-7-yl]-
5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one
62 4-amino-5,5-dimethyl-2-[1-(2,3,6-trifluorobenzyl)imidazo[1,5-a]pyridin-3-yl]-5,7-
dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one
63 4-amino-2-[3-(2,3-difluorobenzyl)imidazo[1,5-a]pyridin-1-yl]-5,5-dimethyl-5,7-
dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one
64 4-amino-2-[7-(2,3-difluorobenzyl)imidazo[1,5-b]pyridazin-5-yl]-5,5-dimethyl-5,7-
dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one
65 4-amino-2-[3-(2,3-difluorobenzyl)-6-fluoroimidazo[1,5-a]pyridin-1-yl]-5,5-
dimethyl-5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one
66 4-amino-2-[7-(2-fluorobenzyl)imidazo[1,5-b]pyridazin-5-yl]-5,5-dimethyl-5,7-
dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one
67 4-amino-2-[3-(2-fluorobenzyl)imidazo[1,5-a]pyridin-1-yl]-5,5-dimethyl-5,7-
dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one
68 4-amino-2-[6-fluoro-3-(2-fluorobenzyl)imidazo[1,5-a]pyridin-1-yl]-5,5-dimethyl-
5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one
69 4-amino-2-[6-chloro-3-(2-fluorobenzyl)imidazo[1,5-a]pyridin-1-yl]-5,5-dimethyl-
5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one
70 4-amino-2-[7-(2,3-difluorobenzyl)-2-methylimidazo[1,5-b]pyridazin-5-yl]-5,5-
dimethyl-5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one
71 4-amino-2-[6-chloro-3-(2,3-difluorobenzyl)imidazo[1,5-a]pyridin-1-yl]-5,5-
dimethyl-5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one
72 4-amino-2-(3-benzylimidazo[1,5-a]pyridin-1-yl)-5,5-dimethyl-5,7-dihydro-6H-
pyrrolo[2,3-d]pyrimidin-6-one
73 4-amino-5,5-dimethyl-2-[3-(2,3,6-trifluorobenzyl)imidazo[1,5-a]pyridin-1-yl]-5,7-
dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one
74 4-amino-5,5-dimethyl-2-[6-phenyl-3-(2,3,6-trifluorobenzyl)imidazo[1,5-a]pyridin-1-
yl]-5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one
75 4-amino-2-[6-(2-fluorophenyl)-3-(2,3,6-trifluorobenzyl)imidazo[1,5-a]pyridin-1-yl]-
5,5-dimethyl-5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one
76 4-amino-2-[6-(3-fluorophenyl)-3-(2,3,6-trifluorobenzyl)imidazo[1,5-a]pyridin-1-yl]-
5,5-dimethyl-5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one
77 4-amino-2-[6-(4-fluorophenyl)-3-(2,3,6-trifluorobenzyl)imidazo[1,5-a]pyridin-1-
yl]-5,5-dimethyl-5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one
78 4-amino-2-[6-(3-chlorophenyl)-3-(2,3,6-trifluorobenzyl)imidazo[1,5-a]pyridin-1-yl]-
5,5-dimethyl-5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one
79 4-amino-5,5-dimethyl-2-[6-(3-thienyl)-3-(2,3,6-trifluorobenzyl)imidazo[1,5-
a]pyridin-1-yl]-5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one
80 4-amino-2-[6-cyclopropyl-3-(2,3,6-trifluorobenzyl)imidazo[1,5-a]pyridin-1-yl]-5,5-
dimethyl-5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one
81 4-amino-5,5-dimethyl-2-[7-(3,3,3-trifluoropropyl)imidazo[1,5-b]pyridazin-5-yl]-5,7-
dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one
82 4-amino-5,5-dimethyl-2-[3-(2,4,6-trifluorobenzyl)imidazo[1,5-a]pyridin-1-yl]-5,7-
dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one
83 4-amino-2-[3-(2-chloro-6-fluoro-3-methylbenzyl)imidazo[1,5-a]pyridin-1-yl]-5,5-
dimethyl-5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one
84 4-amino-2-[3-(2-cyclopentylethyl)imidazo[1,5-a]pyridin-1-yl]-5,5-dimethyl-5,7-
dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one
85 4-amino-5,5-dimethyl-2-[7-(4,4,4-trifluorobutyl)imidazo[1,5-b]pyridazin-5-yl]-5,7-
dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one
86 4-amino-5,5-dimethyl-2-[3-(4,4,4-trifluorobutyl)imidazo[1,5-a]pyridin-1-yl]-5,7-
dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one
87 4-amino-5,5-dimethyl-2-{3-[2-(2-thienyl)ethyl]imidazo[1,5-a]pyridin-1-yl}-5,7-
dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one
88 4-amino-2-[3-(2-cyclopropylethyl)imidazo[1,5-a]pyridin-1-yl]-5,5-dimethyl-5,7-
dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one
89 4-amino-5,5-dimethyl-2-(3-pentylimidazo[1,5-a]pyridin-1-yl)-5,7-dihydro-6H-
pyrrolo[2,3-d]pyrimidin-6-one
90 4-amino-5,5-dimethyl-2-(7-pentylimidazo[1,5-b]pyridazin-5-yl)-5,7-dihydro-6H-
pyrrolo[2,3-d]pyrimidin-6-one
91 4-amino-5,5-dimethyl-2-[3-(3-methylbutyl)imidazo[1,5-a]pyridin-1-yl]-5,7-dihydro-
6H-pyrrolo[2,3-d]pyrimidin-6-one
92 4-amino-5,5-dimethyl-2-[3-methyl-5-(2,3,6-trifluorobenzyl)imidazo[5,1-
b][1,3]thiazol-7-yl]-5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one
93 4-amino-5,5-dimethyl-2-[2-methyl-5-(2,3,6-trifluorobenzyl)imidazo[5,1-
b][1,3]thiazol-7-yl]-5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one
94 4-amino-2-[5-(2-fluorobenzyl)imidazo[5,1-b][1,3]thiazol-7-yl]-5,5-dimethyl-5,7-
dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one
95 4-amino-5,5-dimethyl-2-[1-(3,3,3-trifluoropropyl)-1H-indazol-3-yl]-5,7-dihydro-6H-
pyrrolo[2,3-d]pyrimidin-6-one
96 4-amino-2-[5-chloro-3-(2,3,6-trifluorobenzyl)-1H-indazol-1-yl]-5,5-dimethyl-5,8-
dihydropyrido[2,3-d]pyrimidin-7(6H)-one
97 4-amino-5,5-dimethyl-2-[3-(2,3,6-trifluorobenzyl)-1H-indazol-1-yl]-5,8-
dihydropyrido[2,3-d]pyrimidin-7(6H)-one
98 4-amino-5,5-dimethyl-2-[3-(2,3,6-trifluorobenzyl)-1H-thieno[3,4-c]pyrazol-1-yl]-
5,8-dihydropyrido[2,3-d]pyrimidin-7(6H)-one
99 4-amino-5,5-dimethyl-2-[3-(2,3,6-trifluorobenzyl)-4,6-dihydro-1H-thieno[3,4-
c]pyrazol-1-yl]-5,8-dihydropyrido[2,3-d]pyrimidin-7(6H)-one
100 4-amino-2-[5-chloro-3-(3,3,3-trifluoropropyl)-1H-indazol-1-yl]-5-ethyl-5-methyl-
5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one
101 4-amino-2-[5-chloro-3-(3,3,3-trifluoropropyl)-1H-indazol-1-yl]-5-methyl-5-propy-
5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one
102 4-amino-2-[5-chloro-3-(3,3-dimethylbutyl)-1H-indazol-1-yl]-5-ethyl-5-methyl-5,7-
dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one
103 4-amino-5-ethyl-2-[3-(2-fluorobenzyl)imidazo[1,5-a]pyridin-1-yl]-5-methyl-5,7-
dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one
104 4-amino-5,5-dimethyl-2-[3-(3,3,4,4,4-pentafluorobutyl)-1H-indazol-1-yl]-5,7-
dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one
105 4-amino-2-[5-fluoro-3-(3,3,4,4,4-pentafluorobutyl-1H-indazol-1-yl]5,5-dimethyl-
5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one
106 4-amino-2-[5-chloro-3-(3,3,4,4,4-pentafluorobutyl)-1H-indazol-1-yl]-5,5-dimethy-
5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one
107 4-amino-5,5-dimethyl-2-[3-(3,3,4,4,4-pentafluorobutyl)-1H-pyrazolo[4,3-b]pyridin-
1-yl]-5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one
108 4-amino-5,5-dimethyl-2-[3-(3,3,4,4,4-pentafluorobutyl)imidazo[1,5-a]pyridin-1-yl]-
5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one
109 4-amino-2-[6-fluoro-3-(3,3,4,4,4-pentafluorobutyl)imidazo[1,5-a]pyridin-1-yl]-5,5-
dimethyl-5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one
110 4-amino-2-[6-chloro-3-(3,3,4,4,4-pentafluorobutyl)imidazo[1,5-a]pyridin-1-yl]-5,5-
dimethyl-5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one
111 4-amino-2-[6-chloro-1-(3,3,4,4,4-pentafluorobutyl)-1H-indazol-3-yl]-5,5-dimethy-
5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one

and pharmaceutically acceptable salts thereof.
In a further embodiment, a compound of the instant invention is selected from:
  • 4-amino-2-[5-chloro-3-(3,3,3-trifluoropropyl)-1H-indazol-1-yl]-5,5-dimethyl-5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one;
  • 4-amino-2-[5-chloro-3-(2,3,6-trifluorobenzyl)-1H-indazol-1-yl]-5,5-dimethyl-5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one;
  • 4-amino-5,5-dimethyl-2-[3-(2,3,6-trifluorobenzyl)-1H-thieno[3,4-c]pyrazol-1-yl]-5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one;
  • 4-amino-2-[5-chloro-3-(2,3,6-trifluorobenzyl)-1H-thieno[2,3-c]pyrazol-1-yl]-5,5-dimethyl-5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one
  • 4-amino-5,5-dimethyl-2-[7-(2,3,6-trifluorobenzyl)imidazo[1,5-b]pyridazin-5-yl]-5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one;
  • 4-amino-2-[6-chloro-3-(2,3,6-trifluorobenzyl)imidazo[1,5-a]pyridin-1-yl]-5,5-dimethyl-5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one;
  • 4-amino-2-[6-fluoro-3-(2,3,6-trifluorobenzyl)imidazo[1,5-a]pyridin-1-yl]-5,5-dimethyl-5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one;
  • 4-amino-2-[3-(2,3-difluorobenzyl)-6-fluoroimidazo[1,5-c]pyridin-1-yl]-5,5-dimethyl-5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one;
  • 4-amino-5,5-dimethyl-2-[3-(2,3,6-trifluorobenzyl)imidazo[1,5-a]pyridin-1-yl]-5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one;
  • 4-amino-2-[3-(2-cyclopentylethyl)imidazo[1,5-d]pyridin-1-yl]-5,5-dimethyl-5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one;
    and pharmaceutically acceptable salts thereof.
In the compounds of generic Formula I, the atoms may exhibit their natural isotopic abundances, or one or more of the atoms may be artificially enriched in a particular isotope having the same atomic number, but an atomic mass or mass number different from the atomic mass or mass number predominantly found in nature. The present invention is meant to include all suitable isotopic variations of the compounds of Formula I. For example, different isotopic forms of hydrogen (H) include protium (1H) and deuterium (2H). Protium is the predominant hydrogen isotope found in nature. Enriching for deuterium may afford certain therapeutic advantages, such as increasing in vivo half-life or reducing dosage requirements, or may provide a compound useful as a standard for characterization of biological samples. Isotopically-enriched compounds within Formula I can be prepared without undue experimentation by conventional techniques well known to those skilled in the art or by processes analogous to those described in the Schemes and Examples herein using appropriate isotopically-enriched reagents and/or intermediates.
As used herein except where noted, “alkyl” is intended to include both branched- and straight-chain saturated aliphatic hydrocarbon groups having the specified number of carbon atoms. The term “cycloalkyl” means carbocycles containing no heteroatoms. Examples of cycloalkyl include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, decahydronaphthyl and the like. Commonly used abbreviations for alkyl groups are used throughout the specification, e.g. methyl may be represented by conventional abbreviations including “Me” or CH3 or a symbol that is an extended bond without defined terminal group, e.g.
Figure US08741910-20140603-P00001
, ethyl may be represented by “Et” or CH2CH3, propyl may be represented by “Pr” or CH2CH2CH3, butyl may be represented by “Bu” or CH2CH2CH2CH3, etc. “C1-6 alkyl” (or “C1-C6 alkyl”) for example, means linear or branched chain alkyl groups, including all isomers, having the specified number of carbon atoms. C1-6 alkyl includes all of the hexyl alkyl and pentyl alkyl isomers as well as n-, iso-, sec- and t-butyl, n- and isopropyl, ethyl and methyl. “C1-4 alkyl” means n-, iso-, sec- and t-butyl, n- and isopropyl, ethyl and methyl. If no number is specified, 1-10 carbon atoms are intended for linear or branched alkyl groups. The phrase “C1-6 alkyl, wherein the alkyl group may be unsubstituted or substituted with 1-3 fluorine atoms” refers to alkyl groups having 0, 1, 2 or 3 fluorine atoms attached to one or more carbon atoms. The group “CF3”, for example, is a methyl group having three fluorine atoms attached the same carbon atom.
“Alkenyl” unless otherwise indicated, means carbon chains which contain at least one carbon-carbon double bond, and which may be linear or branched or combinations thereof. Examples of alkenyl include, but are not limited to, vinyl, allyl, isopropenyl, pentenyl, hexenyl, heptenyl, 1-propenyl, 2-butenyl, 2-methyl-2-butenyl, and the like. The term “cycloalkenyl” means carbocycles containing no heteroatoms having at least one carbon-carbon double bond.
“Aryl” unless otherwise indicated, means mono- and bicyclic aromatic rings containing 6-12 carbon atoms. Examples of aryl include, but are not limited to, phenyl, naphthyl, indenyl and the like. “Aryl” also includes monocyclic rings fused to an aryl group. Examples include tetrahydronaphthyl, indanyl and the like. The preferred aryl is phenyl.
“Heteroaryl” unless otherwise indicated, means a mono- or bicyclic aromatic ring or ring system having 5 to 10 atoms and containing at least one heteroatom selected from O, S and N. Examples include, but are not limited to, pyrrolyl, isoxazolyl, isothiazolyl, pyrazolyl, pyridyl, oxazolyl, oxadiazolyl, thiadiazolyl, thiazolyl, imidazolyl, triazolyl, tetrazolyl, furanyl, triazinyl, thienyl, pyrimidyl, pyridazinyl, pyrazinyl, and the like. Heteroaryl also includes aromatic heterocyclic groups fused to heterocycles that are non-aromatic or partially aromatic, and aromatic heterocyclic groups fused to cycloalkyl rings. Additional examples of heteroaryls include, but are not limited to, indazolyl, thienopyrazolyl, imidazopyridazinyl, pyrazolopyrazolyl, pyrazolopyridinyl, imidazopyridinyl and imidazothiazolyl. Heteroaryl also includes such groups in charged form, e.g., pyridinium.
“Heterocyclyl”, unless otherwise indicated, means a 5- or 6-membered monocyclic saturated ring containing at least one heteroatom selected from N, S and O, in which the point of attachment may be carbon or nitrogen. Examples of “heterocyclyl” include, but are not limited to, pyrrolidinyl, piperidinyl, piperazinyl, morpholinyl, imidazolidinyl, 2,3-dihydrofuro(2,3-b)pyridyl, benzoxazinyl, and the like. The term also includes partially unsaturated monocyclic rings that are not aromatic, such as 2- or 4-pyridones attached through the nitrogen or N-substituted-(1H, 3H)-pyrimidine-2,4-diones (N-substituted uracils). Heterocyclyl moreover includes such moieties in charged form, e.g., piperidinium.
“Halogen (or halo)” unless otherwise indicated, includes fluorine (fluoro), chlorine (chloro), bromine (bromo) and iodine (iodo). Fluoro and chloro are preferred.
Unless expressly stated to the contrary, substitution by a named substituent is permitted on any atom in a ring (e.g., aryl, a heteroaryl ring, or a saturated heterocyclic ring) provided such ring substitution is chemically allowed and results in a stable compound. A “stable” compound is a compound which can be prepared and isolated and whose structure and properties remain or can be caused to remain essentially unchanged for a period of time sufficient to allow use of the compound for the purposes described herein (e.g., therapeutic or prophylactic administration to a subject).
The present invention includes all stereoisomeric forms of the compounds of the Formula I. Centers of asymmetry that are present in the compounds of Formula I can all independently of one another have S configuration or R configuration. The invention includes all possible enantiomers and diastereomers and mixtures of two or more stereoisomers, for example mixtures of enantiomers and/or diastereomers, in all ratios. Thus, enantiomers are a subject of the invention in enantiomerically pure form, both as levorotatory and as dextrorotatory antipodes, in the form of racemates and in the form of mixtures of the two enantiomers in all ratios. In the case of a cis/trans isomerism the invention includes both the cis form and the trans form as well as mixtures of these forms in all ratios. The preparation of individual stereoisomers can be carried out, if desired, by separation of a mixture by customary methods, for example by chromatography or crystallization, by the use of stereochemically uniform starting materials for the synthesis or by stereoselective synthesis. Optionally a derivatization can be carried out before a separation of stereoisomers. The separation of a mixture of stereoisomers can be carried out at the stage of the compounds of the Formula I or at the stage of an intermediate during the synthesis. The present invention also includes all tautomeric forms of the compounds of Formula I.
If the compounds of the Formula I contain one or more acidic or basic groups the invention also includes the corresponding physiologically or toxicologically acceptable salts, in particular the pharmaceutically utilizable salts. Thus, the compounds of the Formula I which contain acidic groups can be present on these groups and can be used according to the invention, for example, as alkali metal salts, alkaline earth metal salts or as ammonium salts. Examples of such salts are sodium salts, potassium salts, calcium salts, magnesium salts or salts with ammonia or organic amines such as, for example, ethylamine, ethanolamine, triethanolamine or amino acids. Compounds of the Formula I which contain one or more basic groups, i.e. groups which can be protonated, can be present and can be used according to the invention in the form of their acid addition salts with inorganic or organic acids, for example as salts with hydrogen chloride, hydrogen bromide, phosphoric acid, sulfuric acid, nitric acid, methanesulfonic acid, p-toluenesulfonic acid, naphthalenedisulfonic acids, oxalic acid, acetic acid, tartaric acid, lactic acid, salicylic acid, benzoic acid, formic acid, propionic acid, pivalic acid, diethylacetic acid, malonic acid, succinic acid, pimelic acid, fumaric acid, maleic acid, malic acid, sulfaminic acid, phenylpropionic acid, gluconic acid, ascorbic acid, isonicotinic acid, citric acid, adipic acid, etc. If the compounds of the Formula I simultaneously contain acidic and basic groups in the molecule the invention also includes, in addition to the salt forms mentioned, inner salts or betaines (zwitterions). Salts can be obtained from the compounds of the Formula I by customary methods which are known to the person skilled in the art, for example by combination with an organic or inorganic acid or base in a solvent or dispersant, or by anion exchange or cation exchange from other salts. The present invention also includes all salts of the compounds of the Formula I which, owing to low physiological compatibility, are not directly suitable for use in pharmaceuticals but which can be used, for example, as intermediates for chemical reactions or for the preparation of physiologically acceptable salts.
As illustrated by the examples herein,
Figure US08741910-20140603-C00014

represents an 8- or 9-membered bicyclic heteroaryl ring system, comprised of a 5-membered ring fused to a 5- or 6-membered ring so that the fused rings share two adjacent atoms. In particular, the 8- or 9-membered heteroaryl is composed of a first ring which is a 5-membered ring containing two nitrogens, fused to a second ring that optionally contains one or more heteroatoms (N, O or S). The two nitrogens of the first ring may be fully in the first ring, or one of the two nitrogens may be shared at a fusion point with the second ring. The 8- or 9-membered bicyclic heteroaryl is attached to the pyrmidinyl ring and the —CH2—R2 group of structural Formula I or II via the first ring, and more specifically via each of the atoms in the first ring that are adjacent to each of the two atoms shared by both rings in the bicyclic heteroaryl.
In an embodiment,
Figure US08741910-20140603-C00015

is
Figure US08741910-20140603-C00016
In another embodiment,
Figure US08741910-20140603-C00017

is
Figure US08741910-20140603-C00018

wherein X1, X3 and X4 are selected from CH or N, provided no more than one is N.
In a further embodiment,
Figure US08741910-20140603-C00019

is
Figure US08741910-20140603-C00020

and X1 and X4 are CH. As used herein, * indicates attachment to the pyrmidinyl ring and ** indicates attachment to the —CH2—R2 of structural Formula I or II.
In an embodiment, R1 is independently selected from H, halo, aryl, heteroaryl, —C1-C6 alkyl, and —C3-10cycloalkyl, said aryl, heteroaryl, alkyl and cycloalkyl optionally being substituted with one to three substituents selected from halo, —C1-C6 alkyl, —OR, oxo and —CF3. In a further embodiment, R1 is aryl or —C1-C6 alkyl, wherein said aryl or —C1-C6 alkyl is optionally substituted with one to three substituents selected from halo or —CF3.
In an embodiment, R2 is selected from —C1-C6 alkyl, —(CRa 2)r—C3-10cycloalkyl, —(CRa 2)raryl, —(CRa 2)rheteroaryl, and —(CRa 2)rC(O)Oalkyl, said alkyl, cycloalkyl, aryl, and heteroaryl being optionally substituted with one to three substituents selected from halo, —C1-C6 alkyl, —CF3, —CN and —OR. In another embodiment, R2 is selected from —C1-C6 alkyl and —(CRa 2)raryl, said alkyl and aryl being optionally substituted with one to three substituents selected from halo, —C1-C6 alkyl and —CF3.
When R3 and R4 are both alkyl, they may be joined together with the carbon to which they are commonly attached to form a 3-6 membered cycloalkyl ring. In an embodiment, R3 and R4 are each C1-C6 alkyl. In a further embodiment, R3 and R4 are each methyl.
The present invention also relates to processes for the preparation of the compounds of the Formula I which are described in the following and by which the compounds of the invention are obtainable.
The compounds of the Formula I according to the invention effect an increase of the cGMP concentration via the activation of the soluble guanylate cyclase (sGC), and they are therefore useful agents for the therapy and prophylaxis of disorders which are associated with a low or decreased cGMP level or which are caused thereby, or for whose therapy or prophylaxis an increase of the present cGMP level is desired. The activation of the sGC by the compounds of the Formula I can be examined, for example, in the activity assay described below.
Disorders and pathological conditions which are associated with a low cGMP level or in which an increase of the cGMP level is desired and for whose therapy and prophylaxis it is possible to use compounds of the Formula I are, for example, cardiovascular diseases, such as endothelial dysfunction, diastolic dysfunction, atherosclerosis, hypertension, heart failure, pulmonary hypertension, stable and unstable angina pectoris, thromboses, restenosis, myocardial infarction, strokes, cardiac insufficiency or pulmonary hypertonia, or, for example, erectile dysfunction, asthma bronchiale, chronic kidney insufficiency and diabetes. Compounds of the Formula I can additionally be used in the therapy of cirrhosis of the liver and also for improving a restricted memory performance or ability to learn.
The compounds of the Formula I and their physiologically acceptable salts can be administered to animals, preferably to mammals, and in particular to humans, as pharmaceuticals by themselves, in mixtures with one another or in the form of pharmaceutical preparations. The term “patient” includes animals, preferably mammals and especially humans, who use the instant active agents for the prevention or treatment of a medical condition. Administering of the drug to the patient includes both self-administration and administration to the patient by another person. The patient may be in need of treatment for an existing disease or medical condition, or may desire prophylactic treatment to prevent or reduce the risk of said disease or medical condition.
A subject of the present invention therefore also are the compounds of the Formula I and their physiologically acceptable salts for use as pharmaceuticals, their use for activating soluble guanylate cyclase, for normalizing a disturbed cGMP balance and in particular their use in the therapy and prophylaxis of the abovementioned syndromes as well as their use for preparing medicaments for these purposes.
A therapeutically effective amount is intended to mean that amount of a drug or pharmaceutical agent that will elicit the biological or medical response of a tissue, a system, animal or human that is being sought by a researcher, veterinarian, medical doctor or other clinician. A prophylactically effective amount is intended to mean that amount of a pharmaceutical drug that will prevent or reduce the risk of occurrence of the biological or medical event that is sought to be prevented in a tissue, a system, animal or human by a researcher, veterinarian, medical doctor or other clinician. It is understood that a specific daily dosage amount can simultaneously be both a therapeutically effective amount, e.g., for treatment of hypertension, and a prophylactically effective amount, e.g., for prevention of myocardial infarction.
Furthermore, a subject of the present invention are pharmaceutical preparations (or pharmaceutical compositions) which comprise as active component an effective dose of at least one compound of the Formula I and/or a physiologically acceptable salt thereof and a customary pharmaceutically acceptable carrier, i.e., one or more pharmaceutically acceptable carrier substances and/or additives.
Thus, a subject of the invention are, for example, said compound and its physiologically acceptable salts for use as a pharmaceutical, pharmaceutical preparations which comprise as active component an effective dose of said compound and/or a physiologically acceptable salt thereof and a customary pharmaceutically acceptable carrier, and the uses of said compound and/or a physiologically acceptable salt thereof in the therapy or prophylaxis of the abovementioned syndromes as well as their use for preparing medicaments for these purposes.
The pharmaceuticals according to the invention can be administered orally, for example in the form of pills, tablets, lacquered tablets, sugar-coated tablets, granules, hard and soft gelatin capsules, aqueous, alcoholic or oily solutions, syrups, emulsions or suspensions, or rectally, for example in the form of suppositories. Administration can also be carried out parenterally, for example subcutaneously, intramuscularly or intravenously in the form of solutions for injection or infusion. Other suitable administration forms are, for example, percutaneous or topical administration, for example in the form of ointments, tinctures, sprays or transdermal therapeutic systems, or the inhalative administration in the form of nasal sprays or aerosol mixtures, or, for example, microcapsules, implants or rods. The preferred administration form depends, for example, on the disease to be treated and on its severity.
The amount of active compound of the Formula I and/or its physiologically acceptable salts in the pharmaceutical preparations normally is from 0.2 to 200 mg, preferably from 1 to 200 mg, per dose, but depending on the type of the pharmaceutical preparation it can also be higher. The pharmaceutical preparations usually comprise 0.5 to 90 percent by weight of the compounds of the Formula I and/or their physiologically acceptable salts. The preparation of the pharmaceutical preparations can be carried out in a manner known per se. For this purpose, one or more compounds of the Formula I and/or their physiologically acceptable salts, together with one or more solid or liquid pharmaceutical carrier substances and/or additives (or auxiliary substances) and, if desired, in combination with other pharmaceutically active compounds having therapeutic or prophylactic action, are brought into a suitable administration form or dosage form which can then be used as a pharmaceutical in human or veterinary medicine.
For the production of pills, tablets, sugar-coated tablets and hard gelatin capsules it is possible to use, for example, lactose, starch, for example maize starch, or starch derivatives, talc, stearic acid or its salts, etc. Carriers for soft gelatin capsules and suppositories are, for example, fats, waxes, semisolid and liquid polyols, natural or hardened oils, etc. Suitable carriers for the preparation of solutions, for example of solutions for injection, or of emulsions or syrups are, for example, water, physiologically sodium chloride solution, alcohols such as ethanol, glycerol, polyols, sucrose, invert sugar, glucose, mannitol, vegetable oils, etc. It is also possible to lyophilize the compounds of the Formula I and their physiologically acceptable salts and to use the resulting lyophilisates, for example, for preparing preparations for injection or infusion. Suitable carriers for microcapsules, implants or rods are, for example, copolymers of glycolic acid and lactic acid.
Besides the active compounds and carriers, the pharmaceutical preparations can also contain customary additives, for example fillers, disintegrants, binders, lubricants, wetting agents, stabilizers, emulsifiers, dispersants, preservatives, sweeteners, colorants, flavorings, aromatizers, thickeners, diluents, buffer substances, solvents, solubilizers, agents for achieving a depot effect, salts for altering the osmotic pressure, coating agents or antioxidants.
The dosage of the active compound of the Formula I to be administered and/or of a physiologically acceptable salt thereof depends on the individual case and is, as is customary, to be adapted to the individual circumstances to achieve an optimum effect. Thus, it depends on the nature and the severity of the disorder to be treated, and also on the sex, age, weight and individual responsiveness of the human or animal to be treated, on the efficacy and duration of action of the compounds used, on whether the therapy is acute or chronic or prophylactic, or on whether other active compounds are administered in addition to compounds of the Formula I. In general, a daily dose of approximately 0.01 to 100 mg/kg, preferably 0.01 to 10 mg/kg, in particular 0.3 to 5 mg/kg (in each case mg per kg of bodyweight) is appropriate for administration to an adult weighing approximately 75 kg in order to obtain the desired results. The daily dose can be administered in a single dose or, in particular when larger amounts are administered, be divided into several, for example two, three or four individual doses. In some cases, depending on the individual response, it may be necessary to deviate upwards or downwards from the given daily dose.
The compounds of the Formula I activate the soluble guanylate cyclase. On account of this property, apart from use as pharmaceutically active compounds in human medicine and veterinary medicine, they can also be employed as a scientific tool or as aid for biochemical investigations in which such an effect on guanylate cyclase is intended, and also for diagnostic purposes, for example in the in vitro diagnosis of cell samples or tissue samples. The compounds of the Formula I and salts thereof can furthermore be employed, as already mentioned above, as intermediates for the preparation of other pharmaceutically active compounds.
The above-mentioned compounds are also of use in combination with other pharmacologically active compounds comprising angiotensin converting enzyme inhibitors (e.g, alacepril, benazepril, captopril, ceronapril, cilazapril, delapril, enalapril, enalaprilat, fosinopril, imidapril, lisinopril, moveltipril, perindopril, quinapril, ramipril, spirapril, temocapril, or trandolapril), angiotensin II receptor antagonists (e.g., losratan, valsartan, candesartan, olmesartan, telmesartan) neutral endopeptidase inhibitors (e.g., thiorphan and phosphoramidon), aldosterone antagonists, renin inhibitors (e.g. urea derivatives of di- and tri-peptides (See U.S. Pat. No. 5,116,835), amino acids and derivatives (U.S. Pat. Nos. 5,095,119 and 5,104,869), amino acid chains linked by non-peptidic bonds (U.S. Pat. No. 5,114,937), di- and tri-peptide derivatives (U.S. Pat. No. 5,106,835), peptidyl amino diols (U.S. Pat. Nos. 5,063,208 and 4,845,079) and peptidyl beta-aminoacyl aminodiol carbamates (U.S. Pat. No. 5,089,471); also, a variety of other peptide analogs as disclosed in the following U.S. Pat. Nos. 5,071,837; 5,064,965; 5,063,207; 5,036,054; 5,036,053; 5,034,512 and 4,894,437, and small molecule renin inhibitors (including diol sulfonamides and sulfinyls (U.S. Pat. No. 5,098,924), N-morpholino derivatives (U.S. Pat. No. 5,055,466), N-heterocyclic alcohols (U.S. Pat. No. 4,885,292) and pyrolimidazolones (U.S. Pat. No. 5,075,451); also, pepstatin derivatives (U.S. Pat. No. 4,980,283) and fluoro- and chloro-derivatives of statone-containing peptides (U.S. Pat. No. 5,066,643), enalkrein, RO 42-5892, A 65317, CP 80794, ES 1005, ES 8891, SQ 34017, aliskiren (2(S),4(S),5(S),7(S)—N-(2-carbamoyl-2-methylpropyl)-5-amino-4-hydroxy-2,7-diisopropyl-8-[4-methoxy-3-(3-methoxypropoxy)-phenyl]-octanamid hemifumarate) SPP600, SPP630 and SPP635), endothelin receptor antagonists, vasodilators, calcium channel blockers (e.g., amlodipine, nifedipine, veraparmil, diltiazem, gallopamil, niludipine, nimodipins, nicardipine), potassium channel activators (e.g., nicorandil, pinacidil, cromakalim, minoxidil, aprilkalim, loprazolam), diuretics (e.g., hydrochlorothiazide), sympatholytics, beta-adrenergic blocking drugs (e.g., propranolol, atenolol, bisoprolol, carvedilol, metoprolol, or metoprolol tartate), alpha adrenergic blocking drugs (e.g., doxazocin, prazocin or alpha methyldopa) central alpha adrenergic agonists, peripheral vasodilators (e.g. hydralazine), lipid lowering agents (e.g., simvastatin, lovastatin, ezetamibe, atorvastatin, pravastatin), metabolic altering agents including insulin sensitizing agents and related compounds (e.g., muraglitazar, glipizide, metformin, rosiglitazone) or with other drugs beneficial for the prevention or the treatment of the above-mentioned diseases including nitroprusside and diazoxide.
The compounds of Formula I can be synthesized in accordance with the general schemes provided below where R1, R2, R3, and R4 are defined as above (unless otherwise indicated), taking into account the specific examples that are provided. Throughout the synthetic schemes and examples, abbreviations are used with the following meanings unless otherwise indicated:
aq, aq. = aqueous BuLi, n-BuLi = n-butyllithium
Ar = aryl DME = 1,2-dimethoxyethane
Ac = acetate Bn = benzyl
Bu = butyl, t-Bu = tert-butyl BF3•OEt2 = boron trifluoride diethyl etherate
CHCl3 = chloroform
cPr = cyclopropyl conc, conc. = concentrated
DCE = dichloroethane DBU = 1,8-Diazabicyclo[4.3.0]undec-7-ene
DCM = dichloromethane dba = dibenzylideneacetone; Pd2dba3 =
tris(dibenzylidineacetone)dipalladium
DIEA = diisopropylethylamine DMF = N,N-dimethylformamide
DMAC, DMA = dimethylacetamide dppf, DPPF = 1,1′-bis(diphenylphosphino)ferrocene
DMSO = dimethylsulfoxide DIBAL, DIBAL-H = diisobutylaluminum hydride
Et = ethyl EDC = 1-Ethyl-3-(3-dimethylaminopropyl)
carbodiimidehydrochloride
EtOAc = ethyl acetate EtOH = ethanol
eq. = equivalent(s) HPLC = High pressure liquid chromatography
HOAc - acetic acid iPA = isopropyl alcohol
iPr = isopropyl LAH = Lithium aluminum hydride
h, hr = hour IPA, i-PrOH = isopropanol
LDA = lithium diisopropyl amide LCMS = liquid chromatography - mass
spectroscopy
Me = methyl LiHMDS = lithium bis(trimethylsilyl)amide
MeOH = methanol min, min. = minute
Mp = melting point NaHMDS = sodium bis(trimethylsilyl)amide
NBS = N-bromo succinmide NIS = N-iodosuccinimide
NMP = N-methylpyrrolidinone NMR = nuclear magnetic resonance
PDA = photodiode array Pd/C = palladium on activated carbon
PdCl2(dppf)2•CH2Cl2 = Dichloro 1,1′- Pd2(dba)3 =
bis(diphenylphosphino)ferrocene palladium Tris(dibenzylideneacetone)dipalladium (0)
(II) dichloromethane adduct
Ph = phenyl Pr = propyl
rt = retention time RT = room temperature
sat. = saturated TEA = triethylamine
THF = tetrahydrofuranTFA = Trifluoroacetic TLC = thin layer chromatography
acid
prep TLC = preparative thin layer
chromatography
The following examples are provided so that the invention might be more fully understood. Unless otherwise indicated, the starting materials are commercially available. They should not be construed as limiting the invention in any way.
SCHEMES
In one embodiment of the present invention, compounds with structure 1 may be prepared by the sequence depicted in Scheme 1. Ring structure Z represents a five or six membered aryl or heteroaryl ring. Deprotonation of malononitrile 2 with a base such as sodium hydride, potassium t-butoxide or potassium carbonate in the presence of the alpha bromo ester 3 affords the compound 4. The reaction is typically done in a solvent such as DMF or THF. If compound 3 is not commercially available it may be prepared from the corresponding ester by bromination with N-bromosuccinimide in a solvent such as carbon tetrachloride. Reaction of compound 4 with the aminoguanidine hydrazone 5 in an alcohol solvent such as MeOH, n-BuOH or t-BuOH and a base such as NaOMe, NaOEt or t-BuOK at 100° C. to 150° C. gives the pyrimidine hydrazone 6. The reaction may also be carried out in the absence of a base. Compound 1 is prepared by treating compound 6 with CuI and a ligand such as trans-N,N′-dimethylcyclohexane-1,2-diamine or N,N′-dimethylethylenediamine in a solvent such as DMF or NMP at ambient temperature to 160° C. The reaction may also be carried out in the absence of a ligand. The copper mediated cyclization of hydrazones to form indazoles may also be carried out using the conditions described by Liu, R. et al Synthetic Communications 2008, 32(2), 249. In addition to the bromide 6, the copper mediated cyclization shown in Scheme 1 may also be carried out on the corresponding chloride or iodide.
Figure US08741910-20140603-C00021
The preparation of the aminoguanidine hydrazone 5 is outlined in Scheme 2. Reaction of methyl ester 7 with the carboxylic acid 8 and a base such as NaHMDS in THF gives the ketone 9. The transformation is most effective for aryl acetic acid compounds (8, R2=aryl). Compound 5 is prepared by treatment of the ketone 9 with aminoguanidine hydrochloride and boron trifluoride etherate in an alcohol solvent such as methanol at 100° C.
Figure US08741910-20140603-C00022
The ketone 9 may be prepared using methods familiar to those skilled in the art. Some of the methods are depicted in Scheme 3. Addition of the alkyl or aryl magnesium chloride 11 (or bromide, iodide) to the aldehyde 10 gives the benzyl alcohol 12. The compound 11, if not commercial, may be prepared from the corresponding halide using magnesium metal as described by Lai, Y. H. Synthesis 1981, 585. Ketone 9 is prepared by treating compound 12 with an oxidizing reagent such as chromium trioxide. Ketone 9 may also prepared by the addition of 11 to the amide 15. Alternatively, ketone 9 may be prepared from the acid chloride 13 and the zinc compound 14 using a palladium catalyst such as Pd(PPh3)4 as described by Zhu, L. et al Journal of Organic Chemistry 1991, 56(4), 1445. The ketone 9 where R2 is CH2CO2Et may be prepared from the acid chloride 13 and (1-ethoxycyclopropoxy)trimethylsilane using a palladium catalyst such as PdCl2(PPh3)2 as described by Aoki, S. et al Tetrahedron Letters 1989, 30(47), 6541.
Figure US08741910-20140603-C00023
In one embodiment of the present invention compounds with structure 18 (A to D) may be prepared by the sequence depicted in Scheme 4. Conversion of the nitrile 16 to the amidine 17 can be accomplished with a reagent such as amino(chloro)methylaluminum in a non-polar solvent such as toluene at 100° C. as described by Garigipati, R. S. Tetrahedron Letters 1990, 31(14), 1969. Reaction of amidine 17 with the malononitrile 4 as described in Scheme 1 affords 18.
Figure US08741910-20140603-C00024
Scheme 5 outlines the preparation of nitrile intermediate 16. Amino methyl compound 19 can be coupled with the carboxylic acid 8 and a coupling reagent such as EDC and an organic base such as DIEA or TEA in a solvent like DCM to afford the amide 20. This can be converted to the imidazopyridine 21 with phosphorous oxychloride in a chlorinated solvent such DCE under refluxing conditions. Iodination of 21 to afford 22 can be accomplished with MS in solvents like DCM or acetonitrile at ambient temperature or under reflux conditions. The nitrile 16 can be prepared by treatment of the iodide 22 with zinc cyanide in the presence of a suitable catalyst such as Pd(PPh3)4 or Pd2(dba)3 and ligand such as dppf in a polar solvent such as DMF.
Figure US08741910-20140603-C00025
The amino methyl compound 19D may be prepared as outlined in Scheme 6. Pyridazine 23 can be converted to 2-cyano pyridazine 25 using the chemistry described by Dostal, W. and Heinisch, G. Heterocycles 1986, 793. Reduction of the nitrile 25 can be accomplished under high pressure hydrogenation conditions using a suitable catalyst such as palladium on carbon in an alcoholic solvent such as methanol or ethanol and a suitable acid such as hydrochloric acid to afford the 2-amino methylpyridazine hydrochloride 19D.
Figure US08741910-20140603-C00026
The amino methyl compounds 19B and 19C may be prepared as outlined in Scheme 7. Addition of diethyl acetamidomalonate to 2-chloro-5-nitropyridine affords compound 27. Reduction of 27 with hydrogen and palladium on carbon gives the amine 28. Sandmeyer reaction of 28 using the indicated conditions gives the halo (chloro or fluoro) pyridine 29. Saponification of 29 with base followed by treatment with hydrochloric acid gives amino methyl compounds 19B and 19C.
Figure US08741910-20140603-C00027
In one embodiment of the present invention compounds with structure 36 are prepared as outlined in Scheme 8. The ketone 30 may be prepared as described for compound 9 in Schemes 2 and 3. Reaction of compound 30 with hydroxylamine in an alcohol solvent affords the oxime 31. Reduction with zinc metal followed by reaction with methyl oxalyl chloride gives compound 33. Cyclization of 33 using phosphorous oxychloride to give 34 may be carried out as described in Scheme 5. Conversion of the ester 34 to the amidine 35 can be accomplished with a reagent such as amino(chloro)methylaluminum in a non-polar solvent such as toluene at 100° C. Reaction of amidine 35 with the malononitrile 4 as described in Scheme 1 affords 36.
Figure US08741910-20140603-C00028

In one embodiment of the present invention compounds with the structure 40 are prepared as outlined in Scheme 9. Alkylation of nitrile indazole 37 with a base such as cesium carbonate or sodium hydride and an alkyl halide in a solvent such as DMF affords the compound 38. Compound 38 can be converted to compound 40 as described in Scheme 4.
Figure US08741910-20140603-C00029
In one embodiment of the present invention compounds with the structure 44 are prepared as outlined in Scheme 10. Reaction of the unsaturated nitrile 41 with ethyl bromoacetate, zinc and titanium biscyclopentadienyl dichloride catalyst as described by Ding, Y. et al Tetrahedron 1997, 53(8), 249 affords the compound 42. Compound 44 is prepared from compound 42 using the conditions described in Scheme 1. In addition, compound 4 may be substituted with compound 42 in Schemes 4, 8 and 9 to afford the corresponding 6-membered ring amides.
Figure US08741910-20140603-C00030

Compounds of the present invention may be prepared using methods familiar to those skilled in the art. One such method is the palladium mediated coupling of a boronic acid or ester and an aryl halide. An example of this method is shown in Scheme 11. The imidazopyridine 45 can be coupled to any suitable boronic acid or boronic ester such as phenyl boronic acid with a catalyst such as dichlorobis[1,1′-bis(diphenylphosphino)ferrocene]palladium (II) dichloromethane adduct to give 46.
Figure US08741910-20140603-C00031
REPRESENTATIVE EXAMPLES
The following examples are provided to more fully illustrate the present invention, and shall not be construed as limiting the scope in any manner. Unless stated otherwise:
1) all operations were carried out at room or ambient temperature (RT), that is, at a temperature in the range 18-25° C.;
2) reactions are generally done using commercially available anhydrous solvents under an inert atmosphere, either nitrogen or argon;
3) microwave reactions were done using a Biotage Initiator™ or CEM Explorer® system;
4) evaporation of solvent was carried out using a rotary evaporator under reduced pressure (4.5-30 mmHg) with a bath temperature of up to 50° C.;
5) the course of reactions was followed by thin layer chromatography (TLC) and/or tandem high performance liquid chromatography (HPLC) followed by electron spray mass spectroscopy (MS), herein termed LCMS, and any reaction times are given for illustration only;
6) the structure of all final compounds was assured by at least one of the following techniques: MS or proton nuclear magnetic resonance (1H NMR) spectrometry, and the purity was assured by at least one of the following techniques: TLC or HPLC;
7) 1H NMR spectra were recorded on either a Varian Unity or a Varian Inova instrument at 400, 500 or 600 MHz using the indicated solvent; when line-listed, NMR data is in the form of delta values for major diagnostic protons, given in parts per million (ppm) relative to residual solvent peaks (multiplicity and number of hydrogens); conventional abbreviations used for signal shape are: s. singlet; d. doublet (apparent); t. triplet (apparent); m. multiplet; br. broad; etc.;
8) MS data were recorded on a Waters Micromass unit, interfaced with a Hewlett-Packard (Agilent 1100) HPLC instrument, and operating on MassLynx/OpenLynx software; electrospray ionization was used with positive (ES+) or negative ion (ES−) detection; and diode array detection; the various methods used for analytical HPLC mass spectrometery conditions are listed below:
Analytical HPLC mass spectrometry conditions:
LC1: Column: Waters Xterra MS C-18, 3.5μ, 3.0×50 mm
    • Temperature: 50° C.
    • Eluent: 10:90 to 98:2 v/v acetonitrile/water+0.05% TFA (or HCOOH) over 3.75 min.
    • Flow Rate: 1.0 mL/min, Injection 10 μL
    • Detection: PDA, 200-600 nm
    • MS: mass range 150-750 amu; positive ion electrospray ionization
LC2: Column: Waters Xterra IS C-18, 3.5μ, 2.1×20 mm
    • Temperature: 50° C.
    • Eluent: 10:90 to 98:2 v/v acetonitrile/water+0.05% TFA (or HCOOH) over 1.25 min.
    • Flow Rate: 1.5 mL/min, Injection 5 μL
    • Detection: PDA, 200-600 nm
    • MS: mass range 150-750 amu; positive ion electrospray ionization
LC3: Column: Waters Xterra IS C-18, 3.5μ, 2.1×20 mm
    • Temperature: 50° C.
    • Eluent: 10:90 to 98:2 v/v acetonitrile/water+0.05% TFA (or HCOOH) over 3.25 min.
    • Flow Rate: 1.5 mL/min, Injection 5 μL
    • Detection: PDA, 200-600 nm
    • MS: mass range 150-750 amu; positive ion electrospray ionization
LC4: Column: Waters Sunfire C18, 5μ, 4.6×50 mm
    • Temperature: 50° C.
    • Eluent: 10:90 to 100:0 v/v acetonitrile/water+0.05% TFA over 3.75 min.
    • Flow Rate: 1.2 mL/min, Injection 10 μL
    • Detection: PDA, 200-600 nm
    • MS: mass range 150-700 amu; positive ion electrospray ionization
LC5: Column: YMC Pro C18, 5μ, 4.6×50 mm
    • Temperature: 50° C.
    • Eluent: 5:95 to 98:2 v/v acetonitrile/water+0.05% TFA over 3.00 min.
    • Flow Rate: 2.5 mL/min, Injection 10 μL
    • Detection: PDA, 200-600 nm
    • MS: mass range 150-700 amu; positive ion electrospray ionization
9) Purification of compounds by preparative reverse phase HPLC was performed on a Gilson system using a YMC-Pack Pro C18 column (150×20 mm i.d.) eluting at 20 mL/min with a water/acetonitrile (0.1% TFA) gradient (typically 5% acetonitrile to 95% acetonitrile) or on a Shimadzu system using a Sunfire Prep C18 OBD 5 μM column (100×30 mm i.d.) eluting at 50 mL/min with a water/acetonitrile (0.1% TFA) gradient;
10) Purification of compounds by preparative thin layer chromatography (PTLC) was conducted on 20×20 cm glass plates coated with silica gel, commercially available from Analtech; or E. Merck.
11) flash column chromatography was carried out on a glass silica gel column using Kieselgel 60, 0.063-0.200 mm (SiO2), or on a Biotage SiO2 cartridge system using the Biotage Horizon and Biotage SP-1 systems; or a Teledyne Isco SiO2 cartridge using the CombiFlashRf system;
12) chemical symbols have their usual meanings, and the following abbreviations have also been used: h (hours), min (minutes), v (volume), w (weight), b.p. (boiling point), m.p. (melting point), L (liter(s)), mL (milliliters), g (gram(s)), mg (milligrams(s)), mol (moles), mmol (millimoles), eq or equiv (equivalent(s)), IC50 (molar concentration which results in 50% of maximum possible inhibition), EC50 (molar concentration which results in 50% of maximum possible efficacy), uM (micromolar), nM (nanomolar).
Intermediate 1 METHYL 3,3-DICYANO-2,2-DIMETHYLPROPANOATE
Figure US08741910-20140603-C00032
A 12 liter 3 neck round bottom flask equipped with a mechanical stirrer, thermometer, condenser and nitrogen bubbler, was charged with malononitrile (251 g, 3.802 moles) and THF (2 liters). Potassium t-butoxide (1M THF, 3.802 L, 3.802 moles) was then added. The mixture was stirred at 50° C. for 30 min. Methyl 2-bromoisobutyrate (688 g, 3.80 moles) was added and the reaction mixture was stirred overnight at 50° C. The reaction was partitioned between aqueous 1N HCl and EtOAc. The organic phase was washed with brine, dried over MgSO4, filtered and concentrated to give the indicated product. 1H NMR (400 MHz, CD3CN): δ 4.35 (s, 1H); 3.73 (s, 3H); 1.43 (s, 6H).
Intermediate 2 METHYL 2-(DICYANOMETHYL)-2-METHYLBUTANOATE
Figure US08741910-20140603-C00033
Figure US08741910-20140603-C00034
A carbon tetrachloride (30 mL) solution containing methyl 2-methylbutyrate (0.868 g, 7.47 mmol), N-bromosuccinimide (1.4 g, 7.87 mmol) and 2,2′-azobis(2-methylpropionitrile) (0.129 g, 0.787 mmol) was refluxed for 3 hours. The solution was cooled to room temperature and filtered. The filtrate was concentrated and the residue purified by silica gel chromatography using a hexanes/EtOAc gradient to give the indicated product. 1H NMR (CDCl3, 400 MHz): δ 3.78 (s, 3H); 2.19-2.09 (m, 2H); 1.87 (s, 3H); 0.98 (t, J=7.4 Hz, 3H).
Figure US08741910-20140603-C00035
A DMF (4 mL) solution containing malononitrile (0.484 g, 7.32 mmol) was added dropwise to a DMF (3 mL) suspension of sodium hydride (60 wt %, 0.30 g, 7.49 mmol) cooled in an ice bath. After 10 min a DMF (3 mL) solution containing the intermediate from Step A (1.099 g, 5.63 mmol) was added. The ice bath was removed and the solution stirred overnight at room temperature. The solution was partitioned between ethyl ether and aqueous 1N HCl. The organic phase was washed with aqueous 1N HCl, brine and dried over MgSO4. The solution was filtered and concentrated. The residue was purified by silica gel chromatography using a hexanes/EtOAc gradient to give the indicated product. 1H NMR (CDCl3, 400 MHz): δ 4.18 (s, 1H); 3.80 (s, 3H); 1.96-1.79 (m, 2H); 1.53 (s, 3H); 0.91 (t, J=7.4 Hz, 3H).
Intermediate 3 METHYL 2-(DICYANOMETHYL)-2-METHYLPENTANOATE
Figure US08741910-20140603-C00036
The indicated product was prepared from methyl 2-methylpentanoate as described in Intermediate 2. 1H NMR (CDCl3, 400 MHz): δ 4.18 (s, 1H); 3.79 (s, 3H); 1.85-1.70 (m, 2H); 1.52 (s, 3H); 0.31-1.17 (m, 2H); 0.94 (t, J=7.4 Hz, 3H).
Intermediate 4 ETHYL 4,4-DICYANO-3,3-DIMETHYLBUTANOATE
Figure US08741910-20140603-C00037
Zinc powder (1.23 g, 18.85 mmol) was added to a THF (20 mL) solution of isopropylidenemalononitrile (1.0 g, 9.42 mmol), ethyl bromoacetate (3.15 g, 18.85 mmol) and titanium bis(cyclopentadienyl)dichloride (235 mg, 0.94 mmol). After stirring for 1 hour the solution was partitioned between ethyl acetate and aqueous 1N HCl. The organic phase was washed with water, brine, dried over MgSO4 and filtered. The solution was concentrated and the crude residue purified by silica gel chromatography using a hexanes/EtOAc gradient to give the indicated product. 1H NMR (400 MHz, CD3CN): δ 4.55 (s, 1H); 4.10 (q, J=7.2 Hz, 2H); 2.48 (s, 2H); 1.24 (s, 6H); 1.21 (t, J=7.2 Hz, 3H).
Example 1 4-AMINO-2-[5-CHLORO-3-(3,3,3-TRIFLUOROPROPYL)-1H-INDAZOL-1-YL]-5,5-DIMETHYL-5,7-DIHYDRO-6H-PYRROLO[2,3-D]PYRIMIDIN-6-ONE
Figure US08741910-20140603-C00038
Figure US08741910-20140603-C00039
A THF solution of sodium bis(trimethylsilyl)amide (1.0M, 194 mL, 194 mmol) was added dropwise to a −78° C. THF (400 mL) solution containing methyl 2-bromo-5-chlorobenzoate (16.10 g, 64.5 mmol) and 4,4,4-trifluorobutyric acid (9.17 g, 64.5 mmol). After stirring for 15 min at −78° C. the solution was warmed to 0° C. and stirred for an additional 2 hours. The reaction was quenched with an excess of aqueous 1N HCl (ca 400 mL) and stirred overnight at room temperature. The solution was concentrated to remove the majority of the THF. The solution was then diluted with EtOAc and washed with 1N NaHCO3 (twice) and brine. The organic phase was then dried over anhydrous sodium sulfate, filtered and concentrated. The residue was purified by silica gel chromatography using a hexanes/EtOAc gradient to give the indicated compound (solid). 1H NMR (500 MHz, CDCl3): δ 7.58 (d, J=8.4 Hz, 1H); 7.41 (d, J=2.5 Hz, 1H); 7.33 (dd, J=8.5, 2.5 Hz, 1H); 3.22 (t, J=7.8 Hz, 2H); 2.68-2.56 (m, 2H). LC4 rt=4.25 min, m/z=not ionized (M+H).
Figure US08741910-20140603-C00040
To a screw cap pressure vessel was added the intermediate from Step A (3.22 g, 10.2 mmol), aminoguanidine hydrochloride (1.69 g, 15.3 mmol), methanol (25 mL) and boron trifluoride diethyl etherate (2.6 mL, 20.4 mmol). The reaction solution was heated at 100° C. for 70 min. The solution was concentrated and the residue partitioned between EtOAc and aqueous 1N NaOH. The organic phase was washed twice with aqueous 1N NaOH and brine (1×). The organic phase was dried over anhydrous magnesium sulfate, filtered and concentrated to give the indicated compound as a mixture of E,Z hyrazone isomers. 1H NMR (400 MHz, CD3CN): δ 7.54 (d, J=8.4 Hz); 7.24-7.17 (m, 1H); 7.10 (d, J=2.59 Hz, 1H); 2.68-2.51 (m, 4H). LC4 rt=2.79 min, m/z=371 (M+H).
Figure US08741910-20140603-C00041
A screw cap pressure tube containing an n-butanol (90 mL) solution of the intermediate from Step B (6.3 g, 16.95 mmol), the Intermediate 1 (5.63 g, 33.9 mmol) and potassium t-butoxide (2.0 g, 16.95 mmol) was heated at 130° C. for 75 min. The solution was concentrated and the residue partitioned between EtOAc and aqueous 1N NaOH. The organic phase was washed with brine, dried over anhydrous magnesium sulfate, filtered and concentrated. LC4 rt=2.90 min, m/z=505 (M+H).
Figure US08741910-20140603-C00042
A DMF (200 mL) solution of the crude intermediate from Step C (8.51 g, 16.8 mmol), copper iodide (0.64 g, 3.37 mmol) and N,N′-dimethylethylenediamine (1.78 g, 20.2 mmol) were stirred at room temperature for 30 min. The reaction mixture was filtered through celite and the filter pad washed several times with small portions of DMF. The filtrate was diluted with EtOAc and washed with water (3×) and brine. The organic phase was concentrated and the residue purified by reverse phase HPLC using a water/acetonitrile (with 0.1% TFA) gradient to give the indicated compound. 1H NMR (400 MHz, CD3CN): δ 8.97 (s, 1H); 8.75 (d, J=9.0 Hz, 1H); 7.82 (s, 1H); 7.47 (dd, J=9.0, 1.9 Hz, 1H); 5.60 (s, 2H); 3.27-3.19 (m, 2H); 2.80-2.66 (m, 2H); 1.38 (s, 6H). LC4 rt=3.73 min, m/z=425 (M+H).
Example 2 4-AMINO-5,5-DIMETHYL-2-[3-(3,3,3-TRIFLUOROPROPYL)-1H-INDAZOL-1-YL]-5,7-DIHYDRO-6H-PYRROLO[2,3-D]PYRIMIDIN-6-ONE
Figure US08741910-20140603-C00043
The compound of Example 1 (9 mg, 0.02 mmol) and palladium hydroxide on carbon (20 wt %, 15 mg) in MeOH (ca 10 mL) were stirred under a hydrogen atmosphere (balloon). After stirring for several hours the solution was filtered through celite and concentrated. The residue was purified by preparative TLC using 5% MeOH/DCM as the eluent to give the indicated compound. 1H NMR (500 MHz, DMSO-d6): δ 11.08 (s, 1H); 8.82 (d, J=8.5 Hz, 1H); 7.89 (d, J=8.0 Hz, 1H); 7.53 (t, J=7.8 Hz, 1H); 7.31 (t, J=7.5 Hz, 1H); 6.94 (s, 2H); 3.28-3.21 (m, 2H); 2.89-2.77 (m, 2H); 1.35 (s, 6H). LC4 rt=3.42 min, m/z=391 (M+H).
Example 3 4-AMINO-2-[5-CHLORO-3-(2,3,6-TRIFLUOROBENZYL)-1H-INDAZOL-1-YL]-5,5-DIMETHYL-5,7-DIHYDRO-6H-PYRROLO[2,3-D]PYRIMIDIN-6-ONE
Figure US08741910-20140603-C00044
Figure US08741910-20140603-C00045
To a solution of 2,3,6 trifluorophenyl acetic acid (5 g, 26.3 mmol) and methyl 2-bromo-5-chloro benzoate in anhydrous THF (53 mL) cooled to −78° C. was slowly added NaHMDS (110 mL, 65.7 mmol, 0.6 M). The reaction was then warmed to 0° C. After stirring for 30 minutes the reaction was quenched by adding aqueous 1N HCl (100 mL). The resulting mixture was stirred vigorously at room temperature for 1 hour. The reaction mixture was concentrated to remove the excess organic solvents. The residue was extracted with EtOAc. The organic layer was washed with saturated sodium bicarbonate solution (2×), water and brine. The organic layer was then dried over sodium sulfate, filtered and concentrated to give the indicated product. 1H NMR (400 MHz, CD3CN): δ 7.66-7.61 (m, 2H); 7.40 (dd, J=8.6, 2.6 Hz, 1H); 7.25 (m, 1H); 6.98 (m, 1H); 4.34 (s, 2H). LC4 rt=4.41 min, (M+H) not ionized.
Figure US08741910-20140603-C00046
To a screw cap pressure vessel was added the intermediate from Step A (800 mg, 2.20 mmol), aminoguanidine hydrochloride (280 mg, 2.53 mmol), methanol (20 mL) and boron trifluoride diethyl etherate (0.63 mL, 4.95 mmol). After stirring at 100° C. for 1 hour, boron trifluoride diethyl etherate (1 mL) and aminoguanidine hydrochloride (200 mg) were added and the reaction solution heated at 100° C. for 3 hours. The solution was concentrated and the residue partitioned between EtOAc and aqueous 1N NaOH. The organic phase was washed with aqueous 1N NaOH (2×), brine and dried over anhydrous sodium sulfate. The solution was then filtered and concentrated to give the indicated product. LC1 rt=2.69 min, m/z=419 (M+H).
Figure US08741910-20140603-C00047
A methanol (3 mL) solution of the intermediate from Step B (100 mg, 0.24 mmol) and Intermediate 1 (120 mg, 0.72 mmol) were heated at 135° C. for 20 min in a microwave. The solution was concentrated to give the indicated compound which was used without purification in the next step. LC1 rt=2.82 min, m/z=553 (M+H).
Figure US08741910-20140603-C00048
To the crude compound from Step C (ca 0.24 mmol) was added 3 mL NMP and copper iodide (45 mg, 0.24 mmol). The reaction solution was heated at 160° C. for 11 min. The cooled reaction solution was partitioned between DCM and 6% aqueous ammonium hydroxide. The organic phase was washed with brine, dried over anhydrous sodium sulfate, filtered and concentrated. The crude was filtered through a plug of silica gel using 5% MeOH/DCM (with 0.5% aq NH4OH) as the eluent. The material collected was then purified by reverse phase HPLC using a water/acetonitrile gradient (with 0.1% TFA) to give the indicated product. NMR (400 MHz, CH3OH-d): δ 8.78 (d, J=9.1 Hz, 1H); 7.65 (s, 1H); 7.45 (d, J=9.1 Hz, 1H); 7.24-7.18 (m, 1H); 6.97 (t, J=8.3 Hz, 1H); 4.43 (s, 2H); 1.42 (s, 6H). LC1 rt=3.33 min, m/z=473 (M+H).
Example 4 4-AMINO-5,5-DIMETHYL-2-[3-(2,3,6-TRIFLUOROBENZYL)-1H-INDAZOL-1-YL]-5,7-DIHYDRO-6H-PYRROLO[2,3-D]PYRIMIDIN-6-ONE
Figure US08741910-20140603-C00049
The indicated compound was prepared from Example 3 using the hydrogenation procedure described in Example 2. 1H NMR (400 MHz, CD3CN): δ 8.81 (s, 1H); 8.75 (d, J=8.6 Hz, 1H); 7.71 (d, J=8.1 Hz, 1H); 7.48 (t, J=7.8 Hz, 1H); 7.29-7.13 (m, 2H); 6.99-6.92 (m, 1H); 5.54 (s, 2H); 4.42 (s, 2H); 1.37 (s, 6H). LC1 rt=3.08 min, m/z=439 (M+H).
Example 5 4-AMINO-2-(5-FLUORO-3-HEXYL-1H-INDAZOL-1-YL)-5,5-DIMETHYL-5,7-DIHYDRO-6H-PYRROLO[2,3-D]PYRIMIDIN-6-ONE
Figure US08741910-20140603-C00050
Figure US08741910-20140603-C00051
A diethyl ether solution of n-hexylmagnesium bromide (2.0M in diethyl ether, 12.3 mL, 24.6 mmol) was added dropwise to a diethyl ether solution (50 mL) of 2-bromo-5-fluorobenzaldehyde (5 g, 24.63 mmol). After stirring for 30 min at room temperature the solution was partitioned between EtOAc and aqueous 1N HCl. The organic phase was washed with water and brine. The solution was then dried over anhydrous magnesium sulfate, filtered and concentrated. The crude was purified by silica gel chromatography using a hexanes/EtOAc gradient to give the indicated compound. 1H NMR (400 MHz, CD3CN): δ 7.50 (dd, J=8.8, 5.3 Hz, 1H); 7.28 (dd, J=10.1, 3.2 Hz, 1H); 6.90 (m, 1H); 4.86 (m, 1H); 3.41 (d, J=4.5 Hz, 1H); 1.73-1.58 (m, 2H); 1.56-1.20 (m, 8H); 0.85 (t, J=6.4 Hz, 3H). LC4 rt=4.62 min, not ionized.
Figure US08741910-20140603-C00052
The product from Step A (ca. 3 g, 10.4 mmol) was dissolved in acetone (50 mL) and chromium trioxide (3.7M in 2/1 water/concentrated sulfuric acid) was added until the color of the chromium oxide solution persisted (ca 3 mL, 10.9 mmol). The excess reagent was quenched with a small amount of isopropyl alcohol. The mixture was filtered and concentrated. The residue was partitioned between EtOAc and water. The organic phase was washed with water and brine. The solution was then dried over anhydrous magnesium sulfate, filtered and concentrated to give the indicated compound. 1H NMR (400 MHz, CD3CN): δ 7.62 (dd, J=8.8, 5.0 Hz, 1H); 7.20 (dd, J=8.7, 3.1 Hz, 1H); 7.11 (m, 1H); 2.84 (t, J=7.3 Hz, 2H); 1.66-1.56 (m, 2H); 1.35-1.24 (m, 6H); 0.86 (t, J=6.6 Hz, 3H). LC4 rt=4.69 min, (M+H) not ionized.
Figure US08741910-20140603-C00053
The indicated product was prepared from the intermediate from Step B as described in Example 1. 1H NMR (500 MHz, DMSO-d6): δ 11.13 (s, 1H); 8.85 (dd, J=9.2, 4.6 Hz, 1H); 7.66 (dd, J=8.6, 2.6 Hz, 1H); 7.37 (m, 1H); 7.01 (s, 2H); 3.35-3.31 (m, 2H); 2.94 (t, J=7.5 Hz, 2H); 1.76-1.68 (m, 2H); 1.5 (s, 6H); 1.31-1.21 (m, 4H); 0.84 (t, J=6.8 Hz, 3H). LC4 rt=4.07 min, m/z 397 (M+H).
Example 6 4-AMINO-2-[5-BROMO-3-(2,3,6-TRIFLUOROBENZYL)-1H-INDAZOL-1-YL]-5,5-DIMETHYL-5,7-DIHYDRO-6H-PYRROLO [2,3-D]PYRIMIDIN-6-ONE
Figure US08741910-20140603-C00054
The title product was prepared from methyl 2,5-dibromobenzoate and 2,3,6 trifluorophenyl acetic acid as described in Example 3. 1H NMR (500 MHz, DMSO-d6): δ 11.06 (broad s, 1H); 8.76 (d, J=8.9 Hz, 1H); 8.07 (s, 1H); 7.64 (dd, J=8.9, 2.0 Hz, 1H); 7.52-7.44 (m, 1H); 7.21-7.16 (m, 1H); 6.96 (s, 2H); 4.45 (s, 2H); 1.32 (s, 6H). LC4 rt=4.00 min, m/z=518 (M+H).
Example 7 4-AMINO-5,5-DIMETHYL-2-[5-PYRIDIN-4-YL-3-(2,3,6-TRIFLUOROBENZYL)-1H-INDAZOL-1-YL]-5,7-DIHYDRO-6H-PYRROLO[2,3-D]PYRIMIDIN-6-ONE
Figure US08741910-20140603-C00055
A 1,4-dioxane/DMF (5 mL, 1/1) solution containing Example 6 (50 mg, 0.097 mmol), 4-pyridineboronic acid (59 mg, 0.48 mmol), 1,1′-bis(di t-butylphosphino)ferrocene palladium dichloride (5 mg, 0.0077 mmol), aqueous potassium carbonate (1N, 0.48 mL, 0.48 mmol) was heated at 100° C. for 30 min. The crude reaction was purified by reverse phase HPLC using a water/acetonitrile gradient. The isolated material was further purified by TLC using 9/1/0.05 DCM/MeOH/NH4OH aq eluent to give the titled product. 1H NMR (500 MHz, DMSO-de): δ 11.09 (s, 1H); 8.90 (d, J=8.8 Hz, 1H); 8.68 (d, J=5.0 Hz, 2H); 8.31 (s, 1H); 7.95 (d, J=8.8 Hz, 1H); 7.80 (d, J=5.1 Hz, 2H); 7.50-7.43 (m, 1H); 7.24-7.16 (m, 1H); 6.98 (s, 2H); 4.54 (s, 2H); 1.34 (s, 6H). LC5 rt=1.63 min, m/z=516 (M+H).
Example 8 4-AMINO-5,5-DIMETHYL-2-[3-(4,4,4-TRIFLUOROBUTYL)-1H-THIENO[3,4-C]PYRAZOL-1-YL]-5,7-DIHYDRO-6H-PYRROLO[2,3-D]PYRIMIDIN-6-ONE
Figure US08741910-20140603-C00056
The titled compound was prepared from 3-bromo-4-formylthiophene and 1-iodo-4,4,4-trifluorobutane following the procedure described in Example 5. 1H NMR (400 MHz, CD3CN): δ 8.68 (s, 1H); 7.56 (d, J=2.8 Hz, 1H); 7.48 (d, J=2.8 Hz, 1H); 5.46 (s, 2H); 2.92 (t, J=7.5 Hz, 2H); 2.33-2.19 (m, 2H); 1.76-1.72 (m, 2H); 1.36 (s, 6H). LC4 rt=3.34 min, m/z 411 (M+H).
Example 9 4-AMINO-5,5-DIMETHYL-2-[3-(2,3,6-TRIFLUOROBENZYL)-1H-THIENO[3,4-C]PYRAZOL-1-YL]-5,7-DIHYDRO-6H-PYRROLO[2,3,0]PYRIMIDIN-6-ONE
Figure US08741910-20140603-C00057
The titled compound was prepared from methyl 4-bromothiophene-3-carboxylate and 2,3,6 trifluorophenyl acetic acid following the procedure described in Example 1. 1H NMR (400 MHz, CD3CN): δ 8.95 (s, 1H); 7.56 (d, J=2.8 Hz, 1H); 7.26-7.16 (m, 2H); 7.02-6.93 (m, 1H); 5.49 (s, 2H); 4.27 (s, 2H); 1.36 (s, 6H). LC4 rt=3.46 min, m/z=445 (M+H)
Example 10 4-AMINO-5,5-DIMETHYL-2-[3-(2,3,6-TRIFLUOROBENZYL)-4,6-DIHYDRO-1H-THIENO[3,4-C]PYRAZOL-1-YL]-5,7-DIHYDRO-6H-PYRROLO[2,3-D]PYRIMIDIN-6-ONE
Figure US08741910-20140603-C00058
A 1,2-dichloroethane (1 mL) solution containing Example 9 (15 mg, 0.034 mmol), triethylsilane (0.7 mL, 4.38 mmol) and TFA (0.3 mL, 4.04 mmol) was heated in a screw cap pressure tube at 75° C. for 3 hours. The solution was concentrated and the residue partitioned between EtOAc and aqueous 1N NaOH. The organic phase was washed with brine and dried over MgSO4. The solution was filtered and concentrated. The residue was purified by reverse phase HPLC to give the titled product. 1H NMR (400 MHz, CD3CN): δ 8.73 (s, 1H); 7.24-7.11 (m, 1H); 6.99-6.91 (m, 1H); 5.46 (s, 2H); 4.31 (t, J=3.0 Hz, 2H); 3.98 (s, 2H); 3.61 (t, J=3.0 Hz, 2H); 1.33 (s, 6H). LC4 rt=3.57 min, m/z=447 (M+H)
Example 11 4-AMINO-2-[3-(2-CYCLOPENTYLETHYL)-1H-INDAZOL-1-YL]-5,5-DIMETHYL-5,7-DIHYDRO-6H-PYRROLO[2,3-D]PYRIMIDIN-6-ONE
Figure US08741910-20140603-C00059
Figure US08741910-20140603-C00060
To a solution of 2-bromo benzoyl chloride (7.92 mL, 60.6 mmol) and DIEA (21.17 mL, 121 mmol) in DCM (121 mL) was added a solution of N,O-dimethyl hydroxylamine hydrochloride (5.91 g, 60.6 mmol) in DCM (121 mL). After 30 minutes, the reaction was diluted with ethyl acetate, washed with brine, dried over sodium sulfate, filtered and concentrated in vacuo. The residue was purified by flash chromatography using a gradient of 0-100% ethyl acetate/hexanes.
Figure US08741910-20140603-C00061
To a solution of cyclopentyl acetylene (700 mg, 7.43 mmol) and Weinreb amide from step A (1815 mg, 7.43 mmol) cooled to −78° C. was added LiHMDS (7.43 mL, 7.43 mmol). After 15 min, the ice bath was removed and the reaction was warmed to room temperature. The reaction mixture was quenched by adding saturated ammonium chloride solution. The resulting mixture was extracted with ethyl acetate, washed with brine, dried over sodium sulfate, filtered and concentrated in vacuo. The residue was purified by flash chromatography Biotage SP 1 using a gradient of 0-100% ethyl acetate/hexanes to give the indicated compound.
Figure US08741910-20140603-C00062
To a solution of the intermediate from step B (300 mg, 1.08 mmol) in ethyl acetate (20 mL) was added platinum (IV) oxide (25 mg, 0.108 mmol). The resulting reaction mixture was stirred under hydrogen balloon for 24 hours. The reaction was filtered through celite. The filtrate was concentrated in vacuo. 1H NMR (CDCl3, 500 MHz) δ 7.62 (d, 1H), 7.38 (d, 2H), 7.30 (m, 1H), 2.95 (t, 2H), 1.85-1.72 (m, 5H), 1.67-1.53 (m, 4H), 1.15 (m, 2H).
Figure US08741910-20140603-C00063
The indicated product was prepared from the intermediate from Step C as described in Example 1. 1H NMR (500 MHz, DMSO-d6): δ 8.80 (d, J=8.53 Hz, 1H); 7.80 (d, J=7.87 Hz, 1H); 7.49 (t, J=7.83 Hz, 1H); 7.28 (t, J=7.39 Hz, 1H); 6.91 (s, 2H); 2.96 (t, J=7.47 Hz, 2H); 1.84-1.74 (m, 5H); 1.61-1.53 (m, 3H); 1.52-1.42 (m, 1H); 1.34 (s, 6H); 1.19-1.09 (m, 2H). LC2 rt=1.22 min, m/z 391 (M+H)
Using essentially the same procedures described in Examples 1 to 11, the following compounds in Table 1 and Table 2 were made.
TABLE 1
Figure US08741910-20140603-C00064
EXAMPLE R1 R2 LC-MS data Method
12 H 2-F—Ph 2.19 min (M + H) 403 LC3
13 Cl 2-F—Ph 2.43 min (M + H) 437 LC3
14 F 2-F—Ph 2.28 min (M + H) 421 LC3
15 Cl 2,3-di F—Ph 3.42 min (M + H) 455 LC1
16 F 2,3-di F—Ph 2.36 min (M + H) 439 LC5
17 H 2,3-di F—Ph 3.12 min (M + H) 421 LC1
18 Ph 2-F—Ph 3.55 min (M + H) 479 LC1
19 F 2,3,6-tri F—Ph 2.34 min (M + H) 458 LC5
20
Figure US08741910-20140603-C00065
2,3,6-tri F—Ph 1.64 min (M + H) 516 LC5
21
Figure US08741910-20140603-C00066
2,3,6-tri F—Ph 2.12 min (M + H) 520 LC5
22
Figure US08741910-20140603-C00067
2,3,6-tri F—Ph 1.78 min (M + H) 534 LC5
23
Figure US08741910-20140603-C00068
2,3,6-tri F—Ph 2.45 min (M + H) 505 LC5
24
Figure US08741910-20140603-C00069
2,3,6-tri F—Ph 2.61 min (M + H) 535 LC5
25
Figure US08741910-20140603-C00070
2,3,6-tri F—Ph 2.42 min (M + H) 479 LC5
26
Figure US08741910-20140603-C00071
2,3,6-tri F—Ph 1.64 min (M + H) 517 LC5
27 Ph 2,3,6-tri F—Ph 2.60 min (M + H) 515 LC5
28 Cl
Figure US08741910-20140603-C00072
3.01 min (M + H) 421 LC4
29
Figure US08741910-20140603-C00073
2,3,6-tri F—Ph 4.00 min (M + H) 521 LC4
30
Figure US08741910-20140603-C00074
2,3,6-tri F—Ph 3.64 min (M + H) 534 LC4
31
Figure US08741910-20140603-C00075
2,3,6-tri F—Ph 3.8 min (M + H) 534 LC4
32
Figure US08741910-20140603-C00076
2,3,6-tri F—Ph 3.99 min (M + H) 584 LC4
33 Cl 2,3-di F, 6-Br—Ph 4.12 mi. (M + H) 535 LC4
34 H
Figure US08741910-20140603-C00077
1.22 min (M + H) 391 LC2
35 F (CH2)3CH3 3.84 min (M + H) 383 LC4
36 F CH2CF3 3.53 min (M + H) 409 LC4
37 F
Figure US08741910-20140603-C00078
1.21 min (M + H) 409 LC2
38 Cl
Figure US08741910-20140603-C00079
1.24 min (M + H) 425 LC2
39 F (CH2)2CF3 2.06 min (M + H) 423 LC3
40 Cl (CH2)3CH3 2.09 min (M + H) 399 LC3
41 Cl (CH2)2CH3 3.95 min (M + H) 385 LC4
42 Cl (CH2)2CF3 3.81 min (M + H) 439 LC4
43 Cl (CH2)2CHCH2 3.89 min (M + H) 397 LC4
44 Cl CH2CHCH2 2.10 min (M + H) 383 LC3
45 Cl CH2CH3 3.68 min (M + H) 371 LC4
46 Cl CH2CO2Et 3.49 min (M + H) 429 LC4
47 Cl CH2C(CH3)3 4.29 (M + H) 413 LC4
TABLE 2
Figure US08741910-20140603-C00080
EXAMPLE X Z LC-MS data Method
48
Figure US08741910-20140603-C00081
H 3.47 min (M + H) 427 LC4
49
Figure US08741910-20140603-C00082
H 3.66 min (M + H) 461 LC4
50
Figure US08741910-20140603-C00083
H 4.08 min (M + H) 461 LC4
51
Figure US08741910-20140603-C00084
H 3.63 min (M + H) 427 LC4
52
Figure US08741910-20140603-C00085
F 3.97 min (M + H) 479 LC4
53
Figure US08741910-20140603-C00086
F 3.62 min (M + H) 445 LC4
54
Figure US08741910-20140603-C00087
F 1.89 min (M + H) 443 LC5
55
Figure US08741910-20140603-C00088
F 3.67 min (M + H) 445 LC4
56
Figure US08741910-20140603-C00089
F 3.21 min (M + H) 443 LC4
57
Figure US08741910-20140603-C00090
F 1.46 min (M + H) 440 LC5
Example 58 4-AMINO-5,5-DIMETHYL-2-[7-(2,3,6-TRIFLUOROBENZYL)IMIDAZO[1,5-B]PYRIDAZIN-5-YL]-5,7-DIHYDRO-6H-PYRROLO[2,3-D]PYRIMIDIN-6-ONE
Figure US08741910-20140603-C00091
Figure US08741910-20140603-C00092
To a solution of pyridazine (3.63 mL, 49.9 mmol) in DCM (60 mL) was added trimethylsilyl cyanide (11.99 mL, 90 mmol) and aluminium chloride (20 mg, 0.150 mmol). After stirring the reaction mixture at room temperature for 10 minutes, a solution of para-toluene sulfonyl chloride (16.38 mL, 86 mmol) in DCM (100 mL) was added dropwise via an addition funnel over 30 minutes. The resulting light orange solution was left stirring at room temperature overnight. The reaction mixture was concentrated to give a light brown solid. To this material was added EtOH (100 mL). A white precipitate crashed out which was filtered through a sintered funnel. The precipitate was washed with ethanol and collected. LC3 rt=1.4 min, m/z=262 (M+H).
Figure US08741910-20140603-C00093
To a solution of the intermediate from Step A (10 g, 38.3 mmol) in anhydrous THF (90 mL) was added DBU (7.21 mL, 47.8 mmol). The resulting solution was stirred at room temperature for 30 minutes. The reaction was quenched by the addition of saturated ammonium chloride solution (40 mL). The resulting mixture diluted with water (30 mL) and extracted with ethyl acetate several times (until aqueous layer had no product). The organic layer was washed with brine, dried over anhydrous sodium sulfate, filtered and concentrated. The residue was purified by silica gel chromatography using a ethyl acetate hexanes gradient to afford a white solid. 1H NMR (500 MHz, CDCl3) δ 9.4 (m, 2H), 7.9 (m, 2H), 7.7 (m, 1H). LC1 rt=0.11 min, m/z=106 (M+H).
Figure US08741910-20140603-C00094
To a solution of the intermediate from Step B (5.96 g, 56.7 mmol) in MeOH (35 mL) was added 6N HCl (20.89 mL, 125 mmol) followed by Pd/C (0.905 g, 8.51 mmol). The reaction mixture was kept on Parr shaker for 2 hours at 40 psi hydrogen. The reaction mixture was filtered through celite and washed with 600 mL of MeOH and the filtrate concentrated. The residue was azeotroped several times with toluene. A dark brown solid was obtained. LC1 rt=0.36 min, m/z=110 (M+H).
Figure US08741910-20140603-C00095
To a solution of 2,3,6-trifluorophenyl acetic acid (5.5 g, 29 mmol) and the intermediate from Step C (5.0 g, 34 mmol) in DCM (20 mL) was added EDC (7.9 g, 41.2 mmol) followed by DIEA (17.99 mL, 103 mmol). After stirring the reaction at room temperature for 18 hours, it was diluted with DCM (100 mL), and washed with water (2×). The organic layer was washed with brine, dried over anhydrous sodium sulfate, filtered and concentrated to give a brown solid. LC3 rt=0.6 min, m/z=282 (M+H).
Figure US08741910-20140603-C00096
To a solution of the intermediate from Step D (2.6 g, 9.2 mmol) in 1,2-dichloroethane (25 mL) was added POCl3 (5 mL, 53 mmol). The resulting mixture was refluxed for 3 hours. The reaction mixture was cooled to room temperature and concentrated. The residue was partitioned between water and ethyl acetate. The aqueous layer was neutralized with solid sodium bicarbonate and then extracted with ethyl acetate (3×). The organic layer was washed with brine, dried over anhydrous sodium sulfate, filtered and concentrated. The residue was purified by flash chromatography on Biotage SP1 using a gradient of 10-100% ethyl acetate-hexanes to give a yellow solid. 1H NMR δ (ppm) (DMSO-d6): 8.31 (1H, dd, J=4.3, 1.7 Hz), 8.09 (1H, dd, J=9.2, 1.6 Hz), 7.49-7.36 (2H, m), 7.17-7.10 (1H, m), 6.72 (1H, dd, J=9.2, 4.2 Hz), 4.45 (2H, s). LC3 rt=0.4 min, m/z=264 (M+H).
Figure US08741910-20140603-C00097
To a solution of the intermediate from Step E (1.7 g, 6.46 mmol) in anhydrous acetonitrile (25 mL) was added a NIS (1.85 g, 8.22 mmol). The reaction mixture was heated at reflux for 20 minutes. The reaction mixture was cooled to room temperature and concentrated. The residue was suspended in ethyl acetate and washed with saturated sodium bicarbonate solution (2×) and saturated sodium thiosulfate (2×). The organic layer was washed with brine, dried over anhydrous sodium sulfate, filtered and concentrated. The residue was purified by flash chromatography on Biotage SP1 using a gradient of 5-50% ethyl acetate-hexanes to give a bright yellow solid. 1H NMR δ (ppm) (DMSO-d6): 8.39-8.33 (1H, m), 7.81 (1H, d, J=9.3 Hz), 7.49-7.40 (1H, m), 7.15 (1H, s), 6.83-6.77 (1H, m), 4.48 (s, 2H). LC3 rt=1.87 min, m/z=390 (M+H).
Figure US08741910-20140603-C00098
To a solution of the intermediate from Step F (1.5 g, 4.25 mmol) in DMF (5 mL) was added zinc cyanide (0.162 mL, 2.55 mmol), Pd2 dba3 (0.078 g, 0.085 mmol), DPPF (0.141 g, 0.255 mmol) and water (0.5 mL). The resulting solution was heated at 110° C. for 1 hour. The reaction was cooled to room temperature, diluted with 15% NH4OH solution (10 mL) and extracted with ethyl acetate. The organic layer was washed with brine, dried over anhydrous sodium sulfate, filtered and concentrated. The residue was purified on a Biotage SP1 using a gradient of 10-100% ethyl acetate-hexanes to give a light yellow solid. 1H NMR δ (ppm) (DMSO-d6): 8.64 (1H, dd, J=4.4, 1.6 Hz), 8.40 (1H, dd, J=9.3, 1.5 Hz), 7.52-7.43 (1H, m), 7.25-7.14 (2H, m), 4.52 (2H, s). LC2 rt=1.08 min, m/z=289 (M+H).
Figure US08741910-20140603-C00099
Trimethylaluminum (2.0M toluene, 10 mL, 20 mmol) was added to ammonium chloride (1.07 g, 20 mmol) suspended in toluene (30 mL) at 0° C. The solution was then stirred at room temperature for 2 hours to give a 0.5M amino(chloro)methylaluminum solution in toluene. To the intermediate from Step G (2 g, 7.93 mmol) in toluene (1 mL) was added amino(chloro)methylaluminum (16 mL of 0.5 M solution in toluene, 8 mmol). The resulting mixture was left stirring at 110° C. for 3 hours. The reaction mixture was cooled to room temperature and quenched with silica-gel and 1:1 methanol-chloroform (50 mL). The resulting slurry was stirred vigorously for 30 minutes. The reaction mixture was filtered through a silica gel pad (1″) and washed with methanol. The filtrate was concentrated to yield a light yellow solid. LC2 rt=0.22 min, m/z=306 (M+H).
Figure US08741910-20140603-C00100
A methanol (1 mL) solution containing the intermediate from Step H (10 mg, 0.033 mmol), Intermediate 1 (16.33 mg, 0.098 mmol) and sodium methoxide (2.65 mg, 0.049 mmol) was heated for 20 minutes in a microwave at 140° C. The reaction was then purified by reverse phase HPLC to give the titled product. 1H NMR (500 MHz, DMSO-d6): δ 10.83 (s, 1H); 9.00-8.96 (m, 1H); 8.45-8.43 (m, 1H); 7.53-7.42 (m, 1H); 7.21-7.13 (m, 1H); 6.99-6.95 (m, 1H); 6.63 (s, 2H); 4.51 (s, 2H); 1.30 (s, 6H). LC2 rt=1.06 min, m/z=440 (M+H)
Example 59 4-AMINO-2-[6-CHLORO-3-(2,3,6-TRIFLUOROBENZYL)IMIDAZO[1,5-A]PYRIDIN-1-YL]-5,5-DIMETHYL-5,7-DIHYDRO-6H-PYRROLO[2,3-D]PYRIMIDIN-6-ONE
Figure US08741910-20140603-C00101
Figure US08741910-20140603-C00102
To a stirred slurry of sodium hydride (50% oil dispersion 46 g, 1 mol) in dimethylformamide (500 mL distilled from calcium oxide CaO) was slowly added a solution of diethyl acetamidomalonate (217 g, 1 mol) in dimethylformamide (1200 mL). After the initial reaction, the slurry was heated to 45° C. for 1.5 hours and then 2-chloro-5-nitropyridine (159 g, 1 mol) in DMF (800 mL) was added. The mixture became dark brown during addition of the 2-chloro-5-nitropyridine. The mixture was stirred at 45° C. overnight. After cooling, the mixture was diluted with 1000 mL (0.2N) hydrochloric acid, and then extracted with dichloromethane (3×1200 mL). The combined organic phases were dried over anhydrous magnesium sulfate, filtered and the solvent evaporated to give a dark brown oil. The oil was dry-loaded (on 300 g silica gel) and chromatographed on a dry-packed silica gel column. The column was eluted with petroleum-ethyl acetate (8:1 and then 5:1). Fractions containing the indicated compound were combined and concentrated to give pale yellow solid. Mp 82-83° C.
Figure US08741910-20140603-C00103
A mixture of the intermediate from Step A (115 g, 0.33 mol) and 2.5 g Pd/C catalyst (10%) in 200 mL of methanol was hydrogenated at 60 psi overnight. The mixture was filtered through celite, and the filtrate was concentrated to give diethyl (5-amino-2-pyridyl)acetamidomalonate as an off-white solid. Mp: 154-155° C.
Figure US08741910-20140603-C00104
A solution of 55 g (0.17 mol) of diethyl (5-amino-2-pyridyl)acetamidomalonate (Step B) in 200 mL of 3.5 N hydrochloric acid was cooled to −10° C., and then treated dropwise with a solution of 12.2 g (0.17 mol) of sodium nitrite in 50 mL of water. When the addition was complete, the reaction mixture was stirred below 5° C. for 2 hour, and then added to a solution of cupric chloride (69 g, 0.51 mol) in 200 mL of concentrated hydrochloric acid. The mixture was stirred at ambient temperature for 2 hr, and then diluted with 300 mL of dichloromethane. The organic phases was separated, dried over MgSO4 and filtered. The solvent was evaporated to afford a dark green solid. The crude product was purified by silica gel column chromatography (ethyl acetate/petrol ether=1:5) to give the indicated compound as a pale yellow solid. Mp: 89-90° C.
Figure US08741910-20140603-C00105
Diethyl (5-chloro-2-pyridyl)acetamidomalonate (70 g, 0.21 mol) was dissolved in 95% ethanol (200 mL). To the stirred solution (2° C.) was added sodium hydroxide solution (105 mL, 8 N). After 2 h, the mixture was cooled to 5° C. and acidified to pH 2 with hydrochloric acid (6 N, ˜40 mL). The ethanol was evaporated in vacuum to give a mixture containing some solid. The mixture was mixed with hydrochloric acid (5 N, 150 mL) and heated to 80° C. for 4 hr, and then maintained at room temperature overnight. Sodium hydroxide solution (4 N) was slowly added to the mixture to adjust pH 10. The mixture was extracted with DCM (4×200 mL), and then the combined organic phases were dried over anhydrous Na2SO4 and filtered. The solvent was evaporated to give the indicated product as a pale yellow oil.
Figure US08741910-20140603-C00106
The compound 2-(aminomethyl)-5-chloropyridine (18 g, 0.13 mol) was dissolved in dichloromethane (50 mL) and hydrochloric methanol solution (5 M, 50 mL) was added. After stirring for several min a white solid began to precipitate. The mixture was stirred for 1 h at 0-5° C., and the solid was collected by filtration and the filtrate was evaporated in vacuo to give some off-white solid. The combined solid was washed with a small amount of cold DCM. The product was dried in vacuo to yield the indicated compound as the hydrochloric salt. 1H-NMR (d6-DMSO, 400 MHz) δ 8.70 (s, 3H), 8.62 (s, 1H), 8.0 (dd, J=2.5, 6 Hz, 1H), 7.60 (d, J=8.5 Hz, 1H), 4.15 (m, 2H).
Figure US08741910-20140603-C00107
The indicated compound was prepared from the intermediate from Step E using the procedure described in Example 58 substituting NaOMe/MeOH solvent with KOtBu/t-BuOH solvent in the final pyrimidine formation step. 1H NMR (500 MHz, DMSO-d6): δ 10.79 (1H, s), 8.75 (1H, s), 8.68 (1H, d, J=9.7 Hz), 7.49 (1H, m), 7.23-7.16 (1H, m), 7.05 (1H, dd, J=9.7, 1.6 Hz), 6.57 (2H, s), 4.51 (2H, s). LC2 1.10 min (M+1) 473.
Example 60 4-AMINO-2-[6-FLUORO-3-(2,3,6-TRIFLUOROBENZYL)IMIDAZO[1,5-A]PYRIDIN-1-YL]-5,5-DIMETHYL-5,7-DIHYDRO-6H-PYRROLO[2,3-D]PYRIMIDIN-6-ONE
Figure US08741910-20140603-C00108
Figure US08741910-20140603-C00109
A stirred solution of the intermediate from Step B Example 59 (80 g, 0.25 mol) in 200 mL of 48% aqueous HBF4 was cooled to −5° C. The solution of sodium nitrite (20.7 g, 0.3 mol) in 50 mL of water was added dropwise and kept the reaction mixture below 0° C. After addition, the solution was stirred for another 1 h below 0° C., and then for 2 h at room temperature. The reaction mixture was extracted with dichloromethane (3×100 mL), and the combined organic phases were dried over anhydrous MgSO4 and filtered. The filtrate was concentrated to give a brown yellow oil. The crude product was purified by silica gel chromatography using (petroleum ether/EtOAc=5/1-3/1) to give the indicated compound as a pale yellow solid.
Figure US08741910-20140603-C00110
To a solution of diethyl (5-fluoro-2-pyridyl)acetamidomalonate from Step A (70 g, 0.21 mol) in 200 mL of 95% ethanol was added sodium hydroxide solution (105 mL, 8 N). After refluxing for 2 h, the mixture was cooled to 5° C. and acidified to pH 2 with hydrochloric acid (6 N, ˜40 mL). The ethanol in the solution was evaporated in vacuum to give a mixture containing some solid, and then 150 mL of hydrochloric acid (5 N) was added. The mixture was heated to 80° C. for 4 h, and then maintained at room temperature overnight. Sodium hydroxide solution (4 N) was slowly added to the mixture to adjust pH 10. The mixture was extracted with DCM (4×200 mL), and then the combined organic phases were dried over anhydrous Na2SO4 and filtered. The solvent was evaporated to give the indicated product as a pale yellow oil which decomposed on prolonged contact with air. 1H-NMR (CDCl3, 400 MHz) δ 8.42 (s, 1H), 7.4 (m, 1H), 3.99 (s, 2H), 1.79 (m, 2H). MS: m/z=127 (M+H).
Figure US08741910-20140603-C00111
The compound 2-(aminomethyl)-5-fluoropyridine from Step B (18 g, 0.14 mol) was dissolved in dichloromethane (50 mL) and hydrochloric methanol solution (5 M, 50 mL) was added. After stirring for several min a white solid began to precipitate. The mixture was stirred for 1 h at 0-5° C., and the solid was collected by filtration and the filtrate was evaporated to give some off-white solid. The combined solid was washed with a small amount of cold DCM. The product was dried in vacuo to give the indicated compound as the dihydrochloric salt. 1H NMR (d6-DMSO, 400 MHz) δ 8.70 (s, 3H), 8.62 (s, 1H), 7.8 (m, 1H), 7.64 (m, 1H), 4.13 (m, 2H). MS: m/z=127 (M+H).
Figure US08741910-20140603-C00112
The indicated compound was prepared from the intermediate from Step C using the procedure described in Example 58 substituting NaOMe/MeOH solvent with KOtBu/t-BuOH solvent in the final pyrimidine formation step. 1H NMR (500 MHz, DMSO-d6): δ 8.74 (1H, s), 8.65 (1H, s), 7.47 (1H, m), 7.25 (1H, s), 7.22-7.13 (1H, m), 4.52 (2H, s), 1.33 (6H, s). LC2 rt=1.05 min, m/z=457 (M+H).
Example 61 4-AMINO-5,5-DIMETHYL-2-[5-(2,3,6-TRIFLUOROBENZYL)IMIDAZO[5,1-B][1,3]THIAZOL-7-YL]-5,7-DIHYDRO-6H-PYRROLO[2,3-D]PYRIMIDIN-6-ONE
Figure US08741910-20140603-C00113
The indicated compound was prepared from 2-aminoethylthiazole using the procedure described in Example 58 substituting NaOMe/MeOH solvent with KOtBu/t-BuOH solvent in the final pyrimidine formation step. 1H NMR (500 MHz, DMSO-d6): δ 10.77 (s, 1H); 8.05 (d, J=4.4 Hz, 1H); 7.50 (m, 1H); 7.43 (d, J=4.1 Hz, 1H); 7.18 (m, 1H); 6.46 (broad s, 2H); 4.42 (s, 2H); 1.29 (s, 6H). LC3 rt=1.41 min, m/z=445 (M+H).
Example 62 4-AMINO-5,5-DIMETHYL-2-[1-(2,3,6-TRIFLUOROBENZYL)IMIDAZO[1,5-A]PYRIDIN-3-YL]-5,7-DIHYDRO-6H-PYRROLO[2,3-D]PYRIMIDIN-6-ONE
Figure US08741910-20140603-C00114
Figure US08741910-20140603-C00115
A solution of NaHMDS (1.0M THF, 15.78 mL, 15.78 mmol) was added to a THF (11 mL) solution of 2,3,6 trifluorophenylacetic acid (1 g, 5.26 mmol) cooled to −78° C. under a nitrogen atmosphere. The mixture was stirred for 20 minutes. Methyl picolinate (0.634 mL, 5.26 mmol) was then added and the reaction stirred for 30 min. The solution was then warmed to room temperature and quenched with 1N aqueous hydrochloric acid. The solution was then diluted with EtOAc and washed with 1N NaHCO3 and brine. The organic phase was then dried over anhydrous sodium sulfate, filtered and concentrated to give the indicated compound.
Figure US08741910-20140603-C00116
The intermediate from Step A (1.1 g, 4.38 mmol) was dissolved in MeOH and hydroxylamine (0.268 mL, 4.38 mmol) was added. After stirring the reaction overnight the solution was concentrated. The residue was diluted with ethyl acetate and water. The organic layer was washed with brine, dried over anhydrous sodium sulfate, filtered and concentrated to give the indicated compound.
Figure US08741910-20140603-C00117
The crude intermediate from Step B (ca. 4.38 mmol) was dissolved in TFA and cooled to 0° C. Zinc (1.432 g, 21.89 mmol) was then added in one portion. After 15 minutes the reaction mixture was poured on ice and 5N NaOH mixture. The pH was adjusted to 10 with NaOH. The mixture was then extracted with DCM (3×). The organic layer was washed with brine, dried over sodium sulfate, filtered and concentrated. The crude amine was purified silica gel chromatography using a hexanes/EtOAc gradient to give the indicated compound. LC2 rt=0.33 min, m/z=254 (M+H).
Figure US08741910-20140603-C00118
The intermediate from Step C (300 mg, 1.189 mmol) was dissolved in DCM (3 mL) and DIEA (208 μl, 1.189 mmol) was added. Methyl oxalyl chloride (652 μl, 5.95 mmol) was then added to the reaction mixture. The mixture was allowed to stir at room temperature overnight. The reaction was partitioned between water and DCM. The organic layer was washed with brine, dried over anhydrous sodium sulfate, filtered and concentrated to give the indicated product.
Figure US08741910-20140603-C00119
Phosphorous oxychloride (5 mL, 53.6 mmol) was added to the intermediate from Step D (400 mg, 1.135 mmol). The mixture was heated at 105° C. overnight. The reaction solution was then poured onto ice and neutralized with sodium carbonate. The mixture was extracted with DCM. The organic layer was washed with brine, dried over anhydrous sodium sulfate, filtered and concentrated to give the indicated. LC2 rt=1.15 min, m/z=335 (M+H).
Figure US08741910-20140603-C00120
To the intermediate from Step E (260 mg, 0.81 mmol) was added amino(chloro)methylaluminum (0.5M in toluene, 10 mL, 5 mmol). The reaction was carried out as described in Step H Example 58. LC2 rt=0.91 min, m/z=305 (M+H).
Figure US08741910-20140603-C00121
A t-butanol (2 mL) solution of the intermediate from Step F (246 mg, 0.81 mmol), Intermediate 1 (269 mg, 1.6 mmol)) and potassium tert-butoxide (91 mg, 0.81 mmol) were heated at 140° C. for 30 minutes in a screw cap tube. The reaction was cooled to room temperature and concentrated. The residue was partitioned between EtOAc and water. The organic layer was washed with brine, dried over anhydrous sodium sulfate, filtered and concentrated. The crude was purified by silica gel chromatography using a hexanes/EtOAc gradient followed by 10% MeOH/DCM to give the indicated compound. 1H NMR (500 MHz, DMSO-d6): δ 10.96 (broad s, 1H); 9.90 (d, J=7.3 Hz, 1H); 7.78 (d, J=9.1 Hz, 1H); 7.38 (m, 1H); 7.11 (t, J=9.5 Hz, 1H); 7.00 (t, J=7.8 Hz, 1H); 6.85 (t, J=7.0 Hz, 1H); 6.79 (s, 2H); 4.30 (s, 2H); 1.32 (s, 6H). LC2 rt=1.05 min, m/z=439 (M+H).
Using essentially the same procedures described in Examples 58 to 62, the following compounds in Table 3 and Table 4 were made.
TABLE 3
Figure US08741910-20140603-C00122
EXAMPLE R1 R2 X LC-MS data Method
63 H 2,3 di F—Ph CH 1.05 min.(M + H) 421 LC2
64 H 2,3 di F—Ph N 1.05 min.(M + H) 422 LC2
65 F 2,3 di F—Ph CH 1.06 min.(M + H) 439 LC2
66 H 2 F—Ph N 1.05 min.(M + H) 404 LC2
67 H 2 F—Ph CH 1.04 min.(M + H) 403 LC2
68 F 2 F—Ph CH 1.06 min.(M + H) 421 LC2
69 Cl 2 F—Ph CH 1.08 min.(M + H) 437 LC2
70 Me 2,3 di F—Ph N 1.62 min.(M + H) 436 LC3
71 Cl 2,3 di F—Ph CH 1.65 min.(M + H) 455 LC3
72 H Ph CH 1.04 min.(M + H) 385 LC2
73 H 2,3,6-tri F—Ph CH 1.49 min.(M + H) 439 LC3
74 Ph 2,3,6-tri F—Ph CH 1.14 min.(M + H) 515 LC2
75 2-F Ph 2,3,6-tri F—Ph CH 1.13 min.(M + H) 533 LC2
76 3-F Ph 2,3,6-tri F—Ph CH 1.14 min.(M + H) 533 LC2
77 4-F Ph 2,3,6-tri F—Ph CH 1.14 min.(M + H) 533 LC2
78 3-Cl Ph 2,3,6-tri F—Ph CH 1.17 min.(M + H) 549 LC2
79
Figure US08741910-20140603-C00123
2,3,6-tri F—Ph CH 1.13 min.(M + H) 521 LC2
80
Figure US08741910-20140603-C00124
2,3,6-tri F—Ph CH 1.12 min.(M + H) 479 LC2
81 H CH2CF3 N 0.98 min.(M + H) 392 LC2
82 H 2,4,6-tri F—Ph CH 1.03 min.(M + H) 439 LC2
83 H 2-Cl, 3-Me, 6-F—Ph CH 1.07 min.(M + H) 450 LC2
84 H
Figure US08741910-20140603-C00125
CH  1.1 min.(M + H) 391 LC2
85 H CH2CH2CF3 N 1.03 min.(M + H) 406 LC2
86 H CH2CH2CF3 CH 1.02 min.(M + H) 405 LC2
87 H
Figure US08741910-20140603-C00126
CH 1.38 min.(M + H) 405 LC4
88 H
Figure US08741910-20140603-C00127
CH 0.98 min.(M + H) 363 LC2
89 H (CH2)3CH3 CH 0.98 min.(M + H) 365 LC2
90 H (CH2)3CH3 N 1.35 min.(M + H) 366 LC4
91 H CH2CH(CH3)2 CH 1.48 min.(M + H) 365 LC4
TABLE 4
Figure US08741910-20140603-C00128
EXAM- Descrip-
PLE X R2 LC-MS data tion
92
Figure US08741910-20140603-C00129
2,3,6-tri F—Ph 1.75 min. (M + H) 459 LC3
93
Figure US08741910-20140603-C00130
2,3,6-tri F—Ph 1.52 min. (M + H) 459 LC3
94
Figure US08741910-20140603-C00131
2-F—Ph 1.38 min. (M + H) 409 LC3
Example 95 4-AMINO-5,5-DIMETHYL-2-[1-(3,3,3-TRIFLUOROPROPYL)-1H-INDAZOL-3-YL]-5,7-DIHYDRO-6H-PYRROLO[2,3-D]PYRIMIDIN-6-ONE
Figure US08741910-20140603-C00132
Figure US08741910-20140603-C00133
Potassium t-butoxide (0.972 g, 8.66 mmol) was added to 3-cyano indazole (1.24 g, 8.66 mmol) in 8 mL THF. After 5 min 1,1,1-trifluoro-3-iodopropane (1.94 g, 8.66 mmol) was added. The solution was then heated to 60° C. After 1 hour 6 mL of DMF, potassium t-butoxide (0.972 g, 8.66 mmol) and 1,1,1-trifluoro-3-iodopropane (1.94 g, 8.66 mmol) were added. After stirring for an additional 2 hours at 60° C. the reaction solution was partitioned between EtOAc and aqueous 1 N HCl. The organic phase was dried over MgSO4, filtered and concentrated. The residue was purified by silica gel chromatography using a hexanes/EtOAc gradient to give the indicated product. 1H NMR (400 MHz, CD3CN): δ 7.84 (d, 1H); 7.72 (d, 1H); 7.60-7.54 (m, 1H); 7.39 (t, 1H); 4.73 (t, 2H); 2.96-2.82 (m, 2H). LC4 rt=3.78 min, m/z=240 (M+H)
Figure US08741910-20140603-C00134
Amino(chloro)methylaluminum (0.5M in toluene, 6 mL, 3 mmol) and the intermediate from Step A (306 mg, 1.279 mmol) were heated at 100° C. for 4 hours. The solution was cooled to room temperature and 7 g of silica gel and 30 mL of MeOH were added. After stirring for 3 hours the mixture was filtered and concentrated to give the indicated product. LC4 rt=2.14 min, m/z=257 (M+H)
Figure US08741910-20140603-C00135
The indicated product was prepared from the intermediate from Step B and Intermediate 1 using the procedure described in Example 1. 1H NMR (400 MHz, CD 30D): δ 8.64 (d, 1H); 7.58 (d, 1H); 7.44 (t, 1H); 7.24 (t, 1H); 4.73 (t, 2H); 2.97-2.87 (m, 2H); 1.44 (s, 6H). LC4 rt=2.81 min, m/z=391 (M+H)
Example 96 4-AMINO-2-[5-CHLORO-3-(2,3,6-TRIFLUOROBENZYL)-1H-INDAZOL-1-YL]-5,5-DIMETHYL-5,8-DIHYDROPYRIDO[2,3-D]PYRIMIDIN-7(6H)-ONE
Figure US08741910-20140603-C00136
Figure US08741910-20140603-C00137
A n-butanol (4 mL) solution containing the Intermediate 4 (143 mg, 0.736 mmol), the intermediate from Example 3 Step B (103 mg, 0.245 mmol) and potassium t-butoxide (27 mg, 0.245 mmol) was heated at 140° C. for 1 hour. The solution was partitioned between EtOAc and water. The organic phase was washed with water, brine and dried over MgSO4. The solution was filtered and concentrated. The residue was used in the next step without purification. LC4 rt=2.94 min, m/z=567 (M+H).
Figure US08741910-20140603-C00138
To the crude compound from Step A (ca 0.24 mmol) was added 6 mL DMF, trans-N,N′-dimethylcyclohexane-1,2-diamine (35 mg, 0.25 mmol) and copper iodide (45 mg, 0.24 mmol). The reaction solution was stirred for 15 min. The reaction solution was partitioned between EtOAc and 6% aqueous ammonium hydroxide. The organic phase was washed with brine, dried over anhydrous MgSO4, filtered and concentrated. The residue was purified by reverse phase HPLC to give the indicated product. 1H NMR (400 MHz, CD3CN): δ 8.76 (d, J=8.0 Hz, 1H); 8.53 (s, 1H); 7.74 (m, 1H); 7.46 (m, 1H); 7.26-7.15 (m, 1H); 7.02-6.93 (m, 1H); 5.63 (s, 2H); 4.38 (s, 2H); 2.48 (s, 2H); 1.35 (s, 6H). LC4 rt=3.96 min, m/z=487 (M+H).
Using essentially the same procedure described in Example 96, the following compounds in Table 5 were made.
TABLE 5
Figure US08741910-20140603-C00139
EXAMPLE X LC-MS data Method
97
Figure US08741910-20140603-C00140
3.64 min. (M + H) 453 LC4
98
Figure US08741910-20140603-C00141
3.51 min. (M + H) 459 LC4
99
Figure US08741910-20140603-C00142
3.61 min. (M + H) 461 LC4
Example 100 4-AMINO-2-[5-CHLORO-3-(3,3,3-TRIFLUOROPROPYL)-1H-INDAZOL-1-YL]-5-ETHYL-5-METHYL-5,7-DIHYDRO-6H-PYRROLO[2,3-D]PYRIMIDIN-6-ONE
Figure US08741910-20140603-C00143
The indicated product was prepared using Intermediate 2 as described in Example 1. LC4 3.86 min (M+H) 439. The racemic compound was resolved on a ChiralPak AD-H column eluting with 40% IPA/CO2 to give enantiomer 1 (faster eluting). Retention time=3.91 min (4.6×250 mm ChiralPak AD-H, 2.4 ml/min, 100 bar). 1H NMR (500 MHz, DMSO-d6): δ 11.11 (s, 1H), 8.83 (d, 1H, J=8.9 Hz), 8.06 (d, 1H, J=1.8 Hz), 7.56 (dd, 1H, J=2.0 Hz, 9.0 Hz), 6.94 (br s, 2H), 3.25-3.22 (m, 2H), 2.86-2.76 (m, 2H), 2.13-2.06 (m, 1H), 1.70-1.63 (m, 1H), 1.32 (s, 3H), 0.54 (m, 3H).
Data for enantiomer 2 (slower eluting): Retention time=4.31 min (4.6×250 mm ChiralPak AD-H, 2.4 ml/min, 100 bar). 1H NMR (500 MHz, DMSO-d6): δ 11.11 (s, 1H), 8.83 (d, 1H, J=8.9 Hz), 8.06 (d, 1H, J=1.8 Hz), 7.56 (dd, 1H, J=2.0 Hz, 9.0 Hz), 6.94 (br s, 2H), 3.25-3.22 (m, 2H), 2.86-2.76 (m, 2H), 2.13-2.06 (m, 1H), 1.70-1.63 (m, 1H), 1.32 (s, 3H), 0.54 (m, 3H).
Example 101 4-AMINO-2-[5-CHLORO-3-(3,3,3-TRIFLUOROPROPYL)-1H-INDAZOL-1-YL]-5-METHYL-5-PROPYL-5,7-DIHYDRO-6H-PYRROLO[2,3-D]PYRIMIDIN-6-ONE
Figure US08741910-20140603-C00144
The indicated product was prepared using Intermediate 3 as described in Example 1. LC4 3.95 min (M+H) 453. The racemic compound was resolved on a ChiralCel AD-H column eluting with 40% IPA/CO2 to give enantiomer 1 (faster eluting): Retention time=3.53 min (4.6×250 mm ChiralPak AD-H, 2.4 ml/min, 100 bar). 1H NMR (500 MHz, DMSO-d6): δ 10 (s, 1H), 8.82 (d, 1H, J=9.0 Hz), 8.06 (d, 1H, J=1.8 Hz), 7.52 (dd, 1H, J=2.0 Hz, J=9.0 Hz), 6.94 (br s, 2H), 3.24-3.22 (m, 2H), 2.86-2.76 (m, 2H), 2.10-2.05 (m, 1H), 1.65-1.59 (m, 1H), 1.31 (s, 3H), 0.94-0.86 (m, 2H), 0.79-0.76 (m, 3H).
Data for enantiomer 2 (slower eluting): Retention time=4.19 min (4.6×250 mm ChiralPak AD-H, 2.4 ml/min, 100 bar). 1H NMR (500 MHz, DMSO-d6): δ 10 (s, 1H), 8.82 (d, 1H, J=9.0 Hz), 8.06 (d, 1H, J=1.8 Hz), 7.52 (dd, 1H, J=2.0 Hz, J=9.0 Hz), 6.94 (br s, 2H), 3.24-3.22 (m, 2H), 2.86-2.76 (m, 2H), 2.10-2.05 (m, 1H), 1.65-1.59 (m, 1H), 1.31 (s, 3H), 0.94-0.86 (m, 2H), 0.79-0.76 (m, 31-1).
Using essentially the same procedure described in Example 100, the following racemic compounds in Table 6 were made.
TABLE 6
EXAM-
PLE Structure LC-MS data Method
102
Figure US08741910-20140603-C00145
4.31 min. (M + H) 427 LC4
103
Figure US08741910-20140603-C00146
0.99 min. (M + H) 417 LC2
Using essentially the same procedures described in Examples 1, 60 and 95 the following compounds in Table 7 were made.
TABLE 7
Figure US08741910-20140603-C00147
EXAMPLE X LC-MS data Method
104
Figure US08741910-20140603-C00148
3.63 min. (M + H) 441 LC4
105
Figure US08741910-20140603-C00149
3.74 min. (M + H) 459 LC4
106
Figure US08741910-20140603-C00150
3.94 min. (M + H) 475 LC4
107
Figure US08741910-20140603-C00151
3.35 min. (M + H) 442 LC4
108
Figure US08741910-20140603-C00152
1.12 min. (M + H) 441 LC2
109
Figure US08741910-20140603-C00153
1.12 min. (M + H) 459 LC2
110
Figure US08741910-20140603-C00154
1.13 min. (M + H) 475 LC2
111
Figure US08741910-20140603-C00155
3.43 min. (M + H) 475 LC4
Example 112 Cell-Based sGC Functional Assay (CASA Assay)
Rationale: sGC is a heme-containing enzyme that converts GTP to secondary messenger cGMP. Increases in cGMP levels affect several physiological processes including vasorelaxation through multiple downstream pathways. The rate by which sGC catalyzes cGMP formation is greatly increased by NO and by recently discovered NO-independent activators and stimulators. Heme-dependent activators (HDAs) preferentially activate sGC containing a ferrous heme group. To determine the effect of sGC activators on enzyme activity, the CASA assay was developed to monitor the generation of cGMP in a cell line that stably expresses the heterodimeric sGC protein.
Methods:
A CHO-K1 cell line stably expressing the sGC α1/β1 heterodimer was generated using a standard transfection protocol. CHO-K1 cells were transfected with plasmids pIREShyghsGCα1 and pIRESneo-hsGCβ1 simultaneously using FUGENE reagent. Clones that stably express both subunits were selected with hygromycin and neomycin for ˜2 weeks. Clone #7 was chosen for the assay and was designated CHO-K1/sGC. CHO-K1/sGC cells were maintained in F-K12 medium containing 10% heat-inactivated Fetal Bovine Serum (FBS), 100 μg/mL penicillin/streptomycin, 0.5 mg/mL hygromycin and 0.25 mg/mL G418. On the day of the assay, cells were harvested in EBSS Assay Buffer (EAB) containing 5 mM MgCl2, 10 mM HEPES and 0.05% BSA and cell density was adjusted to 2×106/mL with EAB. IBMX (3-isobutyl-1-methylxanthin, 0.5 mM) was added to inhibit degradation of cGMP. Compounds were diluted from DMSO stock solutions and added to the assay at a final DMSO concentration of 1%. Cells were incubated with compounds in the presence and absence of 10 μM of 1H-(1,2,4)oxadiazolo(4,3-a)quinoxalin-1-one (ODQ) for 1 hr at 37 oC. At the end of the incubation period, the reaction was terminated and the cells were lysed. The level of intracellular cGMP was determined using an HTRF-based assay kit (CisBio, 62GM2PEC), which detects the displacement of a fluorescence labeled cGMP from its specific antibody. The amount of cGMP was plotted against compound concentration in PRISM software and the IP and maximum fold induction over DMSO control were derived from the plot.
Compounds of the instant invention had EC 50s less than or equal to about 1 μM. Preferable compounds had an EC 50s less than or equal to about 500 nM. Results for specific compounds are as follows:
Example IUPAC NAME EC50
1 4-amino-2-[5-chloro-3-(3,3,3-trifluoropropyl)-1H-indazol-1-yl]-5,5-dimethyl- 86 nM
5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one
3 4-amino-2-[5-chloro-3-(2,3,6-trifluorobenzyl)-1H-indazol-1-yl]-5,5-  7 nM
dimethyl-5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one
59 4-amino-2-[6-chloro-3-(2,3,6-trifluorobenzyl)imidazo[1,5-a]pyridin-1-yl]- 24 nM
5,5-dimethyl-5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one
60 4-amino-2-[6-fluoro-3-(2,3,6-trifluorobenzyl)imidazo[1,5-a]pyridin-1-yl]- 31 nM
5,5-dimethyl-5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one
111 4-amino-2-[6-chloro-1-(3,3,4,4,4-pentafluorobutyl)-1H-indazol-3-yl]-5,5- 83 nM
dimethyl-5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one

Claims (20)

What is claimed is:
1. A compound having structural Formula I, or a pharmaceutically acceptable salt thereof:
Figure US08741910-20140603-C00156
wherein:
Figure US08741910-20140603-C00157
is an 8- or 9-membered heteroaryl;
Ra and Rb are independently selected at each occurrence from the group consisting of —H and —C1-C6 alkyl;
Rc is independently selected at each occurrence from the group consisting of —C1-C6 alkyl, —CF3, and aryl;
R1 is independently selected at each occurrence from the group consisting of —H, halo, aryl, heteroaryl, —C1-C6 alkyl, —C3-10 cycloalkyl, —OR, —NO2, —CN, —CO2Ra, —NRaRb, —S(O)pRc, thioxo, azido, —C(═O)Ra, —OC(O)Ra, —OC(═O)ORa, —OC(═O)NRaRb, —SO2NRaNRb, —NRa(C═O)Rb, —NRaSO2Rb, —NRaC(═O)ORb, —NRaC(O)NRaRb, —NRaSO2NRaRb, —C2-10alkenyl, and —C2-10alkynyl, said aryl, heteroaryl, alkyl, cycloalkyl, alkenyl and alkynyl optionally being substituted with one to three substituents selected from halo, —C1-C6 alkyl, —OR, oxo, aryl, heteroaryl, —C3-10 cycloalkyl, —NO2, —CN, CO2Ra, NRaRb, —S(O)pRc, thioxo, azido, —C(═O)Ra, —O(C═O)Ra, —OC(═O)ORa, —OC(═O)NRaRb, —SO2NRaNRb, —NRa(C═O)Rb, —NRaSO2Rb, —NRaC(═O)ORb, —NRaC(═O)NRaRb, —NRaSO2NRaRb and —CF3;
R2 is selected from the group consisting of —C1-C6 alkyl, —(CRa 2)rOR, —(CRa 2)rS(O)pRc, —(CRa 2)rCF3, —(CRa 2)r—C3-10cycloalkyl, —(CRa 2)raryl, —(CRa 2)rheteroaryl, —(CRa 2)r—C2-10alkenyl, —(CRa 2)r—C2-10alkynyl, and —(CRa 2)rC(O)Oalkyl, said alkyl, cycloalkyl, aryl, hetetoaryl, alkenyl and alkynyl being optionally substituted with one to three substituents selected from halo, —C1-C6 alkyl, —CF3, —CN and —OR;
R is independently selected at each occurrence from the group consisting of —H, —C1-C6 alkyl, —CF3, and aryl;
R3 and R4 are independently selected from the group consisting of —H and —C1-C6 alkyl;
when R3 and R4 are C1-C6 alkyl they may optionally be joined to form a cycloalkyl;
m is 0, 1, 2, or 3;
p is 0, 1 or 2;
r is 0, 1, 2, 3, 4, 5, or 6; and
z is 0 or 1.
2. The compound of claim 1 having structural Formula II, or a pharmaceutically acceptable salt thereof,
Figure US08741910-20140603-C00158
wherein:
Figure US08741910-20140603-C00159
is an 8- or 9-membered heteroaryl;
Ra is independently selected at each occurrence from the group consisting of —H and —C1-C6 alkyl;
R1 is independently selected at each occurrence from the group consisting of —H, halo, aryl, heteroaryl, —C1-C6 alkyl and —C3-10 cycloalkyl, said aryl, heteroaryl, alkyl and cycloalkyl optionally being substituted with one to three substituents selected from halo, —C1-C6 alkyl, and —CF3;
R2 is selected from the group consisting of —C1-C6 alkyl, —(CRa 2)rCF3, —(CRa 2)r—C3-10cycloalkyl, —(CRa 2)raryl, —(CRa 2)rheteroaryl, —(CRa 2)ralkenyl, —(CRa 2)ralkynyl, and —(CRa 2)rC(O)Oalkyl, said alkyl, cycloalkyl, aryl, hetetoaryl, alkenyl and alkynyl being optionally substituted with one to three substituents selected from halo, —C1-C6 alkyl, —CF3, —CN, and —OR;
R is independently selected at each occurrence from the group consisting of —H, —C1-C6 alkyl and aryl;
R3 and R4 are independently selected from the group consisting of H and C1-C6 alkyl;
when R3 and R4 are C1-C6 alkyl they may optionally be joined to form a cycloalkyl;
m is 0, 1, 2 or 3; and
r is 0, 1, 2, 3, 4, 5, or 6.
3. The compound of claim 2, wherein
Figure US08741910-20140603-C00160
is selected from the group consisting of
Figure US08741910-20140603-C00161
where * indicates attachment to the pyrmidinyl ring and ** indicates attachment to the —CH2—R2 of structural Formula II; and
X1, X2, X3 and X4 are independently selected from N or CH, provided that no more than one of X1, X2, X3 and X4 is N.
4. The compound of claim 2 wherein
Figure US08741910-20140603-C00162
is selected from the group consisting of
Figure US08741910-20140603-C00163
where * indicates attachment to the pyrmidinyl ring and ** indicates attachment to the —CH2—R2 of structural Formula II; and
X1, X2, X3 and X4 are independently selected from N or CH, provided that no more than one of X1, X2, X3 and X4 is N.
5. The compound of claim 4 wherein R3 is C1-C6 alkyl and R4 is C1-C6 alkyl.
6. The compound of claim 5 wherein R3 and R4 are methyl.
7. The compound of claim 2 wherein
Figure US08741910-20140603-C00164
is a selected from the group consisting of
Figure US08741910-20140603-C00165
X4 is selected from the group consisting of CH and N;
Ra is independently selected at each occurrence from the group consisting of —H and —C1-C6 alkyl;
R1 is independently selected at each occurrence from the group consisting of —H, halo and —C1-C6 alkyl, said alkyl optionally being substituted with one to three substituents selected from halo, —C1-C6 alkyl, and —CF3;
R2 is selected from the group consisting of —C1-C6 alkyl, —(CRa 2)rCF3, —(CRa 2)r—C3-10cycloalkyl, and —(CRa 2)raryl, said alkyl, cycloalkyl and aryl being optionally substituted with one to three substituents selected from halo, —C1-C6 alkyl and —CF3;
R is independently selected from —H, —C1-C6 alkyl and aryl;
R3 and R4 are each C1-C6 alkyl;
m is 0, 1, 2 or 3; and
r is 0, 1, 2, or 3.
8. A compound selected from the group consisting of:
Example IUPAC NAME 1 4-amino-2-[5-chloro-3-(3,3,3-trifluoropropyl)-1H-indazol-1-yl]-5,5-dimethyl-5,7- dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one 2 4-amino-5,5-dimethyl-2-[3-(3,3,3-trifluoropropyl)-1H-indazol-1-yl]-5,7-dihydro-6H- pyrrolo[2,3-d]pyrimidin-6-one 3 4-amino-2-[5-chloro-3-(2,3,6-trifluorobenzyl)-1H-indazol-1-yl]-5,5-dimethyl-5,7- dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one 4 4-amino-5,5-dimethyl-2-[3-(2,3,6-trifluorobenzyl)-1H-indazol-1-yl]-5,7-dihydro-6H- pyrrolo[2,3-d]pyrimidin-6-one 5 4-amino-2-(5-fluoro-3-hexyl-1H-indazol-1-yl)-5,5-dimethyl-5,7-dihydro-6H-pyrrolo[2,3- d]pyrimidin-6-one 6 4-amino-2-[5-bromo-3-(2,3,6-trifluorobenzyl)-1H-indazol-1-yl]-5,5-dimethyl-5,7- dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one 7 4-amino-5,5-dimethyl-2-[5-pyridin-4-yl-3-(2,3,6-trifluorobenzyl)-1H-indazol-1-yl]-5,7- dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one 8 4-amino-5,5-dimethyl-2-[3-(4,4,4-trifluorobutyl)-1H-thieno[3,4-c]pyrazol-1-yl]-5,7- dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one 9 4-amino-5,5-dimethyl-2-[3-(2,3,6-trifluorobenzyl)-1H-thieno[3,4-c]pyrazol-1-yl]-5,7- dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one 10 4-amino-5,5-dimethyl-2-[3-(2,3,6-trifluorobenzyl)-4,6-dihydro-1H-thieno[3,4-c]pyrazol- 1-yl]-5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one 11 4-amino-2-[3-(2-cyclopentylethyl)-1H-indazol-1-yl]-5,5-dimethyl-5,7-dihydro-6H- pyrrolo[2,3-d]pyrimidin-6-one 12 4-amino-2-[3-(2-fluorobenzyl)-1H-indazol-1-yl]-5,5-dimethyl-5,7-dihydro-6H- pyrrolo[2,3-d]pyrimidin-6-one 13 4-amino-2-[5-chloro-3-(2-fluorobenzyl)-1H-indazol-1-yl]-5,5-dimethyl-5,7-dihydro-6H- pyrrolo[2,3-d]pyrimidin-6-one 14 4-amino-2-[5-fluoro-3-(2-fluorobenzyl)-1H-indazol-1-yl]-5,5-dimethyl-5,7-dihydro-6H- pyrrolo[2,3-d]pyrimidin-6-one 15 4-amino-2-[5-chloro-3-(2,3-difluorobenzyl)-1H-indazol-1-yl]-5,5-dimethyl-5,7-dihydro- 6H-pyrrolo[2,3-d]pyrimidin-6-one 16 4-amino-2-[3-(2,3-difluorobenzyl)-5-fluoro-1H-indazol-1-yl]-5,5-dimethyl-5,7-dihydro- 6H-pyrrolo[2,3-d]pyrimidin-6-one 17 4-amino-2-[3-(2,3-difluorobenzyl)-1H-indazol-1-yl]-5,5-dimethyl-5,7-dihydro-6H- pyrrolo[2,3-d]pyrimidin-6-one 18 4-amino-2-[3-(2-fluorobenzyl)-5-phenyl-1H-indazol-1-yl]-5,5-dimethyl-5,7-dihydro-6H- pyrrolo[2,3-d]pyrimidin-6-one 19 4-amino-2-[5-fluoro-3-(2,3,6-trifluorobenzyl)-1H-indazol-1-yl]-5,5-dimethyl-5,7- dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one 20 4-amino-5,5-dimethyl-2-[5-pyridin-3-yl-3-(2,3,6-trifluorobenzyl)-1H-indazol-1-yl]-5,7- dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one 21 4-amino-5,5-dimethyl-2-[5-(1-methyl-1H-pyrazol-4-yl)-3-(2,3,6-trifluorobenzyl)-1H- indazol-1-yl]-5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one 22 4-amino-2-[5-(3,5-dimethyl-1H-pyrazol-4-yl)-3(2,3,6-trifluorobenzyl)-1H-indazol-1- yl]-5,5-dimethyl-5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one 23 4-amino-2-[5-(3-furyl)-3-(2,3,6-trifluorobenzyl)-1H-indazol-1-yl]-5,5-dimethyl-5,7- dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one 24 4-amino-5,5-dimethyl-2-[5-(4-methyl-3-thienyl)-3-(2,3,6-trifluorobenzyl)-1H-indazol- yl]-5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one 25 4-amino-2-[5-cyclopropyl-3-(2,3,6-trifluorobenzyl)-1H-indazol-1-yl]-5,5-dimethyl-5,7- dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one 26 4-amino-5,5-dimethyl-2-[5-pyridin-4-yl-3-(2,3,6-trifluorobenzyl)-1H-indazol-1-yl] -5,7- dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one 27 4-amino-5,5-dimethyl-2-[5-phenyl-3-(2,3,6-trifluorobenzyl)-1H-indazol-1-yl]-5,7- dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one 28 4-amino-2-[5-chloro-3-(pyrimidin-5-ylmethyl)-1H-indazol-1-yl]-5,5-dimethyl-5,7- dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one 29 4-amino-5,5-dimethyl-2-[5-(3-thienyl)-3-(2,3,6-trifluorobenzyl)-1H-indazol-1-yl]-5,7- dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one 30 4-amino-2-[5-(5-fluoropyridin-3-yl)-3-(2,3,6-trifluorobenzyl)-1H-indazol-1-yl]-5,5- dimethyl-5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one 31 4-amino-2-[5-(6-fluoropyridin-3-yl)-3-(2,3,6-trifluorobenzyl)-1H-indazol-1-yl]-5,5- dimethyl-5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one 32 4-amino-5,5-dimethyl-2-{3-(2,3,6-trifluorobenzyl)-5-[5-(trifluoromethyl)pyridin-3-yl]- 1H-indazol-1-yl}-5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one 33 4-amino-2-[3-(6-bromo-2,3-difluorobenzyl)-5-chloro-1H-indazol-1-yl]-5,5-dimethyl-5,7- dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one 34 4-amino-2-[3-(2-cyclopentylethyl)-1H-indazol-1-yl]-5,5-dimethyl-5,7-dihydro-6H- pyrrolo[2,3-d]pyrimidin-6-one 35 4-amino-2-(5-fluoro-3-pentyl-1H-indazol-1-yl)-5,5-dimethyl-5,7-dihydro-6H- pyrrolo[2,3-d]pyrimidin-6-one 36 4-amino-2-[5-fluoro-3-(3,3,3-trifluoropropyl)-1H-indazol-1-yl]-5,5-dimethyl-5,7- dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one 37 4-amino-2-[3-(2-cyclopentylethyl)-5-fluoro-1H-indazol-1-yl]-5,5-dimethyl-5,7-dihydro- 6H-pyrrolo[2,3-d]pyrimidin-6-one 38 4-amino-2-[3-(2-cyclopentylethyl)-5-fluoro-1H-indazol-1-yl]-5,5-dimethyl-5,7-dihydro- 6H-pyrrolo[2,3-d]pyrimidin-6-one 39 4-amino-2-[5-fluoro-3-(4,4,4-trifluorobutyl)-1H-indazol-1-yl]-5,5-dimethyl-5,7-dihydro- 6H-pyrrolo[2,3-d]pyrimidin-6-one 40 4-amino-2-(5-chloro-3-pentyl-1H-indazol-1-yl)-5,5-dimethyl-5,7-dihydro-6H- pyrrolo[2,3-d]pyrimidin-6-one 41 4-amino-2-(3-butyl-5-chloro-1H-indazol-1-yl)-5,5-dimethyl-5,7-dihydro-6H-pyrrolo[2,3- d]pyrimidin-6-one 42 4-amino-2-[5-chloro-3-(4,4,4-trifluorobutyl)-1H-indazol-1-yl]-5,5-dimethyl-5,7-dihydro- 6H-pyrrolo[2,3-d]pyrimidin-6-one 43 4-amino-2-(5-chloro-3-pent-4-en-1-yl-1H-indazol-1-yl)-5,5-dimethyl-5,7-dihydro-6H- pyrrolo[2,3-d]pyrimidin-6-one 44 4-amino-2-(3-but-3-en-1-yl-5-chloro-1H-indazol-1-yl)-5,5-dimethyl-5,7-dihydro-6H- pyrrolo[2,3-d]pyrimidin-6-one 45 4-amino-2-(5-chloro-3-propyl-1H-indazol-1-yl)-5,5-dimethyl-5,7-dihydro-6H- pyrrolo[2,3-d]pyrimidin-6-one 46 ethyl 3-[1-(4-amino-5,5-dimethyl-6-oxo-6,7-dihydro-5H-pyrrolo[2,3-d]pyrimidin-2-yl)- 5-chloro-1H-indazol-3-yl]propanoate 47 4-amino-2-[5-chloro-3-(3,3-dimethylbutyl)-1H-indazol-1-yl]-5,5-dimethyl-5,7-dihydro- 6H-pyrrolo[2,3-d]pyrimidin-6-one 48 4-amino-2-[3-(2,3-difluorobenzyl)-1H-thieno[3,4-c]pyrazol-1-yl]-5,5-dimethyl-5,7- dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one 49 4-amino-2-[6-chloro-3-(2,3-difluorobenzyl)-1H-thieno[3,4-c]pyrazol-1-yl]-5,5-dimethyl- 5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one 50 4-amino-2-[5-chloro-3-(2,3-difluorobenzyl)-1H-thieno[2,3-c]pyrazol-1-yl]-5,5-dimethyl- 5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one 51 4-amino-2-[3-(2,3-difluorobenzyl)-1H-thieno[3,2-c]pyrazol-1-yl]-5,5-dimethyl-5,7- dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one 52 4-amino-2-[5-chloro-3-(2,3,6-trifluorobenzyl)-1H-thieno[2,3-c]pyrazol-1-yl]-5,5- dimethyl-5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one 53 4-amino-5,5-dimethyl-2-[3-(2,3,6-trifluorobenzyl)-1H-thieno[3,2-c]pyrazol-1-yl]-5,7- dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one 54 4-amino-5,5-dimethyl-2-[5-methyl-3-(2,3,6-trifluorobenzyl)pyrazolo[4,3-c]pyrazol- 1(5H)-yl]-5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one 55 4-amino-5,5-dimethyl-2-[3-(2,3,6-trifluorobenzyl)-1H-thieno[2,3-c]pyrazol-1-yl]-5,7- dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one 56 4-amino-5,5-dimethyl-2-[6-methyl-3-(2,3,6-trifluorobenzyl)pyrazolo[3,4-c]pyrazol- 1(6H)-yl]-5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one 57 4-amino-5,5-dimethyl-2-[3-(2,3,6-trifluorobenzyl)-1H-pyrazolo[4,3-c]pyridin-1-yl]-5,7- dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one 58 4-amino-5,5-dimethyl-2-[7-(2,3,6-trifluorobenzyl)imidazo[1,5-b]pyridazin-5-yl]-5,7- dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one 59 4-amino-2-[6-chloro-3-(2,3,6-trifluorobenzyl)imidazo[1,5-a]pyridin-1-yl]-5,5-dimethyl- 5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one 60 4-amino-2-[6-fluoro-3-(2,3,6-trifluorobenzyl)imidazo[1,5-a]pyridin-1-yl]-5,5-dimethyl- 5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one 61 4-amino-5,5-dimethyl-2-[5-(2,3,6-trifluorobenzyl)imidazo[5,1-b][1,3]thiazol-7-yl]-5,7- dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one 62 4-amino-5,5-dimethyl-2-[1-(2,3,6-trifluorobenzyl)imidazo[1,5-a]pyridin-3-yl]-5,7- dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one 63 4-amino-2-[3-(2,3-difluorobenzyl)imidazo[1,5-a]pyridin-1-yl]-5,5-dimethyl-5,7-dihydro- 6H-pyrrolo[2,3-d]pyrimidin-6-one 64 4-amino-2-[7-(2,3-difluorobenzyl)imidazo[1,5-b]pyridazin-5-yl]-5,5-dimethyl-5,7- dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one 65 4-amino-2-[3-(2,3-difluorobenzyl)-6-fluoroimidazo[1,5-a]pyridin-1-yl]-5,5-dimethyl- 5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one 66 4-amino-2-[7-(2-fluorobenzyl)imidazo[1,5-b]pyridazin-5-yl]-5,5-dimethyl-5,7-dihydro- 6H-pyrrolo[2,3-d]pyrimidin-6-one 67 4-amino-2-[3-(2-fluorobenzyl)imidazo[1,5-a]pyridin-1-yl]-5,5-dimethyl-5,7-dihydro-6H- pyrrolo[2,3-d]pyrimidin-6-one 68 4-amino-2-[6-fluoro-3-(2-fluorobenzyl)imidazo[1,5-a]pyridin-1-yl]-5,5-dimethyl-5,7- dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one 69 4-amino-2-[6-chloro-3-(2-fluorobenzyl)imidazo[1,5-a]pyridin-1-yl]-5,5-dimethyl-5,7- dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one 70 4-amino-2-[7-(2,3-difluorobenzyl)-2-methylimidazo[1,5-b]pyridazin-5-yl]-5,5-dimethyl- 5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one 71 4-amino-2-[6-chloro-3-(2,3-difluorobenzyl)imidazo[1,5-a]pyridin-1-yl]-5,5-dimethyl- 5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one 72 4-amino-2-(3-benzylimidazo[1,5-a]pyridin-1-yl)-5,5-dimethyl-5,7-dihydro-6H- pyrrolo[2,3-d]pyrimidin-6-one 73 4-amino-5,5-dimethyl-2-[3-(2,3,6-trifluorobenzyl)imidazo[1,5-a]pyridin-1-yl]-5,7- dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one 74 4-amino-5,5-dimethyl-2[6-phenyl-3-(2,3,6-trifluorobenzyl)imidazo[1,5-a]pyridin-1-yl]- 5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one 75 4-amino-2-[6-(2-fluorophenyl)-3-(2,3,6-trifluorobenzyl)imidazo[1,5-a]pyridin-1-yl]-5,5- dimethyl-5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one 76 4-amino-2-[6-(3-fluorophenyl)-3-(2,3,6-trifluorobenzyl)imidazo[1,5-a]pyridin-1-yl]-5,5- dimethyl-5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one 77 4-amino-2-[6-(4-fluorophenyl)-3-(2,3,6-trifluorobenzyl)imidazo[1,5-a]pyridin-1-yl]-5,5- dimethyl-5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one 78 4-amino-2-[6-(3-chlorophenyl)-3-(2,3,6-trifluorobenzyl)imidazo[1,5-a]pyridin-1-yl]-5,5- dimethyl-5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one 79 4-amino-5,5-dimethyl-2-[6-(3-thienyl)-3-(2,3,6-trifluorobenzyl)imidazo[1,5-a]pyridin-1- yl]-5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one 80 4-amino-2-[6-cyclopropyl-3-(2,3,6-trifluorobenzyl)imidazo[1,5-a]pyridin-1-yl]-5,5- dimethyl-5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one 81 4-amino-5,5-dimethyl-2-[7-(3,3,3-trifluoropropyl)imidazo[1,5-b]pyridazin-5-yl]-5,7- dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one 82 4-amino-5,5-dimethyl-2-[3-(2,4,6-trifluorobenzyl)imidazo[1,5-a]pyridin-1-yl]-5,7- dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one 83 4-amino-2-[3-(2-chloro-6-fluoro-3-methylbenzyl)imidazo[1,5-a]pyridin-1-yl]-5,5- dimethyl-5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one 84 4-amino-2-[3-(2-cyclopentylethyl)imidazo[1,5-a]pyridin-1-yl]-5,5-dimethyl-5,7-dihydro- 6H-pyrrolo[2,3-d]pyrimidin-6-one 85 4-amino-5,5-dimethyl-2-[7-(4,4,4-trifluorobutyl)imidazo[1,5-b]pyridazin-5-yl]-5,7- dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one 86 4-amino-5,5-dimethyl-2-[3-(4,4,4-trifluorobutyl)imidazo[1,5-a]pyridin-1-yl]-5,7- dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one 87 4-amino-5,5-dimethyl-2-{3-[2-(2-thienyl)ethyl]imidazo[1,5-a]pyridin-1-yl}-5,7-dihydro- 6H-pyrrolo[2,3-d]pyrimidin-6-one 88 4-amino-2-[3-(2-cyclopropylethyl)imidazo[1,5-a]pyridin-1-yl]-5,5-dimethyl-5,7-dihydro- 6H-pyrrolo[2,3-d]pyrimidin-6-one 89 4-amino-5,5-dimethyl-2-(3-pentylimidazo[1,5-a]pyridin-1-yl)-5,7-dihydro-6H- pyrrolo[2,3-d]pyrimidin-6-one 90 4-amino-5,5-dimethyl-2-(7-pentylimidazo[1,5-b]pyridazin-5-yl)-5,7-dihydro-6H- pyrrolo[2,3-d]pyrimidin-6-one 91 4-amino-5,5-dimethyl-2-[3-(3-methylbutyl)imidazo[1,5-a]pyridin-1-yl]-5,7-dihydro-6H- pyrrolo[2,3-d]pyrimidin-6-one 92 4-amino-5,5-dimethyl-2-[3-methyl-5-(2,3,6-trifluorobenzyl)imidazo[5,1-b][1,3]thiazol- 7-yl]-5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one 93 4-amino-5,5-dimethyl-2-[2-methyl-5-(2,3,6-trifluorobenzyl)imidazo[5,1-b][1,3]thiazol- 7-yl]-5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one 94 4-amino-2-[5-(2-fluorobenzyl)imidazo[5,1-b][1,3]thiazol-7-yl]-5,5-dimethyl-5,7- dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one 95 4-amino-5,5-dimethyl-2-[1-(3,3,3-trifluoropropyl)-1H-indazol-3-yl]-5,7-dihydro-6H- pyrrolo[2,3-d]pyrimidin-6-one 96 4-amino-2-[5-chloro-3-(2,3,6-trifluorobenzyl)-1H-indazol-1-yl]-5,5-dimethyl-5,8- dihydropyrido[2,3-d]pyrimidin-7(6H)-one 97 4-amino-5,5-dimethyl-2-[3-(2,3,6-trifluorobenzyl)-1H-indazol-1-yl]-5,8- dihydropyrido[2,3-d]pyrimidin-7(6H)-one 98 4-amino-5,5-dimethyl-2-[3-(2,3,6-trifluorobenzyl)-1H-thieno[3,4-c]pyrazol-1-yl]-5,8- dihydropyrido[2,3-d]pyrimidin-7(6H)-one 99 4-amino-5,5-dimethyl-2-[3-(2,3,6-trifluorobenzyl)-4,6-dihydro-1H-thieno[3,4-c]pyrazol- 1-yl]-5,8-dihydropyrido[2,3-d]pyrimidin-7(6H)-one 100 4-amino-2-[5-chloro-3-(3,3,3-trifluoropropyl)-1H-indazol-1-yl]-5-ethyl-5-methyl-5,7- dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one 101 4-amino-2-[5-chloro-3-(3,3,3-trifluoropropyl)-1H-indazol-1-yl]-5-methyl-5-propyl-5,7- dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one 102 4-amino-2-[5-chloro-3-(3,3-dimethylbutyl)-1H-indazol-1-yl]-5-ethyl-5-methyl-5,7- dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one 103 4-amino-5-ethyl-2-[3-(2-fluorobenzyl)imidazo[1,5-a]pyridin-1-yl]-5-methyl-5,7-dihydro- 6H-pyrrolo[2,3-d]pyrimidin-6-one 104 4-amino-5,5-dimethyl-2-[3-(3,3,4,4,4-pentafluorobutyl)-1H-indazol-1-yl]-5,7-dihydro- 6H-pyrrolo[2,3-d]pyrimidin-6-one 105 4-amino-2-[5-fluoro-3-(3,3,4,4,4-pentafluorobutyl)-1H-indazol-1-yl]-5,5-dimethyl-5,7- dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one 106 4-amino-2-[5-chloro-3-(3,3,4,4,4-pentafluorobutyl)-1H-indazol-1-yl]-5,5-dimethyl-5,7- dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one 107 4-amino-5,5-dimethyl-2-[3-(3,3,4,4,4-pentafluorobutyl)-1H-pyrazolo[4,3-b]pyridin-1- yl]-5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one 108 4-amino-5,5-dimethyl-2-[3-(3,3,4,4,4-pentafluorobutyl)imidazo[1,5-a]pyridin-1-yl]-5,7- dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one 109 4-amino-2-[6-fluoro-3-(3,3,4,4,4-pentafluorobutyl)imidazo[1,5-a]pyridin-1-yl]-5,5- dimethyl-5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one 110 4-amino-2-[6-chloro-3-(3,3,4,4,4-pentafluorobutyl)imidazo[1,5-a]pyridin-1-yl]-5,5- dimethyl-5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one 111 4-amino-2-[6-chloro-1-(3,3,4,4,4-pentafluorobutyl)-1H-indazol-3-yl]-5,5-dimethyl-5,7- dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one
and the pharmaceutically acceptable salts thereof.
9. The compound of claim 8 selected from the group consisting of:
4-amino-2-[5-chloro-3-(3,3,3-trifluoropropyl)-1H-indazol-1-yl]-5,5-dimethyl-5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one;
4-amino-2-[5-chloro-3-(2,3,6-trifluorobenzyl)-1H-indazol-1-yl]-5,5-dimethyl-5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one;
4-amino-5,5-dimethyl-2-[3-(2,3,6-trifluorobenzyl)-1H-thieno[3,4-c]pyrazol-1-yl]-5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one;
4-amino-2-[5-chloro-3-(2,3,6-trifluorobenzyl)-1H-thieno[2,3-c]pyrazol-1-yl]-5,5-dimethyl-5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one
4-amino-5,5-dimethyl-2-[7-(2,3,6-trifluorobenzyl)imidazo[1,5-b]pyridazin-5-yl]-5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one;
4-amino-2-[6-chloro-3-(2,3,6-trifluorobenzyl)imidazo[1,5-a]pyridin-1-yl]-5,5-dimethyl-5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one;
4-amino-2-[6-fluoro-3-(2,3,6-trifluorobenzyl)imidazo[1,5-a]pyridin-1-yl]-5,5-dimethyl-5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one;
4-amino-2-[3-(2,3-difluorobenzyl)-6-fluoroimidazo[1,5-a]pyridin-1-yl]-5,5-dimethyl-5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one;
4-amino-5,5-dimethyl-2-[3-(2,3,6-trifluorobenzyl)imidazo[1,5-a]pyridin-1-yl]-5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one;
4-amino-2-[3-(2-cyclopentylethyl)imidazo[1,5-a]pyridin-1-yl]-5,5-dimethyl-5,7-dihydro-6H-pyrrolo[2,3-c]pyrimidin-6-one;
4-amino-5,5-dimethyl-2-[3-(3,3,4,4,4-pentafluorobutyl)-1H-indazol-1-yl]-5,7-dihydro-6H-pyrrolo[2,3-c]pyrimidin-6-one;
4-amino-2-[5-fluoro-3-(3,3,4,4,4-pentafluorobutyl)-1H-indazol-1-yl]-5,5-dimethyl-5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one;
4-amino-2-[5-chloro-3-(3,3,4,4,4-pentafluorobutyl)-1H-indazol-1-yl]-5,5-dimethyl-5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one;
4-amino-5,5-dimethyl-2-[3-(3,3,4,4,4-pentafluorobutyl)imidazo[1,5-a]pyridin-1-yl]-5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one;
4-amino-2-[6-fluoro-3-(3,3,4,4,4-pentafluorobutyl)imidazo[1,5-a]pyridin-1-yl]-5,5-dimethyl-5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one;
4-amino-2-[6-chloro-3-(3,3,4,4,4-pentafluorobutyl)imidazo[1,5-a]pyridin-1-yl]-5,5-dimethyl-5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one;
4-amino-2-[6-chloro-1-(3,3,4,4,4-pentafluorobutyl)-1H-indazol-3-yl]-5,5-dimethyl-5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one;
and the pharmaceutically acceptable salts thereof.
10. A method for activating soluble guanylate cyclase comprising the step of administering an amount efficacious of the compound of claim 1 or a pharmaceutically acceptable salt thereof.
11. A method for the treatment of pulmonary hypertension, comprising administering a therapeutically effective amount of the compound of claim 1 or a pharmaceutically acceptable salt thereof to a patient in need thereof.
12. A method for the treatment of hypertension comprising administering a therapeutically effective amount of the compound of claim 1 or a pharmaceutically acceptable salt thereof to a patient in need thereof.
13. A method for the treatment of heart failure comprising administering a therapeutically effective amount of the compound of claim 1 or a pharmaceutically acceptable salt thereof to a patient in need thereof.
14. A pharmaceutical composition comprised of the compound of claim 1 or a pharmaceutically acceptable salt thereof and a pharmaceutically acceptable carrier.
15. The pharmaceutical composition of claim 14 comprising one or more pharmaceutically active agents in addition to the compound of claim 1 or a pharmaceutically acceptable salt thereof.
16. The pharmaceutical composition of claim 15 wherein the one or more additional active agents is selected from the group consisting of an angiotensin converting enzyme inhibitor, an angiotensin II receptor antagonist, a neutral endopeptidase inhibitor, an aldosterone antagonist, a renin inhibitor, an endothelin receptors antagonist, a vasodilator, a calcium channel blocker, a potassium channel activator, a diuretic, a sympatholytic, a beta-adrenergic blocking drug, an alpha adrenergic blocking drug, a central alpha adrenergic agonist, a peripheral vasodilator, a lipid lowering agent and a metabolic altering agent.
17. The compound of claim 1 that is 4-amino-2-[5-chloro-3-(3,3,3-trifluoropropyl)-1H-indazol-1-yl]-5,5-dimethyl-5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one
Figure US08741910-20140603-C00166
or a pharmaceutically acceptable salt thereof.
18. The compound of claim 1 that is 4-amino-2-[5-chloro-3-(2,3,6-trifluorobenzyl)-1H-indazol-1-yl]-5,5-dimethyl-5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one
Figure US08741910-20140603-C00167
or a pharmaceutically acceptable salt thereof.
19. The compound of claim 1 that is 4-amino-2-[6-chloro-3-(2,3,6-trifluorobenzyl)imidazo[1,5-c]pyridin-1-yl]-5,5-dimethyl-5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one
Figure US08741910-20140603-C00168
or a pharmaceutically acceptable salt thereof.
20. The compound of claim 1 that is 4-amino-2-[6-fluoro-3-(2,3,6-trifluorobenzyl)imidazo[1,5-c]pyridin-1-yl]-5,5-dimethyl-5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one
Figure US08741910-20140603-C00169
or a pharmaceutically acceptable salt thereof.
US13/127,334 2008-11-25 2009-11-16 Soluble guanylate cyclase activators Active 2030-09-20 US8741910B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/127,334 US8741910B2 (en) 2008-11-25 2009-11-16 Soluble guanylate cyclase activators

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US20022108P 2008-11-25 2008-11-25
PCT/US2009/064570 WO2010065275A1 (en) 2008-11-25 2009-11-16 Soluble guanylate cyclase activators
US13/127,334 US8741910B2 (en) 2008-11-25 2009-11-16 Soluble guanylate cyclase activators

Publications (2)

Publication Number Publication Date
US20110218202A1 US20110218202A1 (en) 2011-09-08
US8741910B2 true US8741910B2 (en) 2014-06-03

Family

ID=42233549

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/127,334 Active 2030-09-20 US8741910B2 (en) 2008-11-25 2009-11-16 Soluble guanylate cyclase activators

Country Status (6)

Country Link
US (1) US8741910B2 (en)
EP (1) EP2373317B1 (en)
JP (1) JP5501369B2 (en)
AU (1) AU2009322836B2 (en)
CA (1) CA2743864A1 (en)
WO (1) WO2010065275A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9505786B2 (en) 2012-01-11 2016-11-29 Bayer Pharma Aktiengesellschaft Substituted annulated triazines and use thereof
US9605008B2 (en) 2013-07-10 2017-03-28 Bayer Pharma Aktiengesellschaft Benzyl-1H-pyrazolo[3,4-b]pyridines and use thereof
US9611278B2 (en) 2013-12-11 2017-04-04 Merck Sharp & Dohme Corp. Soluble guanylate cyclase activators
US9783552B2 (en) 2013-12-11 2017-10-10 Merck Sharp & Dohme Corp. Soluble guanylate cyclase activators
US9796733B2 (en) 2014-06-04 2017-10-24 Merck Sharp & Dohme Corp. Imidazo-pyrazine derivatives useful as soluble guanylate cyclase activators
US9822130B2 (en) 2014-11-21 2017-11-21 Merck Sharp & Dohme Corp. Triazolo-pyrazinyl derivatives useful as soluble guanylate cyclase activators
US10030027B2 (en) 2015-12-22 2018-07-24 Merck Sharp & Dohme Corp. Soluble guanylate cyclase stimulators
US10213429B2 (en) 2015-05-28 2019-02-26 Merck Sharp & Dohme Corp. Imidazo-pyrazinyl derivatives useful as soluble guanylate cyclase activators
US10245264B2 (en) 2015-05-27 2019-04-02 Merck Sharp & Dohme Corp. Substituted imidazo[1,2-a]pyrazines as soluble guanylate cyclase activators
US10780092B2 (en) 2016-05-16 2020-09-22 Merck Sharp & Dohme Corp. Fused pyrazine derivatives useful as soluble guanylate cyclase stimulators
US10925876B2 (en) 2016-05-18 2021-02-23 Merck Sharp & Dohme Corp. Methods for using triazolo-pyrazinyl soluble guanylate cyclase activators in fibrotic disorders

Families Citing this family (86)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8236316B2 (en) 2007-11-21 2012-08-07 Oregon Health & Science University Anti-factor XI monoclonal antibodies and methods of use thereof
EP2373691B1 (en) 2008-12-18 2019-01-23 Oregon Health&Science University Anti-fxi antibodies and methods of use
EP2549875B1 (en) * 2010-03-25 2015-05-13 Merck Sharp & Dohme Corp. Soluble guanylate cyclase activators
NZ603799A (en) 2010-05-26 2014-10-31 Bayer Ip Gmbh The use of sgc stimulators, sgc activators, alone and combinations with pde5 inhibitors for the treatment of systemic sclerosis (ssc).
WO2011149921A1 (en) 2010-05-27 2011-12-01 Merck Sharp & Dohme Corp. Soluble guanylate cyclase activators
EP2585055A1 (en) 2010-06-25 2013-05-01 Bayer Intellectual Property GmbH Use of stimulators and activators of soluble guanylate cyclase for treating sickle-cell anemia and conserving blood substitutes
DE102011007891A1 (en) 2011-04-21 2012-10-25 Bayer Pharma Aktiengesellschaft New ring-fused 4-aminopyrimidine compounds are guanylate cyclase stimulators useful to treat and/or prevent e.g. heart failure, angina pectoris, hypertonia, pulmonary hypertonia, ischemia, vascular disease and renal insufficiency
CN106977530A (en) 2010-07-09 2017-07-25 拜耳知识产权有限责任公司 Ring fusion pyrimidine and triazine and its be used for treat and/or prevention of cardiovascular disease purposes
DE102010031148A1 (en) 2010-07-09 2012-01-12 Bayer Schering Pharma Ag New 1-(2-fluoro-benzyl)-1H-pyrazolo(3,4-b)pyridine compounds are guanylate cyclase stimulators useful to treat and/or prevent heart failure, angina pectoris, hypertonia, pulmonary hypertonia, ischemia, and vascular disease
DE102010031149A1 (en) 2010-07-09 2012-01-12 Bayer Schering Pharma Aktiengesellschaft New 1H-pyrazolo(3,4-b)pyridine compounds are guanylate cyclase stimulators useful to treat and/or prevent heart failure, angina pectoris, hypertonia, pulmonary hypertonia, ischemia, and vascular disease
DE102011003315A1 (en) 2011-01-28 2012-08-02 Bayer Schering Pharma Aktiengesellschaft New 1H-pyrazolo(3,4-b)pyridine compounds are guanylate cyclase stimulators useful for treating and/or preventing e.g. heart failure, angina pectoris, hypertonia, pulmonary hypertonia, ischemia, vascular disease, and fibrotic disorder
JP5940062B2 (en) * 2010-07-09 2016-06-29 バイエル・インテレクチュアル・プロパティ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツングBayer Intellectual Property GmbH Ring-fused 4-aminopyrimidine and its use as a stimulant of soluble guanylate cyclase
DE102010040233A1 (en) 2010-09-03 2012-03-08 Bayer Schering Pharma Aktiengesellschaft Bicyclic aza heterocycles and their use
EP2632551B1 (en) 2010-10-28 2016-07-06 Merck Sharp & Dohme Corp. Soluble guanylate cyclase activators
DE102012200356A1 (en) 2012-01-11 2013-07-11 Bayer Intellectual Property Gmbh New substituted imidazopyrid(az)ine compounds are soluble guanylate cyclase stimulators, useful to treat e.g. heart disease, angina pectoris, hypertension, pulmonary hypertension, ischemia, vascular disease or renal insufficiency
DE102011075399A1 (en) 2011-05-06 2012-11-08 Bayer Pharma Aktiengesellschaft New substituted imidazopyrid(az)ine compounds are soluble guanylate cyclase stimulators, useful to treat e.g. heart disease, angina pectoris, hypertension, pulmonary hypertension, ischemia, vascular disease or renal insufficiency
WO2012122340A1 (en) 2011-03-10 2012-09-13 Boehringer Ingelheim International Gmbh Soluble guanylate cyclase activators
CA2833698A1 (en) 2011-04-21 2012-10-26 Bayer Intellectual Property Gmbh Fluoroalkyl-substituted pyrazolopyridines and use thereof
DE102011007890A1 (en) 2011-04-21 2012-10-25 Bayer Pharma Aktiengesellschaft New fluoroalkyl-substituted pyrazolopyridine compounds are soluble guanylate cyclase stimulators, useful to treat e.g. heart disease, angina pectoris, hypertension, pulmonary hypertension, ischemia, vascular disease or renal insufficiency
DE102012200357A1 (en) 2012-01-11 2013-07-11 Bayer Intellectual Property Gmbh New fluoroalkyl-substituted pyrazolopyridine compounds are soluble guanylate cyclase stimulators, useful to treat e.g. heart disease, angina pectoris, hypertension, pulmonary hypertension, ischemia, vascular disease or renal insufficiency
DE102011075398A1 (en) 2011-05-06 2012-11-08 Bayer Pharma Aktiengesellschaft Substituted imidazopyridazines and their use
ES2592267T3 (en) * 2011-05-06 2016-11-29 Bayer Intellectual Property Gmbh Imidazopyridines and substituted imidazopyridazines and their use
DE102012200354A1 (en) 2012-01-11 2013-07-11 Bayer Intellectual Property Gmbh New heteroaryl-substituted pyrazolopyridine compounds are soluble guanylate cyclase stimulators, useful to treat e.g. heart disease, angina pectoris, hypertension, pulmonary hypertension, ischemia, vascular disease or renal insufficiency
DE102011078715A1 (en) 2011-07-06 2013-01-10 Bayer Pharma AG New substituted pyrazolo-pyridine derivatives useful for treating and/or prophylaxis of e.g. congestive heart failure, angina pectoris, hypertension, pulmonary hypertension, ischemia, vascular diseases, renal failure, and fibrotic diseases
AU2012280246A1 (en) 2011-07-06 2014-01-23 Bayer Intellectual Property Gmbh Heteroaryl-substituted pyrazolopyridines and use thereof as soluble guanylate cyclase stimulators
US8815857B2 (en) 2011-08-12 2014-08-26 Boehringer Ingelheim International Gmbh Soluble guanylate cyclase activators
DE102011082041A1 (en) 2011-09-02 2013-03-07 Bayer Pharma AG New substituted fused pyrimidine compounds are guanylate cyclase stimulators useful to treat and/or prevent e.g. heart failure, hypertension, ischemia, vascular disease, renal failure, thromboembolic disorders and fibrotic diseases
EP2751106B1 (en) * 2011-09-02 2017-10-18 Bayer Intellectual Property GmbH Substituted annellated pyrimidine and the use thereof
DE102012200351A1 (en) 2012-01-11 2013-07-11 Bayer Pharma Aktiengesellschaft New substituted annellated pyrimidine compounds are guanylate cyclase stimulators useful to treat and/or prevent heart failure, hypertension, ischemia, vascular disease, renal failure, thromboembolic disorders and fibrotic diseases
EP2594270A3 (en) 2011-11-18 2013-07-31 BIP Patents The use of sGC stimulators, sGC activators, alone and combinations with PDE5 inhibitors for the treatment of systemic sclerosis (SSc)
DE102012200352A1 (en) 2012-01-11 2013-07-11 Bayer Intellectual Property Gmbh Substituted, fused imidazoles and pyrazoles and their use
DE102012200360A1 (en) 2012-01-11 2013-07-11 Bayer Intellectual Property Gmbh Substituted triazines and their use
JP6140738B2 (en) * 2012-03-06 2017-05-31 バイエル・インテレクチュアル・プロパティ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツングBayer Intellectual Property GmbH Substituted azabicycles and uses thereof
LT2847228T (en) 2012-05-10 2018-11-12 Bayer Pharma Aktiengesellschaft ANTIBODIES CAPABLE OF BINDING TO THE COAGULATION FACTOR XI AND/OR ITS ACTIVATED FORM FACTOR XIa AND USES THEREOF
GEP20176631B (en) 2012-09-07 2017-02-27 Boehringer Ingelheim Int Alkoxy pyrazoles as soluble guanylate cyclase activators
EP2961754B1 (en) 2013-03-01 2016-11-16 Bayer Pharma Aktiengesellschaft Benzyl-substituted pyrazolopyridines and use thereof
SG11201505974VA (en) 2013-03-01 2015-09-29 Bayer Pharma AG Trifluormethyl-substituted ring-fused pyrimidines and use thereof
RS63108B1 (en) 2013-03-15 2022-04-29 Cyclerion Therapeutics Inc Sgc stimulators
ES2625744T3 (en) 2013-06-04 2017-07-20 Bayer Pharma Aktiengesellschaft Imidazo [1,2-a] pyridines substituted with 3-aryl and their use
EP3024455A1 (en) 2013-07-25 2016-06-01 Bayer Pharma Aktiengesellschaft Sgc stimulators or sgc activators and pde5 inhibitors in combination with additional treatment for the therapy of cystic fibrosis
US9868722B2 (en) 2013-12-10 2018-01-16 Cleave Biosciences, Inc. Monocyclic pyrimidine/pyridine compounds as inhibitors of P97 complex
CN106304835A (en) 2013-12-11 2017-01-04 铁木医药有限公司 Sgc stimulant
US20160324856A1 (en) 2014-01-13 2016-11-10 Ironwood Pharmaceuticals, Inc. Use of sgc stimulators for the treatment of neuromuscular disorders
BR112016016421B1 (en) 2014-01-20 2022-10-18 Cleave Biosciences, Inc FUSED PYRIMIDINE COMPOUND, PHARMACEUTICAL COMPOSITION AND ITS USE
US9688699B2 (en) 2014-02-19 2017-06-27 Bayer Pharma Aktiengesellschaft 3-(pyrimidine-2-yl)imidazo[1,2-a]pyridines
TWI711615B (en) 2014-07-22 2020-12-01 德商百靈佳殷格翰國際股份有限公司 Heterocyclic carboxylic acids as activators of soluble guanylate cyclase
CN107108658A (en) 2014-08-29 2017-08-29 拜耳医药股份有限公司 Substituted cyclic pyrimidin and application thereof
CA2959199A1 (en) 2014-08-29 2016-03-03 Bayer Pharma Aktiengesellschaft Amino-substituted annulated pyrimidines and use thereof
JP6832846B2 (en) * 2014-09-15 2021-02-24 プレキシコン インコーポレーテッドPlexxikon Inc. Heterocyclic compounds and their uses
WO2016044445A2 (en) 2014-09-17 2016-03-24 Ironwood Pharmaceuticals, Inc. sGC STIMULATORS
US10844064B2 (en) 2014-09-17 2020-11-24 Cyclerion Therapeutics, Inc. sGC stimulators
JP6624616B2 (en) 2014-09-17 2019-12-25 サイクレリオン・セラピューティクス,インコーポレーテッド sGC stimulant
CA2969268A1 (en) 2014-12-02 2016-06-09 Bayer Pharma Aktiengesellschaft Heteroaryl-substituted imidazo[1,2-a]pyridines and their use
EP3291811B1 (en) 2015-05-06 2019-08-07 Bayer Pharma Aktiengesellschaft The use of sgc stimulators, sgc activators, alone and combinations with pde5 inhibitors for the treatment of digital ulcers (du) concomitant to systemic sclerosis (ssc)
SI3325013T2 (en) 2015-07-23 2023-11-30 Bayer Pharma Aktiengesellschaft Stimulators / activators of soluble guanylat cyclase in combination with a nep-inhibitor and/or an angiotensin aii-antagonist and the use thereof
EP3389655A2 (en) 2015-12-14 2018-10-24 Ironwood Pharmaceuticals, Inc. USE OF sGC STIMULATORS FOR THE TREATMENT OF GASTROINTESTINAL SPHINCTER DYSFUNCTION
WO2017121692A1 (en) 2016-01-15 2017-07-20 Bayer Pharma Aktiengesellschaft Substituted sulfamides and use of same
WO2017121700A1 (en) 2016-01-15 2017-07-20 Bayer Pharma Aktiengesellschaft 1,3-disubstituted 1h-pyrazolo[3,4-b]pyridine derivatives and use thereof as stimulators of soluble guanylate cyclase
WO2017121693A1 (en) 2016-01-15 2017-07-20 Bayer Pharma Aktiengesellschaft Substituted thiazole and thiadiazole amides, and use thereof
CA3029374A1 (en) 2016-07-07 2018-01-11 Ironwood Pharmaceuticals, Inc. Phosphorus prodrugs of sgc stimulators
JP2019524710A (en) 2016-07-07 2019-09-05 アイアンウッド ファーマシューティカルズ インコーポレイテッド Solid form of SGC stimulant
SG11201901729YA (en) 2016-09-02 2019-03-28 Ironwood Pharmaceuticals Inc Fused bicyclic sgc stimulators
CN109890379A (en) 2016-10-11 2019-06-14 拜耳制药股份公司 Combination product comprising sGC activator and mineralocorticoid receptor antagonists
EP3525779A1 (en) 2016-10-11 2019-08-21 Bayer Pharma Aktiengesellschaft Combination containing sgc stimulators and mineralocorticoid receptor antagonists
CA3042713A1 (en) 2016-11-08 2018-05-17 Cyclerion Therapeutics, Inc. Sgc stimulators
MX2019005342A (en) 2016-11-08 2019-10-02 Cyclerion Therapeutics Inc Treatment of cns diseases with sgc stimulators.
WO2018111795A2 (en) 2016-12-13 2018-06-21 Ironwood Pharmaceuticals, Inc. Use of sgc stimulators for the treatment of esophageal motility disorders
WO2018153899A1 (en) 2017-02-22 2018-08-30 Bayer Pharma Aktiengesellschaft Selective partial adenosine a1 receptor agonists in combination with soluble guanylyl cyclase (sgc) stimulators and/or activators
WO2019081456A1 (en) 2017-10-24 2019-05-02 Bayer Aktiengesellschaft Use of activators and stimulators of sgc comprising a beta2 subunit
EP3498298A1 (en) 2017-12-15 2019-06-19 Bayer AG The use of sgc stimulators and sgc activators alone or in combination with pde5 inhibitors for the treatment of bone disorders including osteogenesis imperfecta (oi)
JP7337067B2 (en) 2017-12-19 2023-09-01 サイクレリオン・セラピューティクス,インコーポレーテッド sGC stimulant
MX2020009183A (en) 2018-03-07 2020-10-08 Cyclerion Therapeutics Inc Crystalline forms of an sgc stimulator.
CN112055584A (en) 2018-04-30 2020-12-08 拜耳公司 Use of sGC activators and sGC stimulators for the treatment of cognitive disorders
SG11202011018PA (en) 2018-05-15 2020-12-30 Bayer Ag 1,3-thiazol-2-yl substituted benzamides for the treatment of diseases associated with nerve fiber sensitization
EP3574905A1 (en) 2018-05-30 2019-12-04 Adverio Pharma GmbH Method of identifying a subgroup of patients suffering from dcssc which benefits from a treatment with sgc stimulators and sgc activators in a higher degree than a control group
MX2021000363A (en) 2018-07-11 2021-04-29 Cyclerion Therapeutics Inc USE OF sGC STIMULATORS FOR THE TREATMENT OF MITOCHONRIAL DISORDERS.
BR112021009958A2 (en) 2018-11-28 2021-08-17 Topadur Pharma Ag dual mode of action of soluble guanylate cyclase activators and phosphodiesterase inhibitors and their uses
CA3126778A1 (en) 2019-01-17 2020-07-23 Bayer Aktiengesellschaft Methods to determine whether a subject is suitable of being treated with an agonist of soluble guanylyl cyclase (sgc)
WO2020164008A1 (en) 2019-02-13 2020-08-20 Bayer Aktiengesellschaft Process for the preparation of porous microparticles
WO2021195403A1 (en) 2020-03-26 2021-09-30 Cyclerion Therapeutics, Inc. Deuterated sgc stimulators
WO2021202546A1 (en) 2020-03-31 2021-10-07 Cyclerion Therapeutics, Inc. Early drug interventions to reduce covid-19 related respiratory distress, need for ventilator assistance and death
WO2021245192A1 (en) 2020-06-04 2021-12-09 Topadur Pharma Ag Novel dual mode of action soluble guanylate cyclase activators and phosphodiesterase inhibitors and uses thereof
WO2022225903A1 (en) 2021-04-20 2022-10-27 Cyclerion Therapeutics, Inc. Sgc stimulators
TW202308634A (en) 2021-04-20 2023-03-01 美商賽克瑞恩醫療公司 Treatment of cns diseases with sgc stimulators
WO2022265984A1 (en) 2021-06-14 2022-12-22 Curtails Llc Use of nep inhibitors for the treatment of gastrointestinal sphincter disorders
WO2023018795A1 (en) 2021-08-11 2023-02-16 Curtails Llc Nep inhibitors for the treatment of laminitis

Citations (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5665732A (en) 1993-03-18 1997-09-09 Merck, Sharp & Dohme Ltd. Indazole derivatives
DE19744027A1 (en) 1997-10-06 1999-04-08 Hoechst Marion Roussel De Gmbh New pyrazolo(3,4-b)pyridine derivatives useful as cGMP agonists
EP0908456A1 (en) 1997-10-06 1999-04-14 Hoechst Marion Roussel Deutschland GmbH Pyrazole derivatives, their preparation and their use in drugs
US6166027A (en) 1996-10-14 2000-12-26 Bayer Aktiengesellschaft Heterocyclylmethyl-substituted pyrazole derivatives and their use for treating cardiovascular diseases
WO2001083490A1 (en) 2000-04-28 2001-11-08 Bayer Aktiengesellschaft Substituted pyrazole derivative
WO2002042300A1 (en) 2000-11-22 2002-05-30 Bayer Aktiengesellschaft Novel carbamate-substituted pyrazolopyridine derivatives
WO2002042299A1 (en) 2000-11-22 2002-05-30 Bayer Aktiengesellschaft Novel lactame-substituted pyrazolopyridine derivatives
WO2002059083A2 (en) 2000-10-23 2002-08-01 Smithkline Beecham Corporation Novel compounds
US6613772B1 (en) 1997-12-18 2003-09-02 Aventis Pharma Deutschland Gmbh Substituted 2-aryl-4-amino-chinazolines, method for the production and use thereof as medicaments
WO2003095451A1 (en) 2002-05-08 2003-11-20 Bayer Healthcare Ag Carbamate-substituted pyrazolopyridines
US6693102B2 (en) 2000-11-22 2004-02-17 Bayer Aktiengesellschaft Pyridine-substituted pyrazolopyridine derivatives
US20040048866A1 (en) 2002-03-08 2004-03-11 Teodozyj Kolasa Indazole derivatives that are activators of soluble guanylate cyclase
US20040053915A1 (en) 2000-11-02 2004-03-18 Volker Geiss Use of stimulators of soluble guanylate cyclase for treating osteoporosis
US6743798B1 (en) 1998-07-29 2004-06-01 Bayer Aktiengesellschaft Substituted pyrazole derivatives condensed with six-membered heterocyclic rings
US6844347B1 (en) 1998-08-13 2005-01-18 Aventis Pharma Deutschland Gmbh Substituted 4-amino-2aryl-pyrimidines, their production and use and pharmaceutical preparations containing same
EP1390365B1 (en) 2001-05-11 2005-02-02 Bayer HealthCare AG Novel sulfonate substituted pyrazol pyridine dervivatives
WO2005046725A1 (en) 2003-11-06 2005-05-26 Bayer Healthcare Ag Novel combination containing a stimulator of soluble guanylate cyclase and a lipid-lowering substance
US20050222170A1 (en) 2002-05-17 2005-10-06 Stefan Weigand Derivatives of 2-(1-benzyl-1h-pyrazolo(3,4-b)pyridine-3-yl)- 5(-4-pyridiny)l-4- pyrimidinamines and the use thereof as quanylate cyclase stimulators
US6958344B2 (en) 2000-02-11 2005-10-25 Astrazeneca Ab Pyrimidine compounds and their use as modulators of chemokine receptor activity
US20060014915A1 (en) 2003-08-14 2006-01-19 Dongchan Ahn Silicones having improved surface properties and curable silicone compositions for preparing the silicones
US7045526B2 (en) 1999-02-05 2006-05-16 Sanofi-Aventis Deutschland Gmbh Substituted 4-amino-2-aryl-tetrahydroquinazolines, their preparation, their use and pharmaceutical preparations comprising them
US20060106041A1 (en) 2004-11-16 2006-05-18 Industrial Technology Research Institute Synthesis of indole analogs of 1-benzyl-3-(5'-hydroxymethy 1-2' -furyl) indazole (YC-1) as anti-platelet agents
US7115599B2 (en) 2000-11-22 2006-10-03 Bayer Aktiengesellschaft Sulfonamide-substituted pyrazolopyridine compounds
US7138402B2 (en) 2003-09-18 2006-11-21 Conforma Therapeutics Corporation Pyrrolopyrimidines and related analogs as HSP90-inhibitors
WO2007003435A2 (en) 2005-07-06 2007-01-11 Bayer Healthcare Ag Use of activators of the soluble guanylate cyclase for promoting the healing of wounds
WO2007009607A1 (en) 2005-07-18 2007-01-25 Bayer Healthcare Ag Novel use of activators and stimulators of soluble guanylate cyclase for the prevention or treatment of renal disorders
WO2007124854A1 (en) 2006-04-27 2007-11-08 Bayer Healthcare Ag Heterocyclic substituted, anellated pyrazole derivative and its uses
US20080027092A1 (en) 2003-11-26 2008-01-31 Roger Victor Bonnert 1-Acetic Acid-Indole, -Indazole and -Benzimidazole Derivatives Useful for the Treatment of Respiratory Disorders
WO2008031513A1 (en) 2006-09-15 2008-03-20 Bayer Schering Pharma Aktiengesellschaft Pyrazolopyridine, indazole, imidazopyridine, imidazopyrimidine, pyrazolopyrazine and pyrazolopyridine derivates as stimulators of guanylate cyclase for cardiovascular disorders
WO2008061657A1 (en) 2006-11-21 2008-05-29 Bayer Schering Pharma Aktiengesellschaft Novel aza-bicyclic compounds and their use as stimulators of soluble guanylate cyclase
US20080188666A1 (en) 2006-11-08 2008-08-07 Markus Berger Linear phenyl-substituted indazoles and indoles, a process for their production and their use as anti-inflammatory agents
US7666867B2 (en) 2001-10-26 2010-02-23 University Of Connecticut Heteroindanes: a new class of potent cannabimimetic ligands
US7674825B2 (en) 1999-09-13 2010-03-09 Bayer Aktiengesellschaft Dicarboxylic acid derivatives with pharmaceutical properties
WO2011019581A1 (en) 2009-08-13 2011-02-17 Commscope, Inc. Of North Carolina Fiber management component
US7985876B2 (en) 2007-03-29 2011-07-26 Bayer Schering Pharma Aktiengesellschaft Substituted dibenzoic acid derivatives and use thereof
WO2011149921A1 (en) 2010-05-27 2011-12-01 Merck Sharp & Dohme Corp. Soluble guanylate cyclase activators
US20120029002A1 (en) 2009-01-09 2012-02-02 Bayer Schering Pharma Aktiengesellschaft Benzimidazole and pyrazolopyridine derivatives for treating and/or preventing cardiovascular diseases
US8183271B2 (en) 2005-10-21 2012-05-22 Bayer Intellectual Property Gmbh Tetrazole derivatives and their use for the treatment of cardiovascular diseases
US8217063B2 (en) 2007-03-29 2012-07-10 Bayer Intellectual Property Gmbh Lactam-substituted dicarboxylic acids and use thereof
US8222262B2 (en) 2006-10-03 2012-07-17 Neurosearch A/S Indazolyl derivatives useful as potassium channel modulating agents

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB876526A (en) 1957-12-24 1961-09-06 Geigy Ag J R Process for the production of new aminobenzoic acid derivatives and their use in pest control
US4845079A (en) 1985-01-23 1989-07-04 Luly Jay R Peptidylaminodiols
US5066643A (en) 1985-02-19 1991-11-19 Sandoz Ltd. Fluorine and chlorine statine or statone containing peptides and method of use
US4894437A (en) 1985-11-15 1990-01-16 The Upjohn Company Novel renin inhibiting polypeptide analogs containing S-aryl-D- or L- or DL-cysteinyl, 3-(arylthio)lactic acid or 3-(arylthio)alkyl moieties
US4885292A (en) 1986-02-03 1989-12-05 E. R. Squibb & Sons, Inc. N-heterocyclic alcohol renin inhibitors
US5089471A (en) 1987-10-01 1992-02-18 G. D. Searle & Co. Peptidyl beta-aminoacyl aminodiol carbamates as anti-hypertensive agents
US4980283A (en) 1987-10-01 1990-12-25 Merck & Co., Inc. Renin-inhibitory pepstatin phenyl derivatives
US5034512A (en) 1987-10-22 1991-07-23 Warner-Lambert Company Branched backbone renin inhibitors
US5063207A (en) 1987-10-26 1991-11-05 Warner-Lambert Company Renin inhibitors, method for using them, and compositions containing them
US5055466A (en) 1987-11-23 1991-10-08 E. R. Squibb & Sons, Inc. N-morpholino derivatives and their use as anti-hypertensive agents
US5036054A (en) 1988-02-11 1991-07-30 Warner-Lambert Company Renin inhibitors containing alpha-heteroatom amino acids
US5036053A (en) 1988-05-27 1991-07-30 Warner-Lambert Company Diol-containing renin inhibitors
DE3841520A1 (en) 1988-12-09 1990-06-13 Hoechst Ag ENZYME-INFRINGING DERIVATIVES OF DIPEPTIDES, METHOD FOR THE PRODUCTION THEREOF, METHODS CONTAINING THEM AND THEIR USE
US5106835A (en) 1988-12-27 1992-04-21 American Cyanamid Company Renin inhibitors
US5063208A (en) 1989-07-26 1991-11-05 Abbott Laboratories Peptidyl aminodiol renin inhibitors
US5098924A (en) 1989-09-15 1992-03-24 E. R. Squibb & Sons, Inc. Diol sulfonamide and sulfinyl renin inhibitors
US5104869A (en) 1989-10-11 1992-04-14 American Cyanamid Company Renin inhibitors
US5114937A (en) 1989-11-28 1992-05-19 Warner-Lambert Company Renin inhibiting nonpeptides
US5075451A (en) 1990-03-08 1991-12-24 American Home Products Corporation Pyrrolimidazolones useful as renin inhibitors
US5064965A (en) 1990-03-08 1991-11-12 American Home Products Corporation Renin inhibitors
US5095119A (en) 1990-03-08 1992-03-10 American Home Products Corporation Renin inhibitors
US5071837A (en) 1990-11-28 1991-12-10 Warner-Lambert Company Novel renin inhibiting peptides

Patent Citations (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5665732A (en) 1993-03-18 1997-09-09 Merck, Sharp & Dohme Ltd. Indazole derivatives
US6166027A (en) 1996-10-14 2000-12-26 Bayer Aktiengesellschaft Heterocyclylmethyl-substituted pyrazole derivatives and their use for treating cardiovascular diseases
DE19744027A1 (en) 1997-10-06 1999-04-08 Hoechst Marion Roussel De Gmbh New pyrazolo(3,4-b)pyridine derivatives useful as cGMP agonists
EP0908456A1 (en) 1997-10-06 1999-04-14 Hoechst Marion Roussel Deutschland GmbH Pyrazole derivatives, their preparation and their use in drugs
US6162819A (en) 1997-10-06 2000-12-19 Aventis Pharma Deutschland Gmbh Pyrazole derivatives, their preparation and their use in pharmaceuticals
US6613772B1 (en) 1997-12-18 2003-09-02 Aventis Pharma Deutschland Gmbh Substituted 2-aryl-4-amino-chinazolines, method for the production and use thereof as medicaments
US6743798B1 (en) 1998-07-29 2004-06-01 Bayer Aktiengesellschaft Substituted pyrazole derivatives condensed with six-membered heterocyclic rings
US6844347B1 (en) 1998-08-13 2005-01-18 Aventis Pharma Deutschland Gmbh Substituted 4-amino-2aryl-pyrimidines, their production and use and pharmaceutical preparations containing same
US7045526B2 (en) 1999-02-05 2006-05-16 Sanofi-Aventis Deutschland Gmbh Substituted 4-amino-2-aryl-tetrahydroquinazolines, their preparation, their use and pharmaceutical preparations comprising them
US7674825B2 (en) 1999-09-13 2010-03-09 Bayer Aktiengesellschaft Dicarboxylic acid derivatives with pharmaceutical properties
US6958344B2 (en) 2000-02-11 2005-10-25 Astrazeneca Ab Pyrimidine compounds and their use as modulators of chemokine receptor activity
WO2001083490A1 (en) 2000-04-28 2001-11-08 Bayer Aktiengesellschaft Substituted pyrazole derivative
WO2002059083A2 (en) 2000-10-23 2002-08-01 Smithkline Beecham Corporation Novel compounds
US20040053915A1 (en) 2000-11-02 2004-03-18 Volker Geiss Use of stimulators of soluble guanylate cyclase for treating osteoporosis
WO2002042300A1 (en) 2000-11-22 2002-05-30 Bayer Aktiengesellschaft Novel carbamate-substituted pyrazolopyridine derivatives
EP1339717B1 (en) 2000-11-22 2005-02-09 Bayer HealthCare AG Novel carbamate-substituted pyrazolopyridine derivatives
US6693102B2 (en) 2000-11-22 2004-02-17 Bayer Aktiengesellschaft Pyridine-substituted pyrazolopyridine derivatives
WO2002042299A1 (en) 2000-11-22 2002-05-30 Bayer Aktiengesellschaft Novel lactame-substituted pyrazolopyridine derivatives
US7115599B2 (en) 2000-11-22 2006-10-03 Bayer Aktiengesellschaft Sulfonamide-substituted pyrazolopyridine compounds
EP1390365B1 (en) 2001-05-11 2005-02-02 Bayer HealthCare AG Novel sulfonate substituted pyrazol pyridine dervivatives
US7666867B2 (en) 2001-10-26 2010-02-23 University Of Connecticut Heteroindanes: a new class of potent cannabimimetic ligands
US20040048866A1 (en) 2002-03-08 2004-03-11 Teodozyj Kolasa Indazole derivatives that are activators of soluble guanylate cyclase
WO2003095451A1 (en) 2002-05-08 2003-11-20 Bayer Healthcare Ag Carbamate-substituted pyrazolopyridines
US20060052397A1 (en) 2002-05-08 2006-03-09 Bayer Healthcare Ag Carbamate-substituted pyrazolopyridines
US7173037B2 (en) 2002-05-08 2007-02-06 Bayer Healthcare Ag Carbamate-substituted pyrazolopyridines
US20050222170A1 (en) 2002-05-17 2005-10-06 Stefan Weigand Derivatives of 2-(1-benzyl-1h-pyrazolo(3,4-b)pyridine-3-yl)- 5(-4-pyridiny)l-4- pyrimidinamines and the use thereof as quanylate cyclase stimulators
EP1509228B1 (en) 2002-05-17 2005-12-14 Bayer HealthCare AG Derivatives of 2-(1-benzyl-1h-pyrazolo (3, 4-b)pyridine-3yl) -5-(4-pyridinyl)-4-pyrimidine amine and the use thereof as guanylate cyclase stimulators
US20060014915A1 (en) 2003-08-14 2006-01-19 Dongchan Ahn Silicones having improved surface properties and curable silicone compositions for preparing the silicones
US7138402B2 (en) 2003-09-18 2006-11-21 Conforma Therapeutics Corporation Pyrrolopyrimidines and related analogs as HSP90-inhibitors
WO2005046725A1 (en) 2003-11-06 2005-05-26 Bayer Healthcare Ag Novel combination containing a stimulator of soluble guanylate cyclase and a lipid-lowering substance
US20080027092A1 (en) 2003-11-26 2008-01-31 Roger Victor Bonnert 1-Acetic Acid-Indole, -Indazole and -Benzimidazole Derivatives Useful for the Treatment of Respiratory Disorders
US20060106041A1 (en) 2004-11-16 2006-05-18 Industrial Technology Research Institute Synthesis of indole analogs of 1-benzyl-3-(5'-hydroxymethy 1-2' -furyl) indazole (YC-1) as anti-platelet agents
WO2007003435A2 (en) 2005-07-06 2007-01-11 Bayer Healthcare Ag Use of activators of the soluble guanylate cyclase for promoting the healing of wounds
WO2007009607A1 (en) 2005-07-18 2007-01-25 Bayer Healthcare Ag Novel use of activators and stimulators of soluble guanylate cyclase for the prevention or treatment of renal disorders
US8183271B2 (en) 2005-10-21 2012-05-22 Bayer Intellectual Property Gmbh Tetrazole derivatives and their use for the treatment of cardiovascular diseases
WO2007124854A1 (en) 2006-04-27 2007-11-08 Bayer Healthcare Ag Heterocyclic substituted, anellated pyrazole derivative and its uses
WO2008031513A1 (en) 2006-09-15 2008-03-20 Bayer Schering Pharma Aktiengesellschaft Pyrazolopyridine, indazole, imidazopyridine, imidazopyrimidine, pyrazolopyrazine and pyrazolopyridine derivates as stimulators of guanylate cyclase for cardiovascular disorders
US8309551B2 (en) 2006-09-15 2012-11-13 Bayer Intellectual Property Gmbh Pyrazolopyridine, indazole, imidazopyridine, imidazopyrimidine, pyrazolopyrazine and pyrazolopyridine derivatives as stimulators of guanylate cyclase for cardiovascular disorders
US8222262B2 (en) 2006-10-03 2012-07-17 Neurosearch A/S Indazolyl derivatives useful as potassium channel modulating agents
US20080188666A1 (en) 2006-11-08 2008-08-07 Markus Berger Linear phenyl-substituted indazoles and indoles, a process for their production and their use as anti-inflammatory agents
WO2008061657A1 (en) 2006-11-21 2008-05-29 Bayer Schering Pharma Aktiengesellschaft Novel aza-bicyclic compounds and their use as stimulators of soluble guanylate cyclase
US8114400B2 (en) 2006-11-21 2012-02-14 Bayer Pharma Aktiengesellschaft Aza-bicyclic compounds and their use as stimulators of soluble guanylate cyclase
US8217063B2 (en) 2007-03-29 2012-07-10 Bayer Intellectual Property Gmbh Lactam-substituted dicarboxylic acids and use thereof
US7985876B2 (en) 2007-03-29 2011-07-26 Bayer Schering Pharma Aktiengesellschaft Substituted dibenzoic acid derivatives and use thereof
US20120029002A1 (en) 2009-01-09 2012-02-02 Bayer Schering Pharma Aktiengesellschaft Benzimidazole and pyrazolopyridine derivatives for treating and/or preventing cardiovascular diseases
WO2011019581A1 (en) 2009-08-13 2011-02-17 Commscope, Inc. Of North Carolina Fiber management component
WO2011149921A1 (en) 2010-05-27 2011-12-01 Merck Sharp & Dohme Corp. Soluble guanylate cyclase activators

Non-Patent Citations (16)

* Cited by examiner, † Cited by third party
Title
Bayer AG Investor Conference Call (edited transcript), (2012) pp. 1-19.
Boerrigter et al., Handbook of Experimental Pharmacology, (2009), vol. 191, "Modulation of cGMP in Heart Failure: A New Therapeutic Paradigm", pp. 485-506.
English translation of DE19,744,027 abstract, Aug. 4, 1999.
Frey et al., BMC Pharmacology, (2007) "BAY 58-2667, a soluble guanylate cyclase activator, has a favourable safety profile and reduces peripheral vascular resistance in healthy male volunteers" pp. 1-2.
Ghofrani et al., Eur. Respiratory Rev. (2009), vol. 18, "Soluble guanylate cyclase stimulation: an emerging option in pulmonary hypertension therapy" pp. 35-41.
Hering, K.W., et. al., "The design and synthesis of YC-1 analogues as probes for soluble guanylate cyclase"; Bioorg. Med. Chem. Lett, 2006, vol. 16, pp. 618-621.
Hoenicka, M.J., "Purified soluble guanylyl cyclase expressed in baculovirus/sf9 system: stimulation by YC-1, nitric oxide and carbon monoxide"; J. Mol. Med., 1999, vol. 77, pp. 14-23.
International Preliminary Report on Patentability PCT/US2009/064570 dated May 31, 2011.
International Search Report of PCT/US2009/064570 dated Jan. 27, 2010.
Mulsch, a., et. al., "Effect of YC-1, an NO-independent, super-oxide sensitive stimulator of soluble guanylyl cyclase, on smooth muscle responsiveness to nitrovasodilators", British Journal of Pharmacology, 1997, vol. 120, pp. 681-689.
Stasch, et. al., "Pharmacological actions of a novel NO-independent guanylyl cyclase stimulator, BAY 41/8543: in vitro studies", British Journal of Pharmacology, vol. 135, 2002, pp. 333-343.
Stasch, J. P., et. al., "NO-independent regulatory site on soluble guanylate cyclase"; Nature, vol. 410, 2001, pp. 212-215.
Stasch, J.P., et. al., "Cardiovascular actions of a novel No-independent guanylyl cyclase stimulator, BAY 41/8543: in vivo studies", British Journal of Pharmacology, vol. 135, 2002, pp. 344-355.
Straub, A., et. al., "Metabolites of Orally Active No-independent Pyrazolopyridine Stimulators of Soluble Guanylate Cyclase", Bioorg. Med. Chem., vol. 10, 2002, pp. 1711-1717.
Straub, A., et. al., "NO Independent stimulators of Soluble Guanylate Cyclase"; Bioorg. Med.Chem.Lett, vol. 11, 2001, pp. 781-784.
Supplementary European Search Report of EP 09830834 dated Feb. 8, 2013.

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9505786B2 (en) 2012-01-11 2016-11-29 Bayer Pharma Aktiengesellschaft Substituted annulated triazines and use thereof
US9605008B2 (en) 2013-07-10 2017-03-28 Bayer Pharma Aktiengesellschaft Benzyl-1H-pyrazolo[3,4-b]pyridines and use thereof
US9611278B2 (en) 2013-12-11 2017-04-04 Merck Sharp & Dohme Corp. Soluble guanylate cyclase activators
US9783552B2 (en) 2013-12-11 2017-10-10 Merck Sharp & Dohme Corp. Soluble guanylate cyclase activators
US9796733B2 (en) 2014-06-04 2017-10-24 Merck Sharp & Dohme Corp. Imidazo-pyrazine derivatives useful as soluble guanylate cyclase activators
US9822130B2 (en) 2014-11-21 2017-11-21 Merck Sharp & Dohme Corp. Triazolo-pyrazinyl derivatives useful as soluble guanylate cyclase activators
US10245264B2 (en) 2015-05-27 2019-04-02 Merck Sharp & Dohme Corp. Substituted imidazo[1,2-a]pyrazines as soluble guanylate cyclase activators
US10213429B2 (en) 2015-05-28 2019-02-26 Merck Sharp & Dohme Corp. Imidazo-pyrazinyl derivatives useful as soluble guanylate cyclase activators
US10030027B2 (en) 2015-12-22 2018-07-24 Merck Sharp & Dohme Corp. Soluble guanylate cyclase stimulators
US10428076B2 (en) 2015-12-22 2019-10-01 Merck Sharp & Dohme Corp. Soluble guanylate cyclase stimulators
US10780092B2 (en) 2016-05-16 2020-09-22 Merck Sharp & Dohme Corp. Fused pyrazine derivatives useful as soluble guanylate cyclase stimulators
US10925876B2 (en) 2016-05-18 2021-02-23 Merck Sharp & Dohme Corp. Methods for using triazolo-pyrazinyl soluble guanylate cyclase activators in fibrotic disorders

Also Published As

Publication number Publication date
CA2743864A1 (en) 2010-06-10
JP5501369B2 (en) 2014-05-21
US20110218202A1 (en) 2011-09-08
WO2010065275A1 (en) 2010-06-10
AU2009322836B2 (en) 2013-04-04
EP2373317B1 (en) 2016-12-14
EP2373317A4 (en) 2013-03-20
JP2012509877A (en) 2012-04-26
AU2009322836A1 (en) 2011-06-23
EP2373317A1 (en) 2011-10-12

Similar Documents

Publication Publication Date Title
US8741910B2 (en) Soluble guanylate cyclase activators
US9365574B2 (en) Soluble guanylate cyclase activators
US9783552B2 (en) Soluble guanylate cyclase activators
US9284301B2 (en) Soluble guanylate cyclase activators
US9611278B2 (en) Soluble guanylate cyclase activators
US9796733B2 (en) Imidazo-pyrazine derivatives useful as soluble guanylate cyclase activators
JP2012509877A5 (en)
US10245264B2 (en) Substituted imidazo[1,2-a]pyrazines as soluble guanylate cyclase activators
AU2020383423A1 (en) Allosteric EGFR inhibitors and methods of use thereof

Legal Events

Date Code Title Description
AS Assignment

Owner name: MERCK SHARP & DOHME CORP., NEW JERSEY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BROCKUNIER, LINDA L.;PARMEE, EMMA R.;ROSAUER, KEITH;AND OTHERS;SIGNING DATES FROM 20091111 TO 20091113;REEL/FRAME:026281/0841

AS Assignment

Owner name: SCHERING CORPORATION, NEW JERSEY

Free format text: MERGER;ASSIGNOR:MERCK SHARP & DOHME CORP.;REEL/FRAME:028850/0515

Effective date: 20120426

AS Assignment

Owner name: MERCK SHARP & DOHME CORP., NEW JERSEY

Free format text: CHANGE OF NAME;ASSIGNOR:SCHERING CORPORATION;REEL/FRAME:028866/0511

Effective date: 20120502

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551)

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8

AS Assignment

Owner name: MERCK SHARP & DOHME LLC, NEW JERSEY

Free format text: MERGER;ASSIGNOR:MERCK SHARP & DOHME CORP.;REEL/FRAME:061102/0145

Effective date: 20220407