CA2899231A1 - Biomass of the microalgae schizochytrium mangrovei and method for preparing same - Google Patents

Biomass of the microalgae schizochytrium mangrovei and method for preparing same Download PDF

Info

Publication number
CA2899231A1
CA2899231A1 CA2899231A CA2899231A CA2899231A1 CA 2899231 A1 CA2899231 A1 CA 2899231A1 CA 2899231 A CA2899231 A CA 2899231A CA 2899231 A CA2899231 A CA 2899231A CA 2899231 A1 CA2899231 A1 CA 2899231A1
Authority
CA
Canada
Prior art keywords
biomass
weight
expressed
dha
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CA2899231A
Other languages
French (fr)
Other versions
CA2899231C (en
Inventor
Serge Comini
Bernard Pora
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Roquette Freres SA
Original Assignee
Roquette Freres SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Roquette Freres SA filed Critical Roquette Freres SA
Publication of CA2899231A1 publication Critical patent/CA2899231A1/en
Application granted granted Critical
Publication of CA2899231C publication Critical patent/CA2899231C/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6409Fatty acids
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23DEDIBLE OILS OR FATS, e.g. MARGARINES, SHORTENINGS, COOKING OILS
    • A23D9/00Other edible oils or fats, e.g. shortenings, cooking oils
    • A23D9/007Other edible oils or fats, e.g. shortenings, cooking oils characterised by ingredients other than fatty acid triglycerides
    • A23D9/013Other fatty acid esters, e.g. phosphatides
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K20/00Accessory food factors for animal feeding-stuffs
    • A23K20/10Organic substances
    • A23K20/158Fatty acids; Fats; Products containing oils or fats
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/115Fatty acids or derivatives thereof; Fats or oils
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/02Nutrients, e.g. vitamins, minerals
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11BPRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
    • C11B1/00Production of fats or fatty oils from raw materials
    • C11B1/10Production of fats or fatty oils from raw materials by extracting
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/12Unicellular algae; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/12Unicellular algae; Culture media therefor
    • C12N1/125Unicellular algae isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6409Fatty acids
    • C12P7/6427Polyunsaturated fatty acids [PUFA], i.e. having two or more double bonds in their backbone
    • C12P7/6434Docosahexenoic acids [DHA]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6436Fatty acid esters
    • C12P7/6445Glycerides
    • C12P7/6463Glycerides obtained from glyceride producing microorganisms, e.g. single cell oil
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/89Algae ; Processes using algae

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Food Science & Technology (AREA)
  • Cell Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Botany (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Biomedical Technology (AREA)
  • Virology (AREA)
  • Nutrition Science (AREA)
  • Animal Husbandry (AREA)
  • Mycology (AREA)
  • Obesity (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Hematology (AREA)
  • Diabetes (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Fats And Perfumes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The invention concerns a strain of Schizochytrium mangrovei filed on 22 November 2012 with the CNCM as number I-4702 having the ability to produce a high quantity of docosahexaenoic acid (or DHA) and palmitic acid, the methods for producing the corresponding biomass containing said lipid compounds of interest, and the biomass containing the products and compositions prepared from this strain.

Description

BIOMASSE DE LA MICROALGUE SCHIZOCHYTRIUM MANGROVE I ET SON PROCEDE
DE PREPARATION
La présente invention se rapporte à une biomasse de microalgues riche en acide docosahexaénoïque (ou DHA), en acide palmitique et en phospholipides, notamment phosphatidylcholine, biomasse de microalgues du genre Thraustochytrium, plus particulièrement Schizochytrium, en l'occurrence la biomasse d'une souche de Schizochytrium mangrovei particulière.
Les lipides constituent une des trois grandes familles de macronutriments avec les protéines et les glucides.
Parmi les lipides, on distingue notamment les triglycérides et les phospholipides :
- Les triglycérides (également appelés triacylglycérols ou triacylglycérides ou TAG) sont des glycérides dans lesquels les trois groupements hydroxyle du glycérol sont estérifiés par des acides gras. Ils sont le constituant principal de l'huile végétale et des graisses animales.
Les triglycérides représentent environ 95 % des lipides alimentaires ingérés par l'Homme. Dans l'organisme, ils sont présents principalement dans les tissus adipeux et constituent la forme principale de stockage de l'énergie.
- Les phospholipides sont des lipides amphiphiles, c'est-à-dire constitués d'une tête polaire (hydrophile) et de deux queues aliphatiques (hydrophobes).
Les phospholipides sont des lipides de structure car ils sont des constituants des membranes cellulaires dont ils assurent entre autre la fluidité.
La plupart des phospholipides sont les phosphoglycérides, dont la tête s'organise autour d'un résidu glycérol-3-phosphate estérifié par une molécule polaire, et les deux queues sont les chaînes aliphatiques de deux acides gras.
Les autres phospholipides sont les sphingomyélines, qui dérivent structurellement de la sphingosine et non du glycérol, la sphingosine constituant l'une des deux queues aliphatiques.
Les premiers phospholipides isolés de tissus vivants ont été caractérisés à
partir de lécithine de jaune d'ceuf - il s'agissait plus précisément de phosphatidylcholines. C'est d'ailleurs la raison pour laquelle les phosphatidylcholines sont également connues sous le nom de lécithines.
Les phosphatidylcholines sont naturellement produites par le foie. Elles sont un important constituant de la bile dans laquelle elles émulsionnent les graisses présentes dans le duodénum. Elles sont aussi nécessaires, en plus des sels biliaires, pour empêcher que les gouttelettes lipidiques ne se ré-agglutinent.
BIOMASS OF THE MICROALGUE SCHIZOCHYTRIUM MANGROVE I AND ITS PROCESS
OF PREPARATION
The present invention relates to a biomass of microalgae rich in acid docosahexaenoic acid (or DHA), palmitic acid and phospholipids, especially phosphatidylcholine, microalgae biomass of the genus Thraustochytrium, plus particularly Schizochytrium, in this case the biomass of a strain of Schizochytrium mangrovei particular.
Lipids are one of the three major families of macronutrients with the proteins and carbohydrates.
Among the lipids, there are in particular triglycerides and phospholipids:
- Triglycerides (also called triacylglycerols or triacylglycerides or TAG) are glycerides in which the three hydroxyl groups of glycerol are esterified with fatty acids. They are the main constituent of the oil plant and animal fats.
Triglycerides account for approximately 95% of ingested dietary lipids by the man. In the body, they are present mainly in the tissues fat and constitute the main form of energy storage.
Phospholipids are amphiphilic lipids, that is to say constituted a polar head (hydrophilic) and two aliphatic tails (hydrophobic).
Phospholipids are structural lipids because they are constituents of the cell membranes which they ensure among other fluidity.
Most phospholipids are phosphoglycerides, whose heads are is organized around a glycerol-3-phosphate residue esterified by a polar molecule, and both tails are the aliphatic chains of two fatty acids.
The other phospholipids are sphingomyelins, which derive structurally sphingosine and not glycerol, sphingosine being one of the two tails aliphatic.
The first phospholipids isolated from living tissues were characterized go of egg yolk lecithin - it was more specifically phosphatidylcholine. It is besides the reason why phosphatidylcholines are also known as name of lecithins.
Phosphatidylcholines are naturally produced by the liver. They are a important constituent of the bile in which they emulsify fats present in the duodenum. They are also necessary, in addition to bile salts, to prevent that the lipid droplets do not re-agglutinate.

2 En tant que phospholipides, les phosphatidylcholines participent à la membrane des cellules et servent à préserver leur viscoélasticité. Elles sont une composante essentielle du système nerveux et constituent près de 30 % du poids sec du cerveau et 15 % des nerfs.
Triglycérides et phospholipides sont composés majoritairement d'acides gras qui sont à la fois apportés par l'alimentation et, pour certains d'entre eux, synthétisés par l'organisme.
La classification biochimique (basée sur le nombre de doubles liaisons contenues dans la molécule d'acide gras) distingue les acides gras saturés (AGS), les acides gras monoinsaturés (AGMI) et les acides gras polyinsaturés (AGPI).
Du point de vue physiologique, on distingue :
- les acides gras indispensables nécessaires au développement et au bon fonctionnement du corps humain, mais que notre corps ne sait pas fabriquer ;
- les acides gras dit conditionnellement indispensables, essentiels pour la croissance normale et les fonctions physiologiques des cellules mais qui peuvent être fabriqués à partir de leur précurseur s'il est apporté par l'alimentation. Ils sont donc rigoureusement requis si leur précurseur indispensable est absent.
- Les acides gras non indispensables.
L'ensemble des acides gras indispensables et conditionnellement indispensables constituent les acides gras essentiels.
Les autres acides gras sont dits non essentiels.
Parmi les acides gras non indispensables, on trouve notamment :
- l'acide eicosapentaénoïque (EPA) de la famille des acides gras oméga 3, - l'acide oléique, l'acide gras monoinsaturé majoritaire dans notre alimentation, et - les acides gras saturés, tels l'acide laurique, l'acide myristique ou l'acide palmitique.
Les acides gras polyinsaturés sont classés en fonction de la position de la première double liaison, à partir de la fonction méthyle finale.
Ainsi, dans la nomenclature, pour omega x ou nx , x correspond à la position de la première insaturation.
On distingue deux grandes familles d'acides gras essentiels : les acides gras oméga 6 (ou AGPI n-6), dont le précurseur et le représentant majeur est l'acide linoléique (LA) et les acides gras oméga 3 (ou AGPI n-3) dont le précurseur est l'acide alpha-linolénique (ALA).
La majorité des acides gras polyinsaturés d'intérêt biologique appartient à la famille des omega 6 (acide arachidonique ou ARA) ou omega 3 (acide eicosapentaénoïque ou EPA, acide docosahexaénoïque ou DHA).
2 As phospholipids, phosphatidylcholines participate in the membrane cells and serve to preserve their viscoelasticity. They are a component essential nervous system and constitute almost 30% of the dry weight of the brain and 15% of the nerves.
Triglycerides and phospholipids are predominantly composed of fatty acids who are both brought by the diet and, for some of them, synthesized by the body.
Biochemical classification (based on the number of double bonds contained in the fatty acid molecule) distinguishes between saturated fatty acids (AGS), Fatty acids monounsaturates (MUFA) and polyunsaturated fatty acids (PUFAs).
From the physiological point of view, we distinguish:
- the essential fatty acids necessary for the development and the good functioning of the human body, but that our body does not know how to manufacture;
- the so-called essential fatty acids, essential for the normal growth and physiological functions of cells but which can be made from their precursor if it is brought by the diet. They thereby are rigorously required if their indispensable precursor is absent.
- Non-essential fatty acids.
All of the essential fatty acids and conditionally are the essential fatty acids.
Other fatty acids are called non-essential.
Non-essential fatty acids include:
eicosapentaenoic acid (EPA) of the omega 3 fatty acid family, - oleic acid, the major monounsaturated fatty acid in our food, and saturated fatty acids, such as lauric acid, myristic acid or acid palmitic.
Polyunsaturated fatty acids are classified according to the position of the first double bond, from the final methyl function.
So, in the nomenclature, for omega x or nx, x is the position of the first unsaturation.
There are two main families of essential fatty acids: fatty acids omega 6 (or PUFA n-6), whose precursor and major representative is linoleic acid (LA) and omega 3 fatty acids (or n-3 PUFAs) whose precursor is acid alpha-linolenic (ALA).
The majority of polyunsaturated fatty acids of biological interest belong to the family of omega 6 (arachidonic acid or ARA) or omega 3 (acid eicosapentaenoic or EPA, docosahexaenoic acid or DHA).

3 En outre, dans la nomenclature, on définit également le nombre de carbone constituant la chaîne ; ainsi l'EPA est décrit comme 020:5 et le DHA comme 022:6.
Le 5 et 6 correspondent ainsi au nombre d'insaturations de la chaîne carbonée présentés respectivement par l'EPA et par le DHA.
Le DHA, de la famille des acides gras oméga 3, est un acide gras que l'organisme sait synthétiser à partir de l'acide alpha-linolénique, ou qui est apporté par la consommation de poissons gras (thon, saumon, hareng...).
Le DHA joue un rôle important dans la structure des membranes et dans le développement et le fonctionnement du cerveau et de la rétine.
Les huiles de poisson sont utilisés principalement comme source d'acides gras de type omega 3, tels le DHA et l'EPA, mais on les trouve également dans les huiles de microalgues où on les extrait soit en mélange, soit séparément, comme c'est le cas par exemple des huiles issues de certaines souches sélectionnées, telles que celles du genre Schizochytrium, qui ne contiennent que des traces d'EPA mais de fortes teneurs en DHA.
Des préparations commerciales de biomasse de microalgues riches en DHA sont disponibles.
On peut citer ainsi, par exemple :
- proposés pour l'alimentation en aquaculture des rotifères, des produits de la gamme ALGAMAC, commercialisé par AQUAFAUNA BIO-MARINE Inc., ou - des produits commercialisés par la société DSM sous le nom de marque DHA
GOLDTM.
Cependant, il demeure un besoin de disposer de biomasses de microalgues de qualité, à haute tenue en DHA, et présentant des profils tout à fait particulier en acides gras saturés ou polyinsaturés à longue chaîne et en phospholipides.
Il a été tout d'abord du mérite de la société Demanderesse de proposer une nouvelle biomasse de microalgue, riche en DHA, présentant :
- de faibles teneurs en acide gras polyinsaturés autres que le DHA (tel que l'EPA), - une teneur limitée en certains acides gras saturés à longue chaîne (tels que l'acide myristique et l'acide laurique).
- une teneur élevé en phospholipides (jusqu'au double des quantités classiquement trouvées dans les préparations commerciales), plus particulièrement en phosphatidylcholine.
Soucieuse également de mettre au point un procédé de production bien plus efficace et bien moins couteux que ceux décrits dans l'état de la technique, la société
Demanderesse a, au cours de ses recherches, identifié une nouvelle souche de Schizochytrium mangrovei productrice de DHA présentant la particularité de produire :
3 In addition, in the nomenclature, the number of carbon constituting the chain; so EPA is described as 020: 5 and DHA as 022: 6.
The 5 and 6 correspond to the number of unsaturations of the chain presented by EPA and DHA respectively.
DHA, from the family of omega 3 fatty acids, is a fatty acid that the body can synthesize from alpha-linolenic acid, or that is provided by the consumption fatty fish (tuna, salmon, herring ...).
DHA plays an important role in the structure of membranes and in the development and functioning of the brain and retina.
Fish oils are used primarily as a source of fatty acids of type omega 3, such as DHA and EPA, but they are also found in oils of microalgae where they are extracted either as a mixture or separately, as it is the case by example of oils from certain selected strains, such as those of the kind Schizochytrium, which contain only traces of EPA but high levels in DHA.
Commercial preparations of microalgae biomass rich in DHA are available.
We can cite thus, for example:
- proposed for the feeding of rotifers in aquaculture, the ALGAMAC range, marketed by AQUAFAUNA BIO-MARINE Inc., or products marketed by DSM under the brand name DHA
GOLDTM.
However, there remains a need for biomasses of microalgae quality, high DHA performance, and having quite particular fatty acids saturated or polyunsaturated long chain and phospholipids.
It was first of all the merit of the applicant company to propose a new microalgae biomass, rich in DHA, presenting:
- low levels of polyunsaturated fatty acids other than DHA (such as EPA) - a limited content of certain long-chain saturated fatty acids (such as myristic acid and lauric acid).
- a high content of phospholipids (up to twice the amount classically found in end-use products), plus especially in phosphatidylcholine.
Also keen to develop a much more productive process effective and much less expensive than those described in the state of the art, the society In the course of his research, the applicant identified a new strain of Schizochytrium mangrovei producing DHA with the particularity of produce:

4 - très peu d'acides gras saturés hypercholesterolémiants (moins de 6 % d'acides laurique et myristique dont l'homme du métier sait qu'ils sont les plus hypercholestérolémiants connus), - plus de 40 % d'acide palmitique, (les % s'entendant ici en poids d'acides gras totaux).
L'acide palmitique, également appelé acide hexadécanoïque ou acide cétylique, est l'un des acides gras saturés en C16:0 les plus courants chez les animaux et les plantes.
L'acide palmitique est le premier acide gras produit au cours de la lipogenèse ; à
partir de lui, des acides gras plus longs peuvent être produits.
De plus, il est l'acide gras utilisé préférentiellement pour synthétiser de l'ATP. Le bilan énergétique de sa combustion indique 129 ATP. Il constitue ainsi un excellent aliment énergétique.
Industriellement on utilise également l'acide palmitique pour la fabrication des margarines, des savons durs.
Dans le domaine des peintures, étant donné qu'il est saturé, l'acide palmitique ne peut pas polymériser et se rigidifier une fois en contact avec l'oxygène de l'air (à la différence de l'acide oléique, linoléique et linolénique). Il reste donc sous sa forme de solide mou et agit (avec l'acide stéarique) comme plastifiant des liants huileux polymérisés. Ainsi, avec l'acide stéarique, il assure l'élasticité nécessaire à la bonne conservation des matières picturale à l'huile, à travers le temps.
Par ailleurs, la biomasse de Schizochytrium mangrovei selon l'invention présente :
- une teneur en phospholipides comprise entre 1,5 et 2%, dont 1 à 1,3 %
constitués de phosphatidylcholine, - une teneur en acides aminés totaux comprise entre 10 et 20 %
exprimé en N
6,25, (les % s'entendant ici en poids sur 100 g de biomasse à 99% de matière sèche).
Cette souche de Schizochytrium mangrovei a été déposée en France le 22 novembre 2012 auprès de la Collection Nationale de Cultures de Microorganismes de l'Institut Pasteur (CNCM), 25 rue du docteur Roux, 75724 Paris Cedex 15, France, sous le numéro CNCM 1-4702.
Elle a été caractérisée par séquençage des gènes codant pour l'ARNr 18 S :

421 TCTCACAGTA CAATCGCTTA TACTTACACA GCAG (SEQ ID No 1) ce qui a permis de l'identifier comme étant une souche du type Schizochytrium mangrovei Par conséquent, la présente invention est relative à la souche de Schizochytrium mangrovei déposée le 22 novembre 2012 auprès de la CNCM sous le numéro 1-4702.
Cette souche pourra être désignée CNCM 1-4702 ultérieurement dans la présente demande.
4 - very few hypercholesterolemic saturated fatty acids (less of 6% of acids lauric and myristic which the skilled person knows they are the most known hypercholesterolemic agents), - more than 40% palmitic acid, (the% herein being by weight of total fatty acids).
Palmitic acid, also known as hexadecanoic acid or cetyl acid, is one of the most common C16: 0 saturated fatty acids in animals and plants.
Palmitic acid is the first fatty acid produced during lipogenesis ; at from it, longer fatty acids can be produced.
In addition, it is the fatty acid preferentially used to synthesize ATP. The energy balance of its combustion indicates 129 ATP. It thus constitutes a excellent food Energy.
Industrially, palmitic acid is also used for manufacturing of the margarines, hard soaps.
In the field of paints, since it is saturated, the acid palmitic does not can not polymerize and become rigid once in contact with the oxygen of the air (at difference in oleic, linoleic and linolenic acid). It therefore remains its solid form soft and acts (with stearic acid) as plasticizer oily binders polymerized. So, with stearic acid, it provides the necessary elasticity to the good conservation of materials pictorial oil, through time.
Moreover, the Schizochytrium mangrovei biomass according to the invention present :
a phospholipid content of between 1.5 and 2%, of which 1 to 1.3%
consisting of phosphatidylcholine, a total amino acid content of between 10 and 20%
expressed in N
6.25 (the% herein being in weight per 100 g of biomass at 99% dry matter).
This strain of Schizochytrium mangrovei was deposited in France on 22 November 2012 at the National Collection of Cultures of Microorganisms of the Institut Pasteur (CNCM), 25 rue du Dr Roux, 75724 Paris Cedex 15, France, under the number CNCM 1-4702.
It has been characterized by sequencing the genes encoding the 18S rRNA:

421 TCTCACAGTA CAATCGCTTA TACTTACACA GCAG (SEQ ID NO: 1) which made it possible to identify it as a strain of the Schizochytrium type mangrovei Therefore, the present invention relates to the strain of Schizochytrium mangrovei filed November 22, 2012 with the CNCM under the number 1-4702.
This strain can be designated CNCM 1-4702 later in the this request.

5 La présente invention concerne également un variant de cette souche ou une souche dérivée de celle-ci, ledit variant ou ladite souche dérivée conservant la propriété de produire des teneurs en DHA et acide palmitique élevées.
En particulier, elle concerne une souche de Schizochytrium mangrovei obtenue à

partir de la souche CNCM 1-4702 par mutagenèse ou par transformation génique.
La mutagenèse peut être dirigée et/ou aléatoire. Cette souche conserve la propriété de produire des teneurs en DHA et acide palmitique élevées. Notamment, elle est capable de produire plus de 35 % de DHA et plus de 40 % d'acide palmitique, ces deux %
étant exprimés en poids d'acides gras totaux, notamment lorsqu'elle est cultivée dans les conditions décrites dans l'exemple 1. En outre, elle produit entre 1 et 1,3 %
de phosphatidylcholine, exprimé en poids de biomasse à 99 % de matière sèche.
La présente invention concerne aussi une méthode de préparation d'une telle souche comprenant la mutagenèse ou la transformation génique de la souche CNCM
I-4702 et facultativement une étape de criblage permettant de sélectionner les souches produisant :
- plus de 35 % de DHA, - plus de 40 % d'acide palmitique, (ces deux % exprimés en poids d'acides gras totaux).
- entre 1 et 1,3 % de phosphatidylcholine, (ce % exprimé en poids de biomasse à 99 % de matière sèche) L'invention concerne une méthode de culture de la souche CNCM 1-4702 ou d'un variant de celle-ci conservant la capacité de production de DHA et d'acide palmitique, comprenant une étape de culture de cette souche dans un milieu approprié, dans des conditions de fermentation adaptées.
L'invention concerne par ailleurs une méthode de préparation de la biomasse de Schizochytrium mangrovei, caractérisée en ce qu'elle est préparée par la succession d'étapes suivantes :
o culture de la souche en conditions hétérotrophiques de manière à
produire une biomasse présentant entre 35 et 40 % de DHA, exprimé
en poids d'acides gras totaux, entre 40 et 50 % en poids d'acide palmitique, exprimé en poids d'acides gras totaux, et entre 1 et 1,3 %
de phosphatidylcholine, % exprimé en poids de biomasse, o récolte de la biomasse ainsi préparée
The present invention also relates to a variant of this strain or a strain derived therefrom, said variant or said derived strain retaining the property of produce high levels of DHA and palmitic acid.
In particular, it relates to a strain of Schizochytrium mangrovei obtained at from the CNCM 1-4702 strain by mutagenesis or by gene transformation.
The mutagenesis can be directed and / or random. This strain keeps the property of produce high levels of DHA and palmitic acid. In particular, she is able to produce more than 35% of DHA and more than 40% of palmitic acid, these two%
being expressed by weight of total fatty acids, especially when grown in the conditions described in Example 1. In addition, it produces between 1 and 1.3%
of phosphatidylcholine, expressed by weight of biomass at 99% dry matter.
The present invention also relates to a method for preparing such strain comprising mutagenesis or gene transformation of the CNCM strain I-4702 and optionally a screening step for selecting the strains producing:
- more than 35% of DHA, - more than 40% palmitic acid, (These two% expressed by weight of total fatty acids).
between 1 and 1.3% of phosphatidylcholine, (this% expressed as weight of biomass at 99% dry matter) The invention relates to a method for culturing the strain CNCM 1-4702 or a varying from it retaining the production capacity of DHA and acid palmitic, comprising a step of culturing this strain in a suitable medium, in of the suitable fermentation conditions.
The invention also relates to a method for preparing the biomass of Schizochytrium mangrovei, characterized in that it is prepared by the succession following steps:
o cultivation of the strain in heterotrophic conditions so as to produce biomass with between 35 and 40% of DHA, expressed by weight of total fatty acids, between 40 and 50% by weight of acid palmitic, expressed as weight of total fatty acids, and between 1 and 1.3%
phosphatidylcholine,% expressed by weight of biomass, o harvest of biomass thus prepared

6 o séchage de ladite biomasse.
La culture est réalisée en conditions hétérotrophiques. Généralement, l'étape de culture comprend une étape de préculture, pour revivifier la souche, puis une étape de culture ou de fermentation proprement dite. Cette dernière étape correspond à
l'étape de production des composés lipidiques d'intérêt.
La société Demanderesse recommande, pour la souche CNCM 1-4702 de mettre en oeuvre une fermentation aérobie en trois étapes, comme il sera exemplifié
ci-après.
Après une étape préalable de préculture, les trois étapes de fermentation sont caractérisées par une culture de la souche CNCM 1-4702 dans un milieu dans lequel l'apport en sources de carbone est régulé en fonction de la consommation en glucose par le microorganisme.
Il est ainsi noté que la consommation en glucose est consommé de façon graduelle dans les premières heures de fermentation, puis elle se maintient constante jusqu'à la fin de la fermentation, comme il sera exemplifié ci-après.
La présente invention concerne ensuite la récupération, en fin de fermentation, de la biomasse riche en composés lipidiques d'intérêt, en l'occurrence ici le DHA
et l'acide palmitique.
Après l'étape de fermentation, la biomasse est:
- pasteurisée, de manière à inactiver les enzymes de dégradation des lipides (lipases) présentes dans la biomasse en tant que telle, mais aussi dans le milieu de culture, - récupérée du milieu de fermentation par toute méthode connue en soi de l'homme du métier, par exemple la biomasse peut être extraite du fermenteur et simplement concentrée par microfiltration ou centrifugation, ou lavée par succession de concentrations-dilutions avec une solution aqueuse.
Après fermentation, la biomasse peut contenir :
- entre 35 et 40 % de DHA, exprimé en poids d'acides gras totaux, - entre 40 et 50 % en poids d'acide palmitique, exprimé en poids d'acides gras totaux, - entre 1,5 et 2% de phospholipides, dont 1 à 1,3 % constitués de phosphatidylcholine, % exprimé en poids de biomasse, La présente invention concerne enfin l'utilisation de la biomasse riche en DHA, acide palmitique et phosphatidylcholine produite par l'un quelconque des procédés de la présente invention, dans la préparation de compositions destinées aux domaines alimentaires, notamment nutrition animale, mais également humaine.
Ainsi, elle concerne une méthode de préparation de compositions destinées aux domaines alimentaires comprenant la production d'une biomasse riche en DHA, en acide
6 drying said biomass.
The culture is carried out in heterotrophic conditions. Generally, the stage of culture includes a preculture stage, to revive the strain, then a step of culture or fermentation proper. This last step corresponds to the stage of production of the lipid compounds of interest.
The applicant company recommends, for the CNCM 1-4702 strain, to aerobic fermentation in three stages, as will be exemplified below.
After a preculture preculture stage, the three fermentation stages are characterized by a culture of the strain CNCM 1-4702 in a medium in which the supply of carbon sources is regulated according to the consumption in glucose by the microorganism.
It is noted that glucose consumption is consumed gradual in the first hours of fermentation, then it keeps constant until the end of fermentation, as will be exemplified below.
The present invention then relates to the recovery, at the end of fermentation, the biomass rich in lipid compounds of interest, in this case DHA
and the acid palmitic.
After the fermentation step, the biomass is:
- pasteurized, so as to inactivate lipid degradation enzymes (lipases) present in the biomass as such, but also in the culture centre, recovered from the fermentation medium by any method known per se of the person skilled in the art, for example the biomass can be extracted from the fermenter and simply concentrated by microfiltration or centrifugation, or washed by succession of concentration-dilutions with an aqueous solution.
After fermentation, the biomass may contain:
between 35 and 40% of DHA, expressed as weight of total fatty acids, between 40 and 50% by weight of palmitic acid, expressed as weight of acids fat totals 1.5 to 2% of phospholipids, of which 1 to 1.3% consist of phosphatidylcholine, expressed as weight of biomass, The present invention finally relates to the use of biomass rich in DHA
palmitic acid and phosphatidylcholine produced by any of the processes of the present invention in the preparation of compositions intended for the including animal nutrition, but also human.
Thus, it relates to a method for preparing compositions intended for fields of food production including the production of a biomass rich in DHA, acid

7 palmitique et en phosphatidylcholine par l'un quelconque des procédés de la présente invention puis la préparation de compositions destinées aux domaines alimentaires.
La présente invention concerne en particulier un produit ou une composition comprenant la souche CNCM 1-4702 ou un variant de celle-ci conservant la capacité de production du DHA, et une biomasse obtenue après culture ou fermentation de celle-ci.
De préférence, ce produit ou cette composition est une composition alimentaire ou un complément alimentaire ou nutritionnel.
Il peut être sous forme liquide ou solide.
Ce produit ou cette composition peut être sous forme de poudre, granule, gélule, capsule, ou cachet, de préférence sous forme de poudre.
L'invention sera mieux comprise à l'aide des exemples qui suivent, lesquels se veulent illustratifs et non limitatifs.

WO 2014/12215
7 palmitic and phosphatidylcholine by any of the methods of present invention and the preparation of compositions for the fields food.
The present invention relates in particular to a product or a composition comprising the CNCM 1-4702 strain or a variant thereof retaining the ability to production of DHA, and a biomass obtained after culture or fermentation of it.
Preferably, this product or this composition is a food composition or a dietary or nutritional supplement.
It can be in liquid or solid form.
This product or composition may be in the form of a powder, granule, capsule, capsule, or cachet, preferably in powder form.
The invention will be better understood with the aid of the following examples, which are want illustrative and not limiting.

WO 2014/12215

8 Exemple 1 : Production d'une biomasse riche en DHA et en acide palmitique par la souche de Schizochytrium mangrovei CNCM 1-4702 Les compositions des milieux de culture et les conditions de fermentation sont présentées dans les tableaux suivants.
Tableau 1 : Composition des milieux de culture Fermenteur successifs de : 100 litres 1 m3 10 rn3 Volume efficace du fermenteur 70 litres 700 litres 7000 litres Glucose (kg) 6 41,3 1120 Gluconate mono sodique 4,494 26,67 (kg) Corn steep liquide (kg) 119 Extraits de levures (kg) 0,448 2,03 42 NaCI (kg) 1,4 2,66 16,8 KH2PO4 (kg) 0,448 2,80 33,6 MgSO4 (kg) 1,6 7,35 42 CaCl2 (kg) 0,02 0,14 4,2 NaHCO3 (kg) 0.,2 0,07 4,2 Agent antimousse (kg) 0,112 1,12 11,2 (DOW FAX DF 104) Na2SO4 (kg) 0,02 0,07 42 Urée (kg) 18,9 KCI (kg) 2,8 Ammoniaque (28%, litre) 33,6 liquide rouge (litre) 0,098 0,98 14 Liquide vert (litre) 0,140 1,4 19.60 La concentration initiale en glucose dans le milieu de culture stérilisé du fermenteur de 10 m3 est fixée à 15 à 16 g/I.
8 Example 1 Production of a biomass rich in DHA and palmitic acid by the strain of Schizochytrium mangrovei CNCM 1-4702 The compositions of the culture media and the fermentation conditions are presented in the following tables.
Table 1: Composition of the culture media Successive fermenter of: 100 liters 1 m3 10 rn3 Effective volume of fermenter 70 liters 700 liters 7000 liters Glucose (kg) 6 41.3 1120 Mono Sodium Gluconate 4,494 26.67 (Kg) Corn steep liquid (kg) 119 Yeast Extracts (kg) 0.448 2.03 42 NaCl (kg) 1.4 2.66 16.8 KH2PO4 (kg) 0.448 2.80 33.6 MgSO4 (kg) 1.6 7.35 42 CaCl2 (kg) 0.02 0.14 4.2 NaHCO3 (kg) 0., 2 0.07 4.2 Antifoam agent (kg) 0.112 1.12 11.2 (DOW FAX DF 104) Na2SO4 (kg) 0.02 0.07 Urea (kg) 18.9 KCI (kg) 2.8 Ammonia (28%, liter) 33.6 red liquid (liter) 0.098 0.98 14 Green liquid (liter) 0.140 1.4 19.60 The initial glucose concentration in the sterilized culture medium of fermenter of 10 m3 is fixed at 15 to 16 g / I.

9 Tableau 2. Paramètres de contrôle de la préculture et des 3 fermentations successives.
préculture 100 litres 1 m3 10 rn3 Volume de charge 200 ml x3 70 litres 0,7 m3 7 m3 0-68 h: 28 C
Température ( C) 28 C 28 C 28 C
68 - 80 h : 26 C
pH Pas de Pas de Pas de régulation Régulation à 6.2 -0-24 h :95-105;
Débit d'air (m3/h) 4,5 - 5,0 41 - 42 24 - 60 h : 50-60;
60 - 80 h: 25-30 Pression (Mpa) 0,025 - 0,03 0 ,025 - 0,03 0,03 Agitation ( rpm ) 18Orpm 120-140 140 70 - 75 Durée de la fermentation (h) Le principe d'alimentation en glucose durant la fermentation en 10 m3 est le suivant :
V la concentration de la solution d'alimentation en glucose est de 50 -60%, Y Quand la concentration résiduelle en glucose (RCS) diminue à 1 g/I
avant 48 h, on alimente avec une solution à 0,65 g/I de glucose en une fois jusqu'à
épuisement du glucose et l'achèvement de la fermentation.
Les résultats des différentes fermentations sont présentés dans les tableaux suivants.
Tableau 3. Première fermentation Temps (h) 0 8 16 23 pH 5,6 5,6 7,0 7,6 Concentration résiduelle 54 4,7 en glucose (g/100m1) , Azote aminé

(mg/100m1) Phosphore (ppm) 692 159.1 Poids sec de cellules -0 29 (g/L) Tableau 4. Seconde fermentation Temps (h) 0 6h 10h 14h 18h 22h 24h pH 5,4 7,1 7,6 8,0 8,1 8,05 7,9 Concentration résiduelle en 5,8 / / / / / 2,2 glucose (g/100m1) Azote aminé

(mg/100m1) Phosphore (ppm) 725,8 / / / 141,2 / 86,7 Poids sec de cellules 1,6 / / / / / 46,7 (g/L) Tableau 5. Troisième fermentation Temps (h) 0 12 24 36 48 60 64 72 81 pH 6,7 6,3 5,8 6 6,2 6,45 6,5 6,5 6,6 Concentration résiduelle en 14,1 12,1 9,1 11,2 9,6 5,8 5,8 4,35 1,35 glucose (g/100m1) Azote aminé

(mg/100m1) Débit d'air 95 - 100 m3/h 60 m3/h 30 m3/h Température 28 26 ( C) Phosphore 724,1 692,4 661,3 544,3 599 659 / 651,2 (IDP1m) Poids sec de cellules 11,8 25,7 37,4 38,5 44,2 69,9 /
75,4 80,5 (g/L) Contenu en / / / 30,7 27,6 34 / 32,75 31,4 Presque 70 % de l'azote aminé est consommé durant les premières 24 h de fermentation ; le phosphore l'est également durant l'étape de croissance cellulaire et n'est plus consommé ensuite (en lien avec la régulation du débit d'aération et la température de fermentation).
9 Table 2. Control parameters of preculture and 3 fermentations successive.
preculture 100 liters 1 m3 10 rn3 Load volume 200 ml x3 70 liters 0.7 m3 7 m3 0-68 h: 28 C
Temperature (C) 28 C 28 C 28 C
68 - 80 hrs: 26 C
pH No Step No Control Regulation at 6.2 -0-24 h: 95-105;
Air flow (m3 / h) 4.5 - 5.0 41 - 42 24 - 60 hrs: 50-60;
60 - 80 h: 25-30 Pressure (Mpa) 0.025 - 0.03 0.025 - 0.03 0.03 Agitation (rpm) 18Orpm 120-140 140 70 - 75 Duration of the fermentation (h) The principle of feeding glucose during fermentation in 10 m3 is the next :
V the concentration of the glucose supply solution is 50 -60%
Y When residual glucose concentration (RCS) decreases to 1 g / I
before 48 hours, we feeds with a solution of 0.65 g / l of glucose at one time up to exhaustion glucose and the completion of fermentation.
The results of the different fermentations are presented in the tables following.
Table 3. First fermentation Time (h) 0 8 16 23 pH 5.6 5.6 7.6 7.6 Residual concentration 54 4.7 in glucose (g / 100m1), Amino nitrogen (Mg / 100m1) Phosphorus (ppm) 692 159.1 Dry weight of cells -0 29 (G / L) Table 4. Second fermentation Time (h) 0 6h 10h 14h 18h 22h 24h pH 5.4 7.1 7.6 8.0 8.1 8.05 7.9 Concentration residual in 5.8 / / / / / 2.2 glucose (g / 100m1) Amino nitrogen (Mg / 100m1) Phosphorus (ppm) 725.8 / / / 141.2 / 86.7 Dry weight of 1.6 cells / / / / / 46.7 (G / L) Table 5. Third fermentation Time (h) 0 12 24 36 48 60 64 72 81 pH 6.7 6.3 5.8 6 6.2 6.45 6.5 6.5 6.6 Concentration residual in 14.1 12.1 9.1 11.2 9.6 5.8 5.8 4.35 1.35 glucose (G / 100m1) Amino nitrogen (Mg / 100m1) Air flow 95 - 100 m3 / h 60 m3 / h 30 m3 / h Temperature 28 26 ( VS) Phosphorus 724.1 692.4 661.3 544.3 599 659 / 651.2 (IDP1m) Dry weight of cells 11.8 25.7 37.4 38.5 44.2 69.9 /
75.4 80.5 (G / L) Content in / / / 30.7 27.6 34 / 32.75 31.4 Almost 70% of the amino nitrogen is consumed during the first 24 hours of fermentation; phosphorus is also during the growth stage cellular and is more consumed then (in connection with the regulation of the ventilation rate and the temperature of fermentation).

10 Le taux d'accumulation des lipides et le taux de production en DHA
augmente progressivement et atteint un maximum à 72 heures.
La récupération des cellules est donc optimale dès ce temps de fermentation.
Il est choisi d'arrêter la fermentation à 81 h.
10 The rate of lipid accumulation and the rate of production of DHA
increases gradually and reaches a maximum at 72 hours.
Cell recovery is optimal from this fermentation time.
It is chosen to stop the fermentation at 81 h.

11 Exemple 2 : Récupération et conditionnement de la biomasse de la souche CNCM 1-4702 pour des applications en alimentations animale et humaine La biomasse récupérée au terme de la fermentation décrite dans l'exemple 1 présente la composition suivante :
Tableau 6.
Volume Poids sec en Contenu en récupéré
cellules (g/L) DHA (%) (m3) 7.5 80.5 31.4 La biomasse récupérée est centrifugée une première fois à 6000 g, les cellules récupérées sont ensuite diluées dans de l'eau stérile (rapport 1,5 / 1) puis centrifugées une seconde fois.
On la soumet ensuite à un traitement thermique à 70 C pendant 15 minutes.
On récupère 2,55 t de biomasse humide (16,7 % de matière sèche).
On lui ajoute, pour les formules destinées à l'alimentation animale :
- 2% de maltodextrine d'un DE (Dextrose Equivalent) de 18, - 0,5 % de mono et diglycérides, - 1 % d'acide citrique, - 0,2 % d'antracyne 2727 (comme antioxydant) et - 0,2 % de phosphate tricalcique.
Pour les formules destinées à l'alimentation humaine, des antioxydants alimentaires de type tocophérols ou extraits de romarin sont utilisés.
On atomise cette biomasse en atomiseur simple effet (conduite classique connue de l'homme du métier) dans les conditions présentées dans le tableau 7 suivant :
11 Example 2: Recovery and conditioning of the biomass of the stump CNCM 1-4702 for applications in animal and human nutrition The biomass recovered at the end of the fermentation described in Example 1 has the following composition:
Table 6.
Volume Dry weight in Content in recovered cells (g / L) DHA (%) (M3) 7.5 80.5 31.4 The biomass recovered is centrifuged a first time at 6000 g, the cells recovered are then diluted in sterile water (1.5: 1 ratio) and then centrifuged a second time.
It is then subjected to a heat treatment at 70 ° C. for 15 minutes.
2.55 t of wet biomass (16.7% dry matter) is recovered.
It is added, for formulas intended for animal feed:
- 2% maltodextrin of a DE (Dextrose Equivalent) of 18, - 0.5% mono and diglycerides, - 1% citric acid, - 0.2% of antracyne 2727 (as an antioxidant) and 0.2% tricalcium phosphate.
For formulas intended for human consumption, antioxidants Tocopherol type foods or rosemary extracts are used.
This biomass is atomised into a single-acting atomizer (known conventional driving of the skilled person) under the conditions presented in Table 7 below :

12 Tableau 7.
Paramètres Valeurs Température de la solution 65 - 70 C
Température d'entrée de l'air 155 - 160 C
Température de sortie de l'air 75 C- 80 C
Pression -7.5 Mpa Entrée de biomasse humide (kg) 690,7 Matière sèche de la biomasse (%) 16,7 Poids théorique de cellules (kg) 115,35 Poids de cellules sèches obtenues (kg) 144,03 Rendement de séchage (%) 125 La composition de la biomasse séchée est la suivante (tableau 8) :
Tableau 8.
Paramètres Valeurs Contenu en DHA
(% sur acides 35,2 gras totaux) Protéines N6,25 16,7 en g/100 g brut Phospholipides 1,6 (0/0) Tenue en eau 1,2 résiduelle (%) Cendres (%) 6,4 POV (meq/kg) 0,4 P- Anisidine (%) 23,8 Exemple 3. Etude comparative du profil lipidique d'une biomasse conforme à
l'invention en regard de celles du commerce Les acides gras ont été déterminés par chromatographie en phase gazeuse sous la forme d'esters méthyliques après transestérification au méthanol chlorhydrique et
12 Table 7.
Parameters Values Temperature of the solution 65 - 70 C
Air inlet temperature 155 - 160 C
Air outlet temperature 75 C- 80 C
Pressure -7.5 MPa Entry of wet biomass (kg) 690.7 Biomass dry matter (%) 16,7 Theoretical cell weight (kg) 115.35 Dry cell weight obtained (kg) 144.03 Drying efficiency (%) 125 The composition of the dried biomass is as follows (Table 8):
Table 8.
Parameters Values DHA content (% on acids 35.2 total fat) Protein N6.25 16.7 in g / 100 g gross phospholipids 1.6 (0/0) Water resistance 1.2 residual (%) Ashes (%) 6.4 POV (meq / kg) 0.4 P-Anisidine (%) 23.8 Example 3 Comparative Study of the Lipid Profile of a Biomass According to the invention in comparison with those of commerce The fatty acids were determined by gas chromatography under the form of methyl esters after transesterification with methanol hydrochloric acid and

13 extraction au chloroforme. Les résultats sont exprimés en distribution, en % ;
l'analyse est réalisée par la méthode de normalisation interne.
Un chromatographe (Type VARIAN 3800) équipé d'un injecteur split-splitless muni d'un tapfocus liner et d'un détecteur à ionisation de flamme a été
utilisé.
Une solution d'étalon interne à environ précisément 0.5 mg de méthylheptadécanoate par ml de méthanol a été préparée. Le méthylheptadécanoate a servi de repère chromatographique.
Dans un tube de 6 ml, on a pesé environ précisément 30 mg d'échantillon séché
au préalable. On a ajouté à la pipette à 2 traits 1 ml de la solution d'étalon interne puis 2 ml de méthanol chlorhydrique 3N. On a ensuite bouché et placé au bain à sec thermostaté à
110 C pendant 4 h.
Après refroidissement, on a ajouté environ 0.5 ml d'eau et 0.5 ml d'eau saturée en chlorure de sodium, extraire par 3 fois 1 ml de chloroforme. On a récupéré les phases chloroformiques dans un tube de 6 ml en les séchant sur une colonne contenant du sulfate de sodium. On a concentré sous courant d'azote jusqu'à 1 mL environ et injecté.
La distribution de chaque acide gras (i), en /0, a été obtenu par le ratio de la surface du pic de cet acide gras par rapport à la somme des surfaces de tous les pics repérés sur le chromatogramme, de l'acide laurique (C12:0) au DHA (C22:6 3.4c, 7c, 10c, 13c, 16c, 19c) inclus, en excluant le pic du méthylheptadécanoate.
Les phospholipides sont analysés après le cassage et l'extraction à froid de la biomasse réalisés dans les conditions suivantes.
Cassage de la biomasse Dans un tube pyrex à visser, on pèse précisément 200 mg de biomasse fraîche.
On ajoute environ 1-1,5 cm de billes verre (type RETSCH de référence 22.222.0003) et 0,1 ml de méthanol. On ferme hermétiquement le tube et agite au moyen d'un agitateur de type vortex pendant au moins 5 min.
Extraction à froid Dans une petite nacelle en aluminium, on pèse précisément 2 mg de Triphényl Phosphate (pureté 98 /0) à la balance au microgramme.
On place la nacelle dans un tube RMN en pyrex de 5 mm de diamètre ainsi que 0,9 ml de Méthanol et 2 ml de chloroforme. On ferme hermétiquement le tube et agite au moyen de l'agitateur vortex pendant 1 min.
On place le tube au réfrigérateur. Après décantation (au minimum 1 heure), on récupère délicatement la phase supérieure limpide et la transfère dans un godet en verre pour évaporation à sec, à température ambiante, sous courant d'azote.
On solubilise l'extrait sec dans 0,5 ml de CDCI3 et 0,1 ml de CD3OD et transfère dans un tube RMN.
13 chloroform extraction. The results are expressed in distribution, in%;
the analysis is performed by the internal standardization method.
A chromatograph (Type VARIAN 3800) equipped with a split-splitless injector equipped with a tapfocus liner and a flame ionization detector has been used.
An internal standard solution at approximately 0.5 mg of methylheptadecanoate per ml of methanol was prepared. The methylheptadecanoate a served as a chromatographic marker.
In a 6 ml tube, approximately 30 mg of dried sample was weighed accurately.
beforehand. 1 ml of the standard solution was added with the 2-line pipette.
internal then 2 ml of 3N hydrochloric methanol. It was then capped and placed in a dry bath thermostatically controlled 110 C for 4 hours.
After cooling, about 0.5 ml of water and 0.5 ml of water were added.
saturated sodium chloride, extract 3 times with 1 ml of chloroform. We recovered phases chloroform in a 6 ml tube by drying on a column containing sulfate sodium. Concentrated under a stream of nitrogen to about 1 mL and injected.
The distribution of each fatty acid (i), in / 0, was obtained by the ratio of the peak area of this fatty acid relative to the sum of the surfaces of all the pics marked on the chromatogram, from lauric acid (C12: 0) to DHA (C22: 6 3.4c, 7c, 10c, 13c, 16c, 19c) inclusive, excluding the peak of methylheptadecanoate.
Phospholipids are analyzed after the breaking and cold extraction of the biomass produced under the following conditions.
Breakage of biomass In a pyrex tube to be screwed, exactly 200 mg of fresh biomass is weighed.
About 1-1.5 cm of glass beads (reference RETSCH type) 22.222.0003) and 0.1 ml of methanol. The tube is sealed and agitated by means of a agitator type vortex for at least 5 min.
Cold extraction In a small aluminum basket, we weigh exactly 2 mg of triphenyl Phosphate (purity 98/0) at the microgram scale.
The nacelle is placed in a Pyrex NMR tube 5 mm in diameter and 0.9 ml of methanol and 2 ml of chloroform. The tube is sealed and stir at medium of the vortex mixer for 1 min.
The tube is placed in the refrigerator. After decantation (at least 1 hour), gently recovers the clear upper phase and transfers it to a glass cup for dry evaporation at room temperature under a stream of nitrogen.
The solids are solubilized in 0.5 ml of CDCl3 and 0.1 ml of CD3OD and transferred in an NMR tube.

14 Pour exprimer la teneur en phospholipides à partir de la teneur en phosphore obtenue par RMN on prend en compte le phosphore apporté par les quatre principaux phospholipides et utilise l'acide oléique pour calculer la masse molaire de chacun d'entre eux.
La teneur en phospholipides est égale à la somme des quantités de ces quatre phospholipides ainsi calculées. Les biomasses analysées selon ces méthodes (dans les tableaux 9 et 10 suivants), outre celle de l'invention, sont des biomasses commercialisées par les sociétés AQUAFAUNA BIO-MARINE Inc., DSM/MARTEK et NEW HORIZON
Tableau 9.
Biomasse OMEGA VIE
ALGAMAC
conforme de DHA Gold NEW

l'exemple 2 HORIZON
Acides gras totaux en g/1 00g brut et g/100g % g/100g % g/100g % g/100g %
en % sur acides gras totaux Laurique 012:0 0,1 0,2 0,2 0,3 0,2 0,3 <0,1 0,1 Myristique 014:0 2,9 5,4 5,4 10,1 6,1 10,8 1 2,7 Pentadécyl igue 015:0 0,3 0,5 0,2 0,4 0,2 0,4 <0.1 0,2 Palmitique C16:0 24,3 44,5 12,0 22,3 12,9 23,1 17,4 47,6 Palmitoléique 016:1 A9c 0,1 0,3 0,1 0,2 0,1 0,2 <0.1 0,2 Stéarique 018:0 0,8 1,4 0,3 0,5 0,3 0,5 0,6 1,6 Oléique 018:1 9c w9 <0,03 <0,03 <0,03 0,2 0,5 linoléique (LA) 018:2 A9c,12c w6 <0,1 <0,1 <0,03 <0,03 0,2 0,5 g-linolénique (GLA) 018:3 A6c,9c,12c w6 <0,1 <0,1 0,1 0,2 0,1 0,2 <0.03 -a-linolénique (ALA) 018:3 A9c,12c,15c w3 <0,1 0,1 <0,1 <0,1 <0,1 <0,1 0,1 0,3 Arachidique 020:0 <0,1 0,1 <0,1 0,1 <0,1 0,1 <0.1 0,1 stéaridonique (SDA, STD) 0,1 0,2 0,2 0,3 0,2 0,3 <0.1 0,2 018:4 A6c,9c,12c,15c w3 Gondoique 020:1 11c w9 <0,03 <0,03 <0,03 <0.03 -dihomo-gamma-linolenic acid (DGLA) <0,1 0,1 0,2 0,3 0,2 0,3 <0.1 0,1 020:3 A8c,11c,14c w6 Arachidonique (AA) 020:4 A5c,8c,11c,14c w6 <0,1 0,1 0,2 0,4 0,2 0,4 <0.1 0,1 (ETE) 020:3 Allc,14c,17c w3 <0,03 <0,03 , <0,03 <0.03 -Béhénique 022:0 <0,1 0,1 0,1 0,2 0,1 0,2 <0.1 0,1 Timnodonique EPA
0,2 0,3 0,6 1,0 0,6 1,0 0,2 0,6 020:5 A5c,8c,11c,14c,17c w3 Lignocérique 024:0 <0,03 0,1 0,2 0,1 0,2 <0.03 -Osbond acid 022:5 A4c,7c,10c,13c,16c w6 4,3 7,9 8,1 15 8,0 14,3 2,7 7,4 Nervonique 024:1 15c w9 <0,1 <0,1 0,1 0,2 0,1 0,2 <0.03 -Clupanodonique DPA
<0,1 0,1 0,2 0,3 0,2 0,3 <0.1 0,1 022:5 A7c,10c,13c,16c,19c w3 Cervonique DHA
19,2 35,2 23,6 43,9 24,3 43,3 12,8 35 C22:6 A4c,7c,10c,13c,16c,19c w3 Autres <3,4 <4,1 <3,9 2,6 Acides Gras totaux - 53 52 54 Tableau 10.
OMEGA
Biomasse conforme ALGAMAC
DHA VIE
à l'invention selon l'exemple 1 3050 GOLD
NEW
HORIZON
Phospholipides en g/100g brut, base 018 :1 1,6 0,8 0,9 0,6 Phosphatidylcholine en %/brut 1.1 0,6 0,7 0,5 Lysophosphatidylcholine en %/brut 0.2 0,1 0,1 0,1 Phosphatidylethanolamine en %/brut 0.3 0,1 0,1 <0,1 Phosphatidylglycérol en %/brut <0,1 <0,1 0 <0,1 Matière sèche en g/100g 99,1 98,0 98,5 97,2 Cendres en g/100g brut 6,4 9,5 10,0 Azote N6,25 en g/100g brut 16,7 12,4 13,2 3,6 Il apparaît, à la lecture des résultats présentés ici que relativement au profil en acides gras :

la biomasse selon l'invention présente une teneur en DHA légèrement inférieure à celle des biomasses riche en DHA du commerce, mais une teneur en acide palmitique double, ce qui constitue en quelque sorte l'empreinte de la biomasse de Schizochytrium mangrovei de l'invention ;
- par rapport à des huiles du commerce équivalentes en teneur en DHA et en acide palmitique, la biomasse selon l'invention présente une teneur en phospholipides double (plus particulièrement en phosphatidylcholine) ;
- une teneur en azote aminé bien supérieure.
14 To express the phospholipid content from the phosphorus content obtained by NMR we take into account the phosphorus brought by the four main phospholipids and uses oleic acid to calculate the molar mass of each of them.
The phospholipid content is equal to the sum of the amounts of these four phospholipids thus calculated. Biomass analyzed according to these methods (in the following Tables 9 and 10), besides that of the invention, are biomasses marketed by AQUAFAUNA BIO-MARINE Inc., DSM / MARTEK and NEW HORIZON
Table 9.
biomass OMEGA LIFE
Algamac DHA Gold NEW compliant example 2 HORIZON
Total fatty acids in g / 1 00g crude and g / 100g% g / 100g% g / 100g% g / 100g%
in% on total fatty acids Lauric 012: 0 0.1 0.2 0.2 0.3 0.2 0.3 <0.1 0.1 Myristic 014: 0 2.9 5.4 5.4 10.1 6.1 10.8 1 2.7 Pentadecyl Iterate 015: 0 0.3 0.5 0.2 0.4 0.2 0.4 <0.1 0.2 Palmitic C16: 0 24.3 44.5 12.0 22.3 12.9 23.1 17.4 47.6 Palmitoleic 016: 1 A9c 0.1 0.3 0.1 0.2 0.1 0.2 <0.1 0.2 Stearic 018: 0 0.8 1.4 0.3 0.5 0.3 0.5 0.6 1.6 Oleic 018: 1 9c w9 <0.03 <0.03 <0.03 0.2 0.5 linoleic (LA) 018: 2 A9c, 12c w6 <0.1 <0.1 <0.03 <0.03 0.2 0.5 g-linolenic (GLA) 018: 3 A6c, 9c, 12c w6 <0.1 <0.1 0.1 0.2 0.1 0.2 <0.03 -α-Linolenic (ALA) 018: 3 A9c, 12c, 15c w3 <0.1 0.1 <0.1 <0.1 <0.1 <0.1 0.1 0.3 Peanut 020: 0 <0.1 0.1 <0.1 0.1 <0.1 0.1 <0.1 0.1 stearidonic (SDA, STD) 0.1 0.2 0.2 0.3 0.2 0.3 <0.1 0.2 018: 4 A6c, 9c, 12c, 15c w3 Gondoic 020: 1 11c w9 <0.03 <0.03 <0.03 <0.03 -dihomo-gamma-linolenic acid (DGLA) <0.1 0.1 0.2 0.3 0.2 0.3 <0.1 0.1 020: 3 A8c, 11c, 14c w6 Arachidonic (AA) 020: 4 A5c, 8c, 11c, 14c w6 <0.1 0.1 0.2 0.4 0.2 0.4 <0.1 0.1 (ETE) 020: 3 Allc, 14c, 17c w3 <0.03 <0.03, <0.03 <0.03 -Behenic 022: 0 <0.1 0.1 0.1 0.2 0.1 0.2 <0.1 0.1 Timnodonic EPA
0.2 0.3 0.6 1.0 0.6 1.0 0.2 0.6 020: 5 A5c, 8c, 11c, 14c, 17c w3 Lignocérique 024: 0 <0.03 0.1 0.2 0.1 0.2 <0.03 -Osbond acid 022: 5 A4c, 7c, 10c, 13c, 16c w6 4.3 7.9 8.1 15 8.0 14.3 2.7 7.4 Nervonic 024: 1 15c w9 <0.1 <0.1 0.1 0.2 0.1 0.2 <0.03 -Clupanodonic DPA
<0.1 0.1 0.2 0.3 0.2 0.3 <0.1 0.1 022: 5 A7c, 10c, 13c, 16c, 19c w3 Cervonique DHA
19.2 35.2 23.6 43.9 24.3 43.3 12.8 35 C22: 6 A4c, 7c, 10c, 13c, 16c, 19c w3 Other <3.4 <4.1 <3.9 2.6 Total Fatty Acids - 53 52 54 Table 10.
OMEGA
Biomass according to ALGAMAC
DHA LIFE
to the invention according to Example 1 3050 GOLD
NEW
HORIZON
Phospholipids in g / 100g crude, base 018: 1 1.6 0.8 0.9 0.6 Phosphatidylcholine% / gross 1.1 0.6 0.7 0.5 Lysophosphatidylcholine% / gross 0.2 0.1 0.1 0.1 Phosphatidylethanolamine% / gross 0.3 0.1 0.1 <0.1 Phosphatidylglycerol% / crude <0.1 <0.1 0 <0.1 Dry matter in g / 100g 99.1 98.0 98.5 97.2 Ash in g / 100g gross 6.4 9.5 10.0 Nitrogen N6,25 in g / 100g gross 16,7 12,4 13,2 3.6 It appears from the results presented here that relatively profile in Fatty acids :

the biomass according to the invention has a slightly DHA content lower than that of commercially rich DHA biomass, but palmitic acid, which is a kind of the Schizochytrium mangrovei biomass of the invention;
- compared with commercial oils equivalent in DHA content and in palmitic acid, the biomass according to the invention has a content of double phospholipids (more particularly phosphatidylcholine);
a much higher amino nitrogen content.

Claims (11)

REVENDICATIONS 16 1. Souche de Schizochytrium mangrovei déposée le 22 novembre 2012 auprès de la CNCM sous le numéro I-4702 1. Schizochytrium mangrovei strain deposited on November 22, 2012 from of the CNCM under number I-4702 2. Méthode de production d'une biomasse de microalgue contenant des composés lipidiques d'intérêt comprenant une culture de la souche selon la revendication 1 et la récupération de la biomasse riche en composés lipidiques d'intérêt. 2. Method of producing a microalgae biomass containing lipid compounds of interest comprising a culture of the strain according to claim 1 and the recovery of biomass rich in lipid compounds interest. 3. Méthode selon la revendication 2, dans laquelle les composés lipidiques d'intérêt sont l'acide docosahexaénoïque (ou DHA) et l'acide palmitique. The method of claim 2, wherein the lipid compounds of interest are docosahexaenoic acid (or DHA) and palmitic acid. 4. Méthode selon la revendication 3, caractérisée en ce que la biomasse est préparée par la succession d'étapes suivantes :
.circle. culture de la souche en conditions hétérotrophiques de manière à
produire une biomasse présentant entre 35 et 40 % de DHA, exprimé
en poids d'acides gras totaux et entre 40 et 50 % en poids d'acide palmitique, exprimé en poids d'acides gras totaux, .circle. récolte de la biomasse ainsi préparée .circle. séchage de ladite biomasse.
4. Method according to claim 3, characterized in that the biomass is prepared by the following sequence of steps:
.circle. strain culture under heterotrophic conditions in order to produce biomass with between 35 and 40% of DHA, expressed in weight of total fatty acids and between 40 and 50% by weight of acid palmitic, expressed as weight of total fatty acids, .circle. harvesting the biomass thus prepared .circle. drying said biomass.
5. Biomasse contenant des composés lipidiques d'intérêt, tels l'acide docosahexaénoïque (ou DHA) et l'acide palmitique, susceptible d'être produite par le procédé tel que défini dans l'une quelconque des revendications 2 à 4, caractérisée en ce qu'elle comprend :
.circle. entre 35 et 40 % de DHA, exprimé en poids d'acides gras totaux, .circle. entre 40 et 50 % en poids d'acide palmitique, exprimé en poids d'acides gras totaux, et .circle. entre 1,5 et 2 % en phospholipides, exprimé en poids de biomasse à 99 % de matière sèche.
5. Biomass containing lipid compounds of interest, such as acid docosahexaenoic (or DHA) and palmitic acid, likely to be produced by the process as defined in any one of claims 2 to 4, characterized in that it comprises:
.circle. between 35 and 40% of DHA, expressed by weight of total fatty acids, .circle. between 40 and 50% by weight of palmitic acid, expressed by weight acids total fat, and .circle. between 1.5 and 2% phospholipids, expressed by weight of biomass at 99 % of dry matter.
6. Biomasse selon la revendication 5, caractérisée en ce qu'elle comprend une teneur en acides aminés totaux comprise entre 10 et 20 % exprimé en N 6,25, le %
exprimé en poids de biomasse.
6. Biomass according to claim 5, characterized in that it comprises a total amino acid content between 10 and 20% expressed as N 6.25, the %
expressed as biomass weight.
7. Biomasse selon l'une quelconque des revendications 5 et 6, caractérisée en ce qu'il s'agit d'un produit alimentaire ou un complémentaire alimentaire destiné
à
l'alimentation humaine ou animale.
Biomass according to one of Claims 5 and 6, characterized in that this whether it is a food product or a food supplement intended to at food or feed.
8. Utilisation de la biomasse produite par le procédé d'une quelconque des revendications 2 à 4, ou de la biomasse selon l'une quelconque des revendications 5 à 6 dans la préparation de compositions destinées aux domaines alimentaires. 8. Use of the biomass produced by the process of any of the 2 to 4, or biomass according to any one of Claims 5 to 6 in the preparation of compositions intended for food fields. 9. Produit alimentaire comprenant la biomasse produite par le procédé d'une quelconque des revendications 2 à 4, ou de la biomasse selon l'une quelconque des revendications 5 à 6. 9. Food product comprising biomass produced by the process of a any of claims 2 to 4, or biomass according to any one of any of claims 5 to 6. 10. Méthode de préparation d'une souche de Schizochytrium mangrovei caractérisée en ce que la souche selon la revendication 1 est obtenue par mutagenèse ou par transformation génique et que l'on sélectionne une souche qui conserve la propriété de produire des teneurs en DHA et acide palmitique élevées. 10. Method of preparing a strain of Schizochytrium mangrovei characterized in that the strain according to claim 1 is obtained by mutagenesis or by gene transformation and that one selects a strain which retains the property of producing levels of DHA and palmitic acid high. 11. Méthode selon la revendication 10, caractérisée en ce que la souche est sélectionnée si elle est capable de produire :
plus de 35 % de DHA, exprimés en poids d'acides gras totaux, plus de 40 % d'acide palmitique, exprimés en poids d'acides gras totaux, et entre 1 et 1,3 % de phosphatidylcholine, exprimé en poids de biomasse à 99 % de matière sèche.
11. Method according to claim 10, characterized in that the strain is selected if it is able to produce:
more than 35% of DHA, expressed by weight of total fatty acids, more than 40% palmitic acid, expressed by weight of total fatty acids, and between 1 and 1.3% of phosphatidylcholine, expressed by weight of 99% biomass % of dry matter.
CA2899231A 2013-02-06 2014-02-05 Biomass of the microalgae schizochytrium mangrovei and method for preparing same Active CA2899231C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1351017A FR3001736B1 (en) 2013-02-06 2013-02-06 BIOMASS OF MICROALGUE SCHIZOCHYTRIUM MANGROVEI AND METHOD FOR PREPARING THE SAME
FR1351017 2013-02-06
PCT/EP2014/052214 WO2014122158A1 (en) 2013-02-06 2014-02-05 Biomass of the microalgae schizochytrium mangrovei and method for preparing same

Publications (2)

Publication Number Publication Date
CA2899231A1 true CA2899231A1 (en) 2014-08-14
CA2899231C CA2899231C (en) 2021-05-25

Family

ID=48170722

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2899231A Active CA2899231C (en) 2013-02-06 2014-02-05 Biomass of the microalgae schizochytrium mangrovei and method for preparing same

Country Status (8)

Country Link
US (2) US9816116B2 (en)
EP (1) EP2954072B1 (en)
JP (1) JP2016509483A (en)
KR (1) KR102202287B1 (en)
CN (1) CN104968779A (en)
CA (1) CA2899231C (en)
FR (1) FR3001736B1 (en)
WO (1) WO2014122158A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3031984B1 (en) * 2015-01-27 2019-05-24 Roquette Freres PROCESS FOR ENRICHING THE BIOMASS OF MICROALGUES OF THE GENUS TRAUSTOCHYTRIUM IN DHA AND IN AMINO ACIDS ARG AND GLU
KR101777217B1 (en) * 2015-09-15 2017-09-11 한국생명공학연구원 Microalgae Schizochytrium sp. SH103 strain producing bio-oil containing high concentration of DHA and uses thereof
WO2017131188A1 (en) * 2016-01-28 2017-08-03 日本水産株式会社 Production method for fats and oils containing highly unsaturated fatty acid
GB201701014D0 (en) * 2017-01-20 2017-03-08 Megatech Res Gmbh Composition and method of production thereof
CN109938193A (en) 2017-12-20 2019-06-28 罗盖特公司 DHA biomass, ARA residue and corn protein powder are used for the application of white shrimp feed
CA3113649A1 (en) 2018-09-21 2020-03-26 Heliae Development, Llc Compositions and methods for introduction of odd-chain fatty acids into poultry eggs
EP4198136A3 (en) 2021-12-16 2023-08-30 Indian Oil Corporation Limited Methods and formulations for enhancing high value lipids
CN116555362A (en) 2022-01-29 2023-08-08 罗盖特公司 Method for producing lipids using yarrowia lipolytica

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996033263A1 (en) * 1995-04-17 1996-10-24 JAPAN, represented by DIRECTOR-GENERAL OF AGENCY OF INDUSTRIAL SCIENCE AND TECHNOLOGY Novel microorganisms capable of producing highly unsaturated fatty acids and process for producing highly unsaturated fatty acids by using the microorganisms
MX2008007860A (en) * 2005-12-16 2009-02-11 Avesthagen Ltd Docosahexaenoic acid (dha) producing thraustochytrid strain - sc1.
CN101981201A (en) 2006-08-01 2011-02-23 加拿大海洋营养食品有限公司 Oil producing microbes and methods of modification thereof
BRPI0920280B8 (en) 2008-10-14 2022-11-16 Corbion Biotech Inc FOOD COMPOSITION AND METHOD FOR MANUFACTURING A FOOD COMPOSITION
CN102839129A (en) * 2011-06-23 2012-12-26 法国罗凯特兄弟公司 Fragmentation chytrid mutagenesis method and variant produced by fragmentation chytrid mutagenesis method
CN103917636A (en) * 2011-07-13 2014-07-09 全技术公司 Algal lipid compositions and methods of preparing and utilizing the same

Also Published As

Publication number Publication date
WO2014122158A1 (en) 2014-08-14
FR3001736B1 (en) 2016-03-04
US20180016605A1 (en) 2018-01-18
US20160145656A1 (en) 2016-05-26
CN104968779A (en) 2015-10-07
KR102202287B1 (en) 2021-01-13
EP2954072A1 (en) 2015-12-16
CA2899231C (en) 2021-05-25
FR3001736A1 (en) 2014-08-08
JP2016509483A (en) 2016-03-31
US9816116B2 (en) 2017-11-14
EP2954072B1 (en) 2016-11-16
KR20150112976A (en) 2015-10-07

Similar Documents

Publication Publication Date Title
CA2899231C (en) Biomass of the microalgae schizochytrium mangrovei and method for preparing same
JP5940194B2 (en) Method for producing high levels of DHA in microalgae using modified amounts of chloride and potassium
JP5889356B2 (en) Oil-producing microorganism and method for modifying the same
EP2895628B1 (en) Oil enriched with arachidonic acid of microorganisms (unicellular fungus mortierella alpina) and method for the production thereof
JP2007300923A (en) Nutrient composition containing dha, and method for producing the same
EP3083973B1 (en) Dha enrichment process of the traustochytrium species microalgae
CA2974598C (en) Process for enriching the biomass of thraustochytrium genus microalgae with dha and with arg and glu amino acids
CA2577676A1 (en) Process for production of microbial fat/oil containing discretional amount of diacylglycerol and said fat/oil
AU2008338017B2 (en) Method for the cultivation of microorganisms of the order thraustochytriales
CA3007749C (en) Method for enriching protists with lipids rich in polyunsaturated fatty acids, more particularly of the omega 3 class, and implementation of same for the production of said lipids
Zarea ISOLATION AND CHARACTERIZATION OF OLEAGINOUS MARINE YEAST PRODUCING OF FATTY ACIDS

Legal Events

Date Code Title Description
EEER Examination request

Effective date: 20181127