CA2895617A1 - Syringe type pump - Google Patents
Syringe type pump Download PDFInfo
- Publication number
- CA2895617A1 CA2895617A1 CA2895617A CA2895617A CA2895617A1 CA 2895617 A1 CA2895617 A1 CA 2895617A1 CA 2895617 A CA2895617 A CA 2895617A CA 2895617 A CA2895617 A CA 2895617A CA 2895617 A1 CA2895617 A1 CA 2895617A1
- Authority
- CA
- Canada
- Prior art keywords
- skin
- cannula
- barrel
- pump
- piston
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M5/00—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
- A61M5/14—Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
- A61M5/142—Pressure infusion, e.g. using pumps
- A61M5/14244—Pressure infusion, e.g. using pumps adapted to be carried by the patient, e.g. portable on the body
- A61M5/14248—Pressure infusion, e.g. using pumps adapted to be carried by the patient, e.g. portable on the body of the skin patch type
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M5/00—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
- A61M5/14—Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
- A61M5/142—Pressure infusion, e.g. using pumps
- A61M5/14212—Pumping with an aspiration and an expulsion action
- A61M5/14216—Reciprocating piston type
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M5/00—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
- A61M5/14—Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
- A61M5/142—Pressure infusion, e.g. using pumps
- A61M5/145—Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. pressurised by means of pistons
- A61M5/1452—Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. pressurised by means of pistons pressurised by means of pistons
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0002—Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
- A61B5/0004—Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by the type of physiological signal transmitted
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/145—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/15—Devices for taking samples of blood
- A61B5/150007—Details
- A61B5/150206—Construction or design features not otherwise provided for; manufacturing or production; packages; sterilisation of piercing element, piercing device or sampling device
- A61B5/150229—Pumps for assisting the blood sampling
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/48—Other medical applications
- A61B5/4836—Diagnosis combined with treatment in closed-loop systems or methods
- A61B5/4839—Diagnosis combined with treatment in closed-loop systems or methods combined with drug delivery
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M5/00—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
- A61M5/14—Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
- A61M5/142—Pressure infusion, e.g. using pumps
- A61M5/145—Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. pressurised by means of pistons
- A61M5/1452—Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. pressurised by means of pistons pressurised by means of pistons
- A61M5/1454—Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. pressurised by means of pistons pressurised by means of pistons spring-actuated, e.g. by a clockwork
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M5/00—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
- A61M5/14—Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
- A61M5/168—Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body
- A61M5/172—Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body electrical or electronic
- A61M5/1723—Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body electrical or electronic using feedback of body parameters, e.g. blood-sugar, pressure
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M5/00—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
- A61M5/178—Syringes
- A61M5/31—Details
- A61M5/32—Needles; Details of needles pertaining to their connection with syringe or hub; Accessories for bringing the needle into, or holding the needle on, the body; Devices for protection of needles
- A61M5/3287—Accessories for bringing the needle into the body; Automatic needle insertion
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M5/00—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
- A61M5/14—Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
- A61M5/142—Pressure infusion, e.g. using pumps
- A61M5/14244—Pressure infusion, e.g. using pumps adapted to be carried by the patient, e.g. portable on the body
- A61M5/14248—Pressure infusion, e.g. using pumps adapted to be carried by the patient, e.g. portable on the body of the skin patch type
- A61M2005/14252—Pressure infusion, e.g. using pumps adapted to be carried by the patient, e.g. portable on the body of the skin patch type with needle insertion means
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M5/00—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
- A61M5/178—Syringes
- A61M5/31—Details
- A61M5/315—Pistons; Piston-rods; Guiding, blocking or restricting the movement of the rod or piston; Appliances on the rod for facilitating dosing ; Dosing mechanisms
- A61M5/31511—Piston or piston-rod constructions, e.g. connection of piston with piston-rod
- A61M2005/31518—Piston or piston-rod constructions, e.g. connection of piston with piston-rod designed to reduce the overall size of an injection device, e.g. using flexible or pivotally connected chain-like rod members
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/50—General characteristics of the apparatus with microprocessors or computers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M5/00—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
- A61M5/178—Syringes
- A61M5/31—Details
- A61M5/3129—Syringe barrels
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Hematology (AREA)
- Vascular Medicine (AREA)
- Anesthesiology (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Diabetes (AREA)
- Dermatology (AREA)
- Optics & Photonics (AREA)
- Physiology (AREA)
- Computer Networks & Wireless Communication (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Infusion, Injection, And Reservoir Apparatuses (AREA)
Abstract
The subcutaneous injection device contains a pump and a mechanism for inserting a cannula into the patient's skin. The cannula is fixedly positioned relative to the pump and the insertion mechanism has a flexible surface adhering to the skin. The flexible surface is positioned relative to the cannula in such a way that in a first position the tip of the cannula is concealed by the surface and in a second position the cannula is exposed beyond the surface. The insertion mechanism brings the surface from the first to the second position, thereby pulling the skin against the tip of the cannula.
Description
SYRINGE TYPE PUMP
One major field of application for this type of pumps is the injection of physiologically active fluid into a pa-tient and/or the extraction of body fluid for diagnostic purposes. For this use the pumps are usually equipped with both a contact surface for attaching to a patient's skin and a cannula for the access to the patient's tissue or vessels for introducing an injection fluid or the removal of analysis fluid.
Injection devices are widely used in patient care but their size and complexity largely restricts their use to special-ized facilities. Recently, ambulatory use of injection de-vices has been pioneered in diabetes care for the delivery of insulin. To achieve the necessary precision of delivery these injection devices typically use syringe pumps. The size of these devices is considerable, dictated mainly by the extended, longitudinal shape of a filled syringe with the drawn-out piston, and necessitates their wearing at-tached to e.g. a belt or underwear and they operate with connective barrels to a subcutaneously placed cannula lead-ing to inconveniences and safety problems.
More recently, because of these drawbacks, infusion devices which can be attached directly to the skin, preferably without long barrels connecting to the subcutaneous deliv-ery cannula are being developed. Due to the necessary re-duction in size and weight the precise syringe-type pumps with sufficient volume of injection fluid are difficult to use attached directly to the skin. Therefore, alternative pump types with considerable drawbacks in precision and re-liability of delivery under the highly variable environmen-tal and physiologic conditions encountered during real-life operation have been incorporated, e.g. delivery from a res-
One major field of application for this type of pumps is the injection of physiologically active fluid into a pa-tient and/or the extraction of body fluid for diagnostic purposes. For this use the pumps are usually equipped with both a contact surface for attaching to a patient's skin and a cannula for the access to the patient's tissue or vessels for introducing an injection fluid or the removal of analysis fluid.
Injection devices are widely used in patient care but their size and complexity largely restricts their use to special-ized facilities. Recently, ambulatory use of injection de-vices has been pioneered in diabetes care for the delivery of insulin. To achieve the necessary precision of delivery these injection devices typically use syringe pumps. The size of these devices is considerable, dictated mainly by the extended, longitudinal shape of a filled syringe with the drawn-out piston, and necessitates their wearing at-tached to e.g. a belt or underwear and they operate with connective barrels to a subcutaneously placed cannula lead-ing to inconveniences and safety problems.
More recently, because of these drawbacks, infusion devices which can be attached directly to the skin, preferably without long barrels connecting to the subcutaneous deliv-ery cannula are being developed. Due to the necessary re-duction in size and weight the precise syringe-type pumps with sufficient volume of injection fluid are difficult to use attached directly to the skin. Therefore, alternative pump types with considerable drawbacks in precision and re-liability of delivery under the highly variable environmen-tal and physiologic conditions encountered during real-life operation have been incorporated, e.g. delivery from a res-
- 2 -ervoir with peristaltic pumps, with piston pumps using valves, or by squeezing a flexible container. Syringe pumps for such applications have barrels with a wide diameter in order to avoid an extended longitudinal footprint, but this solution has disadvantages necessitating high driving forc-es to inject against a considerable tissue back-pressure and most importantly because of the risk of air bubbles en-tering and occluding the injection cannula due to almost unavoidable relatively large dead-volumes, and unintended, relatively large bolus injections due to stick-slip ef-fects.
An appealing solution to reduce the footprint of syringe-type pumps with appropriately narrow barrels is to use an arcuate barrel as described e.g. by M.P. Loeb and A.M. Ol-son in US patent 4,525,164, filed in 1981. In spite of the attractiveness of this concept for precise patch-type infu-sion pumps, conversion to safe and cost-effective medical products is not evident, due to considerable practical dif-ficulties in manufacturing such toroidal syringe pumps with the necessary performance at adequate costs. Obviously, such products have to use for the production of the arcuate barrel plastics-technologies with inherent significant tol-erance margins because of differences in shrinkage. Since e.g. the mandrel of the injection molding tool has to be removed by a rotary motion and differences in shrinkage of the proximal and distal wall of the torus takes place thereafter, the resulting deviation from an ideal circular shape can not be easily corrected by adapting the tooling accordingly. The almost unavoidable deviation from an ideal circular shape for the manufactured torus and the defor-mations under high forces necessary to overcome high tissue back-pressure leads to problems in achieving a sufficient sealing with the piston at reasonable friction and avoiding sticking due to the not perfect fit between the arc of the
An appealing solution to reduce the footprint of syringe-type pumps with appropriately narrow barrels is to use an arcuate barrel as described e.g. by M.P. Loeb and A.M. Ol-son in US patent 4,525,164, filed in 1981. In spite of the attractiveness of this concept for precise patch-type infu-sion pumps, conversion to safe and cost-effective medical products is not evident, due to considerable practical dif-ficulties in manufacturing such toroidal syringe pumps with the necessary performance at adequate costs. Obviously, such products have to use for the production of the arcuate barrel plastics-technologies with inherent significant tol-erance margins because of differences in shrinkage. Since e.g. the mandrel of the injection molding tool has to be removed by a rotary motion and differences in shrinkage of the proximal and distal wall of the torus takes place thereafter, the resulting deviation from an ideal circular shape can not be easily corrected by adapting the tooling accordingly. The almost unavoidable deviation from an ideal circular shape for the manufactured torus and the defor-mations under high forces necessary to overcome high tissue back-pressure leads to problems in achieving a sufficient sealing with the piston at reasonable friction and avoiding sticking due to the not perfect fit between the arc of the
- 3 -barrel and the rotary movement of the rigid arcuate driving rod of the piston. These difficulties get even more pro-nounced at low barrel diameters required for precise sy-ringe-type pumps e.g. for insulin delivery. Despite several more recent descriptions of arcuate syringe pumps, e.g. by R. Paul Mounce et al. in WO 2008/024812 A2 or by O. Yodfad et al. WO 2008/139458 A2 this problem has not been ade-quately addressed and no practical solutions are obvious from the descriptions or figures.
The aim of the present invention is to provide an arcuate syringe type pump which avoids the disadvantages of the state of the art devices.
The configuration using a curved toroidal barrel combines the high precision of syringe pumps with a compact shape.
In order to achieve an optimal fit between barrel and pis-ton throughout its entire move along the axis of the barrel the driving rod of the piston is guided and supported by the surface of the inner barrel wall and is preferably flexible and thus self-adapting to the inner curvature of the barrel. The barrel has a curvature preferentially with an arc below 1800, 1500-1600 being most preferred for an optimal length/diameter ratio of the barrel for precision of dosing and which can be manufactured by standard plas-tics-technologies. Further, with improved individual compo-nents of the device and the co-operation of the components a desired reduction in overall size and simplification of mechanical operation is achieved. According to the inven-tion, major problems with current devices are solved by an injection or analysis fluid removal device having the fea-tures disclosed herein below.
The subject injection device for introducing an injection fluid into a patient through the patient's skin or through
The aim of the present invention is to provide an arcuate syringe type pump which avoids the disadvantages of the state of the art devices.
The configuration using a curved toroidal barrel combines the high precision of syringe pumps with a compact shape.
In order to achieve an optimal fit between barrel and pis-ton throughout its entire move along the axis of the barrel the driving rod of the piston is guided and supported by the surface of the inner barrel wall and is preferably flexible and thus self-adapting to the inner curvature of the barrel. The barrel has a curvature preferentially with an arc below 1800, 1500-1600 being most preferred for an optimal length/diameter ratio of the barrel for precision of dosing and which can be manufactured by standard plas-tics-technologies. Further, with improved individual compo-nents of the device and the co-operation of the components a desired reduction in overall size and simplification of mechanical operation is achieved. According to the inven-tion, major problems with current devices are solved by an injection or analysis fluid removal device having the fea-tures disclosed herein below.
The subject injection device for introducing an injection fluid into a patient through the patient's skin or through
- 4 -an intravenous or intraperitoneal port comprises a syringe-type pump with a barrel in form of a segment of a toroidal tube and a piston fitting tightly into the barrel which can be passed through the entire barrel actuated by drive and control means. The piston is moved by a driving rod which is guided and supported by the inner wall of the barrel and is preferably flexible and by this self-adapts to the cur-vature of the barrel without the danger of sticking due to non-perfect fit between the arc of the barrel and the arc of a stiff driving rod of the piston. In addition, this configuration is adaptable to both, delivery of fluid with the rod pushing the piston, being guided by the distal in-ner surface of the barrel and to withdrawal of fluid with the rod pulling the piston, being guided by the proximal inner surface of the barrel. The device has a contact sur-face for contacting a patient's skin or an intravenous port. Typically, the contact surface to the skin is coated with an adhesive and the syringe pump is linked to a cannu-la having a tip which is configured and dimensioned for piercing the patient's skin or a septum of a port and in-troducing an injection fluid into the patient or removing analysis fluid.
In preferred embodiments, the inventive device has a cannu-la which is fixedly positioned relative to a casing and to the syringe pump. The insertion mechanism of the cannula into the patient's skin comprises preferably a flexible contact surface adhering to the skin.
When used herein, the following definitions define the stated term Adhesive contact surface for temporary wearing on the skin is made of materials with strong adhesive properties, stretchability and minimal allergenicity. This adhesive
In preferred embodiments, the inventive device has a cannu-la which is fixedly positioned relative to a casing and to the syringe pump. The insertion mechanism of the cannula into the patient's skin comprises preferably a flexible contact surface adhering to the skin.
When used herein, the following definitions define the stated term Adhesive contact surface for temporary wearing on the skin is made of materials with strong adhesive properties, stretchability and minimal allergenicity. This adhesive
- 5 -layer is fixed on the base of the device either covering the entire surface or at least its central part leaving a free rim in such a way that it does not interfere with its flexibility. Preferentially the surface of the adhesive layer which is fixed to the skin is significantly larger than its surface which is fixed to the flexible base of the device, leaving a rim which is not fixed to the flexible base. This can be accomplished e.g. by an adhesive layer extending beyond the surface of the base of the device or, preferentially by using a shape for the adhesive surface to the skin similar to or only slightly larger than the sur-face of the flexible surface of the device but fixing it to the latter in such a way that an outer annular zone is not fixed to the base of the device. Such a design is described in EP0825882 for a medical device with a rigid base.
Analysis fluid is blood, interstitial fluid or dialysate having been in contact with interstitial fluid through a semi-permeable membrane.
Analyte means any endogenous or exogenous substance the concentration of which can be used to diagnose the health, organ function, metabolic status, or drug metabolizing ca-pacity of an individual. Examples of endogenous substances are glucose, lactate, oxygen, creatinine, etc. Examples of exogenous substances are drugs, metabolites of such drugs, diagnostic substances (e.g. inulin) etc.
Component with a flexible surface is made up of a casing which has preferentially a circular or oval footprint and which has a flexible base. This base plate is constructed in such a way that it can be deformed to a convex shape with a protruding part e.g. like a cone or a gable (posi-tion 1). An additional feature of this base is that it can shoot from the convex shape into a flat shape (position 2)
Analysis fluid is blood, interstitial fluid or dialysate having been in contact with interstitial fluid through a semi-permeable membrane.
Analyte means any endogenous or exogenous substance the concentration of which can be used to diagnose the health, organ function, metabolic status, or drug metabolizing ca-pacity of an individual. Examples of endogenous substances are glucose, lactate, oxygen, creatinine, etc. Examples of exogenous substances are drugs, metabolites of such drugs, diagnostic substances (e.g. inulin) etc.
Component with a flexible surface is made up of a casing which has preferentially a circular or oval footprint and which has a flexible base. This base plate is constructed in such a way that it can be deformed to a convex shape with a protruding part e.g. like a cone or a gable (posi-tion 1). An additional feature of this base is that it can shoot from the convex shape into a flat shape (position 2)
- 6 -with sufficient velocity and force that this movement can provide the driving energy for implantation of the implant-able parts of injection cannulas or diagnostic probes by pulling the skin attached by the adhesive surface against the tip of the cannulas or diagnostic probes. Such a flexi-ble surface can be achieved by appropriate segmentation of the surface with hinge regions acting as springs and/or by using elastic materials with the necessary reversible stretching characteristics which moves e.g. from a pre-stressed shape to adopt a flat, relaxed shape.
Means to position the flexible surface relative to the the implantable parts of injection cannulas or diagnostic probes in two defined positions consists of elements which can bring about the deformation of the flexible surface to a convex, pre-stressed shape and allow a rapid release from this position to adopt a flat, relaxed shape in a coordi-nated way for the entire surface. This can be accomplished preferentially by several pin-shaped elements protruding from the flexible surface and pushing onto a sliding bolt mechanism, but other constructions using screws, ramps, levers etc. are also possible.
Such a component with a flexible surface can be manufac-tured by injection molding of suitable plastics but also by using other materials like steel, composite or ceramic ma-terials, etc. The base of this element has an opening in form of a hole or slit, as opening for the implantable parts of injection cannulas or diagnostic probes. The im-plantable parts of injection cannulas or diagnostic probes are positioned axially to this base in such a way that in position 1 they are entirely covered up, whereas in posi-tion 2 they protrude the base.
Means to position the flexible surface relative to the the implantable parts of injection cannulas or diagnostic probes in two defined positions consists of elements which can bring about the deformation of the flexible surface to a convex, pre-stressed shape and allow a rapid release from this position to adopt a flat, relaxed shape in a coordi-nated way for the entire surface. This can be accomplished preferentially by several pin-shaped elements protruding from the flexible surface and pushing onto a sliding bolt mechanism, but other constructions using screws, ramps, levers etc. are also possible.
Such a component with a flexible surface can be manufac-tured by injection molding of suitable plastics but also by using other materials like steel, composite or ceramic ma-terials, etc. The base of this element has an opening in form of a hole or slit, as opening for the implantable parts of injection cannulas or diagnostic probes. The im-plantable parts of injection cannulas or diagnostic probes are positioned axially to this base in such a way that in position 1 they are entirely covered up, whereas in posi-tion 2 they protrude the base.
- 7 -Delivery of injection fluid encompasses both relatively fast injection (bolus) and relatively slow introduction (also called infusion or instillation) of a liquid into the body.
Diagnostic probe is the functional element for the determi-nation of analyte concentrations and means, but is not re-stricted to, any analysis fluid removal and on-line analy-sis or sampling system. In case of a micro-dialysis system a dialysis membrane forms the interface between the inter-stitial fluid and a dialysis fluid which is passed at the other side of the membrane. In a preferred embodiment a mi-cro-dialysis probe consists of an outer and an inner bar-rel, covered at the implantable tip by a dialysis membrane.
The inner barrel is connected to the pump which delivers the dialysis fluid and the outer barrel is connected to an analysis or sampling system.
Drive and control means contains all necessary mechanical, electronics and software elements for all necessary func-tions of the device like, but not limited to, moving the piston of the toroidal syringe pump according to internal or external signals, initiating, controlling and surveying the correct functioning of the device, feeding and control-ling the diagnostic elements and transforming sensor sig-nals into analyte measurements, storing, displaying and transmitting analyte measurements online or batch-wise, in-teracting with external control devices, preferentially wirelessly, and giving warning signals if the device is not functioning properly or if analyte measurements are not within a predefined range.
Driving rod of the piston has a construction providing a sufficient radial and axial flexibility to adapt to the ac-tual curvature and axial position of the toroidal barrel
Diagnostic probe is the functional element for the determi-nation of analyte concentrations and means, but is not re-stricted to, any analysis fluid removal and on-line analy-sis or sampling system. In case of a micro-dialysis system a dialysis membrane forms the interface between the inter-stitial fluid and a dialysis fluid which is passed at the other side of the membrane. In a preferred embodiment a mi-cro-dialysis probe consists of an outer and an inner bar-rel, covered at the implantable tip by a dialysis membrane.
The inner barrel is connected to the pump which delivers the dialysis fluid and the outer barrel is connected to an analysis or sampling system.
Drive and control means contains all necessary mechanical, electronics and software elements for all necessary func-tions of the device like, but not limited to, moving the piston of the toroidal syringe pump according to internal or external signals, initiating, controlling and surveying the correct functioning of the device, feeding and control-ling the diagnostic elements and transforming sensor sig-nals into analyte measurements, storing, displaying and transmitting analyte measurements online or batch-wise, in-teracting with external control devices, preferentially wirelessly, and giving warning signals if the device is not functioning properly or if analyte measurements are not within a predefined range.
Driving rod of the piston has a construction providing a sufficient radial and axial flexibility to adapt to the ac-tual curvature and axial position of the toroidal barrel
- 8 -but exerting tangentially sufficient stiffness enabling precise movement of the piston within the barrel. Preferen-tially, the driving rod is flexible and its given form cor-responds closely to the arc of the toroidal barrel and a suitable plastics material is used for manufacturing in or-der to achieve an almost perfect adaptation to the actual form of the inner surface of the barrel with small radial forces. Adaptation of the driving rod to the actual curva-ture and axial position of the toroidal barrel avoids the possibility of detrimental blockage due to non-perfect fit between the axes of the barrel and of a stiff driving rod.
The flexible driving rod has typically a contact brace al-lowing low-friction contact with the inner surface of the barrel wall in its median plane and a toothed rack engaging with a cogwheel of the drive means. Low-friction contact between the brace and the inner surface of the barrel wall is achieved by a suitable form and material.
The brace can be an integral part of the driving rod or be attached to it allowing the use of a different material with improved sliding properties and in order to achieve the necessary radial and axial flexibility of the driving rod, the brace can e.g. have a segmented structure.
Another preferred construction replaces sliding contact by a rolling contact to the inner surface of the barrel wall.
Such a construction can have e.g. a number of rolls con-nected by segments having sufficient flexibility at the hinge regions carrying the axes of the rolls to adapt to the curvature of the barrel.
The contact brace absorbs all radial force-components pro-tecting the piston sealing from these forces which can lead to substantial sealing deformation resulting in problems
The flexible driving rod has typically a contact brace al-lowing low-friction contact with the inner surface of the barrel wall in its median plane and a toothed rack engaging with a cogwheel of the drive means. Low-friction contact between the brace and the inner surface of the barrel wall is achieved by a suitable form and material.
The brace can be an integral part of the driving rod or be attached to it allowing the use of a different material with improved sliding properties and in order to achieve the necessary radial and axial flexibility of the driving rod, the brace can e.g. have a segmented structure.
Another preferred construction replaces sliding contact by a rolling contact to the inner surface of the barrel wall.
Such a construction can have e.g. a number of rolls con-nected by segments having sufficient flexibility at the hinge regions carrying the axes of the rolls to adapt to the curvature of the barrel.
The contact brace absorbs all radial force-components pro-tecting the piston sealing from these forces which can lead to substantial sealing deformation resulting in problems
- 9 -with tightness and stick-slip phenomena up to piston block-age due to non-perfect fit between the axes of the barrel and of a stiff driving rod.
Typically at one end of the driving rod an end-piece in the form of the barrel's cross-section but with slightly small-er diameter is rigidly attached forming a face orthogonally centered relative to the barrel's cross-section by the brace, and transmitting the driving force from the driving rod to the piston sealing tangentially to the axis of the barrel. The piston with its sealing, e.g. an 0- or an X-ring is fused with this end-piece or attached to it movably allowing central self-positioning of the piston within the barrel. This can be achieved by a low-friction sliding sur-face between the end-piece of the driving rod and the pis-ton or by balls rolling at the interface and attenuates possible problems arising from changes in the inner diame-ter of the barrel along its axis.
Functional package is designed to hold the rigid part of the device by a releasable coupling mechanism and has a re-movable cap to protect the active surface of the diagnostic probes during storage in a defined environment, such as hu-midity and allows maintaining sterility. The functional package has also a rim element allowing, after removal of the cap, the correct attachment of the rim of the adhesive layer by pressing against the skin. Further, the functional package protects the release/start mechanism of the device against premature, unintended operation and the re-lease/start mechanism can be actuated only following at-tachment of the device to the skin and removal of the func-tional package.
Typically at one end of the driving rod an end-piece in the form of the barrel's cross-section but with slightly small-er diameter is rigidly attached forming a face orthogonally centered relative to the barrel's cross-section by the brace, and transmitting the driving force from the driving rod to the piston sealing tangentially to the axis of the barrel. The piston with its sealing, e.g. an 0- or an X-ring is fused with this end-piece or attached to it movably allowing central self-positioning of the piston within the barrel. This can be achieved by a low-friction sliding sur-face between the end-piece of the driving rod and the pis-ton or by balls rolling at the interface and attenuates possible problems arising from changes in the inner diame-ter of the barrel along its axis.
Functional package is designed to hold the rigid part of the device by a releasable coupling mechanism and has a re-movable cap to protect the active surface of the diagnostic probes during storage in a defined environment, such as hu-midity and allows maintaining sterility. The functional package has also a rim element allowing, after removal of the cap, the correct attachment of the rim of the adhesive layer by pressing against the skin. Further, the functional package protects the release/start mechanism of the device against premature, unintended operation and the re-lease/start mechanism can be actuated only following at-tachment of the device to the skin and removal of the func-tional package.
- 10 -Intravenous port comprises a catheter placed into a vein and having a connective element, preferably a septum at the exterior end of the catheter.
Sampling means is the functional element for collecting samples of analysis fluid for determination of analytes ex-ternal to the device by, but not limited to biochemical, immunological, HPLC, or LC/MS/MS methods. The samples can be collected in separated receptacles or in a continuous cavity, e.g. a barrel or tube taking precautions that mix-ing of samples taken at different times is reduced to a minimum. This can be achieved e.g. by introduction of seg-ments of air or of a non-miscible fluid into the analysis fluid creating separated samples in the continuous cavity.
Sliding bolt mechanisms adapts upon a circular or linear movement consecutively several fixed positions and consists of elements which display a closed or open state, for exam-ple a solid surface or a hole. The movement of the slide mechanism is driven manually or for example by a spring ac-tuated by a release element, for example through pressing or releasing a button or handle, or through a turning move-ment. For inserting in parallel a fluid delivery cannula and a flexible sensor within a guide needle into the skin by means of a component with a flexible surface attached to the skin, movement of the sliding bolt mechanism from the storage position (position 1) to the next position (posi-tion 2) upon an easy manipulation actuates a rapid release of the flexible surface from a pre-stressed shape to adopt a flat, relaxed shape and inserts the fluid delivery cannu-la and the sensor guide needle into the skin. The interim blockage of the sliding bolt mechanism at position 2 is now released and allows to actuate the movement of the sliding bolt mechanism to the next position (position 3), which ac-tuates the partial retraction of the guide needle.
Sampling means is the functional element for collecting samples of analysis fluid for determination of analytes ex-ternal to the device by, but not limited to biochemical, immunological, HPLC, or LC/MS/MS methods. The samples can be collected in separated receptacles or in a continuous cavity, e.g. a barrel or tube taking precautions that mix-ing of samples taken at different times is reduced to a minimum. This can be achieved e.g. by introduction of seg-ments of air or of a non-miscible fluid into the analysis fluid creating separated samples in the continuous cavity.
Sliding bolt mechanisms adapts upon a circular or linear movement consecutively several fixed positions and consists of elements which display a closed or open state, for exam-ple a solid surface or a hole. The movement of the slide mechanism is driven manually or for example by a spring ac-tuated by a release element, for example through pressing or releasing a button or handle, or through a turning move-ment. For inserting in parallel a fluid delivery cannula and a flexible sensor within a guide needle into the skin by means of a component with a flexible surface attached to the skin, movement of the sliding bolt mechanism from the storage position (position 1) to the next position (posi-tion 2) upon an easy manipulation actuates a rapid release of the flexible surface from a pre-stressed shape to adopt a flat, relaxed shape and inserts the fluid delivery cannu-la and the sensor guide needle into the skin. The interim blockage of the sliding bolt mechanism at position 2 is now released and allows to actuate the movement of the sliding bolt mechanism to the next position (position 3), which ac-tuates the partial retraction of the guide needle.
- 11 -In the following preferred embodiments of the invention are described with reference to the accompanying drawings in which Fig. 1 is a diagrammatic sectional top view of an injection device with a circular syringe pump showing the principle of a circular sy-ringe pump according to state of the art construction but with an improved solution allowing a limited adaptation of the piston to the curvature of the barrel.
Fig. 2 is a diagrammatic sectional top view of a combined injection and analysis fluid remov-al device with two circular syringe pumps according to an embodiment of the invention.
Fig. 3 is a diagrammatic cross sectional view of a syringe filling and an injection cannula in-sertion mechanism into the skin according to one embodiment of the invention.
The injection device shown in Fig. 1 has a casing having a cylindrical side-wall 1 housing a barrel in form of a seg-ment of a toroidal tube 2. One end 3 of the barrel is pro-vided with a connecting channel to a cannula (not shown).
The barrel has a circular cross section.
A piston 4 is arranged in the interior of the barrel and is provided with a seal fitting tightly at the inner wall of the barrel. The piston is connected to a driving rod 6 which is circularly shaped for driving the piston through the entire length of the barrel.
Fig. 2 is a diagrammatic sectional top view of a combined injection and analysis fluid remov-al device with two circular syringe pumps according to an embodiment of the invention.
Fig. 3 is a diagrammatic cross sectional view of a syringe filling and an injection cannula in-sertion mechanism into the skin according to one embodiment of the invention.
The injection device shown in Fig. 1 has a casing having a cylindrical side-wall 1 housing a barrel in form of a seg-ment of a toroidal tube 2. One end 3 of the barrel is pro-vided with a connecting channel to a cannula (not shown).
The barrel has a circular cross section.
A piston 4 is arranged in the interior of the barrel and is provided with a seal fitting tightly at the inner wall of the barrel. The piston is connected to a driving rod 6 which is circularly shaped for driving the piston through the entire length of the barrel.
- 12 -Using established technologies for manufacturing of a to-roidal cylinder the fit between its curvature and the driv-ing rod of the piston will not be perfect. To correct for this the mechanism 5 disclosed here connecting the piston to the rod 6 allowing radial adaptation of the piston rep-resents an improvement as compared to the state of the art solutions e.g. as described by M.P. Loeb and A.M. Olson in US patent 4,525,164, using a resilient spherical piston which is slidably contacted by a cupped distal end of a driving stem allowing it to rotate within the barrel, since such a construction has intrinsic problems of sealing and friction.
At its end opposite the piston the driving rod has a per-pendicularly bent arm 7 extending to a central pivot, thereby reducing the radial component of the force and the resulting friction by moving the piston through the barrel.
The inner side of the rod has a gear rim 8 which is driven by a gear drive 9. The gear drive is driven e.g. by a gear train and an electrical motor (for example a watchwork drive) which can be regulated for controlled delivery by signals from inbuilt and/or remote control elements (not shown in the figure). Alternatively, other drives, as known in prior art, can be employed.
Using standard manufacturing technologies for the toroidal barrel such as e.g. plastics-technologies with an injection molding tool having a mandrel which has to be removed by a rotary motion, deviations from a perfect circular shape and variations in its shape are unavoidable due to inherent differences in shrinkage e.g. of the proximal and distal part of the torus wall during manufacturing. Because of this almost unavoidable deviation from an ideal circular shape for the manufactured torus the exact geometric fit between the barrel and the driving rod of the piston moved
At its end opposite the piston the driving rod has a per-pendicularly bent arm 7 extending to a central pivot, thereby reducing the radial component of the force and the resulting friction by moving the piston through the barrel.
The inner side of the rod has a gear rim 8 which is driven by a gear drive 9. The gear drive is driven e.g. by a gear train and an electrical motor (for example a watchwork drive) which can be regulated for controlled delivery by signals from inbuilt and/or remote control elements (not shown in the figure). Alternatively, other drives, as known in prior art, can be employed.
Using standard manufacturing technologies for the toroidal barrel such as e.g. plastics-technologies with an injection molding tool having a mandrel which has to be removed by a rotary motion, deviations from a perfect circular shape and variations in its shape are unavoidable due to inherent differences in shrinkage e.g. of the proximal and distal part of the torus wall during manufacturing. Because of this almost unavoidable deviation from an ideal circular shape for the manufactured torus the exact geometric fit between the barrel and the driving rod of the piston moved
- 13 -by a rotary motion can not be secured. Even if the driving rod of the piston is manufactured using steel-technologies with a high level of form-stability, the fit of the at-tached piston to the barrel's shape along its longitudinal axis becomes variable. Indeed, e.g. a difference of only 2%
between the radius of the barrel and of the driving rod causes a serious relative shift which can lead to collision between barrel wall and driving rod for torus arcs of e.g.
150 - 160 which can be manufactured with standard tech-nologies and are aimed at in order to sufficiently reduce the footprint of the syringe-type pump. In addition, the plastics parts usually used to manufacture the housing holding the barrel and the guideways for the driving rod are not absolutely rigid and can slightly deform especially under the applied forces necessary to provide the pressures of several bar to overcome tissue resistance. The resulting radial and axial forces to correct for the actual shape differences between axis of barrel and driving rod can be-come very substantial with a rigid driving rod which is used for arcuate piston-drive mechanisms described so far.
These forces have to be absorbed by the sealing of the pis-ton leading to its deformation causing high friction with resulting stick-slip phenomena up to blockage and/or prob-lems with tightness of the piston. Even if the piston can adapt slightly to correct for the deviation between the ax-is of the barrel and of the driving rod as described in prior art and with the improvement discussed and exempli-fied in Fig. 1 the worst case scenario of blockage by clamping between the rigid driving rod and the barrel wall cannot be excluded. Therefore, for medical use of con-trolled and precise fluid delivery constructions according to prior art in which a driving mechanism with a rigid driving rod is used to move the piston in an arcuate barrel are not sufficiently safe. These problems get even more pronounced at low barrel diameters required for syringe-
between the radius of the barrel and of the driving rod causes a serious relative shift which can lead to collision between barrel wall and driving rod for torus arcs of e.g.
150 - 160 which can be manufactured with standard tech-nologies and are aimed at in order to sufficiently reduce the footprint of the syringe-type pump. In addition, the plastics parts usually used to manufacture the housing holding the barrel and the guideways for the driving rod are not absolutely rigid and can slightly deform especially under the applied forces necessary to provide the pressures of several bar to overcome tissue resistance. The resulting radial and axial forces to correct for the actual shape differences between axis of barrel and driving rod can be-come very substantial with a rigid driving rod which is used for arcuate piston-drive mechanisms described so far.
These forces have to be absorbed by the sealing of the pis-ton leading to its deformation causing high friction with resulting stick-slip phenomena up to blockage and/or prob-lems with tightness of the piston. Even if the piston can adapt slightly to correct for the deviation between the ax-is of the barrel and of the driving rod as described in prior art and with the improvement discussed and exempli-fied in Fig. 1 the worst case scenario of blockage by clamping between the rigid driving rod and the barrel wall cannot be excluded. Therefore, for medical use of con-trolled and precise fluid delivery constructions according to prior art in which a driving mechanism with a rigid driving rod is used to move the piston in an arcuate barrel are not sufficiently safe. These problems get even more pronounced at low barrel diameters required for syringe-
- 14 -type pumps intended for the precise delivery of small vol-umes such as e.g. insulin for diabetic patients.
According to the subject invention, the solution to avoid stick-slip phenomena and/or problems with tightness or even blockage of the piston or clamping between the rigid driv-ing rod and the barrel wall is to use a driving rod of the piston which adapts to the actual curvature of the barrel, being guided and supported by the inner wall of the barrel.
In contrast to constructions described in prior art the rod guided and supported by the inner wall of the barrel of the subject invention can adapt to all deviations from the ide-al shape and geometry which are unavoidable using cost-effective manufacturing technologies and materials. A pre-ferred embodiment of the subject invention, which can be adapted for both, fluid delivery and fluid withdrawal, is exemplified in Fig 2.
Fig 2 shows a combined injection and analysis fluid removal device with two independent circular syringe pumps in top view of a horizontal section. The pump for delivery of in-jection fluid is shown in the more peripheral part of the drawing, whereas in the more central part a pump for remov-al of analysis fluid is shown. In Fig. 2 parts correspond-ing to Fig. 1 are given the same reference numbers. The em-bodiment in Fig. 2 does not have a rigid driving rod. In-stead, the driving rod 6 of the piston is formed in such a way that its movement is guided and supported by the inner surface of the barrel wall as shown in cross section in De-tail A. Importantly, a brace 11 of optimized form and mate-rial for even movement with low friction to increase preci-sion and to reduce the necessary forces for piston movement forms the gliding zone between driving rod of the piston and inner surface of the barrel wall. This can be achieved by using for the driving rod plastics with suitable gliding
According to the subject invention, the solution to avoid stick-slip phenomena and/or problems with tightness or even blockage of the piston or clamping between the rigid driv-ing rod and the barrel wall is to use a driving rod of the piston which adapts to the actual curvature of the barrel, being guided and supported by the inner wall of the barrel.
In contrast to constructions described in prior art the rod guided and supported by the inner wall of the barrel of the subject invention can adapt to all deviations from the ide-al shape and geometry which are unavoidable using cost-effective manufacturing technologies and materials. A pre-ferred embodiment of the subject invention, which can be adapted for both, fluid delivery and fluid withdrawal, is exemplified in Fig 2.
Fig 2 shows a combined injection and analysis fluid removal device with two independent circular syringe pumps in top view of a horizontal section. The pump for delivery of in-jection fluid is shown in the more peripheral part of the drawing, whereas in the more central part a pump for remov-al of analysis fluid is shown. In Fig. 2 parts correspond-ing to Fig. 1 are given the same reference numbers. The em-bodiment in Fig. 2 does not have a rigid driving rod. In-stead, the driving rod 6 of the piston is formed in such a way that its movement is guided and supported by the inner surface of the barrel wall as shown in cross section in De-tail A. Importantly, a brace 11 of optimized form and mate-rial for even movement with low friction to increase preci-sion and to reduce the necessary forces for piston movement forms the gliding zone between driving rod of the piston and inner surface of the barrel wall. This can be achieved by using for the driving rod plastics with suitable gliding
- 15 -properties or by attaching a rim of suitable material, e.g.
a steel wire, but other possibilities of friction reduction like e.g. a construction with a number of rolls the axis of which is held by the brace can be implemented in order to avoid gliding resistance and replace it by rolling re-sistance.
The radial and axial flexibility of the driving rod exem-plified in Detail A can be further increased e.g. by using a segmented structure of the brace holding glidingly a steel wire or the rolls or even a back-bone like structure of the flexible driving rod with segments linked by hinge regions. To ensure safe transmission of the power to the gear rim 8 to move the piston, the gear drive 9 is support-ed by a radially opposing brace 10, preferentially in the form of an antifriction bearing, pressing against the con-tact rim 11 of the driving rod, but other constructions like e.g. a side-wall attached to the housing are also pos-sible.
The piston 4 with its sealing, e.g. an 0- or an X-ring is held in a defined distance from the inner surface of the barrel wall by the brace of the driving rod and transmits only the tangential driving force to the piston. In addi-tion, to allow self-centering of the piston in the lumen of the barrel, in an alternative construction the piston is not directly fused rigidly with the end of the driving rod, but movably attached to an end-piece of the driving rod which is held by the brace in a defined distance from the barrel wall. This can be achieved e.g. by a low-friction sliding surface contact between the end-piece of the driv-ing rod and the piston or by balls rolling at the inter-face. Such a self-centering construction might be useful to improve the performance of the pump in case of significant
a steel wire, but other possibilities of friction reduction like e.g. a construction with a number of rolls the axis of which is held by the brace can be implemented in order to avoid gliding resistance and replace it by rolling re-sistance.
The radial and axial flexibility of the driving rod exem-plified in Detail A can be further increased e.g. by using a segmented structure of the brace holding glidingly a steel wire or the rolls or even a back-bone like structure of the flexible driving rod with segments linked by hinge regions. To ensure safe transmission of the power to the gear rim 8 to move the piston, the gear drive 9 is support-ed by a radially opposing brace 10, preferentially in the form of an antifriction bearing, pressing against the con-tact rim 11 of the driving rod, but other constructions like e.g. a side-wall attached to the housing are also pos-sible.
The piston 4 with its sealing, e.g. an 0- or an X-ring is held in a defined distance from the inner surface of the barrel wall by the brace of the driving rod and transmits only the tangential driving force to the piston. In addi-tion, to allow self-centering of the piston in the lumen of the barrel, in an alternative construction the piston is not directly fused rigidly with the end of the driving rod, but movably attached to an end-piece of the driving rod which is held by the brace in a defined distance from the barrel wall. This can be achieved e.g. by a low-friction sliding surface contact between the end-piece of the driv-ing rod and the piston or by balls rolling at the inter-face. Such a self-centering construction might be useful to improve the performance of the pump in case of significant
- 16 -manufacturing process derived variability in the inner shape and diameter of the barrel along its axis.
For delivery of injection fluid the driving rod of the pis-ton is pushing, while guided and supported by the distal inner surface of the barrel (shown in Detail A). In con-trast, the circular syringe pump for removal of analysis fluid is operated in suction mode and the driving rod of the piston is pulling, guided and supported by the proximal inner surface of the barrel (mirror image of Detail A, not shown as detail). A proximally located gear rim 8 to move the piston can also be used e.g. in a construction in which the gear rim is double-tracked and set back respective to the brace 11 and the gear drive 9 has a slit to accommodate the protruding brace.
Fig 3 is the central part of a tangential cut of the device through the end portion 3 of the barrel. A first channel 15 is leading to the upper side of the device and is closed by a septum 14. For filling the barrel with injection fluid a syringe (not shown) having a needle 13 is pierced through the septum 14. Before filling, the piston is touching the end portion 3 of the barrel (not shown). The injection flu-id is introduced through channel 15, thereby pushing the piston towards the opposite end of the barrel.
A second channel 17 is leading from the interior of barrel 2 to an injection cannula 16 for delivery of injection flu-id into the skin. The cannula 16 is closed at the other end with a septum-seal 18 which is held in a housing 19. The overall construction is such that the dead volume is mini-mal and no significant volume of air is in the system after filling with injection fluid.
For delivery of injection fluid the driving rod of the pis-ton is pushing, while guided and supported by the distal inner surface of the barrel (shown in Detail A). In con-trast, the circular syringe pump for removal of analysis fluid is operated in suction mode and the driving rod of the piston is pulling, guided and supported by the proximal inner surface of the barrel (mirror image of Detail A, not shown as detail). A proximally located gear rim 8 to move the piston can also be used e.g. in a construction in which the gear rim is double-tracked and set back respective to the brace 11 and the gear drive 9 has a slit to accommodate the protruding brace.
Fig 3 is the central part of a tangential cut of the device through the end portion 3 of the barrel. A first channel 15 is leading to the upper side of the device and is closed by a septum 14. For filling the barrel with injection fluid a syringe (not shown) having a needle 13 is pierced through the septum 14. Before filling, the piston is touching the end portion 3 of the barrel (not shown). The injection flu-id is introduced through channel 15, thereby pushing the piston towards the opposite end of the barrel.
A second channel 17 is leading from the interior of barrel 2 to an injection cannula 16 for delivery of injection flu-id into the skin. The cannula 16 is closed at the other end with a septum-seal 18 which is held in a housing 19. The overall construction is such that the dead volume is mini-mal and no significant volume of air is in the system after filling with injection fluid.
- 17 -In the exemplified embodiment the insertion means into the skin of the cannula 16 has a flexible base plate 20 which is attached to the skin by an adhesive layer 21. In the ready-to-use mode shown in the figure this flexible base plate is deformed to a convex shape covering the cannula 16. The base plate is preferentially annular or oval and in order to insert a cannula which is remote from the center of the device consists preferentially of two segments with a diagonal slit, forming a gable upon bending. This config-uration allows also to use this insertion means for more than one cannula simultaneously which are positioned along the diagonal slit, e.g. if more than one infusion pumps for more than one infusion fluid is used and/or for the combi-nation with insertion of a diagnostic probe into the skin.
By the spring-type mechanism, in addition the septum-seal
By the spring-type mechanism, in addition the septum-seal
18 is pierced by the cannula before it enters the skin. The segments are attached to the circumference of the casing 1 by springy hinge regions and are in addition preferentially made of a flexible material. Alternative forms like a radi-al segmentation, preferably into 5 to 8 segments with a spacing between them and a central opening, forming a cone upon central bending are also possible if the cannula is placed close to the center of the device.
On its underside, the flexible base plate has an annular or oval adhesive layer for securing the device to the pa-tient's skin with a diagonal slit or a concentric central opening, respectively similar to the base plate. This adhe-sive layer is composed of three parts, a glue for fixing to the flexible base plate, a textile providing the necessary flexibility and a glue for fixing onto the skin. Suitable materials with low allergenicity potential are commercially available. The adhesive layer can have a larger circumfer-ence than the device but it could have also the same cir-cumference if the attachment to the base plate leaves an outer zone where it is not connected to the housing.
Upon release of the pre-stressed base plate actuated e.g.
by a sliding bolt mechanism (not shown) it rapidly relaxes to a flat shape towards the bottom of the housing of the device 1, pushes the housing 19 of the septum-seal 18, and the cannula 16 pierces through the septum-seal 18 and through the skin attached by the adhesive layer.
Upon reading this specification, various alternative embod-iments will become obvious to the skilled artisan. For ex-ample, the drive means for moving the piston or the implan-tation mechanism of the cannula for delivery of injection fluid into a patient, or for removal of analysis fluid of a patient could be achieved via numerous chemical, mechani-cal, or electrical means. Further, a large variety of diag-nostic elements for the online analysis or for sampling of analysis fluid for removed analysis as well as control and measuring means can be accommodated with the device.
The major advantages of a device with a toroidal syringe-type pump described above are its reduced footprint-size by which it can be comfortably worn and operated by the pa-tient and at the same time the inherent high precision of a syringe type pump. The intrinsic problems of such pumps ex-emplified in prior art of sealing, friction causing stick-slip phenomena, and even blockage caused by lack of exact fit between the actual form of the arcuate barrel and of the plunger unavoidable in manufacturing of the toroidal barrel and the device using standard cost-effective tech-nologies are solved by using as the drive for the piston a driving rod which is guided and supported by the inner wall of the barrel and therefore can adapt to all deviations from the ideal shape and in geometry. A further advantage
On its underside, the flexible base plate has an annular or oval adhesive layer for securing the device to the pa-tient's skin with a diagonal slit or a concentric central opening, respectively similar to the base plate. This adhe-sive layer is composed of three parts, a glue for fixing to the flexible base plate, a textile providing the necessary flexibility and a glue for fixing onto the skin. Suitable materials with low allergenicity potential are commercially available. The adhesive layer can have a larger circumfer-ence than the device but it could have also the same cir-cumference if the attachment to the base plate leaves an outer zone where it is not connected to the housing.
Upon release of the pre-stressed base plate actuated e.g.
by a sliding bolt mechanism (not shown) it rapidly relaxes to a flat shape towards the bottom of the housing of the device 1, pushes the housing 19 of the septum-seal 18, and the cannula 16 pierces through the septum-seal 18 and through the skin attached by the adhesive layer.
Upon reading this specification, various alternative embod-iments will become obvious to the skilled artisan. For ex-ample, the drive means for moving the piston or the implan-tation mechanism of the cannula for delivery of injection fluid into a patient, or for removal of analysis fluid of a patient could be achieved via numerous chemical, mechani-cal, or electrical means. Further, a large variety of diag-nostic elements for the online analysis or for sampling of analysis fluid for removed analysis as well as control and measuring means can be accommodated with the device.
The major advantages of a device with a toroidal syringe-type pump described above are its reduced footprint-size by which it can be comfortably worn and operated by the pa-tient and at the same time the inherent high precision of a syringe type pump. The intrinsic problems of such pumps ex-emplified in prior art of sealing, friction causing stick-slip phenomena, and even blockage caused by lack of exact fit between the actual form of the arcuate barrel and of the plunger unavoidable in manufacturing of the toroidal barrel and the device using standard cost-effective tech-nologies are solved by using as the drive for the piston a driving rod which is guided and supported by the inner wall of the barrel and therefore can adapt to all deviations from the ideal shape and in geometry. A further advantage
- 19 -is the absence of the problems with connecting tubings be-tween a syringe pump and the cannula penetrating the skin.
In addition, the device according to the invention has al-most no dead volume thus avoiding complicated mechanisms to move air out of the system during filling of the pump with injection fluid.
In addition, the device according to the invention has al-most no dead volume thus avoiding complicated mechanisms to move air out of the system during filling of the pump with injection fluid.
Claims (11)
1. Device for subcutaneous injection of fluid into a pa-tient, containing a pump and means for inserting a can-nula into the patient's skin, characterized in that the cannula is fixedly positioned relative to the pump and the insertion means into the skin is a component with a flexible surface having means for adherence of that sur-face to the skin and means to position the flexible sur-face relative to the fixedly positioned cannula in such a way that in a first position the tip of the cannula is concealed by the surface and in a second position the implantable part of the cannula is exposed beyond the surface and a mechanism to bring the surface from the first to the second position, thereby pulling the at-tached skin against the tip of the cannula.
2. Device according to claim 1, characterized in that the pump is a circular syringe pump.
3. Device according to claim 1, characterized in that it contains more than one cannula being inserted into the skin simultaneously by the same insertion mechanism.
4. Device according to any one of claims 1 to 3 character-ized in that the insertion means of the cannula into the skin actuates the piercing of a protecting septum of the cannula before insertion into the skin.
5. Device according to any one of claims 1 to 4, character-ized in that the device comprises more than one pump for delivery of injection fluid into a patient.
6. Device according to any one of claims 1 to 5, character-ized by measuring means for one or several analytes and means to display the results of these measurements and/or to transmit them wirelessly and/or to use them for the controlled delivery of injection fluid.
7. Device according to claim 1, characterized in that the means for securing adherence to the skin is an adhesive layer for temporary wearing on the body.
8. Device according to claim 7, characterized in that the adhesive layer is fixed on the flexible surface of the device by a reduced surface in comparison to the adhe-sive surface to the skin.
9. Device according to any one of claims 1 to 8, character-ized in that the means for bringing the flexible surface from a first to a second position makes use of the elas-ticity of this surface for a rapid movement by relaxa-tion from an enforced tense position.
10.Device according to claim 9, characterized in that the means for bringing the flexible surface into two dis-tinct positions comprises a sliding bolt mechanism actu-ated by pressing a knob.
11.Device according to any one of claims 1 to 10, charac-terized in that the device is applied to the skin using a functional package with a rim pressing the adhesive layer towards the skin and protecting the release and actuation elements of the device against unintended ac-tivation.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP10187141A EP2438938A1 (en) | 2010-10-11 | 2010-10-11 | Syringe type pump |
EP10187141.6 | 2010-10-11 | ||
CA2813525A CA2813525C (en) | 2010-10-11 | 2011-10-07 | Syringe type pump |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA2813525A Division CA2813525C (en) | 2010-10-11 | 2011-10-07 | Syringe type pump |
Publications (2)
Publication Number | Publication Date |
---|---|
CA2895617A1 true CA2895617A1 (en) | 2012-04-19 |
CA2895617C CA2895617C (en) | 2020-12-29 |
Family
ID=43533199
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA2895617A Active CA2895617C (en) | 2010-10-11 | 2011-10-07 | Syringe type pump |
CA2813525A Active CA2813525C (en) | 2010-10-11 | 2011-10-07 | Syringe type pump |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA2813525A Active CA2813525C (en) | 2010-10-11 | 2011-10-07 | Syringe type pump |
Country Status (9)
Country | Link |
---|---|
US (2) | US10130756B2 (en) |
EP (3) | EP2438938A1 (en) |
JP (4) | JP2014502855A (en) |
CN (2) | CN103313741B (en) |
CA (2) | CA2895617C (en) |
DK (1) | DK2627374T3 (en) |
ES (2) | ES2970794T3 (en) |
HK (2) | HK1184403A1 (en) |
WO (1) | WO2012049080A2 (en) |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2650032A1 (en) * | 2012-04-11 | 2013-10-16 | PharmaSens AG | Subcutaneous needle insertion mechanism |
EP2679154A1 (en) | 2012-06-25 | 2014-01-01 | PharmaSens AG | Sub-epidermal electric warning device |
EP2879741B1 (en) | 2012-07-31 | 2021-04-28 | Nipro Healthcare Systems, LLC | Device and method for dispensing fluid from an infusion pump |
US20150217058A1 (en) | 2012-09-24 | 2015-08-06 | Enable Injections, Llc | Medical vial and injector assemblies and methods of use |
EP2716315A1 (en) * | 2012-10-08 | 2014-04-09 | IN. Medica, d.o.o. | Precision liquid dispensing device |
BR112015008224A2 (en) * | 2012-10-16 | 2017-07-04 | Swissinnov Product Sarl | fluid release device for releasing small amounts of fluid to a patient, system for releasing small amounts of fluid for a patient, detachable adjustable bifunctional connector on the fluid release device and method for installing the fluid release device in a patient |
DK3010568T3 (en) | 2013-06-18 | 2019-05-06 | Enable Injections Inc | Device for transfer with vial and injection |
EP2842586A1 (en) * | 2013-08-27 | 2015-03-04 | PharmaSens AG | Device with a lavet-type motor |
KR20160084404A (en) * | 2013-10-31 | 2016-07-13 | 스위스인노브 프로덕트 에스에이알엘 | Portable pump and method for producing same |
KR101615745B1 (en) | 2014-08-20 | 2016-04-26 | 서울대학교 산학협력단 | Drug infusion pump including stackable curved syringe |
US20160051755A1 (en) * | 2014-08-25 | 2016-02-25 | Medtronic Minimed, Inc. | Low cost fluid delivery device |
US20180207369A1 (en) * | 2017-01-23 | 2018-07-26 | Enable Injections, Inc. | Medical fluid injection device with fill indicator |
CN108844571B (en) * | 2018-07-16 | 2024-08-30 | 河北农业大学 | Online calibration device and method for poultry house harmful gas sensor |
CN116983506A (en) | 2019-02-22 | 2023-11-03 | 德卡产品有限公司 | Infusion set and insert assembly systems and methods |
US11324881B2 (en) * | 2019-11-21 | 2022-05-10 | Medtronic Minimed, Inc. | Systems for wearable infusion port and associated pump |
CN113499508B (en) * | 2021-07-14 | 2022-08-26 | 巨翊科技(上海)有限公司 | Infusion pump capable of automatically clamping and infusing tube |
US12114843B2 (en) | 2022-03-31 | 2024-10-15 | Ethicon, Inc. | Sealant applicators having mixing and spraying assemblies with malleable sections and spray tips having reduced dimensions |
Family Cites Families (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AT280218B (en) * | 1965-04-07 | 1970-04-10 | Ceskoslovenska Akademie Ved | Method and device for reducing subsequent mixing of already separated components |
US4393870A (en) * | 1974-11-19 | 1983-07-19 | Wolfgang Wagner | Suction injector |
US4525164A (en) * | 1981-04-24 | 1985-06-25 | Biotek, Inc. | Wearable medication infusion system with arcuated reservoir |
AT384737B (en) * | 1986-04-04 | 1987-12-28 | Thoma Dipl Ing Dr Techn Herwig | DEVICE FOR CONTINUOUSLY DELIVERING LIQUID MEDICINAL PRODUCTS |
US4886499A (en) * | 1986-12-18 | 1989-12-12 | Hoffmann-La Roche Inc. | Portable injection appliance |
CA2159052C (en) * | 1994-10-28 | 2007-03-06 | Rainer Alex | Injection device |
AU5895196A (en) * | 1995-05-22 | 1996-12-11 | F. Hoffmann-La Roche Ag | Medical device adhering to the skin |
US6149604A (en) * | 1995-09-07 | 2000-11-21 | Kosasky; Harold J. | Instrument for measuring saliva viscoelasticity to determine female fertile period |
HUP9904152A3 (en) * | 1996-07-05 | 2000-05-29 | Novo Nordisk As | Flexible piston rod |
US6607509B2 (en) * | 1997-12-31 | 2003-08-19 | Medtronic Minimed, Inc. | Insertion device for an insertion set and method of using the same |
US6186982B1 (en) * | 1998-05-05 | 2001-02-13 | Elan Corporation, Plc | Subcutaneous drug delivery device with improved filling system |
US6530900B1 (en) * | 1997-05-06 | 2003-03-11 | Elan Pharma International Limited | Drug delivery device |
ATE324922T1 (en) * | 1999-06-08 | 2006-06-15 | Altea Therapeutics Corp | DEVICE FOR MICROPORATION OF A BIOLOGICAL TISSUE USING A FILM TISSUE INTERFACE DEVICE AND METHOD |
US6585699B2 (en) * | 2000-04-13 | 2003-07-01 | Nna/S | Drug delivery device provided with a one-way mechanism |
US6589229B1 (en) * | 2000-07-31 | 2003-07-08 | Becton, Dickinson And Company | Wearable, self-contained drug infusion device |
CA2420048C (en) * | 2000-08-18 | 2009-10-27 | Becton, Dickinson And Company | Constant rate fluid delivery device with selectable flow rate and titratable bolus button |
US6537251B2 (en) * | 2000-10-05 | 2003-03-25 | Novo Nordisk A/S | Medication delivery device with bended piston rod |
US8784335B2 (en) * | 2002-04-19 | 2014-07-22 | Sanofi-Aventis Deutschland Gmbh | Body fluid sampling device with a capacitive sensor |
ATE431168T1 (en) * | 2002-10-07 | 2009-05-15 | Novo Nordisk As | NEEDLE INSERTION DEVICE |
US7014625B2 (en) * | 2002-10-07 | 2006-03-21 | Novo Nordick A/S | Needle insertion device |
JP4522364B2 (en) * | 2002-11-01 | 2010-08-11 | ペリカン テクノロジーズ インコーポレイテッド | Body fluid sampling device |
US20080119703A1 (en) * | 2006-10-04 | 2008-05-22 | Mark Brister | Analyte sensor |
GB0420062D0 (en) * | 2004-09-09 | 2004-10-13 | Akubio Ltd | Assay methods,materials and preparations |
US9259175B2 (en) * | 2006-10-23 | 2016-02-16 | Abbott Diabetes Care, Inc. | Flexible patch for fluid delivery and monitoring body analytes |
US9233203B2 (en) * | 2005-05-06 | 2016-01-12 | Medtronic Minimed, Inc. | Medical needles for damping motion |
US8137314B2 (en) * | 2006-08-23 | 2012-03-20 | Medtronic Minimed, Inc. | Infusion medium delivery device and method with compressible or curved reservoir or conduit |
DE202006004748U1 (en) * | 2005-12-13 | 2007-04-26 | Trw Automotive Gmbh | Belt tensioner for a safety belt system |
US8114064B2 (en) * | 2006-03-16 | 2012-02-14 | Calibra Medical, Inc. | Infusion device with piston pump |
JP2009539444A (en) * | 2006-06-06 | 2009-11-19 | ノボ・ノルデイスク・エー/エス | An assembly comprising a device attachable to the skin and a package of the device |
DK2121076T3 (en) * | 2006-12-29 | 2017-07-24 | Hoffmann La Roche | Infusion device that can be worn outside the body |
US20100137802A1 (en) * | 2007-05-11 | 2010-06-03 | Ofer Yodfat | Methods and appratus for monitoring rotation of an infusion pump driving mechanism |
WO2009016636A2 (en) * | 2007-08-01 | 2009-02-05 | Medingo Ltd. | Portable infusion device provided with means for monitoring and controlling fluid delivery |
ES2688062T3 (en) * | 2009-01-12 | 2018-10-30 | Becton, Dickinson And Company | Infusion set and / or patch pump having at least one of a rigid internal permanence catheter with flexible features and / or a flexible catheter connection |
-
2010
- 2010-10-11 EP EP10187141A patent/EP2438938A1/en not_active Withdrawn
-
2011
- 2011-10-07 DK DK11767246.9T patent/DK2627374T3/en active
- 2011-10-07 CN CN201180049140.2A patent/CN103313741B/en active Active
- 2011-10-07 WO PCT/EP2011/067535 patent/WO2012049080A2/en active Application Filing
- 2011-10-07 EP EP15154808.8A patent/EP2907535B1/en active Active
- 2011-10-07 CA CA2895617A patent/CA2895617C/en active Active
- 2011-10-07 EP EP11767246.9A patent/EP2627374B1/en active Active
- 2011-10-07 JP JP2013533159A patent/JP2014502855A/en active Pending
- 2011-10-07 ES ES15154808T patent/ES2970794T3/en active Active
- 2011-10-07 US US13/878,569 patent/US10130756B2/en active Active
- 2011-10-07 ES ES11767246.9T patent/ES2671244T3/en active Active
- 2011-10-07 CA CA2813525A patent/CA2813525C/en active Active
- 2011-10-07 CN CN201510344617.XA patent/CN105126194B/en active Active
-
2013
- 2013-10-24 HK HK13111986.8A patent/HK1184403A1/en unknown
-
2015
- 2015-06-15 US US14/738,995 patent/US10117989B2/en active Active
- 2015-08-11 JP JP2015159098A patent/JP6490534B2/en active Active
-
2016
- 2016-01-29 HK HK16101069.6A patent/HK1213207A1/en unknown
- 2016-06-16 JP JP2016120214A patent/JP6434454B2/en active Active
-
2017
- 2017-05-08 JP JP2017092697A patent/JP6423916B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
ES2970794T3 (en) | 2024-05-30 |
EP2907535A3 (en) | 2015-11-25 |
US20130324884A1 (en) | 2013-12-05 |
CA2813525A1 (en) | 2012-04-19 |
CN103313741A (en) | 2013-09-18 |
JP2015231560A (en) | 2015-12-24 |
US20150273139A1 (en) | 2015-10-01 |
JP6490534B2 (en) | 2019-03-27 |
EP2627374A2 (en) | 2013-08-21 |
US10130756B2 (en) | 2018-11-20 |
CN105126194B (en) | 2019-05-17 |
CN105126194A (en) | 2015-12-09 |
CA2895617C (en) | 2020-12-29 |
EP2907535B1 (en) | 2024-02-07 |
JP6434454B2 (en) | 2018-12-05 |
CN103313741B (en) | 2015-07-15 |
JP2016190058A (en) | 2016-11-10 |
EP2907535C0 (en) | 2024-02-07 |
DK2627374T3 (en) | 2018-06-14 |
JP2017148596A (en) | 2017-08-31 |
HK1184403A1 (en) | 2014-01-24 |
JP2014502855A (en) | 2014-02-06 |
HK1213207A1 (en) | 2016-06-30 |
CA2813525C (en) | 2019-01-15 |
EP2438938A1 (en) | 2012-04-11 |
WO2012049080A3 (en) | 2012-06-28 |
EP2627374B1 (en) | 2018-02-28 |
WO2012049080A2 (en) | 2012-04-19 |
ES2671244T3 (en) | 2018-06-05 |
EP2907535A2 (en) | 2015-08-19 |
JP6423916B2 (en) | 2018-11-14 |
US10117989B2 (en) | 2018-11-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2895617C (en) | Syringe type pump | |
US20240316264A1 (en) | Self-contained spring inserter for drug delivery infusion device | |
KR102143025B1 (en) | Subcutaneous needle insertion mechanism | |
EP1624914B1 (en) | Internal needle inserter | |
EP2694135B1 (en) | Dermally affixed device for intravenous access | |
US20230233755A1 (en) | Ambulatory infusion pump device with integrated sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EEER | Examination request |
Effective date: 20160725 |