CA2838954C - Soil tilling and planting implement - Google Patents

Soil tilling and planting implement Download PDF

Info

Publication number
CA2838954C
CA2838954C CA2838954A CA2838954A CA2838954C CA 2838954 C CA2838954 C CA 2838954C CA 2838954 A CA2838954 A CA 2838954A CA 2838954 A CA2838954 A CA 2838954A CA 2838954 C CA2838954 C CA 2838954C
Authority
CA
Canada
Prior art keywords
mounting system
field
conditioning
implement
mounting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CA2838954A
Other languages
French (fr)
Other versions
CA2838954A1 (en
Inventor
Loyd C. Van Buskirk
Brian R. Meldahl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
L and B Manufacturing Inc
Original Assignee
L and B Manufacturing Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/158,732 external-priority patent/US8528656B2/en
Application filed by L and B Manufacturing Inc filed Critical L and B Manufacturing Inc
Publication of CA2838954A1 publication Critical patent/CA2838954A1/en
Application granted granted Critical
Publication of CA2838954C publication Critical patent/CA2838954C/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01CPLANTING; SOWING; FERTILISING
    • A01C5/00Making or covering furrows or holes for sowing, planting or manuring
    • A01C5/06Machines for making or covering drills or furrows for sowing or planting
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01BSOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
    • A01B29/00Rollers
    • A01B29/04Rollers with non-smooth surface formed of rotatably-mounted rings or discs or with projections or ribs on the roller body; Land packers
    • A01B29/048Bar cage rollers
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01CPLANTING; SOWING; FERTILISING
    • A01C7/00Sowing
    • A01C7/20Parts of seeders for conducting and depositing seed
    • A01C7/201Mounting of the seeding tools
    • A01C7/203Mounting of the seeding tools comprising depth regulation means

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Soil Sciences (AREA)
  • Environmental Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Cultivation Receptacles Or Flower-Pots, Or Pots For Seedlings (AREA)
  • Soil Working Implements (AREA)

Abstract

A mount for carrying a plurality of field-conditioning implements selected from trash whipping implements, rolling baskets and coulters for connection to a planter is disclosed. A height and force adjustable mounting system is also disclosed for use with a planter that enables the force of such an implement on the soil to be modulated as desired.

Description

SOIL TILLING AND PLANTING IMPLEMENT
STATEMENT REGARDING FEDERALLY SPONSORED
RESEARCH OR DEVELOPMENT
Not applicable BACKGROUND OF THE INVENTION
I. Field of the Invention This invention is generally directed to the field of agriculture machinery, and more particularly, it relates to a preplanting tillage implements generally used in combination with a seed planting device. Specifically, the invention relates to rolling basket tillage implements, trash moving or trash whipping devices and coulter devices, usually used in tandem with a seed planting implement in which the rolling basket, trash whip and/or coulter devices may be used in various combinations and may have an independent height or deployment adjustment aspect.
II. Related Art In the spring, prior to planting, farmers must prepare their fields for accepting seed. Many tillage implements have been designed and are used to condition the soil in preparation for planting. Traditional farming includes both primary and secondary tillage tasks
-2--to prepare the soil such as plowing, disking, field cultivating and harrowing. Disking is an example of a method of primary tillage and harrowing is an example of a method of secondary tillage.
Primary tillage is a first pass over the soil using a soil conditioning implement attached to the rear of a tractor which works deep into the soil. The soil is usually worked about four inches deep to break up clods of soil, remove air pockets, and destroy weeds deep in the earth. Secondary tillage involves another pass over the same soil, at a more shallow depth, using implements which are generally attached to the rear of the primary tillage unit such that the secondary tillage unit follows the primary tillage unit. The secondary tillage unit generally works the soil to a depth of about two inches.
The secondary tillage unit is usually a final conditioning tool to prepare the soil for planting.
Various units may chop up crop residues, or move them out of the way of rows to be planted, break up soil clods and break up any crust on the top of the soil, provide seed furrows, weed control, incorporate chemicals into the soil, and stir and firm the soil closer to the surface.
Rolling basket seedbed finishers represent an important type of secondary soil conditioning implement.
Rolling baskets are primarily used as soil leveling devices to break up and minimize clods of soil and to remove air pockets from the soil. Farmers obtain great benefit from using rolling baskets as a means of secondary tillage to provide a level soil for planting.
The ability to break up clods of soil, remove air pockets and further incorporate chemicals generally leads to better crop yields at harvest.
In addition to rolling basket seedbed finishers, other agriculture implements are also generally used in
- 3 -preparing the soil for planting. These include a trash whipping-type device which includes a pair of spiked disks normally mounted on a triangular mount which are used to move debris out of the way prior to soil conditioning. Other soil conditioning tools which might be mounted before seed planting implements include coulter devices which employ a sharp steel wedge that cuts vertically and provides a shallow furrow through the soil.
Accordingly, it would be beneficial if a secondary tillage operation using a rolling basket could advantageously be combined with a planting operation such that one could take immediate advantage of soil in condition for planting by accomplishing the planting project during the same pass over a field. Thus, the attachment of rolling basket tillage for use in conjunction with a seed planting implement would be desirable.
However, the use and effectiveness of rolling baskets or other soil conditioning implements is greatly limited by the condition of the soil. If the soil is too wet, rolling basket soil conditioning implements may become filled and clogged with soil which make them useless for further soil conditioning until they are again emptied of soil. When a farmer realizes that areas of soil in a field are too wet to use such implements, he will generally forego the use of such soil conditioning implements entirely for the season. This means that much of the soil may not be properly treated and an expensive farming implement will lay idle. This is not a desirable or economically efficient situation for farmers.
It would, therefore, also be beneficial to provide an arrangement or mechanism that enables intermittent use of a soil conditioning implement, particularly a rolling
4 basket seedbed finisher, and/or a planter in a field where areas of soil are dry enough for use, but where there are also areas which are too wet for use. Such a device would allow a farmer to raise rolling basket seedbed finishers above the soil and out of use whenever they reach a section of a field where the soil is too wet and thereafter enable the rolling basket finisher to be lowered and reconnect with the soil in areas where the soil is suitable for use.
Trash moving or trash whip devices represent another type of equipment which can be advantageously added to a row crop planter to handle amounts of crop residue often present on a field to be replanted, particularly if no till farming is being employed. Minimal till or no till farming leaves an amount of crop residue on a field which may interfere with subsequent seeding operations and so needs to be moved aside from planted rows. The trash whips normally include pairs of angled disks with radially directed teeth or spikes which move crop residue out of the way in advance of planting. The trash whips are normally mounted so that the angled disks form a V-shape and they may or may not overlap.
One problem associated with the operation of trash whippers is controlling the depth of operation of the disk spikes in the field. Some of the present trash whipping devices are mounted at a fixed vertical distance from a tool bar on a planter. The height is adjustable between a series of fixed vertical location settings only. There is no independent control over the force exerted by the implement. Some other current trash whipping devices use air cylinders to modulate resistance in one direction.
Thus, if the lift force or down pressure force on the trash whipping device could be controlled and
-5-adjusted, as needed, it would present a distinct advantage.
SUMMARY OF THE INVENTION
The present concept is related to combining said conditioning implement in the form of rolling basket seedbed finishers with planters to accomplish multiple tasks in a single pass. An aspect of the present concept relates to mounting rolling basket seed finishers on planting equipment. A further aspect of the present concept is related to a mounting assembly for a soil conditioning implement in the form of a rolling basket seedbed finisher. The mounting assembly is for individual rolling baskets which are a part of a plurality of such soil conditioning implements generally arranged in a spaced aligned manner on a multi-row planter, seed drill or other implement, which is used to distribute seeds into the soil, hitched to and pulled by a tractor or other prime mover.
Certain embodiments of the mounting assembly include a height adjustable mounting arrangement for each of the rolling basket soil conditioning implements. Each height adjusting mechanism includes an actuator for adjusting the relative height of a corresponding rolling basket individually, and an associated control system for operating the height adjusting mechanism. The actuator preferably includes a hydraulic or pneumatic cylinder, which may be single or double acting. It is also an aspect of the present invention for the mounting assemblies and associated implements to be combined with a planter and arranged such that rolling basket soil conditioning takes place in front of each individual seed planting unit on a planter.
In a preferred embodiment, each mounting assembly for each rolling basket soil conditioning implement may
-6--be controlled from a central control system that includes control switches or a control pad, or the like, having a control device associated with each rolling basket located in the cab of an associated tractor. In this manner, a user is able to adjust the height of each mounting assembly individually and therefore the height of each associated soil conditioning rolling basket implement may be adjusted individually as needed.
It will be appreciated by those skilled in the art that a plurality of actuator devices such as pneumatic or hydraulic cylinders, or the like, together with the necessary controls can be connected to be operated from the cab of a tractor or other farm implement device prime mover by conventional means in a well known manner.
In other embodiments, the rolling basket devices may be fixed to the planter and other mechanical devices may be used to apply varying degrees of force to the soil being processed. These include compression or torsion springs, inflatable airbags, shock absorber devices which may be spring loaded, or the like.
Airbag systems may be single or double acting and an embodiment is shown with dual airbags. Single and dual airbag systems are also shown in embodiments in which trash whipping devices and/or coulter devices are attached to the planter.
With regard to the various agriculture implements that are associated with seed planters, it will be appreciated that various combinations of implements can be mounted to a planter and this may be accomplished in a number of ways. Thus, trash whipping devices may be mounted together with coulter devices on the same mounting structure or on separate spaced mounting structures. A coulter and rolling basket combination may be used in which the rolling basket device is split into
-7-side-by-side sections and the coulter device is mounted between the rolling basket sections. This provides a combination implement that can also be mounted with a trash whipping device. A whipping implement can be mounted with a unitary rolling basket or coulter device.
Whether the soil conditioning implements are mounted singly or in combination, the deployment of each can be controlled using different systems. One deployment system features employing an adjustable down force device only airbag or other device, when released, allows the implement to float or coast along the top of the soil.
In another system, both adjustable down force and up force or lift devices, which may be airbags, are employed. The lift devices raise the implement above the level of the soil.
BRIEF DESCRIPTION OF THE DRAWINGS
The foregoing features and advantages of the invention will become apparent to those skilled in the art from the following detailed description of one or more preferred embodiments, especially when considered in conjunction with the accompanying drawings in which:
Figure 1 shows a perspective view of a mounting assembly using a shell-type assembly to attach to a rolling basket;
Figure 2 shows a side view of the mounting assembly of Figure 1;
Figure 3 shows a perspective view of an alternative mounting assembly attaching a rolling basket;
Figure 4 shows a side view of the mounting assembly of Figure 3;
Figure 5 illustrates the mounting assembly of Figures 3 and 4 attached to the front of a planting implement with the soil conditioning rolling basket shown in a raised position;
-8-Figure 6A is a view similar to Figure 5 showing the soil conditioning rolling basket implement in a lowered ground engaging position;
Figure 6B is a cross-sectional view taken along line B-B of Figure 6A;
Figure 7A is a schematic perspective view showing a rolling basket attached to a main frame member of a planter implement;
Figure 7B is a view similar to Figure 7A with a 0 double acting airbag as the actuator;
Figure 8 is a front view of the mounting assembly of Figures 3-7 attached to a farming implement;
Figures 9A-9F depict other embodiment of rolling baskets similar to those of Figures 1 and 3 using other types of actuating or force-applying devices;
Figure 10 is a block diagram of a pneumatic control system for controlling mounting assemblies and a schematic drawing of a rolling basket soil conditioning system combined with a multi-row planter;
Figure 11A is a side elevation view of an alternate embodiment of the invention using a dual airbag deployment/retraction system shown with the lower assembly and rolling basket in the down or deployed position;
Figure 11B is a view taken along section lines 11B-11B in Figure 11A;
Figure 12A is a side elevation view of the embodiment of Figure 11A shown with the rolling basket in the raised or retracted position;
Figure 12B is a sectional view taken along line 12B--12B in Figure 12A;
Figure 13A is a front elevation view of the embodiment of Figure 11A shown with the rolling basket in the raised or retracted position;
-9-Figure 13B is a sectional view taken along line 13B--13B of Figure 13A;
Figure 14A is a top plan view of the embodiment of Figure 11A showing the rolling basket in the up or retracted position;
Figures 14B and 14C are opposed sectional views along lines 14B--14B and 14C-14C, respectively of Figure 14A;
Figure 15A is a top plan view similar to Figure I4A
with the rolling basket in the down or deployed position;
Figures 15B and 15C are opposed sectional views along 15B--15B and 15C-15C, respectively of Figure 15A;
Figure 16 is a front perspective view of the embodiment of Figure 11A showing the rolling basket in the raised or lowered or deployed position;
Figure 17A shows a schematic view of a five-port air valve assembly in accordance with the invention shown in a first position that enables the down force airbag to inflate and the up force airbag to collapse;
Figure 17B is a perspective sectional view of the air valve assembly of Figure 17A taken half way through the valve body or block;
Figure 18A depicts a schematic view of the valve assembly of Figure 17A in a second position that enables the up force airbag to inflate and the down force airbag to collapse; and Figure 18B is a perspective sectional view of the air valve assembly of Figure 18A taken half way through the valve body or block;
Figures 19A-19F represent respective top, left side elevation, front elevation, right side elevation, bottom and perspective views of a trash whipping attachment for a planter with a pneumatic dual airbag deployment/control system shown with airbags removed for clarity;
-10-Figures 20A, 20B and 20C are, respectively, left side elevation, front elevation and right side elevation views of adjustable mounts for trash whipping disks shown without disks attached for clarity;
Figures 21A, 21B and 21C are, respectively, views similar to Figures 20A, 20B and 20C with trash whipping disks attached;
Figures 22 is a schematic view of an electronic pneumatic regulator, and manual pneumatic regulator illustrating the positioning operation of the associated trash whipping device;
Figures 23A and 23B are perspective and front views of a lower assembly for attaching trash whipper disks;
Figure 24 is a side elevational view that depicts a trash whipping device mounted ahead of a coulter disk using a common mounting assembly with the coulter device having a down force only airbag deployment system and the trash whipping device having dual airbags;
Figures 25A and 25B depict front and rear elevational views respectively of the embodiment of Figure 24 with the trash whipping disks removed;
Figure 26 is a rear perspective view of a combination of a forward-mounted trash whipping device and a coulter disk mounted between sections of a split rolling basket implement using a common mounting structure;
Figures 27A and 27B depict front and rear elevational views, respectively, of the embodiment of Figure 26;
Figure 28 is a side elevational view depicting a combination of a trash whipping implement with a rolling rowbasket mounted on a common assembly with the rowbasket having a down force only airbag deployment system and the trash whipping device having dual-acting airbags;
-11-Figures 29A and 29B depict front and rear elevational views, respectively, of the arrangement of Figure 28 with the trash whipping disks removed for clarity;
Figure 30 is a front perspective view showing a common mount for a trash whip and rolling basket combination with rolling basket using a down force only airbag;
Figure 31 is a side elevational view depicting a trash whipping device mounted in front of a rolling basket using two different spaced mounting assemblies;
Figure 32 is a front perspective view of the embodiment of Figure 31;
Figure 33 is a side elevational view of the mounting system of the embodiment of Figure 31; and Figure 34 is a top view of the mounting system of Figure 33.
DETAILED DESCRIPTION
This description of the preferred embodiments is intended to illustrate representative examples of inventive concepts and is not intended to be limiting as to the scope of the concepts. The examples are to be read in connection with the accompanying drawings, which are to be considered part of the entire written description of this invention. In the description, relative terms such as "lower", "upper", "horizontal", "vertical", "above", "below", "up", "down", "top" and "bottom" as well as derivatives thereof (e.g., "horizontally", "downwardly", "upwardly", etc.) should be construed to refer to the orientation as then described or as shown in the drawings under discussion. These relative terms are for convenience of description and do not require that the apparatus be constructed or operated in a particular orientation. Terms such as "connected",
-12-"connecting", "attached", "attaching", "join" and "joining" are used interchangeably and refer to one structure or surface being secured to another structure or surface or integrally fabricated in one piece, unless expressively described otherwise.
An aspect of the invention is directed to an adjustable mounting bracket assembly for attaching a soil conditioning implement in the form of a rolling basket device, particularly to the frame of a planter.
As shown in the embodiment of Figures 3-8, the mounting assembly 2, for a rolling basket soil conditioner 10 comprises at least three parts, a height adjustable mounting 4, a height adjusting mechanism or actuator, which may be in the form of a hydraulic (6A in IS Figure 9E) or pneumatic cylinder 6, and an associated control system (Figure 10) for operating a plurality of such height adjusting mechanisms to adjust the height of a plurality of spaced associated connected rolling baskets as normally used in tandem with a planter as towed by a tractor.
As illustrated in Figure 3, the height adjustable mounting 4 is composed of several parts including an attachment plate 12 and a pair of spaced parallel side plate members 16 and attachment arms 18 for coupling the rolling basket soil conditioning implement to the attachment plate 12. The attachment plate 12 is adapted to be fixed to the frame of a farming implement in the form of a conventional planter along with the attachment plates of other units such that the soil ahead of each planting unit is conditioned.
Each mounting assembly includes spaced arms 18 which extend away from an associated rolling basket soil conditioning and leveling implement 10 which is journaled for rotation between the arms 18 as at 20. The arms 18
-13-connect to the members 16 fixed to the attachment plate 12. The arms 18 are connected to each other by a common crossbar 24 which also supports one end of a cylinder or actuator 6.
As illustrated in Figures 3 and 4, the arms 18 and the members 16 of the attachment plate 12 are designed such that they pivotally connect to each other. Any manner known in the art which connects and enables the arms 18 to pivot at 22 relative to the members 16, such as bearings, bushings, etc., can be employed so that the adjustable mounting 4 is able to move towards and away from the surface of the ground with the operation of cylinder 6 which may be attached using a clevis arrangement as at 26 to attach the rod end and a bracket arrangement as at 28 to attach the blind end of the cylinder 6 to the attachment plate 12.
The height-adjusting actuator 6 may be a hydraulic or pneumatic cylinder, or other devices, as illustrated, those skilled in the art will recognize that any mechanical mechanism able to raise and lower the soil conditioning implement 10, as shown in Figures 5 and 6, may be used. Thus, in some embodiments, height adjusting depends on raising the planter with the rolling baskets attached. In those embodiments, downward force may be provided by a spring-operated mechanism, an inflatable air spring, or any similar system known in the art, such as are shown in Figures 9A-9D. As indicated, several preferred embodiments utilize pneumatic cylinders as compressed air is generally available on tractors to connect to and operate farm implements. It will be recognized, however, that hydraulic systems are also commonly used in these types of applications.
The rolling basket units 10 further include a pair of side plates 30 connected by a plurality of spaced
-14-steel bars 32 which may be internally or externally attached to the plates 30. A central spindle or axle 34 is also provided.
Figures 5, 6A, 6B, 7A and 7B also depict a planting implement 35 having a seed distributing arrangement 36 (Figure 6B) and a connecting frame 37 including a main structural member 38 that connects together a plurality of similar units 35.
As shown in Figures 5 and 6A, the operation of the actuator 6 serves to raise and lower the soil conditioning rolling basket implement 10 in accordance with the operation of a control system. It should be noted that in an implement carrying a plurality of soil conditioning rolling baskets 10, as shown in Figure 10, an associated control system enables the raising and lowering of the soil conditioning implements individually as desired by the operator in the tractor or other towing vehicle. It may also enable the soil conditioning implement 10 to be positioned in a floating mode riding the soil surface or lowered with applied force as needed.
An alternate embodiment of the mounting bracket assembly is shown generally at 102 in Figures 1 and 2 and also includes a height adjustable mounting 104. That system utilizes a shell or shroud 114 covering the upper portion of the rolling basket 110. Pivotally connected members 116 and arms 118 are shown together with mounting bracket 120 and clevis attachment 122. The actuating cylinder or other such device is not shown.
Figure 10 is a schematic drawing of a soil conditioning system used with a multi-row seed planter so that a field may be properly leveled and thereafter receive seeds from the planter modules. In this schematic drawing, a tow bar 40 is connected to a trailer tongue 42 that is adapted to be connected by a clevis
-15-(not shown) to a towing work vehicle, such as a farm tractor. Secured to the tow bar are a plurality of rolling basket tillage devices 44.
Primary tillage devices (not shown) may, for S. example, comprise disk harrows or rake harrows of conventional design known in the art may be used prior to employing the rolling baskets. As previously explained, the primary harrows are arranged to dig deeper into the soil and typically produce clumps depending on soil type and moisture content. It is preferable that the clumps become crushed and broken up and the soil leveled by the action of the secondary rolling basket devices 44 leaving the field prepared to receive seed at the time of seeding and the seed distributed by planter modules 46.
IS
The user or driver of the tractor or other prime mover determines whether the soil is too wet for the soil conditioning implements 2 to effectively work or not. If the soil is too wet, the user sends a signal via the control system, to activate the height-adjusting mechanism 4. In a preferred embodiment, the height adjusting mechanism is connected to a pneumatic system which has an air compressor 52 for maintaining a predetermined pressure in an accumulator 50. At least one pneumatic solenoid valve 58 is connected between the accumulator and each actuator 6 to control the application of the pressure supplied to the actuator 6.
A manifold 58 in Figure 10 is shown as supplying pressurized air, via solenoid valves 56, to one or more actuators 6 under control of electrical signals from an operator's controller module which includes a key pad control (which may be remote) at 60. A combined electrical and pneumatic connection is shown at 62 and a manifold controller is shown at 64. The system may incorporate a pressure regulator (not shown) to adjust
-16-the amount of force (from the pressurized air) applied to raise the soil conditioning implement.
Pressurized air is then supplied to the pneumatic cylinders 6 in a well known manner to the mounting assembly, which, in turn, will raise the soil conditioning implement if the user has determined the soil in that location is too wet for use, or lower the soil conditioning implement if the soil is suitable to use the soil conditioning implement. It will be appreciated that the cylinders 6 may be single or double acting with single acting cylinders used to raise the soil conditioning implements on the power stroke and allow the basket to float under its own weight when the pressure is released. Double acting cylinders can be IS used to fix the implement in a lowered position.
As also shown in Figure 10, each of the plurality of rolling basket soil conditioning assemblies may be placed in front of each of a plurality of seed distribution units of a planter as at 46 to ready the soil to receive the seeds. Each of the mounting assemblies for the soil conditioners may be controlled individually or simultaneously with others. Also, groups of mounting assemblies may be controlled. If the mounting assemblies are controlled individually, the manifold 58 (either pneumatic or hydraulic), may supply pressurized air through the use of solenoid valves 56. The operator is able to control the height adjustment and so the application of one soil conditioning implement, a specific group of soil conditioning implements, or all of the soil conditioning implements using the control pad 60 in the cab of the tractor. As indicated, the control pad 60 may be any kind known in the art for sending control signals to solenoid or other pneumatic or hydraulic valves.

The system allows for maximum efficiency of the soil conditioning implements, for if one row or a few of the rows in a field are too wet, but the remaining rows are dry, the user may selectively apply the soil conditioning rolling basket implements to suitable rows. The user, therefore, is able to maximize the effect of using rolling basket soil conditioning devices in a field.
Figure 7A depicts a rolling basket device 10 in accordance with the invention fixed to the main structural member 38 of a planting implement, a unit of which is shown at 35 in which the attachment plate 12 is attached to the member 38 by an additional framework 70.
A similar arrangement is shown in Figure 7B in which the actuator is a double acting airbag system as at 72.
Figures 9A-9E depict alternative actuator devices used in combination with the rolling baskets. They include a pair of torsion springs as at 80 in Figure 9A
which are used to provide an amount of downward force on the rolling basket 10. Similarly, Figure 9B utilizes a compression spring 82 connected between mounting plate 12 and cross member 24. A spring and shock absorber arrangement 84 is shown in Figure 9C and a single acting airbag or air shock absorber is shown in Figure 9D.
It should be noted that rolling baskets having mounting arrangements with devices providing downward force only are normally raised manually when they need to be out of contact with the soil. They are held in a raised position using a manually-operated latch system such as is at 88 shown in Figure 9F.
10 Another embodiment is shown in the several views of Figures 11A-16 in which dual airbags or inflatable pneumatic actuators are used to lower or deploy and raise or retract the rolling basket. This rolling basket system is shown generally at 200 and includes a rolling basket 202, which is mounted to a height-adjusting mechanism 204 using a pair of spaced parallel side plate members 206 and 208, which are fixed to a lower assembly 210, which includes a main member 212, which may be in the form of a heavy tube member, and which connects to the side plate members 206 and 208. The lower assembly, with the side plate members 206 and 208, in turn, pivots around a pair of spaced, shoulder bolts 214, which connect it to a mounting structure including shaped members 216 fixed to or are part of attachment or mounting plate 218, which, in turn, can be fastened to a main implement such as a multi-row planter, as shown in Figure 10, at a plurality of places 220 using conventional bolts, or the like, as at 221.
The rolling basket system further includes a down force or deployment airbag arrangement that includes a down force or deployment airbag 222 mounted between a bottom pedestal 224 and a fixed upper bracket 226. The bottom pedestal is mounted to the lower assembly by spaced members 228 and spaced fulcrum members 230 which are fixed to member 212 and members 228 and 230 connected by opposed shoulder bolts 232 such that the pedestal can pivot freely on the shoulder bolts.
The system further includes an up force or retraction airbag arrangement that includes an up force or retraction airbag 234 that is mounted between a moving upper U-shaped bracket 236 and a bent flange member 238.
As best seen in Figure 12B, spaced legs of bracket 236 are also fixed to the lower assembly 210 by spaced fulcrum plates 240 which are fixed to member 212 and the spaced legs of bracket 236 are connected pivotally to fulcrum plates 240 by opposed shoulder bolts 242 on which the bracket 236 can pivot freely.

Air lines 244 and 246 are connected respectively to down force and up force airbags 222 and 234 and to a conventional supply of pressurized air not shown. The system is configured so that, when high pressure air is introduced to inflate one bag, the other bag can deflate.
Figures 11A, 11B and 15A-15C show the lower assembly 210 and basket 202 in the deployed or down position with the down force airbag fully inflated. As the down force bag 222 inflates, it causes the lower assembly to pivot downward and deploy the basket 202 downward. The act of the lower assembly moving downward causes the bracket 236 connected to lift bag 234 to be displaced downward forcing air out of and collapsing the lift bag, as shown in Figure IIB. Conversely, as shown in Figures 12A, 12B, 13B and 14A-C, to raise or retract the lower assembly 210 and basket 202, the lift bag 234 is fully inflated, which causes the bracket 236 to move upward and the lower assembly to rotate upward about shoulder bolts 232 and 214, which, in turn, causes the bottom pedestal 224 to be displaced upward and this collapses or deflates down force airbag 222. The lifting force of the airbag 234 is transferred to the lower assembly 210 through bent flange 238. Shoulder bolts 242 connect the legs of bracket 236 with fulcrum members 240.
It will become apparent that each of the shoulder bolts that transfer force from the airbags to the lower assembly travel pivotally about a fulcrum, as best shown at 230 and 242 in the figures. The fulcrums, in turn produce an arcuate motion of the side plate members 206 and 208, as they raise and lower member 212 and the lower assembly. In that manner, the lower assembly travels along the arc of a circle when deployed and retracted with the main shoulder bolts 214 as pivots.

Figures 17A-17C and 18A-18B depict a five-port air valve assembly in two alternate positions. The assembly, generally at 300, includes ports 302, 304, 306, 308 and 310 and cylinder 312, housing axially adjustable cylinder valve 314. The valve body or block is depicted at 316.
Ports 302 and 306 are connected to receive air from a high pressure air source such as a conventional compressor system (not shown). Ports 308 and 310 connect respectively to the up force airbag and the down force airbag. Finally, port 304 is a vent port for venting air from either the up force airbag or the down force airbag.
In Figures 17A and 173, the port receiving high pressure air 306 is connected through the valve block with down force bag 222 through outlet port 310 with the central valve 312 shifted to the left in cylinder 314 in a first position. shifted to the left. With the central cylinder in this position, up force airbag 234 is connected to the vent port 304 via port 308 so that up force airbag 235 is enabled to collapse while down force airbag 222 inflates. This deploys the rolling basket against the ground.
Figures 18A and 1813 show the valve 312 in an alternate position with the central cylinder moved to the right. With the central in this position, port 302 is connected through the central cylinder to port 308 and port 310 is connected to the central cylinder to port 304 and port 306 is deadheaded. With the valve in this position, the source of high pressure air is connected through ports 302 and 308 to the up force airbag and the down force is connected to vent through ports 310 and 304. This will enable the up force airbag to inflate and the down force airbag to collapse in accordance with raising the rolling basket to an up or stowed position.

Another embodiment is shown and illustrated in the several views of Figures 19A-24B which, like the embodiment shown in Figures 11A-16 employs dual airbags or inflatable pneumatic actuators to lower (deploy) and raise (retract) an agriculture implement. In this embodiment, the implement is a trash whipping-type device. As shown in Figures 19A-19F, 20A-20C, 21A-21C
and Figures 24A and 24B, the trash whipping system, generally at 400, includes a pair of spiked disks 402 and 404 with dirt guards 406 and 408, respectively, mounted on a triangular mount 410 (Figure 23A) by means of a pair of bent flanges 412 and 414. A main mounting cross member, preferably a tube member, is shown at 416 and a connecting tube 418 has a fixed end fixed to the main mounting tube 416 and a free end that carries the triangular mount 410. The connecting tube is preferably connected directly to the back of the flanges 412 and 414 as by welding. The main member 416 is connected to a mounting structure by heavy side plate members 420 and 422. As with other embodiments, side plate members 420 and 422 pivot around a pair of spaced shoulder bolts 424 which connect the members 420 and 422 to the mounting structure including shaped members 426, which are fixed to or are a part of attachment or mounting plate 428 which, of course, can be fastened to a main implement such as a multi-row planter with a plurality of other spaced trash whipping systems at a plurality of places using conventional bolts, or the like, using openings 430. A similar system is shown in Figure 10 with respect to rolling basket embodiments.
It will be appreciated that the mounting system of the invention can be used with many different disk varieties and those shown at 402 and 404 are for illustration purposes. They can be used with or without dirt guards also.
The trash whipping system further includes a down force or deployment airbag arrangement that includes a down force or deployment airbag 432 mounted between a bottom pedestal 434 and a fixed upper bracket 436. The bottom pedestal is mounted to the lower assembly by spaced members 438 and spaced fulcrum members 440 which are fixed to member 416 and members 438 and 440 connected by opposed shoulder bolts 442 such that the pedestal can pivot freely on the shoulder bolts.
The system further includes an up force or retraction airbag arrangement that includes an up force or retraction airbag 444 that is mounted between a moving upper U-shaped bracket 446 and a bent flange bracket member 448. As best seen in Figures 19F, 20A and 21C, spaced legs of bracket 446 are also fixed to the lower assembly main tube 416 by spaced fulcrum plates 450 which are fixed to member 416 and the spaced legs of bracket 446 are connected pivotally to fulcrum plates 450 by opposed shoulder bolts 424 on which the bracket 448 can pivot freely.
Air lines are connected respectively to down force and up force airbags 432 and 444 and to a conventional supply of pressurized air (not shown). The system is configured, as will be described.
Figure 22 depicts a control system for the trash whip assembly in the lifted or stowed position. The system includes an electronic regulator 500 which can be set to control output pressure and thus, the pressure in a connected airbag over a wide range. A manual regulator is shown at 502.
In Figure 22, air coming from a supply such as a compressor accumulator tank (not shown) is supplied to regulators 500 and 502 at 504 and 506, respectively.
Output streams from the regulators 500 and 502 are shown, respectively, at 508 and 510.
In the diagram of Figure 22, the down force pressure supply 516 entering port 506 is supplied constantly at a suitable pressure to act as a shock absorber to the down force airbag through 510, typically, 18-20 lbs. Air is supplied to adjustable electronic regulator 500 through an input port at 504 and air is supplied to up force airbag through an output port at 508. It will be appreciated, however, that air is being supplied to both the down force airbag and the lift airbag.
With air being supplied to both the lift and down force airbags, a state of equilibrium can be achieved and maintained with the whipping device in any desired position of mechanical resistance with respect to the deployed mechanism. This disposition also allows the operator to vary the net upward or downward force as desired using the electronic regulator 500. Of course, the electronic regulator 500 can also be replaced by a manual control, if desired. In this manner, the trash whipping device can be controlled to exert any desired downward force or be controlled to float, just skimming the top of the soil. This achieves a continuous operator-directed control over the operation of the trash whipping device which has been demonstrated to be highly successful. It will be appreciated that other implements could be mounted on and controlled by this system.
Figure 24 is a side elevational view including a planting implement, generally at 600, which may be a conventional commercial planter. The drawing depicts a trash whipping device 602 which may be similar to those previously described and a coulter device 604 which includes a blade or wheel 606 attached via a mounting member 608 to a mounting structure or assembly 610.
Raising and lowering of the coulter device 604 is enabled via rotation of the member 608 about a joint 612. An inflatable airbag for applying a downward force to deploy the coulter disk 606 is shown at 614. The mounting assembly 610 carries both the trash whipping device and the coulter.
A front view of the assembly of Figure 24 is shown in Figure 25A with the trash whip disks removed revealing the triangular mount 620 and a pair of dual airbags 622 employed to raise and lower the trash whip in a manner as previously described for other embodiments. In Figure 253, a rear view is depicted showing single airbag 614 which may be utilized when desired to apply a downward force on coulter disk blade 606. When the downward force is released, the coulter device will simply ride along on top of the soil. As shown in Figure 24, the common mounting assembly 610 is connected to the planting device 600 by a pair of members 616 shown in Figure 25A.
Figures 26 and 27A and 27B depict rear perspective and front and back elevational views of a planter as in Figure 24 to which a trash whip is attached, together with an implement that combines a rolling basket with a coulter device. Both implements are mounted on the common mounting structure or assembly 610. The combination of rolling basket and coulter device 630 is carried by a pair of attachment members 632 which allow rotation of the coulter disk 606 and rolling basket sections 634 and 636 and also enable vertical 50 displacement by pivoting about joints as at 638. They are carried by a common shaft 640. As with the coulter embodiment of Figures 24 and 25B, combination device 630 is operated by a single down force deployment airbag 614.
Releasing the down force, of course, enables the device to simply roll along on top of the soil. This combination enables the planting operation to accomplish the actions of all three agricultural implements in a single pass.
Figures 28 and 29A and 29B depict a side elevation view showing a combination of a trash whipping implement 602 with a rolling basket 642 mounted to the common assembly 610 with the rolling basket having a down force only airbag deployment system 614 and the trash whipping device having dual-acting up/down airbags. As with the other down force only devices, when the down force is released from the airbag 614, the rolling basket 642 will simply float or roll along the surface of the ground in a harmless manner.
Figure 30 is a front perspective view showing a common mounting structure for the trash whip and rolling basket in which the rolling basket is deployed with a down force only airbag. The common mounting structure 610 includes a box shape 650 which receives the front end of two connecting members 616, the other end of which connects to a mounting plate 652 which, in turn, connects to the main planter device 600 using threaded connectors as at 654. Note that both the trash whip mount 620 and rolling basket 640 are connected through devices from the simple box structure 650. The structure 610 enables implements to be mounted both ahead of and behind the box configuration 650.
Figure 31 depicts a side elevational view in which a trash whipping device 602 and a rolling basket 640 are attached to a planter implement using two different spaced attachment assemblies 660 and 662, respectively.
Figure 32 depicts a front perspective view of the assembly of Figure 31. In this embodiment, the rowbasket 640 is deployed and retracted using a dual airbag system with airbag 664 shown in the perspective view. A
slightly enlarged side elevational view of the assembly of Figures 31 and 32 is depicted in Figure 33. The mounting system 666 shown for the trash whip device is quite similar to embodiments described earlier with regard to the use of the trash whip as a single device, as illustrated in Figures 20A-21C. Likewise, the mounting assembly 668 for the rolling basket 640 can be similar to that shown in Figures 14A-16. Such a mounting system, as shown in Figures 31-33, is particularly useful when combinations of soil-treating devices are added in tandem to existing planter combinations. A top view of the system of Figures 31-33 is shown in Figure 34 and, in that figure, both the rolling basket and trash whip devices are operated using a dual set of airbags so that both down force and up force are available in deploying and retracting the devices.
It should be noted that any of the implements shown deployed with down force only airbags could also be operated using a dual set of down force and up force airbags and, if desired, other devices can be used to deploy and retract any of the agriculture implements shown. The details of the connections and operation of the airbag deployment and retraction systems is similar to those described in earlier embodiments and need not be described in great detail here. As with other embodiments, the down force can be modulated as desired.
This invention has been described herein in considerable detail in order to comply with the patent statutes and to provide those skilled in the art with the information needed to apply the novel principles and to construct and use such specialized components as are required. However, it is to be understood that the invention can be carried out by specifically different equipment and devices, and that various modifications, both as to the equipment and operating procedures, can be accomplished without departing from the scope of the invention itself.
What is claimed is:

Claims (30)

-28-
1. A mounting system for carrying combinations of field-conditioning implements comprising:
(a) a mounting structure adapted to carry and selectively deploy a plurality of field-conditioning implements;
(b) a connected structure designed to fix the mounting structure in spaced relation to a prime agriculture implement; and (c) an actuator arrangement coupled between the mounting structure and an assembly adapted to pivot and deploy each of said plurality of field-conditioning implements.
2. The mounting system as in claim I wherein said prime agriculture implement is a seed planter, tow bar, or the like, adapted to be drawn by a tractor.
3. The mounting system as claimed in claim 1 wherein the plurality of field-conditioning implements are selected combinations from the group consisting of trash whipping devices, rolling baskets and coulter devices.
4. The mounting system as in claim 1 wherein the actuator arrangement comprises a pneumatic actuator arrangement.
5. The mounting system as in claim 4 wherein each of said plurality of the field-conditioning implements is deployed using a down force airbag.
6. The mounting system as in claim 5 wherein one or more of said plurality of field-conditioning implements has an actuator arrangement that includes a lifting airbag.
7. The mounting system as in claim 3 wherein one of the plurality of field conditioning implements combines a coulter blade with a dual section rolling basket.
8. The mounting system as claimed in claim 2 wherein the plurality of field-conditioning implements are selected combinations from the group consisting of trash whipping devices, rolling baskets and coulter devices.
9. The mounting system as in claim 3 wherein the actuator arrangement comprises a pneumatic actuator arrangement.
10. The mounting system as in claim 8 wherein the actuator arrangement comprises a pneumatic actuator arrangement.
11. The mounting system as in claim 10 wherein each of said plurality of the field-conditioning implements is deployed using a down force airbag.
12. The mounting system as in claim 11 wherein one or more of said plurality of field-conditioning implements has an actuator arrangement that includes a lifting airbag.
13. The mounting system as in claim 1 wherein each of said plurality of field-conditioning implement is carried by a separate mounting structure.
14. The mounting system as in claim 1 wherein said connecting structure includes one or more connecting members.
15. A mounting system for carrying at least one field-conditioning implement comprising:
(a) a mounting arrangement adapted to carry and selectively deploy at least one field-conditioning implement;
(b) a connecting structure designed to fix the mounting structure in spaced relation to a prime agriculture implement;

(c) a pneumatic actuator arrangement coupled between the mounting structure and an assembly adapted to pivot and deploy each of said at least one field-conditioning implement; and (d) wherein at least one field-conditioning implement is selected from the group consisting of trash whipping devices, rolling baskets and coulter devices and combinations thereof.
16. The mounting system as in claim 15 wherein one or more of said plurality of field-conditioning implements has an actuator arrangement that includes a lifting airbag.
17. The mounting system as in claim 15 including a field-conditioning implement combines a coulter blade with a dual section rolling basket.
18. A method of conditioning a field for planting comprising treating a field in a single pass using a plurality of field-conditioning implements in combination wherein said implements are selected from the group consisting of trash whipping devices, rolling baskets and coulter devices attached to and ahead of a seed planter.
19. The mounting system as in claim 15 comprising:
an adjustable attachment mechanism suitable for attaching trash whipping disks further comprising:
(a) a mounting structure including a plate adapted to be fixed to a seed planter, tow bar, or the like, that is adapted to be drawn by a tractor;
(b) a pair of arms pivotally attached to the mounting structure in parallel, spaced relation flanking said implement, said arms extending away from the mounting plate;
(c) a lower assembly including a main cross member connected between said pair of arms; and (d) a triangular mount suitable for carrying a pair of trash whipping disks fixed to said cross member.
20. The mounting system as in claim 19 further comprising a pneumatic actuator arrangement operatively coupled between the mounting structure and said lower assembly for selectively raising and lowering the mount relative to the ground.
21. The mounting system as in claim 19 wherein said pneumatic actuator arrangement includes down force and lift air bags operably attached to said lower assembly by spaced shoulder bolts, each being attached to a fulcrum member connected to said lower assembly connected between said pair of arms.
22. The mounting system as claimed in claim 21 wherein said down force air bag is mounted between a pivotally mounted bottom pedestal and a fixed upper bracket, said bottom pedestal being connected to spaced fulcrum members by shoulder bolts.
23. The mounting system as in claim 21 wherein said lift air bag is mounted between a moving upper U-shaped bracket and a bent flange member, said U-shaped bracket having legs connected to said lower assembly by fulcrum plates and shoulder bolts.
24. The mounting system as in claim 21 wherein said pneumatic actuator arrangement includes an electronic and a manual regulator.
25. The mounting system as in claim 21 wherein said air bags can be operated such that inflation of said lift air bag causes deflation and collapse of said down force air bag to cause the triangular mount and any attached disks to be raised out of contact with the ground.
26. The mounting system as in claim 21 wherein said air bags can be operated such that air can be supplied to both said lift and said down force air bags at the same time and the resulting net up or down force can be modulated to a desired value.
27. The mounting system as in claim 19 wherein said pair of arms are connected to pivot on a pair of spaced shoulder bolts.
28. The mounting system as in claim 19 including a pair of trash whipping disks mounted on said triangular mount.
29. A method of operating a trash whipping implement attached to a seed planter comprising adjusting the net force of the trash whipping implement against the ground as desired using a pneumatic actuator system.
30. The method as in claim 29 wherein the net force is adjusted by modulating relative air pressure in down force and lift air bags.
CA2838954A 2011-06-13 2011-10-20 Soil tilling and planting implement Active CA2838954C (en)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US13/158,732 US8528656B2 (en) 2009-04-30 2011-06-13 Soil tilling and planting implement
US13/158,732 2011-06-13
US13/194,524 2011-07-29
US13/194,524 US8601961B2 (en) 2009-04-30 2011-07-29 Soil tilling and planting implement
US13/249,708 2011-09-30
US13/249,708 US8820251B2 (en) 2009-04-30 2011-09-30 Soil tilling and planting implement
PCT/US2011/057076 WO2012173644A1 (en) 2011-06-13 2011-10-20 Soil tilling and planting implement

Publications (2)

Publication Number Publication Date
CA2838954A1 CA2838954A1 (en) 2012-12-20
CA2838954C true CA2838954C (en) 2015-06-16

Family

ID=47357395

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2838954A Active CA2838954C (en) 2011-06-13 2011-10-20 Soil tilling and planting implement

Country Status (3)

Country Link
CA (1) CA2838954C (en)
MX (1) MX339833B (en)
WO (1) WO2012173644A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2807551C1 (en) * 2023-02-06 2023-11-16 Федеральное государственное бюджетное образовательное учреждение высшего образования "Ульяновский государственный аграрный университет имени П.А. Столыпина" Tillage roller

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7156186B2 (en) * 2002-02-02 2007-01-02 Cnh America Llc Strip-till conditioning rotary reel
US7451712B2 (en) * 2004-05-12 2008-11-18 Dawn Equipment Company Agricultural tillage device
US7575066B2 (en) * 2004-09-28 2009-08-18 Environmental Tillage Systems, Inc. Zone tillage tool and method
US7594546B2 (en) * 2007-03-23 2009-09-29 Krause Corporation Chain reel for tillage implement

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2807551C1 (en) * 2023-02-06 2023-11-16 Федеральное государственное бюджетное образовательное учреждение высшего образования "Ульяновский государственный аграрный университет имени П.А. Столыпина" Tillage roller

Also Published As

Publication number Publication date
MX339833B (en) 2016-06-14
CA2838954A1 (en) 2012-12-20
WO2012173644A1 (en) 2012-12-20
MX2013014366A (en) 2014-04-30

Similar Documents

Publication Publication Date Title
US8820251B2 (en) Soil tilling and planting implement
US9282689B2 (en) Soil tilling and planting implement
CA2841309C (en) Row treating unit for agriculture implement
US8826836B2 (en) Row treating unit for agriculture implement
CA2919581C (en) Soil cultivation implement with a device for reconsolidation
US4519460A (en) Compaction and support apparatus
US9775278B2 (en) Rolling basket down pressure adjustment system
EP2051576B1 (en) Improved seed drill
CA2838928C (en) Soil tilling and planting implement
CA2838954C (en) Soil tilling and planting implement
CA2708511C (en) Soil tilling and planting implement
US20060042806A1 (en) Tillage apparatus having flexible frame and weight distribution system
RU48142U1 (en) Soil cultivating tool
BRPI1002196B1 (en) PREPARATION AND SOIL PLANTING IMPLEMENT

Legal Events

Date Code Title Description
EEER Examination request

Effective date: 20131210