CA2836170A1 - Apparatus and method for adjusting air pressure of room - Google Patents

Apparatus and method for adjusting air pressure of room Download PDF

Info

Publication number
CA2836170A1
CA2836170A1 CA2836170A CA2836170A CA2836170A1 CA 2836170 A1 CA2836170 A1 CA 2836170A1 CA 2836170 A CA2836170 A CA 2836170A CA 2836170 A CA2836170 A CA 2836170A CA 2836170 A1 CA2836170 A1 CA 2836170A1
Authority
CA
Canada
Prior art keywords
air
room
vent
pressure
receive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA2836170A
Other languages
French (fr)
Inventor
Tommi Arpomaa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CA2836170A1 publication Critical patent/CA2836170A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/0001Control or safety arrangements for ventilation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/02Ducting arrangements
    • F24F13/0236Ducting arrangements with ducts including air distributors, e.g. air collecting boxes with at least three openings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/08Air-flow control members, e.g. louvres, grilles, flaps or guide plates
    • F24F13/10Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers
    • F24F13/14Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers built up of tilting members, e.g. louvre
    • F24F13/1426Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers built up of tilting members, e.g. louvre characterised by actuating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H3/00Air heaters
    • F24H3/02Air heaters with forced circulation
    • F24H3/04Air heaters with forced circulation the air being in direct contact with the heating medium, e.g. electric heating element
    • F24H3/0405Air heaters with forced circulation the air being in direct contact with the heating medium, e.g. electric heating element using electric energy supply, e.g. the heating medium being a resistive element; Heating by direct contact, i.e. with resistive elements, electrodes and fins being bonded together without additional element in-between
    • F24H3/0411Air heaters with forced circulation the air being in direct contact with the heating medium, e.g. electric heating element using electric energy supply, e.g. the heating medium being a resistive element; Heating by direct contact, i.e. with resistive elements, electrodes and fins being bonded together without additional element in-between for domestic or space-heating systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/0001Control or safety arrangements for ventilation
    • F24F2011/0002Control or safety arrangements for ventilation for admittance of outside air
    • F24F2011/0005Control or safety arrangements for ventilation for admittance of outside air to create underpressure in a room, keeping contamination inside
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/40Pressure, e.g. wind pressure

Abstract

An apparatus and method for adjusting air pressure of a room. The apparatus comprises an air receive duct (4) arranged to receive air from the room (2), an air distribution casing (5) connected to the receive duct (4), first and second air vents (6, 7) connected to the air distribution casing (5) and arranged to convey air coming from the receive duct (4) out of the apparatus (1), and a control means (8) arranged to adjust the flow resistance of the second air vent (7) in relation to that of the first air vent (6).

Description

Apparatus and method for adjusting air pressure of room Background [0001] The invention relates to an apparatus for adjusting air pres-sure of a room.
[0002] The invention further relates to a method for adjusting air pressure of a room.
[0003] As is well known, low-pressure devices are used on building and renovation sites to prevent dust from spreading to the surroundings of the work site.
[0004] According to regulations, low-pressure devices must be equipped with air filters. Generally, filtration of at least HEPA H13 grade is used. Low pressure is formed by blowing the filtered air out of the work site.
[0005] Microfiltration-generated low pressure on work sites has long been used especially on work sites where asbestos-containing structures are demolished. However, the use of microfiltration has also spread to work sites, in which stone dust, including concrete dust, is created, because all stone dust may cause a health risk. Studies show that quartz particles, for instance, cor-respond to asbestos in health hazards.
[0006] Regulations concerning dust control are tightened all the time. In the renovation of public sites, in particular, the current practice is al-ready to observe the P1 classification, according to which low pressure should be used in the work space and the air in the work space should be filtered 6 to times an hour. The targeted low pressure is 8 to 10 Pa below the air pres-sure of the surroundings.
[0007] The output capacity of a low-pressure air purification device handling the filtration and generating the low pressure shall naturally be calcu-lated on the basis of the cubic volume of the space being purified. For in-stance, if the air volume of the site being renovated is 13 000 m3, the purifica-tion capacity needs to be at least 6 x 13 000 = 78 000 m3/h.
[0008] A low-pressure device lowers the air pressure in the space to substantially lower than the targeted low pressure, the pressure difference may be 50 to 60 Pa, for example, in comparison to the surroundings. This may cause problems. Firstly, a big pressure difference makes air control in the space and the opening of access doors and the like difficult. Secondly, remov-ing a large amount of air from a space may cause a very high heat loss, espe-cially in winter. After all, warm air is removed, the replacement air of which needs to be heated.
Brief description
[0009] The apparatus and method for adjusting the air pressure of a room according to the invention are characterised by what is disclosed in the characterising parts of the independent claims. Other embodiments of the in-vention are characterised by what is disclosed in the other claims.
[0010] Inventive embodiments are also disclosed in the specification and drawings of this application. The inventive contents of the application may also be defined in ways other than those described in the following claims.
The inventive contents may also consist of several separate inventions, particularly if the invention is examined in the light of expressed or implicit sub-tasks or in view of obtained benefits or benefit groups. In such a case, some of the defini-tions contained in the following claims may be unnecessary in view of the sep-arate inventive ideas. Features of the different embodiments of the invention may be applied to other embodiments within the scope of the basic inventive idea.
[0011] In the following, features of some embodiments of the inven-tion are listed in a random order:
[0012] The idea of an embodiment is that a control means compris-es a control plate that is fastened turnably to an air distribution casing in such a manner that it can be turned in front of a second air vent. This provides the advantage that the control plate is simple to implement and provides an exten-sive adjustment range.
[0013] The idea of an embodiment is that the control means is ar-ranged to be adjusted manually and that an element reducing its motion sensi-tivity is arranged to it. This provides the advantage that manual adjustment can be done at low cost, and the element reducing motion sensitivity facilitates the adjustment of the apparatus.
[0014] The idea of an embodiment is that the control means is con-nected to be controlled by a control unit and that the control unit is connected to a pressure difference sensor detecting pressure difference in the room and its surroundings. This provides the advantage that adjustment does not require the presence of personnel and that the pressure difference can be kept as de-sired all the time.
[0015] The idea of an embodiment is that a second air vent is ar-ranged to return air to the room and that the second air vent comprises a heat-er for heating the flowing air. This provides the advantage that the room can be heated by means of the returned air.
[0016] The idea of an embodiment is that the heater comprises an electric resistor. This provides the advantage that the electric resistor provides a simple and safe means of heating air.
[0017] The idea of an embodiment is that the apparatus comprises an air filter unit that is arranged in front of an air receive duct as seen in the flow direction, and a fan that is arranged to generate air flow through the appa-ratus. This provides the advantage that it is possible to take care of the ad-justment of the air pressure level in the room and the filtration with the same apparatus.
[0018] The idea of an embodiment is that the air filter unit and fan are arranged in a low-pressure air purification device and that the apparatus comprises fastening means for fastening the air receive duct detachably and in a substantially air-tight manner to the low-pressure air purification device.
This provides the advantage that the apparatus can be transported in smaller units and that, if necessary, the low-pressure air purification device can be used without the apparatus.
[0019] The idea of an embodiment is that the second air vent is equipped with a pipe output fitting that is attachable to the air duct for convey-ing air away from the air distribution casing. This provides the advantage that the second air vent is easily attached to the ventilation ducts of the room, for instance.
Brief description of the figures
[0020] Some embodiments of the solution are explained in more de-tail in the accompanying drawings, in which Figure 1 is a schematic representation of an apparatus and method for adjusting the air pressure of a room, and Figure 2 is a schematic representation of a second apparatus and method for adjusting the air pressure of a room.
[0021] For the sake of clarity, the figures show some embodiments of the solution in a simplified manner. Like reference numerals identify like el-ements in the figures.

Detailed description
[0022] Figure 1 is a schematic representation of an apparatus and method for adjusting the air pressure of a room.
[0023] The apparatus 1 is arranged in the room 2 that is separated in a substantially air-tight manner from its surroundings with an air-tight bound-ary 3. The apparatus 1 is shown by a dot-and-dash line in the figure.
[0024] In this specification, a room refers to an entity of one or more rooms or corresponding spaces, which is isolated from its surroundings in a substantially dust- and air-tight manner so that it is possible to form a pressure difference to its surroundings.
[0025] The boundary 3 can be made up of parts of a building, such as walls, windows, floor, ceiling, and/or material, such as plastic film, tape, temporary non-bearing wall structures, added for sealing purposes.
[0026] The apparatus 1 comprises an air receive duct 4 arranged to receive air from the room 2. The receive duct 4 is at its simplest an opening in the device, but may naturally also comprise a suitably dimensioned pipe por-tion or the like.
[0027] In the embodiment shown in Figure 1, the air of the room 2 flows through a low-pressure air purification device 17 before arriving in the receive duct 4. The low-pressure air purification device 17 is described in more detail later on in this specification.
[0028] Air flows from the air receive duct 4 to an air distribution cas-ing 5. In addition to the air receive duct 4, also a first air vent 6 and a second air vent 7 are connected to the air distribution casing 5.
[0029] The air vents 6, 7 are arranged to convey air flowing from the receive duct 4 to the air distribution casing 5 out of the apparatus 1.
[0030] The first air vent 6 is arranged to convey air outside the room 2, such as to an adjacent room or out of the building. The second air vent 7 conveys air to the room 2, in other words, back to the space, from which it was removed.
[0031] Both the receive duct 4 and the air vent 6, 7 may be a simple opening, or it may comprise a suitably dimensioned pipe portion or the like.
[0032] A control means 8 is arranged in the air distribution casing 5 to adjust the flow resistance of the second air vent 7 in relation to the first air vent 6.
[0033] In the embodiment shown in Figure 1, the control means 8 is arranged to adjust the flow surface area of the second air vent 7. In a second embodiment, the control means 8 is arranged to adjust the flow surface area of the first air vent 6, and in a third embodiment, the control means 8 is arranged to adjust the flow surface area of both the first and the second air vent 6.
[0034] According to an idea, the control means 8 can be arranged elsewhere than in the air distribution casing 5, in either or both air vents 6, 7, for example.
[0035] The control means 8 now comprises a control plate or damper 9 that is fastened to the air distribution casing 5 to be turnable in rela-tion to the second air vent 7. Instead of the control plate 9, a guillotine, register, rotatable valve disc or some other known air flow control means can also be used.
[0036] The second air vent 7 can be completely closed with the con-trol plate 9, or the air flowing through it can be restricted so as to obtain the desired ratio of air flowing out of the apparatus through the different air vents 6, 7.
[0037] In an embodiment of the apparatus and method, the position of the control plate 9 is adjusted manually. In such a case, an element 10 that reduces the motion sensitivity of the control plate, such as a gas spring or fric-tion mechanism, is connected to the control plate. This prevents an uncon-trolled movement of the control plate 9 when the control plate 9 is adjusted in a strong air flow. When the correct position of the control plate 9 has been found, it is locked into this position with a suitable locking member.
[0038] In the embodiment shown in Figure 1, the position of the control plate 9 is arranged to be adjusted by a control unit 11 that controls an actuator, such as an electric motor, used in turning the control plate.
[0039] The control unit 11 may comprise a programmable logic and/or processor, for instance, that executes a computer program code down-loaded into the control unit. A pressure difference sensor 12 detecting a pres-sure difference between the room 2 and its surroundings is connected to the control unit 11.
[0040] The control unit 11 adjusts the position of the control plate 9 in such a manner that said pressure difference remains as desired. According to an idea, the pressure in the room 2 is approximately 8 to 10 Pa below the air pressure of the surroundings, but it should be noted that the pressure differ-ence could also be other than this.
[0041] If the pressure difference exceeds a certain pre-set limit val-ue, the control unit 11 turns the control plate 9 clockwise in the figure, which increases the ratio of air volume flow returning to the room 2 in relation to the air flow volume removed from the room 2.
[0042] If the pressure difference becomes smaller than a certain pre-set limit value, the control unit 11 turns the control plate 9 counter-clockwise in the figure, which decreases the ratio of air volume flow returning to the room 2 in relation to the air flow volume removed from the room 2.
Thus, the apparatus 1 is controlled automatically.
[0043] According to a third embodiment, the position of the control plate 9 is changed by an actuator, such as an electric motor, that is operated by a person responsible for the adjustment of the apparatus.
[0044] Thus, the control of the apparatus 1 can be manual or at least to some extent automatic. In a fully automatic solution, the use of the air flow controllers can be controlled on the basis of information obtained from various measuring arrangements. Said measuring arrangements can be based on measuring pressure difference, air pressure, air flow or the like. The opera-tion of air flow control motors of the apparatus 1 is controlled by means of the measuring arrangements. According to an idea, the above-mentioned measur-ing arrangements are measurement sensors that are fixedly attached to the apparatus and measure pressure differences or the like through a flow pipe and thus control the air flow. The measuring and control apparatuses may also be measurement sensors or systems based on a radio signal, gsm signal or some other digital data transmission, which control the operation of the air flow control plates of the device.
[0045] It should be noted that the above alternatives for turning the control plate 9 can also be applied to control means 8 of other type.
[0046] The apparatus 1 can be equipped with a heating device 13 to heat the air flowing in the second air vent 7. In the embodiment shown in Figure 1, the heating device 13 comprises an electric resistor 14, but it is also possible to use a heat exchanger connected to the water circulation, an oil-or gas-operated heater or a heater utilizing wood- or plant-based energy, such as a wood, pellet, chip or bio-oil heater.
[0047] The apparatus 1 is connected to a low-pressure air purifica-tion device 17 that comprises an air filter unit 15, through which air removed from the room 2 flow into the apparatus 1. The air filter unit 15 may comprise one or more filter elements arranged in series. In an embodiment, the air filter unit 15 comprises a filter element of HEPA H13-grade or higher.
[0048] The low-pressure air purification device 17 also comprises a fan 16 that produces an air flow required in the operation of the apparatus 1 and low-pressure purification device 17. The fan 16 is typically an electric fan.
The capacity of the fan 16 is dimensioned to achieve the necessary air flow.
According to an idea, the capacity is enough to filter the room 2 air 6 to 10 times an hour. The replacement air of the room 2 can be taken from outside the building or inside the building, but outside the room 2. The present inven-tion brings about an especially big cost saving during the heating period, be-cause the amount of cold replacement air from outdoors can be reduced. In addition, this provides the advantage that any temporary building heaters in the room 2 operate with the higher operating efficiency, the higher the temper-ature of the replacement air coming to them is.
[0049] The apparatus 1 comprises fastening means 18, with which the air receive duct 4 can be detachably and substantially air-tightly fastened to the vent of the low-pressure purification device 17. Thanks to the fastening means 18, the apparatus 1 and low-pressure purification device 17 can be moved and transported separately and only connected to each other in the room 2. To move the apparatus, it can be equipped with wheels 20. If neces-sary, the low-pressure air purification device 17 can also be used without the apparatus 1.
[0050] The second air vent 7 of the apparatus 1 is equipped with a pipe output fitting 19 that is dimensioned for connection to any generally used ventilation pipe. This way, the air in the air vent 7 can be conveyed away from the apparatus 1. According to an idea, the second air vent 7 is connected to a normal ventilation duct 21 of the room 2, which is isolated from the ventilation machine of the room by plugging, for instance. This way, the heat of the return air and the pressure equalization gain can be evenly distributed in the room 2, which is advantageous in large and multiform rooms, in particular. Another ad-vantage may be derived from the fact that the ventilation ducts of the room 2 can be kept under overpressure all the time, in which case any dust caused by an operation in the room 2 will not enter the ventilation ducts.
[0051] Figure 2 is a schematic representation of a second appa-ratus and method for adjusting the air pressure of a room.
[0052] The principle of the apparatus 1 and method does not differ per se from what is shown in Figure 1, but now the air filter unit 15 and fan are accommodated in the same shell with the air distribution casing 5. This way, the apparatus 1 forms an assembly that is capable of independent opera-tion, can be used to adjust the pressure difference between the room 2 and its surroundings and purifies the air in the room 2.
[0053] Heat recovery 22, with which thermal energy is recovered from the air removed from the room 2, can be arranged in the first air vent 5.

This thermal energy can be utilized in heating the air flowing in the second air vent 7, for instance. It should be noted that heat recovery 22 can also be ar-ranged in the apparatus shown in Figure 1 and those described in its descrip-tion.
[0054] In some cases, features disclosed in this application may be used as such, regardless of other features. On the other hand, when neces-sary, features disclosed in this application may be combined in order to provide different combinations.
[0055] In summary, the apparatus of the invention is characterised in that it comprises an air receive duct that is arranged to receive air from the room, an air distribution casing connected to the receive duct, first and second air vents connected to the air distribution casing and arranged to convey air coming from the receive duct out of the apparatus, and a control means ar-ranged to adjust the flow resistance of the second air vent in relation to that of the first air vent.
[0056] Further, it can be noted that the method of the invention is characterised by connecting the air receive duct to receive air from the room, conveying air from the receive duct to the air distribution casing, conveying a first part of the air from the air distribution casing to the first air vent and through it out of the room, and conveying a second part of the air from the air distribution casing to the second air vent and through it back to the room, and adjusting the flow resistance of the second air vent in relation to that of the first air vent.
[0057] The drawings and the related description are only intended to illustrate the idea of the invention. It is apparent to a person skilled in the art that the invention is not restricted to the embodiments described above, in which the invention is described by means of some examples, but many modi-fications and different embodiments of the invention are possible within the scope of the inventive idea defined in the following claims.

Reference numerals 1 apparatus 2 room 3 air tight boundary 4 air receive duct 5 air distribution casing 6 first air vent 7 second air vent 8 control means 9 control plate 10 element reducing motion sensitivity 11 control unit 12 pressure difference sensor 13 heating device 14 electric resistor air filter unit 16 fan 17 low-pressure air purification device 18 fastening means 19 pipe output fitting wheel 21 room ventilation duct 22 heat recovery

Claims (15)

Claims
1. An apparatus for adjusting the air pressure of a room, comprising:
an air receive duct arranged to receive air from the room, an air distribution casing connected to the receive duct, first and second air vents connected to the air distribution casing and arranged to convey air coming from the receive duct out of the apparatus, and a control means arranged to adjust the flow resistance of the sec-ond air vent in relation to that of the first air vent.
2. An apparatus as claimed in claim 1, wherein the control means comprises a control plate that is fastened turnably to the air distribution casing to be turnable in front of the second air vent.
3. An apparatus as claimed in claim 1 or 2, wherein the control means is arranged to be manually adjusted and that an element reducing its motion sensitivity is arranged to it.
4. An apparatus as claimed in claim 1, wherein control means is connected to be controlled by a control unit and that the control unit is con-nected to a pressure difference sensor detecting the pressure difference in the room and its surroundings.
5. An apparatus as claimed in claim 1, wherein the first air vent is arranged to convey air outside the room and the second air vent to return air to the same room.
6. An apparatus as claimed in claim 1, wherein the second air vent comprises a heater for heating the flowing air.
7. An apparatus as claimed in claim 6, wherein the heater compris-es an electric resistor.
8. An apparatus as claimed in claim 1, comprising an air filter unit that is arranged in front of the air receive duct in the flow direction, and a fan that is arranged to generate the air flow flowing through the apparatus.
9. An apparatus as claimed in claim 8, wherein the air filter unit and fan are arranged in the low-pressure air purification device and that the appa-ratus comprises fastening means for fastening the air receive duct detachably and substantially air-tightly to the low-pressure air purification device.
10. An apparatus as claimed in claim 1, wherein the second air vent is equipped with a pipe output fitting that is connectable to the air channel for conveying air away from the air distribution casing.
11. An apparatus as claimed in claim 1, wherein heat recovery is ar-ranged in the first air vent.
12. A method for adjusting the air pressure of a room, the method comprising:
connecting an air receive duct to receive air from the room, conveying air from the air receive duct to an air distribution casing, conveying a first part of the air from the air distribution casing to a first air vent and through it away from said room, and conveying a second part of the air from the air distribution casing to a second air vent and through it back to said room, and adjusting the flow resistance of the second air vent in relation to the flow resistance of the first air vent.
13. A method as claimed in claim 12, comprising controlling a con-trol means with a control unit by means of a pressure difference sensor detect-ing the pressure difference in the room and its surroundings.
14. A method as claimed in claim 12, comprising heating the air flowing through the second air vent.
15. A method as claimed in claim 12, comprising conveying air first to an air filter unit for purification and the purified air then to the receive duct.
CA2836170A 2012-12-13 2013-12-10 Apparatus and method for adjusting air pressure of room Abandoned CA2836170A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FI20126303 2012-12-13
FI20126303A FI125673B (en) 2012-12-13 2012-12-13 Apparatus and method for controlling the air pressure in a room space

Publications (1)

Publication Number Publication Date
CA2836170A1 true CA2836170A1 (en) 2014-06-13

Family

ID=49911124

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2836170A Abandoned CA2836170A1 (en) 2012-12-13 2013-12-10 Apparatus and method for adjusting air pressure of room

Country Status (4)

Country Link
US (1) US20140170953A1 (en)
EP (1) EP2743598B1 (en)
CA (1) CA2836170A1 (en)
FI (1) FI125673B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6721241B2 (en) * 2017-03-01 2020-07-08 株式会社イシダ Goods sorting system
KR102145359B1 (en) * 2020-01-02 2020-08-28 (주) 한독크린텍 Cabin filter unit

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63238350A (en) * 1987-03-25 1988-10-04 Hitachi Ltd Indoor negative pressure control system
US4841733A (en) * 1988-01-07 1989-06-27 Dussault David R Dri-Pc humidity and temperature controller
GB2260793A (en) * 1991-10-23 1993-04-28 Colt Int Licensing Apparatus for braking a member, particularly an opening ventilator flap biased to one of two positions
JP2001020547A (en) * 1999-07-12 2001-01-23 Aiken Kogyo Kk Smoking room with air cleaner
US7059536B2 (en) * 2002-07-19 2006-06-13 Mestek, Inc. Air circulation system
GB2392092B (en) * 2002-08-19 2006-06-21 Tri Air Innovations Ltd Fire damper
US7251953B2 (en) * 2004-07-27 2007-08-07 Air Innovations, Inc. Environmental control unit for hospital room
US7484668B1 (en) * 2005-10-03 2009-02-03 Building Protection Systems, Inc. Building protection system and method
US7758407B2 (en) * 2006-09-26 2010-07-20 Siemens Industry, Inc. Ventilation control based on occupancy
US8326464B2 (en) * 2008-08-29 2012-12-04 Trane International Inc. Return fan control system and method
JP5859960B2 (en) * 2009-07-17 2016-02-16 テクニカル ユニバーシティ オブ デンマークTechnical University Of Denmark Devices and methods for reducing the spread of microorganisms and health hazards in the air and / or for protecting against microorganisms and health hazards in the air
WO2011063144A1 (en) * 2009-11-19 2011-05-26 Fipak Research And Development Company Method and apparatus for operating ducted fumehoods with increased energy efficiency

Also Published As

Publication number Publication date
EP2743598B1 (en) 2020-10-21
US20140170953A1 (en) 2014-06-19
EP2743598A2 (en) 2014-06-18
EP2743598A3 (en) 2018-04-04
FI125673B (en) 2016-01-15
FI20126303A (en) 2014-06-14

Similar Documents

Publication Publication Date Title
CN107152744B (en) Air interchanger
CA3014479C (en) Integrated heat and energy recovery ventilator system
KR102056470B1 (en) Indoor environment control system
US8689580B2 (en) Air conditioning/dehumidifying unit
US6514138B2 (en) Demand ventilation module
US20120137876A1 (en) Room air purifier
CN106594920A (en) Automatic control system for air conditioner for clean workshop
KR102287901B1 (en) Ventilator
US11633688B2 (en) HEPA air filtration with an air handling device
CN106440222A (en) Cleaning air conditioner system and control method of cleaning air conditioner system
CN101668994B (en) Air conditioning system and method of controlling the same
CN106440118A (en) Dehumidifying and oxygen purifying system
KR101539594B1 (en) Ventilation energy saving air conditioner
KR101221240B1 (en) Control method of total heat recovery ventilator with outdoor air cooling function
CA2836170A1 (en) Apparatus and method for adjusting air pressure of room
CN106949592B (en) External air volume distribution system
KR100760177B1 (en) Constant air volume waste heat recovery ventilating device
KR20170050207A (en) Air Quality Meter works with water distribution the air conditioning system
KR102068698B1 (en) a adjusting device of indoor pressure of building
JP2014009823A (en) Air-conditioning device
KR20170050206A (en) Air Quality Meter works with the air conditioning system
Kettler Controlling minimum ventilation volume in VAV systems.
CN207455745U (en) A kind of fresh air system for purifying PM2.5
KR102397618B1 (en) Hybrid ventilation system that combines natural ventilation and mechanical ventilation
CN207214335U (en) Air inlet purifies ventilation unit

Legal Events

Date Code Title Description
EEER Examination request

Effective date: 20181115

FZDE Discontinued

Effective date: 20210831

FZDE Discontinued

Effective date: 20210831