CA2813910C - Circuit tracing using a focused ion beam - Google Patents

Circuit tracing using a focused ion beam Download PDF

Info

Publication number
CA2813910C
CA2813910C CA2813910A CA2813910A CA2813910C CA 2813910 C CA2813910 C CA 2813910C CA 2813910 A CA2813910 A CA 2813910A CA 2813910 A CA2813910 A CA 2813910A CA 2813910 C CA2813910 C CA 2813910C
Authority
CA
Canada
Prior art keywords
integrated circuit
image
node
ion beam
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CA2813910A
Other languages
French (fr)
Other versions
CA2813910A1 (en
Inventor
Chris Pawlowicz
Alexander Sorkin
Michael W. Phaneuf
Alexander Krechmer
Ken G. Lagarec
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TechInsights Inc
Original Assignee
TechInsights Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TechInsights Inc filed Critical TechInsights Inc
Priority to CA2813910A priority Critical patent/CA2813910C/en
Priority to CN201611060195.4A priority patent/CN106842001B/en
Priority to CN201410164753.6A priority patent/CN104122282B/en
Publication of CA2813910A1 publication Critical patent/CA2813910A1/en
Application granted granted Critical
Publication of CA2813910C publication Critical patent/CA2813910C/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/302Contactless testing
    • G01R31/303Contactless testing of integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76886Modifying permanently or temporarily the pattern or the conductivity of conductive members, e.g. formation of alloys, reduction of contact resistances
    • H01L21/76892Modifying permanently or temporarily the pattern or the conductivity of conductive members, e.g. formation of alloys, reduction of contact resistances modifying the pattern
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/245Detection characterised by the variable being measured
    • H01J2237/24564Measurements of electric or magnetic variables, e.g. voltage, current, frequency
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/245Detection characterised by the variable being measured
    • H01J2237/24592Inspection and quality control of devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/317Processing objects on a microscale
    • H01J2237/31749Focused ion beam

Abstract

Methods and systems for tracing circuitry on integrated circuits using focused ion beam based imaging techniques. A first component or node on an integrated circuit is coupled to a second component or node on the same integrated circuit. After an external bias is applied to the first component or node, a focused ion beam is applied to the integrated circuit and an image is taken using an electron detector. The features or components on the integrated circuit which are coupled to the second component or node will show up in high contrast on the resulting image. The method may also involve applying a bias to a node or component and then using focused ion beam imaging techniques (through an electron detector) to arrive at an image of the integrated circuit. Components coupled to the node will appear in high contrast in the resulting image.

Description

CIRCUIT TRACING USING A FOCUSED ION BEAM
TECHNICAL FIELD
The present invention relates to circuit tracing. More specifically, the present invention relates to methods and systems for use in tracing circuit connections on an integrated circuit using a focused ion beam to capture an image of the circuit.
BACKGROUND OF THE INVENTION
The technological revolution of the late 20th and early 21st century has put a premium on competitive corporate intelligence. Companies, especially those involved in high tech, seek to determine what their competitors are putting in their latest products. To this end, integrated circuits, especially high value, cutting edge microchips, are constantly being reverse engineered, analyzed, and dissected to determine what are their internal structures and interconnections.
Currently, the dissection and analysis of integrated circuits involves a painstaking, laborious process. Each layer in a multi-layer microchip is carefully exposed and imaged/photographed. A mosaic of the images is then created and the traces are then laboriously traced to determine which feature is interconnected with which component. As can be imagined, this resource-intensive process can lead to mistakes as features and areas which may not be of interest may need to be imaged and analyzed, simply to ensure that the features of interest are covered.

There is therefore a need for systems, methods, and devices which can reduce the effort required to trace circuits and interconnects on integrated circuits.
SUMMARY OF INVENTION
The present invention provides methods and systems for tracing circuitry on integrated circuits using focused ion beam based imaging techniques. A first component or node on an integrated circuit is coupled to a second component or node on the same integrated circuit. An external bias is then applied to the first component or node. A focused ion beam is applied to the integrated circuit and an image is taken using an electron detector. The features or components on the integrated circuit which are coupled to the second component or node will show up in high contrast on the resulting image. The method can be used in an iterative process to identify which components are coupled to which features on the integrated circuit. The method may also involve applying a bias to a node or component and then using focused ion beam imaging techniques (through an electron detector) to arrive at an image of the integrated circuit. Other components or nodes coupled to the node or component to which the bias was applied will appear in high contrast on the resulting image.
In a first aspect, the present invention provides a method for imaging circuitry on an integrated circuit, the method comprising:
a) coupling a first part of said integrated circuit with a second part of said integrated circuit;
-2-b) applying a bias voltage to said first part;
c) exposing said integrated circuit to a focused ion beam; and d) gathering an image of said integrated circuit using an electron detector;
wherein said first part and said second part are not coupled through said integrated circuit; and wherein said image gathered in step d) has at least one portion in high contrast compared to a rest of said image, said at least one portion being a portion of said integrated circuit which is coupled to said second part of said integrated circuit.
In a second aspect, the present invention provides a method for tracing interconnections in an integrated circuit, the method comprising:
a) removing layers of said integrated circuit to expose components of said integrated circuit;
b) coupling a first node of said integrated circuit to a second node of said integrated circuit;
c) applying an external bias voltage to said first node;
d) capturing an image of at least a portion of said integrated circuit using a focused ion beam and an electron detector;
-3-e) determining which components of said integrated circuit are illustrated in high contrast in said image;
wherein, prior to step b), said first node and second node are not coupled to one another through said integrated circuit.
In a third aspect, the present invention provides a method for imaging circuitry on an integrated circuit, the method comprising:
a) applying an external electrical bias on to a first portion of said integrated circuit;
b) exposing said integrated circuit to a focused ion beam;
c) gathering an image of said integrated circuit;
wherein said image gathered in step c) shows a second portion of said integrated circuit which is in high contrast compared to a rest of said image, said first and second portions being interconnected through a common path in said integrated circuit.
In a fourth aspect, the present invention provides a method for tracing interconnections of electrical circuitry in a sample, the method comprising.
a) applying an external bias voltage to a first node of said electrical circuitry;
b) exposing said sample to a focused ion beam; andc)
-4-capturing an image of at least a portion of said sample using a focused ion beam and an electron detector; and wherein said image gathered in step c) shows a second portion of said electrical circuitry that is in high contrast compared to a rest of said image, said first and second portions being interconnected through a common path in said sample.
In a fifth aspect, the present invention provides a method for tracing interconnections of electrical circuitry in a sample, the method comprising:
a) coupling a first node of said electrical circuitry to a second node of said electrical circuitry;
b) applying an external bias voltage to said first node;
C) capturing an image of at least a portion of said sample using a focused ion beam and an electron detector;
d) determining which components of said electrical circuitry are illustrated in high contrast in said image;
and wherein, prior to step a), said first node and second node are not coupled to one another through said sample.
In a sixth aspect, the present invention provides a method for
-5-a derived digital representation of an interconnected electrical circuitry in a sample, said derived digital representation being derived from at least one sample image, said at least one sample image is captured by a focused ion beam device using a focused ion beam and a detector while an external bias voltage is applied to a portion of the interconnected electrical circuitry of the sample, wherein the detector identifies portions of the sample characterized by different concentrations of secondary particles received from said sample.
In a seventh aspect, the present invention provides a system for tracing interconnections of electrical circuitry in a sample, the system comprising:
a focused ion beam device for directing a focused ion beam at a sample;
a detector for detecting particles from the sample during operation of the focused ion beam device;
a bias voltage applicator for applying bias voltage to at least one specified first portion of electrical circuitry in the sample while the focused ion beam device is in operation; and a vacuum chamber for housing the focused ion beam device, the detector, and, at least during operation, the sample;
and wherein the detector identifies portions of the sample characterized by different concentrations of secondary particles received from said sample.
-6-In an eighth aspect, the present invention provides a method for identifying a signal path associated with a component of interest in an integrated circuit, the method comprising:
identifying a component of interest exposed on an integrated circuit device;
applying an external bias voltage to said component of interest; capturing an image of at least a portion of said integrated circuit using a focused ion beam and an electron detector;
determining from said image a signal path associated with said component of interest shown in high contrast in said image due to electrical connectivity with said component of interest;
extending the signal path from a connected portion of said signal path, said connected portion in electrical connectivity with said component of interest, by coupling said connected portion to one or more unconnected portions of circuitry that are not in electrical connectivity with said component of interest; and repeating said capturing and said determining.
In a ninth aspect, the present invention provides a system for identifying a signal path associated with a component of interest in an integrated circuit, the system comprising:
an ion beam chamber for receiving a circuit device, said ion beam chamber comprising a focused ion beam emitter configured to direct a focused ion beam
-7-towards said circuit device, and an electron detector for measuring an intensity of electrons resulting from an interaction of said focused ion beam and said circuit device, and a bias voltage connector for selectively applying an external voltage to the circuit device;
the electron detector configured to generate image data of at least a portion of said circuit device while the focused ion beam is directed toward said device and the external voltage has been applied to a component of interest on said circuit device, said image data defining a signal path on said circuit device associated with said component of interest, said signal path having high contrast relative to other parts of said circuit device in said image data due to electrical connectivity with said component of interest;
wherein the signal path is extended one or more times from a connected portion of said signal path to an unconnected portion of circuitry by coupling said connected portion to said unconnected portion and repeating said image data generation.
BRIEF DESCRIPTION OF THE DRAWINGS
The embodiments of the present invention will now be described by reference to the following figures, in which identical
-8-reference numerals in different figures indicate identical elements and in which:
FIGURES 1 and 2 are schematic diagrams provided to explain focused ion beam (FIB) technology;
FIGURE 3 is an image derived from FIB illustrating a feature of an IC in high contrast;
FIGURE 3A is a schematic diagram with an image from FIB
showing the coupling between two features on an IC;
FIGURE 4 is an image of a feature in high contrast using FIB;
FIGURE 5 is an image of the feature in Figure 4 with a dielectric patch deposited;
FIGURE 6 is an image of the feature in Figure 4 with the nodes of the known feature and of the unknown feature being shorted;
FIGURE 7 is an image of the integrated circuit of Figure 6 showing the different parts of the IC being in high contrast due to the bias being applied to the known feature; and FIGURE 8 is a flowchart detailing the steps in a method according to one aspect of the invention.
DETAILED DESCRIPTION OF THE INVENTION
Focused Ion Beam (FIB) systems are well established in the semiconductor industry and come in a variety of configurations
-9-for a number of different uses. In FIB systems, a focused beam is generated and the beam is accelerated down a column. The beam is then manipulated by applying electromagnetic energy through a system of coils (and electrostatic lenses), and the resulting beam emerges in a vacuum chamber and strikes a sample/target. For FIB, the beam consists of ions as ion beams have much more kinetic energy than electron beams. By striking a sample with high power, material can be milled away and removed. By adding background gas and striking the sample with lower energy, new material can be deposited. By manipulating the beam and adding a gas, one can deposit and remove material in a precise and controlled manner. Standard gases which may be used include xenon difluoride, tetramethylcyclotetrasiloxane (TMCTS), platinum, tungsten, and other well-known gases.
After the ion beam strikes a sample, ions, atoms and electrons are emitted (mostly 'secondary electrons'). These electrons can be used to create an image -- an image can be obtained by using an electron detector and synchronizing the collected signal with the ion beam scanning. Depending on the sample's materials and other factors, more or less electrons might be emitted. The image can therefore be used to identify regions of the sample with different characteristics. As an example, metal circuitry will emit a different number of electrons than dielectric areas and this causes metal circuitry to appear different than dielectric areas in the image.
Referring to Figure 1, a schematic view explaining focused ion beam technology is illustrated. As can be seen in Figure 1, a focused ion beam (from a gallium ion source) is applied to a sample. The ion beam causes electrons to be emitted by the sample. These electrons are detected by a secondary electron
-10-detector. From the emitted electrons, an image of the sample can be constructed. As can also be seen in Figure 1, by grounding one of the features of the sample and thereby rerouting positive particles, a brighter image can be obtained for the grounded feature. This is because the secondary electron detector receives a higher concentration of electrons compared to the ungrounded feature.
A well known phenomenon occurs when an ion beam strikes an area of semiconductor with embedded dopant material. Since N-doped silicon behaves differently from P-doped silicon when struck by an ion beam, the resulting image shows contrast differences between the materials. Materials other than semiconductors also show this behaviour, known as voltage contrast, in various degrees.
By way of explanation, Figure 2 is provided. In this Figure, two features on an integrated circuit (IC) are coupled by means of an electrical circuit. When a focused ion beam is applied to the features, the feature on the IC which is coupled to ground produces a brighter image. Again, this is because the secondary electron detector receives a higher concentration of electrons from the grounded feature as compared to the ungrounded feature.
Extending the concept explained by Figure 2, a focused ion beam can be used to strike a sample which has a mixture of dielectric material and metal interconnect (e.g. a delayered IC die). By making external connections to specific areas of circuitry and applying a bias voltage to those areas, the amount of electrons generated when these areas are struck by an ion beam can be made to vary greatly. Using this technique, specific areas of the integrated circuit can be made to show much higher brightness (i.e. higher contrast) in the resulting image as compared to
-11-other areas when plotting the secondary electron yield. One example of this is shown in Figure 3 where an IC
feature/component has been biased and an FIB has been applied.
As can be seen, the feature to which a bias has been applied is in high contrast to the rest of the IC.
The high brightness (or high contrast) area can be extended by using normal circuit-edit FIB manipulation. By depositing dielectric material, milling access holes, and depositing metal interconnect, the biased area can be connected to a new area or a new component or node of the IC. Any areas, components, or nodes coupled to the biased area will, when struck by a focused ion beam, similarly appear in high contrast in the resulting image derived from the secondary electron detector output. This can be used to determine which features, nodes, or components on an IC are connected to which areas, features, nodes, or components.
Referring to Figures 3A-6, the steps in the coupling between a known feature and an unknown area or feature in the IC is illustrated. Figure 3A shows, in a schematic diagram, the 20 desired end result for shorting two features on the IC. As can be seen, a known feature (the buffer feature in high contrast) is to be shorted with an adjacent feature, also a buffer. The yellow block between the highlighted buffer component and its adjacent buffer represents a short that couples these buffers to one another in Figure 3A.
In Figure 4, the known feature (a buffer) is biased and the FIB
derived image shows the feature in high contrast relative to the other features on the IC. In Figure 5, a dielectric patch is deposited on the known feature and the nodes of the known feature and an unknown feature (i.e. a non-biased feature) are
-12-exposed. In Figure 6, the nodes of the known feature and of the unknown feature are shorted by depositing conductor material between the two nodes. Once shorted, the two nodes are thus coupled and applying a bias to the shorted nodes has the effect of applying a bias to whatever nodes, features, or components are coupled to the unknown feature. When a focused ion beam is thus applied to the IC while the bias is being applied, these nodes, features, or components coupled to the unknown feature will also appear in high (or higher) contrast when compared to the unbiased parts or areas of the IC.
Referring to Figure 7, the shorted area (i.e. the area to which a bias has been applied) is illustrated in the lower middle part of the image. The features of the IC which are coupled to the unknown feature appear in higher contrast than the rest of the IC. As can be seen in Figure 7, these features include inputs to the power switches as well as an output for the next buffer.
It should be noted that the example given in Figures 3A-7 should not be taken as being limiting to the present invention. Any feature, node, or component on an integrated circuit or microchip can be used as a first or initial component or node.
This first component can then be shorted or coupled with a second component by any appropriate means prior to applying a bias and a focused ion beam to the integrated circuit. While the example given uses FIB to deposit and remove dielectric as well as metal interconnect, other techniques may be used. Also, while the example uses a gallium ion source for the focused ion beam, other ion sources, such as elemental gold, iridium, xenon, neon, as well any other suitable ion sources, may be used.
It should also be noted that, for best results, the first and second nodes or components which are to be coupled to each other
-13-are preferably not coupled to one another by way of the integrated circuit prior to being coupled to one another for biasing and imaging purposes.
In one implementation, to work one aspect of the invention, an integrated circuit chip or die is first prepared using standard known back-side sample preparation methods. This involves mounting the die to an insulating carrier face-down, then removing the die bulk silicon using wet or dry etching until the gate level components are exposed. The die can be further processed from the back using standard techniques to expose the specific layer of interest. One approach would be to expose the Metal 1 level. Once the level or component of interest has been exposed, a signal path is extended from an external source to the node, component, or feature of interest. A bias voltage is applied to the signal node or feature, typically using an external power supply.
After applying the bias voltage, the sample is then placed inside a focused ion beam chamber. The chamber is then pumped with a vacuum pump, and the sample is exposed to a FIB beam. By varying the beam conditions, the imaging detector conditions, and the external bias voltage, the signal node can be made to show up with very high contrast compared to the rest of the circuitry in the Secondary Electron (SE) imaging detector image.
The node or feature of interest can be made to appear illuminated while the rest of the circuitry is dark.
Once the feature of interest has been biased and been made to appear in high contrast, the high contrast area can be extended.
Using the ability of the focused ion beam technique to deposit insulating material and conducting material very precisely, the signal path is extended to a new section or feature of
-14-circuitry. In the case of a single transistor, the original biasing signal might be applied to one node of a transistor (e.g. a gate, source or drain contact) and, using focused ion beam deposition techniques, the biasing signal can be extended to another node of the transistor (e.g. gate, source or drain contact). Once the bias signal has been extended to the new feature, any other nodes connected to that node will appear illuminated in the SE image.
It should be noted that, while the signal path may extend invisibly through many metal layers (more than 10 on a modern IC), wherever it is connected to another metal 1 area will be instantly visible in the SE image.
Once the new connected node has been revealed, the procedure can be repeated and the next node can thus be illuminated. By continuing to traverse the circuit and form these connections, the circuit can be followed across the IC die. As can be imagined, for circuits involving a number of transistors, this process simply involves the deposition of conductor to short the source contact to the drain contact as well as the application of a bias voltage prior to applying the focused ion beam to the sample.
It should be noted that one aspect of the invention may take the form of simply applying an external bias to a component or node prior to applying a focused ion beam to the integrated circuit.
After applying the focused ion beam, an image is taken using an electron detector. The features or components on the integrated circuit which are coupled to the component or node to which the bias was applied will show up in high contrast on the resulting image. The method can be used to identify nodes or components interconnected through a common path on the integrated circuit.
-15-The technique outlined above can be applied to gate level circuitry, contact level circuitry, or any desired metal level (such as Metal 1).
It should be noted that the images obtained using the above outlined process may be further processed to glean further information from the images. As an example, image enhancement techniques may be applied to digital versions of the images derived from the above process to further clarify components, nodes, and features on the IC.
It should further be noted that the images gathered in multiple iterations of the process may be used to determine which features have been highlighted by the application of a bias to relevant part or parts of the integrated circuit. As an example, an image for iteration A (prior to applying a bias to a shorted part of the IC) may be compared to the image for iteration A+1 (subsequent to the application of the bias) to see which parts of the IC have been highlighted. Image subtraction, image manipulation, as well as image addition techniques may be used to automate the process by which the highlighted or highly contrasted parts of the image are determined.
Regarding the conditions and settings for the focused ion beam, various parameters may be adjusted and/or set for optimum resulting image quality. These parameters include voltage, current, dwell time, as well as other parameters. Such parameters and their effects and settings are well known to those versed in the art of focused ion beam techniques. For the electron detector, parameters which may be adjusted to obtain a suitable image quality include, among others, brightness, contrast, and line averaging.
-16-The bias applied to the features of interest may range from +24V
+ to ยจ 24V. The bias may depend on the focused ion beam conditions as well as the characteristics of the IC being imaged. As examples, the characteristics of the IC may include pattern density, conductor line width/resistance, dielectric quality and conductor quality. Preferably, bias current will be limited to prevent arcing between conductors. The bias current is thus preferably in the microampere range.
One aspect of the invention may be seen as a process detailed by the flowchart in Figure 8. The process begins at step 10, that of preparing the IC. As noted above, this step may involve exposing the components in the IC to the gate level. Step 20 is that of coupling one feature or node to another. This may be done using different techniques including FIB dielectric deposition. Once a known feature has been coupled to an unknown feature (i.e. a feature whose interconnections are not known), a bias can then be applied to the coupled features (step 30). A
focused ion beam can now be applied to the IC (step 40). An electron detector can then be used to generate an image of the IC (step 50). The IC features attached to the biased nodes or features will thus be in high contrast in the resulting image.
A person understanding this invention may now conceive of alternative structures and embodiments or variations of the above all of which are intended to fall within the scope of the invention as defined in the claims that follow.
-17-

Claims (49)

We claim:
1. A method for imaging circuitry on an integrated circuit, the method comprising:
a) applying an external electrical bias on to a first portion of said integrated circuit;
b) exposing said integrated circuit to a focused ion beam;
c) gathering an image of said integrated circuit;
wherein said image gathered in step c) shows a second portion of said integrated circuit which has a higher contrast compared to a rest of said image, said first and second portions being interconnected through a common path in said integrated circuit.
2. A method for imaging circuitry on an integrated circuit, the method comprising:
a) coupling a first part of said integrated circuit with a second part of said integrated circuit;
b) applying a bias voltage to said first part;
c)exposing said integrated circuit to a focused ion beam;
and d) gathering an image of said integrated circuit using an electron detector;
wherein said first part and said second part are not coupled through said integrated circuit; and wherein said image gathered in step d) has at least one portion having a higher contrast compared to a rest of said image, said at least one portion being a portion of said integrated circuit which is coupled to said second part of said integrated circuit.
3. A method according to claim 2 wherein steps a) to d) are repeated using said at least one portion as said second part and an integrated circuit feature unconnected through said integrated circuit to said at least one portion as said first part.
4. A method according to claim 2 wherein step a) is accomplished by depositing dielectric material and metal interconnect material between said first part and said second part.
5. A method according to claim 2 wherein said focused ion beam is derived from a gallium ion source.
6. A method according to claim 3 wherein multiple iterations of said method are performed and further including a step of comparing images of said integrated circuit gathered at during said multiple iterations to trace which integrated circuitry features are coupled to one another.
7. A method for tracing interconnections in an integrated circuit, the method comprising:
a) removing layers of said integrated circuit to expose components of said integrated circuit;
b) coupling a first node of said integrated circuit to a second node of said integrated circuit, wherein said first node and second node are not coupled to one another through said integrated circuit;
c) applying an external bias voltage to said first node;

d) capturing an image of at least a portion of said integrated circuit using a focused ion beam and an electron detector;
e) determining which components of said integrated circuit are illustrated in higher contrast in said image..
8. A method according to claim 7 further including the step of repeating steps b) to e) using at least one of said components illustrated in said image as said second node and a node unconnected to said components through said integrated circuit as said first node.
9. A method according to claim 7 wherein said focused ion beam is derived from a gallium ion source.
10. A method according to claim 7 wherein said first node and said second node are nodes on a transistor.
11. A method according to claim 7 wherein steps b) to e) are repeated multiple times using different nodes on said integrated circuit and including a step of comparing images captured using said steps to determine which nodes are connected to which components on said integrated circuit.
12. A method according to claim 7 wherein step b) is accomplished by shorting said first node and said second node using material external to said integrated circuit.
13. A method according to claim 12 wherein said step b) is accomplished by depositing dielectric material and metal interconnect material between said first node and said second node.
14. A method according to claim 7 further including a step of applying image enhancement techniques to a digital version of said image to enhance said image.
15. A method according to claim 7 further including the step of iteratively repeating steps b) to e) using at least one component illustrated in an image from a previous iteration as said second node and a node unconnected to said component through said integrated circuit as said first node.
16. A method for tracing interconnections of electrical circuitry in a sample, the method comprising:
a) applying an external bias voltage to a first node of said electrical circuitry;
b) exposing said sample to a focused ion beam; and c) capturing an image of at least a portion of said sample using a focused ion beam and an electron detector;
and wherein said image gathered in step c) shows a second portion of said electrical circuitry that has a higher contrast compared to a rest of said image, said first and second portions being interconnected through a common path in said sample.
17. The method of claim 16, wherein steps a) and b) are preceded by removing at least one layer of said sample to expose components of said electrical circuitry in said sample.
18. The method of claim 17, wherein the step of removing at least one layer of said sample and steps a) and b) are iteratively repeated.
19. A method for tracing interconnections of electrical circuitry in a sample, the method comprising:

a) coupling a first node of said electrical circuitry to a second node of said electrical circuitry;
b) applying an external bias voltage to said first node;
c) capturing an image of at least a portion of said sample using a focused ion beam and an electron detector;
d) determining which components of said electrical circuitry are illustrated in higher contrast in said image;
and wherein, prior to step a), said first node and second node are not coupled to one another through said sample.
20. The method of claim 19, wherein step a) is preceded by removing at least one layer of said sample to expose components of said electrical circuitry in said sample.
21. The method of claim 19, wherein the images captured in step c) are combined as at least one combined image using image addition techniques.
22. The method of claim 19, wherein digital representations of the electrical circuitry are derived from the images.
23. A method according to claim 19 further including the step of repeating steps a) to d) using at least one of said components illustrated in said image as said second node and a node unconnected to said components through said sample as said first node.
24. A method according to claim 19 wherein said focused ion beam is derived from a gallium ion source.
25. A method according to claim 19 wherein steps a) to d) are repeated multiple times using different nodes on said electrical circuitry and including a step of comparing images captured using said steps to determine which nodes are connected to which components on said sample.
26. A method according to claim 19 wherein step a) is accomplished by shorting said first node and said second node using material external to said integrated circuit.
27. A method according to claim 26 wherein said step a) is accomplished by depositing dielectric material and metal.
28. A derived digital representation of an interconnected electrical circuitry in a sample, said derived digital representation being derived from at least one sample image, said at least one sample image is captured by a focused ion beam device using a focused ion beam and a detector while an external bias voltage is applied to a portion of the interconnected electrical circuitry of the sample, wherein the detector identifies portions of the sample characterized by different concentrations of secondary particles received from said sample.
29. A system for tracing interconnections of electrical circuitry in a sample, the system comprising:
a focused ion beam device for directing a focused ion beam at a sample;
a detector for detecting particles from the sample during operation of the focused ion beam device;
a bias voltage applicator for applying bias voltage to at least one specified first portion of electrical circuitry in the sample while the focused ion beam device is in operation; and a vacuum chamber for housing the focused ion beam device, the detector, and, at least during operation, the sample;
and wherein the detector identifies portions of the sample characterized by different concentrations of secondary particles received from said sample.
30. The system according to claim 29 wherein said focused ion beam is derived from a gallium ion source.
31. A method for identifying a signal path associated with a component of interest in an integrated circuit, the method comprising:
identifying a component of interest exposed on an integrated circuit device;
applying an external bias voltage to said component of interest; capturing an image of at least a portion of said integrated circuit using a focused ion beam and an electron detector;
determining from said image a signal path associated with said component of interest shown in higher contrast in said image due to electrical connectivity with said component of interest;
extending the signal path from a connected portion of said signal path, said connected portion in electrical connectivity with said component of interest, by coupling said connected portion to one or more unconnected portions of circuitry that are not in electrical connectivity with said component of interest; and repeating said capturing and said determining.
32. The method of claim 31, wherein the connected and unconnected portions are nodes on a given feature on said signal path.
33. The method of claim 32, wherein the nodes of the given feature are a source and corresponding drain of the given feature.
34. The method of claim 32, wherein the given feature comprises a gate.
35. The method of claim 32, wherein the given feature comprises a transistor.
36. The method of claim 32, wherein the given feature comprises a switch.
37. The method of claim 32, wherein the given feature comprises a power switch.
38. The method of claim 32, wherein the given feature comprises a buffer.
39. The method of claim 31, wherein said extending and said repeating of said capturing and determining are iteratively repeated one or more times.
40. The method of claim 39, wherein said iterative repeating is carried out until a signal path reaches one or more additional components of interest.
41. The method of claim 31, wherein the parts of the integrated circuit to be imaged in the step of capturing is determined automatically from images from a prior captured image.
42. A system for identifying a signal path associated with a component of interest in an integrated circuit, the system comprising:
an ion beam chamber for receiving a circuit device, said ion beam chamber comprising a focused ion beam emitter configured to direct a focused ion beam towards said circuit device, and an electron detector for measuring an intensity of electrons resulting from an interaction of said focused ion beam and said circuit device, and a bias voltage connector for selectively applying an external voltage to the circuit device;
the electron detector configured to generate image data of at least a portion of said circuit device while the focused ion beam is directed toward said device and the external voltage has been applied to a component of interest on said circuit device, said image data defining a signal path on said circuit device associated with said component of interest, said signal path having higher contrast relative to other parts of said circuit device in said image data due to electrical connectivity with said component of interest;
wherein the signal path is extended one or more times from a connected portion of said signal path to an unconnected portion of circuitry by coupling said connected portion to said unconnected portion and repeating said image data generation.
43. The system of claim 42, wherein the connected and unconnected portions are nodes on a given feature on said signal path.
44. The system of claim 43, wherein the nodes of the given feature are a source and corresponding drain of the given feature.
45. The system of claim 43, wherein the given feature comprises a gate.
46. The system of claim 43, wherein the given feature comprises a transistor.
47. The system of claim 43, wherein the given feature comprises a switch.
48. The system of claim 43, wherein the given feature comprises a power switch.
49. The system of claim 43, wherein the given feature comprises a buffer.
CA2813910A 2013-04-24 2013-04-24 Circuit tracing using a focused ion beam Active CA2813910C (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CA2813910A CA2813910C (en) 2013-04-24 2013-04-24 Circuit tracing using a focused ion beam
CN201611060195.4A CN106842001B (en) 2013-04-24 2014-04-23 Using the circuit tracing of focused ion beam
CN201410164753.6A CN104122282B (en) 2013-04-24 2014-04-23 Circuit tracing using a focused ion beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CA2813910A CA2813910C (en) 2013-04-24 2013-04-24 Circuit tracing using a focused ion beam

Publications (2)

Publication Number Publication Date
CA2813910A1 CA2813910A1 (en) 2014-10-24
CA2813910C true CA2813910C (en) 2018-12-18

Family

ID=51787239

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2813910A Active CA2813910C (en) 2013-04-24 2013-04-24 Circuit tracing using a focused ion beam

Country Status (1)

Country Link
CA (1) CA2813910C (en)

Also Published As

Publication number Publication date
CA2813910A1 (en) 2014-10-24

Similar Documents

Publication Publication Date Title
US9915628B2 (en) Circuit tracing using a focused ion beam
JP6873129B2 (en) Systems and methods for area-adaptive defect detection
DE10000361A1 (en) Means for detection of microstructure defects in semiconductor wafers around through contact holes using a charged particle beam scanning system which involves negatively charging the zone around the contact hole prior to scanning
US7525325B1 (en) System and method for floating-substrate passive voltage contrast
CN110783214B (en) Wafer level test method and test structure thereof
KR20170007781A (en) Method for generating random numbers and associated random number generator
CN112714942A (en) Apparatus and method for detecting time-related defects in fast-charging devices
US8618513B2 (en) Apparatus and methods for forming an electrical conduction path through an insulating layer
CN104091769B (en) A kind of not enough detection method of via etch
JP2006221961A (en) Cross-sectional observation method of chip
CA2813910C (en) Circuit tracing using a focused ion beam
US9529040B2 (en) Circuit tracing using a focused ion beam
CN104122282B (en) Circuit tracing using a focused ion beam
CN107346751B (en) Test structure, forming method thereof and test method
CA2898767C (en) Circuit tracing using a focused ion beam
CN106409708B (en) Circuit tracking using focused ion beam
JP2012068162A (en) Method, apparatus, and program for processing contrast image of semiconductor device
US9244112B2 (en) Method for detecting an electrical defect of contact/via plugs
JP3996134B2 (en) Microscope equipment
US6906538B2 (en) Alternating pulse dual-beam apparatus, methods and systems for voltage contrast behavior assessment of microcircuits
US20230109695A1 (en) Energy band-pass filtering for improved high landing energy backscattered charged particle image resolution
US20230137186A1 (en) Systems and methods for signal electron detection
JPS592181B2 (en) Pattern inspection method
Liao et al. Process Optimization of Contact Module in NOR Flash Using High Resolution e-Beam Inspection
TW202242792A (en) Sem image enhancement

Legal Events

Date Code Title Description
EEER Examination request

Effective date: 20180329