CA2795323A1 - Multi-use loading unit - Google Patents
Multi-use loading unit Download PDFInfo
- Publication number
- CA2795323A1 CA2795323A1 CA2795323A CA2795323A CA2795323A1 CA 2795323 A1 CA2795323 A1 CA 2795323A1 CA 2795323 A CA2795323 A CA 2795323A CA 2795323 A CA2795323 A CA 2795323A CA 2795323 A1 CA2795323 A1 CA 2795323A1
- Authority
- CA
- Canada
- Prior art keywords
- support plate
- channel
- cartridge body
- assembly
- latch
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000000903 blocking effect Effects 0.000 claims description 22
- 230000014759 maintenance of location Effects 0.000 description 6
- 238000010304 firing Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 3
- 239000012636 effector Substances 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- 230000003187 abdominal effect Effects 0.000 description 1
- 230000003872 anastomosis Effects 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000001914 calming effect Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 238000002271 resection Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 210000000115 thoracic cavity Anatomy 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/068—Surgical staplers, e.g. containing multiple staples or clamps
- A61B17/072—Surgical staplers, e.g. containing multiple staples or clamps for applying a row of staples in a single action, e.g. the staples being applied simultaneously
- A61B17/07207—Surgical staplers, e.g. containing multiple staples or clamps for applying a row of staples in a single action, e.g. the staples being applied simultaneously the staples being applied sequentially
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B2017/0046—Surgical instruments, devices or methods, e.g. tourniquets with a releasable handle; with handle and operating part separable
- A61B2017/00473—Distal part, e.g. tip or head
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/068—Surgical staplers, e.g. containing multiple staples or clamps
- A61B17/072—Surgical staplers, e.g. containing multiple staples or clamps for applying a row of staples in a single action, e.g. the staples being applied simultaneously
- A61B2017/07214—Stapler heads
- A61B2017/07271—Stapler heads characterised by its cartridge
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/08—Accessories or related features not otherwise provided for
- A61B2090/0814—Preventing re-use
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Surgery (AREA)
- Heart & Thoracic Surgery (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Surgical Instruments (AREA)
Abstract
A cartridge assembly is disclosed. The cartridge assembly includes a channel and a removable assembly in releasable engagement wit the channel. The removable assembly includes a cartridge body and a support plate. The cartridge body includes an engagement structure disposed adjacent a proximal end thereof. The support plate is configured to mechanically engage the cartridge body and includes an engagement structure disposed adjacent a proximal end thereof. The engagement structure of the cartridge body is configured for longitudinal alignment with the engagement structure of the support plate. The engagement structures of the cartridge body and the engagement structure of the support plate are configured to mechanically engage the engagement structure of the channel when the removable assembly is engaged with the channel.
Description
MULTI-USE LOADING UNIT
BACKGROUND
Technical field [0001] The present disclosure relates generally to instruments for surgically joining tissue and, more specifically, to a multi-use loading unit for use with surgical instruments.
Background of Related Art
BACKGROUND
Technical field [0001] The present disclosure relates generally to instruments for surgically joining tissue and, more specifically, to a multi-use loading unit for use with surgical instruments.
Background of Related Art
[0002] Various types of surgical instruments used to surgically join tissue are known in the art, and are commonly used, for example, for closure of tissue or organs in transection, resection, anastomoses, for occlusion of organs in thoracic and abdominal procedures, and for electrosurgically fusing or sealing tissue.
[0003] One example of such a surgical instrument is a surgical stapling instrument, which may include an anvil assembly, a cartridge assembly for supporting an array of surgical staples, an approximation mechanism for approximating the cartridge and anvil assemblies, and a firing mechanism for ejecting the surgical staples from the cartridge assembly.
[0004] Using a surgical stapling instrument, it is common for a surgeon to approximate the anvil and cartridge members. Next, the surgeon can fire the instrument to emplace staples in tissue. Additionally, the surgeon may use the same instrument or a separate instrument to cut the tissue adjacent or between the row(s) of staples.
=
SUMMARY
100051 The present disclosure relates to a surgical instrument having a channel and a removable assembly disposed in releasable engagement with the channel.
The removable assembly includes a cartridge body and a support plate. The cartridge body is configured to house a plurality of fasteners or staples therein and includes an engagement structure disposed adjacent a proximal end thereof. The support plate is configured to mechanically engage the cartridge body and includes an engagement structure disposed adjacent a proximal end thereof. The engagement structure of the cartridge body is configured for longitudinal alignment with the engagement structure of the support plate.
The engagement structure of the cartridge body and the engagement structure of the support plate are configured to mechanically engage engagement structure of the channel when the removable assembly is engaged with the channel.
[0006] In disclosed embodiments, the engagement structure of the channel includes raised bosses, the engagement structure of the cartridge body includes a U-shaped recess, and/or the engagement structure of the support plate includes a U-shaped recess. In disclosed embodiments, the U-shaped recesses of the cartridge body and the support plate include a proximally-facing opening.
[00071 In disclosed embodiments, the channel includes a longitudinally-extending slot disposed adjacent a distal end thereof, and the support plate includes an outwardly-extending finger configured to releasably engage the longitudinally-extending slot of the channel.
[00081 In disclosed embodiments, the support plate includes an inwardly-extending finger disposed on a distal portion thereof. Here, the inwardly-extending finger is configured to releasably engage a groove disposed on a distal portion of the cartridge body.
[0009] In disclosed embodiments, the support plate includes a proximal protrusion disposed adjacent a proximal end thereof. The proximal protrusion is configured to help prevent an actuation sled from prematurely translating distally with respect to the cartridge body.
[0010] In certain embodiments, the channel is part of a removable loading unit that includes an anvil assembly.
[0011] In a further aspect of the present disclosure, a loading unit for a surgical instrument has an anvil assembly, a channel, and a cartridge assembly. The channel has a boss disposed adjacent a proximal end thereof. The cartridge assembly and anvil assembly are pivotable with respect to one another. The cartridge assembly includes a support plate, and a cartridge body. The support plate is configured to releasably engage the channel and includes a recess disposed adjacent a proximal end thereof.
The cartridge body is configured to releasably engage the support plate and is configured to house a plurality of fasteners or staples therein. The cartridge body includes a recess disposed adjacent a proximal end thereof. The recess of the cartridge body is configured for longitudinal alignment with the recess of the support plate. At least one of the recesses of the cartridge body and the support plate is configured to mechanically engage the boss of the channel when the support plate is engaged with the channel.
[0012] In disclosed embodiments, the recess of the cartridge body includes a U-shaped recess and/or the recess of the support plate includes a U-shaped recess. In such embodiments, the U-shaped recesses of the cartridge body and the support plate include a proximally-facing opening.
[0013] In disclosed embodiments, the channel includes a longitudinally-extending slot disposed adjacent a distal end thereof, and the support plate includes an outwardly-extending finger configured to releasably engage the longitudinally-extending slot of the channel.
[0014] In disclosed embodiments, the support plate includes an inwardly-extending finger disposed on a distal portion thereof. The inwardly-extending finger is configured to releasably engage a groove disposed on a distal portion of the cartridge body.
[0015] In disclosed embodiments, the support plate includes a proximal protrusion disposed adjacent a proximal end thereof. The proximal protrusion is configured to help prevent an actuation sled from prematurely translating distally with respect to the cartridge body.
[0016] In certain embodiments, the loading unit includes a body portion to which the cartridge assembly and anvil assembly are attached the body portion being attachable to the elongate member of a surgical instrument.
[0017] The present disclosure also relates to a surgical instrument having a channel and comprising a cartridge assembly, a drive member and a lockout mechanism.
The drive member is configured to travel in a distal direction. The lockout mechanism is configured to prevent longitudinal translation of the drive member. The lockout mechanism comprises a latch and a spring. The latch is disposed in mechanical cooperation with the channel and is laterally movable from an initial position to a blocking position. The spring is configured to bias the latch into the blocking position in which a shaped surface of the latch obstructs the distal movement of the drive member when the latch is in the blocking position.
[0018] . In disclosed embodiments, the latch is pivotable with respect to the cartridge assembly.
[0019] In disclosed embodiments, the latch includes a hook configured to engage a portion of the drive member to prevent distal translation of the drive member.
[00201 In disclosed embodiments, the latch includes a calming surface, and wherein when the drive member translates proximally into contact with the camming surface, the latch pivots away from its blocking position.
[0021] In disclosed embodiments, the surgical instrument comprises a sled configured for longitudinal translation with respect to at least a portion of the cartridge assembly. The sled includes a tail portion that is configured to abut a portion of the latch when the sled is adjacent its proximal-most position. The tail portion of the sled is configured to prevent the latch from moving into its blocking position.
[0022] The cartridge assembly may include a cartridge body defining a longitudinal slot. The drive member travels along the longitudinal slot in the distal direction. The shaped surface of the latch is substantially aligned with the longitudinal slot when the latch is in the blocking position.
BRIEF DESCRIPTION OF FIGURES
[0023] Various embodiments of the presently disclosed surgical instrument are disclosed herein with reference to the drawings, wherein:
[0024] Figure 1 is a perspective view of a surgical stapling instrument without a loading unit connected thereto in accordance with the present disclosure;
[0025] Figure IA is a perspective view of a loading unit in accordance with the present disclosure;
[0026] Figure 1B is a perspective view of a tool assembly of the loading unit of Figure 1A;
[0027] Figure IC is a perspective view of a cartridge assembly of the loading unit of Figure IA;
[0028] Figure 1D is an assembly view of the tool assembly of Figure IB;
[0029] Figure 2 is a bottom perspective view of a portion of the tool assembly of Figure 1B;
[0030] Figure 3 is a perspective view of a portion of the tool assembly of Figure 1B;
[0031] Figures 4 and 5 are transverse cross-sectional views of portions of the tool assembly of Figure 1B;
[0032] Figure 6 is a perspective view of a proximal portion of a channel of the tool assembly of Figure 1B;
[0033] Figure 7 is a perspective view of a distal portion of the channel of the tool assembly of Figure 1B;
[0034] Figure 8 is a transverse cross-sectional view of portion of the tool assembly of Figure 1B;
[0035] Figure 9 is a perspective view of the tool assembly of Figure IB;
[0036] Figure 10 is a perspective view of a support plate of the tool assembly of Figure 1B;
[0037] Figure 11 is a perspective view of a distal portion of a cartridge body of the tool assembly of Figure 1B;
[0038] Figure 12 is a perspective view of a proximal portion of the cartridge body of the tool assembly of Figure 1B;
[0039] Figure 13 is a perspective view of a portion of a tool assembly of the present disclosure including another embodiment of a channel;
[0040] Figures 14 and 15 are perspective views of the channel of Figure 13;
[0041] Figures 16 and 17 are perspective views of different portions of the channel of Figure 13;
[0042] Figure 18 is a perspective view of a tool assembly of the present disclosure including a lockout mechanism;
[0043] Figure 19 is an enlarged perspective view of the lockout mechanism of the present disclosure engaged with a portion of the tool assembly;
[0044] Figure 20 is a perspective assembly view of portions of the tool assembly includes the lockout assembly;
[0045] Figure 21 is a perspective view of the lockout mechanism engaged with the channel;
[0046] Figure 22 is a perspective assembly view of the lockout mechanism and a portion of the channel;
[0047] Figure 23 is an assembly view of the removable assembly of an embodiment of the present disclosure;
[0048] Figure 24 is a perspective view of a latch of the lockout mechanism of the present disclosure;
[0049] Figure 25 is a perspective view of a sled of the present disclosure;
[0050] Figure 26 is a top view of the cartridge assembly taken along line 26-26 of Figure 18 and illustrating the lockout mechanism, and the drive member and sled in their original positions;
[0051] Figure 27 is an enlarged view of the area indicated in Figure 26;
[0052] Figures 28-31 are top views of a portion of the cartridge assembly showing the drive member, sled, and latch in various positions;
[0053] Figures 32-35 are perspective views of a second embodiment of a lockout mechanism in accordance with an embodiment of the present disclosure.
DETAILED DESCRIPTION
[0054] Embodiments of the presently disclosed surgical instrument, loading unit and tool assembly for use therewith, are described in detail with reference to the drawings, wherein like reference numerals designate corresponding elements in each of the several views. As is common in the art, the term 'proximal" refers to that part or component closer to the user or operator, e.g., surgeon or physician, while the term "distal" refers to that part or component farther away from the user.
[00551 A surgical stapling instrument of the present disclosure is indicated as reference numeral 10 in Figure 1. Additionally, the depicted surgical instrument fires staples, but it may be adapted to fire any other suitable fastener such as clips and two-part fasteners. A loading unit for use with surgical instrument 10 is shown in the accompanying figures and is indicated as reference number 500. A tool assembly of the loading unit 500 is shown in the accompanying figures and is indicated as reference number 1000.
[00561 Loading unit 500 is attachable to an elongated or endoscopic portion 18 of surgical instrument 10, e.g., to allow surgical instrument 10 to have greater versatility.
Loading unit 500 of the present disclosure is configured for to be used more than once.
In particular, the loading unit has a removable assembly 1600 that includes the cartridge assembly 1200. The cartridge assembly 1200 forms a part of the tool assembly 1000, and the tool assembly 1000 forms a portion of the loading unit 500. The removable assembly is configured to be removed and replaced (e.g., after firing fasteners therefrom).
Examples of loading units for use with a surgical stapling instrument are disclosed in commonly-owned United States Patent No. 5,752,644 to Bolanos et al., the entire contents of which are hereby incorporated by reference herein. The loading unit 500 shown includes a proximal body portion 502 that is attachable to an endoscopic portion or an elongated portion 18 of a surgical instrument 10 having a handle assembly 12.
However, the features of the loading units 500 of the present disclosure, including the tool assembly 1000, can be incorporated in a surgical instrument in which does not include a detachable portion of the elongated portion of the instrument.
[0057] Loading unit 500 includes a proximal body portion 502 and a tool assembly 1000. Proximal body portion 502 defines a longitudinal axis "A-A,"
and is releasably attachable to a distal end of elongated portion 18 of surgical instrument 10.
Tool assembly 1000 includes a pair of jaw members including an anvil assembly and a cartridge assembly 1200. One jaw member is pivotal in relation to the other to enable the clamping of tissue between the jaw members. In the illustrated embodiments, cartridge assembly 1200 is pivotal in relation to anvil assembly 1100 and is movable between an open or undamped position and a closed or approximated position.
However, the anvil assembly, or both the cartridge assembly and the anvil assembly, can be movable.
[0058] With reference to FIG. 1D, for example, anvil assembly 1100 includes an anvil cover 1110 and an anvil plate 1112, which includes a plurality of staple forming depressions 1113. Anvil plate 1112 is secured to an underside of anvil cover 1110 and defines a channel 1114 (see FIG. 8, for example) therebetween. When tool assembly 1000 is in the approximated position, staple forming depressions 1113 are positioned in juxtaposed alignment with staple receiving slots of the cartridge assembly 1200.
[0059] The tool assembly includes a channel or carrier 1300 which receives and supports a cartridge assembly and a support plate 1500. The cartridge assembly has a cartridge body 1400. The cartridge body and support plate 1500 are attached to the channel or carrier 1300 by a snap-fit connection, as discussed below, a detent, latch, or by another type of connection. The cartridge assembly includes fasteners or staples 1414.
Cartridge body 1400 defines a plurality of laterally spaced staple retention slots 1410, which are configured as openings in tissue contacting surface 1412 (see FIG.
11). Each slot 1410 is configured to receive a fastener or staple 1414 therein.
Cartridge assembly 1200 also defines a plurality of cam wedge slots which accommodate staple pushers 1416 and which are open on the bottom (i.e., away from tissue-contacting surface 1412) to allow an actuation sled 1418 to pass longitudinally therethrough.
[0060] Further details of the various components of cartridge assembly 1200, including the connection between its various components, and the removability and replaceability of cartridge body 1400 and support plate 1500 with respect to channel 1300, are discussed below. Generally, the removable assembly 1600 includes cartridge assembly 1200 and support plate 1500. The removable assembly 1600 is removable from channel 1300, e.g., after staples 1414 has been fired from cartridge body 1400. Another removable assembly is capable of being loaded onto channel 1300, such that surgical instrument 10 can be actuated again to fire additional fasteners or staples 1414, for instance.
[0061] Channel 1300, which may be machined (e.g., e.g., 1300a in FIGS. 13-17) or made of sheet metal (e.g., 1300b in FIG. 9), includes one or a pair of engagement structures or proximal bosses 1310 (e.g., 1300b in FIG. 6), a pair of cut-outs disposed adjacent a distal end, a pair of distal slots 1330, a central slot 1340, a pair of proximal holes 1350, and a ramped surface 1360. Proximal holes 1350 are configured to align with/mechanically engage a pair of corresponding holes 1120 (e.g., with a pin or protrusion extending through holes 1350 and holes 1120) on anvil cover 1110 to facilitate a pivotal relationship between anvil assembly 1100 and cartridge assembly 1200. It is envisioned that engagement structures 1310 may be pins, protrusions, or similar structure.
[0062] Cartridge body 1400 includes a central slot 1420, and rows of staple retention slots 1410 positioned on each side of slot 1420 (see FIG. 11). In the illustrated embodiment, three rows of retention slots 1410 are shown. More specifically, cartridge body 1400 is configured such that actuation sled 1418 can pass through the cam wedge slots and force staple pushers 1416 towards anvil plate 1112. The staples 1414, which are supported on the pushers, are then forced out of their respective staple retention slots 1410. Cartridge body 1400 also includes a pair of engagement structures or U-shaped recesses 1430 (which may, in other embodiments, be slots or openings) adjacent its proximal end, a pair of central bosses 1440, a pair of distal protrusions 1450, and a pair of distal grooves 1460. Pairs of upper and lower mounting surfaces 1470, 1480, respectively, are disposed adjacent a proximal end of cartridge body 1400, and are disposed adjacent respective upper and lower mounting slots 1472, 1482.
[00631 With particular reference to Figure 10, support plate 1500 includes a base surface 1510, a longitudinal slot 1520 extending through base surface 1510, a pair of proximal fingers 1530 disposed and extending substantially perpendicularly from a proximal end of base surface 1510, a pair of intermediate fingers 1550 extending substantially perpendicularly from a middle portion of base surface 1510, a pair of inwardly-extending fingers 1560 and outwardly-extending bosses 1570 disposed adjacent a distal end of base surface 1510, and a pair of proximal protrusions 1580 disposed adjacent the proximal end of base surface 1510. Each proximal finger 1530 includes an engagement structure or proximal-facing U-shaped recesses 1532, an upper mounting flange 1534, and a lower mounting flange 1536. As can be appreciated, support plate 1500 helps maintain pushers 1416 in place with respect to cartridge body 1400.
Additionally, longitudinal slot 1520 allows a portion of a drive member to pass through the support plate 1500. The drive member may be a dynamic clamping member 1402.
The dynamic clamping member or drive member 1402 drives the actuation sled through the cartridge body 140. The central slot of the cartridge body, the central slot of the channel, and the longitudinal slot of the support plate are all configured to align with one another to allow the passage of the drive member.
[00641 In use, to connect cartridge body 1400 and support plate 1500, cartridge body 1400 and support plate 1500 are assembled or brought together such that the proximal-most end of cartridge is positioned between proximal fingers 1530 of support plate 1500 and in contact with base surface 1510 thereof. Support plate 1500 is then longitudinally translated (e.g., slid distally) with respect to cartridge body 1400 such that upper mounting flanges 1534 and lower mounting flanges 1536 engage upper mounting slots 1472 and lower mounting slots 1482, respectively. The longitudinal translation between cartridge body 1400 and support plate 1500 continues until a distal-most end of proximal fingers 1530 contact a respective vertical wall 1490 (FIG. 12) of cartridge body 1400. At this stage, U-shaped recesses 1430 are laterally adjacent and aligned with U-shaped recesses 1532 (see FIG. 3), and continued proximal movement of cartridge body 1400 with respect to support plate 1500 is prevented. Next, or concomitantly with the relative longitudinal translation between cartridge body 1400 and support plate 1500, cut-outs 1552 within intermediate fingers 1550 of support plate 1500 are positioned around central bosses 1440 of cartridge, and inwardly-extending fingers 1560 are moved into engagement with distal grooves 1460 of cartridge. Cartridge assembly 1200 and support plate 1500 comprise a removable assembly 1600, which is removable from and replaceable onto channel 1300 by the user of the surgical instrument 10 and/or loading unit 500.
[0065] Removable assembly 1600 is insertable onto channel 1300 by approximating removable assembly 1600 and channel 1300 such that proximal bosses 1310 are positioned proximally of U-shaped recesses 1430 and 1532, and such that distal ends of distal slots 1330 are positioned proximally of proximal ends of outwardly-extending bosses 1570. Next, removable assembly 1600 is translated longitudinally (e.g., proximally) with respect to channel 1300 such that outwardly-extending bosses translate proximally within distal slots 1330 until proximal bosses 1310 contact U-shaped recesses 1430 and 1532. Next, or concomitantly with the relative longitudinal translation between removable assembly 1600 and channel 1300, cut-outs 1320 of channel 1300 are moved into engagement with distal protrusions 1450 of cartridge body 1400.
Ramped surface 1360 is engaged by the dynamic clamping member 1402 in order to move the anvil assembly 1100 and the cartridge assembly 1200 with respect to one another. A
similar surface could be provided on the anvil assembly 1100, in other embodiments. It is envisioned that ramped surface 1360 may also facilitate the alignment and/or engagement between channel 1300 and support plate 1300 and/or cartridge body 1400.
[0066] Once assembled, a user is able to actuate movable handle 22 to eject staples 1414 from cartridge body 1400 and into tissue, as described below. It is envisioned that proximal protrusions 1580, which extend from base surface 1510, help maintain actuation sled 1418 in its relative position with respect to support plate 1500 = before actuation of instrument 10. That is, it is envisioned that actuation sled 1418, or a portion thereof, is positioned proximally of proximal protrusions 1580, and that proximal protrusions 1580 form a physically barrier to hinder any premature distal advancement of actuation sled 1418. Once a user intends to actuate instrument 10 and distally advance actuation sled 1418 beyond proximal protrusions 1580, the force used to advance actuation sled 1418 is sufficient to force a lower surface or portion of actuation sled 1418 over proximal protrusions 1580.
[0067] After staples 1414 have been ejected from cartridge body 1400, and a user wishes to use the same instrument 10 to fire additional staples 1414 (or another type of fastener or knife), the user can remove the removable assembly 1600 by sliding removable assembly 1600 distally with respect to channel 1300. Next, a user removes the removable assembly 1600 from the channel 1300. Another removable assembly with unfired staples can be loaded into the channel 1300. In other embodiments, a cartridge body of a cartridge assembly can be removable from a support plate after the removable assembly is removed from the channel 1300. The cartridge body is removed by sliding support plate 1500 proximally with respect to cartridge body 1400. Another cartridge body, if desired, may be coupled to the support plate and inserted into the channel.
[0068] In certain embodiments, the removable assembly is part of a loading unit SOO that is removably attached to the elongated portion of a surgical stapling instrument, such as elongated portion 18. This enables the user to choose a staple line length that is shorter or longer. It is also contemplated that the removable assembly can be used with a surgical instrument that does not have a loading unit that is removable and instead has jaws permanently attached to the elongated portion 18.
[0069] During operation of stapler 10, actuation of its movable handle 22 will fire the staples. The handle assembly 12 has an elongate actuation shaft that is translated distally when the movable handle 22 is pivotally moved by the user. The actuation shaft of the handle assembly can include teeth that are engaged by the movable handle 22, or the handle assembly 12 can include a series of gears for moving the actuation shaft.
Alternatively, the handle assembly can include a motorized driver for moving the actuation shaft, or the handle assembly can be attachable to a separate motorized driver.
[0070] In certain embodiments, through successive strokes of the movable handle, a drive rod 30 (a distal portion of which is illustrated in Figures 1 and 27-31)) is advanced distally, such that drive rod 30 pushes a portion of the drive assembly (which includes the dynamic clamping member 1402) to translate distally through cartridge body 1400. (Further details of how actuation of movable handle 22 causes distal advancement of drive rod 30 are explained in U.S. Patent No. 6,953,139 to Millirnan et al., which is hereby incorporated by reference herein.) Distal movement of the drive assembly, and in particular, the dynamic clamping member or drive member 1402, causes approximation of one jaw member with respect to the other. That is, an upper portion of the dynamic clamping member 1402 travels through the channel 1114 between the anvil plate and the anvil cover 1110, and a lower portion of the dynamic clamping member travels below the carrier 1300 of the cartridge assembly 1200, which causes approximation of the anvil assembly 1100 and the cartridge assembly 1200 to clamp tissue therebetween. For example, the channel 1300 may have a lower surface defining a camming surface and the lower portion of the dynamic clamping member 1402 engages the camming surface to pivot the cartridge assembly 1200 toward the anvil assembly 1100.
[0071] Additionally, distal translation of the dynamic clamping member causes the actuation sled 1418 to move distally through cartridge body 1400, which causes cam wedges 1419 of actuation sled 1418 to sequentially engage pushers 1416 to move pushers 1416 vertically within staple retention slots 1410 and eject staples 1414 into staple fanning depressions 1113 of anvil plate 1112. Subsequent to the ejection of staples 1414 from retention slots 1410 (and into tissue), a cutting edge of the dynamic clamping member 1402 severs the stapled tissue as the cutting edge travels distally through central slot 1420 of cartridge body 1400.
[0072] It is also envisioned, in further embodiments, that an end effector or tool assembly like the end effector or tool assembly 1000 is arranged for articulating between a first position where tool assembly 1000 is aligned with longitudinal axis "A-A,'' and a second position where tool assembly 1000 is disposed at an angle with respect to longitudinal axis "A-A." For example, the anvil assembly 110 may be pivotably attached to the proximal body portion 502 of a loading unit 500, or pivotably attached to the elongated portion of the instrument. The loading unit includes one or more cables or linkages disposed in the proximal body portion 502 and attached at the tool assembly .1000. When the cable or linkage is displaced, the tool assembly pivots and articulates with respect to the instrument. Further details of providing articulation are described in detail in commonly-owned U.S. Patent No. 6,953,139 to Milliman et al., the contents of which has previously been incorporated by reference in their entirety.
Further, the tool assembly can be configured not to articulate.
[0073] Additionally, it is envisioned that instrument 10 is powered by a power source and/or motor. Further details of such a powered surgical instrument are included in U.S. Patent Publication No. 2008/0255607, the entire contents of which are hereby incorporated by reference herein.
[0074] Further, and as illustrated in Figure 11, for example, the present disclosure includes a cartridge body 1400 having a stepped tissue-contacting surface 1412. In such an embodiment, different sized staples 1414, or all the same sized staples, may be used.
Further details of a staple cartridge having multiple staple sizes are included in U.S.
Patent No. 7,407,075 to Holsten et al., the entire contents of which are hereby incorporated by reference herein.
[0075] The present disclosure also relates to methods of using the described surgical instrument 10, loading unit 500, and tool assembly 100 to perform a surgical procedure and to methods of assembling the various components thereof, as described above.
[0076] With reference to Figures 18-35, two embodiments of a lockout mechanism 2000, 2000a of the present disclosure are shown. For each of these embodiments, a surgical instrument having the lockout may have a channel, removable assembly, cartridge body, support plate, and the engagement structures discussed above.
Furthermore, the present disclosure is directed to a removable assembly having the lockout, or a loading unit having the lockout.
[0077] With reference to Figures 18-31, the -first embodiment of lockout mechanism 2000 includes a latch 2010 and a spring 2030, and is configured to prevent re-firing of cartridge body 1400 of removable assembly 1600, and also prevent distal translation of dynamic clamping member 1402 after an initial distal translation of knife and prior to another removable assembly 1600 being loaded onto channel 1300.
[0078] With particular reference to Figures 22 and 24, latch 2010 includes a body 2012 having an upper surface 2014 and a lower surface 2016, a lower protrusion depending downwardly from lower surface 2016, a spring stop 2019 extending upwardly from upper surface 2014, and a shaped surface 2020 on a first lateral side 2022. The body 2012 also has a second lateral side 2024. The shaped surface 2020 has two sides.
The first side 2020a is angled with respect to the central slot 1340 when the latch 2010 is in a blocking position in which the latch obstructs the passage of the dynamic clamping member 1402. The second side 2020b of the shaped surface 2020 extends transversely to the central slot 1340 when the latch is in the blocking position. (See Fig.
30).
[0079] Referring now to Figures 19-24, latch 2010 is mechanically engaged with channel 1300 so that the latch 2010 can pivot with respect to the channel 1300. In particular, lower protrusion 2018 of latch 2010 (Figure 24) extends through an opening 1380 (Figure 22) in channel 1300, such that latch 2010 is pivotable with respect to channel 1300. Lower protrusion 2018 is maintained in mechanical engagement with channel 1300 by a lock pin 2050 (Figure 22). Alternatively, the protrusion can be omitted and a separate pivot pin in engagement with the body 2012 and the channel 1300 can be used.
[0080] With regard to Figures 21-22, spring 2030 includes a first leg 2032, a second leg 2034, and an intermediate portion 2036 interconnecting first leg 2032 and second leg 2034. First leg 2032 is in contact with a portion of channel 1300.
For example, the channel 1300 may have a slot 1301, a notch, or some other feature for restricting the movement of the first leg 2032. Second leg 2034 is disposed in contact with spring stop 2018 of latch 2010. Intermediate portion 2036 is disposed between first leg 2032 and second leg 2034. For example, the spring may have a U-shaped configuration (see Fig. 27), or some other shape, such as L-shaped.
[0081] Spring 2030 is in mechanical cooperation with a portion of the cartridge assembly 1200. The spring is configured to bias latch 2010 towards its blocking position.
In the initial position of the dynamic clamping member 1402 and the sled 1418 (e.g., prior to distal advancement thereof to fire staples and incise tissue), a tail portion 1417 of sled 1418 (Figure 25) physically prevents the shaped surface 2020 of latch 2010 from moving from its initial position into its blocking position, and thus allows distal translation of dynamic clamping member 1402 and sled 1418 (see Figures 26 and 27).
After translation of the dynamic clamping member and sled, the spring moves the latch 2010 to the blocking position, where the shaped surface 2020 of latch 2010 obstructs the central slot 1340 of channel 1300 and the longitudinal slot 1520 extending through base surface 1510 of support plate 1500 (see Figures 30 and 31), such that shaped surface 2020 would block distal translation of dynamic clamping member 1402 when the dynamic clamping member 1402.has been retracted after firing staples and cutting tissue.
[0082] The latch 2010 is laterally movable from an initial position to a blocking position. The latch moves laterally, which enables the shaped surface of the latch to obstruct the slot and move away from a position that obstructs the slot of the cartridge assembly.
[0083] During retraction of the dynamic clamping member, the dynamic clamping member slides along the shaped surface first side 2020a, keeping the latch 2010 away from the dynamic clamping member and pivoting the latch against the bias of the spring. In the retracted position of the dynamic clamping member, it is disposed proximally of shaped surface 2020 and the sled 1418 and/or tail portion 1417 is not abutting the shaped surface 2020. The latch 2010 pivots to the blocking position, so that the second side 2020b obstructs and/or prevents distal movement of the dynamic clamping member.
[0084] During distal advancement of dynamic clamping member 1402 and sled 1418, and after sled 1418 distally passes latch 2010 such that shaped surface 2020 is no longer in contact with tail portion of sled 1418, dynamic clamping member 1402 abuts the shaped surface 2020, which physically blocks latch 2010 from moving into its blocking position, and thus permits distal translation of dynamic clamping member 1402 (see Figure 28).
[0085] When cartridge assembly1200 or removable assembly 1600 is removed from channel 1300, latch 2010 continues to block dynamic clamping member 1402 (see Figure 31). When a new cartridge assembly1200 or removable assembly 1600 is loaded onto channel 1300, tail portion 1417 of the new sled 1418 engages shaped surface first side 2020a of latch 2010 and pivots latch 2010 away from its blocking position. Without a sled having the correct configuration, the latch remains in the blocking position.
[0086] With reference to Figures 32-35, a second embodiment of lockout mechanism 2000a is shown. A surgical instrument having the lockout may have a channel, removable assembly, cartridge body, support plate, and the engagement structures discussed above. Furthermore, the present disclosure is directed to a removable assembly having the lockout, or a loading unit having the lockout.
Lockout mechanism 2000a includes a latch 2010a, and a spring. The spring is not shown for clarity, but may be as discussed above. Unlike the embodiment of lockout mechanism 2000 discussed above, this embodiment of lockout mechanism 2000a does not include a lock pin 2050. Here, to maintain latch 2010a in engagement with channel 1300a, lower surface 2016a of latch 2010a includes a locking member 2018a depending therefrom.
[00871 In the illustrated embodiment, locking member 2018a includes a pair of parallel walls that are interconnected by a pair of arcuate walls. The opening 1380a of channel 1300a includes similar, but slightly larger shape with respect to locking member 2018a and also includes a circular recess 1381a, around which locking member 2018a can rotate (see Figures 34 and 35).
[00881 To engage latch 2010a with channel 1300a, locking member 2018a is inserted through opening 1380a and latch 2010a is then rotated a predetermined amount (e.g., about 40 degrees to about 130 degrees) such that latch 2010a does not fall through opening 1380a of channel 1300a. The spring (not shown in this embodiment for clarity) may then be positioned between spring stop 2018a of latch 2010a and a portion of channel 1300a, as described above.
[00891 As can be appreciated, use of surgical instrument including the second embodiment of lockout mechanism 2000a is similar to, or that same as use of the surgical instrument including the first embodiment of lockout mechanism 2000, as described above.
[0090] While the above description contains many specifics, these specifics should not be construed as limitations on the scope of the present disclosure, but merely as illustrations of various embodiments thereof. Therefore, the above description should not be construed as limiting, but merely as exemplifications of various embodiments.
Those skilled in the art will envision other modifications within the scope and spirit of the claims appended hereto.
,
=
SUMMARY
100051 The present disclosure relates to a surgical instrument having a channel and a removable assembly disposed in releasable engagement with the channel.
The removable assembly includes a cartridge body and a support plate. The cartridge body is configured to house a plurality of fasteners or staples therein and includes an engagement structure disposed adjacent a proximal end thereof. The support plate is configured to mechanically engage the cartridge body and includes an engagement structure disposed adjacent a proximal end thereof. The engagement structure of the cartridge body is configured for longitudinal alignment with the engagement structure of the support plate.
The engagement structure of the cartridge body and the engagement structure of the support plate are configured to mechanically engage engagement structure of the channel when the removable assembly is engaged with the channel.
[0006] In disclosed embodiments, the engagement structure of the channel includes raised bosses, the engagement structure of the cartridge body includes a U-shaped recess, and/or the engagement structure of the support plate includes a U-shaped recess. In disclosed embodiments, the U-shaped recesses of the cartridge body and the support plate include a proximally-facing opening.
[00071 In disclosed embodiments, the channel includes a longitudinally-extending slot disposed adjacent a distal end thereof, and the support plate includes an outwardly-extending finger configured to releasably engage the longitudinally-extending slot of the channel.
[00081 In disclosed embodiments, the support plate includes an inwardly-extending finger disposed on a distal portion thereof. Here, the inwardly-extending finger is configured to releasably engage a groove disposed on a distal portion of the cartridge body.
[0009] In disclosed embodiments, the support plate includes a proximal protrusion disposed adjacent a proximal end thereof. The proximal protrusion is configured to help prevent an actuation sled from prematurely translating distally with respect to the cartridge body.
[0010] In certain embodiments, the channel is part of a removable loading unit that includes an anvil assembly.
[0011] In a further aspect of the present disclosure, a loading unit for a surgical instrument has an anvil assembly, a channel, and a cartridge assembly. The channel has a boss disposed adjacent a proximal end thereof. The cartridge assembly and anvil assembly are pivotable with respect to one another. The cartridge assembly includes a support plate, and a cartridge body. The support plate is configured to releasably engage the channel and includes a recess disposed adjacent a proximal end thereof.
The cartridge body is configured to releasably engage the support plate and is configured to house a plurality of fasteners or staples therein. The cartridge body includes a recess disposed adjacent a proximal end thereof. The recess of the cartridge body is configured for longitudinal alignment with the recess of the support plate. At least one of the recesses of the cartridge body and the support plate is configured to mechanically engage the boss of the channel when the support plate is engaged with the channel.
[0012] In disclosed embodiments, the recess of the cartridge body includes a U-shaped recess and/or the recess of the support plate includes a U-shaped recess. In such embodiments, the U-shaped recesses of the cartridge body and the support plate include a proximally-facing opening.
[0013] In disclosed embodiments, the channel includes a longitudinally-extending slot disposed adjacent a distal end thereof, and the support plate includes an outwardly-extending finger configured to releasably engage the longitudinally-extending slot of the channel.
[0014] In disclosed embodiments, the support plate includes an inwardly-extending finger disposed on a distal portion thereof. The inwardly-extending finger is configured to releasably engage a groove disposed on a distal portion of the cartridge body.
[0015] In disclosed embodiments, the support plate includes a proximal protrusion disposed adjacent a proximal end thereof. The proximal protrusion is configured to help prevent an actuation sled from prematurely translating distally with respect to the cartridge body.
[0016] In certain embodiments, the loading unit includes a body portion to which the cartridge assembly and anvil assembly are attached the body portion being attachable to the elongate member of a surgical instrument.
[0017] The present disclosure also relates to a surgical instrument having a channel and comprising a cartridge assembly, a drive member and a lockout mechanism.
The drive member is configured to travel in a distal direction. The lockout mechanism is configured to prevent longitudinal translation of the drive member. The lockout mechanism comprises a latch and a spring. The latch is disposed in mechanical cooperation with the channel and is laterally movable from an initial position to a blocking position. The spring is configured to bias the latch into the blocking position in which a shaped surface of the latch obstructs the distal movement of the drive member when the latch is in the blocking position.
[0018] . In disclosed embodiments, the latch is pivotable with respect to the cartridge assembly.
[0019] In disclosed embodiments, the latch includes a hook configured to engage a portion of the drive member to prevent distal translation of the drive member.
[00201 In disclosed embodiments, the latch includes a calming surface, and wherein when the drive member translates proximally into contact with the camming surface, the latch pivots away from its blocking position.
[0021] In disclosed embodiments, the surgical instrument comprises a sled configured for longitudinal translation with respect to at least a portion of the cartridge assembly. The sled includes a tail portion that is configured to abut a portion of the latch when the sled is adjacent its proximal-most position. The tail portion of the sled is configured to prevent the latch from moving into its blocking position.
[0022] The cartridge assembly may include a cartridge body defining a longitudinal slot. The drive member travels along the longitudinal slot in the distal direction. The shaped surface of the latch is substantially aligned with the longitudinal slot when the latch is in the blocking position.
BRIEF DESCRIPTION OF FIGURES
[0023] Various embodiments of the presently disclosed surgical instrument are disclosed herein with reference to the drawings, wherein:
[0024] Figure 1 is a perspective view of a surgical stapling instrument without a loading unit connected thereto in accordance with the present disclosure;
[0025] Figure IA is a perspective view of a loading unit in accordance with the present disclosure;
[0026] Figure 1B is a perspective view of a tool assembly of the loading unit of Figure 1A;
[0027] Figure IC is a perspective view of a cartridge assembly of the loading unit of Figure IA;
[0028] Figure 1D is an assembly view of the tool assembly of Figure IB;
[0029] Figure 2 is a bottom perspective view of a portion of the tool assembly of Figure 1B;
[0030] Figure 3 is a perspective view of a portion of the tool assembly of Figure 1B;
[0031] Figures 4 and 5 are transverse cross-sectional views of portions of the tool assembly of Figure 1B;
[0032] Figure 6 is a perspective view of a proximal portion of a channel of the tool assembly of Figure 1B;
[0033] Figure 7 is a perspective view of a distal portion of the channel of the tool assembly of Figure 1B;
[0034] Figure 8 is a transverse cross-sectional view of portion of the tool assembly of Figure 1B;
[0035] Figure 9 is a perspective view of the tool assembly of Figure IB;
[0036] Figure 10 is a perspective view of a support plate of the tool assembly of Figure 1B;
[0037] Figure 11 is a perspective view of a distal portion of a cartridge body of the tool assembly of Figure 1B;
[0038] Figure 12 is a perspective view of a proximal portion of the cartridge body of the tool assembly of Figure 1B;
[0039] Figure 13 is a perspective view of a portion of a tool assembly of the present disclosure including another embodiment of a channel;
[0040] Figures 14 and 15 are perspective views of the channel of Figure 13;
[0041] Figures 16 and 17 are perspective views of different portions of the channel of Figure 13;
[0042] Figure 18 is a perspective view of a tool assembly of the present disclosure including a lockout mechanism;
[0043] Figure 19 is an enlarged perspective view of the lockout mechanism of the present disclosure engaged with a portion of the tool assembly;
[0044] Figure 20 is a perspective assembly view of portions of the tool assembly includes the lockout assembly;
[0045] Figure 21 is a perspective view of the lockout mechanism engaged with the channel;
[0046] Figure 22 is a perspective assembly view of the lockout mechanism and a portion of the channel;
[0047] Figure 23 is an assembly view of the removable assembly of an embodiment of the present disclosure;
[0048] Figure 24 is a perspective view of a latch of the lockout mechanism of the present disclosure;
[0049] Figure 25 is a perspective view of a sled of the present disclosure;
[0050] Figure 26 is a top view of the cartridge assembly taken along line 26-26 of Figure 18 and illustrating the lockout mechanism, and the drive member and sled in their original positions;
[0051] Figure 27 is an enlarged view of the area indicated in Figure 26;
[0052] Figures 28-31 are top views of a portion of the cartridge assembly showing the drive member, sled, and latch in various positions;
[0053] Figures 32-35 are perspective views of a second embodiment of a lockout mechanism in accordance with an embodiment of the present disclosure.
DETAILED DESCRIPTION
[0054] Embodiments of the presently disclosed surgical instrument, loading unit and tool assembly for use therewith, are described in detail with reference to the drawings, wherein like reference numerals designate corresponding elements in each of the several views. As is common in the art, the term 'proximal" refers to that part or component closer to the user or operator, e.g., surgeon or physician, while the term "distal" refers to that part or component farther away from the user.
[00551 A surgical stapling instrument of the present disclosure is indicated as reference numeral 10 in Figure 1. Additionally, the depicted surgical instrument fires staples, but it may be adapted to fire any other suitable fastener such as clips and two-part fasteners. A loading unit for use with surgical instrument 10 is shown in the accompanying figures and is indicated as reference number 500. A tool assembly of the loading unit 500 is shown in the accompanying figures and is indicated as reference number 1000.
[00561 Loading unit 500 is attachable to an elongated or endoscopic portion 18 of surgical instrument 10, e.g., to allow surgical instrument 10 to have greater versatility.
Loading unit 500 of the present disclosure is configured for to be used more than once.
In particular, the loading unit has a removable assembly 1600 that includes the cartridge assembly 1200. The cartridge assembly 1200 forms a part of the tool assembly 1000, and the tool assembly 1000 forms a portion of the loading unit 500. The removable assembly is configured to be removed and replaced (e.g., after firing fasteners therefrom).
Examples of loading units for use with a surgical stapling instrument are disclosed in commonly-owned United States Patent No. 5,752,644 to Bolanos et al., the entire contents of which are hereby incorporated by reference herein. The loading unit 500 shown includes a proximal body portion 502 that is attachable to an endoscopic portion or an elongated portion 18 of a surgical instrument 10 having a handle assembly 12.
However, the features of the loading units 500 of the present disclosure, including the tool assembly 1000, can be incorporated in a surgical instrument in which does not include a detachable portion of the elongated portion of the instrument.
[0057] Loading unit 500 includes a proximal body portion 502 and a tool assembly 1000. Proximal body portion 502 defines a longitudinal axis "A-A,"
and is releasably attachable to a distal end of elongated portion 18 of surgical instrument 10.
Tool assembly 1000 includes a pair of jaw members including an anvil assembly and a cartridge assembly 1200. One jaw member is pivotal in relation to the other to enable the clamping of tissue between the jaw members. In the illustrated embodiments, cartridge assembly 1200 is pivotal in relation to anvil assembly 1100 and is movable between an open or undamped position and a closed or approximated position.
However, the anvil assembly, or both the cartridge assembly and the anvil assembly, can be movable.
[0058] With reference to FIG. 1D, for example, anvil assembly 1100 includes an anvil cover 1110 and an anvil plate 1112, which includes a plurality of staple forming depressions 1113. Anvil plate 1112 is secured to an underside of anvil cover 1110 and defines a channel 1114 (see FIG. 8, for example) therebetween. When tool assembly 1000 is in the approximated position, staple forming depressions 1113 are positioned in juxtaposed alignment with staple receiving slots of the cartridge assembly 1200.
[0059] The tool assembly includes a channel or carrier 1300 which receives and supports a cartridge assembly and a support plate 1500. The cartridge assembly has a cartridge body 1400. The cartridge body and support plate 1500 are attached to the channel or carrier 1300 by a snap-fit connection, as discussed below, a detent, latch, or by another type of connection. The cartridge assembly includes fasteners or staples 1414.
Cartridge body 1400 defines a plurality of laterally spaced staple retention slots 1410, which are configured as openings in tissue contacting surface 1412 (see FIG.
11). Each slot 1410 is configured to receive a fastener or staple 1414 therein.
Cartridge assembly 1200 also defines a plurality of cam wedge slots which accommodate staple pushers 1416 and which are open on the bottom (i.e., away from tissue-contacting surface 1412) to allow an actuation sled 1418 to pass longitudinally therethrough.
[0060] Further details of the various components of cartridge assembly 1200, including the connection between its various components, and the removability and replaceability of cartridge body 1400 and support plate 1500 with respect to channel 1300, are discussed below. Generally, the removable assembly 1600 includes cartridge assembly 1200 and support plate 1500. The removable assembly 1600 is removable from channel 1300, e.g., after staples 1414 has been fired from cartridge body 1400. Another removable assembly is capable of being loaded onto channel 1300, such that surgical instrument 10 can be actuated again to fire additional fasteners or staples 1414, for instance.
[0061] Channel 1300, which may be machined (e.g., e.g., 1300a in FIGS. 13-17) or made of sheet metal (e.g., 1300b in FIG. 9), includes one or a pair of engagement structures or proximal bosses 1310 (e.g., 1300b in FIG. 6), a pair of cut-outs disposed adjacent a distal end, a pair of distal slots 1330, a central slot 1340, a pair of proximal holes 1350, and a ramped surface 1360. Proximal holes 1350 are configured to align with/mechanically engage a pair of corresponding holes 1120 (e.g., with a pin or protrusion extending through holes 1350 and holes 1120) on anvil cover 1110 to facilitate a pivotal relationship between anvil assembly 1100 and cartridge assembly 1200. It is envisioned that engagement structures 1310 may be pins, protrusions, or similar structure.
[0062] Cartridge body 1400 includes a central slot 1420, and rows of staple retention slots 1410 positioned on each side of slot 1420 (see FIG. 11). In the illustrated embodiment, three rows of retention slots 1410 are shown. More specifically, cartridge body 1400 is configured such that actuation sled 1418 can pass through the cam wedge slots and force staple pushers 1416 towards anvil plate 1112. The staples 1414, which are supported on the pushers, are then forced out of their respective staple retention slots 1410. Cartridge body 1400 also includes a pair of engagement structures or U-shaped recesses 1430 (which may, in other embodiments, be slots or openings) adjacent its proximal end, a pair of central bosses 1440, a pair of distal protrusions 1450, and a pair of distal grooves 1460. Pairs of upper and lower mounting surfaces 1470, 1480, respectively, are disposed adjacent a proximal end of cartridge body 1400, and are disposed adjacent respective upper and lower mounting slots 1472, 1482.
[00631 With particular reference to Figure 10, support plate 1500 includes a base surface 1510, a longitudinal slot 1520 extending through base surface 1510, a pair of proximal fingers 1530 disposed and extending substantially perpendicularly from a proximal end of base surface 1510, a pair of intermediate fingers 1550 extending substantially perpendicularly from a middle portion of base surface 1510, a pair of inwardly-extending fingers 1560 and outwardly-extending bosses 1570 disposed adjacent a distal end of base surface 1510, and a pair of proximal protrusions 1580 disposed adjacent the proximal end of base surface 1510. Each proximal finger 1530 includes an engagement structure or proximal-facing U-shaped recesses 1532, an upper mounting flange 1534, and a lower mounting flange 1536. As can be appreciated, support plate 1500 helps maintain pushers 1416 in place with respect to cartridge body 1400.
Additionally, longitudinal slot 1520 allows a portion of a drive member to pass through the support plate 1500. The drive member may be a dynamic clamping member 1402.
The dynamic clamping member or drive member 1402 drives the actuation sled through the cartridge body 140. The central slot of the cartridge body, the central slot of the channel, and the longitudinal slot of the support plate are all configured to align with one another to allow the passage of the drive member.
[00641 In use, to connect cartridge body 1400 and support plate 1500, cartridge body 1400 and support plate 1500 are assembled or brought together such that the proximal-most end of cartridge is positioned between proximal fingers 1530 of support plate 1500 and in contact with base surface 1510 thereof. Support plate 1500 is then longitudinally translated (e.g., slid distally) with respect to cartridge body 1400 such that upper mounting flanges 1534 and lower mounting flanges 1536 engage upper mounting slots 1472 and lower mounting slots 1482, respectively. The longitudinal translation between cartridge body 1400 and support plate 1500 continues until a distal-most end of proximal fingers 1530 contact a respective vertical wall 1490 (FIG. 12) of cartridge body 1400. At this stage, U-shaped recesses 1430 are laterally adjacent and aligned with U-shaped recesses 1532 (see FIG. 3), and continued proximal movement of cartridge body 1400 with respect to support plate 1500 is prevented. Next, or concomitantly with the relative longitudinal translation between cartridge body 1400 and support plate 1500, cut-outs 1552 within intermediate fingers 1550 of support plate 1500 are positioned around central bosses 1440 of cartridge, and inwardly-extending fingers 1560 are moved into engagement with distal grooves 1460 of cartridge. Cartridge assembly 1200 and support plate 1500 comprise a removable assembly 1600, which is removable from and replaceable onto channel 1300 by the user of the surgical instrument 10 and/or loading unit 500.
[0065] Removable assembly 1600 is insertable onto channel 1300 by approximating removable assembly 1600 and channel 1300 such that proximal bosses 1310 are positioned proximally of U-shaped recesses 1430 and 1532, and such that distal ends of distal slots 1330 are positioned proximally of proximal ends of outwardly-extending bosses 1570. Next, removable assembly 1600 is translated longitudinally (e.g., proximally) with respect to channel 1300 such that outwardly-extending bosses translate proximally within distal slots 1330 until proximal bosses 1310 contact U-shaped recesses 1430 and 1532. Next, or concomitantly with the relative longitudinal translation between removable assembly 1600 and channel 1300, cut-outs 1320 of channel 1300 are moved into engagement with distal protrusions 1450 of cartridge body 1400.
Ramped surface 1360 is engaged by the dynamic clamping member 1402 in order to move the anvil assembly 1100 and the cartridge assembly 1200 with respect to one another. A
similar surface could be provided on the anvil assembly 1100, in other embodiments. It is envisioned that ramped surface 1360 may also facilitate the alignment and/or engagement between channel 1300 and support plate 1300 and/or cartridge body 1400.
[0066] Once assembled, a user is able to actuate movable handle 22 to eject staples 1414 from cartridge body 1400 and into tissue, as described below. It is envisioned that proximal protrusions 1580, which extend from base surface 1510, help maintain actuation sled 1418 in its relative position with respect to support plate 1500 = before actuation of instrument 10. That is, it is envisioned that actuation sled 1418, or a portion thereof, is positioned proximally of proximal protrusions 1580, and that proximal protrusions 1580 form a physically barrier to hinder any premature distal advancement of actuation sled 1418. Once a user intends to actuate instrument 10 and distally advance actuation sled 1418 beyond proximal protrusions 1580, the force used to advance actuation sled 1418 is sufficient to force a lower surface or portion of actuation sled 1418 over proximal protrusions 1580.
[0067] After staples 1414 have been ejected from cartridge body 1400, and a user wishes to use the same instrument 10 to fire additional staples 1414 (or another type of fastener or knife), the user can remove the removable assembly 1600 by sliding removable assembly 1600 distally with respect to channel 1300. Next, a user removes the removable assembly 1600 from the channel 1300. Another removable assembly with unfired staples can be loaded into the channel 1300. In other embodiments, a cartridge body of a cartridge assembly can be removable from a support plate after the removable assembly is removed from the channel 1300. The cartridge body is removed by sliding support plate 1500 proximally with respect to cartridge body 1400. Another cartridge body, if desired, may be coupled to the support plate and inserted into the channel.
[0068] In certain embodiments, the removable assembly is part of a loading unit SOO that is removably attached to the elongated portion of a surgical stapling instrument, such as elongated portion 18. This enables the user to choose a staple line length that is shorter or longer. It is also contemplated that the removable assembly can be used with a surgical instrument that does not have a loading unit that is removable and instead has jaws permanently attached to the elongated portion 18.
[0069] During operation of stapler 10, actuation of its movable handle 22 will fire the staples. The handle assembly 12 has an elongate actuation shaft that is translated distally when the movable handle 22 is pivotally moved by the user. The actuation shaft of the handle assembly can include teeth that are engaged by the movable handle 22, or the handle assembly 12 can include a series of gears for moving the actuation shaft.
Alternatively, the handle assembly can include a motorized driver for moving the actuation shaft, or the handle assembly can be attachable to a separate motorized driver.
[0070] In certain embodiments, through successive strokes of the movable handle, a drive rod 30 (a distal portion of which is illustrated in Figures 1 and 27-31)) is advanced distally, such that drive rod 30 pushes a portion of the drive assembly (which includes the dynamic clamping member 1402) to translate distally through cartridge body 1400. (Further details of how actuation of movable handle 22 causes distal advancement of drive rod 30 are explained in U.S. Patent No. 6,953,139 to Millirnan et al., which is hereby incorporated by reference herein.) Distal movement of the drive assembly, and in particular, the dynamic clamping member or drive member 1402, causes approximation of one jaw member with respect to the other. That is, an upper portion of the dynamic clamping member 1402 travels through the channel 1114 between the anvil plate and the anvil cover 1110, and a lower portion of the dynamic clamping member travels below the carrier 1300 of the cartridge assembly 1200, which causes approximation of the anvil assembly 1100 and the cartridge assembly 1200 to clamp tissue therebetween. For example, the channel 1300 may have a lower surface defining a camming surface and the lower portion of the dynamic clamping member 1402 engages the camming surface to pivot the cartridge assembly 1200 toward the anvil assembly 1100.
[0071] Additionally, distal translation of the dynamic clamping member causes the actuation sled 1418 to move distally through cartridge body 1400, which causes cam wedges 1419 of actuation sled 1418 to sequentially engage pushers 1416 to move pushers 1416 vertically within staple retention slots 1410 and eject staples 1414 into staple fanning depressions 1113 of anvil plate 1112. Subsequent to the ejection of staples 1414 from retention slots 1410 (and into tissue), a cutting edge of the dynamic clamping member 1402 severs the stapled tissue as the cutting edge travels distally through central slot 1420 of cartridge body 1400.
[0072] It is also envisioned, in further embodiments, that an end effector or tool assembly like the end effector or tool assembly 1000 is arranged for articulating between a first position where tool assembly 1000 is aligned with longitudinal axis "A-A,'' and a second position where tool assembly 1000 is disposed at an angle with respect to longitudinal axis "A-A." For example, the anvil assembly 110 may be pivotably attached to the proximal body portion 502 of a loading unit 500, or pivotably attached to the elongated portion of the instrument. The loading unit includes one or more cables or linkages disposed in the proximal body portion 502 and attached at the tool assembly .1000. When the cable or linkage is displaced, the tool assembly pivots and articulates with respect to the instrument. Further details of providing articulation are described in detail in commonly-owned U.S. Patent No. 6,953,139 to Milliman et al., the contents of which has previously been incorporated by reference in their entirety.
Further, the tool assembly can be configured not to articulate.
[0073] Additionally, it is envisioned that instrument 10 is powered by a power source and/or motor. Further details of such a powered surgical instrument are included in U.S. Patent Publication No. 2008/0255607, the entire contents of which are hereby incorporated by reference herein.
[0074] Further, and as illustrated in Figure 11, for example, the present disclosure includes a cartridge body 1400 having a stepped tissue-contacting surface 1412. In such an embodiment, different sized staples 1414, or all the same sized staples, may be used.
Further details of a staple cartridge having multiple staple sizes are included in U.S.
Patent No. 7,407,075 to Holsten et al., the entire contents of which are hereby incorporated by reference herein.
[0075] The present disclosure also relates to methods of using the described surgical instrument 10, loading unit 500, and tool assembly 100 to perform a surgical procedure and to methods of assembling the various components thereof, as described above.
[0076] With reference to Figures 18-35, two embodiments of a lockout mechanism 2000, 2000a of the present disclosure are shown. For each of these embodiments, a surgical instrument having the lockout may have a channel, removable assembly, cartridge body, support plate, and the engagement structures discussed above.
Furthermore, the present disclosure is directed to a removable assembly having the lockout, or a loading unit having the lockout.
[0077] With reference to Figures 18-31, the -first embodiment of lockout mechanism 2000 includes a latch 2010 and a spring 2030, and is configured to prevent re-firing of cartridge body 1400 of removable assembly 1600, and also prevent distal translation of dynamic clamping member 1402 after an initial distal translation of knife and prior to another removable assembly 1600 being loaded onto channel 1300.
[0078] With particular reference to Figures 22 and 24, latch 2010 includes a body 2012 having an upper surface 2014 and a lower surface 2016, a lower protrusion depending downwardly from lower surface 2016, a spring stop 2019 extending upwardly from upper surface 2014, and a shaped surface 2020 on a first lateral side 2022. The body 2012 also has a second lateral side 2024. The shaped surface 2020 has two sides.
The first side 2020a is angled with respect to the central slot 1340 when the latch 2010 is in a blocking position in which the latch obstructs the passage of the dynamic clamping member 1402. The second side 2020b of the shaped surface 2020 extends transversely to the central slot 1340 when the latch is in the blocking position. (See Fig.
30).
[0079] Referring now to Figures 19-24, latch 2010 is mechanically engaged with channel 1300 so that the latch 2010 can pivot with respect to the channel 1300. In particular, lower protrusion 2018 of latch 2010 (Figure 24) extends through an opening 1380 (Figure 22) in channel 1300, such that latch 2010 is pivotable with respect to channel 1300. Lower protrusion 2018 is maintained in mechanical engagement with channel 1300 by a lock pin 2050 (Figure 22). Alternatively, the protrusion can be omitted and a separate pivot pin in engagement with the body 2012 and the channel 1300 can be used.
[0080] With regard to Figures 21-22, spring 2030 includes a first leg 2032, a second leg 2034, and an intermediate portion 2036 interconnecting first leg 2032 and second leg 2034. First leg 2032 is in contact with a portion of channel 1300.
For example, the channel 1300 may have a slot 1301, a notch, or some other feature for restricting the movement of the first leg 2032. Second leg 2034 is disposed in contact with spring stop 2018 of latch 2010. Intermediate portion 2036 is disposed between first leg 2032 and second leg 2034. For example, the spring may have a U-shaped configuration (see Fig. 27), or some other shape, such as L-shaped.
[0081] Spring 2030 is in mechanical cooperation with a portion of the cartridge assembly 1200. The spring is configured to bias latch 2010 towards its blocking position.
In the initial position of the dynamic clamping member 1402 and the sled 1418 (e.g., prior to distal advancement thereof to fire staples and incise tissue), a tail portion 1417 of sled 1418 (Figure 25) physically prevents the shaped surface 2020 of latch 2010 from moving from its initial position into its blocking position, and thus allows distal translation of dynamic clamping member 1402 and sled 1418 (see Figures 26 and 27).
After translation of the dynamic clamping member and sled, the spring moves the latch 2010 to the blocking position, where the shaped surface 2020 of latch 2010 obstructs the central slot 1340 of channel 1300 and the longitudinal slot 1520 extending through base surface 1510 of support plate 1500 (see Figures 30 and 31), such that shaped surface 2020 would block distal translation of dynamic clamping member 1402 when the dynamic clamping member 1402.has been retracted after firing staples and cutting tissue.
[0082] The latch 2010 is laterally movable from an initial position to a blocking position. The latch moves laterally, which enables the shaped surface of the latch to obstruct the slot and move away from a position that obstructs the slot of the cartridge assembly.
[0083] During retraction of the dynamic clamping member, the dynamic clamping member slides along the shaped surface first side 2020a, keeping the latch 2010 away from the dynamic clamping member and pivoting the latch against the bias of the spring. In the retracted position of the dynamic clamping member, it is disposed proximally of shaped surface 2020 and the sled 1418 and/or tail portion 1417 is not abutting the shaped surface 2020. The latch 2010 pivots to the blocking position, so that the second side 2020b obstructs and/or prevents distal movement of the dynamic clamping member.
[0084] During distal advancement of dynamic clamping member 1402 and sled 1418, and after sled 1418 distally passes latch 2010 such that shaped surface 2020 is no longer in contact with tail portion of sled 1418, dynamic clamping member 1402 abuts the shaped surface 2020, which physically blocks latch 2010 from moving into its blocking position, and thus permits distal translation of dynamic clamping member 1402 (see Figure 28).
[0085] When cartridge assembly1200 or removable assembly 1600 is removed from channel 1300, latch 2010 continues to block dynamic clamping member 1402 (see Figure 31). When a new cartridge assembly1200 or removable assembly 1600 is loaded onto channel 1300, tail portion 1417 of the new sled 1418 engages shaped surface first side 2020a of latch 2010 and pivots latch 2010 away from its blocking position. Without a sled having the correct configuration, the latch remains in the blocking position.
[0086] With reference to Figures 32-35, a second embodiment of lockout mechanism 2000a is shown. A surgical instrument having the lockout may have a channel, removable assembly, cartridge body, support plate, and the engagement structures discussed above. Furthermore, the present disclosure is directed to a removable assembly having the lockout, or a loading unit having the lockout.
Lockout mechanism 2000a includes a latch 2010a, and a spring. The spring is not shown for clarity, but may be as discussed above. Unlike the embodiment of lockout mechanism 2000 discussed above, this embodiment of lockout mechanism 2000a does not include a lock pin 2050. Here, to maintain latch 2010a in engagement with channel 1300a, lower surface 2016a of latch 2010a includes a locking member 2018a depending therefrom.
[00871 In the illustrated embodiment, locking member 2018a includes a pair of parallel walls that are interconnected by a pair of arcuate walls. The opening 1380a of channel 1300a includes similar, but slightly larger shape with respect to locking member 2018a and also includes a circular recess 1381a, around which locking member 2018a can rotate (see Figures 34 and 35).
[00881 To engage latch 2010a with channel 1300a, locking member 2018a is inserted through opening 1380a and latch 2010a is then rotated a predetermined amount (e.g., about 40 degrees to about 130 degrees) such that latch 2010a does not fall through opening 1380a of channel 1300a. The spring (not shown in this embodiment for clarity) may then be positioned between spring stop 2018a of latch 2010a and a portion of channel 1300a, as described above.
[00891 As can be appreciated, use of surgical instrument including the second embodiment of lockout mechanism 2000a is similar to, or that same as use of the surgical instrument including the first embodiment of lockout mechanism 2000, as described above.
[0090] While the above description contains many specifics, these specifics should not be construed as limitations on the scope of the present disclosure, but merely as illustrations of various embodiments thereof. Therefore, the above description should not be construed as limiting, but merely as exemplifications of various embodiments.
Those skilled in the art will envision other modifications within the scope and spirit of the claims appended hereto.
,
Claims (23)
1. A surgical instrument, comprising:
a channel including an engagement structure disposed adjacent a proximal end thereof; and a removable assembly disposed in releasable engagement with the channel, the removable assembly comprising:
a cartridge body configured to house a plurality of fasteners therein, the cartridge body including an engagement structure disposed adjacent a proximal end thereof; and a support plate configured to mechanically engage the cartridge body, the support plate including an engagement structure disposed adjacent a proximal end thereof;
wherein the engagement structure of the cartridge body is configured for longitudinal alignment with the engagement structure of the support plate, and wherein the engagement structure of the cartridge body and the engagement structure of the support plate are configured to mechanically engage the engagement structure of the channel when the removable assembly is engaged with the channel.
a channel including an engagement structure disposed adjacent a proximal end thereof; and a removable assembly disposed in releasable engagement with the channel, the removable assembly comprising:
a cartridge body configured to house a plurality of fasteners therein, the cartridge body including an engagement structure disposed adjacent a proximal end thereof; and a support plate configured to mechanically engage the cartridge body, the support plate including an engagement structure disposed adjacent a proximal end thereof;
wherein the engagement structure of the cartridge body is configured for longitudinal alignment with the engagement structure of the support plate, and wherein the engagement structure of the cartridge body and the engagement structure of the support plate are configured to mechanically engage the engagement structure of the channel when the removable assembly is engaged with the channel.
2. The surgical instrument of Claim 1, wherein the engagement structure of the channel includes raised bosses.
3. The surgical instrument of Claim 2, wherein the engagement structure of the cartridge body includes a U-shaped recess.
4. The surgical instrument of Claim 3, wherein the engagement structure of the support plate includes a U-shaped recess.
5. The surgical instrument of Claim 4, wherein the U-shaped recesses of the cartridge body and the support plate include a proximally-facing opening.
6. The surgical instrument of Claim 1, wherein the channel includes a longitudinally-extending slot disposed adjacent a distal end thereof, and wherein the support plate includes an outwardly-extending finger configured to releasably engage the longitudinally-extending slot of the channel.
7. The surgical instrument of Claim 1, wherein the support plate includes an inwardly-extending finger disposed on a distal portion thereof, the inwardly-extending finger configured to releasably engage a groove disposed on a distal portion of the cartridge body.
8. The surgical instrument of Claim 1, wherein the support plate includes a proximal protrusion disposed adjacent a proximal end thereof, the proximal protrusion being configured to help prevent an actuation sled from prematurely translating distally with respect to the cartridge body.
9. The surgical instrument of Claim 1, wherein the channel is part of a removable loading unit that includes an anvil assembly.
10. A loading unit, comprising:
an anvil assembly;
a channel including a boss disposed adjacent a proximal end thereof and a cartridge assembly, the anvil assembly and cartridge assembly being pivotable with respect to one another, the cartridge assembly comprising:
a support plate configured to releasably engage the channel, the support plate including a recess disposed adjacent a proximal end thereof;
and a cartridge body configured to releasably engage the support plate and configured to house a plurality of fasteners therein, the cartridge body including a recess disposed adjacent a proximal end thereof;
wherein the recess of the cartridge body is configured for longitudinal alignment with the recess of the support plate, and wherein at least one of the recesses of the cartridge body and the support plate is configured to mechanically engage the boss of the channel when the support plate is engaged with the channel.
an anvil assembly;
a channel including a boss disposed adjacent a proximal end thereof and a cartridge assembly, the anvil assembly and cartridge assembly being pivotable with respect to one another, the cartridge assembly comprising:
a support plate configured to releasably engage the channel, the support plate including a recess disposed adjacent a proximal end thereof;
and a cartridge body configured to releasably engage the support plate and configured to house a plurality of fasteners therein, the cartridge body including a recess disposed adjacent a proximal end thereof;
wherein the recess of the cartridge body is configured for longitudinal alignment with the recess of the support plate, and wherein at least one of the recesses of the cartridge body and the support plate is configured to mechanically engage the boss of the channel when the support plate is engaged with the channel.
11. The loading unit of Claim 10, wherein the recess of the cartridge body includes a U-shaped recess.
12. The loading unit of Claim 11, wherein the recess of the support plate includes a U-shaped recess.
13. The loading unit of Claim 12, wherein the U-shaped recesses of the cartridge and the support plate include a proximally-facing opening.
14. The loading unit of Claim 10, wherein the channel includes a longitudinally-extending slot disposed adjacent a distal end thereof, and wherein the support plate includes an outwardly-extending finger configured to releasably engage the longitudinally-extending slot of the channel.
15. The loading unit of Claim 10, wherein the support plate includes an inwardly-extending finger disposed on a distal portion thereof, the inwardly-extending finger configured to releasably engage a groove disposed on a distal portion of the cartridge body.
16. The loading unit of Claim 10, wherein the support plate includes a proximal protrusion disposed adjacent a proximal end thereof, the proximal protrusion being configured to help prevent an actuation sled from prematurely translating distally with respect to the cartridge body.
17. The loading unit of Claim 10, further comprising a body portion to which the channel and the anvil assembly are attached, the body portion being attachable to the elongate member of a surgical instrument.
18. A surgical instrument having a channel and comprising:
a cartridge assembly;
a drive member configured to travel in a distal direction; and a lockout mechanism configured to prevent longitudinal translation of the drive member, the lockout mechanism comprising:
a latch disposed in mechanical cooperation with a portion of the channel and laterally movable from an initial position to a blocking position; and a spring configured to bias the latch toward the blocking position, a shaped surface of the latch obstructing the distal movement of the drive member when the latch is in the blocking position.
a cartridge assembly;
a drive member configured to travel in a distal direction; and a lockout mechanism configured to prevent longitudinal translation of the drive member, the lockout mechanism comprising:
a latch disposed in mechanical cooperation with a portion of the channel and laterally movable from an initial position to a blocking position; and a spring configured to bias the latch toward the blocking position, a shaped surface of the latch obstructing the distal movement of the drive member when the latch is in the blocking position.
19. The surgical instrument of Claim 18, wherein the latch is pivotable with respect to the cartridge assembly.
20. The surgical instrument of Claim 18, wherein the shaped surface of the latch has a second side configured to engage a portion of the drive member to prevent distal translation of the drive member.
21. The surgical instrument of Claim 20, wherein the shaped surface of the latch includes a first side, the drive member sliding along the first side of the latch during retraction of the drive member, pivoting the latch away from its blocking position.
22. The surgical instrument of Claim 18, further comprising a sled configured for distal advancement with the drive member, wherein the sled includes a tail portion that is configured to abut the shaped surface of the latch when the drive member is in an initial position, and wherein the tail portion of the sled is configured to prevent the latch from moving into its blocking position.
23. The surgical instrument of Claim 18, wherein the cartridge assembly has a cartridge body defining a slot, and wherein the latch obstructs the movement of the drive member through the slot when the latch is in the blocking position.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA3050650A CA3050650C (en) | 2012-11-09 | 2012-11-09 | Multi-use loading unit |
CA2795323A CA2795323C (en) | 2012-11-09 | 2012-11-09 | Multi-use loading unit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA2795323A CA2795323C (en) | 2012-11-09 | 2012-11-09 | Multi-use loading unit |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA3050650A Division CA3050650C (en) | 2012-11-09 | 2012-11-09 | Multi-use loading unit |
Publications (2)
Publication Number | Publication Date |
---|---|
CA2795323A1 true CA2795323A1 (en) | 2014-05-09 |
CA2795323C CA2795323C (en) | 2019-09-24 |
Family
ID=50679505
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA3050650A Active CA3050650C (en) | 2012-11-09 | 2012-11-09 | Multi-use loading unit |
CA2795323A Expired - Fee Related CA2795323C (en) | 2012-11-09 | 2012-11-09 | Multi-use loading unit |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA3050650A Active CA3050650C (en) | 2012-11-09 | 2012-11-09 | Multi-use loading unit |
Country Status (1)
Country | Link |
---|---|
CA (2) | CA3050650C (en) |
Cited By (150)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017034883A1 (en) * | 2015-08-26 | 2017-03-02 | Ethicon Endo-Surgery, Llc | Staple cartridge assembly without a bottom cover |
EP3225197A1 (en) * | 2016-04-01 | 2017-10-04 | Ethicon LLC | Surgical stapling system comprising a spent cartridge lockout |
EP3241502A4 (en) * | 2014-12-30 | 2017-12-13 | Suzhou Touchstone International Medical Science Co., Ltd. | Nail head assembly and suturing and cutting apparatus for endoscopic surgery |
US10265065B2 (en) | 2013-12-23 | 2019-04-23 | Ethicon Llc | Surgical staples and staple cartridges |
USD847989S1 (en) | 2016-06-24 | 2019-05-07 | Ethicon Llc | Surgical fastener cartridge |
USD850617S1 (en) | 2016-06-24 | 2019-06-04 | Ethicon Llc | Surgical fastener cartridge |
US10314587B2 (en) | 2015-09-02 | 2019-06-11 | Ethicon Llc | Surgical staple cartridge with improved staple driver configurations |
EP3547328A1 (en) * | 2018-03-28 | 2019-10-02 | Ethicon LLC | Surgical instrument comprising co-operating lockout features |
US10537324B2 (en) | 2016-12-21 | 2020-01-21 | Ethicon Llc | Stepped staple cartridge with asymmetrical staples |
US10542979B2 (en) | 2016-06-24 | 2020-01-28 | Ethicon Llc | Stamped staples and staple cartridges using the same |
US10595887B2 (en) | 2017-12-28 | 2020-03-24 | Ethicon Llc | Systems for adjusting end effector parameters based on perioperative information |
US10675035B2 (en) | 2010-09-09 | 2020-06-09 | Ethicon Llc | Surgical stapling head assembly with firing lockout for a surgical stapler |
US10687810B2 (en) | 2016-12-21 | 2020-06-23 | Ethicon Llc | Stepped staple cartridge with tissue retention and gap setting features |
US10695081B2 (en) | 2017-12-28 | 2020-06-30 | Ethicon Llc | Controlling a surgical instrument according to sensed closure parameters |
US10755813B2 (en) | 2017-12-28 | 2020-08-25 | Ethicon Llc | Communication of smoke evacuation system parameters to hub or cloud in smoke evacuation module for interactive surgical platform |
US10751040B2 (en) | 2011-03-14 | 2020-08-25 | Ethicon Llc | Anvil assemblies with collapsible frames for circular staplers |
USD894389S1 (en) | 2016-06-24 | 2020-08-25 | Ethicon Llc | Surgical fastener |
US10758310B2 (en) | 2017-12-28 | 2020-09-01 | Ethicon Llc | Wireless pairing of a surgical device with another device within a sterile surgical field based on the usage and situational awareness of devices |
US10772651B2 (en) | 2017-10-30 | 2020-09-15 | Ethicon Llc | Surgical instruments comprising a system for articulation and rotation compensation |
US10849697B2 (en) | 2017-12-28 | 2020-12-01 | Ethicon Llc | Cloud interface for coupled surgical devices |
CN112204673A (en) * | 2018-03-28 | 2021-01-08 | 爱惜康有限责任公司 | Surgical stapling device with cartridge compatible closure member and firing lockout arrangement |
US10892995B2 (en) | 2017-12-28 | 2021-01-12 | Ethicon Llc | Surgical network determination of prioritization of communication, interaction, or processing based on system or device needs |
US10892899B2 (en) | 2017-12-28 | 2021-01-12 | Ethicon Llc | Self describing data packets generated at an issuing instrument |
US10898622B2 (en) | 2017-12-28 | 2021-01-26 | Ethicon Llc | Surgical evacuation system with a communication circuit for communication between a filter and a smoke evacuation device |
US10925599B2 (en) | 2013-12-23 | 2021-02-23 | Ethicon Llc | Modular surgical instruments |
US10932872B2 (en) | 2017-12-28 | 2021-03-02 | Ethicon Llc | Cloud-based medical analytics for linking of local usage trends with the resource acquisition behaviors of larger data set |
US10943454B2 (en) | 2017-12-28 | 2021-03-09 | Ethicon Llc | Detection and escalation of security responses of surgical instruments to increasing severity threats |
US10944728B2 (en) | 2017-12-28 | 2021-03-09 | Ethicon Llc | Interactive surgical systems with encrypted communication capabilities |
US10945727B2 (en) | 2016-12-21 | 2021-03-16 | Ethicon Llc | Staple cartridge with deformable driver retention features |
US10966791B2 (en) | 2017-12-28 | 2021-04-06 | Ethicon Llc | Cloud-based medical analytics for medical facility segmented individualization of instrument function |
US10973520B2 (en) | 2018-03-28 | 2021-04-13 | Ethicon Llc | Surgical staple cartridge with firing member driven camming assembly that has an onboard tissue cutting feature |
US10987178B2 (en) | 2017-12-28 | 2021-04-27 | Ethicon Llc | Surgical hub control arrangements |
US10993715B2 (en) | 2016-12-21 | 2021-05-04 | Ethicon Llc | Staple cartridge comprising staples with different clamping breadths |
US11013563B2 (en) | 2017-12-28 | 2021-05-25 | Ethicon Llc | Drive arrangements for robot-assisted surgical platforms |
US11020109B2 (en) | 2013-12-23 | 2021-06-01 | Ethicon Llc | Surgical stapling assembly for use with a powered surgical interface |
US11026751B2 (en) | 2017-12-28 | 2021-06-08 | Cilag Gmbh International | Display of alignment of staple cartridge to prior linear staple line |
US11026687B2 (en) | 2017-10-30 | 2021-06-08 | Cilag Gmbh International | Clip applier comprising clip advancing systems |
US11051876B2 (en) | 2017-12-28 | 2021-07-06 | Cilag Gmbh International | Surgical evacuation flow paths |
US11056244B2 (en) | 2017-12-28 | 2021-07-06 | Cilag Gmbh International | Automated data scaling, alignment, and organizing based on predefined parameters within surgical networks |
US11058498B2 (en) | 2017-12-28 | 2021-07-13 | Cilag Gmbh International | Cooperative surgical actions for robot-assisted surgical platforms |
US11064997B2 (en) | 2016-04-01 | 2021-07-20 | Cilag Gmbh International | Surgical stapling instrument |
US11069012B2 (en) | 2017-12-28 | 2021-07-20 | Cilag Gmbh International | Interactive surgical systems with condition handling of devices and data capabilities |
US11076921B2 (en) | 2017-12-28 | 2021-08-03 | Cilag Gmbh International | Adaptive control program updates for surgical hubs |
US11090047B2 (en) | 2018-03-28 | 2021-08-17 | Cilag Gmbh International | Surgical instrument comprising an adaptive control system |
US11100631B2 (en) | 2017-12-28 | 2021-08-24 | Cilag Gmbh International | Use of laser light and red-green-blue coloration to determine properties of back scattered light |
US11096693B2 (en) | 2017-12-28 | 2021-08-24 | Cilag Gmbh International | Adjustment of staple height of at least one row of staples based on the sensed tissue thickness or force in closing |
US11096688B2 (en) | 2018-03-28 | 2021-08-24 | Cilag Gmbh International | Rotary driven firing members with different anvil and channel engagement features |
US11114195B2 (en) | 2017-12-28 | 2021-09-07 | Cilag Gmbh International | Surgical instrument with a tissue marking assembly |
US11109866B2 (en) | 2017-12-28 | 2021-09-07 | Cilag Gmbh International | Method for circular stapler control algorithm adjustment based on situational awareness |
US11123065B2 (en) | 2013-12-23 | 2021-09-21 | Cilag Gmbh International | Surgical cutting and stapling instruments with independent jaw control features |
US11132462B2 (en) | 2017-12-28 | 2021-09-28 | Cilag Gmbh International | Data stripping method to interrogate patient records and create anonymized record |
US11147607B2 (en) | 2017-12-28 | 2021-10-19 | Cilag Gmbh International | Bipolar combination device that automatically adjusts pressure based on energy modality |
US11160605B2 (en) | 2017-12-28 | 2021-11-02 | Cilag Gmbh International | Surgical evacuation sensing and motor control |
US11166772B2 (en) | 2017-12-28 | 2021-11-09 | Cilag Gmbh International | Surgical hub coordination of control and communication of operating room devices |
US11179175B2 (en) | 2017-12-28 | 2021-11-23 | Cilag Gmbh International | Controlling an ultrasonic surgical instrument according to tissue location |
US11179208B2 (en) | 2017-12-28 | 2021-11-23 | Cilag Gmbh International | Cloud-based medical analytics for security and authentication trends and reactive measures |
US11202570B2 (en) | 2017-12-28 | 2021-12-21 | Cilag Gmbh International | Communication hub and storage device for storing parameters and status of a surgical device to be shared with cloud based analytics systems |
US11207067B2 (en) | 2018-03-28 | 2021-12-28 | Cilag Gmbh International | Surgical stapling device with separate rotary driven closure and firing systems and firing member that engages both jaws while firing |
US11213295B2 (en) | 2015-09-02 | 2022-01-04 | Cilag Gmbh International | Surgical staple configurations with camming surfaces located between portions supporting surgical staples |
US11219456B2 (en) | 2015-08-26 | 2022-01-11 | Cilag Gmbh International | Surgical staple strips for permitting varying staple properties and enabling easy cartridge loading |
US11229436B2 (en) | 2017-10-30 | 2022-01-25 | Cilag Gmbh International | Surgical system comprising a surgical tool and a surgical hub |
US11234756B2 (en) | 2017-12-28 | 2022-02-01 | Cilag Gmbh International | Powered surgical tool with predefined adjustable control algorithm for controlling end effector parameter |
US11257589B2 (en) | 2017-12-28 | 2022-02-22 | Cilag Gmbh International | Real-time analysis of comprehensive cost of all instrumentation used in surgery utilizing data fluidity to track instruments through stocking and in-house processes |
US11253315B2 (en) | 2017-12-28 | 2022-02-22 | Cilag Gmbh International | Increasing radio frequency to create pad-less monopolar loop |
US11259806B2 (en) | 2018-03-28 | 2022-03-01 | Cilag Gmbh International | Surgical stapling devices with features for blocking advancement of a camming assembly of an incompatible cartridge installed therein |
US11259807B2 (en) | 2019-02-19 | 2022-03-01 | Cilag Gmbh International | Staple cartridges with cam surfaces configured to engage primary and secondary portions of a lockout of a surgical stapling device |
US11259830B2 (en) | 2018-03-08 | 2022-03-01 | Cilag Gmbh International | Methods for controlling temperature in ultrasonic device |
US11266468B2 (en) | 2017-12-28 | 2022-03-08 | Cilag Gmbh International | Cooperative utilization of data derived from secondary sources by intelligent surgical hubs |
US11273001B2 (en) | 2017-12-28 | 2022-03-15 | Cilag Gmbh International | Surgical hub and modular device response adjustment based on situational awareness |
US11278280B2 (en) | 2018-03-28 | 2022-03-22 | Cilag Gmbh International | Surgical instrument comprising a jaw closure lockout |
US11278281B2 (en) | 2017-12-28 | 2022-03-22 | Cilag Gmbh International | Interactive surgical system |
US11284890B2 (en) | 2016-04-01 | 2022-03-29 | Cilag Gmbh International | Circular stapling system comprising an incisable tissue support |
US11284936B2 (en) | 2017-12-28 | 2022-03-29 | Cilag Gmbh International | Surgical instrument having a flexible electrode |
US11291510B2 (en) | 2017-10-30 | 2022-04-05 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
US11291495B2 (en) | 2017-12-28 | 2022-04-05 | Cilag Gmbh International | Interruption of energy due to inadvertent capacitive coupling |
US11298148B2 (en) | 2018-03-08 | 2022-04-12 | Cilag Gmbh International | Live time tissue classification using electrical parameters |
US11304699B2 (en) | 2017-12-28 | 2022-04-19 | Cilag Gmbh International | Method for adaptive control schemes for surgical network control and interaction |
US11304745B2 (en) | 2017-12-28 | 2022-04-19 | Cilag Gmbh International | Surgical evacuation sensing and display |
US11304763B2 (en) | 2017-12-28 | 2022-04-19 | Cilag Gmbh International | Image capturing of the areas outside the abdomen to improve placement and control of a surgical device in use |
US11304720B2 (en) | 2017-12-28 | 2022-04-19 | Cilag Gmbh International | Activation of energy devices |
US11308075B2 (en) | 2017-12-28 | 2022-04-19 | Cilag Gmbh International | Surgical network, instrument, and cloud responses based on validation of received dataset and authentication of its source and integrity |
US11311342B2 (en) | 2017-10-30 | 2022-04-26 | Cilag Gmbh International | Method for communicating with surgical instrument systems |
US11311306B2 (en) | 2017-12-28 | 2022-04-26 | Cilag Gmbh International | Surgical systems for detecting end effector tissue distribution irregularities |
US11317937B2 (en) | 2018-03-08 | 2022-05-03 | Cilag Gmbh International | Determining the state of an ultrasonic end effector |
US11317915B2 (en) | 2019-02-19 | 2022-05-03 | Cilag Gmbh International | Universal cartridge based key feature that unlocks multiple lockout arrangements in different surgical staplers |
US11317919B2 (en) | 2017-10-30 | 2022-05-03 | Cilag Gmbh International | Clip applier comprising a clip crimping system |
USD950728S1 (en) | 2019-06-25 | 2022-05-03 | Cilag Gmbh International | Surgical staple cartridge |
US11324557B2 (en) | 2017-12-28 | 2022-05-10 | Cilag Gmbh International | Surgical instrument with a sensing array |
USD952144S1 (en) | 2019-06-25 | 2022-05-17 | Cilag Gmbh International | Surgical staple cartridge retainer with firing system authentication key |
US11337694B2 (en) | 2016-04-01 | 2022-05-24 | Cilag Gmbh International | Surgical cutting and stapling end effector with anvil concentric drive member |
US11337746B2 (en) | 2018-03-08 | 2022-05-24 | Cilag Gmbh International | Smart blade and power pulsing |
US11357503B2 (en) | 2019-02-19 | 2022-06-14 | Cilag Gmbh International | Staple cartridge retainers with frangible retention features and methods of using same |
US11364075B2 (en) | 2017-12-28 | 2022-06-21 | Cilag Gmbh International | Radio frequency energy device for delivering combined electrical signals |
US11369377B2 (en) | 2019-02-19 | 2022-06-28 | Cilag Gmbh International | Surgical stapling assembly with cartridge based retainer configured to unlock a firing lockout |
US11376002B2 (en) | 2017-12-28 | 2022-07-05 | Cilag Gmbh International | Surgical instrument cartridge sensor assemblies |
US11389164B2 (en) | 2017-12-28 | 2022-07-19 | Cilag Gmbh International | Method of using reinforced flexible circuits with multiple sensors to optimize performance of radio frequency devices |
US11410259B2 (en) | 2017-12-28 | 2022-08-09 | Cilag Gmbh International | Adaptive control program updates for surgical devices |
US11423007B2 (en) | 2017-12-28 | 2022-08-23 | Cilag Gmbh International | Adjustment of device control programs based on stratified contextual data in addition to the data |
US11424027B2 (en) | 2017-12-28 | 2022-08-23 | Cilag Gmbh International | Method for operating surgical instrument systems |
US11419630B2 (en) | 2017-12-28 | 2022-08-23 | Cilag Gmbh International | Surgical system distributed processing |
US11419667B2 (en) | 2017-12-28 | 2022-08-23 | Cilag Gmbh International | Ultrasonic energy device which varies pressure applied by clamp arm to provide threshold control pressure at a cut progression location |
US11432885B2 (en) | 2017-12-28 | 2022-09-06 | Cilag Gmbh International | Sensing arrangements for robot-assisted surgical platforms |
US11446052B2 (en) | 2017-12-28 | 2022-09-20 | Cilag Gmbh International | Variation of radio frequency and ultrasonic power level in cooperation with varying clamp arm pressure to achieve predefined heat flux or power applied to tissue |
USD964564S1 (en) | 2019-06-25 | 2022-09-20 | Cilag Gmbh International | Surgical staple cartridge retainer with a closure system authentication key |
US11464559B2 (en) | 2017-12-28 | 2022-10-11 | Cilag Gmbh International | Estimating state of ultrasonic end effector and control system therefor |
US11464511B2 (en) | 2019-02-19 | 2022-10-11 | Cilag Gmbh International | Surgical staple cartridges with movable authentication key arrangements |
US11464535B2 (en) | 2017-12-28 | 2022-10-11 | Cilag Gmbh International | Detection of end effector emersion in liquid |
US11471156B2 (en) | 2018-03-28 | 2022-10-18 | Cilag Gmbh International | Surgical stapling devices with improved rotary driven closure systems |
US11504192B2 (en) | 2014-10-30 | 2022-11-22 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
US11510741B2 (en) | 2017-10-30 | 2022-11-29 | Cilag Gmbh International | Method for producing a surgical instrument comprising a smart electrical system |
US11517325B2 (en) | 2017-06-20 | 2022-12-06 | Cilag Gmbh International | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured displacement distance traveled over a specified time interval |
US11529187B2 (en) | 2017-12-28 | 2022-12-20 | Cilag Gmbh International | Surgical evacuation sensor arrangements |
US11540855B2 (en) | 2017-12-28 | 2023-01-03 | Cilag Gmbh International | Controlling activation of an ultrasonic surgical instrument according to the presence of tissue |
US11559307B2 (en) | 2017-12-28 | 2023-01-24 | Cilag Gmbh International | Method of robotic hub communication, detection, and control |
US11559308B2 (en) | 2017-12-28 | 2023-01-24 | Cilag Gmbh International | Method for smart energy device infrastructure |
US11564756B2 (en) | 2017-10-30 | 2023-01-31 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
US11571234B2 (en) | 2017-12-28 | 2023-02-07 | Cilag Gmbh International | Temperature control of ultrasonic end effector and control system therefor |
US11576677B2 (en) | 2017-12-28 | 2023-02-14 | Cilag Gmbh International | Method of hub communication, processing, display, and cloud analytics |
US11589932B2 (en) | 2017-12-28 | 2023-02-28 | Cilag Gmbh International | Usage and technique analysis of surgeon / staff performance against a baseline to optimize device utilization and performance for both current and future procedures |
US11589888B2 (en) | 2017-12-28 | 2023-02-28 | Cilag Gmbh International | Method for controlling smart energy devices |
US11596291B2 (en) | 2017-12-28 | 2023-03-07 | Cilag Gmbh International | Method of compressing tissue within a stapling device and simultaneously displaying of the location of the tissue within the jaws |
US11602393B2 (en) | 2017-12-28 | 2023-03-14 | Cilag Gmbh International | Surgical evacuation sensing and generator control |
US11612444B2 (en) | 2017-12-28 | 2023-03-28 | Cilag Gmbh International | Adjustment of a surgical device function based on situational awareness |
US11659023B2 (en) | 2017-12-28 | 2023-05-23 | Cilag Gmbh International | Method of hub communication |
US11666331B2 (en) | 2017-12-28 | 2023-06-06 | Cilag Gmbh International | Systems for detecting proximity of surgical end effector to cancerous tissue |
US11684367B2 (en) | 2016-12-21 | 2023-06-27 | Cilag Gmbh International | Stepped assembly having and end-of-life indicator |
US11690619B2 (en) | 2016-06-24 | 2023-07-04 | Cilag Gmbh International | Staple cartridge comprising staples having different geometries |
US11744604B2 (en) | 2017-12-28 | 2023-09-05 | Cilag Gmbh International | Surgical instrument with a hardware-only control circuit |
US11771487B2 (en) | 2017-12-28 | 2023-10-03 | Cilag Gmbh International | Mechanisms for controlling different electromechanical systems of an electrosurgical instrument |
US11786251B2 (en) | 2017-12-28 | 2023-10-17 | Cilag Gmbh International | Method for adaptive control schemes for surgical network control and interaction |
US11786245B2 (en) | 2017-12-28 | 2023-10-17 | Cilag Gmbh International | Surgical systems with prioritized data transmission capabilities |
US11801098B2 (en) | 2017-10-30 | 2023-10-31 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
US11818052B2 (en) | 2017-12-28 | 2023-11-14 | Cilag Gmbh International | Surgical network determination of prioritization of communication, interaction, or processing based on system or device needs |
US11832840B2 (en) | 2017-12-28 | 2023-12-05 | Cilag Gmbh International | Surgical instrument having a flexible circuit |
US11832899B2 (en) | 2017-12-28 | 2023-12-05 | Cilag Gmbh International | Surgical systems with autonomously adjustable control programs |
US11857152B2 (en) | 2017-12-28 | 2024-01-02 | Cilag Gmbh International | Surgical hub spatial awareness to determine devices in operating theater |
US11864728B2 (en) | 2017-12-28 | 2024-01-09 | Cilag Gmbh International | Characterization of tissue irregularities through the use of mono-chromatic light refractivity |
US11871901B2 (en) | 2012-05-20 | 2024-01-16 | Cilag Gmbh International | Method for situational awareness for surgical network or surgical network connected device capable of adjusting function based on a sensed situation or usage |
US11896322B2 (en) | 2017-12-28 | 2024-02-13 | Cilag Gmbh International | Sensing the patient position and contact utilizing the mono-polar return pad electrode to provide situational awareness to the hub |
US11896443B2 (en) | 2017-12-28 | 2024-02-13 | Cilag Gmbh International | Control of a surgical system through a surgical barrier |
US11903601B2 (en) | 2017-12-28 | 2024-02-20 | Cilag Gmbh International | Surgical instrument comprising a plurality of drive systems |
US11911045B2 (en) | 2017-10-30 | 2024-02-27 | Cllag GmbH International | Method for operating a powered articulating multi-clip applier |
US11937769B2 (en) | 2017-12-28 | 2024-03-26 | Cilag Gmbh International | Method of hub communication, processing, storage and display |
US11963682B2 (en) | 2015-08-26 | 2024-04-23 | Cilag Gmbh International | Surgical staples comprising hardness variations for improved fastening of tissue |
US11969216B2 (en) | 2017-12-28 | 2024-04-30 | Cilag Gmbh International | Surgical network recommendations from real time analysis of procedure variables against a baseline highlighting differences from the optimal solution |
US11998193B2 (en) | 2017-12-28 | 2024-06-04 | Cilag Gmbh International | Method for usage of the shroud as an aspect of sensing or controlling a powered surgical device, and a control algorithm to adjust its default operation |
US12029506B2 (en) | 2017-12-28 | 2024-07-09 | Cilag Gmbh International | Method of cloud based data analytics for use with the hub |
US12035890B2 (en) | 2017-12-28 | 2024-07-16 | Cilag Gmbh International | Method of sensing particulate from smoke evacuated from a patient, adjusting the pump speed based on the sensed information, and communicating the functional parameters of the system to the hub |
US12062442B2 (en) | 2017-12-28 | 2024-08-13 | Cilag Gmbh International | Method for operating surgical instrument systems |
US12121255B2 (en) | 2018-08-24 | 2024-10-22 | Cilag Gmbh International | Electrical power output control based on mechanical forces |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11426159B2 (en) * | 2020-04-01 | 2022-08-30 | Covidien Lp | Sled detection device |
-
2012
- 2012-11-09 CA CA3050650A patent/CA3050650C/en active Active
- 2012-11-09 CA CA2795323A patent/CA2795323C/en not_active Expired - Fee Related
Cited By (299)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10675035B2 (en) | 2010-09-09 | 2020-06-09 | Ethicon Llc | Surgical stapling head assembly with firing lockout for a surgical stapler |
US10751040B2 (en) | 2011-03-14 | 2020-08-25 | Ethicon Llc | Anvil assemblies with collapsible frames for circular staplers |
US10987094B2 (en) | 2011-03-14 | 2021-04-27 | Ethicon Llc | Surgical bowel retractor devices |
US11478238B2 (en) | 2011-03-14 | 2022-10-25 | Cilag Gmbh International | Anvil assemblies with collapsible frames for circular staplers |
US10898177B2 (en) | 2011-03-14 | 2021-01-26 | Ethicon Llc | Collapsible anvil plate assemblies for circular surgical stapling devices |
US11864747B2 (en) | 2011-03-14 | 2024-01-09 | Cilag Gmbh International | Anvil assemblies for circular staplers |
US11871901B2 (en) | 2012-05-20 | 2024-01-16 | Cilag Gmbh International | Method for situational awareness for surgical network or surgical network connected device capable of adjusting function based on a sensed situation or usage |
US11583273B2 (en) | 2013-12-23 | 2023-02-21 | Cilag Gmbh International | Surgical stapling system including a firing beam extending through an articulation region |
US10265065B2 (en) | 2013-12-23 | 2019-04-23 | Ethicon Llc | Surgical staples and staple cartridges |
US11026677B2 (en) | 2013-12-23 | 2021-06-08 | Cilag Gmbh International | Surgical stapling assembly |
US11896223B2 (en) | 2013-12-23 | 2024-02-13 | Cilag Gmbh International | Surgical cutting and stapling instruments with independent jaw control features |
US11020109B2 (en) | 2013-12-23 | 2021-06-01 | Ethicon Llc | Surgical stapling assembly for use with a powered surgical interface |
US11246587B2 (en) | 2013-12-23 | 2022-02-15 | Cilag Gmbh International | Surgical cutting and stapling instruments |
US11759201B2 (en) | 2013-12-23 | 2023-09-19 | Cilag Gmbh International | Surgical stapling system comprising an end effector including an anvil with an anvil cap |
US11950776B2 (en) | 2013-12-23 | 2024-04-09 | Cilag Gmbh International | Modular surgical instruments |
US11364028B2 (en) | 2013-12-23 | 2022-06-21 | Cilag Gmbh International | Modular surgical system |
US10925599B2 (en) | 2013-12-23 | 2021-02-23 | Ethicon Llc | Modular surgical instruments |
US11779327B2 (en) | 2013-12-23 | 2023-10-10 | Cilag Gmbh International | Surgical stapling system including a push bar |
US10588624B2 (en) | 2013-12-23 | 2020-03-17 | Ethicon Llc | Surgical staples, staple cartridges and surgical end effectors |
US11123065B2 (en) | 2013-12-23 | 2021-09-21 | Cilag Gmbh International | Surgical cutting and stapling instruments with independent jaw control features |
US11504192B2 (en) | 2014-10-30 | 2022-11-22 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
EP3241502A4 (en) * | 2014-12-30 | 2017-12-13 | Suzhou Touchstone International Medical Science Co., Ltd. | Nail head assembly and suturing and cutting apparatus for endoscopic surgery |
US11051817B2 (en) | 2015-08-26 | 2021-07-06 | Cilag Gmbh International | Method for forming a staple against an anvil of a surgical stapling instrument |
US11219456B2 (en) | 2015-08-26 | 2022-01-11 | Cilag Gmbh International | Surgical staple strips for permitting varying staple properties and enabling easy cartridge loading |
US10517599B2 (en) | 2015-08-26 | 2019-12-31 | Ethicon Llc | Staple cartridge assembly comprising staple cavities for providing better staple guidance |
US10980538B2 (en) | 2015-08-26 | 2021-04-20 | Ethicon Llc | Surgical stapling configurations for curved and circular stapling instruments |
WO2017034883A1 (en) * | 2015-08-26 | 2017-03-02 | Ethicon Endo-Surgery, Llc | Staple cartridge assembly without a bottom cover |
US10470769B2 (en) | 2015-08-26 | 2019-11-12 | Ethicon Llc | Staple cartridge assembly comprising staple alignment features on a firing member |
US10433845B2 (en) | 2015-08-26 | 2019-10-08 | Ethicon Llc | Surgical staple strips for permitting varying staple properties and enabling easy cartridge loading |
US11963682B2 (en) | 2015-08-26 | 2024-04-23 | Cilag Gmbh International | Surgical staples comprising hardness variations for improved fastening of tissue |
US11103248B2 (en) | 2015-08-26 | 2021-08-31 | Cilag Gmbh International | Surgical staples for minimizing staple roll |
US12035915B2 (en) | 2015-08-26 | 2024-07-16 | Cilag Gmbh International | Surgical staples comprising hardness variations for improved fastening of tissue |
US10966724B2 (en) | 2015-08-26 | 2021-04-06 | Ethicon Llc | Surgical staples comprising a guide |
EP3417812A1 (en) * | 2015-08-26 | 2018-12-26 | Ethicon LLC | Staple cartridge assembly without a bottom cover |
US10357251B2 (en) | 2015-08-26 | 2019-07-23 | Ethicon Llc | Surgical staples comprising hardness variations for improved fastening of tissue |
US10213203B2 (en) | 2015-08-26 | 2019-02-26 | Ethicon Llc | Staple cartridge assembly without a bottom cover |
US11510675B2 (en) | 2015-08-26 | 2022-11-29 | Cilag Gmbh International | Surgical end effector assembly including a connector strip interconnecting a plurality of staples |
US11058426B2 (en) | 2015-08-26 | 2021-07-13 | Cilag Gmbh International | Staple cartridge assembly comprising various tissue compression gaps and staple forming gaps |
US11382624B2 (en) | 2015-09-02 | 2022-07-12 | Cilag Gmbh International | Surgical staple cartridge with improved staple driver configurations |
US10314587B2 (en) | 2015-09-02 | 2019-06-11 | Ethicon Llc | Surgical staple cartridge with improved staple driver configurations |
US11213295B2 (en) | 2015-09-02 | 2022-01-04 | Cilag Gmbh International | Surgical staple configurations with camming surfaces located between portions supporting surgical staples |
US10357252B2 (en) | 2015-09-02 | 2019-07-23 | Ethicon Llc | Surgical staple configurations with camming surfaces located between portions supporting surgical staples |
US11589868B2 (en) | 2015-09-02 | 2023-02-28 | Cilag Gmbh International | Surgical staple configurations with camming surfaces located between portions supporting surgical staples |
US11045191B2 (en) | 2016-04-01 | 2021-06-29 | Cilag Gmbh International | Method for operating a surgical stapling system |
US11284890B2 (en) | 2016-04-01 | 2022-03-29 | Cilag Gmbh International | Circular stapling system comprising an incisable tissue support |
US10856867B2 (en) | 2016-04-01 | 2020-12-08 | Ethicon Llc | Surgical stapling system comprising a tissue compression lockout |
US11766257B2 (en) | 2016-04-01 | 2023-09-26 | Cilag Gmbh International | Surgical instrument comprising a display |
US10682136B2 (en) | 2016-04-01 | 2020-06-16 | Ethicon Llc | Circular stapling system comprising load control |
EP3988035A1 (en) * | 2016-04-01 | 2022-04-27 | Ethicon LLC | Surgical stapling system comprising a spent cartridge lockout |
US10675021B2 (en) | 2016-04-01 | 2020-06-09 | Ethicon Llc | Circular stapling system comprising rotary firing system |
US10568632B2 (en) | 2016-04-01 | 2020-02-25 | Ethicon Llc | Surgical stapling system comprising a jaw closure lockout |
US10542991B2 (en) | 2016-04-01 | 2020-01-28 | Ethicon Llc | Surgical stapling system comprising a jaw attachment lockout |
US11064997B2 (en) | 2016-04-01 | 2021-07-20 | Cilag Gmbh International | Surgical stapling instrument |
US10478190B2 (en) | 2016-04-01 | 2019-11-19 | Ethicon Llc | Surgical stapling system comprising a spent cartridge lockout |
US11058421B2 (en) | 2016-04-01 | 2021-07-13 | Cilag Gmbh International | Modular surgical stapling system comprising a display |
WO2017172926A1 (en) * | 2016-04-01 | 2017-10-05 | Ethicon Llc | Surgical stapling system comprising a spent cartridge lockout |
EP3225197A1 (en) * | 2016-04-01 | 2017-10-04 | Ethicon LLC | Surgical stapling system comprising a spent cartridge lockout |
US11337694B2 (en) | 2016-04-01 | 2022-05-24 | Cilag Gmbh International | Surgical cutting and stapling end effector with anvil concentric drive member |
US10542979B2 (en) | 2016-06-24 | 2020-01-28 | Ethicon Llc | Stamped staples and staple cartridges using the same |
US11786246B2 (en) | 2016-06-24 | 2023-10-17 | Cilag Gmbh International | Stapling system for use with wire staples and stamped staples |
USD847989S1 (en) | 2016-06-24 | 2019-05-07 | Ethicon Llc | Surgical fastener cartridge |
US10893863B2 (en) | 2016-06-24 | 2021-01-19 | Ethicon Llc | Staple cartridge comprising offset longitudinal staple rows |
USD850617S1 (en) | 2016-06-24 | 2019-06-04 | Ethicon Llc | Surgical fastener cartridge |
US10675024B2 (en) | 2016-06-24 | 2020-06-09 | Ethicon Llc | Staple cartridge comprising overdriven staples |
US11000278B2 (en) | 2016-06-24 | 2021-05-11 | Ethicon Llc | Staple cartridge comprising wire staples and stamped staples |
USD948043S1 (en) | 2016-06-24 | 2022-04-05 | Cilag Gmbh International | Surgical fastener |
US10702270B2 (en) | 2016-06-24 | 2020-07-07 | Ethicon Llc | Stapling system for use with wire staples and stamped staples |
US11690619B2 (en) | 2016-06-24 | 2023-07-04 | Cilag Gmbh International | Staple cartridge comprising staples having different geometries |
USD896379S1 (en) | 2016-06-24 | 2020-09-15 | Ethicon Llc | Surgical fastener cartridge |
USD896380S1 (en) | 2016-06-24 | 2020-09-15 | Ethicon Llc | Surgical fastener cartridge |
USD894389S1 (en) | 2016-06-24 | 2020-08-25 | Ethicon Llc | Surgical fastener |
US10945727B2 (en) | 2016-12-21 | 2021-03-16 | Ethicon Llc | Staple cartridge with deformable driver retention features |
US11684367B2 (en) | 2016-12-21 | 2023-06-27 | Cilag Gmbh International | Stepped assembly having and end-of-life indicator |
US10687810B2 (en) | 2016-12-21 | 2020-06-23 | Ethicon Llc | Stepped staple cartridge with tissue retention and gap setting features |
US11000276B2 (en) | 2016-12-21 | 2021-05-11 | Ethicon Llc | Stepped staple cartridge with asymmetrical staples |
US10537324B2 (en) | 2016-12-21 | 2020-01-21 | Ethicon Llc | Stepped staple cartridge with asymmetrical staples |
US10993715B2 (en) | 2016-12-21 | 2021-05-04 | Ethicon Llc | Staple cartridge comprising staples with different clamping breadths |
US11517325B2 (en) | 2017-06-20 | 2022-12-06 | Cilag Gmbh International | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured displacement distance traveled over a specified time interval |
US11311342B2 (en) | 2017-10-30 | 2022-04-26 | Cilag Gmbh International | Method for communicating with surgical instrument systems |
US11026713B2 (en) | 2017-10-30 | 2021-06-08 | Cilag Gmbh International | Surgical clip applier configured to store clips in a stored state |
US12059218B2 (en) | 2017-10-30 | 2024-08-13 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
US12035983B2 (en) | 2017-10-30 | 2024-07-16 | Cilag Gmbh International | Method for producing a surgical instrument comprising a smart electrical system |
US11051836B2 (en) | 2017-10-30 | 2021-07-06 | Cilag Gmbh International | Surgical clip applier comprising an empty clip cartridge lockout |
US11925373B2 (en) | 2017-10-30 | 2024-03-12 | Cilag Gmbh International | Surgical suturing instrument comprising a non-circular needle |
US11071560B2 (en) | 2017-10-30 | 2021-07-27 | Cilag Gmbh International | Surgical clip applier comprising adaptive control in response to a strain gauge circuit |
US11911045B2 (en) | 2017-10-30 | 2024-02-27 | Cllag GmbH International | Method for operating a powered articulating multi-clip applier |
US11819231B2 (en) | 2017-10-30 | 2023-11-21 | Cilag Gmbh International | Adaptive control programs for a surgical system comprising more than one type of cartridge |
US11801098B2 (en) | 2017-10-30 | 2023-10-31 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
US11793537B2 (en) | 2017-10-30 | 2023-10-24 | Cilag Gmbh International | Surgical instrument comprising an adaptive electrical system |
US10772651B2 (en) | 2017-10-30 | 2020-09-15 | Ethicon Llc | Surgical instruments comprising a system for articulation and rotation compensation |
US11759224B2 (en) | 2017-10-30 | 2023-09-19 | Cilag Gmbh International | Surgical instrument systems comprising handle arrangements |
US11103268B2 (en) | 2017-10-30 | 2021-08-31 | Cilag Gmbh International | Surgical clip applier comprising adaptive firing control |
US11109878B2 (en) | 2017-10-30 | 2021-09-07 | Cilag Gmbh International | Surgical clip applier comprising an automatic clip feeding system |
US11696778B2 (en) | 2017-10-30 | 2023-07-11 | Cilag Gmbh International | Surgical dissectors configured to apply mechanical and electrical energy |
US11648022B2 (en) | 2017-10-30 | 2023-05-16 | Cilag Gmbh International | Surgical instrument systems comprising battery arrangements |
US11123070B2 (en) | 2017-10-30 | 2021-09-21 | Cilag Gmbh International | Clip applier comprising a rotatable clip magazine |
US11045197B2 (en) | 2017-10-30 | 2021-06-29 | Cilag Gmbh International | Clip applier comprising a movable clip magazine |
US11602366B2 (en) | 2017-10-30 | 2023-03-14 | Cilag Gmbh International | Surgical suturing instrument configured to manipulate tissue using mechanical and electrical power |
US11129636B2 (en) | 2017-10-30 | 2021-09-28 | Cilag Gmbh International | Surgical instruments comprising an articulation drive that provides for high articulation angles |
US11564703B2 (en) | 2017-10-30 | 2023-01-31 | Cilag Gmbh International | Surgical suturing instrument comprising a capture width which is larger than trocar diameter |
US11141160B2 (en) | 2017-10-30 | 2021-10-12 | Cilag Gmbh International | Clip applier comprising a motor controller |
US11564756B2 (en) | 2017-10-30 | 2023-01-31 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
US10932806B2 (en) | 2017-10-30 | 2021-03-02 | Ethicon Llc | Reactive algorithm for surgical system |
US11510741B2 (en) | 2017-10-30 | 2022-11-29 | Cilag Gmbh International | Method for producing a surgical instrument comprising a smart electrical system |
US11413042B2 (en) | 2017-10-30 | 2022-08-16 | Cilag Gmbh International | Clip applier comprising a reciprocating clip advancing member |
US11406390B2 (en) | 2017-10-30 | 2022-08-09 | Cilag Gmbh International | Clip applier comprising interchangeable clip reloads |
US10959744B2 (en) | 2017-10-30 | 2021-03-30 | Ethicon Llc | Surgical dissectors and manufacturing techniques |
US11317919B2 (en) | 2017-10-30 | 2022-05-03 | Cilag Gmbh International | Clip applier comprising a clip crimping system |
US10980560B2 (en) | 2017-10-30 | 2021-04-20 | Ethicon Llc | Surgical instrument systems comprising feedback mechanisms |
US11291465B2 (en) | 2017-10-30 | 2022-04-05 | Cilag Gmbh International | Surgical instruments comprising a lockable end effector socket |
US11291510B2 (en) | 2017-10-30 | 2022-04-05 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
US11207090B2 (en) | 2017-10-30 | 2021-12-28 | Cilag Gmbh International | Surgical instruments comprising a biased shifting mechanism |
US11026712B2 (en) | 2017-10-30 | 2021-06-08 | Cilag Gmbh International | Surgical instruments comprising a shifting mechanism |
US11026687B2 (en) | 2017-10-30 | 2021-06-08 | Cilag Gmbh International | Clip applier comprising clip advancing systems |
US11229436B2 (en) | 2017-10-30 | 2022-01-25 | Cilag Gmbh International | Surgical system comprising a surgical tool and a surgical hub |
US10944728B2 (en) | 2017-12-28 | 2021-03-09 | Ethicon Llc | Interactive surgical systems with encrypted communication capabilities |
US11832899B2 (en) | 2017-12-28 | 2023-12-05 | Cilag Gmbh International | Surgical systems with autonomously adjustable control programs |
US12096916B2 (en) | 2017-12-28 | 2024-09-24 | Cilag Gmbh International | Method of sensing particulate from smoke evacuated from a patient, adjusting the pump speed based on the sensed information, and communicating the functional parameters of the system to the hub |
US12096985B2 (en) | 2017-12-28 | 2024-09-24 | Cilag Gmbh International | Surgical network recommendations from real time analysis of procedure variables against a baseline highlighting differences from the optimal solution |
US11234756B2 (en) | 2017-12-28 | 2022-02-01 | Cilag Gmbh International | Powered surgical tool with predefined adjustable control algorithm for controlling end effector parameter |
US12076010B2 (en) | 2017-12-28 | 2024-09-03 | Cilag Gmbh International | Surgical instrument cartridge sensor assemblies |
US11257589B2 (en) | 2017-12-28 | 2022-02-22 | Cilag Gmbh International | Real-time analysis of comprehensive cost of all instrumentation used in surgery utilizing data fluidity to track instruments through stocking and in-house processes |
US11253315B2 (en) | 2017-12-28 | 2022-02-22 | Cilag Gmbh International | Increasing radio frequency to create pad-less monopolar loop |
US12062442B2 (en) | 2017-12-28 | 2024-08-13 | Cilag Gmbh International | Method for operating surgical instrument systems |
US11056244B2 (en) | 2017-12-28 | 2021-07-06 | Cilag Gmbh International | Automated data scaling, alignment, and organizing based on predefined parameters within surgical networks |
US12059124B2 (en) | 2017-12-28 | 2024-08-13 | Cilag Gmbh International | Surgical hub spatial awareness to determine devices in operating theater |
US11266468B2 (en) | 2017-12-28 | 2022-03-08 | Cilag Gmbh International | Cooperative utilization of data derived from secondary sources by intelligent surgical hubs |
US11273001B2 (en) | 2017-12-28 | 2022-03-15 | Cilag Gmbh International | Surgical hub and modular device response adjustment based on situational awareness |
US12059169B2 (en) | 2017-12-28 | 2024-08-13 | Cilag Gmbh International | Controlling an ultrasonic surgical instrument according to tissue location |
US12053159B2 (en) | 2017-12-28 | 2024-08-06 | Cilag Gmbh International | Method of sensing particulate from smoke evacuated from a patient, adjusting the pump speed based on the sensed information, and communicating the functional parameters of the system to the hub |
US11278281B2 (en) | 2017-12-28 | 2022-03-22 | Cilag Gmbh International | Interactive surgical system |
US11026751B2 (en) | 2017-12-28 | 2021-06-08 | Cilag Gmbh International | Display of alignment of staple cartridge to prior linear staple line |
US11284936B2 (en) | 2017-12-28 | 2022-03-29 | Cilag Gmbh International | Surgical instrument having a flexible electrode |
US12048496B2 (en) | 2017-12-28 | 2024-07-30 | Cilag Gmbh International | Adaptive control program updates for surgical hubs |
US11202570B2 (en) | 2017-12-28 | 2021-12-21 | Cilag Gmbh International | Communication hub and storage device for storing parameters and status of a surgical device to be shared with cloud based analytics systems |
US11013563B2 (en) | 2017-12-28 | 2021-05-25 | Ethicon Llc | Drive arrangements for robot-assisted surgical platforms |
US12042207B2 (en) | 2017-12-28 | 2024-07-23 | Cilag Gmbh International | Estimating state of ultrasonic end effector and control system therefor |
US11291495B2 (en) | 2017-12-28 | 2022-04-05 | Cilag Gmbh International | Interruption of energy due to inadvertent capacitive coupling |
US12035890B2 (en) | 2017-12-28 | 2024-07-16 | Cilag Gmbh International | Method of sensing particulate from smoke evacuated from a patient, adjusting the pump speed based on the sensed information, and communicating the functional parameters of the system to the hub |
US11051876B2 (en) | 2017-12-28 | 2021-07-06 | Cilag Gmbh International | Surgical evacuation flow paths |
US12029506B2 (en) | 2017-12-28 | 2024-07-09 | Cilag Gmbh International | Method of cloud based data analytics for use with the hub |
US12009095B2 (en) | 2017-12-28 | 2024-06-11 | Cilag Gmbh International | Real-time analysis of comprehensive cost of all instrumentation used in surgery utilizing data fluidity to track instruments through stocking and in-house processes |
US11304699B2 (en) | 2017-12-28 | 2022-04-19 | Cilag Gmbh International | Method for adaptive control schemes for surgical network control and interaction |
US11304745B2 (en) | 2017-12-28 | 2022-04-19 | Cilag Gmbh International | Surgical evacuation sensing and display |
US11304763B2 (en) | 2017-12-28 | 2022-04-19 | Cilag Gmbh International | Image capturing of the areas outside the abdomen to improve placement and control of a surgical device in use |
US11304720B2 (en) | 2017-12-28 | 2022-04-19 | Cilag Gmbh International | Activation of energy devices |
US11308075B2 (en) | 2017-12-28 | 2022-04-19 | Cilag Gmbh International | Surgical network, instrument, and cloud responses based on validation of received dataset and authentication of its source and integrity |
US10987178B2 (en) | 2017-12-28 | 2021-04-27 | Ethicon Llc | Surgical hub control arrangements |
US11311306B2 (en) | 2017-12-28 | 2022-04-26 | Cilag Gmbh International | Surgical systems for detecting end effector tissue distribution irregularities |
US11998193B2 (en) | 2017-12-28 | 2024-06-04 | Cilag Gmbh International | Method for usage of the shroud as an aspect of sensing or controlling a powered surgical device, and a control algorithm to adjust its default operation |
US11969142B2 (en) | 2017-12-28 | 2024-04-30 | Cilag Gmbh International | Method of compressing tissue within a stapling device and simultaneously displaying the location of the tissue within the jaws |
US11969216B2 (en) | 2017-12-28 | 2024-04-30 | Cilag Gmbh International | Surgical network recommendations from real time analysis of procedure variables against a baseline highlighting differences from the optimal solution |
US11179204B2 (en) | 2017-12-28 | 2021-11-23 | Cilag Gmbh International | Wireless pairing of a surgical device with another device within a sterile surgical field based on the usage and situational awareness of devices |
US11937769B2 (en) | 2017-12-28 | 2024-03-26 | Cilag Gmbh International | Method of hub communication, processing, storage and display |
US11324557B2 (en) | 2017-12-28 | 2022-05-10 | Cilag Gmbh International | Surgical instrument with a sensing array |
US11931110B2 (en) | 2017-12-28 | 2024-03-19 | Cilag Gmbh International | Surgical instrument comprising a control system that uses input from a strain gage circuit |
US11069012B2 (en) | 2017-12-28 | 2021-07-20 | Cilag Gmbh International | Interactive surgical systems with condition handling of devices and data capabilities |
US11918302B2 (en) | 2017-12-28 | 2024-03-05 | Cilag Gmbh International | Sterile field interactive control displays |
US11076921B2 (en) | 2017-12-28 | 2021-08-03 | Cilag Gmbh International | Adaptive control program updates for surgical hubs |
US11903587B2 (en) | 2017-12-28 | 2024-02-20 | Cilag Gmbh International | Adjustment to the surgical stapling control based on situational awareness |
US11903601B2 (en) | 2017-12-28 | 2024-02-20 | Cilag Gmbh International | Surgical instrument comprising a plurality of drive systems |
US11896443B2 (en) | 2017-12-28 | 2024-02-13 | Cilag Gmbh International | Control of a surgical system through a surgical barrier |
US10966791B2 (en) | 2017-12-28 | 2021-04-06 | Ethicon Llc | Cloud-based medical analytics for medical facility segmented individualization of instrument function |
US11364075B2 (en) | 2017-12-28 | 2022-06-21 | Cilag Gmbh International | Radio frequency energy device for delivering combined electrical signals |
US11896322B2 (en) | 2017-12-28 | 2024-02-13 | Cilag Gmbh International | Sensing the patient position and contact utilizing the mono-polar return pad electrode to provide situational awareness to the hub |
US11376002B2 (en) | 2017-12-28 | 2022-07-05 | Cilag Gmbh International | Surgical instrument cartridge sensor assemblies |
US11179208B2 (en) | 2017-12-28 | 2021-11-23 | Cilag Gmbh International | Cloud-based medical analytics for security and authentication trends and reactive measures |
US11382697B2 (en) | 2017-12-28 | 2022-07-12 | Cilag Gmbh International | Surgical instruments comprising button circuits |
US11389164B2 (en) | 2017-12-28 | 2022-07-19 | Cilag Gmbh International | Method of using reinforced flexible circuits with multiple sensors to optimize performance of radio frequency devices |
US11890065B2 (en) | 2017-12-28 | 2024-02-06 | Cilag Gmbh International | Surgical system to limit displacement |
US10595887B2 (en) | 2017-12-28 | 2020-03-24 | Ethicon Llc | Systems for adjusting end effector parameters based on perioperative information |
US11179175B2 (en) | 2017-12-28 | 2021-11-23 | Cilag Gmbh International | Controlling an ultrasonic surgical instrument according to tissue location |
US11410259B2 (en) | 2017-12-28 | 2022-08-09 | Cilag Gmbh International | Adaptive control program updates for surgical devices |
US10695081B2 (en) | 2017-12-28 | 2020-06-30 | Ethicon Llc | Controlling a surgical instrument according to sensed closure parameters |
US11166772B2 (en) | 2017-12-28 | 2021-11-09 | Cilag Gmbh International | Surgical hub coordination of control and communication of operating room devices |
US11423007B2 (en) | 2017-12-28 | 2022-08-23 | Cilag Gmbh International | Adjustment of device control programs based on stratified contextual data in addition to the data |
US11424027B2 (en) | 2017-12-28 | 2022-08-23 | Cilag Gmbh International | Method for operating surgical instrument systems |
US11419630B2 (en) | 2017-12-28 | 2022-08-23 | Cilag Gmbh International | Surgical system distributed processing |
US11419667B2 (en) | 2017-12-28 | 2022-08-23 | Cilag Gmbh International | Ultrasonic energy device which varies pressure applied by clamp arm to provide threshold control pressure at a cut progression location |
US11432885B2 (en) | 2017-12-28 | 2022-09-06 | Cilag Gmbh International | Sensing arrangements for robot-assisted surgical platforms |
US11446052B2 (en) | 2017-12-28 | 2022-09-20 | Cilag Gmbh International | Variation of radio frequency and ultrasonic power level in cooperation with varying clamp arm pressure to achieve predefined heat flux or power applied to tissue |
US11864845B2 (en) | 2017-12-28 | 2024-01-09 | Cilag Gmbh International | Sterile field interactive control displays |
US11864728B2 (en) | 2017-12-28 | 2024-01-09 | Cilag Gmbh International | Characterization of tissue irregularities through the use of mono-chromatic light refractivity |
US11464559B2 (en) | 2017-12-28 | 2022-10-11 | Cilag Gmbh International | Estimating state of ultrasonic end effector and control system therefor |
US11857152B2 (en) | 2017-12-28 | 2024-01-02 | Cilag Gmbh International | Surgical hub spatial awareness to determine devices in operating theater |
US11464535B2 (en) | 2017-12-28 | 2022-10-11 | Cilag Gmbh International | Detection of end effector emersion in liquid |
US11844579B2 (en) | 2017-12-28 | 2023-12-19 | Cilag Gmbh International | Adjustments based on airborne particle properties |
US11213359B2 (en) | 2017-12-28 | 2022-01-04 | Cilag Gmbh International | Controllers for robot-assisted surgical platforms |
US11058498B2 (en) | 2017-12-28 | 2021-07-13 | Cilag Gmbh International | Cooperative surgical actions for robot-assisted surgical platforms |
US10943454B2 (en) | 2017-12-28 | 2021-03-09 | Ethicon Llc | Detection and escalation of security responses of surgical instruments to increasing severity threats |
US11832840B2 (en) | 2017-12-28 | 2023-12-05 | Cilag Gmbh International | Surgical instrument having a flexible circuit |
US11160605B2 (en) | 2017-12-28 | 2021-11-02 | Cilag Gmbh International | Surgical evacuation sensing and motor control |
US11818052B2 (en) | 2017-12-28 | 2023-11-14 | Cilag Gmbh International | Surgical network determination of prioritization of communication, interaction, or processing based on system or device needs |
US10932872B2 (en) | 2017-12-28 | 2021-03-02 | Ethicon Llc | Cloud-based medical analytics for linking of local usage trends with the resource acquisition behaviors of larger data set |
US11529187B2 (en) | 2017-12-28 | 2022-12-20 | Cilag Gmbh International | Surgical evacuation sensor arrangements |
US11100631B2 (en) | 2017-12-28 | 2021-08-24 | Cilag Gmbh International | Use of laser light and red-green-blue coloration to determine properties of back scattered light |
US11540855B2 (en) | 2017-12-28 | 2023-01-03 | Cilag Gmbh International | Controlling activation of an ultrasonic surgical instrument according to the presence of tissue |
US11559307B2 (en) | 2017-12-28 | 2023-01-24 | Cilag Gmbh International | Method of robotic hub communication, detection, and control |
US11559308B2 (en) | 2017-12-28 | 2023-01-24 | Cilag Gmbh International | Method for smart energy device infrastructure |
US11147607B2 (en) | 2017-12-28 | 2021-10-19 | Cilag Gmbh International | Bipolar combination device that automatically adjusts pressure based on energy modality |
US11132462B2 (en) | 2017-12-28 | 2021-09-28 | Cilag Gmbh International | Data stripping method to interrogate patient records and create anonymized record |
US11571234B2 (en) | 2017-12-28 | 2023-02-07 | Cilag Gmbh International | Temperature control of ultrasonic end effector and control system therefor |
US11576677B2 (en) | 2017-12-28 | 2023-02-14 | Cilag Gmbh International | Method of hub communication, processing, display, and cloud analytics |
US10898622B2 (en) | 2017-12-28 | 2021-01-26 | Ethicon Llc | Surgical evacuation system with a communication circuit for communication between a filter and a smoke evacuation device |
US11096693B2 (en) | 2017-12-28 | 2021-08-24 | Cilag Gmbh International | Adjustment of staple height of at least one row of staples based on the sensed tissue thickness or force in closing |
US11589932B2 (en) | 2017-12-28 | 2023-02-28 | Cilag Gmbh International | Usage and technique analysis of surgeon / staff performance against a baseline to optimize device utilization and performance for both current and future procedures |
US11786245B2 (en) | 2017-12-28 | 2023-10-17 | Cilag Gmbh International | Surgical systems with prioritized data transmission capabilities |
US11589888B2 (en) | 2017-12-28 | 2023-02-28 | Cilag Gmbh International | Method for controlling smart energy devices |
US10892899B2 (en) | 2017-12-28 | 2021-01-12 | Ethicon Llc | Self describing data packets generated at an issuing instrument |
US11601371B2 (en) | 2017-12-28 | 2023-03-07 | Cilag Gmbh International | Surgical network determination of prioritization of communication, interaction, or processing based on system or device needs |
US11596291B2 (en) | 2017-12-28 | 2023-03-07 | Cilag Gmbh International | Method of compressing tissue within a stapling device and simultaneously displaying of the location of the tissue within the jaws |
US10755813B2 (en) | 2017-12-28 | 2020-08-25 | Ethicon Llc | Communication of smoke evacuation system parameters to hub or cloud in smoke evacuation module for interactive surgical platform |
US11602393B2 (en) | 2017-12-28 | 2023-03-14 | Cilag Gmbh International | Surgical evacuation sensing and generator control |
US11612444B2 (en) | 2017-12-28 | 2023-03-28 | Cilag Gmbh International | Adjustment of a surgical device function based on situational awareness |
US11612408B2 (en) | 2017-12-28 | 2023-03-28 | Cilag Gmbh International | Determining tissue composition via an ultrasonic system |
US11786251B2 (en) | 2017-12-28 | 2023-10-17 | Cilag Gmbh International | Method for adaptive control schemes for surgical network control and interaction |
US11633237B2 (en) | 2017-12-28 | 2023-04-25 | Cilag Gmbh International | Usage and technique analysis of surgeon / staff performance against a baseline to optimize device utilization and performance for both current and future procedures |
US11109866B2 (en) | 2017-12-28 | 2021-09-07 | Cilag Gmbh International | Method for circular stapler control algorithm adjustment based on situational awareness |
US11659023B2 (en) | 2017-12-28 | 2023-05-23 | Cilag Gmbh International | Method of hub communication |
US11666331B2 (en) | 2017-12-28 | 2023-06-06 | Cilag Gmbh International | Systems for detecting proximity of surgical end effector to cancerous tissue |
US11672605B2 (en) | 2017-12-28 | 2023-06-13 | Cilag Gmbh International | Sterile field interactive control displays |
US11678881B2 (en) | 2017-12-28 | 2023-06-20 | Cilag Gmbh International | Spatial awareness of surgical hubs in operating rooms |
US10758310B2 (en) | 2017-12-28 | 2020-09-01 | Ethicon Llc | Wireless pairing of a surgical device with another device within a sterile surgical field based on the usage and situational awareness of devices |
US11779337B2 (en) | 2017-12-28 | 2023-10-10 | Cilag Gmbh International | Method of using reinforced flexible circuits with multiple sensors to optimize performance of radio frequency devices |
US10892995B2 (en) | 2017-12-28 | 2021-01-12 | Ethicon Llc | Surgical network determination of prioritization of communication, interaction, or processing based on system or device needs |
US11771487B2 (en) | 2017-12-28 | 2023-10-03 | Cilag Gmbh International | Mechanisms for controlling different electromechanical systems of an electrosurgical instrument |
US11114195B2 (en) | 2017-12-28 | 2021-09-07 | Cilag Gmbh International | Surgical instrument with a tissue marking assembly |
US11696760B2 (en) | 2017-12-28 | 2023-07-11 | Cilag Gmbh International | Safety systems for smart powered surgical stapling |
US11701185B2 (en) | 2017-12-28 | 2023-07-18 | Cilag Gmbh International | Wireless pairing of a surgical device with another device within a sterile surgical field based on the usage and situational awareness of devices |
US11775682B2 (en) | 2017-12-28 | 2023-10-03 | Cilag Gmbh International | Data stripping method to interrogate patient records and create anonymized record |
US10849697B2 (en) | 2017-12-28 | 2020-12-01 | Ethicon Llc | Cloud interface for coupled surgical devices |
US11045591B2 (en) | 2017-12-28 | 2021-06-29 | Cilag Gmbh International | Dual in-series large and small droplet filters |
US11712303B2 (en) | 2017-12-28 | 2023-08-01 | Cilag Gmbh International | Surgical instrument comprising a control circuit |
US11737668B2 (en) | 2017-12-28 | 2023-08-29 | Cilag Gmbh International | Communication hub and storage device for storing parameters and status of a surgical device to be shared with cloud based analytics systems |
US11744604B2 (en) | 2017-12-28 | 2023-09-05 | Cilag Gmbh International | Surgical instrument with a hardware-only control circuit |
US11751958B2 (en) | 2017-12-28 | 2023-09-12 | Cilag Gmbh International | Surgical hub coordination of control and communication of operating room devices |
US11457944B2 (en) | 2018-03-08 | 2022-10-04 | Cilag Gmbh International | Adaptive advanced tissue treatment pad saver mode |
US11707293B2 (en) | 2018-03-08 | 2023-07-25 | Cilag Gmbh International | Ultrasonic sealing algorithm with temperature control |
US11701139B2 (en) | 2018-03-08 | 2023-07-18 | Cilag Gmbh International | Methods for controlling temperature in ultrasonic device |
US11259830B2 (en) | 2018-03-08 | 2022-03-01 | Cilag Gmbh International | Methods for controlling temperature in ultrasonic device |
US11701162B2 (en) | 2018-03-08 | 2023-07-18 | Cilag Gmbh International | Smart blade application for reusable and disposable devices |
US11298148B2 (en) | 2018-03-08 | 2022-04-12 | Cilag Gmbh International | Live time tissue classification using electrical parameters |
US11678901B2 (en) | 2018-03-08 | 2023-06-20 | Cilag Gmbh International | Vessel sensing for adaptive advanced hemostasis |
US11678927B2 (en) | 2018-03-08 | 2023-06-20 | Cilag Gmbh International | Detection of large vessels during parenchymal dissection using a smart blade |
US11617597B2 (en) | 2018-03-08 | 2023-04-04 | Cilag Gmbh International | Application of smart ultrasonic blade technology |
US11986233B2 (en) | 2018-03-08 | 2024-05-21 | Cilag Gmbh International | Adjustment of complex impedance to compensate for lost power in an articulating ultrasonic device |
US11589915B2 (en) | 2018-03-08 | 2023-02-28 | Cilag Gmbh International | In-the-jaw classifier based on a model |
US11317937B2 (en) | 2018-03-08 | 2022-05-03 | Cilag Gmbh International | Determining the state of an ultrasonic end effector |
US11534196B2 (en) | 2018-03-08 | 2022-12-27 | Cilag Gmbh International | Using spectroscopy to determine device use state in combo instrument |
US11337746B2 (en) | 2018-03-08 | 2022-05-24 | Cilag Gmbh International | Smart blade and power pulsing |
US11344326B2 (en) | 2018-03-08 | 2022-05-31 | Cilag Gmbh International | Smart blade technology to control blade instability |
US11389188B2 (en) | 2018-03-08 | 2022-07-19 | Cilag Gmbh International | Start temperature of blade |
US11399858B2 (en) | 2018-03-08 | 2022-08-02 | Cilag Gmbh International | Application of smart blade technology |
US11839396B2 (en) | 2018-03-08 | 2023-12-12 | Cilag Gmbh International | Fine dissection mode for tissue classification |
US11844545B2 (en) | 2018-03-08 | 2023-12-19 | Cilag Gmbh International | Calcified vessel identification |
US11464532B2 (en) | 2018-03-08 | 2022-10-11 | Cilag Gmbh International | Methods for estimating and controlling state of ultrasonic end effector |
US11166716B2 (en) | 2018-03-28 | 2021-11-09 | Cilag Gmbh International | Stapling instrument comprising a deactivatable lockout |
US10973520B2 (en) | 2018-03-28 | 2021-04-13 | Ethicon Llc | Surgical staple cartridge with firing member driven camming assembly that has an onboard tissue cutting feature |
US11986185B2 (en) | 2018-03-28 | 2024-05-21 | Cilag Gmbh International | Methods for controlling a surgical stapler |
US11406382B2 (en) | 2018-03-28 | 2022-08-09 | Cilag Gmbh International | Staple cartridge comprising a lockout key configured to lift a firing member |
US11471156B2 (en) | 2018-03-28 | 2022-10-18 | Cilag Gmbh International | Surgical stapling devices with improved rotary driven closure systems |
US11219453B2 (en) | 2018-03-28 | 2022-01-11 | Cilag Gmbh International | Surgical stapling devices with cartridge compatible closure and firing lockout arrangements |
US11213294B2 (en) | 2018-03-28 | 2022-01-04 | Cilag Gmbh International | Surgical instrument comprising co-operating lockout features |
US11207067B2 (en) | 2018-03-28 | 2021-12-28 | Cilag Gmbh International | Surgical stapling device with separate rotary driven closure and firing systems and firing member that engages both jaws while firing |
WO2019186433A3 (en) * | 2018-03-28 | 2020-02-27 | Ethicon Llc | Surgical instrument comprising co-operating lockout features |
US11090047B2 (en) | 2018-03-28 | 2021-08-17 | Cilag Gmbh International | Surgical instrument comprising an adaptive control system |
US11259806B2 (en) | 2018-03-28 | 2022-03-01 | Cilag Gmbh International | Surgical stapling devices with features for blocking advancement of a camming assembly of an incompatible cartridge installed therein |
US11129611B2 (en) | 2018-03-28 | 2021-09-28 | Cilag Gmbh International | Surgical staplers with arrangements for maintaining a firing member thereof in a locked configuration unless a compatible cartridge has been installed therein |
US11096688B2 (en) | 2018-03-28 | 2021-08-24 | Cilag Gmbh International | Rotary driven firing members with different anvil and channel engagement features |
US11278280B2 (en) | 2018-03-28 | 2022-03-22 | Cilag Gmbh International | Surgical instrument comprising a jaw closure lockout |
EP3547328A1 (en) * | 2018-03-28 | 2019-10-02 | Ethicon LLC | Surgical instrument comprising co-operating lockout features |
US11197668B2 (en) | 2018-03-28 | 2021-12-14 | Cilag Gmbh International | Surgical stapling assembly comprising a lockout and an exterior access orifice to permit artificial unlocking of the lockout |
US11931027B2 (en) | 2018-03-28 | 2024-03-19 | Cilag Gmbh Interntional | Surgical instrument comprising an adaptive control system |
CN112204673A (en) * | 2018-03-28 | 2021-01-08 | 爱惜康有限责任公司 | Surgical stapling device with cartridge compatible closure member and firing lockout arrangement |
US11937817B2 (en) | 2018-03-28 | 2024-03-26 | Cilag Gmbh International | Surgical instruments with asymmetric jaw arrangements and separate closure and firing systems |
WO2019186438A1 (en) * | 2018-03-28 | 2019-10-03 | Ethicon Llc | Surgical stapling devices with cartridge compatible closure and firing lockout arrangements |
EP3545867A1 (en) * | 2018-03-28 | 2019-10-02 | Ethicon LLC | Surgical stapling devices with cartridge compatible closure and firing lockout arrangements |
EP3912565A1 (en) * | 2018-03-28 | 2021-11-24 | Ethicon LLC | Surgical stapling devices with cartridge compatible closure and firing lockout arrangements |
US11589865B2 (en) | 2018-03-28 | 2023-02-28 | Cilag Gmbh International | Methods for controlling a powered surgical stapler that has separate rotary closure and firing systems |
US12121255B2 (en) | 2018-08-24 | 2024-10-22 | Cilag Gmbh International | Electrical power output control based on mechanical forces |
US11317915B2 (en) | 2019-02-19 | 2022-05-03 | Cilag Gmbh International | Universal cartridge based key feature that unlocks multiple lockout arrangements in different surgical staplers |
US11925350B2 (en) | 2019-02-19 | 2024-03-12 | Cilag Gmbh International | Method for providing an authentication lockout in a surgical stapler with a replaceable cartridge |
US11298130B2 (en) | 2019-02-19 | 2022-04-12 | Cilag Gmbh International | Staple cartridge retainer with frangible authentication key |
US11298129B2 (en) | 2019-02-19 | 2022-04-12 | Cilag Gmbh International | Method for providing an authentication lockout in a surgical stapler with a replaceable cartridge |
US11751872B2 (en) | 2019-02-19 | 2023-09-12 | Cilag Gmbh International | Insertable deactivator element for surgical stapler lockouts |
US11331101B2 (en) | 2019-02-19 | 2022-05-17 | Cilag Gmbh International | Deactivator element for defeating surgical stapling device lockouts |
US11331100B2 (en) | 2019-02-19 | 2022-05-17 | Cilag Gmbh International | Staple cartridge retainer system with authentication keys |
US11291444B2 (en) | 2019-02-19 | 2022-04-05 | Cilag Gmbh International | Surgical stapling assembly with cartridge based retainer configured to unlock a closure lockout |
US11291445B2 (en) | 2019-02-19 | 2022-04-05 | Cilag Gmbh International | Surgical staple cartridges with integral authentication keys |
US11464511B2 (en) | 2019-02-19 | 2022-10-11 | Cilag Gmbh International | Surgical staple cartridges with movable authentication key arrangements |
US11272931B2 (en) | 2019-02-19 | 2022-03-15 | Cilag Gmbh International | Dual cam cartridge based feature for unlocking a surgical stapler lockout |
US11369377B2 (en) | 2019-02-19 | 2022-06-28 | Cilag Gmbh International | Surgical stapling assembly with cartridge based retainer configured to unlock a firing lockout |
US11259807B2 (en) | 2019-02-19 | 2022-03-01 | Cilag Gmbh International | Staple cartridges with cam surfaces configured to engage primary and secondary portions of a lockout of a surgical stapling device |
US11517309B2 (en) | 2019-02-19 | 2022-12-06 | Cilag Gmbh International | Staple cartridge retainer with retractable authentication key |
US11357503B2 (en) | 2019-02-19 | 2022-06-14 | Cilag Gmbh International | Staple cartridge retainers with frangible retention features and methods of using same |
USD952144S1 (en) | 2019-06-25 | 2022-05-17 | Cilag Gmbh International | Surgical staple cartridge retainer with firing system authentication key |
USD950728S1 (en) | 2019-06-25 | 2022-05-03 | Cilag Gmbh International | Surgical staple cartridge |
USD964564S1 (en) | 2019-06-25 | 2022-09-20 | Cilag Gmbh International | Surgical staple cartridge retainer with a closure system authentication key |
US12121256B2 (en) | 2023-04-06 | 2024-10-22 | Cilag Gmbh International | Methods for controlling temperature in ultrasonic device |
Also Published As
Publication number | Publication date |
---|---|
CA2795323C (en) | 2019-09-24 |
CA3050650A1 (en) | 2014-05-09 |
CA3050650C (en) | 2021-10-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11957341B2 (en) | Multi-use loading unit | |
CA2795323C (en) | Multi-use loading unit | |
EP2732772B1 (en) | Multi-use loading unit | |
US11931036B2 (en) | Loading unit for surgical instruments with low profile pushers | |
US11944304B2 (en) | Loading unit for surgical instruments with low profile pushers | |
EP2540231B1 (en) | Surgical instrument and cartridge for use therewith | |
CA2718459C (en) | Locking mechanism for use with loading units | |
US8348124B2 (en) | Knife bar with geared overdrive | |
US20160038144A1 (en) | Surgical Stapling Apparatus | |
US20120080473A1 (en) | Tissue Stop for Surgical Instrument | |
CA2941294A1 (en) | Micro surgical instrument and loading unit for use therewith | |
CA2846927A1 (en) | Micro surgical instrument and loading unit for use therewith | |
JP6110635B2 (en) | Multi-use loading unit | |
AU2016228164B2 (en) | Multi-use loading unit | |
AU2014250629B2 (en) | Multi-use loading unit | |
JP6434072B2 (en) | Multi-use loading unit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EEER | Examination request |
Effective date: 20171102 |
|
MKLA | Lapsed |
Effective date: 20221109 |