CA2791201A1 - Drive device and method for driving a drill rod - Google Patents

Drive device and method for driving a drill rod Download PDF

Info

Publication number
CA2791201A1
CA2791201A1 CA2791201A CA2791201A CA2791201A1 CA 2791201 A1 CA2791201 A1 CA 2791201A1 CA 2791201 A CA2791201 A CA 2791201A CA 2791201 A CA2791201 A CA 2791201A CA 2791201 A1 CA2791201 A1 CA 2791201A1
Authority
CA
Canada
Prior art keywords
vibration
drive shaft
unit
drive
rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CA2791201A
Other languages
French (fr)
Other versions
CA2791201C (en
Inventor
Andreas Pikowski
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eurodrill GmbH
Original Assignee
Eurodrill GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eurodrill GmbH filed Critical Eurodrill GmbH
Publication of CA2791201A1 publication Critical patent/CA2791201A1/en
Application granted granted Critical
Publication of CA2791201C publication Critical patent/CA2791201C/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/24Drilling using vibrating or oscillating means, e.g. out-of-balance masses
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B6/00Drives for drilling with combined rotary and percussive action
    • E21B6/02Drives for drilling with combined rotary and percussive action the rotation being continuous
    • E21B6/04Separate drives for percussion and rotation

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Drilling And Boring (AREA)
  • Earth Drilling (AREA)

Abstract

The invention provides a drive device for driving a drill rod, which has an outer rod and an inner rod. The device comprises a first rotary drive unit, with which the outer rod can be driven in a rotating manner via an outer drive shaft, and a second rotary drive unit, with which the inner rod can be driven in a rotating manner independently of the outer rod via an inner drive shaft. A vibration unit for generating a vibration is also included which has a vibration element that can be driven in a vibrating manner. For transmission of the vibration to the outer drive shaft, the vibration element is connected via a first transmission unit to the outer drive shaft and for transmission of the vibration to the inner drive shaft the vibration element is connected via a second transmission unit to the inner drive shaft.

Description

Drive device and method for driving a drill rod The invention relates to a drive device for driving a drill rod, which has an outer rod and an inner rod, in accordance with the preamble of claim 1. Furthermore, the invention relates to a method for driving a drill rod in accordance with the preamble of claim 12.
The drive device comprises a first rotary drive unit, with which the outer rod can be driv-en in a rotating manner via an outer drive shaft, a second rotary drive unit, with which the inner rod can be driven in a rotating manner independently of the outer rod via an inner drive shaft, and a vibration unit for generating a vibration, which has a vibration element that can be driven in a vibrating manner.
In the method provision is made in that by means of a first rotary drive unit the outer rod is driven in a rotating manner via an outer drive shaft, in that by means of a second rota-ry drive unit the inner rod is driven in a rotating manner independently of the outer rod via an inner drive shaft and in that by means of a vibration unit a vibration is generated.
The drive device is especially provided for the so-called double-head drilling, in which an outer rod and an inner rod received therein are driven by two independent rotary drive units.
To drive the outer rod the drive device comprises an outer drive shaft which can be coupled with the outer rod. To drive the inner rod the drive device comprises an inner drive shaft which can be coupled with the inner rod.
The outer rod can, in particular, be a drill pipe which stabilizes the ground surrounding the drill-hole as a casing. The inner rod runs inside the outer casing and can have ground working tools for removing ground material and/or a conveyor flight for convey-ing ground material.
- 2 -To improve the drilling progress it is known that in addition to the rotary drives a vibra-tion drive is provided with which a vibration or oscillation can be transmitted to the outer rod or the inner rod.
In DE 20 2010 014 478 U1 a drive device for a drill rod is described which has a vibra-tion unit for transmitting an oscillation to the drill rod.
The invention is based on the object to provide a drive device and a method for driv-ing a drill rod which allow for a particularly efficient production of a drill-hole.
In accordance with the invention the object is solved by a drive device having the fea-tures of claim 1 and by a method having the features of claim 12.
In the case of the drive device provision is made in accordance with the invention in that for transmission of the vibration to the outer drive shaft the vibration element is con-nected via a first transmission unit to the outer drive shaft and for transmission of the vibration to the inner drive shaft the vibration element is connected via a second trans-mission unit to the inner drive shaft.
The method according to the invention is characterized in that the vibration generated by the vibration unit is transmitted via a first transmission unit to the outer drive shaft and via a second transmission unit to the inner drive shaft.
A fundamental idea of the invention resides in the fact that in the case of a drive device having independent rotary drill drives for the outer rod and the inner rod a common vi-bration unit is provided which generates a vibration or oscillation that is transmitted to both the outer rod and the inner rod. Hence, according to the invention one and the same vibration or oscillation is transmitted to the outer rod on the one hand and to the inner rod on the other hand.
As a result of the invention the need for a second vibration unit is disposed of. Thus, the drive device becomes compact whilst requiring a low amount of power. Moreover, com-pared to percussive drilling, vibration drilling is quieter and lateral friction is overcome more easily.
The vibration unit comprises a vibration element or a vibration body which is moved up and down in the longitudinal direction of the drill rod, i.e. it oscillates or vibrates. By
- 3 -means of transmission units, which transmit the oscillation or vibration of the vibration element, the vibration body is operatively connected to both rods or both drive shafts.
The drive shafts of the drive device can preferably be driven at different speeds and/or in different directions. The first rotary drive unit exclusively drives the outer rod and the second rotary drive unit exclusively drives the inner rod.
By preference, the vibration unit comprises a non-rotating vibration element, the axial oscillation of which is transmitted via the transmission units to the rotating drive shafts.
To transmit the oscillation of the vibration element to the outer rod and the inner rod it is preferred in accordance with the invention that the first transmission unit has at least a first pivot bearing, via which the outer drive shaft is supported in a rotatable manner with respect to the vibration element and that the second transmission unit has at least a second pivot bearing, via which the inner drive shaft is supported in a rotatable manner with respect to the vibration element. The transmission units designed as pivot bearings enable the vibration element to be provided in a non-rotating manner in a housing of the drive device. For the transmission of the vibration the pivot bearings are preferably de-signed as axial bearings that ensure the transmission of axial forces.
According to the invention it is preferred that via an engaging element, in particular an engaging tooth system, the outer drive shaft and/or the inner drive shaft is supported in an axially displaceable manner on a drive element that drives the drive shaft in a rotat-ing manner. The outer drive shaft and/or the inner drive shaft has an external tooth sys-tem, for example, that is in engagement with a tooth system of the drive element. The drive element can be designed, in particular, as a hollow shaft with internal tooth sys-tem. By way of the engaging tooth system the outer drive shaft and/or the inner drive shaft is supported in an axially displaceable manner with respect to the drive element.
Consequently, the engaging tooth system ensures on the one hand the transmission of a torque to the drive shaft and on the other hand a decoupling of the drive shaft in the axial direction with respect to the drive element so that the vibration of the drive shaft is not transmitted to the drive element or the rotary drive unit.
An especially compact and stable drive device is achieved in that at least one of the rotary drive units and the vibration unit are arranged on a common receiving part or support and in that the vibration unit is supported in an axially movable manner on the
- 4 -common receiving part or support. The rotary drive unit preferably comprises a frame or housing which is firmly connected to the receiving part. Between the vibration unit, more particularly the vibration element, and the receiving part e.g. an elastic element, as for example a rubber bearing, can be arranged. As a result of the decoupling of the vibra-tion unit from the receiving part, a transmission of the vibration via the receiving part to the rotary drive unit is largely avoided.
An advantageous coupling of the vibration unit with both drive shafts can be attained in that the vibration unit is arranged between the first rotary drive unit and the second rota-ry drive unit.
Furthermore, it is preferred that the first transmission unit is arranged on a first axial side of the vibration element and the second transmission unit is arranged on a second axial side of the vibration element. In this way, an even loading of the vibration unit and a good transmission of the vibration to the drive shafts is achieved.
By preference, the inner drive shaft is passed through the vibration element.
This per-mits the arrangement of the second transmission unit and/or the second rotary drive unit on a side of the vibration unit facing away from the drill rod.
To transmit the axial forces to the inner and/or outer drive shaft it is preferred that the vibration element comprises a bearing seat, of cylindrical shape for instance, on the outer circumference of which the first transmission unit and/or the second transmission unit is arranged. Accordingly, the inner drive shaft and respectively the outer drive shaft preferably have a bearing seat, on the inner circumference of which the corresponding transmission unit is arranged.
To adjust an axial relative position between inner rod and outer rod and/or to change a vibration characteristic it is preferred that an actuator is provided, with which the outer drive shaft is axially adjustable with respect to the inner drive shaft. The actuator is preferably arranged between one of the transmission units and the vibration body. With the actuator the position of the transmission unit can be adjusted with respect to the vibration body. In this way, the respective drive shaft is moved or adjusted axially with respect to the vibration body.
- 5 -A precise and efficient setting of the relative position between outer and inner drive shaft can be achieved in that the actuator has a positioning cylinder and/or a toothed rack. In particular, the positioning cylinder can be actuated hydraulically and/or electri-cally. It is also possible that several actuators are distributed in the circumferential direc-tion around the drive shaft.
A compact drive device can be provided in that the first transmission unit and/or the se-cond transmission unit is designed to transmit both the vibration and a torque. In par-ticular, it is preferred that the vibration of the vibration element can be transmitted via the first rotary drive unit and/or the second rotary drive unit to the outer or inner drive shaft. For instance provision can be made for the vibration of the vibration element to be transmitted via a common receiving part to the rotary drive unit and from there via a ro-tary drive element serving as a transmission unit to the relevant drive shaft.
As a trans-mission unit the drive element therefore transmits both the torque and the vibration to the drive shaft.
In the following the invention will be described further by way of the accompanying schematic drawings, wherein shows:
Fig. 1 a first embodiment of a drive device according to the invention; and Fig. 2 a second embodiment of a drive device according to the invention.
Identical components or those corresponding to each other are designated in all Figures with the same reference signs.
Fig. 1 shows a drive device 10 for driving a drill rod not illustrated here, which comprises an outer rod and an inner rod received therein.
The drive device 10 has a first rotary drive unit 20 for the outer rod and a second rotary drive unit 30 for the inner rod. The first rotary drive unit 20 comprises an outer drive shaft 22 which can be coupled in a rotationally fixed manner with the outer rod. For this purpose a coupling means is provided in a generally known manner. The outer drive shaft 22 is driven via a drive element 24 by a drive motor 28. The drive element 24 is designed as a hollow shaft with internal tooth system 25. The outer drive shaft 22 is re-ceived in the hollow shaft and comprises an engaging tooth system 23 designed as an external tooth system which meshes with the internal tooth system 25 of the drive ele-
- 6 -ment 24 so that a torque can be transmitted to the outer drive shaft 22. The engaging tooth system 23 ensures an axial displacement of the outer drive shaft 22 with respect to the drive element 24.
By means of one or several pivot bearings 29 the drive element 24 is supported in a housing 21 of the first rotary drive unit 20. Between the drive motor 28 and the drive element 24 a drive pinion 26 is arranged which meshes with an external tooth system of the drive element 24.
Correspondingly, by means of the second rotary drive unit 30 an inner drive shaft 32 is driven in a rotating manner, which can be coupled in a rotationally fixed manner with the inner rod. Via a drive pinion 36 a drive motor 38 drives a drive element 34 designed as a hollow shaft. The drive element 34 is supported by means of one or several pivot bearings 39 in a housing 31 of the second rotary drive unit 30 and comprises a tooth system 35, via which a torque can be transmitted to the inner drive shaft 32.
The inner drive shaft 32 has an engaging tooth system 33 which is in engagement with the tooth system 35. The engaging tooth system 33 and the tooth system 35 enable an axial dis-placement of the inner drive shaft 32 with respect to the drive element 34.
In the axial direction between the first rotary drive unit 20 and the second rotary drive unit 30 a vibration unit 40 is arranged. The vibration unit 40 comprises at least two rota-tional masses 41 drivable in opposite directions which set a vibration element 42 into a movement oscillating axially to the drilling or longitudinal axis 12. The rotational masses 41 each have a shaft 43 with an eccentric weight 44. The shafts 43 with the eccentric weights 44 are brought into a synchronized rotational movement so that proportions of unbalanced mass acting radially to the longitudinal axis 12 are mutually compensated and an axially directed up and down movement of the vibration element 42 is generat-ed.
To transmit the vibration generated by the vibration unit 40 to the outer drive shaft 22 a pivot bearing 52 is arranged as a first transmission unit 50 between the vibration unit 40 and the outer drive shaft 22. The inner drive shaft 32 is connected to the vibration ele-ment 42 via a second transmission unit 60 which is designed as a pivot bearing 62. The pivot bearings 52, 62 are designed for the transmission of axial forces.
Hence, the vibra-tion unit 40 is connected to both drive shafts 22, 32 in an axially fixed manner so that
- 7 -both drive shafts 22, 32 are simultaneously set into oscillation by the vibration element 42.
The first pivot bearing 52 is located on a first axial side of the vibration element 42 fac-ing towards to the drill rod while the second pivot bearing 62 is located on a second axi-al side of the vibration element 42 facing away from the drill rod. The outer drive shaft 22 has a bearing flange 54 at the end with a bearing seat 56 which is formed by a cylin-drical inner lateral surface. The inner drive shaft 32 is passed through a cylindrical pas-sage opening of the vibration element 42 and comprises between its engaging tooth system 33 and the vibration element 42 a bearing flange 64 with a bearing seat 66 for the pivot bearing 62.
The pivot bearings 52, 62 are arranged in the longitudinal direction of the drive shafts 22, 32 between the engaging tooth systems 23, 33 and are each mounted on a bearing seat 46 of the vibration element 42. The bearing seat 46 is formed by a cylindrical outer lateral surface.
The rotary drive units 20, 30 as well as the vibration unit 40 are connected to each other via a common receiving part 70 that can also be referred to as a frame, support or hous-ing. The vibration unit 40 is supported via an elastic element 72 on the receiving part 70.
Fig. 2 shows an alternative embodiment of a drive device 10. In contrast to the embod-iment according to Fig. 1 the outer drive shaft 22 and the inner drive shaft 32 are axially adjustable with respect to each other. To this end an adjusting unit with an actuator 48 is provided between the inner drive shaft 32 and the vibration element 42. The bearing seat 46 for the transmission unit 60 is arranged in this case on a bearing ring 47 mova-ble with respect to the vibration element 42. By means of the actuator 48 the bearing ring 47 or the transmission unit 60 can be adjusted axially relative to the vibration ele-ment 42 driven in a vibrating manner. In this way, the inner drive shaft 32 can be moved in the axial direction with respect to the vibration element 42. The actuator 48, which is designed by way of example as a positioning cylinder, can set a predetermined distance of the second transmission unit 60 with respect to the vibration element 42.
Similarly, it would be possible to adjust the outer drive shaft 22 on the vibration element 42 via an actuator 48.
- 8 -In the embodiments of the drive device 10 illustrated in Figures 1 and 2 the up and down movement of the vibration element 42 is transmitted independently of both rotary drive units 20, 30 to the outer drive shaft 22 and the inner drive shaft 32.
However, in a further embodiment of the invention provision can also be made for the entire drive de-vice 10 to oscillate jointly with the rotary drive units 20, 30 and the vibration unit 40 and for the vibrating movement to be transmitted via the rotary drive units 20, 30 to the outer drive shaft 22 and the inner drive shaft 32 respectively. This can be achieved, in particu-lar, in that the drive elements 24, 34 transmit not only a torque to the outer drive shaft 22 or the inner drive shaft 32 but also the vibrating movement.

Claims (12)

1. Drive device for driving a drill rod, which has an outer rod and an inner rod, with - a first rotary drive unit, with which the outer rod can be driven in a rotating manner via an outer drive shaft, - a second rotary drive unit, with which the inner rod can be driven in a rotating manner independently of the outer rod via an inner drive shaft, and - a vibration unit for generating a vibration, which has a vibration element that can be driven in a vibrating manner, wherein - for transmission of the vibration to the outer drive shaft the vibration element is connected via a first transmission unit to the outer drive shaft and - for transmission of the vibration to the inner drive shaft the vibration element is connected via a second transmission unit to the inner drive shaft.
2. Drive device according to claim 1, wherein the first transmission unit has at least a first pivot bearing, via which the outer drive shaft is supported in a rotatable manner with respect to the vibration element, and the second transmission unit has at least a second pivot bearing, via which the in-ner drive shaft is supported in a rotatable manner with respect to the vibration el-ement.
3. Drive device according to claim 1, wherein via an engaging tooth system the outer drive shaft and/or the inner drive shaft is supported in an axially displaceable manner on a drive element.
4. Drive device according to claim 1, wherein at least one of the rotary drive units and the vibration unit are arranged on a com-mon receiving part and the vibration unit is supported in an axially movable manner on the common re-ceiving part.
5. Drive device according to claim 1, wherein the vibration unit is arranged between the first rotary drive unit and the second ro-tary drive unit.
6. Drive device according to claim 1, wherein the first transmission unit is arranged on a first axial side of the vibration element and the second transmission unit is arranged on a second axial side of the vibration el-ement.
7. Drive device according to claim 1, wherein the inner drive shaft is passed through the vibration element.
8. Drive device according to claim 1, wherein the vibration element comprises a bearing seat, on the outer circumference of which the first transmission unit and/or the second transmission unit is arranged.
9. Drive device according to claim 1, wherein an actuator is provided, with which the outer drive shaft is axially adjustable with respect to the inner drive shaft.
10. Drive device according to claim 9, wherein the actuator has a positioning cylinder and/or a toothed rack.
11. Drive device according to claim 1, wherein the first transmission unit and/or the second transmission unit is designed to transmit both the vibration and a torque.
12. Method for driving a drill rod, which has an outer rod and an inner rod, in particular by means of a drive device according to claim 1, in which - by means of a first rotary drive unit the outer rod is driven in a rotating manner via an outer drive shaft, - by means of a second rotary drive unit the inner rod is driven in a rotating manner independently of the outer rod via an inner drive shaft, and - by means of a vibration unit a vibration is generated, wherein the vibration generated by the vibration unit is transmitted via a first transmission unit to the outer drive shaft and via a second transmission unit to the inner drive shaft.
CA2791201A 2012-02-28 2012-09-28 Drive device and method for driving a drill rod Active CA2791201C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP12001319.8 2012-02-28
EP12001319.8A EP2634363B1 (en) 2012-02-28 2012-02-28 Drive device and method for driving a drilling rod

Publications (2)

Publication Number Publication Date
CA2791201A1 true CA2791201A1 (en) 2013-08-28
CA2791201C CA2791201C (en) 2015-03-24

Family

ID=45811249

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2791201A Active CA2791201C (en) 2012-02-28 2012-09-28 Drive device and method for driving a drill rod

Country Status (4)

Country Link
US (1) US20130292179A1 (en)
EP (1) EP2634363B1 (en)
CN (1) CN103291215B (en)
CA (1) CA2791201C (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104912567B (en) * 2015-06-17 2017-11-03 唐忠盛 Dither longitudinal direction milling digs head and the milling digging machine and development machine of head is dug with the milling
CN112502611A (en) * 2020-11-19 2021-03-16 大连理工大学 Spiral impact drilling machine suitable for rock and soil and construction method
EP4033067A1 (en) * 2021-01-21 2022-07-27 Eurodrill GmbH Rotating drive assembly for a drilling rod
CN113211542A (en) * 2021-05-25 2021-08-06 深圳市豪博讯电子科技有限公司 Perforating device is used in circuit board processing
DE102021213370A1 (en) * 2021-11-26 2023-06-01 Terra Infrastructure Gmbh vibratory hammer drill
WO2023201417A1 (en) * 2022-04-20 2023-10-26 University Of Manitoba Vibratory burrowing probe for investigating subsurface regions of granular media in 1g and low/micro gravity conditions

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4553443A (en) * 1982-11-19 1985-11-19 Geomarex High frequency vibratory systems for earth boring
SU1760103A1 (en) * 1986-09-15 1992-09-07 С.Л.Сафонов Electric hammer drill
US5562169A (en) * 1994-09-02 1996-10-08 Barrow; Jeffrey Sonic Drilling method and apparatus
JP2002097883A (en) * 2000-09-22 2002-04-05 Ybm Co Ltd Ground boring device
JP2002115482A (en) * 2000-10-06 2002-04-19 Ybm Co Ltd Excavation apparatus
JP2002322888A (en) * 2001-04-27 2002-11-08 Ybm Co Ltd Ground boring device and its boring method
US6827158B1 (en) * 2002-07-31 2004-12-07 The Charles Machine Works, Inc. Two-pipe on-grade directional boring tool and method
JP4500203B2 (en) * 2004-04-30 2010-07-14 株式会社ワイビーエム Ground drilling device
US7740085B2 (en) * 2005-12-13 2010-06-22 Roussy Raymond J Vibratory apparatus for a rotary-vibratory drill
US7896108B2 (en) * 2008-03-06 2011-03-01 Able Robert E Dual string orbital drilling system
DE202010014478U1 (en) 2010-10-19 2010-12-16 Eurodrill Gmbh driving device
CN102121350B (en) * 2010-12-20 2012-11-07 唐忠盛 Impulse type hydraulic rock drill
CN102107180B (en) * 2010-11-22 2012-10-31 唐忠盛 Vibrating mechanism with stepless adjustable eccentric moment

Also Published As

Publication number Publication date
CA2791201C (en) 2015-03-24
EP2634363A1 (en) 2013-09-04
EP2634363B1 (en) 2015-09-09
US20130292179A1 (en) 2013-11-07
CN103291215A (en) 2013-09-11
CN103291215B (en) 2016-12-21

Similar Documents

Publication Publication Date Title
CA2791201C (en) Drive device and method for driving a drill rod
JP6738420B2 (en) Tamping unit for tamping tracks and method for tamping tracks
CN102182135B (en) Vibratory system for a compactor
EP2681408B1 (en) Mechanical force generator for a downhole excitation apparatus
US9404542B2 (en) Shaft arrangement and method for relaying torques acting around a rotational axis
CN104695310A (en) A vibration exciter for a vibration compactor and construction machine having such a vibration exciter
JP3520130B2 (en) Drill / chisel device
CN106436536B (en) Road roller
US20130055835A1 (en) Vibration Exciter For Generating A Directed Excitation Vibration
WO2007068103A1 (en) A vibratory apparatus for a rotary-vibratory drill
US6263750B1 (en) Device for generating directed vibrations
CN101181784B (en) Motor-driven hammer drill
US9463490B2 (en) Vibration exciter, in particular for a construction machine
CN101553625B (en) Oscillation exciter
CN111229586A (en) Vibrating screen device
US3741669A (en) Ground compacting apparatus
DK2772606T3 (en) Drive device and method of operating a drive device
JP4314194B2 (en) Vibration generator for ground compaction equipment
CN211275402U (en) Vibrating screen device
US10829996B2 (en) Drilling device for earth or rock drilling and method for retrofitting such a drilling device
WO2003097940A1 (en) Drum of vibratory roller provided with vibratory mechanism with directed vibration
US5163336A (en) Vibration device
JPH028875B2 (en)
US11420232B2 (en) Vibration generator and method for generating vibrations
JP2000308850A (en) Impact generator