CA2758529A1 - System and method for using super critical state carbon dioxide (co2) for hydrocarbon recovery and transport - Google Patents

System and method for using super critical state carbon dioxide (co2) for hydrocarbon recovery and transport Download PDF

Info

Publication number
CA2758529A1
CA2758529A1 CA2758529A CA2758529A CA2758529A1 CA 2758529 A1 CA2758529 A1 CA 2758529A1 CA 2758529 A CA2758529 A CA 2758529A CA 2758529 A CA2758529 A CA 2758529A CA 2758529 A1 CA2758529 A1 CA 2758529A1
Authority
CA
Canada
Prior art keywords
super critical
critical state
transport
hydrocarbons
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA2758529A
Other languages
French (fr)
Inventor
Michael Hirl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority claimed from PCT/US2010/031026 external-priority patent/WO2010120876A1/en
Publication of CA2758529A1 publication Critical patent/CA2758529A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/70Combining sequestration of CO2 and exploitation of hydrocarbons by injecting CO2 or carbonated water in oil wells

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)
  • Treating Waste Gases (AREA)

Abstract

A system and method for the use of super critical CO2 as a carrying or suspension agent for transport of extracted or processed hydrocarbons. The super critical state CO2 is then co-mingled with the extracted or processed hydrocarbons and transported in the co-mingled state to a delivery point. At the delivery point, the super critical state CO2 is allowed to return to its gaseous state allowing the separation of the hydrocarbons therefrom. The hydrocarbons may be processed and the gaseous CO2 returned to its super critical state for future transport, use in EOR, or geologically sequestered.

Description

U. S. PATENT APPLICATION

SYSTEM AND METHOD FOR USING SUPER CRITICAL
STATE CARBON DIOXIDE (C02) FOR HYDROCARBON RECOVERY AND TRANSPORT
CROSS REFERENCE TO RELATED APPLICATION

[0001] This application claims the benefit of Provisional U.S. Patent Application No. 61/124,596 filed April 17, 2008.

STATEMENT REGARDING FEDERALLY FUNDED RESEARCH AND
DEVELOPMENT
[0002] The invention described in this patent application was not the subject of federally sponsored research or development.

FIELD
[0003] The system and method of the present invention pertains to the recovery and transport of extracted or processed hydrocarbons; more particularly, the system and method of the present invention pertains to the use of super critical state CO2 in the recovery and transport of extracted or processed hydrocarbons.

BACKGROUND
[0004] Extracted or processed hydrocarbons, for example, heavy hydrocarbons, especially like bitumen or those heavy hydrocarbons mined or produced from "oil sands," require an additional element to be combined with the heavy hydrocarbon, to enable the heavy hydrocarbon to be transported via pipeline. This additional element or additive, more commonly called a "diluent," is injected into and/or otherwise combined with the heavy hydrocarbon, to form a combination known in the industry as a "dilbit."
[0005] The use of the diluents is necessary to transport heavy hydrocarbons to upgraders and other processing facilities to make usable products. However, the very high cost of diluents, as represented by the direct investment to acquire diluents and then process these diluents, as well as the opportunity cost of not marketing the diluents for sale in their own markets, directly impacts the recovery and transportation cost associated with producing heavy hydrocarbons, extracted from oil sands as well as making useful products from the heavy hydrocarbons.

[0006] Diluents currently in use in the transport of heavy hydrocarbons, include various lighted hydrocarbons such as condensate. With the growth in the production of heavy hydrocarbons from oil sands expected to both continue and grow, the demand for condensate (a high value, very light hydrocarbon product) will exceed available supply.
As a result of the anticipated shortage or lack of availability of condensate, other diluents must be considered for use in the dilbit to make up for the anticipated shortfall in the supply of available condensate. Principal among the other diluents being considered are natural gas liquids or as they are more commonly called in the industry, "NGLs." NGLs, like condensate, are very valuable light end hydrocarbons which have their own value and are marketed, traded and transported in their own markets.
[0007] Accordingly, there remains a need in the art for a low cost, easily accessible diluent to be used in the transport of heavy hydrocarbons such as those heavy hydrocarbons produced from oil sands.

SUMMARY
[0008] The system and method of the present invention provides a low cost, easily accessible product which can be used in the transport of extracted or processed hydrocarbons such as those heavy hydrocarbons produced from oil sands.
[0009] According to the system and method of the present invention, C02 is compressed and transformed into a super critical state. Once in a super critical state, the CO2 is added to a heavy hydrocarbon. The combination of the super critical state C02 facilitates the removal of the heavy hydrocarbon from a ground formation, such as oil sands.
[0010] Once the heavy hydrocarbon is removed from the ground formation, such as oil sands, the combination of the heavy hydrocarbon, with the super critical state CO2 may be transported in a pressurized pipeline or tank to a predetermined delivery destination. Specifically, the super critical state C02 acts as a carrying or suspension agent for the heavy hydrocarbon.
[0011] At the predetermined delivery destination, the pressurized pipeline or tank containing the combination of the super critical state C02 and the heavy hydrocarbon is de-pressurized. Such de-pressurization of the pressurized pipeline causes the combination of the heavy hydrocarbon, and the C02 to return to a dual gas-liquid state. The gaseous C02, is then separated from the heavy hydrocarbon.
The heavy hydrocarbon may then be transformed into useful products. The CO2 may then be caused to re-enter a super critical state for re-use or storage.

BRIEF DESCRIPTION OF THE DRAWING FIGURE
[0012] A still better understanding of the system and method of the present invention may be had by reference to the drawing figure wherein:
[0013] Figure 1 is a flow diagram of the system and method of the present invention.

DESCRIPTION OF THE EMBODIMENTS
[0014] Technical and Historical Background [0015] Carbon dioxide, or as hereinafter referred to as C02, is a unique molecule. CO2 is found in many common applications such as: an additive for soft drinks to add the "fizz"; dry ice for keeping food cold; and a component in chemical processes, for example, the urea process for making fertilizer. CO2 is also importantly used, in a specialty sense, in the oil and gas industry as an injectant for tertiary oil recovery for what is called in the industry, C02-EOR (enhanced oil recovery).
[0016] The unique application of CO2 in the oil and gas industry began in the early 1970's. Part of this key development was the construction of an expansive and unique infrastructure for handling C02 at locations where naturally occurring C02 was discovered. These "naturally sourced" CO2 reservoirs were predominantly at four formations or "domes" discovered in the Untied States. These four formations or domes are: McElmo Dome (SW Colorado), Sheep Mountain (SE Colorado), Bravo Dome (Eastern New Mexico), and Jackson Dome (near Jackson, Mississippi). CO2 from these four formations or domes served as the first source from which major CO2 transport pipelines infrastructures were built. These C02 transport pipelines connect natural CO2 sources to major oil fields at which C02-EOR is conducted.
[0017] Over time, additional anthropogenic sources such as C02 sources from man-made processes based on the separation of CH4 or methane from C02, also became more widely available. This increase in availability of CO2 from anthropogenic sources resulted in both anthropogenic and naturally sourced CO2 becoming available for use in C02 EOR. The designation of CO2 from these two sources is denoted by suffix "a" or "n". C02a designates CO2 from an anthropogenic source and CO2n designates CO2 from a natural source. This nomenclature will be applied herein in all references to CO2.

[00181 It is important to note, that what is referred to as either C02a or C02n is not usually pure CO2; that is CO2 without other gases or elemental components.
Rather, C02X is the term to describe a somewhat "mixed" gas, or C02 containing small amounts of nitrogen, oxygen, hydrogen, sulfide and other gases. Some C02n sources are 99% or greater pure CO2. Some C02a sources contain varying amounts of H2S
gas.

[0019] In all cases herein, the terms C02a or C02n will be used to primarily indicate the distinction in source from which they are obtained. In all cases, both C02 and C02n indicate a C02 gas or gas mix with varying constituent component gases such as 02, N2, H2S and other gases as the case may be. The CO2 used as a diluent can either be 100% pure CO2 or be a C02 gas mix consisting of the various gas components present as a result of the process through which the C02 is extracted or otherwise captured.

[0020] A unique feature of the evolved C02-EOR industry is the manner in which CO2 is transported. Unlike natural gas (methane) or hydrogen gas which are transported in a gaseous state, all C02, be it in its relatively pure and/or in its mixed gas state, is transported differently. Specifically, the C02a/ C02n gas and/or mixed gas is first dehydrated to achieve a dryer gas with little or no water or water vapor content.
This dehydration process effectively lessens the chances of the CO2X forming carbonic acid. Such dehydration is important because carbonic acid causes corrosion to form in the pipe or tank transporting the CO2X gas. Second, and most significantly, CO2 is typically compressed to a pressure at which it takes on a "super critical"
state for transport.

[0021] Super critical state C02" is the term used to describe CO2 that is in a fluid state while also being at or above both its critical temperature and pressure.
In its super critical state, CO2 exhibits some uncommon properties. Specifically, CO2 usually behaves as a gas in air at STP or as a solid called "dry ice" when the C02 gas is frozen.
If the temperature and pressure are both increased from STP to be at or above the critical point for CO2, CO2 can adopt properties some where between a gas and a liquid.
More specifically, super critical CO2 behaves as a super critical fluid above its critical temperature (31.1 C) and critical pressure (73 atm), expanding to fill its container like a gas but with a density like that of a liquid.

[0022] Consequently, C02 (both a and n) is different from gases from a transport and infrastructure perspective. Specifically, CO2 (a and n) in the pure or mixed gas state needs to be caused to enter a super critical state. More particularly a means for causing CO2 to enter a super critical state such as a compressor is used to cause the C02 to achieve a "super critical" state. In the super critical state, CO2 behaves like a liquid. And, like most liquids, super critical state CO2 can be passed through a series of pumps where the pressure of the super critical state CO2 can be increased at each pump. However, the CO2 gas must first be compressed or otherwise cooled to reach a super critical state. New process technologies are providing methods by which the amount of compression required for CO2 to reach its super critical state is minimized through cryogenic processing. In cryogenic processing, a C02 gas/mix is passed through cryogenic units whereupon the density of the CO2 gas/mix increases and less compression of the CO2 gas is subsequently required. It is important to note that reaching the "super critical state" is the key transport attribute.

(0023] Once CO2 in its super critical state, the CO2 gas/mix is usually run through pumps to increase its pressure up to 2000 psi, and in some cases higher pressures, depending on the pressure rating of the transport pipe or tank.
Pumps for the CO2 gas/mix are generally inexpensive to operate. Therefore, the movement of super critical CO2 has comparatively lower overall transportation costs than C02 gas while still enabling transport and delivery to an injection point - especially for CO2EOR
use and geologic sequestration at a much higher pressure. It is this key characteristic of C02a and C02n upon which the system and method of the present invention is predicated. Once in its super critical state, the C02 may be moved in a means for transport such as a pipeline or in tanks on a transport vehicle to the location of the heavy hydrocarbon. Heretofore, this important transportation characteristic of CO2 in a super critical state has not been used with a heavy hydrocarbon, such as bitumen.

[0024] Disclosed System and Method [0025] According to the system and method of the present invention, C02 from any source (either anthropogenic or natural), in either pure or mixed gas form, is compressed or otherwise taken to a super critical state. The super critical state CO2 is then used as a carrying or suspension agent for the transport of bitumen and/or other heavy hydrocarbons via a pipeline or other transportation means (even including petcoke where CO2 could serve as a carrying or suspension agent or what is more commonly referred to for petcoke to be a "slurry" mix). The super critical state CO2 is added to the very heavy hydrocarbons, in either of the following combinations:

100% CO2 - pure "carbonbit"; or a predetermined mixture consisting of some percentage of either condensate, NGLs, or other very light hydrocarbon or non-hydrocarbon fluids - wherein the super critical state CO2 constitutes a minimum of 5% or greater of the total added carrying or suspension agent - either by volume or by weight.

[0026] Specific processing techniques will vary depending on site, operation, and existing process facilities as to how the super critical state C02 and heavy hydrocarbon, such as bitumen, and possibly other chemical products are commingled and injected as a combination into the pipeline for transport. Such means for co-mingling the super critical state CO2 and the heavy hydrocarbons are well known to those of ordinary skills in the art.

[0027] Regardless of the specific engineered process, the energy savings along with the market and economic efficiencies will be significant. By using super critical state CO2 as a carrying or suspension agent in the dilbit (e.g. "carbit" with C02 or carbon) or even as partial replacement by volume of current diluents, an inexpensive technique/process will exist by which C02a/ C02n may be transported for CO2 FOR
and/or geologic sequestration in approved aquifers and formations.

[0028] The newly constituted dilbit including C02a or C02n and a heavy hydrocarbon is then moved through a means for transport such as a pipeline or in tanks on a transport vehicle to a final delivery destination. Upon receipt at the final delivery destination, the pipe containing the combination of super critical state CO2 and the heavy hydrocarbon will be depressurized so that the combined super critical state CO2 and heavy hydrocarbon would return to a dual gas-liquid phase. At that point, the C02 would be separating from the heavy hydrocarbon. The heavy hydrocarbon would drop out of formation and be processed at the processing destination or upgrader.
The separated C02, while in a gaseous phase, would be handled to maintain as high a pressure rating as possible. Maintaining a high pressure rating enables inexpensive re-compression and/or pumping of the CO2 back to a super critical state wherein the super critical state CO2 would be transported via a pipeline or tank to oil and/or gas fields for EOR/EGR, coal fields for enhanced coal bed methane, or saline reservoirs/dormant oil/gas fields or other geological formations where the CO2 can be permanently sequestered and/or stored.

[0029] The complete process would then result in a full carbon cycle from (i) initial production/mining or processing of the heavy hydrocarbon in the extraction phase to; (ii) pre-transport processing phase, to (iii) a final storage or sequestration phase.

[0030] While the system and method of the disclosed invention has been disclosed according to its preferred and alternate embodiments, those of ordinary skill in the art will understand that modifications may be made to the disclosed invention without departing form the system and method of the present invention. Such modifications shall be included within the scope and meaning of the appended claims.

Claims (4)

1. A method for utilizing super critical state CO2 as a carrying or suspension agent for extracted or processed hydrocarbons, said method comprising the steps of:
causing CO2 to enter a super critical state;

transporting said super critical state CO2 to the processed hydrocarbons;
commingling the super critical state CO2 with the processed hydrocarbons;
transporting the super critical state CO2 together with the processed hydrocarbons to a predetermined delivery destination.
2. The method as defined in claim 1 further including the step of:
depressurizing the mixture of super critical state CO2 and processed hydrocarbons at the delivery destination;

recovering the gaseous phase CO2;

causing the gaseous phase CO2 to re-enter a super critical state;
transporting the super critical state CO2 to one or more locations including but not limited to: EOR/EGR, coal fields for enhanced coal bed methane, and a sequestration location
3. A system for utilizing super critical state CO2 as a carrying or suspension agent for extracted or processed hydrocarbons, said system comprising:

means for causing CO2 to enter a super critical state;

means for transporting said super critical state CO2 to the processed hydrocarbons;

means for commingling the super critical state CO2 with the processed hydrocarbons;

means for transporting the super critical state CO2 together with the processed hydrocarbons to a predetermined delivery destination.
4. The system as defined in claim 3 further including:

means for depressurizing the mixture of super critical state CO2 and processed hydrocarbons at the delivery destination;

means for recovering the gaseous phase CO2;

means for causing the gaseous phase CO2 to re-enter a super critical state;

means for transporting the super critical state CO2 to one or more locations including but not limited to: EOR/EGR, coal fields for enhanced coal bed methane, and a sequestration location.
CA2758529A 2009-04-17 2010-04-14 System and method for using super critical state carbon dioxide (co2) for hydrocarbon recovery and transport Abandoned CA2758529A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US3843309A 2009-04-17 2009-04-17
US12/386,433 2009-04-17
PCT/US2010/031026 WO2010120876A1 (en) 2009-04-17 2010-04-14 System and method for using super critical state carbon dioxide (co2) for hydrocarbon recovery and transport

Publications (1)

Publication Number Publication Date
CA2758529A1 true CA2758529A1 (en) 2010-10-21

Family

ID=45218015

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2758529A Abandoned CA2758529A1 (en) 2009-04-17 2010-04-14 System and method for using super critical state carbon dioxide (co2) for hydrocarbon recovery and transport

Country Status (1)

Country Link
CA (1) CA2758529A1 (en)

Similar Documents

Publication Publication Date Title
AU2010344186B2 (en) Temporary field storage of gas to optimize field development
CA2725322C (en) Method of injecting carbon dioxide
RU2502862C2 (en) Method for combined production and processing of hydrocarbons from natural gas hydrate manifolds and common hydrocarbon manifolds (versions), and system for its implementation
CA3024545C (en) Self-sourced reservoir fluid for enhanced oil recovery
US7418822B2 (en) Method and substance for refrigerated natural gas transport
US9896902B2 (en) Injecting a hydrate slurry into a reservoir
KR20070045285A (en) Storage of natural gas in liquid solvents and methods to absorb and segregate natural gas into and out of liquid solvents
US10465135B2 (en) Hydrocarbon processing
CN102803651A (en) Method of producing a combined gaseous hydrocarbon component stream and liquid hydrocarbon component streams, and an apparatus therefor
US8124824B2 (en) System and method for using super critical state carbon dioxide (CO2) as a hydrocarbon diluent
Kurz et al. Upstream and midstream compression applications: Part 1—applications
WO2022035749A1 (en) Producing hydrocarbons with carbon dioxide and water injection through stacked lateral dual injection
CA2758529A1 (en) System and method for using super critical state carbon dioxide (co2) for hydrocarbon recovery and transport
WO2010120876A1 (en) System and method for using super critical state carbon dioxide (co2) for hydrocarbon recovery and transport
EP2851505B1 (en) Production method and production system for natural gas
Islam et al. Emerging Applications in Cryogenics--Nitrogen Injection for Reservoir Enhanced Oil Recovery.
CA2670904C (en) Method and susbtance for refrigerated natural gas transport
Feodorov et al. Ways of helium development in Eastern Siberia
Koenen et al. Seasonal CO2 Storage in Q16-Maas, The Netherlands
Araujo et al. PACIFIC LNG PROJECT: A NEW PERSPECTIVE FOR THE DEVELOPMENT OF THE MARGARITA GAS FIELD INBOLIVIA

Legal Events

Date Code Title Description
EEER Examination request

Effective date: 20150413

FZDE Dead

Effective date: 20170901