CA2751584A1 - Electromagnetic relay assembly - Google Patents

Electromagnetic relay assembly Download PDF

Info

Publication number
CA2751584A1
CA2751584A1 CA2751584A CA2751584A CA2751584A1 CA 2751584 A1 CA2751584 A1 CA 2751584A1 CA 2751584 A CA2751584 A CA 2751584A CA 2751584 A CA2751584 A CA 2751584A CA 2751584 A1 CA2751584 A1 CA 2751584A1
Authority
CA
Canada
Prior art keywords
assembly
spring
contact
aperture
electromagnetic relay
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CA2751584A
Other languages
French (fr)
Other versions
CA2751584C (en
Inventor
Philipp Gruner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hongfa Holdings Us Inc
Original Assignee
Clodi LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Clodi LLC filed Critical Clodi LLC
Publication of CA2751584A1 publication Critical patent/CA2751584A1/en
Application granted granted Critical
Publication of CA2751584C publication Critical patent/CA2751584C/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H51/00Electromagnetic relays
    • H01H51/22Polarised relays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/12Contacts characterised by the manner in which co-operating contacts engage
    • H01H1/14Contacts characterised by the manner in which co-operating contacts engage by abutting
    • H01H1/18Contacts characterised by the manner in which co-operating contacts engage by abutting with subsequent sliding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/12Contacts characterised by the manner in which co-operating contacts engage
    • H01H1/14Contacts characterised by the manner in which co-operating contacts engage by abutting
    • H01H1/24Contacts characterised by the manner in which co-operating contacts engage by abutting with resilient mounting
    • H01H1/26Contacts characterised by the manner in which co-operating contacts engage by abutting with resilient mounting with spring blade support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/50Means for increasing contact pressure, preventing vibration of contacts, holding contacts together after engagement, or biasing contacts to the open position
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/16Magnetic circuit arrangements
    • H01H50/18Movable parts of magnetic circuits, e.g. armature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/54Contact arrangements
    • H01H50/56Contact spring sets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H51/00Electromagnetic relays
    • H01H51/22Polarised relays
    • H01H51/2227Polarised relays in which the movable part comprises at least one permanent magnet, sandwiched between pole-plates, each forming an active air-gap with parts of the stationary magnetic circuit
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/50Means for increasing contact pressure, preventing vibration of contacts, holding contacts together after engagement, or biasing contacts to the open position
    • H01H1/54Means for increasing contact pressure, preventing vibration of contacts, holding contacts together after engagement, or biasing contacts to the open position by magnetic force
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/64Driving arrangements between movable part of magnetic circuit and contact
    • H01H50/641Driving arrangements between movable part of magnetic circuit and contact intermediate part performing a rectilinear movement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H51/00Electromagnetic relays
    • H01H51/22Polarised relays
    • H01H51/2272Polarised relays comprising rockable armature, rocking movement around central axis parallel to the main plane of the armature

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Electromagnets (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)
  • Magnetic Treatment Devices (AREA)
  • Switch Cases, Indication, And Locking (AREA)
  • Relay Circuits (AREA)
  • Braking Arrangements (AREA)
  • Vehicle Body Suspensions (AREA)
  • Burglar Alarm Systems (AREA)

Abstract

An electromagnetic relay enables current to pass through switch termini and comprises a coil assembly, a rotor or bridge assembly, and a switch assembly. The coil assembly comprises a coil and a C-shaped core. The coil is wound round a coil axis extending through the core. The core comprises core termini parallel to the coil axis. The bridge assembly comprises a bridge and an actuator. The bridge comprises medial, lateral, and transverse field pathways. The actuator extends laterally from the lateral field pathway. The core termini are coplanar with the axis of rotation and received intermediate the medial and lateral field pathways. The actuator is cooperable with the switch assembly.
The coil creates a magnetic field directable through the bridge assembly via the core termini for imparting bridge rotation about the axis of rotation. The bridge rotation displaces the actuator for opening and closing the switch assembly.

Description

WHAT IS CLAIMED IS:

1. An electromagnetic relay assembly, the electromagnetic relay assembly for selectively enabling current to pass through switch termini, the electromagnetic relay assembly comprising:
an electromagnetic coil assembly, the coil assembly comprising a current-conductive coil, a yoke assembly, and a coil axis, the coil being wound around the coil axis and comprising first and second electromagnet-driving termini, the yoke assembly comprising first and second yoke arms, the yoke arms each comprising an axial yoke portion and a yoke terminus;

an armature assembly, the armature assembly comprising a rotor assembly and a rotor axis of rotation, the rotor assembly comprising first and second rotor magnets, a rotor plate, and an actuator assembly, the actuator assembly comprising a rotor bracket and an actuator, the rotor bracket comprising a terminal end, the terminal end extending laterally from the rotor assembly substantially parallel to the rotor plate, the rotor magnets having like orientation and extending intermediate the rotor plate and the rotor bracket opposite the rotor axis of rotation; and a switch assembly, the switch assembly comprising first and second switch terminals and a triumvirate spring assembly, the first switch terminal comprising a first contact and a first switch terminus, the second switch terminal comprising a second switch terminus, the spring assembly comprising a second contact and three spring elements, a first spring element comprising a first C-shaped aperture, the first C-shaped aperture defining a first semi-circular aperture-defining extension, the first C-shaped aperture being concentric about the first contact-receiving aperture, the second spring element comprising a second contact-receiving aperture and terminating in a second semi-circular aperture-defining extension, the third spring element comprising a third contact-receiving aperture and a second C-shaped aperture, the second C-shaped aperture defining a third semi-circular aperture-defining extension, the second C-shaped aperture being concentric about the second contact-receiving aperture, the first and second C-shaped apertures being symmetrical about the longitudinal axes of the first and third spring elements, the second spring being sandwiched intermediate the first and third spring elements via the second contact such that the first, second and third semi-circular aperture-defining extensions are uniformly stacked, the first and second contacts being juxtaposed adjacent one another, the spring assembly being attached to the actuator, the yoke termini being received intermediate the rotor plate and the rotor bracket, the rotor axis of rotation being coplanar with the yoke termini, the rotor bracket and terminal end extending non-radially relative to the rotor axis of rotation, the coil for creating a magnetic field, the magnetic field being directable through the yoke termini via the rotor assembly for imparting armature rotation about the rotor axis of rotation, the rotor bracket with the terminal end for displacing the actuator, the actuator for actuating the spring assembly intermediate an open position and a closed position, the closed position for enabling current to pass through the switch assembly via the first and second contacts and the switch termini.
2. The electromagnetic relay assembly of claim 1 wherein the C-shaped apertures provide means for enhanced spring over travel, the enhanced spring over travel for increasing contact pressure intermediate the first and second contacts when the spring assembly is in the closed position.
3. The electromagnetic relay assembly of claim 2 wherein the means for enhanced spring over travel provide means for contact wiping, the means for contact wiping for cleansing the first and second contacts.
4. The electromagnetic relay assembly of claim 1 wherein the C-shaped apertures provide means for damping contact vibration intermediate the first and second contacts when switching from the open position to the closed position.
5. The electromagnetic relay assembly of claim 1 wherein the rotor assembly comprises a return spring, the return spring for enhancing return of the spring assembly to the open position when the coil is dormant.
6. The electromagnetic relay assembly of claim 1 comprising rotor mounting means, the rotor mounting means for enabling open face operation of the electromagnetic relay.
7. The electromagnetic relay assembly of claim 1 comprising closed contact default means, the closed contact default means for forcing the first and second contacts to the closed position during fault current conditions.
8. The electromagnetic relay of claim 1 comprising means for defaulting to an open contact position during threshold terminal-based current conditions.
9. An electromagnetic relay, the electromagnetic relay for enabling current to pass through switch termini, the electromagnetic relay comprising:

an electromagnetic coil assembly, the coil assembly comprising a coil, a C-shaped yoke assembly, and a coil axis, the coil being wound around the coil axis, the yoke assembly comprising first and second yoke arms, the yoke arms each comprising an axial yoke portion and a yoke terminus;

an armature bridge assembly, the armature bridge assembly comprising a bridge axis of rotation, a bridge, and an actuator assembly, the bridge comprising a medial field pathway, a lateral field pathway, and longitudinally spaced transverse field pathways, the actuator assembly comprising a rotor bracket, the rotor bracket comprising a terminal end, the terminal end zigzag extending laterally from the bridge assembly non-orthogonally relative to the medial and lateral field pathways; and a switch assembly, the switch assembly comprising switch terminals and a spring assembly, the spring assembly being attached to the actuator assembly and extending intermediate the switch terminals, the yoke termini being received intermediate the medial and lateral field pathways, the bridge axis of rotation being coplanar with the yoke termini, the coil for receiving current and creating a magnetic field, the magnetic field being directable through the bridge assembly via the yoke termini for imparting bridge rotation about the bridge axis of rotation and displacing the actuator assembly via the terminal end, the displaceable actuator assembly for actuating the spring assembly intermediate an open contact position and a closed contact position, the closed contact position for enabling current to pass through the switch assembly via the switch termini.
10. The electromagnetic relay of claim 9 comprising spring-based aperture means for enhancing spring over travel, said means for increasing contact pressure intermediate the switch terminals when the spring assembly is in the closed contact position.
11. The electromagnetic relay of claim 10 wherein the spring-based aperture means for enhancing spring over travel provide means for contact wiping, said means for cleansing the switch terminals.
12. The electromagnetic relay of claim 9 comprising spring-based aperture means for damping contact vibration intermediate the first and second contacts when switching from the open contact position to the closed contact position.
13. The electromagnetic relay of claim 9 comprising bridge-mounting means, the bridge-mounting means for enabling open face operation of the electromagnetic relay.
14. The electromagnetic relay of claim 9 comprising means for defaulting to a closed contact position during fault current conditions.
15. The electromagnetic relay of claim 9 comprising means for defaulting to an open contact position during threshold terminal-based current conditions.
16. An electromagnetic relay, the electromagnetic relay for enabling current to pass through switch termini, the electromagnetic relay comprising:

a coil assembly, the coil assembly comprising a coil, a coil axis, and a C-shaped core, the coil being wound round the coil axis, the coil axis extending through the core, the core comprising core termini, the core termini being parallel to the coil axis;

a bridge assembly, the bridge assembly comprising an axis of rotation, a bridge, and an actuator assembly, the bridge comprising a medial field pathway, a lateral field pathway, and spaced transverse field pathways, the actuator assembly comprising a rotor bracket, the rotor bracket comprising a terminal end, the terminal end zigzag extending from the bridge assembly relative to the lateral field pathway, the core termini being coplanar with the axis of rotation and received intermediate the medial and lateral field pathways; and a switch assembly, the actuator assembly being cooperable with the switch assembly, the coil for creating a magnetic field, the magnetic field being directable through the bridge assembly via the core termini for imparting bridge rotation about the axis of rotation via magnetically induced torque, the bridge rotation for displacing the actuator assembly, the displaceable actuator assembly for opening and closing the switch assembly, the closed switch assembly for enabling current to pass therethrough.
17. The electromagnetic relay of claim 16 wherein the switch assembly comprises spring-based aperture means for enhancing spring over travel, said means for enhancing the closed switch position.
18. The electromagnetic relay of claim 17 wherein the spring-based aperture means for enhancing spring over travel provide contact wiping means, said means for cleansing the switch assembly.
19. The electromagnetic relay of claim 16 comprising spring-based aperture means for damping contact vibration when switching from open to closed switch positions.
20. The electromagnetic relay of claim 16 comprising bridge-mounting means, the bridge-mounting means for enabling open face operation of the electromagnetic relay.
21. The electromagnetic relay of claim 16 comprising means for defaulting to a closed contact position during fault current conditions.
22. The electromagnetic relay of claim 16 comprising means for defaulting to an open contact position during threshold terminal-based current conditions.
23. The electromagnetic relay of claim 17 wherein the switch assembly comprises a spring assembly, the spring assembly comprising three spring elements, a first of the three spring elements comprising a first C-shaped aperture, the first C-shaped aperture defining a first semi-circular aperture-defining extension, the first C-shaped aperture being concentric about the first contact-receiving aperture, a second of the three spring elements comprising a second contact-receiving aperture and terminating in a second semi-circular aperture-defining extension, a third of the three spring elements comprising a third contact-receiving aperture, and a second C-shaped aperture, the second C-shaped aperture defining a third semi-circular aperture-defining extension, the second C-shaped aperture being concentric about the second contact-receiving aperture, the first and second C-shaped apertures being symmetrical about the longitudinal axes of the first and third spring elements, the second spring being sandwiched intermediate the first and third spring elements via the second contact such that the first, second and third semi-circular aperture-defining extensions are uniformly stacked, the three spring elements so configured providing the spring-based aperture means for enhancing spring over travel.
24. The electromagnetic relay of claim 19 wherein the switch assembly comprises a spring assembly, the spring assembly comprising three spring elements, a first of the three spring elements comprising a first C-shaped aperture, the first C-shaped aperture defining a first semi-circular aperture-defining extension, the first C-shaped aperture being concentric about the first contact-receiving aperture, a second of the three spring elements comprising a second contact-receiving aperture and terminating in a second semi-circular aperture-defining extension, a third of the three spring elements comprising a third contact-receiving aperture, and a second C-shaped aperture, the second C-shaped aperture defining a third semi-circular aperture-defining extension, the second C-shaped aperture being concentric about the second contact-receiving aperture, the first and second C-shaped apertures being symmetrical about the longitudinal axes of the first and third spring elements, the second spring being sandwiched intermediate the first and third spring elements via the second contact such that the first, second and third semi-circular aperture-defining extensions are uniformly stacked, the three spring elements so configured providing the spring-based aperture means for damping contact vibration.
25. The electromagnetic relay of claim 10 wherein the switch assembly comprises a spring assembly, the spring assembly comprising three spring elements, a first of the three spring elements comprising a first C-shaped aperture, the first C-shaped aperture defining a first semi-circular aperture-defining extension, the first C-shaped aperture being concentric about the first contact-receiving aperture, a second of the three spring elements comprising a second contact-receiving aperture and terminating in a second semi-circular aperture-defining extension, a third of the three spring elements comprising a third contact-receiving aperture, and a second C-shaped aperture, the second C-shaped aperture defining a third semi-circular aperture-defining extension, the second C-shaped aperture being concentric about the second contact-receiving aperture, the first and second C-shaped apertures being symmetrical about the longitudinal axes of the first and third spring elements, the second spring being sandwiched intermediate the first and third spring elements via the second contact such that the first, second and third semi-circular aperture-defining extensions are uniformly stacked, the three spring elements so configured providing the spring-based aperture means for enhancing spring over travel.
26. The electromagnetic relay of claim 12 wherein the switch assembly comprises a spring assembly, the spring assembly comprising three spring elements, a first of the three spring elements comprising a first C-shaped aperture, the first C-shaped aperture defining a first semi-circular aperture-defining extension, the first C-shaped aperture being concentric about the first contact-receiving aperture, a second of the three spring elements comprising a second contact-receiving aperture and terminating in a second semi-circular aperture-defining extension, a third of the three spring elements comprising a third contact-receiving aperture, and a second C-shaped aperture, the second C-shaped aperture defining a third semi-circular aperture-defining extension, the second C-shaped aperture being concentric about the second contact-receiving aperture, the first and second C-shaped apertures being symmetrical about the longitudinal axes of the first and third spring elements, the second spring being sandwiched intermediate the first and third spring elements via the second contact such that the first, second and third semi-circular aperture-defining extensions are uniformly stacked, the three spring elements so configured providing the spring-based aperture means for damping contact vibration.
27. An electromagnetic relay assembly, the electromagnetic relay assembly for selectively enabling current to pass through switch termini, the electromagnetic relay assembly comprising:
an electromagnetic coil assembly, the coil assembly comprising a current-conductive coil, a yoke assembly, and a coil axis, the coil being wound around the coil axis and comprising first and second electromagnet-driving termini, the yoke assembly comprising first and second yoke arms, the yoke arms each comprising an axial yoke portion and a yoke terminus;

an armature assembly, the armature assembly comprising a rotor assembly and a rotor axis of rotation, the rotor assembly comprising first and second rotor magnets, a rotor plate, a rotor bracket, and a return spring, the rotor bracket comprising an actuator, the rotor magnets having like orientation and extending intermediate the rotor plate and the rotor bracket opposite the rotor axis of rotation; and a switch assembly, the switch assembly comprising first and second switch terminals and a triumvirate spring assembly, the first switch terminal comprising a first contact and a first switch terminus, the second switch terminal comprising a second switch terminus, the spring assembly comprising a second contact and three spring elements, a first spring element comprising a first C-shaped aperture, the first C-shaped aperture being concentric about the first contact-receiving aperture, the second spring element comprising a second contact-receiving aperture, the third spring element comprising a third contact-receiving aperture and a second C-shaped aperture, the second C-shaped aperture being concentric about the second contact-receiving aperture, the second spring element being sandwiched intermediate the first and third spring elements via the second contact, the first and second contacts being juxtaposed adjacent one another, the spring assembly being attached to the actuator, the yoke termini being received intermediate the rotor plate and the rotor bracket, the rotor axis of rotation being coplanar with the yoke termini, the coil for creating a magnetic field, the magnetic field being directable through the yoke termini via the rotor assembly for imparting armature rotation about the rotor axis of rotation, the rotor bracket for displacing the actuator, the actuator for actuating the spring assembly intermediate an open position and a closed position, the closed position for enabling current to pass through the switch assembly via the first and second contacts and the switch termini, the return spring for enhancing return of the spring assembly to the open position when the coil is dormant.
28. The electromagnetic relay assembly of claim 27 wherein the C-shaped apertures provide means for enhanced spring over travel, the enhanced spring over travel for increasing contact pressure intermediate the first and second contacts when the spring assembly is in the closed position.
29. The electromagnetic relay assembly of claim 28 wherein the means for enhanced spring over travel provide means for contact wiping, the means for contact wiping for cleansing the first and second contacts.
30. The electromagnetic relay assembly of claim 27 wherein the C-shaped apertures provide means for damping contact vibration intermediate the first and second contacts when switching from the open position to the closed position.
31. The electromagnetic relay assembly of claim 27 comprising rotor mounting means, the rotor mounting means for enabling open face operation of the electromagnetic relay.
32. The electromagnetic relay assembly of claim 27 comprising closed contact default means, the closed contact default means for forcing the first and second contacts to the closed position during fault current conditions.
33. The electromagnetic relay of claim 27 comprising means for defaulting to an open contact position during threshold terminal-based current conditions.
34. The electromagnetic relay assembly of claim 1 comprising at least one secondary switch assembly substantially identical to said switch assembly, each secondary switch assembly being attached to the actuator, the actuator for actuating each secondary spring assembly intermediate an open position and a closed position.
35. The electromagnetic relay of claim 9 comprising at least one secondary switch assembly substantially identical to said switch assembly, each secondary switch assembly being attached to the actuator assembly, the actuator assembly for actuating each secondary spring assembly intermediate an open position and a closed position.
36. The electromagnetic relay of claim 16 comprising at least one secondary switch assembly substantially identical to said switch assembly, each secondary switch assembly being cooperable with the actuator assembly, the actuator assembly for actuating each secondary spring assembly intermediate an open position and a closed position.
37. The electromagnetic relay assembly of claim 27 comprising at least one secondary switch assembly substantially identical to said switch assembly, each secondary switch assembly being attached to the actuator, the actuator for actuating each secondary spring assembly intermediate an open position and a closed position.

Claims (34)

1. An electromagnetic relay assembly, the electromagnetic relay assembly for selectively enabling current to pass through switch termini, the electromagnetic relay assembly comprising:

an electromagnetic coil assembly, the coil assembly comprising a current-conductive coil, a yoke assembly, and a coil axis, the coil being wound around the coil axis and comprising first and second electromagnet-driving termini, the yoke assembly comprising first and second yoke arms, the yoke arms each comprising an axial yoke portion and a yoke terminus;

an armature assembly, the armature assembly comprising a rotor assembly and a rotor axis of rotation, the rotor assembly comprising first and second rotor magnets, a rotor plate, and an actuator assembly, the actuator assembly comprising a rotor bracket and an actuator, the rotor bracket comprising a terminal end, the terminal end extending laterally from the rotor assembly substantially parallel to the rotor plate, the rotor magnets having like orientation and extending intermediate the rotor plate and the rotor bracket opposite the rotor axis of rotation; and a switch assembly, the switch assembly comprising first and second switch terminals and a triumvirate spring assembly, the first switch terminal comprising a first contact and a first switch terminus, the second switch terminal comprising a second switch terminus, the spring assembly comprising a second contact and three spring elements, a first spring element comprising a first C-shaped aperture, the first C-shaped aperture defining a first semi-circular aperture-defining extension, the first C-shaped aperture being concentric about the first contact-receiving aperture, the second spring element comprising a second contact-receiving aperture and terminating in a second semi-circular aperture-defining extension, the third spring element comprising a third contact-receiving aperture and a second C-shaped aperture, the second C-shaped aperture defining a third semi-circular aperture-defining extension, the second C-shaped aperture being concentric about the second contact-receiving aperture, the first and second C-shaped apertures being symmetrical about the longitudinal axes of the first and third spring elements, the second spring being sandwiched intermediate the first and third spring elements via the second contact such that the first, second and third semi-circular aperture-defining extensions are uniformly stacked, the first and second contacts being juxtaposed adjacent one another, the spring assembly being attached to the actuator, the yoke termini being received intermediate the rotor plate and the rotor bracket, the rotor axis of rotation being coplanar with the yoke termini, the rotor bracket and terminal end extending non-radially relative to the rotor axis of rotation, the coil for creating a magnetic field, the magnetic field being directable through the yoke termini via the rotor assembly for imparting armature rotation about the rotor axis of rotation, the rotor bracket with the terminal end for displacing the actuator, the actuator for actuating the spring assembly intermediate an open position and a closed position, the closed position for enabling current to pass through the switch assembly via the first and second contacts and the switch termini.
2. The electromagnetic relay assembly of claim 1 wherein the C-shaped apertures provide means for enhanced spring over travel, the enhanced spring over travel for increasing contact pressure intermediate the first and second contacts when the spring assembly is in the closed position.
3. The electromagnetic relay assembly of claim 2 wherein the means for enhanced spring over travel provide means for contact wiping, the means for contact wiping for cleansing the first and second contacts.
4. The electromagnetic relay assembly of claim 1 wherein the C-shaped apertures provide means for damping contact vibration intermediate the first and second contacts when switching from the open position to the closed position.
5. The electromagnetic relay assembly of claim 1 wherein the rotor assembly comprises a return spring, the return spring for enhancing return of the spring assembly to the open position when the coil is dormant.
6. The electromagnetic relay assembly of claim 1 comprising rotor mounting means, the rotor mounting means for enabling open face operation of the electromagnetic relay.
7. The electromagnetic relay assembly of claim 1 comprising closed contact default means, the closed contact default means for forcing the first and second contacts to the closed position during fault current conditions.
8. The electromagnetic relay of claim 1 comprising means for defaulting to an open contact position during threshold terminal-based current conditions.
9. An electromagnetic relay, the electromagnetic relay for enabling current to pass through switch termini, the electromagnetic relay comprising:

an electromagnetic coil assembly, the coil assembly comprising a coil, a C-shaped yoke assembly, and a coil axis, the coil being wound around the coil axis, the yoke assembly comprising first and second yoke arms, the yoke arms each comprising an axial yoke portion and a yoke terminus;

an armature bridge assembly, the armature bridge assembly comprising a bridge axis of rotation, a bridge, and an actuator assembly, the bridge comprising a medial field pathway, a lateral field pathway, and longitudinally spaced transverse field pathways, the actuator assembly comprising a rotor bracket, the rotor bracket comprising a terminal end, the terminal end zigzag extending laterally from the bridge assembly non-orthogonally relative to the medial and lateral field pathways; and a switch assembly, the switch assembly comprising switch terminals and a spring assembly, the spring assembly being attached to the actuator assembly and extending intermediate the switch terminals, the yoke termini being received intermediate the medial and lateral field pathways, the bridge axis of rotation being coplanar with the yoke termini, the coil for receiving current and creating a magnetic field, the magnetic field being directable through the bridge assembly via the yoke termini for imparting bridge rotation about the bridge axis of rotation and displacing the actuator assembly via the terminal end, the displaceable actuator assembly for actuating the spring assembly intermediate an open contact position and a closed contact position, the closed contact position for enabling current to pass through the switch assembly via the switch termini.
10. The electromagnetic relay of claim 9 comprising spring-based aperture means for enhancing spring over travel, said means for increasing contact pressure intermediate the switch terminals when the spring assembly is in the closed contact position.
11. The electromagnetic relay of claim 10 wherein the spring-based aperture means for enhancing spring over travel provide means for contact wiping, said means for cleansing the switch terminals.
12. The electromagnetic relay of claim 9 comprising spring-based aperture means for damping contact vibration intermediate the first and second contacts when switching from the open contact position to the closed contact position.
13. The electromagnetic relay of claim 9 comprising bridge-mounting means, the bridge-mounting means for enabling open face operation of the electromagnetic relay.
14. The electromagnetic relay of claim 9 comprising means for defaulting to a closed contact position during fault current conditions.
15. The electromagnetic relay of claim 9 comprising means for defaulting to an open contact position during threshold terminal-based current conditions.
16. An electromagnetic relay, the electromagnetic relay for enabling current to pass through switch termini, the electromagnetic relay comprising:

a coil assembly, the coil assembly comprising a coil, a coil axis, and a C-shaped core, the coil being wound round the coil axis, the coil axis extending through the core, the core comprising core termini, the core termini being parallel to the coil axis;

a bridge assembly, the bridge assembly comprising an axis of rotation, a bridge, and an actuator assembly, the bridge comprising a medial field pathway, a lateral field pathway, and spaced transverse field pathways, the actuator assembly comprising a rotor bracket, the rotor bracket comprising a terminal end, the terminal end zigzag extending from the bridge assembly relative to the lateral field pathway, the core termini being coplanar with the axis of rotation and received intermediate the medial and lateral field pathways; and a switch assembly, the actuator assembly being cooperable with the switch assembly, the coil for creating a magnetic field, the magnetic field being directable through the bridge assembly via the core termini for imparting bridge rotation about the axis of rotation via magnetically induced torque, the bridge rotation for displacing the actuator assembly, the displaceable actuator assembly for opening and closing the switch assembly, the closed switch assembly for enabling current to pass therethrough.
17. The electromagnetic relay of claim 16 wherein the switch assembly comprises spring-based aperture means for enhancing spring over travel, said means for enhancing the closed switch position.
18. The electromagnetic relay of claim 17 wherein the spring-based aperture means for enhancing spring over travel provide contact wiping means, said means for cleansing the switch assembly.
19. The electromagnetic relay of claim 16 comprising spring-based aperture means for damping contact vibration when switching from open to closed switch positions.
20. The electromagnetic relay of claim 16 comprising bridge-mounting means, the bridge-mounting means for enabling open face operation of the electromagnetic relay.
21. The electromagnetic relay of claim 16 comprising means for defaulting to a closed contact position during fault current conditions.
22. The electromagnetic relay of claim 16 comprising means for defaulting to an open contact position during threshold terminal-based current conditions.
23. The electromagnetic relay of claim 17 wherein the switch assembly comprises a spring assembly, the spring assembly comprising three spring elements, a first of the three spring elements comprising a first C-shaped aperture, the first C-shaped aperture defining a first semi-circular aperture-defining extension, the first C-shaped aperture being concentric about the first contact-receiving aperture, a second of the three spring elements comprising a second contact-receiving aperture and terminating in a second semi-circular aperture-defining extension, a third of the three spring elements comprising a third contact-receiving aperture, and a second C-shaped aperture, the second C-shaped aperture defining a third semi-circular aperture-defining extension, the second C-shaped aperture being concentric about the second contact-receiving aperture, the first and second C-shaped apertures being symmetrical about the longitudinal axes of the first and third spring elements, the second spring being sandwiched intermediate the first and third spring elements via the second contact such that the first, second and third semi-circular aperture-defining extensions are uniformly stacked, the three spring elements so configured providing the spring-based aperture means for enhancing spring over travel.
24. The electromagnetic relay of claim 19 wherein the switch assembly comprises a spring assembly, the spring assembly comprising three spring elements, a first of the three spring elements comprising a first C-shaped aperture, the first C-shaped aperture defining a first semi-circular aperture-defining extension, the first C-shaped aperture being concentric about the first contact-receiving aperture, a second of the three spring elements comprising a second contact-receiving aperture and terminating in a second semi-circular aperture-defining extension, a third of the three spring elements comprising a third contact-receiving aperture, and a second C-shaped aperture, the second C-shaped aperture defining a third semi-circular aperture-defining extension, the second C-shaped aperture being concentric about the second contact-receiving aperture, the first and second C-shaped apertures being symmetrical about the longitudinal axes of the first and third spring elements, the second spring being sandwiched intermediate the first and third spring elements via the second contact such that the first, second and third semi-circular aperture-defining extensions are uniformly stacked, the three spring elements so configured providing the spring-based aperture means for damping contact vibration.
25. The electromagnetic relay of claim 10 wherein the switch assembly comprises a spring assembly, the spring assembly comprising three spring elements, a first of the three spring elements comprising a first C-shaped aperture, the first C-shaped aperture defining a first semi-circular aperture-defining extension, the first C-shaped aperture being concentric about the first contact-receiving aperture, a second of the three spring elements comprising a second contact-receiving aperture and terminating in a second semi-circular aperture-defining extension, a third of the three spring elements comprising a third contact-receiving aperture, and a second C-shaped aperture, the second C-shaped aperture defining a third semi-circular aperture-defining extension, the second C-shaped aperture being concentric about the second contact-receiving aperture, the first and second C-shaped apertures being symmetrical about the longitudinal axes of the first and third spring elements, the second spring being sandwiched intermediate the first and third spring elements via the second contact such that the first, second and third semi-circular aperture-defining extensions are uniformly stacked, the three spring elements so configured providing the spring-based aperture means for enhancing spring over travel.
26. The electromagnetic relay of claim 12 wherein the switch assembly comprises a spring assembly, the spring assembly comprising three spring elements, a first of the three spring elements comprising a first C-shaped aperture, the first C-shaped aperture defining a first semi-circular aperture-defining extension, the first C-shaped aperture being concentric about the first contact-receiving aperture, a second of the three spring elements comprising a second contact-receiving aperture and terminating in a second semi-circular aperture-defining extension, a third of the three spring elements comprising a third contact-receiving aperture, and a second C-shaped aperture, the second C-shaped aperture defining a third semi-circular aperture-defining extension, the second C-shaped aperture being concentric about the second contact-receiving aperture, the first and second C-shaped apertures being symmetrical about the longitudinal axes of the first and third spring elements, the second spring being sandwiched intermediate the first and third spring elements via the second contact such that the first, second and third semi-circular aperture-defining extensions are uniformly stacked, the three spring elements so configured providing the spring-based aperture means for damping contact vibration.
27. An electromagnetic relay assembly, the electromagnetic relay assembly for selectively enabling current to pass through switch termini, the electromagnetic relay assembly comprising:

an electromagnetic coil assembly, the coil assembly comprising a current-conductive coil, a yoke assembly, and a coil axis, the coil being wound around the coil axis and comprising first and second electromagnet-driving termini, the yoke assembly comprising first and second yoke arms, the yoke arms each comprising an axial yoke portion and a yoke terminus;

an armature assembly, the armature assembly comprising a rotor assembly and a rotor axis of rotation, the rotor assembly comprising first and second rotor magnets, a rotor plate, a rotor bracket, and a return spring, the rotor bracket comprising an actuator, the rotor magnets having like orientation and extending intermediate the rotor plate and the rotor bracket opposite the rotor axis of rotation; and a switch assembly, the switch assembly comprising first and second switch terminals and a triumvirate spring assembly, the first switch terminal comprising a first contact and a first switch terminus, the second switch terminal comprising a second switch terminus, the spring assembly comprising a second contact and three spring elements, a first spring element comprising a first C-shaped aperture, the first C-shaped aperture being concentric about the first contact-receiving aperture, the second spring element comprising a second contact-receiving aperture, the third spring element comprising a third contact-receiving aperture and a second C-shaped aperture, the second C-shaped aperture being concentric about the second contact-receiving aperture, the second spring element being sandwiched intermediate the first and third spring elements via the second contact, the first and second contacts being juxtaposed adjacent one another, the spring assembly being attached to the actuator, the yoke termini being received intermediate the rotor plate and the rotor bracket, the rotor axis of rotation being coplanar with the yoke termini, the coil for creating a magnetic field, the magnetic field being directable through the yoke termini via the rotor assembly for imparting armature rotation about the rotor axis of rotation, the rotor bracket for displacing the actuator, the actuator for actuating the spring assembly intermediate an open position and a closed position, the closed position for enabling current to pass through the switch assembly via the first and second contacts and the switch termini, the return spring for enhancing return of the spring assembly to the open position when the coil is dormant.
28. The electromagnetic relay assembly of claim 27 wherein the C-shaped apertures provide means for enhanced spring over travel, the enhanced spring over travel for increasing contact pressure intermediate the first and second contacts when the spring assembly is in the closed position.
29. The electromagnetic relay assembly of claim 28 wherein the means for enhanced spring over travel provide means for contact wiping, the means for contact wiping for cleansing the first and second contacts.
30. The electromagnetic relay assembly of claim 27 wherein the C-shaped apertures provide means for damping contact vibration intermediate the first and second contacts when switching from the open position to the closed position.
31. The electromagnetic relay assembly of claim 27 comprising rotor mounting means, the rotor mounting means for enabling open face operation of the electromagnetic relay.
32. The electromagnetic relay assembly of claim 27 comprising closed contact default means, the closed contact default means for forcing the first and second contacts to the closed position during fault current conditions.
33. The electromagnetic relay of claim 27 comprising means for defaulting to an open contact position during threshold terminal-based current conditions.
34
CA2751584A 2009-02-04 2009-02-04 Electromagnetic relay assembly Active CA2751584C (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2009/000698 WO2010090618A2 (en) 2009-02-04 2009-02-04 Electromagnetic relay assembly

Publications (2)

Publication Number Publication Date
CA2751584A1 true CA2751584A1 (en) 2010-08-12
CA2751584C CA2751584C (en) 2014-09-30

Family

ID=42542558

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2751584A Active CA2751584C (en) 2009-02-04 2009-02-04 Electromagnetic relay assembly

Country Status (17)

Country Link
EP (1) EP2394284B1 (en)
JP (1) JP5349618B2 (en)
KR (1) KR101269499B1 (en)
CN (1) CN102388427B (en)
AU (1) AU2009339409B2 (en)
BR (1) BRPI0920364B1 (en)
CA (1) CA2751584C (en)
DK (1) DK2394284T3 (en)
ES (1) ES2579934T3 (en)
HR (1) HRP20160626T1 (en)
HU (1) HUE029066T2 (en)
MX (1) MX2011008162A (en)
PL (1) PL2394284T3 (en)
PT (1) PT2394284T (en)
SI (1) SI2394284T1 (en)
WO (1) WO2010090618A2 (en)
ZA (1) ZA201105690B (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8564386B2 (en) * 2011-01-18 2013-10-22 Tyco Electronics Corporation Electrical switching device
JP5923749B2 (en) * 2011-07-27 2016-05-25 パナソニックIpマネジメント株式会社 Contact device and electromagnetic relay using the contact device
EP2782110B1 (en) * 2013-03-22 2017-07-05 Tyco Electronics Austria GmbH Lorentz force activated electric switching device
JP2015035403A (en) * 2013-08-09 2015-02-19 オムロン株式会社 Contact point mechanism and electromagnetic relay using the same
JP5741679B1 (en) * 2013-12-27 2015-07-01 オムロン株式会社 Electromagnetic relay
DE102014007459A1 (en) 2014-05-21 2015-11-26 Ellenberger & Poensgen Gmbh Power relay for a vehicle
CN104752102B (en) * 2015-02-06 2017-09-05 厦门宏发电力电器有限公司 The magnetic latching relay and its assembly method of a kind of double fixed mount magnetic structures of band
JP6458705B2 (en) 2015-10-29 2019-01-30 オムロン株式会社 relay
JP6471678B2 (en) * 2015-10-29 2019-02-20 オムロン株式会社 Contact piece unit and relay
JP6414019B2 (en) 2015-10-29 2018-10-31 オムロン株式会社 relay
JP6167372B2 (en) * 2016-01-14 2017-07-26 パナソニックIpマネジメント株式会社 Contact device and electromagnetic relay using the contact device
CN107818887B (en) * 2016-07-30 2019-07-12 宁夏隆基宁光仪表股份有限公司 A kind of intelligent electric meter
TWI662575B (en) * 2016-12-21 2019-06-11 松川精密股份有限公司 No arcing method when the relay is mated with the joint
CN110430755B (en) * 2017-01-06 2022-01-11 拜尔农作物科学有限合伙人公司 Sensor for wireless animal trap detection system
DE202019103631U1 (en) 2019-07-02 2019-07-10 Johnson Electric Germany GmbH & Co. KG Spring-based contact system for the switching function of an electrical current operated switching device
CN110610834A (en) * 2019-10-15 2019-12-24 厦门宏发电力电器有限公司 Magnetic latching relay with microswitch
EP3968351A1 (en) * 2020-09-15 2022-03-16 Xiamen Hongfa Electroacoustic Co., Ltd. Electromagnetic relay
JP7100726B1 (en) 2021-01-21 2022-07-13 松川精密股▲ふん▼有限公司 Electromagnetic relay

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52143668U (en) * 1976-04-27 1977-10-31
JPS5566360U (en) * 1978-10-31 1980-05-07
DE3645337C2 (en) 1986-07-22 1997-08-14 Bach & Co Relay esp. for domestic electric heater
AT410856B (en) * 1994-07-08 2003-08-25 Tyco Electronics Austria Gmbh RELAY
FR2739487B1 (en) * 1995-09-28 1997-10-31 Schneider Electric Sa CONTROL AND SIGNALING DEVICE FOR PROTECTIVE APPARATUS
US6246306B1 (en) 1999-02-04 2001-06-12 Klaus A. Gruner Electromagnetic relay with pressure spring
US6252478B1 (en) 1999-02-04 2001-06-26 Klaus A. Gruner Electromagnetic relay
US6046660A (en) 1999-04-07 2000-04-04 Gruner; Klaus A. Latching magnetic relay assembly with a linear motor
US6320485B1 (en) 1999-04-07 2001-11-20 Klaus A. Gruner Electromagnetic relay assembly with a linear motor
CN1221002C (en) * 1999-10-26 2005-09-28 松下电工株式会社 Electromagnetic relay
JP4023052B2 (en) * 1999-11-12 2007-12-19 松下電工株式会社 Electromagnetic relay
US6563409B2 (en) 2001-03-26 2003-05-13 Klaus A. Gruner Latching magnetic relay assembly
DE10162585C1 (en) * 2001-12-19 2003-04-24 Gruner Ag Electrical relay has auxiliary spring acting on switched contact spring in closed contact position for reducing rebound
DE10249697B3 (en) * 2002-10-25 2004-04-15 Gruner Ag Electromagnetic relay with 2 parallel contact springs held in contact closed position via respective ends of flat spring pivoted at its centre
DE602005027433D1 (en) * 2004-07-14 2011-05-26 Panasonic Elec Works Co Ltd ELECTROMAGNETIC RELAY
WO2006035235A1 (en) 2004-09-30 2006-04-06 Dialight Blp Limited Electrical contactors
CA2595854C (en) 2005-01-31 2015-04-14 Technical University Of Denmark Redox stable anode
JP4424260B2 (en) * 2005-06-07 2010-03-03 オムロン株式会社 Electromagnetic relay
CN101335156B (en) 2007-06-29 2010-10-13 厦门宏发电声股份有限公司 Magnet retaining relay

Also Published As

Publication number Publication date
JP5349618B2 (en) 2013-11-20
KR20110138345A (en) 2011-12-27
SI2394284T1 (en) 2016-08-31
AU2009339409A1 (en) 2011-09-01
PL2394284T3 (en) 2016-11-30
CA2751584C (en) 2014-09-30
BRPI0920364B1 (en) 2021-07-20
KR101269499B1 (en) 2013-05-31
BRPI0920364A2 (en) 2020-07-28
CN102388427A (en) 2012-03-21
HRP20160626T1 (en) 2016-07-29
PT2394284T (en) 2016-07-13
ZA201105690B (en) 2012-12-27
WO2010090618A2 (en) 2010-08-12
MX2011008162A (en) 2012-09-27
AU2009339409B2 (en) 2013-07-25
WO2010090618A3 (en) 2011-11-10
ES2579934T3 (en) 2016-08-17
EP2394284B1 (en) 2016-04-13
DK2394284T3 (en) 2016-07-25
CN102388427B (en) 2015-06-03
EP2394284A2 (en) 2011-12-14
HUE029066T2 (en) 2017-02-28
JP2012517092A (en) 2012-07-26
EP2394284A4 (en) 2014-03-05

Similar Documents

Publication Publication Date Title
CA2751584A1 (en) Electromagnetic relay assembly
WO2010090619A4 (en) Electromagnetic relay assembly
US9275815B2 (en) Relay having two switches that can be actuated in opposite directions
US7659800B2 (en) Electromagnetic relay assembly
US7710224B2 (en) Electromagnetic relay assembly
KR101592183B1 (en) Bi-stable electromagnetic relay with x-drive motor
US9368304B2 (en) Polarized electromagnetic relay and method for production thereof
CN101984504B (en) Magnetic latching relay with double flexible pushing connections
CN104364870A (en) Electrical switching apparatus and relay including a ferromagnetic or magnetic armature having a tapered portion
EP3611749B1 (en) Contact device and electromagnetic relay
US20140145801A1 (en) Magnetic actuator with rotatable armature
WO2013164027A1 (en) Electrical switch and electromagnetic assembly therefor

Legal Events

Date Code Title Description
EEER Examination request