CA2747900A1 - Squeegee assembly for a floor cleaning machine - Google Patents

Squeegee assembly for a floor cleaning machine Download PDF

Info

Publication number
CA2747900A1
CA2747900A1 CA2747900A CA2747900A CA2747900A1 CA 2747900 A1 CA2747900 A1 CA 2747900A1 CA 2747900 A CA2747900 A CA 2747900A CA 2747900 A CA2747900 A CA 2747900A CA 2747900 A1 CA2747900 A1 CA 2747900A1
Authority
CA
Canada
Prior art keywords
chamber
squeegee
roof portion
squeegee assembly
floor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA2747900A
Other languages
French (fr)
Inventor
Nicholas John Putt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Numatic International Ltd
Original Assignee
Numatic International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Numatic International Ltd filed Critical Numatic International Ltd
Publication of CA2747900A1 publication Critical patent/CA2747900A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/29Floor-scrubbing machines characterised by means for taking-up dirty liquid
    • A47L11/30Floor-scrubbing machines characterised by means for taking-up dirty liquid by suction

Landscapes

  • Nozzles For Electric Vacuum Cleaners (AREA)
  • Cleaning In General (AREA)

Abstract

The present application concerns the field of machines for floor treatment, such as cleaning and scrubbing, and in particular relates to the use of a vacuum squeegee assembly for collecting and lifting liquid from a floor surface during treatment.
There is provided a squeegee assembly for collecting liquid from a floor surface, the assembly comprising an elongate roof portion provided with depending leading and trailing elongate squeegee blades, the blades and roof portion together defining an elongate liquid collection chamber when horizontally disposed on the floor surface, the chamber being provided with a vacuum vent so that the pressure in the chamber may be reduced so as to permit airflow entrainment and removal of liquid gathered by the squeegee blades in the chamber, characterised in that the chamber roof portion is upwardly inclined towards an end region thereof so that a floor to roof portion chamber height measured at an end region of the chamber is higher than a corresponding chamber height measured at a mid region of the chamber.

Description

Squeegee assembly for a floor cleaning machine The present invention concerns the field of machines for floor treatment, such as cleaning and scrubbing, and in particular relates to the use of a vacuum squeegee assembly for collecting and lifting liquid from a floor surface during treatment. The squeegee assembly is typically towed behind a cleaning head. In the cleaning/
scrubbing operation a detergent-containing liquid is deposited on the floor surface in advance of a rotating cleaning head. The cleaning head scrubs the floor and dirt is dislodged from the floor and dissolved/entrained in the liquid. The dirty liquid is collected by a vacuum squeegee assembly which collects and lifts the dirty liquid thereby drying the clean floor.
Conventional squeegees comprise a pair of squeegee blades laid side by side as leading and trailing blades. The blades are nipped together at outer end regions. Both blades are curved with a leading blade following a slightly greater radius curvature than the trailing blade. The blades have a roof portion spanning the leading and trailing blades. The roof is crescent shaped when viewed from above and the blades thus adopt a lenticular plan configuration in which, at a middle region, the blades are spaced well apart whereas at the end regions the blades gradually taper together. The blades and roof together define a chamber which is vented to a vacuum source. The leading squeegee blade is typically formed with a series of apertures which permit passage of liquid collected by the leading blade as it is drawn over a wet floor. The liquid may thus be collected and enters the vacuum chamber, where is piles against the trailing squeegee blade. From the chamber, the liquid is entrained into a vacuum-induced airflow and drawn to a collection reservoir.

A problem for the efficient entrainment of the liquid in the squeegee vacuum chamber arises from the lenticular shape of the chamber. The central region of the chamber is where the liquid is collects after entering via the leading blade. The chamber in the central region has a greater cross-sectional area than the outer regions. For this reason the airflow speed drops and the airflow is therefore less well able to keep liquid entrained in the airflow and allow it to be conveyed from the chamber. This means that a more powerful vacuum source is needed to maintain the airflow speed in the wider regions of the vacuum chamber.

Attempts have been made to make the airflow more uniform in the squeegee's vacuum chamber by creating an airflow channel. In one example a step is formed in a roof chamber which provides a uniform cross-section channel see for example US7254867.
US5911260 discloses a squeegee assembly in which a dirty liquid suction guide which is configured as an elongate shelf or flap in the suction chamber.

One problem with present squeegee arrangements is that the narrowing of the chamber at the outer ends thereof makes efficient entrainment of liquid difficult.
This is at least in part due to the tendency of liquid to fill the chamber in these regions, thereby limiting the entrainment airflow in these regions.

The present invention seeks to provide more efficient liquid collection in a squeegee assembly, in particular by improving collection at outer end regions of the squeegee.
According to one aspect of the invention, there is provided a squeegee assembly for collecting liquid from a floor surface, the assembly comprising an elongate roof portion provided with depending leading and trailing elongate squeegee blades, the blades and roof portion together defining an elongate liquid collection chamber when horizontally disposed on the floor surface, the chamber being provided with a vacuum vent so that the pressure in the chamber may be reduced so as to permit airflow entrainment and removal of liquid gathered by the squeegee blades in the chamber, characterised in that the chamber roof portion is upwardly inclined towards an end region thereof so that a floor to roof portion chamber height measured at an end region of the chamber is higher than a corresponding chamber height measured at a mid region of the chamber.

Prior art squeegee assemblies typically have a planar and horizontal roof surface. By increasing the chamber height at the outer end region(s) relative to the middle region, the airflow path at the end regions is better maintained and water/cleaning liquid may be better entrained into the air drawn through under vacuum.

The roof portion is typically upwardly inclined towards each of the two end regions of the chamber, so that the chamber height at the two end regions is higher than the corresponding chamber height measured at a mid region of the chamber.

The end region chamber height is preferably between 0.3% and 4.0% higher than the I mid region height.

The incline is preferably a linear incline, although other configurations are possible, such as non-linear or stepped. The linear incline may amount to a rise from the horizontal of between 0.2 and 2.0 degrees. Preferably the incline is between 0.3 and 1.0 degrees.
The blades and roof portion are typically arranged to provide a generally lenticular plan configuration when placed on the floor surface.

The vacuum vent is may be formed in a central region of the chamber roof portion, as is usual in the field.

The roof portion may be provided by a profiled insert disposed between the squeegee blades. This allows pre-existing squeegee assemblies to be readily modified so as to accord with the invention, by replacing the original insert with the insert of the invention.

In a particular embodiment the profiled insert has a generally lenticular plan, a generally horizontal upper surface and a lower surface having two upwardly tapering portions each extending from a mid region of the insert to respective outer regions of the insert, which lower surface provides the chamber roof portion.

The present invention also includes floor treatment, cleaning and scrubbing machines which comprise a squeegee assembly as herein described in general, or in the specific embodiment.
Thus according to a further aspect of the invention there is provided a floor cleaning machine which comprises at least one work head for treating a floor and a suction generator and further comprising a vacuum squeegee assembly as hereinbefore described according to any of the preceding claims, wherein the vacuum vent of the squeegee assembly is in fluid communication with the suction generator and the squeegee assembly is disposed so as to be drawn aft of said at least one work head.
The floor cleaning machine may be configured as a ride-on machine or a walk-behind machine. Preferably the machine includes drive means for propelling the machine over a floor surface. Suitable drive means include, without limitation, an electric motor which is adapted to drive a drive wheel.
Following is a description by way of example only and with reference to the accompanying drawings of one way of putting the present invention into effect.
In the drawings:-Figure 1 is a perspective view of a floor cleaning machine equipped with a vacuum squeegee collector.

Figure 2 is a perspective view of a squeegee assembly according to the present invention.

Figures 3A to 3D show sections through the assembly, at positions indicated by planes A
to D shown in figure 2.

Figure 4 is a view from a front side of the squeegee assembly of the present invention, with squeegee blades removed so as to show the tapering profile of the chamber roof portion.

In figure 1 a floor cleaner is shown generally as 10. The cleaner is a ride-on machine which has a battery driven wheeled transport mechanism (not visible). Three rotary cleaning heads (not visible) face the floor and are disposed on an underside of the machine. The machine has a vacuum squeegee assembly 11 which is drawn behind rear wheels 12 of the machine. In use, a cleaning liquid is sprayed onto the floor surface as the floor is scrubbed. The liquid dissolves dirt and grease on the floor surface. The squeegee collects dirty liquid and lifts the liquid from the surface for storage in an internal dirty water reservoir (not visible) in the machine.

The squeegee assembly is described in more detail in the following. In figure 2 the squeegee 11 comprises a leading elongate rectangular scraper blade 20 which made from a strip of synthetic rubber plastics material. A lower floor-facing edge region 21 of the blade is formed with a plurality of spaced apart vertical slots or apertures 22. The apertures permit fluid communication to an interior vacuum chamber 23 (visible in figure 3). The scraper blade is curved so that outer end regions 24,25 of the blade are in advance of the middle region 26 of the blade. A trailing scraper blade 27 is of similar shape to the leading blade and similarly has a forward curve. The curve radius of the trailing blade is smaller than the leading blade. The blades taper together at outer end regions 24, 25 thereof, but are spaced apart towards their middle region, so that the blades together form a lenticular plan. The blades sit in an elongate, crescent shaped steel roof cap member 30 shown in section in figure 3. The roof cap member has an inverted generally U-section, with a crescent-shaped upper portion as shown in figure 3.

A middle region of the roof cap member is formed with an upstanding outlet port 52. The vent provides fluid communication between the vacuum chamber and a vacuum air suction pump (not shown).
5 Between the scraper blades 20,27 and juxtaposed an underside of the roof cap member 30, is a roof portion insert 40. The roof portion insert is an elongate lenticular member, having a U-section, the sidewalls of which taper to a solid outer core region 41. The roof portion may be constructed of machined metal or moulded plastics material, for example.
A middle region of the roof insert (not visible) is formed with a vertical bore which corresponds with, and is aligned with, the vacuum port 52 in the cap (see figure 2).

The underside 42 of the roof insert is provides a substantially flat elongate surface, which is inclined upwards from a middle region 43 thereof to each outer end region 44,45. The profile of the insert is shown side-on in figure 4. The surface is inclined upwards from the middle region at an angle of between +0.22 and +2 , in the preferred embodiment +0.59, from a notional horizontal defined by the floor 46. As will be seen by the series of cross-sections 3A, 3B, 3C and 3D, the heights (distances heights 1, 2, 3 and 4) between the insert roof and the floor gradually rise from the middle region to the outer edge regions.

In use, liquid enters the leading blade's apertures and is collected in the squeegee chamber. The vacuum vent draws air into the chamber, also through the apertures. The increased chamber height at the outer regions thereof provides a larger flow path than if the roof height were parallel with the floor surface. Thus the vacuum induced air flow is better able to entrain liquid from the floor surface at the outer end regions.

Claims (14)

1. A squeegee assembly for collecting liquid from a floor surface, the assembly comprising an elongate roof portion provided with depending leading and trailing elongate squeegee blades, the blades and roof portion together defining an elongate liquid collection chamber when horizontally disposed on the floor surface, the chamber being provided with a vacuum vent so that the pressure in the chamber may be reduced so as to permit airflow entrainment and removal of liquid gathered by the squeegee blades in the chamber, characterised in that the chamber roof portion is upwardly inclined towards an end region thereof so that a floor to roof portion chamber height measured at an end region of the chamber is higher than a corresponding chamber height measured at a mid region of the chamber.
2. A squeegee assembly as claimed in claim 1 wherein the roof portion is upwardly inclined towards each of the two end regions of the chamber, so that the chamber height at the two end regions is higher than the corresponding chamber height measured at a mid region of the chamber.
3. A squeegee assembly as claimed in claim 1 or claim 2 wherein the end region chamber height between 0.3% and 4.0% higher than the mid region height.
4. A squeegee assembly as claimed in any preceding claim wherein the incline is a linear incline.
5. A squeegee assembly as claimed in claim 4 wherein the incline amounts to a rise from the horizontal of between 0.2 and 2.0 degrees.
6. A squeegee assembly as claimed in claim 5 wherein the incline is between 0.3 and 1.0 degrees.
7. A squeegee assembly as claimed in any preceding claim wherein the blades and roof portion are arranged to provide a generally lenticular plan configuration when placed on the floor surface.
8. A squeegee assembly as claimed in any preceding claim wherein the vacuum vent is formed in a central region of the chamber roof portion.
9. A squeegee assembly as claimed in any preceding claim wherein the roof portion is provided by a profiled insert disposed between the squeegee blades.
10. A squeegee assembly as claimed in claim 9 wherein the profiled insert has a generally lenticular plan, a generally horizontal upper surface and a lower surface having two upwardly tapering portions each extending from a mid region of the insert to respective outer regions of the insert, which lower surface provides the chamber roof portion.
11. A floor cleaning machine which comprises at least one work head for treating a floor and a suction generator and further comprising a vacuum squeegee assembly according to any of the preceding claims, wherein the vacuum vent of the squeegee assembly is in fluid communication with the suction generator and the squeegee assembly is disposed so as to be drawn aft of said at least one work head
12. A floor cleaning machine according to claim 11 which is configured as a ride-on machine.
13. A floor cleaning machine according to claim 11 which is configured as a walk-behind machine.
14. A machine as claimed in nay of claims 11 to 13 which includes drive means, comprising a motor, for propelling the machine over a floor surface.
CA2747900A 2008-12-24 2009-12-22 Squeegee assembly for a floor cleaning machine Abandoned CA2747900A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB0823571.5 2008-12-24
GBGB0823571.5A GB0823571D0 (en) 2008-12-24 2008-12-24 Squeegee assembly for a floor cleaning machine
PCT/GB2009/002937 WO2010073007A1 (en) 2008-12-24 2009-12-22 Squeegee assembly for a floor cleaning machine

Publications (1)

Publication Number Publication Date
CA2747900A1 true CA2747900A1 (en) 2010-07-01

Family

ID=40344226

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2747900A Abandoned CA2747900A1 (en) 2008-12-24 2009-12-22 Squeegee assembly for a floor cleaning machine

Country Status (7)

Country Link
US (1) US20110283471A1 (en)
EP (1) EP2375955B1 (en)
CN (1) CN102264269A (en)
CA (1) CA2747900A1 (en)
GB (1) GB0823571D0 (en)
WO (1) WO2010073007A1 (en)
ZA (1) ZA201104466B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014206486A1 (en) * 2013-06-28 2014-12-31 Alfred Kärcher Gmbh & Co. Kg Movable ride-on floor cleaning machine and method for positioning a suction bar of a movable ride-on floor cleaning machine
DE102014107469B3 (en) 2014-05-27 2015-04-16 Hako Gmbh Suction cup for a floor cleaning machine
US10219670B2 (en) 2014-09-05 2019-03-05 Tennant Company Systems and methods for supplying treatment liquids having nanobubbles
CN108143345A (en) * 2016-12-02 2018-06-12 天佑电器(苏州)有限公司 Absorb water brush head and with its dry and wet dust catcher

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3065490A (en) * 1960-08-02 1962-11-27 Advance Floor Machine Company Shiftable pick-up squeegee unit for floor treating machine
IT209883Z2 (en) * 1987-01-28 1988-11-04 Idroplina Srl BLADE SQUEEGEE DEVICE FOR SURFACE CLEANING MACHINES.
JP3343027B2 (en) 1996-05-17 2002-11-11 アマノ株式会社 Squeegee for floor washer
DE20109267U1 (en) * 2001-06-05 2001-09-20 Formex Plastic Gmbh Squeegee for a cleaning machine
US7254867B2 (en) 2003-03-07 2007-08-14 Nilfisk-Advance, Inc. Squeegee assembly

Also Published As

Publication number Publication date
EP2375955A1 (en) 2011-10-19
CN102264269A (en) 2011-11-30
EP2375955B1 (en) 2014-05-14
US20110283471A1 (en) 2011-11-24
ZA201104466B (en) 2012-08-29
GB0823571D0 (en) 2009-01-28
WO2010073007A1 (en) 2010-07-01

Similar Documents

Publication Publication Date Title
EP0560523B1 (en) Squeegee blade for floor scrubbing machine
US6981338B2 (en) Device for improved removal of liquid from fabric
EP2375955B1 (en) Squeegee assembly for a floor cleaning machine
US9038237B2 (en) Squeegee assembly
US8302254B2 (en) Dirt-collecting device for a floor-cleaning machine, and floor-cleaning machine having such a dirt-collecting device
EP3345526B1 (en) Floor scrubber dry sweep apparatus
US9732487B2 (en) Artificial turf field paint remover and extraction machine
US6049943A (en) Machine for removing water from outdoor surfaces
WO2017153598A1 (en) New cleaning device and method for cleaning
US7254867B2 (en) Squeegee assembly
KR102428709B1 (en) Vacuum cleaner with coaming unit to remove garbage from cleaning rollers
JP3366187B2 (en) Squeegee for floor washer
CN209712779U (en) A kind of electric drive floor-cleaning machine
US20230329510A1 (en) Squeegee assembly with improved waste pick-up
CN112932357B (en) Floor nozzle for wet surface cleaning device and wet surface cleaning device
CN215605466U (en) Cleaning disc and cleaning dock
CN220757337U (en) Floor brush structure for cleaning machine and cleaning machine
CN220024925U (en) Cleaning assembly for cleaning machine and cleaning machine
CN220344300U (en) Cleaning structure for cleaning machine and cleaning machine
SE9803535D0 (en) Sweeping machine
CN117083007A (en) Cleaning head for wet vacuum cleaner
GB2607328A (en) Floor cleaning head for a suction cleaner

Legal Events

Date Code Title Description
FZDE Discontinued

Effective date: 20151222