CA2738235C - Processes for the production of aminoalkyl glucosaminide phosphate and disaccharide immunoeffectors, and intermediates therefor - Google Patents

Processes for the production of aminoalkyl glucosaminide phosphate and disaccharide immunoeffectors, and intermediates therefor Download PDF

Info

Publication number
CA2738235C
CA2738235C CA2738235A CA2738235A CA2738235C CA 2738235 C CA2738235 C CA 2738235C CA 2738235 A CA2738235 A CA 2738235A CA 2738235 A CA2738235 A CA 2738235A CA 2738235 C CA2738235 C CA 2738235C
Authority
CA
Canada
Prior art keywords
groups
group
formula
independently selected
derivative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CA2738235A
Other languages
French (fr)
Other versions
CA2738235A1 (en
Inventor
David A. Johnson
Craig L. Johnson
Helene G. Bazin-Lee
C. Gregory Sowell
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corixa Corp
Original Assignee
Corixa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corixa Corp filed Critical Corixa Corp
Priority claimed from CA002492446A external-priority patent/CA2492446A1/en
Publication of CA2738235A1 publication Critical patent/CA2738235A1/en
Application granted granted Critical
Publication of CA2738235C publication Critical patent/CA2738235C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Saccharide Compounds (AREA)

Abstract

This invention relates to processes for production of alkylamino glucosaminide phosphate compounds, and of disaccharide compounds, including various novel intermediates and intermediate processes. In one aspect, glycosyl halides are produced by reaction of an O-silyl glycoside with a dihalomethyl alkyl ether.

Description

PROCESSES FOR THE PRODUCTION OF AMINOALICYL
GLUCOSAMINIDE PHOSPHATE AND DISACCHARIDE
IM-MIJNOEFFECTORS, AND INTERMEDIATES THEREFOR
CROSS-REFERENCES TO RELATED APPLICATIONS
=

BACKGROUND OF THE INVENTION
[0002] This invention relates to processes for the production of aminoalkyl glucosaminide phosphate (AGP) and of disaccharide compounds. Such compounds have been found to be immunoeffectors, adjuvants for vaccines and the like, and in addition, can possess therapeutic and/or prophylactic properties of their own. In addition, this invention relates to processes for the production of glycosyl halides, which can serve as intermediates in the synthesis of AGP compounds, disaccharides, and structurally related molecules.
[0003] Aminoalkyl glucosaminide phosphates are described in a number of patents, published patent applications, and journal articles. Such compounds in general have five or six acyl groups in the molecular structure, together with an "aglycon"
(nitrogen-containing portion), which may be cyclical or acyclical. AGPs having acyclical aglycon groups are disclosed, for instance, in U.S. patents 6,113,918; 6,303,347 and 6,355,257.
AGPs having cyclical aglycon groups are disclosed, for instance, in WO 02/012258.
[0004] The above-mentioned documents describe the production of the AGP
compounds by two alternative processes. In one process a protected 3-0-acyloxyacylated glycosyl halide containing a phosphonate side Chain is coupled with an aminoalkanol or aminoalkanetinol of the type described in the patents. The reaction product is then selectively acylated to provide additional acyl groups, as described, and protecting groups are removed. In the second process, both the phosphonate side chain and the fatty acid groups are incorporated after the coupling reaction. Additional process information for producing AGP compounds is =
contained in Johnson et al., Bioorg. Med. Chem. Lett. 9:2273 (1999).
[0005] Disaccharides that may be produced by the processes described herein include components of the well known immunostimulant monophosphoryl lipid A
(contained, for example in MPLO iramunostimulant (Corixa Corp.) Other disaccharides that may be produced are disclosed in, for instance, PCT application WO 01/90129 and U.S.
patents
6,013,640; 4,987,237; 4,912,094; 4,436,727; and 4,436,728. In U.S. patent 6,103,640 the disaccharide was prepared by coupling an N-acyloxyacylated or N-protected glycosyl acceptor unit with a protected and/or 3-0-acyloxyacylated glycosyl donor unit.
The protecting groups were variously benzyl (13n) and 2,2,2-trich1oroethoxycaxbony1 (Troc) groups. The glycosyl acceptor and donor units were constructed separately using a series of substituent protection and deprotection steps, beginning with the known starting materials benzyl- and 2-(trimethylsilyl)ethy1-2-amin.o-2-deoxy-4,6-0-isopropylidene-O-D-glucopyranoside, respectively.
[0006] Glycosyl halides are used in many processes to introduce a glycoside moiety into a molecule, typically as part of a multistep synthesis in the field of saccharide chemistry. They are useful intermediates for incorporating a wide variety of groups, typically by reaction with nucleopl3iles, especially oxygen, sulfur, and nitrogen nucleophiles. It would be advantageous to provide a process for producing the AGP and disaccharide compounds using a glycosyl halide as a starting material.
[0007] Various ways of producing glycosyl halides have been described.
Generally, they involve halogenation of an existing glycoside (which may contain typical protecting groups on reactive moieties such as amino or hydroxyl).
[0008] In U.S. patent 6,299,897, for example, an ethyl ester of the glycoside in question (in this instance, N-acetyl neuraminic acid) is reacted with acetyl chloride to produce the corresponding glycosyl chloride. In U.S. patent 5,843,463, a glycosyl chloride V,produced by reacting the glycoside in question (3-0-ally1-5-0-benzy1-1,2-0-methoxybenzylidene-alpha-D-ribofuranose) with trimethylsily1 chloride. The reaction is conducted by mixing the two reactants or by dissolving the glycoside in the trimethylsilyl chloride.
[0009] U.S. patent 4,613, 590 discloses a process for preparation of glycosyl chloride by treatment of the glycoside with titanium tetrachloride. In Sugiyama et al., Org. Left. 2:2713 (2000), glycosyl chlorides were prepared by reaction of thioglycosides with chlorosulfoniun chloride.
[0010] Kovac, Carbohydr. Res. 245: 219 (2993) prepared a glycosyl chloride by reaction of the glycoside with dichloromethyl methyl ether and zinc chloride. Takeo et al., Carbohydr. Res. 245: 81(1993) produced a glycosyl chloride by reaction with chlorine.
Magnusson et al., J. Org. Chem. 55:3181(1990) produced a glycosyl chloride by reaction of the 2-(trimethylsilyDethyl glycoside with 1,1-dichloromethyl methyl ether in the presence of a catalytic amount of zinc chloride.
SUMMARY OF THE INVENTION
100111 This invention relates to a group of related novel processes for the production of aminoalkyl glucosaminide phosphates and of disaccharides, together with intermediate processes And compounds.
[0012] In one aspect, the invention comprises processes for the production of aminoalkyl ghicosaminide (AGP) compounds.
[0013] In a second aspect the invention relates to a process for producing glycosyl halides that comprises reacting a silyl glycoside with a dihalomethyl alkyl ether in the presence of zinc chloride, zinc bromide, boron trifluoride, or a similar Lewis acid. This step also comprises the first of a two-step process for removing an anomeric silyl protecting group from the silyl glycoside by first reacting it to produce a glycosyl halide, which is then reacted it with a silver salt in the presence of water to produce a heraiacetal.

- 3a -According to an aspect of the invention, there is provided a method for preparing an aminoalkyl glucosaminide 4-phosphate compound having the formula:

Ole Rso 0 X
Y

, 0 Nil RIO
(CH-Aa13, (ellz/CR4 wherein X is spprZ if k )rii ( R.111 i? N

or (C142V-143 F,2 4 . 44 bidA"-R,T
R4 (Cli), i 0 OR.3=;
(CH2)1C113 - 3h -Y is -0- or -NH; R1 and R2 are each independently selected from saturated and unsaturated (C2-C24) aliphatic acyl groups; R8 is -H or -P03R11.-.rc11a, wherein R11 and R1la are each independently -H or (C1-C4) aliphatic groups; R9 is H, -CH3 or -PO3R13aR14, wherein R13a and R14 are each independently selected from -H and (CI-S C4) aliphatic groups; and wherein at least one of R8 and R9 is a phosphorus-containing group, but R8 and R9 are not both phosphorus-containing groups;
wherein the subscripts n, m, p, q, n', rn', p' and q' are each independently an integer of from 0 to 6, provided that the sum of p' and m' is an integer from 0 to 6, and the subscript r is independently an integer of from 2 to 10; R3 and R12 are independently saturated or unsaturated aliphatic (C2-C24) acyl groups; R4 and R5 are independently selected from H and methyl; R8 and R7 are independently selected from H, OH, (C1-C4) oxyaliphatic groups, -P03H2, -0P03H2, -S03H, -0S03H, -NR15R16, -SR15, -CN, -NO2, -CHO, -CO2R151-00NR15R16, -P03R15R16, -0P03R15R16, -S03R15 and -0S03R15, wherein R15 and R16 are each independently selected from H and (C1-C4) aliphatic groups;
R13 is independently selected from H, OH, (C1-C4) oxyaliphatic groups, -P03R17R18, _0p03R17¨K18, S03R17, -0S03R17, -NR17R18, -CN, -NO2, -CHO, -0O2R17, and -00NR17R18, wherein R17 and R18 are each independently selected from H and (C1-C4) aliphatic groups; and Z is -0- or -S-;
comprising:
(a) selectively 6-0-silylating a 2-amino-2-deoxy-6-D-glucopyranose derivative having the formula;

- 3c -OH
Rs HO a N q RI' or PG
OH
Rot fj; w 110 le N
PG-wherein B is 0 or S; and PG independently represents a protecting group that forms an ester, an ether or a carbonate with the oxygen atom of a hydroxy group or that forms an amide or a carbamate with the nitrogen atom of an amino group, respectively;
with a trisubstituted chlorosilane RJRbRcSi-CI wherein Ra, Rb, and RG are independently selected from the group consisting of C1-C6 alkyl, C3-C6 cycloalkyl, and optionally substituted phenyl, in the presence of a tertiary amine, to give a 6-silylated derivative;
(b) selectively acylating the 4-0H position of the resulting 6-0-silylated derivative with an (R)-3-alkanoyloxyalkanoic acid or a hydroxy-protected (R)-3-hydroxyalkanoic acid in the presence of a carbodiimide reagent and catalytic 4-dimethylaminopyridine or 4- pyrrolidinopyridine to give a 4-0-acylated derivative;

- 3d -(c) selectively deprotecting the nitrogen protecting groups, sequentially or simultaneously, and N,N-diacylating the resulting diamine with an (R)-3-alkanoyloxyalkanoic acid or a hydroxy-protected (R)-3-hydroxyalkanoic acid in the presence of a peptide coupling reagent;
(d) introducing a protected phosphate group at the 4-position with a chlorophosphate or phosphoramidite reagent to give a phosphotriester; and (e) simultaneously or sequentially deprotecting the phosphate, silyl, and remaining protecting groups.
According to another aspect of the invention, there is provided a method for preparing an aminoalkyl glucosaminide 4-phosphate compound having the formula:

- 3 e -0 It9
11 -- Nil P.I0 (CHAC:
kl0 (CII;Oreg3 wherein X is S'Pr ( le3 P.' N

1 or (C1421,C113 R4 (Cli2)0 0 i OM
(CH2:4C1I3 - 3f-Y is -0- or -NH; R1 and R2 are each independently selected from saturated and unsaturated (C2-C24) aliphatic acyl groups; R8 is -H orpo3R,-wherein R11 and alla are each independently -H or (C1-C4) aliphatic groups; R9 is -H, -CH3 or -PO3R13aR14, wherein R13a and R14 are each independently selected from -H and (C1-C4) aliphatic groups; and wherein at least one of R8 and R9 is a phosphorus-containing group, but R8 and R9 are not both phosphorus-containing groups;
wherein the subscripts n, m, p, q, n', m', p' and q' are each independently an integer of from 0 to 6, provided that the sum of p' and m' is an integer from 0 to 6, and the subscript r is independently an integer of from 2 to 10; R3 and R12 are independently saturated or unsaturated aliphatic (C2-C24) acyl groups; R4 and R5 are independently selected from H and methyl; R6 and R7 are independently selected from H, OH, (C1-C4) oxyaliphatic groups, -P03H2, -0P03H2, -S03H, -0S03H, -NR15R16, -SR15, -CN, -NO2, -CHO, -0O2R15, -CONR15R16, -P03R15R16, ..0P03R15R16, -S03R15 and -0S03R15, wherein R15 and R16 are each independently selected from H and (C,-C4) aliphatic groups; R13 is independently selected from 1-1, OH, (C1-C4) oxyaliphatic groups, -P03R17R18, -0P03R17R18, -S03R17, -0S03R17, -NR17R18, -SR17, -CN, -NO2, -CHO, -CO2R17, and -CONR17R18, wherein R17 and R18 are each independently selected from H and (C1-C4) aliphatic groups; and Z is -0- or -S-;
comprising:
(1) glycosylating an alcohol or thiol having the formula:

- 3g -HB 'h.
{ R13 Oir PC-HB ' etkr4,,, n Mit Age q R.7 Or RI (CH2),, 1 r R6' R.5 HB
a an NPG"
R.4 (C142) I
R6' wherein B is S or 0, PG is acetyl or substituted acetyl and PG' is phthaloyl or substituted phthaloyl, with a glycosyl donor having the formula:
OM
Ac0 ClAc' 43-'1"1-"...\..,..,õ
DT Atla -AcCi .Nap.) , AcCi q MPG' - 3h -wherein PG is acetyl or substituted acetyl and PG' is phthaloyl or substituted phthaloyl, and Q is phthaloyl, substituted phthaloyl, Cl, Br, F, OAc, or C(CCI3)=NH, in the presence of a Lewis acid catalyst to give a 2-amino-2-deoxy-13-D-glucopyranose derivative having the formula:
A
=0 = 41-7.
Aca'......\...". X Kr irt Ac0 -NHPG
. .
V
'PG
OAc , 5 Ac0,4 x it ni -,õT fi re or, NHPCI R.4 CO-Up i Rn' 0Ac AoD 0 1 ADO X . . n he NPG' ----...\,.......
NPGI R4 (CH-J.
I
RG
respectively wherein B is S or 0;
(2) selectively deprotecting the 0-linked acetate groups present in the 2-amino-2-- 3i -deoxy-p-D-glucopyranose derivative with ammonium hydroxide or sodium methoxide in methanol;
(3) selectively 6-0-alkylating the resulting deacetylated derivative from step (2) with an alkyl halide in the presence of a tertiary amine to form a substituted methyl, substituted ethyl, benzyl or substituted benzyl ether;
(4) selectively deprotecting the PG or PG' groups with an alkali or diamine base;
(5) simultaneously or sequentially tri-acylating the two amino groups and the position with an (R)-3-alkanoyloxyalkanoic acid or hydroxy-protected (R)-3-hydroxyalkanoic acid in the presence of a peptide coupling reagent;
(6) introducing a phosphate group onto the 4-0H position with a chlorophosphate or phosphoramidite reagent to give a phosphotriester; and (7) simultaneously or sequentially deprotecting the phosphate group, the 6-0-alkyl group, and any remaining protecting groups.
According to another aspect of the invention, there is provided a compound having the formula:

=
Ho OH 0 x : - 3j - , .),....4N.

HO a ra til, I Bq .ro NHTrot; ' R4 (C112)r, i wherein the subscripts n, m, p, and q are each independently an integer of from 0 to 6; R4 and R5 are independently selected from H and methyl; PG is Aoc or Troc;

and R7 are independently selected from H, OH, (C1-C4) oxyaliphatic groups, -P03F12, -0P03H2, -S03H, -0S03H, -NR15R16, _s¨K15, _ CN, -NO2, -CHO, -0O2R15, -00NR15R16, -P03R15R16, _op03R15¨K16, _ SO3R15 and -0S03R15, wherein R15 and are each independently selected from H and (C1-C4) aliphatic groups.
According to a further aspect of the invention, there is provided a compound having the formula:
air , 0 WY .
Ho NI-11, [00141 In another aspect this invention comprises a process comprising first producing the glycosyl halide as above, followed by reaction of the glycosyl halide with a monosaccharide in the presence of a silver salt to form a disaccharide.
[0015] Another aspect of this invention comprises a process for producing a disaccharide comprising reacting a monosaccharide with a silyl glycoside.
[0016] Yet another aspect of this invention comprises a process for silylation of a disaccharide and optionally for subsequently adding a phosphono side chain to the disaccharide.
[0017] A still further aspect of this invention comprises a process for producing a triacylated disaccharide from a disaccharide.
[0018] Yet another aspect of the invention is a process for removing an acetyl protecting group from a disaccharide.
[0019] Yet a further aspect of this invention comprises a process for production of a phosphorylated disaccharide by (a) selectively protecting the 6'-hydroxyl substituent of a disaccharide; and b) adding a phosphono side chain to the disaccharide at the 5'-position.
[0020] A still further aspect of this invention comprises a process for simultaneously removing all silyl-based protecting groups from a disaccharide having a plurality of silyl-based protecting groups.
[0021] Other aspects of this invention include other novel processes and novel intermediates, and/or will be apparent from the description that follows.
DETAILED DESCRIPTION OF THE INVENTION
Definitions: as used herein:
100221 "Glycoside" refers to a tetrahydropyran ring bearing a substituent at the 1-position (i.e., at one of the carbon atoms adjacent to the oxygen atom in the ring) that is a hydroxy, optionally substituted alkoxy, or trisubstituted silyloxy group. Glycosides may also contain substituents at other positions, typically protected or unprotected hydroxy or amino groups.
[0023] "Silyl glycoside" refers to a glycoside wherein the group attached at the 1-position is a trisubstituted silyloxy group such as a trimethylsilyloxy, tert-butyldimethylsilyloxy, or tert-butyldiphenylsilyloxy group. The silyl component of this group has the formula ReRbReSi, wherein Re, Rb, and Re are independently selected from the group consisting of Ci ¨ C6 alkyl, C3¨ C6 cycloalkyl, and optionally substituted phenyl.
Preferably one of the Ra, Rb, and Re ?pups is larger than methyl; relatively hindered groups such as t-butyl, phenyl, and isopropyl are preferred. Included among the silyl components are aryldialkylsilyl, diarylalkylsilyl, and triaryisily1 groups. Typical examples include triisopropylsilyl, triphenylsilyl, t-butyldimethysilyl (TBS), and t-butyldiphenylsilyl (TBDPS) groups. The silyl component of the silyl glycoside is most preferably a TBS or TBDPS group.
[00241 The silyl glycoside can generally be represented by the formula (II) wherein Rza is a trisubstituted silyl group, preferably TBS or TBDPS, and W, X, Y, and Z
independently represent H, optionally protected hydroxy, optionally protected amino, or optionally substituted alkyl groups. Typically, Z represents an optionally protected hydroxymethyI group.
[0025) "Dihalomethvl alkyl ether" refers to a compound bearing an alkoxy group and two halogen atoms on a single carbon atom. Typical examples include dic.hloromethyl methyl ether (CHC120CH3), dichloromethyl ethyl ether (CHC130G2H5), dibromomethyl methyl ether (CliBr2OCH3), 1,1-dichloroethyl ethyl ether (CH3CC120C2H5), and the like.
Dichloromethyl methyl ether is preferred in the processes of this invention.
[0026] "Glvcosyl halide" refers to a 2-halotetrahydropyran compound, for example, 2-chlorotetrahydropyran or 2-bromotetrahydropyran. The preferred halogens are fluoride, chloride, and bromide, with chloride being most preferred. In addition, the glyeosyl halides used in the processes of this invention will have other substitaents analogous to those in formula (II) above.
[00271 Glycosyl halides are generally represented by formula (DI):
au) A
wherein W, X, Y and Z are as defined above for formula (II) and A is Cl, Br, or F.

[0028] "Aliphatic" means a straight or branched chain, or non-aromatic cyclical, hydrocarbon radical, or combination thereof, which may be fully saturated, or mono- or polyunsaturated and can include di- and multivalent radicals, having the number of carbon atoms designated (i.e. C1-C10 means one to ten carbon atoms). Examples of saturated acyclic aliphatic groups (also termed "alkyl" groups) include, but are not limited to, groups such as methyl, ethyl, n-propyl, isopropyl, n-butyl, t-butyl, isobutyl, sec-butyl, homologs and isomers of, for example, n-pentyl, n-hexyl, n-heptyl, n-octyl, and the like. An unsaturated aliphatic group is one having one or more double bonds or triple bonds. Examples of unsaturated acyclic aliphatic groups include, but are not limited to, vinyl, 2-propenyl, isopropenyl, crotyl, 2-isopentenyl, 2-(butadieny1), 2,4-pentadienyl, 3-(1,4-pentadienyl), ethynyl, 1- and 3-propynyl, 3-butynyl, and the higher homologs and isomers. Examples of cyclical aliphatic groups include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclopentenyl, cyclohexenyl, cyclohexadianyl, and the like.
[0029] Divalent aliphatic groups include saturated and unsaturated groups similar to those mentioned above, for example methylene, -CH2-; ethylene, -CH2CH2-; n-butylene, -CH2CH2CH2CH2-; and unsaturated groups such as -CHH-, -CH=CH-CH2CH2- and the like.
[0030] The terms "oxyaliphatic", "aminoaliphatic" and "thioaliphatic" are used in their conventional sense, and refer to aliphatic groups attached to the remainder of the molecule via an oxygen atom, an amino group, or a sulfur atom, respectively. "Alkoxy", "thioalkoxy"
and "aminoalkyl" refer to such groups containing saturated acyclic aliphatic moieties.
[0031] The term "heteroaliphatic," by itself or in combination with another term, means, unless otherwise stated, a group analogous to an aliphatic group, i.e. a saturated or unsaturated straight or branched rktain, or cyclic, radical, or combinations thereof, consisting of the stated number of carbon atoms and further comprising at least one heteroatom selected from the group consisting of 0, N, Si and S, and wherein the nitrogen and sulfur atoms may optionally be oxidized and the nitrogen heteroatom may optionally be quatemized. The heteroatom(s) 0, N and S and Si may be placed at any interior position of the heteroaliphatic group or at the position at which that group is attached to the remainder of the molecule.
Examples include, but are not limited to, -CH2-CH2-0-CH3, -CH2-CH2-NH-CH, -CH2-N(C1-13)-CH3, -CH2-S-CH2-CH3, -CH2-CH2,-S(0)-CH3, -CH2-CH2-S(0)2-CH3, -CH=CH-0-CH3, -Si(CH3)3, and -CH2-CH=N-OCH3.

[0032] Aliphatic groups may be substituted or unsubstituted. Substituents include a variety of groups selected from: -OR', =0, =NR', =N-OR', -Nita", -SR', -halogen, -SiR'R"R?", -0C(0)12.', -C(0)R', -CO2R', -CONR'R", -0C(0)NR'R", -NR"C(0)R', -NR'-C(0)NR"R", -NR"C(0)2R', -NR-C(NRR'R")=NR'", -NR'C(NR'R")=NR'",-NR-C(NR'R")=NR.'", S(0)R', -S(0)2R', -S(0)2NR'R", -NRSO2R', -CN and -NO2 in a number ranging from zero to (2m'+1), where m' is the total number of carbon atoms in such radical. R', R" and R"
each independently may be hydrogen, optionally substituted alkyl, aryl optionally substituted with 1-3 halogens, optionally substituted alkoxy, optionally substituted thioalkoxy or ' optionally substituted aryl-(Ci-C4)alkyl groups. When a compound of the invention includes more than one R group, for.example, each of the R groups is independently selected as are each R', R." and R" groups when more than one of these groups is present. When R' and R"
are attached to the same nitrogen atom, they can be combined with the nitrogen atom to. form a 5-, 6-, or 7-membered ring. For example, -NR'R" is meant to include I-pyrrolidinyl and 4-morpholinyl.
[0033] "Aromatic" or "md" refers to the typical substituted or unsubstituted non-aliphatic hydrocarbyl groups of this class, i.e., a polyunsaturated, typically aromatic, hydrocarbon substituent, which can be a single ring or multiple rings (up to three rings) which are fused together or linked covalently, such as phenyl, naphthyl, and the like.
[00341 "Arylalkyl" refers to alkyl groups subsisted by one or more aryl groups; for instance, benzyl, phenethyl, tiphenylmethyl, and the like.
[0035] "Acyl" refers to a group derived from an organic acid by removal of the hydroxy group. Acyl compounds may in general be aliphatic, aromatic or heterocyclic in nature.
"Aliphatic acyl" refers to such groups derived from saturated or unsaturated aliphatic acids, and includes groups such as acetyl, propionyl, butyryl, hexanoyl, decanoyl, dodecanoyl, tetradecanoyl, and the like. In defining acyl groups by their carbon atom content, the reference is to the carbon atom content of the entire group. Thus, acetyl is a C2 acyl group;
propionyl is a C3 acyl group, tetradecanoyl is a C14 acyl group, etc.
[0036] "Alkanoyloxycarbonyl" refers to groups having a saturated or unsaturated aliphatic group, or an arylalkyl group such as benzyl, linked through an oxygen atom to a carbonyl group, i.e. a group having the general formula Alk.-0C(0)- in which Alk.
stands for an aliphatic or arylallcyl group as defined above.

[0037] " Alkanovloxyacyl" refers to a saturated or unsaturated acyl group substituted at the indicated position by an aliphatic group ALC(0)0- in which Al. stands for an acyclic saturated or unsaturated aliphatic group. The overall alkanoyloxy group preferably has from 2 to 24 carbon atoms, most preferably from 6 to 14 carbon atoms. The acyl portion of the alkanoyloxyacyl group contains from 6 to 14 carbon atoms. A typical group of this type is the 3-(n-allcanoyloxy)acyl group, where the acyl group is tetradecanoyl and the alkanoyloxy group contains from 2 to 20, preferably from 6 to 14, carbon atoms, inclusive.
Similarly "alkanoyl" refers to a group Al.C(0)- wherein Al. is as defied above.
[00381 "Protecting group" refers to any of a large number of groups used to replace one or both hydrogens of a reactive group such as a hydroxy, amino or tlaiol group, so as to block, prevent, or reduce reactivity of the group. Examples of protecting groups (and a listing of commonly used abbreviations for them) can be found in T. W. Greene and P. G.
Puts, "Protective Groups in Organic Chemistry" (Wiley), Beaucage and Iyer, Tetrahedron 48:2223 (1992) and Harrison et al., Compendium of Synthetic Organic Methods, vols. 1-8 (Wiley).
[0039] Representative amino protecting groups include those that form a carbamate or amide with the nitrogen atom, as well as those groups collectively referred to in the Greene and Puts text as "special -NH protective groups". Representative examples of amino protecting groups include acetyl (Ac), tdfluoroacetyl, benzyloxycarbonyl (Cbz), tert.-butoxycarbonyl (Boc), allyloxycarbonyl (Mc), 9-fluorenylmethyloxy-carbonyl (Fmoc), nitro-versatryloxycarbonyl (Nvoc), optionally substituted phthaloyl and the like.
[0040] Representative hydroxy protecting groups include those where the hydroxy group is either acylated or alkylated, such as by the formation of ethers or esters using, for instance, acetyl, benzyl, trityl, alkyl, tetrahydropyranyl, allyl and trisubstituted silyl groups.
[00411 The choice of a protecting group for a given compound, purpose or set of conditions is within the skill of those in the art, and is done so as to protect, generally or selectively, the reactive group in question under the prevailing conditions (presence of other reactive compounds, pH, temperature, etc.) Protecting groups that may be used in this invention and are mentioned herein include phthaloyl, acetyl (Ac), benzyl (Bn), 2,2,2-trichloroethoxycarbonyl (Troc), 1-butyldimethylsily1 (TBS), t-butyldiphenylsily1 (TBDPS), and 2,2,2-trichloro-1,1-dimethylethyl chloroformyl (TCBOC) groups. As is known in the art, a certain protecting group or type of group may be more suitable than others for use with a 8 =

particular compound or in a given situation, and advantage is taken of these suitahilities in developing processes that involve compounds with reactive groups such as hydroxy andkr amino. Thus, as will be seen below, a reaction scheme can be developed for producing or reacting certain compounds in which general or selective protection or deprotection (removal of protecting groups) is carried out at certain points. For instance, in order to selectively react a hydroxy group in a compound that also contains an amino group, or vice versa, the group whose reaction is not desired at this point can be blocked with a protecting group that is not removed under conditions of the reaction (for example, is not base-hydrolyzable if the reaction is to be conducted under basic conditions, while the group to be reacted can be protected by a group that is base-hydrolyzable, so that said group becomes unblocked, and thus reactive, at that time. Similarly as will be seen below, in order to selectively react a group, e.g., a hydroxyl group, located at one position in the molecule, it may be protected with a different protecting group than other hydroxyls in the molecule. As used herein, the designation "PG" refers to protecting groups that form esters, ethers or carbonates with hydroxy groups (i.e., with the oxygen atom of a hydroxy group] or that form amides or carbamates with amino groups [i.e. with the nitrogen atom of an amino group.
The designation t' PG' "is used herein to refer to optionally substituted phthaloyl groups, for = example phthaloyl or tetrachlorophthaloyl, and which may be used to protect an amino group, as shown. However, in any event, the selection of particular protecting groups used or illustrated in the processes described herein is not in any way intended to limit the invention.
The major products [0042] The major products produced using the processes and intermediates of this invention comprise a group of compounds that include both AGP compounds, which are mono-saccharides, and disaccharides of somewhat analogous structure. In general, the products can be depicted by the formulas (1) and (1 a -c):

NH
R10 ¨
?./

(CH2),CH3 (CHACHs Cl) and pharmaceutically acceptable salts and derivatives thereof, wherein Y is -0-or ¨NH-;
and R2 are each independently selected from saturated and unsaturated (C2-C24) aliphatic acyl groups; R8 is -H or ¨P03R11R12, wherein R11 and R12 are each independently ¨H or (C1-C4) aliphatic groups; R? is ¨H, -CH3 or -P03R13R14, wherein R13 and R14 are each independently selected from ¨H and (C1-C4) aliphatic groups; and wherein at least one of R8 and R9 is a phosphorus-containing group, but R8 and R9 are not both phosphorus-containing groups; and X is a group selected from the formulae:

R5 p R13 NH Rio q' (CH2)P
OR3 and (CH2)rCH3 (CH2)rCH3 ( H2),CH3 (La) (1b) (lc) wherein the subscripts n, m, p, q, n', m', p' and q' are each independently an integer of from 0 to 6, provided that the sum of p' and m' is an integer from 0 to 6; the subscript r is independently an integer of from 0 to 14 and may be the same or different; R3, and R12 are independently saturated or unsaturated aliphatic (C2-C24) acyl groups; and when X is formula (1a) or (1c) one of RI, R2, R3, R11 and R12 is optionally hydrogen; R4 and R.5 are independently selected from H and methyl; R6 and R7 are independently selected from 1-1, OH, (C1-C4) oxyaliphatic groups, -P03H2, -0P03H2, -S03H, -0S0311, -NR Rits, CN, -NO2, -CHO, -CO2R15, -CONR15R16, -P03R15R16, -0P03R15R16, -SO3R15 and -0S03R15, wherein R15 and R16 are each independently selected from H and (C1-C4) aliphatic groups;
RI is selected from H, CH3, -P031-12, co-phosphonooxy(C2-C24)allcyl, and w-carboxy(C1-C24)alkyl; R13 is independently selected from H, OH, (C1-C4) oxyaliphatic groups, -po3RpRi8, _opo3Rt7Ri8, _s03-17, _ OSO3R17, -NRI7R18, -SR17, -CN, -NO2, -CHO, -0O2R17, and -CONR17R18, wherein RI7 and R18 are each independently selected from H and (C1-C4) aliphatic groups; and 2 is ¨0- or ¨S-.

The processes and intermediates [0043] One process of this invention comprises the production of glycosyl halides that comprises reacting an 0-silyl glycoside with a dllialomethyl alkyl ether in the presence of zinc chloride, zinc bromide, boron trifluoride, or a similar Lewis acid. More specifically, in this process, a glycosyl halide is formed by reacting a silyl glycoside having the formula (PO:
wherein R20 is a trisubstituted silyl group having the formula RaRbR.Si in which R., Rb and R. are independently selected from the group consisting of C1-C6 alkyl, C3-C6 cycloalkyl and optionally substituted phenyl, preferably TBS or TBDPS, and W, X, Y, and Z
independently represent H, optionally protected hydroxy, optionally protected amino, and optionally substituted alkyl groups, with a dihalomethyl alkyl ether, preferably dichloromethyl methyl ether, in the presence of zinc chloride, zinc bromide, boron trifluoride, or a similarly suitable Lewis acid. The Lewis acid is used in about a stoichiometric amount with respect to the silyl glycoside. The reaction to produce the glycosyl halide is conducted at a temperature of from about -30 C to about 50 C, preferably from about 0 C to about 30 C, and in the presence of a solvent such as chloroform, dichloromethane, dichloroethane, or similar solvents that are inert to the conditions required for the reaction. The temperature of the reaction is selected to allow the reactants to substantially dissolve and to prevent the dihalomethyl alkyl ether from boiling away. Yields of the desired product glycosyl halide are generally from about 50 to about 95%. Selection of such solvents is within the knowledge of those of ordinary skill in the art. The silyl glycosides are produced conventionally, typically in a protected form, as is known in the art. However, certain silyl glycosides, such as certain triacetylated silyl glycosides and derivatives thereof; may be produced via novel intermediates described below, which form an aspect of the invention.
[0044] One of skill in the art will appreciate that the glycosyl halides may exist as isomers if other substituents are present on the glycosyl halide ring. The invention includes production of the separate isomers as well as mixtures of both isomers.
Conditions for reactions of many nucleophiles with glycosyl halides are well known to persons of ordinary skill in the art.
[0045] The resulting glycosyl halides thus typically have the formula (1)1) A
wherein A is Cl, Br, or F and W, X, Y and Z are as defined above.
[00461 In one preferred embodiment, the silyl glycoside and resulting products are substituted at the 3- position (substituent X) by an aliphatic acyl group, preferably an alkanoyloxyacyl group, more preferably a 3-n-alkanoyloxyacyl group, and most preferably a 3-alkanoyloxytetradecanoyl group, in which the aliphatic or alkanoyl group contains from 2 to 24, preferably from 2 to 18, and most preferably from 6 to 14, carbon atoms, and the protecting groups in the compound in question are preferably Troc groups or similar alkanoyloxycarbonyl groups. In such embodiments the compounds have the general formula (IV) or (V):
OTroc Ru0 NH
Troc (IV) OTroc Troc0 0 R21..`"==\
NH
TrocA (v) wherein A is Cl, Br, or F; R20 is a trisubstituted silyl group and R21 is an aliphatic acyl group, preferably a 3-n-alkanoyloxytetradecanoyl group. Note that in this formula and those that follow, protecting groups have been specifically identified for purposes of illustration and/or clarity. However, as known in the art, other protecting groups as defined generally above for "PG" may be used, as suitable. Thus, for instance, more generally these compounds can be represented by the formula NH
PGA(J) where PG represents protecting groups that form an ether, ester or carbonate with the oxygen atom or that form an amide or carbamate with the nitrogen atom, respectively.
12 [0047] In another preferred embodiment, the silyl glycoside has a hydroxyl group at the 4-position substituted with a phosphate ester group such as a dialkylphosphonyl or diarylphosphon.y1 group, R21 is an alkanoyloxyacyl group, preferably a 3-n-.
allcanoyloxytetradecanoyl group, and the protecting groups are preferably "TCBOC" groups, obtained from 2,2,2-trichloro-1,1-dimethylethyl chloroformate, or similar alkanoyloxycarbonyl protecting groups such as Troc; i.e., the silyl glycoside may have the specific formula (VI):
OTCBOC
(8220)2130 OR20 R23.0 !Prix (V.1)' wherein R20 is a trisubstituted silyl group, preferably TBS or TBDPS; R21 is an aliphatic acyl, preferably an alkanoyloxyacyl, group; and Rn is alkyl, aryl, or arylalkyI, or may have a more general formula which allows for the use of other suitable protecting groups, and the glycosyl halide correspondingly has the more specific formula (VII):
vOTCBOC

(R220)2P0 R211.1 TrocA (vi) wherein R21 and R22 are as defined above and A is Cl, Br, or F.
[0048] In one aspect of the invention the glycosyl chlorides thus produced are reacted with a monosaccharide, preferably in the presence of a silver salt, to produce a disaccharide by this two-step process. Monosaccharides that may be used as reactants in this process include, for example, those having the formulas (i)-(iii):
OH
HO OBn TBSO
NH
Troc (ii):
13 OH
HO OBn TBSO
NH

or e...OH
Troc0 wherein R23 is an aliphatic acyl group, preferably a 3-n-alkanoyloxytetradecanoyl group, as described above.
[0049] Disaccharides that can be produced by such processes include those having the formulas (iA)-(ivA):
(iA):
OAc Ac0 Tnx TBSO
NH
Troc (iiA):
OTroc Troc0 0 NH HO OBn Troc NH
Troc (iiiA):

Troc0 0 NH Ho OBn Tnx TBS
NH
14 =
or (ivA):
OTCBOC

(R2a0)2P0 NH Ho OBn Troc Two NH

wherein R21, R22 and R23 are as defined above, and the indicated protecting groups are exemplary of those that may be used.
100501 Reactions to produce products (iA) -(ivA) according to this invention are generally conducted at a temperature of from about ¨30 C to about 30 C, in a chlorinated or other solvent in the presence of a silver catalyst such as silver trifluoromethanesulfonate (triflate) and under anhydrous conditions, with or without other additives such as molecular sieves or buffering agents such as tetramethylurea..
[0051] In another aspect of the invention the silyl glycosides of Formula (R) are coupled with a monosacchmide directly, without proceeding through formation of a glycosyl halide.
The resulting product is again a disaccharide having substituems according to the starting materials. Such a process is generally conducted at a temperature of from about ¨78 C to about 50 C in the presence of a suitable Lewis acid catalyst such as trimeth.ylsilyltriflate of boron trifluoride etherate with or without the addition of drying or buffering agents. In another aspect of this invention protecting groups can in effect be removed from a silyi glycoside having such groups by reacting it with a dthaloalkyl ether- to produce the glycosyl halide, and then reacting the glycosyl halide with a silver salt such as silver oxide or silver carbonate in the presence of water to produce the corresponding hemiacetal.
[0052] The disaccharides produced by either process may be further reacted by silylating the hydroxyl group at the 4-position of the reducing sugar with a silylating group such as TBS in the presence of imidazole and N,N-dimethylformaraide to produce a 3,4-bis-silylated compound. Addition of a phosphate group in the 4-position of the non-reducing sugar is then achieved by a sequence of steps involving (1) deprotection of the 4,6 protecting groups (typically acetate or Troc), (2) N-deprotection/acylation, (3) selective protection of the primary 6-position with a group such as TCBOC, and (4) by reacting the 6-protected disaccharide with a phosphonylating agent such as a phosphoramidite reagent, e.g., dibenzyl dfisopropylphosphoramidite [providing a dibenzy.lphosphono side chain], or a chlorophosphate such as bis(2,2,2-trichloroethyl)chlorophosphate [providing a bis(2,2,2-trichloroethyl)phosphono side chain] or diphenyl chlorophosphate [providing a .diphenylphosphono side chain].
[0053] The invention also, analogously, includes processes for the production of triacylated disaccharides such as those having the formula (VIII):
o =sac (R22(3)2Po TBSO OBn = R24 'Imo NH
R23 (\7111) wherein R21, R23 and R24 are aliphatic acyl, preferably alkanoyloxyacyl, groups, and Rnis an optionally substituted alkyl, aryl, or arylalkyl group, by selectively protecting the C-6 hydroxyl group of a corresponding disaccharide with 2,2,2-tdchloro-1,1-dimethylethyl chloroformate in the presence of a tertiary amine such as pyridine. Preferably, R32, R23 and R24 are (R)-3-hexadecanoyloxytetradecanoyl, (R)-3-octadecanoyloxytetradecanoyl, and (R)-3-tetradecanoyloxytetradecanoyl, respectively, but they can be the same or different depending on the desired substitutions and nature of the monosaccharide donor used in the glycosylation step.
[0054] This invention also relates to processes for producing aminoalkyl and cyclic aminoalkyl glucosamim¨de (AGP) compounds, that is compounds of formula (I) in which Xis (a) or (1c), in which both the fatty acid and the phosphate groups are introduced onto the AGP backbone after the initial glycosylation (coupling) step. These processes involve the use of novel glycoside triol intermediates which can be selectively protected in the sugar 6-position prior to the introduction of the ester- and amide-linked acyloxyacyl residues.
[0055] One preferred method of the invention for preparing AG? compounds is shown in Scheme 1 below. Scheme 1 depicts the production of specific compounds of Formula (la) but is intended to serve only as an example of this aspect of the invention, as the same or a similar process could be used to produce other compounds of the type of Formula (1a) as well as compounds of Formula (Ic).

[0056] In this process introduction of the aliphatic acyl, e.g. (R)-3-n-alkanoyloxy-tetradecanoyl, and phosphate groups into the glucosamirte and aglycon units is also performed subsequent to the coupling reaction but, in contrast to the method shown in the prior art patents, the 3-hydroxyl group is selectively esterified with an alkanoic acid substituted by an aliphatic acyl group, preferably an (R)-3-n-alkanoyIoxyalkanoic acid, in the presence of an unprotected/tmphosphorylated 4-hydroxyl giiiup with the 6-position blocked.
This is achieved by protecting the 6-hydroxyl group of the sugar unit with a persistent protecting group in lieu of temporary protection of the 4,6-hydroxyl positions with an acetonide. Preferably, j3-glycoside 8 or the corresponding bis-Troc derivative 9, is de-0-a.cetylated with a suitable base to give a triol intermediate 10, which is selectively protected on the 6-position with a hindered sily1 group such as t-butyldimethylsilyl (TBS) under standard conditions known in the art to give silyl-protected intermediate 12.
The triol intermediate 10 is a novel compound 3-0-Acylation of 12 with (R)-3-n-alkanoyloxytetradecanoic acid, for instance, followed by deprotection/acylation of the sugar and aglycon amino groups, simultaneously (PG=Troc) or sequentially (PG=Aoc), using either zinc (PG=Troc) or zinc and Pd(0) (PG=Aoc) in the deprote,ction step and (R)-3-n-alkanoyloxytetradecanoic acid in the acylation step, provides hexaacylated intermediate 13.
Pentaacylated compounds, i.e. in which one of the acyl groups R2, R3, R11 or R12 is hydrogen, can be prepared by utilizing different protecting groups for the two amino groups so that one or the other can be selectively acylated; for instance, using an Aoc group for one and a Troc group for the other.
[00571 Phosphorylation of the 4-hydroxyl group is carried out by methods known in the art using preferably either a dibenzyl or di-t-butyl protected ch1orophosphate or phosphoramidite reagent to give the phosphotziester 14. The phosphate, silyl and any remaining protecting groups in 14 are then cleaved under mildly acidic conditions or by other appropriate means to give compounds of Formula (Ia). It is important to note that the order in which the phosphate and N-linked (R)-3-n-alkanoyloxytetradectmoyl groups in 14 are introduced can be reversed by the appropriate selection of orthogonal phosphate and amine protecting groups.
[0058] A variant of the method shown in Scheme 1 is shown in Scheme 2 and involves the use of a commercially available glycosyl donor such as 15 possessing either acetyl or phthalimide nitrogen-protecting groups and either an anomeric acetoxy or halide group.
Again, this Scheme is representative of processes of the invention for producing compounds of Formula (Ia) or (Ic).

[0059] In Scheme 2, glycosyl donor 15 is coupled with a similarly N-protected acceptor unit 16 in the presence of a suitable catalyst to give 0-glycoside 17. Since N-acetyl and phthalimide groups typically require strongly basic conditions for deprotection, the use of a base-stable ether-linked protecting group such as triphenylmethyl (trityl, Tr) on the 6-position is generally required. Accordingly, de-O-acetylation of 17 under standard conditions followed preferably by selective tritylation of the 6-position gives diol 18.
= Base-induced cleavage of the N-acetyl or phthalirnide groups followed by simultaneous or sequential N-and 0-acylation of the resulting diamino diol intermediate with an (R)-3-n-alkanoyloxytetradecanoic acid in the presence of suitable coupling reagent(s) affords the hexaacylated derivative 19. The diamino diol intermediate formed by treating compound 18 with base has the formula:
OTr HO

Phosphorylation of 19 with a chlorophosphate or phosphoramidite reagent as in Scheme 1 followed by deprotection under mildly acidic conditions or by other appropriate means gives compounds of Formula (La).

_ SCHEME 1 .
OAc Ac0A00 x ---.0\1........\.......... Rs ----..----4-4-N A- R7 NH4OH, Me0H
_________________________________________________ al, NHTroc PG
R4 (C112.)p I
8 PG=Aoc R6 9 PG=Troc -OH
Rs .......õx TBS-CI, base HO is'N'ie".*,n NA R7 NHTroc PG
. R4 (CHip PG=Aoc or Trot R6 OTBS
1. 4 R=R
HO

x --....00\ii......\,...... Rs 2. Pd(0) and/or Zn in 3.4 R=R2or R3 NHTroc PG
R4 (CH)p 12 PG=Aoc or Troc OTBS
Rs 7Ek n ni N q Ri benzyl phosphoramidite R4 (CH2)p 0 or (Bn0)2P(0)0, bas:
R1C, 1 R20R6 nnOR3 n-Cii.H23 n-0O23 n-CLiH23 OTBS

(Bn0)2(0)P0 X
0 cl R7 NH Y n L')5An A'k aa) 0 R4 (CHOp 0 RIO I
R20 R6 iiiioR3 n-con n-con n-CE.H23 , OAc Rs Ac0 ..--0100\b06...\...... + )1X IY.(in NAR7 catB" I.
Ac0 PG
NHPG 4:2 Rs (C1-I 2)p
15 PG=Ac or Phth R6 Q=ballde, OAc, etc 16 PORAc or Phth ' Ac0".1...\........x,y4N....4R7 Me0Na, Me0H
Ac0 ____________________________________ r NHPG PG
R4 (CH2)p I

......1DH=\46....\...........
HO 0 Rs Tr-CI, base HO a X t..)AN"...OrNAR7 _________________________________ NHPG PG
Ri (12)p 17a R6 4r Aµkq n m N R7 1. base NHPG PG _______________ , R4 (012)p 2.4 RoltecR2wR3 = I
Rs 0Ø....\l'r õ,.......

R4 (CH2)p 0 Ra0 I
Rs ono%
n-C13,1123R20 n-C11H23 ri-CiiH23 In the above Schemes I and 2 the various groups R1-1t7, n, p and q are as defmed above.

ROW The invention is further illustrated by the examples that follow. These examples are presented solely as illustrative of the invention and do not in any way limit its definition or scope.
Example 1: Production of 2-Deoxv-4-0-diphenviphosphono-3-04(R1-3-tetradecanovloxytetradecanov11-6-042,2,2-trichloro-1.1-dimethylethoxycarbonvi)-(2.2.2-trichloroethoxvcarbonvlamino)-a-D-aluco-pyranosv1 Chloride [0061] This process is depicted in scheme A, below, and includes novel intermediates (iv), (vi) and (vii), which comprise aspects of this invention.

Scherng A
HO./..x. Oix0H Ac0 0 OTBDPS
. --0.- ----0.
HO NH2 Ac0 NHTroc OH OAc V iv x0x OTBDPS 0 0 OTBDPS
i Ac0 NHTroc .......
"....... 6........Ø.. .1).......
0 NI1Troc OAc OH
vi TCBOCO OTBDPS. TCBOCO
------i-0NHTroc ---0- (C6H50)2(0)P NHTroc ....õ..
(C81-150)2(0)P
0..,..r........r.CiiHz3 0......r.,rc1 0 0)(C131127 0 0,....r0131127 vii viii (a) Production of t-Butyldiphenylsilyl 2-Deoxy-4.6-0-isopropylidene-2-(2,2.2-tricbloroethcegcarbonylamingl-a-D-glucouyranoside (Scheme A. compound vi).
[00621 (1) 2,2,2-Trichloroethorycarbonyl chloride (200 g, 0.944 mol) is added portionwise to a solution of D-glucosamine hydrochloride (r, 200 g, 0.927 mol) and NaHCO3 (200 g, 2.4 mol) in water (4 L) in a 10 L 3-neck round-bottom flask and the resulting mixture is mechanically stirred overnight at room temperature. The white precipitate that forms is collected by filtration using a 2 L fitted funnel, washed with ether (2 L), and dried at high vacuum for 3 hours to give 297 g (90%) of 2-deoxy-2-(2,2,2-trichloroethoxycarbonylamino)-D-gIucose as a white solid (MW 354.57).
[0063) (2) A solution of 2-deoxy-2-(2,2,2-hichloroethoxycarbonylamino)-D-glucose (297 g, 0.838 mol) obtained in (1) above in a mixture of pyridine (1 L, 12.4 mol) and acetic anhydride (1 L, 10.6 mol) in a 10 L round-bottom flask is mechanically stirred at room temperature overnight. The reaction mixture is concentrated under reduced pressure to give an oil which is azeotroped with toluene (2 x 1L) and dried at high vacuum overnight to give 438 g (-100%; 90% from y.) of the tetraacetate as a syrup (MW 522.71, TLC
(Et0Ac) RI
0.75).
[00641 (3) The tetraacetate obtained in (2) above (438 g, 0.838 mol) is dissolved in Et0Ac (4 L) and transferred to a 10 L 3-neck round-bottom flask, treated with morpholine (200 mLõ
2.29 mol), and mechanically stirred for 8 hours at room temperature. Reaction completion determined by TLC (50% Et0Ac/hexanes). 3 N aq HC1 (2 L) is added and the resulting = mixture is stirred for 30 minutes. The mixture is transferred to a 6 L
separatory funnel and the layers are separated. The organic phase is washed with saturated aq NaC1 (1 L), dried (Na2SO4), and concentrated to give 373 g (93%, 84% from y). of the 1-0-deprotected derivative (hemiacetal) as a white foam (MW 480.67; TLC (50% Et0Ac/hexanes) RI
0.22).
[00651 (4) A solution of hemiacetal obtained in (3) above (373 g, 0.776 mol) and imidazole (132 g, 1.94 mol) in N,N-dimethylfonnamide (DMF, 430 mL, 1.8 M) is treated with t-butylchlorodiphenylsilane (242 mL, 0.931 mol), and stirred for 48 hours at room temperature. Reaction completion is confirmed by TLC (50% Et0Ac/hexanes). The reaction mixture is partitioned between ethyl ether (4 L) and water (1 L) in a 6 L
separatory funnel and the layers separated. The ether layer is washed with water (1L), dried (Na2SO4), and concentrated to give a bronze-colored oil which is crystallized from Et0Ac-hexanes (-4:2 v/v) in three crops to provide 474 g (85%, 71% from ir) of the t-butyldiphenylsilyl glycoside iv as a white solid (MW 719.08; TLC (50% Et0Ac/hexanes) RI 0.44).
100661 (5) A solution of the silyl glycoside obtained in (4) above (474 g, 0.659 mol) in Me0H (2 L) in a 3 L 3-neck round-bottom flask is treated with ammonium hydroxide (300 mL, 4.5 mol) (some precipitation occurs) and stirred at room temperature overnight, and then heated with a second portion of ammonium. hydroxide (50 ml.,, 0.75 mol) and again stirred overnight. Reaction completion is determined by TLC (Et0Ac). The reaction mixture is concentrated and the resulting residue is dissolved in Et0Ac (500 mL), placed on a pad. of silica gel (1 kg) in a 3 L flitted glass funnel, and elated with 50% Et0Ac-hexanes (5 L) and Et0Ac (7 L). The fractions containing the product are concentrated in a 3 L
round-bottom flask to give 329 g (84%, 60% from y) of the triol (MW 592.97, TLC (Et0Ac) R10.35).
[0067] (6) A slurry of the triol obtained in (5) above (329 g, 0355 mol) in 2,2-dimethoxypropane (1.5 L) in a 3 L round-bottom flaRk is treated with camphorsulfonic acid (6.4 g, 0.028 mol) and magnetically stirred at room temperature overnight, giving a light yellow solution. Solid NaHCO3 (4.6 g, 0.055 mol) is added and the resulting mixture is stirred for 2 hours at room temperature and then concentrated to dryness. The crude product obtained is dissolved in dichloromethane (1.2 L), divided into two equal portions, and placed on silica gel (1 kg, pre-wetted with 30% Et0Ac/hexanes) in two separate 3 L
flitted glass funnels, and elated with 30% Et0Ac/hexanes (10 L) and 50% Et0Ac/hexanes (8 L).

Fractions containing purified product are combined and concentrated to give compound vi as an amorphous solid. The product can be further purified by crystallization from hexanes, if necessary.
Molecular Formula: C23}136C13NO7Si Molecular Weight 633.04 Theoretical Yield: 587 g (based on y) Expected Yield: 306 g (87%, 52% from y) TLC: Rf 0.60 (Et0Ac) (b) Production of t-Butyldiphenvlsilyl 2-Deoxy-4-0-diphenylphosphono-3-0-1(R)-tetradecanoyloxytetradecanoy11-6-0-(2.2.2-trichloro-1,1-dimethylethoxycarbonv1)-2-(2,2,2-trichloroethoxycarbonylaminol-a-D-gluconyranoside (Scheme A, compound vii).
[0068] (1) A solution of compound yj (141 g, 0223 mol) in. CH2C12 (1 L) in a 2 L round-bottom flask is treated with 3-(R)-(tetradecanoyloxy)tetradecanoic acid (101.7 g, 0.224 mol), DCC (55 g, as a melt, 0.267 mol) and 4-pyrrolidinopyridine (3.3 g, 0.022 mol), and stirred at room temperature overnight Reaction completion is determined by TLC (20%
Et0Adhexanes). The reaction mixture is filtered, concentrated to ca. one-hnlfvolume, divided into two equal portions, and placed on silica gel (1 kg, pre-wetted with 2.5%
Et0Ac/hexanes) in two separate 3 L flitted glass funnels. Gradient elution with 2.5%, 5%, and 10% Et0Ac/hexanes (8 L each) and concentration of the fractions containing the product in a 3 L round-bottom flask gives 220 g (92%) of the ester (MW 1069.72, TLC
(20%
Et0Adhexanes) Rf 033).

[0069] (2) The ester obtained in (1) above (218 g, 0.204 mol) is suspended in 90% aq AcOH (1 L) in a 3 L round-bottom flask and stirred (on rotary evaporator) at 70 C for 2.5 hours, giving a milky solution. Reaction completion is determined by TLC (20%
Et0Ac/hexanes). Th6 reaction mixture is concentrated and residual AcOH is removed szeotropically with toluene (2 x 500 mL). The crude product obtained is dissolved in 10%
Et0Adhexanes (400 mL), divided into two equal portions, and placed on silica gel (1 kg) in two separate 3 L fitted glass funnels. Gradient elution with 10% Et0Ac/hexanes (10 L) and 15%, 20%, and 30% Et0Ac/hexanes (5 L each) and concentration of the fractions containing the product gives 193 g (92%, 85% from Li) of the diol (MW 1029.66, TLC (20%
Et0Ac) RI
0.10) containing a small amount (<5% by TLC) of 6-0-acetyl by-product (RI
0.25). (Note:
The 6-acetate by-product is readily separated by radial compression chromatography as the 4.
diphenylphosphate derivative in step (3) below.) [00701 (3) A magnetically stirred solution of the diol obtained in (2) above (193 g, 0.187 mol) in CH2Cl2 (1 L) at 0 C is treated with pyridine (18.2 mL, 0.225 mol) followed by 1,1-dimethy1-2,2,2-trichloroethyl chloroframate (49.5 g, 0.206 mol). Progress of the reaction is monitored by TLC (20% Et0Ac/hexanes). Once the reaction is completed by TLC
(typically 30-60 minutes, but longer reaction times may be required), triethylamine (55 mL, 0.39 mol), 4-pyrrolidinopyridine (13.9 g, 0.094 mol), and diphenyl chlorophosphate (58.2 mL, 0.281 mol), are added sequentially and the resulting mixture is stirred at room temperature overnight. Reaction completion is determined by TLC (20% Et0Ac/hexanes). The reaction mixture is concentrated to dryness and the residue obtained is partitioned between Et0Ac (1.5 L) and 1.2 N aq HC1 (2 L) in a 6 L separatory funnel and the layers separated. The Et0Ac layer is washed with water (2 L), dried (Na2SO4), and concentrated. The residue obtained is dissolved in 10% Et0Ac/hexa.nes (500 mL) and purified by gradient elution on a Biotage 150 Hi system (150L column) with 10% Et0Adhexanes (50 L), collecting 950 mL
fractions. The fractions containing compound vii are combined and concentrated.
Molecular Formula: C70H95CI6NO15ni Molecular Weight: 1465.30 Theoretical Yield: 326.8 g (based on yl) Expected Yield: 211 g (77%, 65% from y_i) TLC: RI 0.47(20% Et0Actexanes) (e) Production of 2-Deoxy-4-0-diphenylphosphono-3-0-YRI-3-tetradecanoyloxy-tetradecanoy13-6-0-(2.2.2-trichloro-1.1-dimethylethoxycarbony1)-2-(272,2-trichloroethoxycarbonylamino)-a-D-glocopyranosyl Chloride (scheme A.. compound viii).
[0071] A solution of compound vii (192 g, 0.131 mol) in CHCI3 (2 L) at 0 C in a 5 L
round-bottom flask is treated with oe,ot-dichloromethyl methyl ether (78 mL, 0.87 mol), followed by ZnCl2 (1.0 M in ether, 100 ml., 0.1 mol) dropwise via an addition funnel. The cold bath is removed and the resulting mixture is stirred at room temperature overnight.
Reaction completion is determined by TLC (20% Et0Ac/hexanes). The reaction mixture is treated with cold saturated aq NaHCO3 (1 L), stirred for 1 hour, and the layers are separated in a 6 L separatory funnel. The organic layer is dried (MgSO4) and concentrated. The residue obtained is purified on a Biotage 150 Hi system (150L column) eluting with 10%

Et0Ac/hexanes (80 L, 950 ml. fractions). The fractions containing pure product are combined and concentrated.
Molecular Foimula: C34H79C17N0I4P
Molecular Weight: 1245.36 Theoretical Yield: 163.2 g Expected Yield: 141 g (86%) TLC: Rf 0.42 (20% Et0Ac/hexanes) Example 2¨ Preparation of (N-11R1-3-Decanovloxvtetradecanov11-042-deoxv-4-0-phosphono-24(R)-3-decanovlorytetradecanovlaminol-3-0-1(R)-3- -decanovloxytetradecanov11-B-D-glueopyranosv11-L-serine Triethvlammonium Salt [a compound of Formula (Ia) in which RI=R2=R3=n-C9H13CO, Z=Y=0, n=nr=p=q=0, 1=10, R4=Rs=R7=R9=1-1, R6=CO2H, Rs=P03H2A, namely JOH

NH

ol [0072] This example utilizes a process as shown in Scheme 1.
[0073] (1) A solution of 1,3,4,6-tetra-0-acety1-2-deoxy-2-(2,2,2-trichloroethoxy-carhonylamino)-13-D-glucopyranoside (5.33g, 10.2 mmol) and benzyl N-(2,2,2-trichloroethoxycarbonyI)-L-serine (4.16g, 11.2 mmol) in anhydrous CH2C12 (15 mL) was treated dropwise with boron trifluoride etherate (2.59 mlõ 20.4 mmol) and then stirred at room temperature for 2 h. The reaction mixture was quenched with saturated aq.
NaHCO3 (20 mL) and the layers separated. The aqueous layer was extracted with CHC13 (2x10 mL) and the combined organic layers were washed with H20 (10 mL), dried (Na2SO4), and concentrated in vacuo. Flash chromatography on silica gel (gradient elution, 20-)50%
AcOEt/hexanes) afforded 7.42 g (87%) of N-(2,2,2-trichloroethoxycarbony1)-043,4,6-tetra-=
0-acety1-2-deoxy-2-(2,2,2-trichloroethoxycarbonylamino)13-D-gincopyranosyl]-L-serine benzyl ester as a white solid (compound 9; Xkl, n=m=p=q*:), r=10, R4=R5=R7=}1, R6=02Bn).
[0074] (2) A solution of the compound prepared in (1) above (408 mg, 0.49 mmol) in tetahydrofuran (Till?; 20 mL) was hydrogenated in the presence of 10%
palladium on carbon (30 mg) at room temperature and atmospheric pressure for 3 h. The reaction mixture was TM
filtered through Celite and the filtrate was concentrated in vacuo. Flash chromatography on silica gel with 2% Me0H-CHC13 followed by 10% Me0H-CHCI3 afforded 347 mg (98%) of N-(2,2,2-trichloroethoxycarbony1)-043,4,6-tetra-0-acetyl-2-deoxy-2-(2,2,2-trich1oroeth.oxycarbony1aminol-13-D-g1ucopyranosy11-L-serine as a white solid.
(compound 9; Xt:), n.--gn=p=q=0, R4=125=R7,---H, R6-02H) [00751 (3) A solution of the compound prepared in (2) above (998 mg, 1.34 mmol) in methanol (15.5 mL) was treated with ammonium hydroxide (021 m1õ 5.37 mmol) at room temperature for 16 h, followed by additional ammonium hydroxide (0.21 mL, 5.37 mmol) for 24 h. The reaction mixture was concentrated in vacuo and to eve a white solid.
A suspension of the white solid in CH2Cl2 (33.5 mL) was treated with benzyl bromide (0.80 ml,, 6.7 mmol), tetrabutylammonium bromide (432 mg, 1.34 mmol) and saturated NaHCO3 (33.5 raL) and the resulting biphasic mixture was stirred vigorously at room temperature for 24 h and the layers separated. The aqueous layer was extracted with CHC13 (2x15mL) and the combined organic layers were washed with 1120 (10 mL), dried (Na2SO4), and concentrated in vacuo. The resulting residue was dissolved in anhydrous pyridine (10 mL), treated with t-butyldimethylsilyl chloride (242 mg, 1.61 mmol), and stirred at room temperature for 1.5 h.
The reaction mixture was treated with additional t-buryldimethylsily1 chloride (242 mg, 1.61 mmol) and stirred 1.5 h. The reaction mixture was partitioned between CHCI3(10 mL) and H20 (10 mL). The aqueous layer was extracted with CHC13 (2x15 mL) and the combined organic layers were washed with H20 (15 mL), dried (Na2SO4) and concentrated in vacuo.
Flash chromatography on silica gel using gradient elution (1.0 3 1.25%
CH3OH/CHC13) afforded 724 mg (66%) of N-(2,2,2-trichloroethoxycarbony1)-046-0-t-butyldimethylsily1-2-deoxy-2-(2,2,2-trichloroethoxycarbonylamino)-13-D-glueopyranosyli-L-serine benzyl ester as a white solid. (compound 12 PG=Troc, R6-02H) [0076] (4) A solution of the compound prepared in (3) above (892 mg, 1.09 mmol) in anhydrous CH2C12 (10.5 raL) was treated with (R)-3-decanoyloxytetra.decanoic acid (476 mg, 1.20 mmol), 1-(3-dimethylaminopropy1)-3-ethylcarbodiimide methiodide (EDC-MeI;

mg, 1.20 mmol), and 4-pyrrolidinopyridine (8 mg, 0.054 mmol) at 0 C for 1 h.
The reaction mixture was treated with additional (R)-3-decanoyloxytetradecanoic acid (60 mg) and EDC.MeI (60 mg) at 0 C, stirred 30 min, and concentrated in vacua. Flash chromatography on silica gel with 1:6 AcOEt-hexanes afforded 1.10 g (85%) of N-(2,2,2-trichloroethoxy-carbony1)-046-0-t-butyldimetbylsily1-3-0-[(R)-3-decanoyloxytetradecanoy11-2-deoxy-2-(2,2,2-trichloroethoxycarbonylamino)-13-D-glucopyranosyli-L-serine benzyl ester as a colorless oil.

[0077] (5) A solution of the compound prepared in (4) above (1.162 g, 0.967 mmol) in 20% aq. THF (16 mL) was treated with zinc dust (632 mg, 9.67 mmol) and acetic acid (0.12 mlõ 2.13 mnil,p1) and stirred for 1 h at room temperature. The reaction mixture was filtered through Celite and the filtrate concentrated in vacuo. The resulting off-white solid was dissolved in CHC13 (15 rn.L) and washed successively vvith 15 mL portions of 0.1M HO, saturated aq Nal1CO3, and 1120. The organic layer was dried (Na2SO4) and concentrated in vacuo and the resulting residue was dried overnight under high vacuum. A
solution of the residue in anhydrous CH2C12 (9.5 mL) was treated with (R)-3-dec,anoyloxytetradecanoic acid (848 mg, 2.13 mmol) and EDC.Mei (632 mg, 2.13 mmol) and stirred at room temperature for 2 h. The reaction mixture was concentrated in vacuo and the residue obtained purified by flash chromatography on silica gel (gradient elution; 20325% AcOEt/hexanes) to give 1.03 g (66%) of N-[(R)-3-decanoyloxytetradecanoy1]-046-0-t-butyldimethylsily1-2-deoxy-2-[(R)-3-decanoyloxytetradecanoylaraino]-3-0-[(R)-3-decanoyloxytetradecanoy11-11-D-glucopyranosyll-L-serine benzyl ester as a glassy solid. (compound 13 Iti=R2=R3=n-C9HisCO3 X=0, n=1w=p=q=0, r=10, ReR5=R7=11, R5---0O2Bn).
100781 (6) A solution of the compound prepared in (5) above (112 mg, 0.069 mmol) in anhydrous dichloromethane (1 mL) under argon was treated with dibenzyl diisopropyl phosphoramidite (3911,L, 0.12 mmol) and tetrazole (12 mg, 0.173 mmol) and stirred at room temperature for 1 h. The reaction mixture was cooled to 0 C and treated with m-chloroperbenzoic acid (m-CPBA; 33 mg, 0193 mmol) for 30 min. The reaction mixture was quenched by addition of saturated aq NaHCO3 (5 mL) and stirred at room temperature for 15 min. The aqueous layer was extracted with chloroform (3x5 mL) and the combined organic layers were washed with water (5 mL), dried (Na2SO4), and concentrated in vacuo. Flash chromatography with 25% AcOEt-hexanes gave partially purified product which was rechromatographed on silica gel with 20% AcOEt-hexane,s to give 122 mg (93%) of N-[(R)-3-decanoyloxytetradecanoy1]-046-0-t-butyldimethylsily1-2-deoxy-4-0-diphenylphosphono-2-[(R)-3-decanoyloxytetra.decanoylamino)-3-0-[(R)-3-decanoyloxytetradecanoy1].-(3-D-glucopyranosyli-L-serine benzyl ester as a colorless oil.
[0079] (7) A solution of the compound prepared in (6) above (232 mg, 0.124 mmol) in anhydrous THE? (10 mL) was hydrogenated in the presence of 20% palladium hydroxide on carbon (46 mg) at room temperature and atmospheric pressure for 36 h. The reaction mixture was filtered through Celite and the filtrate concentrated under vacuum. The resulting oil (181 mg) was dissolved in CH2C12 (2.5 mL) and treated with nifluoroacetic acid (29 ilL) and stirred under argon at room temperature for 18 h. The reaction mixture was concentrated and co-evaporated with hexanes (2x5 mL). Flash chromatography on silica gel with chloroform-methanol-water-triethylamine (gradient elution; 87:12:0.5:0.5477:22.5:0.5:0.5) afforded 102 mg (55%) of NA(R)-3-decanoyloxytetGradecanoyl]-042-deoxy-4-0-phosphono-2-[(R)-decanoyloxytetradecanoylamino]-3-0-[(R)-3-decanoyloxytetradecanoyll-p-D-glucopyranosyl]-L-serine triethylammonium salt (RC-527) as a colorless solid.
Example 3.- Preparation of (S)-2-11R1-3-Hexanoylovetetradecanovlaminol-3-phosphonooxypropvl 2-Deoxv-4-0-phosphono-3-0-f(R)-3-bexanovloxytetradecanov11-2-r(R)-3-bexanovloxytetradecanovlaminoJ-13-D-Elueopyranoside Bis(triethvflammonium Salt [a compound of Formula (1) in which X is (1a), namely RI=R2=R3=n-05HIIC0, Z=Y=0, n=m=p=q=0, r=10, R4=R5=R7=R9=H, R6sH2OPO3H2, R8=P03H21, namely:
OH
CH2OPO3Hz NH

=
[0080] This example utilizes a process as shown in Scheme 1.
[0081] (1) In the same manner as described in Example 2-(3), 1,3,4,6-tetra-0-acety1-2-deoxy-2-(2,2,2-trichloroethoxycarbonylamino)-p-D-glucopyranoside (0.62 g, 1.18 mmol) and (S)-2-(2,2,2-trichloroethoxycarbonylamino)-3-benzy1oxy-1-Propanol (0.46 g, 1.30 mmol) were coupled in the presence of boron trifluoride etherate (0.3 mL, 2.4 mmol) to give (R)-2-(2,2,2-trichloroethoxycarbonylaraino)-3-benzy1oxy-1-propyl 2-deoxy-3,4,6-tetra-0-acety1-2-(212,2-trich1oroethoxycarbonylamino)-3-D-g1ucopyranoside as a light yellow solid.
= (compound 9; X=0, n=m=p=q=0, r=10, R4=R5=R7=H, R6=CH20Bn). A solution of this compound in methanol (15 mL) was treated with ammonium hydroxide (0.21 ml,, 5.37 ramol) at room temperature for 19 h, followed by additional ammonium hydroxide (0.20 mlõ
5.1 mmol) for 25 h. The reaction mixture was concentrated in vacuo and to give a white solid.
Flash chromatography on silica gel (gradient elution 536% CH3OH/CHC13) afforded 0.57 g (63%) of 3-benzyloxy-(R)-2-(2,2,2-trichloroethoxycarbonylamino)propyl 2-deoxy-2-(2,2,2-trichloroethoxycarbonylamino)-P-D-glucopyranoside as a glassy solid.
[0082] (2) A solution of the compound prepared in (2) above (0.57 g, 0.83 mmol) in anhydrous pyridine (8.5 mL) was treated with t-butyldimethylsilyl chloride (0.15 g, 0.99 mmol) and stirred at room temperature for 1.5 h. Additional t-butyldimethylsily1 chloride (0.15 g, 0.99 mmol) was added and after another 1.5 h the reaction mixture was partitioned between CHCI3 (10 mL) and H20 (10 mL) and the layers separated. The aqueous layer was extracted CHCb (2x10 mL) and the combined organic layers were washed with 1120 (10 mL), dried (Na2SO4), and concentrated in vacuo. Flash chromatography on silica gel (gradient elution; 80:1360:1 CHC13/CH3OH) afforded 0.65 g (98%) of 3-benzyloxy-(R)-2-(2,2,2-trichloroethoxycarbonylamino)propyl 6-0-t-butyldimethylsily1-2-deoxy-2-(2,2,2-trichloroethoxycarboiaylamino)-13-D-glucopyranoside as a white solid.
[0083] (3) hi the same manner as described in Example 2-(4), the compound prepared in (2) above (0.47 g, 0.59 mmol) was acylated with (R)-3-hexanoyloxytetradecanoic acid (0.22 g, 0.64 mmol) in the presence of EDC-Mel (0.21 g, 0.70 mmol) and 4-pyrrolidinopyridine (4 mg, 0.03 mmol) to afford 0.58 8(88 %) of 3-benzyloxy-(R)-2-(2,2,2-trichloroethoxy-carbonylamino)propyl 6-0-t-butyldimethylsily1-3-0-[(R)-3-hexanoyloxytetradecanoy1]-2-deoxy-2-(2,2,2-trichloroethoxycarbonylamino)-13-D-glucopyranoside as a colorless oil.
[0084] (4) In the same manner as described in Example 2-(5), the compound prepared in (3) above (0.58 g, 0.51 mmol) was deprotected with zinc (0.34 g, 5.14 mmol) and acylated with (R)-3-hexanoyloxytetradecanoic acid (0.39 g, 1.13 mmol) in the presence of EDC.MeI
(0.34 g, 1.13 roma) to afford 0.41 g (56%) of 3-benzyloxy-(R)-2-{(R)-3-hexanoyloxy-tetradecanoylamino}propyl 6-0-t-butyldimethylsily1-3-0-[(R)-3-hexanoyloxytetradecanoy1]-2-deoxy-2-[(R)-3-hexanoyloxytetradecanoylaminol-P-D-glucopyranoside as a colorless oil (compound 13 It1=rt2=R3=n-05H11CO, X=0, ni--ra=p=q=0, r=10, R4=R5=R7=H, R6H20Bn).

[00851 (5) A solution of the compound prepared in (4) above (0.41 g, 0.29 minol) in THF
(18 mL) was hydrogenated in the presence of palladium hydroxide (0.04 g) at room temperature and atmospheric pressure for 17 h. The reaction mixture was filtered through TM
Celite, and the filtrate concentrated in vacuo. Flash Chromatography on silica gel (gradient elution; 1:241:8 ethyl acetate/heptan.e) provided 0.3 g (77%) of 3-hydroxy-(R)-2-[(R)-3-hexanoyloxytetradecanoylaminoipropyl 6-0-t-butyldimethyLsily1-3-0-[(R)-3-hexanoyloxytetradecanoy13-2-deoxy-2-[(R)-3-hexan.oyloxytetradecanoylaminol-13-D-glucopyranoside as a colorless oil (compound 13 RI=R2=R3=n-C3H11CO3 X=0, n=m97--q=0, r=10, R.4=R3=R7=H, ReCI-120H).
[0086] (6) In the same manner as described in Example 2-(6), the compound prepared in (5) above (0.30 g, 0.22 pamol) was phosphorylated with dibenzyl diisopropylphosphoramidite (0.25 mL, 0.75 mmol), tetrazole (0.08 g, 1.11 mmol), and m-CPBA (0.33 g, 1.95 mmol) to give 0.30 g (73%) of 3-dibenzylphosphonooxy-(R)-2-[(R)-3-hexanoyloxy-tetradecanoylamino]propyl 4-dibenzylphosphono-6-0-t-butyldimethylsily1-3-0-[(R)-3-hexanoyloxytetradecanoy1]-2-deoxy-2-1(R)-3-hexanoyloxytetradecanoylaminol-13-D-glucopyranoside as a colorless oil.
[00871 (7) A solution of the compound prepared in (6) above (302 mg, 0.16 mmol) in anhydrous TBF (13 mL) was hydrogenated in the presence of 20% palladium hydroxide on carbon (60 mg) at room temperature and atmospheric pressure for 27 h. The reaction mixture TM
was filtered through Celite and the filtrate concentrated in vacuo. A solution of the resulting oil (226 mg) in CH2C12 (3.5 inL) was treated with trifluoroacetic acid (0.04 m1,, 0.49 imnol) and stirred under argon at room temperature for 16 h. The reaction mixture was concentrated and co-evaporated with hexanes (2x5 mL), and the resulting residue dried under high vacuum to give crude product (226 mg). A portion of the crude product (102 mg) was dissolved in 1:2 CHC13/CH3OH (9 mL), loaded onto a DEAE-cellulose column (15 g, fast flow, Sigma), and. eluted with 2:3:1 CHC13:CH3OH:H20 using a 0 to 0.1 MNH40Ac salt gradient.
The fractions containing purified product were combined, washed with 0.1 N aq HCI, and concentrated in vacuo. The residue obtained was lyophilized from 1% aq triethylamine (pyrogen free) to give 82 mg (81%) (S)-2-[(R)-3-hexanoyloxytetradecanoy1amino]-phosphonooxypropyl 2-deoxy-4-0-ph.osphono-3O-[(R)-3-hexanoyloxytetradecanoyfl-. [(R)-3-hercanoyloxytetradecattoylaminol-p-D-glucopyranoside bis(triethyl)amraonium salt as a white powder: positive FAB-MS calcd for [M+Nar 1407.8534, found 1407.8689;
1}1 NMR (CDC13/ CD30D): 8 (ppm) 5.23-5.16 (m, 4H), 4.67 (d, 111), 4.38 (dd, 1H), 4.19-3.83 =

(3n, 7H), 3.49 (m, 2H), 3.06 (m, 1211), 2.64-2.23. (m, 1210, 1.584.56 (m, 1210, 1.23 (in, 94 HI 0.88-0.87 (m, 18H). 13C MR (CDC13/ CD30D): (ppm) 173.7, 173.3, 173.2, 170.3, 170.1, 100.0, 74.6, 74.0, 70.9, 70.8, 70.3, 66.6, 63.5, 60.4, 54.2, 45.8, 41.1, 40.7, 39.3, 34.4, 34.3, 31.9, 313, 2.9.7, 29.4, 25.3, 24.7, 22.7, 22.3, 14.1, 13.9, 8.5.
=
=

Claims (32)

- 34 -
1. A method for preparing an aminoalkyl glucosaminide 4-phosphate compound having the formula:
wherein X is Y is -O- or ¨NH; R1 and R2 are each independently selected from saturated and unsaturated (C2-C24) aliphatic acyl groups; R8 is -H or PO3R11R11a, wherein R11 and R11a are each independently -H or (C1-C4) aliphatic groups; R9 is H, -CH3 or -PO3R13a R14, wherein R13a and R14 are each independently selected from -H and (C1-C4) aliphatic groups; and wherein at least one of R8 and R9 is a phosphorus-containing group, but R8 and R9 are not both phosphorus-containing groups;
wherein the subscripts n, m, p, q, n', rn', p' and q' are each independently an integer of from 0 to 6, provided that the sum of p' and m' is an integer from 0 to 6, and the subscript r is independently an integer of from 2 to 10; R3 and R12 are independently saturated or unsaturated aliphatic (C2-C24) acyl groups; R4 and R5 are independently selected from H and methyl; R8 and R7 are independently selected from H, OH, (C1-C4) oxyaliphatic groups, -PO3H2, -OPO3H2, -SO3H, -OSO3H, -NR15R16, -SR15-, -CN, -NO2, -CHO, -CO2R15, -CONR15R16, -PO3R15R16, -OPO3 R15R16 , -SO3R15 and -OSO3R15, wherein and R16 are each independently selected from H and (C1-C4) aliphatic groups;
R13 is independently selected from H, OH, (C1-C4) oxyaliphatic groups, -PO3R17R18, -OPO3R17R18, -SO3R17, -OSO3R17, -NR17R18, -SR17, -CN, -NO2, -CHO, -CO2R17, and -CONR17R18, wherein R17 and R18 are each independently selected from H and (C1-C4) aliphatic groups; and Z is -O- or -S-;
comprising:
(a) selectively 6-O-silylating a 2-amino-2-deoxy-.beta.-D-glucopyranose derivative having the formula;

wherein B is O or S; and PG independently represents a protecting group that forms an ester, an ether or a carbonate with the oxygen atom of a hydroxy group or that forms an amide or a carbamate with the nitrogen atom of an amino group, respectively;
with a trisubstituted chlorosilane R a R b R c Si-Cl wherein R a, R b, and R
c, are independently selected from the group consisting of C1-C6 alkyl, C3-C6 cycloalkyl, and optionally substituted phenyl, in the presence of a tertiary amine, to give a 6-silylated derivative;
(b) selectively acylating the 4-OH position of the resulting 6-O-silylated derivative with an (R)-3-alkanoyioxyalkanoic acid or a hydroxy-protected (R)-3-hydroxyalkanoic acid in the presence of a carbodiimide reagent and catalytic 4-dimethylaminopyridine or 4- pyrrolidinopyridine to give a 3-O-acylated derivative;

(c) selectively deprotecting the nitrogen protecting groups, sequentially or simultaneously, and N,N-diacylating the resulting diamine with an (R)-3-alkanoyloxyalkanoic acid or a hydroxy-protected (R)-3-hydroxyalkanoic acid in the presence of a peptide coupling reagent;
(d) introducing a protected phosphate group at the 4-position with a chlorophosphate or phosphoramidite reagent to give a phosphotriester; and (e) simultaneously or sequentially deprotecting the phosphate, silyl, and remaining protecting groups.
2. The method according to Claim 1 where PG represents 2,2,2-trichloroethyloxycarbonyl groups and the trisubstituted chlorosilane reagent is t-butyldimethylchlorosilane.
3. The method according to Claim 1 where the carbodiimide reagent used for 3-O-acylation is 1-(3-dimethylaminopropyl)-3 ethylcarbodiimide methiodide and the catalyst is 4-pyrrolidinopyridine.
4. The method according to Claim 1 where the peptide coupling reagent used for N-acylation is 2-ethoxy-1,2-ethoxycarbonyl-1,2-dihydroquinoline or 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide methiodide.
5. The method according to Claim 1 where the phosphate protecting group is benzyl, substituted benzyl, t-butyl, 2,2,2-trichloroethyl, 2-trimethylsilylethyl, or allyl.
6. The method according to Claim 1 where PG represents 2,2,2-trichloroethyloxycarbonyl groups, the trisubstituted chlorosilane reagent is t-butylchlorodimethylsilane, and the phosphate protecting group is benzyl.
7. The method according to Claim 1 where PG represents 9-fluorenylmethyloxycarbonyl groups, the trisubstituted chlorosilane reagent is t-butylchlorodimethylsilane, and the phosphate protecting group is benzyl.
8. The method according to claim 1 where the 2-amino-2-deoxy-8-D-glucopyranose derivative has the formula:
9. The method according to Claim 8 wherein the glucopyranose derivative is reacted with t-butylchlorodimethylsilane in the presence of a tertiary amine to give a 6-O-silylated derivative having the formula:
10. The method according to Claim 8 wherein the glucopyranose derivative is reacted with t-butylchlorodimethylsilane in the presence of a tertiary amine to give a 6-O-silylated derivative having the formula:
11. The method according to Claim 8 wherein the glucopyranose derivative is reacted with t-butylchlorodimethylsilane in the presence of pyridine to give a 6-O-silylated derivative having the formula:

12. A method for preparing an aminoalkyl glucosaminide 4-phosphate compound having the formula:

wherein X is Y is -O- or -NH; R1 and R2 are each independently selected from saturated and unsaturated (C2-C24) aliphatic acyl groups; R8 is -H or-PO3R11R11a, wherein R11 and R11a are each independently -H or (C1-C4) aliphatic groups; R9 is -H, -CH3 or -PO3R13a R14, wherein R13a and R14 are each independently selected from -H and (C1-C4) aliphatic groups; and wherein at least one of R8 and R9 is a phosphorus-containing group, but R8 and R9 are not both phosphorus-containing groups;
wherein the subscripts n, m, p, q, n', m', p' and q' are each independently an integer of from 0 to 6, provided that the sum of p' and m' is an integer from 0 to 6, and the subscript r is independently an integer of from 2 to 10; R3 and R12 are independently saturated or unsaturated aliphatic (C2-C24) acyl groups; R4 and R8 are independently selected from H and methyl; R6 and R7 are independently selected from H, OH, (C1-C4) oxyaliphatic groups, -PO3H2, -OPO3H2, -SO3H, -OSO3H, -NR18R16, -SR18, -CN, -NO2, -CHO, -CO2R18, -CONR18R16, -PO3R15R16, -OPO3R15R16, -SO3R15 and -OSO3R18, wherein R15 and R16 are each independently selected from H and (C1-C4) aliphatic groups; R13 is independently selected from H, OH, (C1-C4) oxyaliphatic groups, -PO3R17R18, -OPO3R17R18, -SO3R17, -OSO3R17, -NR17R18, -SR17, -CN, -NO2, -CHO, -CO2R17, and -CONR17R18, wherein R17 and R18 are each independently selected from H and (C1-C4) aliphatic groups; and Z is -O- or -S-;
comprising:
(1) glycosylating an alcohol or thiol having the formula:

wherein B is S or O, PG is acetyl or substituted acetyl and PG' is phthaloyl or substituted phthaloyl, with a glycosyl donor having the formula:
wherein PG is acetyl or substituted acetyl and PG' is phthaloyl or substituted phthaloyl, and Q is phthaloyl, substituted phthaloyl, CI, Br, F, OAc, or C(CCI3)=NH, in the presence of a Lewis acid catalyst to give a 2-amino-2-deoxy-.beta.-D-glucopyranose derivative having the formula:

respectively wherein B is S or O;
(2) selectively deprotecting the O-linked acetate groups present in the 2-amino-2-deoxy-.beta.-D-glucopyranose derivative with ammonium hydroxide or sodium methoxide in methanol;
(3) selectively 6-O-alkylating the resulting deacetylated derivative from step (2) with an alkyl halide in the presence of a tertiary amine to form a substituted methyl, substituted ethyl, benzyl or substituted benzyl ether;
(4) selectively deprotecting the PG or PG' groups with an alkali or diamine base;

(5) simultaneously or sequentially tri-acylating the two amino groups and the position with an (R)-3-alkanoyloxyalkanoic acid or hydroxy-protected (R)-3-hydroxyalkanoic acid in the presence of a peptide coupling reagent;
(6) introducing a phosphate group onto the 4-OH position with a chlorophosphate or phosphoramidite reagent to give a phosphotriester; and (7) simultaneously or sequentially deprotecting the phosphate group, the 6-O-alkyl group, and any remaining protecting groups.
13. The method according to Claim 12 where PG' is a phthaloyl or tetrachlorophthaloyl group.
14. The method according to Claim 12 where PG is an acetyl group.
15. The method according to Claim 12 where PG' is a phthaloyl group, Q is OAc, and the Lewis acid glycosylation catalyst is stannic chloride.
16. The method according to Claim 12 where PG' is a phthaloyl group, Q is C(CCl3)=NH, and the Lewis acid catalyst is boron trifluoride etherate.
17. The method according to Claim 12 where PG' is a phthaloyl group, Q is C(CCl3)=NH, and the Lewis acid catalyst is trimethylsilyl trifluoromethanesulfonate.
18. The method according to Claim 12 where PG is an acetyl group, Q is OAc, and the Lewis acid glycosylation catalyst is boron trifluoride etherate, ferric chloride, or trimethylsilyl trifluoromethanesulfonate.
19. The method according to Claim 12 where the 6-OH protecting group is a triphenylmethyl or substituted triphenylmethyl group.
20. The method according to Claim 12 where the phthaloyl groups are removed with hydrazine hydrate, an alkyldiamine or a resin-bound alkyldiamine.
21. The method according to Claim 12 where the peptide coupling reagent used for acylation of the amino groups is 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide methiodide.
22. The method according to Claim 12 where the peptide coupling reagent used for acylation of the 3-OH position is 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide methiodide and further comprising conducting said acylation of the 3-OH position inn the presence of a 4-pyrrolidinopyridine catalyst.
23. The method according to Claim 22 wherein acylation of the amino and 3-OH groups is performed sequentially.
24. The method according to Claim 22 wherein acylation of the amino and 3-OH groups is performed simultaneously.
25. The method according to Claim 12 where the phosphate protecting group is benzyl, substituted benzyl, or t-butyl.
26. The method according to Claim 22 where the 2-amino-2-deoxy-.beta.-D-glucopyranose derivative has the formula:
27. The method according to claim 26 where the 2-amino-2-deoxy-.beta.-D-glucopyranose derivative is de-acetylated with sodium methoxide in methanol, and the resulting product is reacted with an optionally substituted triphenylmethyl chloride in the presence of a tertiary amine to give a 6-O-trityl derivative having the formula:
28. The method according to claim 26 where the 2-amino-2-deoxy-.beta.-D-glucopyranose derivative is de-acetylated with sodium methoxide in methanol and the resulting product is reacted with triphenylmethyl chloride in the presence of a tertiary amine to give a 6-O-trityl derivative having the formula:
29. The method according to claim 26 where the 6-O-trityl derivative is N-deprotected with a resin-bound alkyldiamine to form a diamino diol having the formula:
30. The method according to Claim 29 where the compound of the formula in Claim 28 is N-deprotected with aqueous barium hydroxide to form a diamino diol having the formula:
31. A compound having the formula:

wherein the subscripts n, m, p, and q are each independently an integer of from 0 to 6; R4 and R5 are independently selected from H and methyl; PG is independently Ac or optionally substituted phthaloyl; R6 and R7 are independently selected from H, OH, (C1-C4) oxyaliphatic groups, -PO3H2, -OPO3H2, -SO3H, -OSO3H, -NR15 R16, -SR15, -CN, -NO2, -CHO, -CO2R15, -CONR15R16, -PO3R15R16, -OPO3R15R16, -SO3R15 and -OSO3R15, wherein R15 and R16 are each independently selected from H and (C1-C4) aliphatic groups.
32. A compound having the formula:
CA2738235A 2002-07-08 2003-07-08 Processes for the production of aminoalkyl glucosaminide phosphate and disaccharide immunoeffectors, and intermediates therefor Expired - Lifetime CA2738235C (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US39448702P 2002-07-08 2002-07-08
US60/394,487 2002-07-08
US43858503P 2003-01-06 2003-01-06
US60/438,585 2003-01-06
CA002492446A CA2492446A1 (en) 2002-07-08 2003-07-08 Processes for the production of aminoalkyl glucosaminide phosphate and disaccharide immunoeffectors, and intermediates therefor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CA002492446A Division CA2492446A1 (en) 2002-07-08 2003-07-08 Processes for the production of aminoalkyl glucosaminide phosphate and disaccharide immunoeffectors, and intermediates therefor

Publications (2)

Publication Number Publication Date
CA2738235A1 CA2738235A1 (en) 2004-01-15
CA2738235C true CA2738235C (en) 2016-01-19

Family

ID=38324028

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2738235A Expired - Lifetime CA2738235C (en) 2002-07-08 2003-07-08 Processes for the production of aminoalkyl glucosaminide phosphate and disaccharide immunoeffectors, and intermediates therefor

Country Status (2)

Country Link
CA (1) CA2738235C (en)
ZA (1) ZA200500689B (en)

Also Published As

Publication number Publication date
CA2738235A1 (en) 2004-01-15
ZA200500689B (en) 2006-08-30

Similar Documents

Publication Publication Date Title
US7960523B2 (en) Processes for the production of aminoalkyl glucosaminide phosphate and disaccharide immunoeffectors, and intermediates therefor
JP2010285446A (en) Processes for producing aminoalkyl glucosaminide phosphate and disaccharide as immunoeffectors and intermediates therefor
EP2382226B1 (en) Process for the synthesis of l-fucosyl di- or oligosaccharides and novel 2,3,4 tribenzyl-fucosyl derivatives intermediates thereof
IE872509L (en) Sucrose derivatives
Lindberg et al. Efficient routes to glucosamine-myo-inositol derivatives, key building blocks in the synthesis of glycosylphosphatidylinositol anchor substances
JP6140830B2 (en) Method for producing α-galactosylceramide compound
CA2738235C (en) Processes for the production of aminoalkyl glucosaminide phosphate and disaccharide immunoeffectors, and intermediates therefor
Knapp et al. An ezomycin model glycosylation
US10759823B2 (en) Regioselective silyl exchange of per-silylated oligosaccharides
Lafont et al. Syntheses of neoglycolipids with hexitol spacers between the saccharidic and the lipidic parts
CN110041377B (en) Synthetic method of O-mannan core structure
WO2021054474A1 (en) Repeating disaccharide for oligosaccharide synthesis and method for producing oligomer thereof
HU217114B (en) Process for producing new monosaccharide derivatives and pharmaceutical compositions containing them
CA2431589A1 (en) C-glucosyl ether lipids
JPH02256697A (en) Lipid a monosaccharide analog
WO2002088156A1 (en) Lipid a 1-carboxylic acid derivative

Legal Events

Date Code Title Description
EEER Examination request
MKEX Expiry

Effective date: 20230710