CA2738201A1 - Axial turbomachine having asymmetrical compressor inlet guide baffle - Google Patents

Axial turbomachine having asymmetrical compressor inlet guide baffle Download PDF

Info

Publication number
CA2738201A1
CA2738201A1 CA2738201A CA2738201A CA2738201A1 CA 2738201 A1 CA2738201 A1 CA 2738201A1 CA 2738201 A CA2738201 A CA 2738201A CA 2738201 A CA2738201 A CA 2738201A CA 2738201 A1 CA2738201 A1 CA 2738201A1
Authority
CA
Canada
Prior art keywords
guide
guide vanes
inlet
air inlet
axial flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CA2738201A
Other languages
French (fr)
Inventor
Sergio Elorza Gomez
Alexander Halcoussis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MTU Aero Engines AG
Original Assignee
MTU Aero Engines GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MTU Aero Engines GmbH filed Critical MTU Aero Engines GmbH
Publication of CA2738201A1 publication Critical patent/CA2738201A1/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/54Fluid-guiding means, e.g. diffusers
    • F04D29/541Specially adapted for elastic fluid pumps
    • F04D29/542Bladed diffusers
    • F04D29/544Blade shapes

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

1. 1. An axial flow machine having an asymmetrical air inlet and, downstream therefrom, a compressor having an inlet guide baffle composed of guide vanes, wherein at least some of the guide vanes of the inlet guide baffle having a vane profile and/or an angle of attack that deviate(s) from the remaining guide vanes;
wherein a constant outflow angle is produced over the entire periphery by the inlet guide baffle.

2. The axial flow machine having an asymmetrical air inlet as recited in claim 1, wherein some or a plurality of the guide baffles following the inlet guide baffle have at least some guide vanes having a vane profile and/or an angle of attack that deviate(s) from the remaining guide vanes.

3. The axial flow machine having an asymmetrical air inlet as recited in claim 1 or 2, wherein individual guide vane groups have a vane profile and/or angles of attack that deviate(s) from the remaining guide vanes.

4. The axial flow machine having an asymmetrical air inlet as recited in claim 3, wherein the guide vanes of the particular inlet guide vane groups have vane profiles and/or angles of attack that deviate from one another.

5. The axial flow machine having an asymmetrical air inlet as recited in one of claims 1 through 4, wherein all of the guide vanes are differently profiled and/or have a different angle of attack.

6. The axial flow machine having an asymmetrical air inlet as recited in claims 1 through 5, wherein the guide vanes have an adjustable design.

7. The axial flow machine having an asymmetrical air inlet as recited in claims 1 through 6, wherein the guide vanes are formed on the inlet side of a fixed component and, on the outlet side, of a pivoted component.

8. The axial flow machine having an asymmetrical air inlet as recited in claim 6 or 7, wherein one individual control is provided in each case for some or all of the guide vanes.

Description

ENGLISH TRANSLATION OF

AXIAL TURBOMACHINE HAVING ASYMMETRICAL COMPRESSOR INLET GUIDE
BAFFLE
[0001]The present invention relates to an axial flow machine having an asymmetrical air inlet and, directly downstream therefrom, a compressor having an inlet guide baffle composed of guide vanes.
[0002] For stationary gas turbines, the European Patent Application EP 1 508 669 Al teaches that, by forming different profile curvatures of at least two inlet guide vanes, it is possible to increase the efficiency of a stationary gas turbine. The increase in the efficiency is achieved by reducing the flow losses at the inlet guide baffle.
[0003] Such axial flow machines having an asymmetrical air inlet are used as core engines in the case of turboprop or helicopter engines, for example. The asymmetry of the incident flow of the first compressor stage can cause problems related thereto, which can lead to a partial flow separation at this vane stage, along with the surging and efficiency loss resulting therefrom.
[0004] It is, therefore, an object of the present invention to avoid the disadvantages of the known related-art approaches and to devise an improved approach for achieving the most symmetrical possible incident flow of the first compressor stage in the case of an axial flow machine having an asymmetrical air inlet.

ENGLISH TRANSLATION OF
[0005] This objective is achieved in accordance with the present invention by an axial flow machine having an asymmetrical air inlet and, downstream therefrom, a compressor having an inlet guide baffle composed of guide vanes that has the features of claim 1. Advantageous embodiments and refinements of the present invention are delineated in the dependent claims.
[0006]An axial flow machine having an asymmetrical air inlet and, downstream therefrom, a compressor having an inlet guide baffle composed of guide vanes is provided in accordance with present invention, whereby at least some of the guide vanes of the inlet guide baffle have a vane profile and/or an angle of attack that deviate(s) from the remaining guide vanes. The inlet flow angle of the first compressor stage is hereby evened out circumferentially symmetrically. This is accomplished in that the different inlet angles resulting at various circumferential positions of the inlet guide baffle due to the asymmetry of the air inlet, are influenced by selective profiling and/or by selectively modifying the angle of incidence of individual guide vanes in such a way that a circumferentially symmetrical outflow angle from the inlet vane ring results. In this way, circumferential flow distortions caused by the asymmetrical air inlet are minimized and, thus, circumferentially symmetrical inlet conditions are passed onto the first compressor stage, which results in an improved stability and an enhanced efficiency of the compressor.
There may, for example, be a main guide vane group in the guide baffle that has only some individual vanes that differ from those of the group.

ENGLISH TRANSLATION OF
[0007] One advantageous specific embodiment of the present invention provides that some or a plurality of the guide baffles following the inlet guide baffle have at least some guide vanes having a vane profile and/or an angle of attack that deviate(s) from the remaining guide vanes. Due to the asymmetric profiling of the intermediate guide baffle following the inlet guide baffle, any residual asymmetries of the flow possibly still existing may be further reduced following the first stage.
[0008] One advantageous specific embodiment of the present invention provides that individual guide vane groups have a vane profile and/or angles of attack that deviate(s) from the remaining guide vanes. This makes possible an efficient production and the cost savings associated therewith. The guide vanes may be configured in a plurality of groups having different geometries, for example.
[0009] One advantageous specific embodiment of the present invention provides that the guide vanes of the particular guide vane groups have vane profiles and/or angles of attack that deviate from one another.
[0010]Another advantageous specific embodiment of the present invention provides that all guide vanes be differently profiled and/or have a different angle of attack. In this case, this means that each individual vane may be profiled in a specific way, or that the individual vanes may be re-staggered, thereby permitting an adaptation to the asymmetric incident flow.

ENGLISH TRANSLATION OF
[0011] Another advantageous specific embodiment of the present invention provides that the guide vanes have an adjustable design. The desired effect may likewise be achieved by variably adjusting at least individual vanes or vane groups, since this makes it possible to quasi selectively re-stagger individual vanes. Here, the advantage is also derived that, in the case that the flow conditions change, it is possible to follow the individual orientation of the guide baffle.
[0012]Another advantageous specific embodiment of the present invention provides that the guide vanes be formed on the inlet side of a fixed component and, on the outlet side, of a pivoted component. In this manner, even individually differing profilings may be created for individual vanes of the guide vane baffle when some or all of the vanes are suitably adjusted in a manner that differs for each individual vane.
[0013]Another advantageous specific embodiment of the present invention provides that one individual control be provided in each case for some or all of the guide vanes. This makes it possible to individually follow in the case of altered flow conditions.
[0014] The following includes a more detailed explanation of other refinements of the present invention, along with the description of a preferred exemplary embodiment of the present invention, with reference to the figures, which show:

ENGLISH TRANSLATION OF
[0015] FIG. 1: a schematic representation of an inlet guide baffle in accordance with the present invention;
[0016] FIG. 2: a schematic representation of a related-art inlet guide baffle.
[0017] FIG. 1 shows a schematic representation of a developed view of an inlet guide baffle in accordance with the present invention having multiple profiles, i.e., of individual profiling of each individual vane of the inlet guide baffle. In this manner, the vanes are adapted to the variable circumferentially asymmetric angle of incidence of the inlet guide baffle. This asymmetrical incident flow is caused by the asymmetric air inlet. The inlet guide baffle according to the present invention produces a constant outflow angle over the entire periphery, and substantially circumferentially symmetrical inlet conditions are passed onto the first compressor stage. This leads to an improved stability and an enhanced efficiency of the compressor.
[0018] FIG. 2 shows a schematic representation of a developed view of an inlet guide baffle according to the related art, having a circumferentially asymmetrical incident flow that is caused by an asymmetric air inlet. Here, the extreme left and extreme right guide vanes in the drawing plane exhibit flow separations which propagate into the downstream compressor stages and lead to unstable compressor performance, i.e., to surging. It is also discernible in FIG. 2 that the outflow angle in this case is not constant over the periphery, rather that it changes at each guide ENGLISH TRANSLATION OF

vane, which may likewise lead to unstable compressor performance and efficiency losses.
[0019]The present invention is not limited in its practical implementation to the preferred exemplary embodiment indicated above. Rather, a number of variants, which utilize the approach described in the patent claims, are conceivable, even in the context of fundamentally different executions.

Claims (8)

1. 1. An axial flow machine having an asymmetrical air inlet and, downstream therefrom, a compressor having an inlet guide baffle composed of guide vanes, wherein at least some of the guide vanes of the inlet guide baffle having a vane profile and/or an angle of attack that deviate(s) from the remaining guide vanes;
wherein a constant outflow angle is produced over the entire periphery by the inlet guide baffle.
2. The axial flow machine having an asymmetrical air inlet as recited in claim 1, wherein some or a plurality of the guide baffles following the inlet guide baffle have at least some guide vanes having a vane profile and/or an angle of attack that deviate(s) from the remaining guide vanes.
3. The axial flow machine having an asymmetrical air inlet as recited in claim 1 or 2, wherein individual guide vane groups have a vane profile and/or angles of attack that deviate(s) from the remaining guide vanes.
4. The axial flow machine having an asymmetrical air inlet as recited in claim 3, wherein the guide vanes of the particular inlet guide vane groups have vane profiles and/or angles of attack that deviate from one another.
5. The axial flow machine having an asymmetrical air inlet as recited in one of claims 1 through 4, wherein all of the guide vanes are differently profiled and/or have a different angle of attack.
6. The axial flow machine having an asymmetrical air inlet as recited in claims 1 through 5, wherein the guide vanes have an adjustable design.
7. The axial flow machine having an asymmetrical air inlet as recited in claims 1 through 6, wherein the guide vanes are formed on the inlet side of a fixed component and, on the outlet side, of a pivoted component.
8. The axial flow machine having an asymmetrical air inlet as recited in claim 6 or 7, wherein one individual control is provided in each case for some or all of the guide vanes.
CA2738201A 2008-09-29 2009-09-09 Axial turbomachine having asymmetrical compressor inlet guide baffle Pending CA2738201A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102008049358A DE102008049358A1 (en) 2008-09-29 2008-09-29 Axial flow machine with asymmetric compressor inlet guide
DE102008049358.9 2008-09-29
PCT/DE2009/001281 WO2010034285A1 (en) 2008-09-29 2009-09-09 Axial turbomachine having asymmetrical compressor inlet guide baffle

Publications (1)

Publication Number Publication Date
CA2738201A1 true CA2738201A1 (en) 2010-04-01

Family

ID=41650309

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2738201A Pending CA2738201A1 (en) 2008-09-29 2009-09-09 Axial turbomachine having asymmetrical compressor inlet guide baffle

Country Status (6)

Country Link
US (1) US20110164967A1 (en)
EP (1) EP2329150B1 (en)
CN (1) CN102165198A (en)
CA (1) CA2738201A1 (en)
DE (1) DE102008049358A1 (en)
WO (1) WO2010034285A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10502233B2 (en) 2016-01-04 2019-12-10 General Electric Company System for an inlet guide vane shroud and baffle assembly

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110110763A1 (en) * 2009-11-06 2011-05-12 Dresser-Rand Company Exhaust Ring and Method to Reduce Turbine Acoustic Signature
GB201115581D0 (en) 2011-09-09 2011-10-26 Rolls Royce Plc A turbine engine stator and method of assembly of the same
EP2623793B1 (en) 2012-02-02 2016-08-10 MTU Aero Engines GmbH Flow machine with blade row
US9194301B2 (en) 2012-06-04 2015-11-24 United Technologies Corporation Protecting the operating margin of a gas turbine engine having variable vanes from aerodynamic distortion
JP6097194B2 (en) * 2013-10-09 2017-03-15 三菱重工業株式会社 Air machine
US20150198163A1 (en) * 2014-01-15 2015-07-16 Honeywell International Inc. Turbocharger With Twin Parallel Compressor Impellers And Having Center Housing Features For Conditioning Flow In The Rear Impeller
US10378554B2 (en) * 2014-09-23 2019-08-13 Pratt & Whitney Canada Corp. Gas turbine engine with partial inlet vane
US10145301B2 (en) 2014-09-23 2018-12-04 Pratt & Whitney Canada Corp. Gas turbine engine inlet
US9938848B2 (en) 2015-04-23 2018-04-10 Pratt & Whitney Canada Corp. Rotor assembly with wear member
US9957807B2 (en) 2015-04-23 2018-05-01 Pratt & Whitney Canada Corp. Rotor assembly with scoop
FR3040448B1 (en) * 2015-09-02 2018-07-13 Safran Aircraft Engines SECONDARY FLOW RECTIFIER SECONDARY FLOW OF A DOUBLE FLOW TURBOMACHINE
US10253779B2 (en) 2016-08-11 2019-04-09 General Electric Company Inlet guide vane assembly for reducing airflow swirl distortion of an aircraft aft fan
US10252790B2 (en) 2016-08-11 2019-04-09 General Electric Company Inlet assembly for an aircraft aft fan
US10259565B2 (en) 2016-08-11 2019-04-16 General Electric Company Inlet assembly for an aircraft aft fan
US10704418B2 (en) 2016-08-11 2020-07-07 General Electric Company Inlet assembly for an aircraft aft fan
US10724540B2 (en) 2016-12-06 2020-07-28 Pratt & Whitney Canada Corp. Stator for a gas turbine engine fan
US10690146B2 (en) 2017-01-05 2020-06-23 Pratt & Whitney Canada Corp. Turbofan nacelle assembly with flow disruptor
CN107420349B (en) * 2017-09-14 2019-03-01 西安交通大学 It is a kind of prewhirl under the conditions of low flow losses centrifugal compressor entry guide vane structure design method
FR3081521B1 (en) * 2018-05-24 2021-05-14 Safran Aircraft Engines TURBOMACHINE VANE OF WHICH SECTIONS HAVE A DOWNSTREAM PORTION OF REDUCED THICKNESS
CN113944655B (en) * 2020-07-17 2023-07-07 广东美的白色家电技术创新中心有限公司 Flow guiding device of dust collector and dust collector

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3765623A (en) * 1971-10-04 1973-10-16 Mc Donnell Douglas Corp Air inlet
FR2205927A5 (en) * 1972-11-08 1974-05-31 Bertin & Cie
US3861822A (en) * 1974-02-27 1975-01-21 Gen Electric Duct with vanes having selectively variable pitch
GB2046849A (en) * 1979-04-17 1980-11-19 Rolls Royse Ltd Turbomachine strut
FR2586268B1 (en) * 1985-08-14 1989-06-09 Snecma DEVICE FOR VARIATION OF THE PASSAGE SECTION OF A TURBINE DISTRIBUTOR
DE10053361C1 (en) * 2000-10-27 2002-06-06 Mtu Aero Engines Gmbh Blade grid arrangement for turbomachinery
JP2004100553A (en) * 2002-09-09 2004-04-02 Mitsubishi Heavy Ind Ltd Stationary blade structure of rotary machine
GB2401654B (en) * 2003-05-14 2006-04-19 Rolls Royce Plc A stator vane assembly for a turbomachine
GB0314123D0 (en) * 2003-06-18 2003-07-23 Rolls Royce Plc A gas turbine engine
EP1508669B1 (en) 2003-08-19 2007-03-21 Siemens Aktiengesellschaft Stator vanes ring for a compressor and a turbine
KR101070903B1 (en) * 2004-08-19 2011-10-06 삼성테크윈 주식회사 Turbine having variable vane
US7114911B2 (en) * 2004-08-25 2006-10-03 General Electric Company Variable camber and stagger airfoil and method
GB2426555A (en) * 2005-05-28 2006-11-29 Siemens Ind Turbomachinery Ltd Turbocharger air intake
US7549839B2 (en) * 2005-10-25 2009-06-23 United Technologies Corporation Variable geometry inlet guide vane

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10502233B2 (en) 2016-01-04 2019-12-10 General Electric Company System for an inlet guide vane shroud and baffle assembly

Also Published As

Publication number Publication date
CN102165198A (en) 2011-08-24
WO2010034285A1 (en) 2010-04-01
US20110164967A1 (en) 2011-07-07
EP2329150B1 (en) 2018-03-21
EP2329150A1 (en) 2011-06-08
DE102008049358A1 (en) 2010-04-01

Similar Documents

Publication Publication Date Title
CA2738201A1 (en) Axial turbomachine having asymmetrical compressor inlet guide baffle
RU2586426C2 (en) Stator of axial turbo machine with ailerons in blade roots
EP2256299B1 (en) Deflector for a gas turbine strut and vane assembly
US7118331B2 (en) Stator vane assembly for a turbomachine
US9091174B2 (en) Method of reducing asymmetric fluid flow effects in a passage
RU2549387C2 (en) Blade with airfoil and axial turbomachine
CA2814090C (en) Twisted variable inlet guide vane
US8132417B2 (en) Cooling of a gas turbine engine downstream of combustion chamber
WO2017015743A1 (en) Integrated strut-vane nozzle (isv) with uneven vane axial chords
US20130209246A1 (en) Gas turbine annular diffusor
KR20140114757A (en) Nozzle ring with non-uniformly distributed airfoils and uniform throat area
JP2012031864A (en) Low-pressure steam turbine and method for operating the same
RU2581262C2 (en) Turbomachine
US20100254809A1 (en) Steam turbine stage
RU2651103C2 (en) Compressor assembly for turbomachine, turbomachine and method for controlling the prewhirl grid of the compressor assembly
EP3020952B1 (en) Gas turbine engine duct with profiled region
US10508661B2 (en) Gas turbine compressor
EP3020951A1 (en) Gas turbine engine duct with profiled region
JP2011058498A (en) Axial turbine and method for discharging flow from the same
CA2936579A1 (en) Turbine section with tip flow vanes
RU2632350C2 (en) Rectifier of gas-turbine engine with vanes of improved profile
CN110475948B (en) Gas turbine
CN111305909A (en) Supercharged stator blade construction method, supercharged stator blade and aircraft engine
US10570743B2 (en) Turbomachine having an annulus enlargment and airfoil
CN103511008A (en) Diffuser for turbomachines

Legal Events

Date Code Title Description
EEER Examination request

Effective date: 20140619