CA2662299A1 - A method and system for extending operational electronic range of a vehicle - Google Patents
A method and system for extending operational electronic range of a vehicle Download PDFInfo
- Publication number
- CA2662299A1 CA2662299A1 CA002662299A CA2662299A CA2662299A1 CA 2662299 A1 CA2662299 A1 CA 2662299A1 CA 002662299 A CA002662299 A CA 002662299A CA 2662299 A CA2662299 A CA 2662299A CA 2662299 A1 CA2662299 A1 CA 2662299A1
- Authority
- CA
- Canada
- Prior art keywords
- airborne vehicle
- maritime vessel
- ship
- uav
- electromagnetic transmissions
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 32
- 230000005540 biological transmission Effects 0.000 claims description 23
- 238000004891 communication Methods 0.000 claims description 14
- 238000004458 analytical method Methods 0.000 claims description 8
- 238000012545 processing Methods 0.000 claims description 7
- 238000001514 detection method Methods 0.000 claims description 5
- 238000002592 echocardiography Methods 0.000 claims description 2
- 230000002093 peripheral effect Effects 0.000 claims description 2
- 238000011084 recovery Methods 0.000 description 6
- 230000004044 response Effects 0.000 description 6
- 238000005259 measurement Methods 0.000 description 5
- 230000006399 behavior Effects 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000004913 activation Effects 0.000 description 2
- 230000001427 coherent effect Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 230000005670 electromagnetic radiation Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000036278 prepulse Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 238000012549 training Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/14—Relay systems
- H04B7/15—Active relay systems
- H04B7/185—Space-based or airborne stations; Stations for satellite systems
- H04B7/18502—Airborne stations
- H04B7/18504—Aircraft used as relay or high altitude atmospheric platform
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F41—WEAPONS
- F41H—ARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
- F41H11/00—Defence installations; Defence devices
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04K—SECRET COMMUNICATION; JAMMING OF COMMUNICATION
- H04K3/00—Jamming of communication; Counter-measures
- H04K3/20—Countermeasures against jamming
- H04K3/28—Countermeasures against jamming with jamming and anti-jamming mechanisms both included in a same device or system, e.g. wherein anti-jamming includes prevention of undesired self-jamming resulting from jamming
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04K—SECRET COMMUNICATION; JAMMING OF COMMUNICATION
- H04K2203/00—Jamming of communication; Countermeasures
- H04K2203/10—Jamming or countermeasure used for a particular application
- H04K2203/22—Jamming or countermeasure used for a particular application for communication related to vehicles
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04K—SECRET COMMUNICATION; JAMMING OF COMMUNICATION
- H04K2203/00—Jamming of communication; Countermeasures
- H04K2203/30—Jamming or countermeasure characterized by the infrastructure components
- H04K2203/34—Jamming or countermeasure characterized by the infrastructure components involving multiple cooperating jammers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04K—SECRET COMMUNICATION; JAMMING OF COMMUNICATION
- H04K3/00—Jamming of communication; Counter-measures
- H04K3/40—Jamming having variable characteristics
- H04K3/45—Jamming having variable characteristics characterized by including monitoring of the target or target signal, e.g. in reactive jammers or follower jammers for example by means of an alternation of jamming phases and monitoring phases, called "look-through mode"
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04K—SECRET COMMUNICATION; JAMMING OF COMMUNICATION
- H04K3/00—Jamming of communication; Counter-measures
- H04K3/60—Jamming involving special techniques
- H04K3/65—Jamming involving special techniques using deceptive jamming or spoofing, e.g. transmission of false signals for premature triggering of RCIED, for forced connection or disconnection to/from a network or for generation of dummy target signal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04K—SECRET COMMUNICATION; JAMMING OF COMMUNICATION
- H04K3/00—Jamming of communication; Counter-measures
- H04K3/80—Jamming or countermeasure characterized by its function
- H04K3/82—Jamming or countermeasure characterized by its function related to preventing surveillance, interception or detection
- H04K3/825—Jamming or countermeasure characterized by its function related to preventing surveillance, interception or detection by jamming
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Aviation & Aerospace Engineering (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Astronomy & Astrophysics (AREA)
- General Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Traffic Control Systems (AREA)
- Radar Systems Or Details Thereof (AREA)
- Selective Calling Equipment (AREA)
- Control Of Eletrric Generators (AREA)
- Steering Control In Accordance With Driving Conditions (AREA)
Abstract
A method and system for extending the electronic operational range of a slow vehicle, such as a ship, by using a remotely controlled unmanned faster vehicle, such as an Unmanned Aerial Vehicle (UAV), and by way of example a remotely controlled drone. More particularly, the present invention relates to a method and system for extending the Electronic Warfare (EW) support for a ship.
Description
A METHOD AND SYSTEM FOR EXTENDING
OPERATIONAL ELECTRONIC RANGE OF A VEHICLE
FIELD OF THE INVENTION
The present invention relates generally to telecorrununications and in particular to a method and system for telecommunications in electronic warfare.
SACKGROUND OF THE INVENTION
Slow vehicles, such as a ship, are typically easy to detect due to their large signature, slow speed and limited maneuverability - all are causes making them easy to hunt, for example, from the air. Ships are also limited in their Line Of Sight (LOS) dependent warning means, such as RADAR or Electronic Intelligence (Elint) Measures to the horizon range (typically few tens of kilometers). Thus, an early alert is hard to achieve.
It is therefore desirable to enhance the capabilities of a ship to avoid being located by a remote sensor, and to extend the range of early alert by extending the range of its detection means. This remote sensor may typically be associated with emission of electromagnetic radiation, e.g., from the sensor itself or from the vehicle on which it is mounted, and therefore may be regarded as an emitter.
Typically a ship would have a set of receivers whose antennas would be mounted as close as possible to the tip of its mast (so as to extend the line of sight).
These receivers would be searching the frequency ranges of radiation from the known emitters and gauge their directions and ranges. Typically, in hostile situations a ship would be reluctaiit to activate its radar and thus announce its presence. As soon as an emitter is detected, the ship would activate countermeasure, such as shooting a chaff rocket to explode a certain distance between the emitter and the ship. The chaff would bloom and stay for a period of time and would act as a decoy, luring the emitter away from the ship, which could then maneuver away under some screening countermeasures. Alternatively, the ship could similarly shoot an active decoy rocket. At the same time the ship could also employ its on-board active countermeasures to transmit signals to confuse or jam the sensor.
The actual parameters of these countermeasures are very complex and may depend on the ship movements, the wind conditions, the sensor technology, the sensor location and direction and many other parameters. A wrong decision may not only decrease the effectiveness of the protection but actually assist the hostile sensor in homing onto the ship.
Decisions regarding the activation of countermeasures must be taken, implemented and deployed in the very short time between the alarm being given and the actual hit.
Limitations for extending the period of time available for the management of countermeasures include the short range of the horizon (LOS), the difficulty in quick assessment of the actual location of the emitter and the very short time for proper deployment of the countermeasures. It is therefore advantageous to provide system and method for extending the actual LOS of the countermeasure systems of a ship and to improve the ability of a ship to identify the location of an emitter while remaining at a safe distance.
SUMMARY OF THE INVENTION
The present invention discloses a system, device and method for improving the capabilities of a ship to avoid, evade, or escape an attack by a remotely launched faster object, which object may emit electromagnetic radiation, e.g., an emitter.
There is also disclosed a system, device and method for extending the electronic horizon of a ship, including a long range, long endurance, Urunanned Aerial Vehicle (UAV) designed and operated according to embodiments of the present invention. The UAV may be controlled and operated from the protected ship. The UAV may further be adapted to perform most or all of its tasks in a partially or fully autonomous mode so as to continue servicing even when operational communication with its ship is deteriorated or completely disconnected. The UAV may be equipped with enouglz energy source such as fuel, with electronic systems providing passive and / or active electronic warfare (EW) capabilities, including sensor decoy and deception and with search and acquire capabilities, to serve as an electronic extension of the on-board sensors of the ship. The UAV may further be equipped with navigation and location systems, as well as with communication systems for supporting accomplishing its maiii goals.
BRIEF DESCRIPTION OF THE FIGURES
The present invention will be understood and appreciated more fully from the following detailed description taken in conjunction with the figures in which:
OPERATIONAL ELECTRONIC RANGE OF A VEHICLE
FIELD OF THE INVENTION
The present invention relates generally to telecorrununications and in particular to a method and system for telecommunications in electronic warfare.
SACKGROUND OF THE INVENTION
Slow vehicles, such as a ship, are typically easy to detect due to their large signature, slow speed and limited maneuverability - all are causes making them easy to hunt, for example, from the air. Ships are also limited in their Line Of Sight (LOS) dependent warning means, such as RADAR or Electronic Intelligence (Elint) Measures to the horizon range (typically few tens of kilometers). Thus, an early alert is hard to achieve.
It is therefore desirable to enhance the capabilities of a ship to avoid being located by a remote sensor, and to extend the range of early alert by extending the range of its detection means. This remote sensor may typically be associated with emission of electromagnetic radiation, e.g., from the sensor itself or from the vehicle on which it is mounted, and therefore may be regarded as an emitter.
Typically a ship would have a set of receivers whose antennas would be mounted as close as possible to the tip of its mast (so as to extend the line of sight).
These receivers would be searching the frequency ranges of radiation from the known emitters and gauge their directions and ranges. Typically, in hostile situations a ship would be reluctaiit to activate its radar and thus announce its presence. As soon as an emitter is detected, the ship would activate countermeasure, such as shooting a chaff rocket to explode a certain distance between the emitter and the ship. The chaff would bloom and stay for a period of time and would act as a decoy, luring the emitter away from the ship, which could then maneuver away under some screening countermeasures. Alternatively, the ship could similarly shoot an active decoy rocket. At the same time the ship could also employ its on-board active countermeasures to transmit signals to confuse or jam the sensor.
The actual parameters of these countermeasures are very complex and may depend on the ship movements, the wind conditions, the sensor technology, the sensor location and direction and many other parameters. A wrong decision may not only decrease the effectiveness of the protection but actually assist the hostile sensor in homing onto the ship.
Decisions regarding the activation of countermeasures must be taken, implemented and deployed in the very short time between the alarm being given and the actual hit.
Limitations for extending the period of time available for the management of countermeasures include the short range of the horizon (LOS), the difficulty in quick assessment of the actual location of the emitter and the very short time for proper deployment of the countermeasures. It is therefore advantageous to provide system and method for extending the actual LOS of the countermeasure systems of a ship and to improve the ability of a ship to identify the location of an emitter while remaining at a safe distance.
SUMMARY OF THE INVENTION
The present invention discloses a system, device and method for improving the capabilities of a ship to avoid, evade, or escape an attack by a remotely launched faster object, which object may emit electromagnetic radiation, e.g., an emitter.
There is also disclosed a system, device and method for extending the electronic horizon of a ship, including a long range, long endurance, Urunanned Aerial Vehicle (UAV) designed and operated according to embodiments of the present invention. The UAV may be controlled and operated from the protected ship. The UAV may further be adapted to perform most or all of its tasks in a partially or fully autonomous mode so as to continue servicing even when operational communication with its ship is deteriorated or completely disconnected. The UAV may be equipped with enouglz energy source such as fuel, with electronic systems providing passive and / or active electronic warfare (EW) capabilities, including sensor decoy and deception and with search and acquire capabilities, to serve as an electronic extension of the on-board sensors of the ship. The UAV may further be equipped with navigation and location systems, as well as with communication systems for supporting accomplishing its maiii goals.
BRIEF DESCRIPTION OF THE FIGURES
The present invention will be understood and appreciated more fully from the following detailed description taken in conjunction with the figures in which:
Figure 1 is a schematic block diagram of a system designed, built and operable according to einbodiments of the present invention;
Figure 2 is a schematic diagram of a movement pattern of a UAV around a ship in accordance with embodiments of the present invention; and Figure 3 is a schematic diagram of a movement pattern of a UAV around a ship in accordance with embodiments of the present invention.
It will be appreciated that for simplicity and clarity of illustration, elements shown in the figures have not necessarily been drawn to scale. For example, the dimensions of some of the elements may be exaggerated relative to other elements for clarity.
Further, where considered appropriate, reference numerals may be repeated among the figures to indicate corresponding or analogous elements.
DETAILED DESCRIPTION OF THE INVENTION
Reference is made to Fig. 1, which is a schematic block diagram of system 10 according to embodiments of the present invention. System 10 may comprise two main sub-systems 20 and 30 associated respectively with a ship and a UAV.
Subsystem (ship) 20 may comprise UAV launch and land unit 21, an emitter location unit 22 interfacing to the ship EW suite, a System Controller unit 25, interfacing with the ship navigation system and the ship C41 system and recharge and maintain unit 24, and a data link unit 26. System controller 25 may be adapted to collect data from all connected units and to control system 10 when the control is made from the ship. Launch and land unit 21, emitter location (EL) unit 22, and data link unit 26 may be in active connection with system controller 25. Launch and land unit 21 may comprise all required facilities to support launching and landing the UAV from and back to ship 20. Emitter location unit 22 may comprise processing means in active communication with data relating to nature and location of emitters referring to the ship. Data relating to these emitters may be received from any available source, for example, from receivers and processing means of the ship and specifically from the ship's electronic warfare (EW) suite, and from data received and/or processed by the UAV. One of the roles of emitter location unit 22 may be identification of emitter position and invoking a suitable indication.
Figure 2 is a schematic diagram of a movement pattern of a UAV around a ship in accordance with embodiments of the present invention; and Figure 3 is a schematic diagram of a movement pattern of a UAV around a ship in accordance with embodiments of the present invention.
It will be appreciated that for simplicity and clarity of illustration, elements shown in the figures have not necessarily been drawn to scale. For example, the dimensions of some of the elements may be exaggerated relative to other elements for clarity.
Further, where considered appropriate, reference numerals may be repeated among the figures to indicate corresponding or analogous elements.
DETAILED DESCRIPTION OF THE INVENTION
Reference is made to Fig. 1, which is a schematic block diagram of system 10 according to embodiments of the present invention. System 10 may comprise two main sub-systems 20 and 30 associated respectively with a ship and a UAV.
Subsystem (ship) 20 may comprise UAV launch and land unit 21, an emitter location unit 22 interfacing to the ship EW suite, a System Controller unit 25, interfacing with the ship navigation system and the ship C41 system and recharge and maintain unit 24, and a data link unit 26. System controller 25 may be adapted to collect data from all connected units and to control system 10 when the control is made from the ship. Launch and land unit 21, emitter location (EL) unit 22, and data link unit 26 may be in active connection with system controller 25. Launch and land unit 21 may comprise all required facilities to support launching and landing the UAV from and back to ship 20. Emitter location unit 22 may comprise processing means in active communication with data relating to nature and location of emitters referring to the ship. Data relating to these emitters may be received from any available source, for example, from receivers and processing means of the ship and specifically from the ship's electronic warfare (EW) suite, and from data received and/or processed by the UAV. One of the roles of emitter location unit 22 may be identification of emitter position and invoking a suitable indication.
Recharge and maintain unit 24 may provide for required support for the operating of the UAV prior to its launching and after its return from a mission. These may comprise fueling or charging of batteries, programming of operational parameters, testing and - if necessary - replacement or repair of UAV sub-systems and preparing the UAV for launch.
System controller 25 may comprise computation and memory resources for supporting calculation of ship and UAV location and synchronization of same;
emitter behavior scenario identification capability to identify evolving emitter behavior scenario, to allocate an emitter to a UAV and to select pull-away maneuvers; UAV replace capability to attend to a situation when replacement of a UAV is required, to establish and display to an operator the system status, the UAV status and emitters status; to receive instructions, for example, from an operator, to accept and to carry out such instructions; to record predefined events during operation of the system and make them available for notification or viewing concurrently, or store them and make them available for debriefmg of the operations at a later time, for maintenance and for training. System controller 25 may have access to any available source of information on board, such as, for example, Ship Navigation Bus, etc.
Emitter location (EL) unit 22 may comprise processing means adapted to correlate data residing in the UAV with the EW suit of the ship, to compute location of detected emitting sources including those identified as relevant to the ship and to produce warning of the position of an emitter passing into a defined boundary. Emitter location (EL) unit 22 may comprise of a fast processor and software, an interface to the ship EW suite and an interface with system controller 25.
Launch and land unit 21 may comprise facilities required for supporting pre-launch operations (such as pre-flight testing, battery charging, and the like), launch operations (such as loading updates, catapulting, and the like), landing operations, and after-flight operations.
In operation, system 10 may operate according to several operational modes.
According to one operational mode in accordance with embodiments of the present invention, system 10 may be adapted to provide EW protection to ship 20. In this mode UAV
30 may be operated to maintain a peripheral electronic screen around ship 20 in order to reduce, eliminate, minimize, or prevent emitters from relying on the ship's electronic signature and/or electronic control in order to target ship 20. In this operational mode UAV 30 may be operated at a relatively low altitude above sea level. Once an emitter is identified, for example, by the surveillance systems on board of ship 20 or by those carried by UAV 30, an appropriate scenario of emitter's behavior is calculated and UAV 30 may execute active measures in response to the emitter's behavior such as recording the emitter signals, and retransmitting them amplified and modulated to simulate Radar echoes coming from a ship.
In another operational mode, system 10 may be operated to emulate a tall mast for the ship by operating UAV 30 at higher level, typically 3000 feet or higher, near ship 20, thus virtually extending the surveillance-carrying mast to the height of flight of UAV 30 and respectively extending the electronic horizon of ship 20. While operating in this mode, the EW receivers carried by UAV 30 may receive and detect emissions of suspected emitters and report them to system controller 25. In this mode, electronic countermeasures (ECM) of UAV
30 may be selectively deactivated, or in some embodiments, selectively removable from UAV 30 in order to extend its free payload for other missions. Information collected by the receivers of system 10 regarding location of relevant emitters may be extracted by any method. According to some embodiments, multiple readings of the energy received by the emitter may be collected from different locations of UAV 30 and/or ship 20 by a directional receiver, and then the location of the emitter may be calculated based on plurality of readings from such receiver.
In yet another operational mode, system 10 may operate plurality of UAVs 30, emulating multiple tall masts located in different locations. This operational mode may be beneficial, for example, by permitting calculation of the location of an emitter, or energy signature indicating an emitter, may be carried out in a shorter period of time and preferably with higher accuracy. In some embodiments, UAVs 30 may transmit to ship 20 data regarding the energy signature received from a suspicious emitter, and ship 20 may receive data from the plurality of UAVs 30 and perform the calculation of the precise location, e.g., distance and direction, velocity, acceleration, direction of travel, etc., of the emitter.
UAV 30 may be any kind of unmanned air vehicle, for example, an electrically powered, fully autonomous platform. UAV 30 may comprise a central computer 35, a controllable gimbals facility 32, a navigation sensors unit 33 a payload unit 34 and data link unit 36.
In operation, central computer 35 may control UAV 30 while in flight and during pre-flight and after flight periods as may be desired. As part of this structure, central computer 35 may control substantially all or most of the subsystems of UAV 30, for example, a controllable gimbals facility 32 to keep the orientation of antennas of UAV 30 in a desired position regardless of the UAV 30 maneuvers, a navigation sensors unit 33, a payload unit 34 and data link unit 36. UAV 30 may be fully autonomous in flight. UAV 30 may receive signals from its associated ship 20. These signals may include information regarding the location of ship 20 and commands relating to the operations to be taken by UAV
30, such as what flight pattern should be followed, what is the current mode of operation, what emitter signatures to seek, etc. Central computer 35 may be adapted to continuously track the location of ship 20 and of UAV 30, and using this data, to calculate accordingly the next-to-be-performed flight pattern, including compensating for drifts due to wind, etc.
Payload unit 34 may be adapted to carry, operate, and launch any kind of operational warfare measures carried by UAV 30. For example, payload unit 34 may be built to provide for a replaceable, add-on warfare measures, which may be installed on UAV 30 or removed to allow for installation of a different warfare measures. Payload unit 34 may be adapted to various tasks. For example, when used for EW operation, payload unit 34 may comprise at least one set of transmit and receive antennas, a wide band receiver, an RF
memory module, an ECM technique generator, and a power amplifier. In this configuration, payload unit 34 may be adapted to cover a range of 360 degrees in the horizontal plane and at least a range of 30 degrees in the elevation plane. The elevation operational range is adapted to compensate also for spatial maneuvers of UAV 30. UAV 30 may be adapted to automatically or semi-automatically receive incoming RF signals, identify them, associate them with type and location of the transmitter, store in memory the analyzed information, and report it to ship 20.
Data link unit 36 in UAV 30 and data link unit 26 in ship 20 may be constructed and adapted to support all communications between ship 20 and UAV 30.
Communication between data link unit 26 and data link unit 36 may be used to convey, for example, information regarding status of UAV 30 and payload unit 34, information containing control commands from ship 20 to UAV 30, and particularly, to payload unit 34, information supporting Take Off and Landing (TOL) processes.
Payload unit 34 may be adapted to handle various missions. One such mission may be transmissions of electronic countermeasures (ECM). Any available technique for electronic transmission which may be incorporated into payload 34 and that may stand the weight limitations deducted from UAV 30 operational limitations; may be used. Payload 34, when performing countermeasures of electronic transmissions, may comprise electronic surveillance measures (ESM), ECM and Radar Warning Receiver (RWR). In ECM
mode, operation payload 34 may provide, additionally to the ECM capabilities, also long-range analysis of the electronic order of battle (EOB) of the scene around ship 20.
In some embodiments of the invention, in ECM mode of operation payload 34 may provide high probability of intercept (POI) of a detected emitter, e.g., up to 100%;
handling of all relevant emitter types; precise measurement of parameters such as frequencies, pulse modulations etc.
of the emitter. Payload 34 may provide for operation in a dense electromagnetic (EM) environment and serve advanced combat scenarios such as serving a nunlber of simultaneous emitters, handling highly maneuvering emitters, dealing with complex waveforms emitters, etc.; automatic signal analysis, acquisition and emitter identification;
coherent and non-coherent techniques generation for deception and / or disruption of an emitter; directional technique transmission; integration capability with the on-board ESM of ship 20; automatic and/or reinotely controlled ECM activation and ECM program selection.
In embodiments of the invention, in ECM operational mode, payload 34 may provide fast and efficient off-board deception and disruption of hostile sensors for self defense; high POI over the horizon of ship 20, reception and identification of emitters at long distances in order to enliance the situation awareness picture and to provide range and direction of the emitter; measurement of coarse direction of arrival (DOA) and data collection for precise DOA and location measurement, for EOB orientation and targeting purposes. In some embodiments of the system according to the present invention, location measurement may be performed by utilizing DOA calculation from more than one UAV 30. In some embodiments of the invention, detection of radar signals may be carried out by utilizing instantaneous direction finding (DF) and digital receiving techniques. Received RADAR pulses may be converted into pulse descriptors (PDW) which may be used for signal interception and analysis on board UAV 30; forwarding of received signals converted into PDW to ship 20 for fiuther processing; computation of further accurate DOA on board of ship 20 by considering of PDW received from more than one UAV 30 by using Time of Arrival (TOA) algorithm.
By identifying and locating all of the currently existing emitters, close and remote from ship 20, UAV 30 may be adapted to interface with EW system of ship 20 for enhancement and fusion of EOB infonnation.
In ECM operational mode, interception, analysis and identification of RADAR
signals by UAV 30 may be carried out with very high probability of intercept. Payload 34 may provide emitter identification, for example, in accordance with UAV 30 on-board library of emitters, for example, stored in on-board memory. Tlus information may be used for EOB
System controller 25 may comprise computation and memory resources for supporting calculation of ship and UAV location and synchronization of same;
emitter behavior scenario identification capability to identify evolving emitter behavior scenario, to allocate an emitter to a UAV and to select pull-away maneuvers; UAV replace capability to attend to a situation when replacement of a UAV is required, to establish and display to an operator the system status, the UAV status and emitters status; to receive instructions, for example, from an operator, to accept and to carry out such instructions; to record predefined events during operation of the system and make them available for notification or viewing concurrently, or store them and make them available for debriefmg of the operations at a later time, for maintenance and for training. System controller 25 may have access to any available source of information on board, such as, for example, Ship Navigation Bus, etc.
Emitter location (EL) unit 22 may comprise processing means adapted to correlate data residing in the UAV with the EW suit of the ship, to compute location of detected emitting sources including those identified as relevant to the ship and to produce warning of the position of an emitter passing into a defined boundary. Emitter location (EL) unit 22 may comprise of a fast processor and software, an interface to the ship EW suite and an interface with system controller 25.
Launch and land unit 21 may comprise facilities required for supporting pre-launch operations (such as pre-flight testing, battery charging, and the like), launch operations (such as loading updates, catapulting, and the like), landing operations, and after-flight operations.
In operation, system 10 may operate according to several operational modes.
According to one operational mode in accordance with embodiments of the present invention, system 10 may be adapted to provide EW protection to ship 20. In this mode UAV
30 may be operated to maintain a peripheral electronic screen around ship 20 in order to reduce, eliminate, minimize, or prevent emitters from relying on the ship's electronic signature and/or electronic control in order to target ship 20. In this operational mode UAV 30 may be operated at a relatively low altitude above sea level. Once an emitter is identified, for example, by the surveillance systems on board of ship 20 or by those carried by UAV 30, an appropriate scenario of emitter's behavior is calculated and UAV 30 may execute active measures in response to the emitter's behavior such as recording the emitter signals, and retransmitting them amplified and modulated to simulate Radar echoes coming from a ship.
In another operational mode, system 10 may be operated to emulate a tall mast for the ship by operating UAV 30 at higher level, typically 3000 feet or higher, near ship 20, thus virtually extending the surveillance-carrying mast to the height of flight of UAV 30 and respectively extending the electronic horizon of ship 20. While operating in this mode, the EW receivers carried by UAV 30 may receive and detect emissions of suspected emitters and report them to system controller 25. In this mode, electronic countermeasures (ECM) of UAV
30 may be selectively deactivated, or in some embodiments, selectively removable from UAV 30 in order to extend its free payload for other missions. Information collected by the receivers of system 10 regarding location of relevant emitters may be extracted by any method. According to some embodiments, multiple readings of the energy received by the emitter may be collected from different locations of UAV 30 and/or ship 20 by a directional receiver, and then the location of the emitter may be calculated based on plurality of readings from such receiver.
In yet another operational mode, system 10 may operate plurality of UAVs 30, emulating multiple tall masts located in different locations. This operational mode may be beneficial, for example, by permitting calculation of the location of an emitter, or energy signature indicating an emitter, may be carried out in a shorter period of time and preferably with higher accuracy. In some embodiments, UAVs 30 may transmit to ship 20 data regarding the energy signature received from a suspicious emitter, and ship 20 may receive data from the plurality of UAVs 30 and perform the calculation of the precise location, e.g., distance and direction, velocity, acceleration, direction of travel, etc., of the emitter.
UAV 30 may be any kind of unmanned air vehicle, for example, an electrically powered, fully autonomous platform. UAV 30 may comprise a central computer 35, a controllable gimbals facility 32, a navigation sensors unit 33 a payload unit 34 and data link unit 36.
In operation, central computer 35 may control UAV 30 while in flight and during pre-flight and after flight periods as may be desired. As part of this structure, central computer 35 may control substantially all or most of the subsystems of UAV 30, for example, a controllable gimbals facility 32 to keep the orientation of antennas of UAV 30 in a desired position regardless of the UAV 30 maneuvers, a navigation sensors unit 33, a payload unit 34 and data link unit 36. UAV 30 may be fully autonomous in flight. UAV 30 may receive signals from its associated ship 20. These signals may include information regarding the location of ship 20 and commands relating to the operations to be taken by UAV
30, such as what flight pattern should be followed, what is the current mode of operation, what emitter signatures to seek, etc. Central computer 35 may be adapted to continuously track the location of ship 20 and of UAV 30, and using this data, to calculate accordingly the next-to-be-performed flight pattern, including compensating for drifts due to wind, etc.
Payload unit 34 may be adapted to carry, operate, and launch any kind of operational warfare measures carried by UAV 30. For example, payload unit 34 may be built to provide for a replaceable, add-on warfare measures, which may be installed on UAV 30 or removed to allow for installation of a different warfare measures. Payload unit 34 may be adapted to various tasks. For example, when used for EW operation, payload unit 34 may comprise at least one set of transmit and receive antennas, a wide band receiver, an RF
memory module, an ECM technique generator, and a power amplifier. In this configuration, payload unit 34 may be adapted to cover a range of 360 degrees in the horizontal plane and at least a range of 30 degrees in the elevation plane. The elevation operational range is adapted to compensate also for spatial maneuvers of UAV 30. UAV 30 may be adapted to automatically or semi-automatically receive incoming RF signals, identify them, associate them with type and location of the transmitter, store in memory the analyzed information, and report it to ship 20.
Data link unit 36 in UAV 30 and data link unit 26 in ship 20 may be constructed and adapted to support all communications between ship 20 and UAV 30.
Communication between data link unit 26 and data link unit 36 may be used to convey, for example, information regarding status of UAV 30 and payload unit 34, information containing control commands from ship 20 to UAV 30, and particularly, to payload unit 34, information supporting Take Off and Landing (TOL) processes.
Payload unit 34 may be adapted to handle various missions. One such mission may be transmissions of electronic countermeasures (ECM). Any available technique for electronic transmission which may be incorporated into payload 34 and that may stand the weight limitations deducted from UAV 30 operational limitations; may be used. Payload 34, when performing countermeasures of electronic transmissions, may comprise electronic surveillance measures (ESM), ECM and Radar Warning Receiver (RWR). In ECM
mode, operation payload 34 may provide, additionally to the ECM capabilities, also long-range analysis of the electronic order of battle (EOB) of the scene around ship 20.
In some embodiments of the invention, in ECM mode of operation payload 34 may provide high probability of intercept (POI) of a detected emitter, e.g., up to 100%;
handling of all relevant emitter types; precise measurement of parameters such as frequencies, pulse modulations etc.
of the emitter. Payload 34 may provide for operation in a dense electromagnetic (EM) environment and serve advanced combat scenarios such as serving a nunlber of simultaneous emitters, handling highly maneuvering emitters, dealing with complex waveforms emitters, etc.; automatic signal analysis, acquisition and emitter identification;
coherent and non-coherent techniques generation for deception and / or disruption of an emitter; directional technique transmission; integration capability with the on-board ESM of ship 20; automatic and/or reinotely controlled ECM activation and ECM program selection.
In embodiments of the invention, in ECM operational mode, payload 34 may provide fast and efficient off-board deception and disruption of hostile sensors for self defense; high POI over the horizon of ship 20, reception and identification of emitters at long distances in order to enliance the situation awareness picture and to provide range and direction of the emitter; measurement of coarse direction of arrival (DOA) and data collection for precise DOA and location measurement, for EOB orientation and targeting purposes. In some embodiments of the system according to the present invention, location measurement may be performed by utilizing DOA calculation from more than one UAV 30. In some embodiments of the invention, detection of radar signals may be carried out by utilizing instantaneous direction finding (DF) and digital receiving techniques. Received RADAR pulses may be converted into pulse descriptors (PDW) which may be used for signal interception and analysis on board UAV 30; forwarding of received signals converted into PDW to ship 20 for fiuther processing; computation of further accurate DOA on board of ship 20 by considering of PDW received from more than one UAV 30 by using Time of Arrival (TOA) algorithm.
By identifying and locating all of the currently existing emitters, close and remote from ship 20, UAV 30 may be adapted to interface with EW system of ship 20 for enhancement and fusion of EOB infonnation.
In ECM operational mode, interception, analysis and identification of RADAR
signals by UAV 30 may be carried out with very high probability of intercept. Payload 34 may provide emitter identification, for example, in accordance with UAV 30 on-board library of emitters, for example, stored in on-board memory. Tlus information may be used for EOB
awareness when it is forwarded to ship 20 and further fused with such information received from additional UAVs 30; ECM program allocation and selection of ECM
techniques in payload 34; and setting on signal tracking units in payload 34.
In ECM mode of operation, payload 34 may measure DOA of received RADAR
signals. This information may be used, for example, for signal analysis and tracking support, for providing information for the EOB picture, for decisions of ECM response, for directing the ECM response, and the like. Information extracted during this analysis may, for example, be used for providing warning or an emitter for adapting ECM policy against a detected emitter in accordance with a pre-programmed emitter scenario library. In this arrangement, payload 34 may respond to an emitter immediately and autonomously without waiting for the Central Coiitroller or human operator instructions. In some embodiments of the invention, this information may further be used for selection of appropriate electronic counter measures in accordance with a pre-progra.mmed library of ECM scenarios. Payload 34 may then respond, when enabled, autonomously to a detected emitter, or abort response if an emitter has been identified as non-hostile. In case of non continuous signals, several signals may use the transmitter with per-pulse transmission steering switching.
In some enibodiments of the invention, payload 34, when acting in ECM mode, may include a panoramic reception array of antennas with substantially 360 degrees of azimuth coverage and A-30 degrees in elevation; a channelized receiver for measurement of angle of arrival (AOA) of received RADAR signal, frequency of said siglzal, time of arrival (TOA), pulse width (PW), inter-pulse phase and frequency coding and of amplitude, etc.; an acquisition and signal tracking hardware which may handle signal storing and tracking; an omni directional reception antenna; a digital radio frequency memory (DRFM) based response channel adapted to digitize a received signal, store it in RF digital memory, reconstruct it, and perform signal manipulation and apply techniques in accordance with control signal from the technique generator; a fast switching transmitter capable of pre-pulse switching of signal to an antenna; and a computing unit adapted to analyze data, identify emitters and manage EW techniques and communication autonomously or in conjunction with the ship.
UAV 30 may be built of suitable materials, such as composite materials, and equipped with suitable thrust means, for example, it may be electrically powered. UAV 30 may be designed and built to operate either fully autonomously or in conjunction with ship 20. UAV 30 may be adapted to be capable to be launched from and land on ship 20. UAV 30 may be capable of staying long periods in air, for example over 4 hours, and may operate at an operational ceiling of 12,000 feet or higher. Operational speeds of UAV 30 may be, for example, between 20 to 80 knots and maximum climb rate may be planned to about 1000 feet per minute. UAV 30 on-board systems may be adapted to provide, continuously or on-demand, data reflecting UAV 30 position, speed, altitude, etc., as well as to monitor and provide data indicative of the operational status of on-board systems of UAV
30. UAV 30 may be equipped with electrical propulsion means. Launching and landing facilities of UAV
30 may support automatic launching mode.
UAV 30 may be provided with automatic recovery functionality. This functionality may provide for quick return of UAV 30 to operation after the end of a session of operation.
Such recovery may be dependent upon various factors such as size of ship, sea and wind conditions, operational conditions and the like. Many modes of recovery may be supported.
Numerous modes of recovery may be used. For example, net recovery may be used, as taught in US Patent Number 3,980,259, European Patent Publication No. 1 602 576 A2, US Patent Application Publication No. 2005/0230535, or other suitable modes of recovery.
The position of a UAV 30 with respect to location of ship 20 may be maintained according one of several modes. Attention is made now to Fig. 2, which is a schematic illustration of fixed location maneuver according to some embodiments of the present invention. UAV 30 may be assigned substantially a fixed position, e.g., distance and direction, with respect to ship 20, which may be maintained by UAV 30 substantially at all times. Thus, during portion 1 of travel of ship 20, UAV 30 may remain at a fixed distance and direction from the ship. UAV 30 may adjust its velocity in response to changing conditions to manage the flight plan. Since UAV 30 may be, under certain circumstances faster than ship 20, its location with respect to ship 20 may be kept constant by maneuvering around the required fix point in tight circles or similar maneuvers so as to keep the required fixed location on the average.
Another position mode may be the `round about' mode. Reference is made to Fig.
3, which is a schematic illustration of a method of maintaining position of a UAV
30 with respect to ship 20 according some embodiments of the present invention. In the mode depicted, each active UAV 30 may circle around ship 20 in a pattern maintaining UAV 30 in a substantially fixed distance R from ship 20 by performing a curved pattern around ship 20 the shape of which depends on the speed and direction of ship 20, as well as possibly on the speed of UAV 30 and its flight conditions. If ship 20 is moving in such a way that, combined with the prevalent wind, UAV 30 can maintain its position relative to the ship when flying along substantially straight lines, then no circling is required. If however, this combined speed is below the minimum operational speed of UAV 30, e.g., when the prevalent wind is a strong tail wind relative to UAV 30, then the position of UAV 30 relative to ship 20 may be maintained by flying along pattern 35, such that the distance from the ship is substantially constant.
While certain features of the invention have been illustrated and described herein, many modifications, substitutions, changes, and equivalents will now occur to those of ordinary skill in the art. It is, therefore, to be understood that the appended claims are intended to cover all such modifications and changes as fall within the true spirit of the invention.
techniques in payload 34; and setting on signal tracking units in payload 34.
In ECM mode of operation, payload 34 may measure DOA of received RADAR
signals. This information may be used, for example, for signal analysis and tracking support, for providing information for the EOB picture, for decisions of ECM response, for directing the ECM response, and the like. Information extracted during this analysis may, for example, be used for providing warning or an emitter for adapting ECM policy against a detected emitter in accordance with a pre-programmed emitter scenario library. In this arrangement, payload 34 may respond to an emitter immediately and autonomously without waiting for the Central Coiitroller or human operator instructions. In some embodiments of the invention, this information may further be used for selection of appropriate electronic counter measures in accordance with a pre-progra.mmed library of ECM scenarios. Payload 34 may then respond, when enabled, autonomously to a detected emitter, or abort response if an emitter has been identified as non-hostile. In case of non continuous signals, several signals may use the transmitter with per-pulse transmission steering switching.
In some enibodiments of the invention, payload 34, when acting in ECM mode, may include a panoramic reception array of antennas with substantially 360 degrees of azimuth coverage and A-30 degrees in elevation; a channelized receiver for measurement of angle of arrival (AOA) of received RADAR signal, frequency of said siglzal, time of arrival (TOA), pulse width (PW), inter-pulse phase and frequency coding and of amplitude, etc.; an acquisition and signal tracking hardware which may handle signal storing and tracking; an omni directional reception antenna; a digital radio frequency memory (DRFM) based response channel adapted to digitize a received signal, store it in RF digital memory, reconstruct it, and perform signal manipulation and apply techniques in accordance with control signal from the technique generator; a fast switching transmitter capable of pre-pulse switching of signal to an antenna; and a computing unit adapted to analyze data, identify emitters and manage EW techniques and communication autonomously or in conjunction with the ship.
UAV 30 may be built of suitable materials, such as composite materials, and equipped with suitable thrust means, for example, it may be electrically powered. UAV 30 may be designed and built to operate either fully autonomously or in conjunction with ship 20. UAV 30 may be adapted to be capable to be launched from and land on ship 20. UAV 30 may be capable of staying long periods in air, for example over 4 hours, and may operate at an operational ceiling of 12,000 feet or higher. Operational speeds of UAV 30 may be, for example, between 20 to 80 knots and maximum climb rate may be planned to about 1000 feet per minute. UAV 30 on-board systems may be adapted to provide, continuously or on-demand, data reflecting UAV 30 position, speed, altitude, etc., as well as to monitor and provide data indicative of the operational status of on-board systems of UAV
30. UAV 30 may be equipped with electrical propulsion means. Launching and landing facilities of UAV
30 may support automatic launching mode.
UAV 30 may be provided with automatic recovery functionality. This functionality may provide for quick return of UAV 30 to operation after the end of a session of operation.
Such recovery may be dependent upon various factors such as size of ship, sea and wind conditions, operational conditions and the like. Many modes of recovery may be supported.
Numerous modes of recovery may be used. For example, net recovery may be used, as taught in US Patent Number 3,980,259, European Patent Publication No. 1 602 576 A2, US Patent Application Publication No. 2005/0230535, or other suitable modes of recovery.
The position of a UAV 30 with respect to location of ship 20 may be maintained according one of several modes. Attention is made now to Fig. 2, which is a schematic illustration of fixed location maneuver according to some embodiments of the present invention. UAV 30 may be assigned substantially a fixed position, e.g., distance and direction, with respect to ship 20, which may be maintained by UAV 30 substantially at all times. Thus, during portion 1 of travel of ship 20, UAV 30 may remain at a fixed distance and direction from the ship. UAV 30 may adjust its velocity in response to changing conditions to manage the flight plan. Since UAV 30 may be, under certain circumstances faster than ship 20, its location with respect to ship 20 may be kept constant by maneuvering around the required fix point in tight circles or similar maneuvers so as to keep the required fixed location on the average.
Another position mode may be the `round about' mode. Reference is made to Fig.
3, which is a schematic illustration of a method of maintaining position of a UAV
30 with respect to ship 20 according some embodiments of the present invention. In the mode depicted, each active UAV 30 may circle around ship 20 in a pattern maintaining UAV 30 in a substantially fixed distance R from ship 20 by performing a curved pattern around ship 20 the shape of which depends on the speed and direction of ship 20, as well as possibly on the speed of UAV 30 and its flight conditions. If ship 20 is moving in such a way that, combined with the prevalent wind, UAV 30 can maintain its position relative to the ship when flying along substantially straight lines, then no circling is required. If however, this combined speed is below the minimum operational speed of UAV 30, e.g., when the prevalent wind is a strong tail wind relative to UAV 30, then the position of UAV 30 relative to ship 20 may be maintained by flying along pattern 35, such that the distance from the ship is substantially constant.
While certain features of the invention have been illustrated and described herein, many modifications, substitutions, changes, and equivalents will now occur to those of ordinary skill in the art. It is, therefore, to be understood that the appended claims are intended to cover all such modifications and changes as fall within the true spirit of the invention.
Claims (22)
1. A method of obtaining information by a maritime vessel comprising the steps of:
causing an airborne vehicle to orbit in a controlled pattern with respect to said maritime vessel;
establishing a communication link between said maritime vessel and said airborne vehicle;
receiving electromagnetic transmissions at said airborne vehicle; and providing to said maritime vessel via said communication link information pertaining to said received electromagnetic transmissions.
causing an airborne vehicle to orbit in a controlled pattern with respect to said maritime vessel;
establishing a communication link between said maritime vessel and said airborne vehicle;
receiving electromagnetic transmissions at said airborne vehicle; and providing to said maritime vessel via said communication link information pertaining to said received electromagnetic transmissions.
2. The method of claim 1, further comprising analyzing at said airborne vehicle received transmissions for identifying a property of an emitter of said electromagnetic transmissions, and wherein said information pertaining to said received electromagnetic transmissions includes information based on said analysis.
3. The method of claim 2, comprising providing said information to an electronic warfare (EW) suite associated with said maritime vessel.
4. The method of claim 2, comprising invoking a warning based on said analysis.
5. The method of claim 1, comprising launching said unmanned airborne vehicle.
6. The method of claim 1, comprising landing said unmanned airborne vehicle.
7. The method of claim 1, comprising receiving at the airborne vehicle commands from a navigation system associated with said maritime vessel.
8. The method of claim 1, further comprising using said airborne vehicle to maintain a peripheral electronic screen around said maritime vessel.
9. The method of claim 1, wherein providing to said maritime vessel information pertaining to said received electromagnetic transmissions comprises retransmitting to said maritime vessel said received electromagnetic transmissions.
10. The method of claim 9, comprising amplifying and modulating said received electromagnetic transmissions to simulate radar echoes prior to retransmitting said received electromagnetic transmissions.
11 11. The method of claim 1, wherein said causing an airborne vehicle to orbit in a controlled pattern with respect to said maritime vessel comprises maintaining a substantially fixed position with respect to said maritime vessel.
12. The method of claim 1, wherein said causing an airborne vehicle to orbit in a controlled pattern with respect to said maritime vessel comprises circling about said maritime vessel in a circle having substantially fixed radius.
13. An unmanned airborne vehicle comprising:
a detection module for detecting electromagnetic transmissions;
a processing module for analyzing said electromagnetic transmissions and identifying a property of a source of said electromagnetic transmission; and a communication module for establishing a communication link with a maritime vessel and transmitting to said vessel notification of said identified source.
a detection module for detecting electromagnetic transmissions;
a processing module for analyzing said electromagnetic transmissions and identifying a property of a source of said electromagnetic transmission; and a communication module for establishing a communication link with a maritime vessel and transmitting to said vessel notification of said identified source.
14. The airborne vehicle of claim 13 further comprising a payload unit adapted to carry operational warfare measures.
15. The airborne vehicle of claim 14, wherein said operational warfare measures include at least one measure selected from the list of measures consisting of electronic surveillance measures, electronic countermeasures, and radar warning measures.
16. The airborne vehicle of claim 14, wherein said payload unit includes a panoramic reception array of antennas with substantially 360 degrees of azimuth coverage.
17. The airborne vehicle of claim 16, wherein said array of antennas has coverage of ~30 degrees in elevation.
18. A system for providing enhanced information to a maritime vessel comprising:
an unmanned airborne vehicle, including a detection module for detecting electromagnetic transmissions at the airborne vehicle, a processing module for analyzing said electromagnetic transmissions and identifying a property of a source of said electromagnetic transmissions, and a communication module for establishing a communication link with said maritime vessel and transmitting to said vessel notification of said source identified at said airborne vehicle; and launching and landing modules associated with said maritime vessel for respectively launching and landing said unmanned airborne vehicle.
an unmanned airborne vehicle, including a detection module for detecting electromagnetic transmissions at the airborne vehicle, a processing module for analyzing said electromagnetic transmissions and identifying a property of a source of said electromagnetic transmissions, and a communication module for establishing a communication link with said maritime vessel and transmitting to said vessel notification of said source identified at said airborne vehicle; and launching and landing modules associated with said maritime vessel for respectively launching and landing said unmanned airborne vehicle.
19. The system of claim 18, wherein said airborne vehicle further includes operational warfare measures including at least one measure selected from the list of measures consisting of electronic surveillance measures, electronic countermeasures, and radar warning measures.
20. The system of claim 19, further comprising an electronic warfare (EW) suite associated with said maritime vessel for receiving notification of said source identified at said airborne vehicle.
21. The system of claim 18, further comprising a navigation system associated with said maritime vessel for sending commands to said airborne vehicle.
22. The system of claim 18, further comprising a second unmanned airborne vehicle, including a second detection module for detecting electromagnetic transmissions at the second airborne vehicle, a second processing module for analyzing said electromagnetic transmissions at the second airborne vehicle and identifying a property of a source of said electromagnetic transmissions, and a second communication module for establishing a communication link with said maritime vessel and transmitting to said vessel notification of said property of said source identified at said second airborne vehicle; and launching and landing modules associated with said maritime vessel for respectively launching and landing said second airborne vehicle.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
IL177948 | 2006-09-07 | ||
IL177948A IL177948A (en) | 2006-09-07 | 2006-09-07 | Method and system for extending operational electronic range of a vehicle |
PCT/IL2007/000944 WO2008029384A1 (en) | 2006-09-07 | 2007-07-29 | A method and system for extending operational electronic range of a vehicle |
Publications (2)
Publication Number | Publication Date |
---|---|
CA2662299A1 true CA2662299A1 (en) | 2008-03-13 |
CA2662299C CA2662299C (en) | 2013-09-24 |
Family
ID=38522059
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA2662299A Active CA2662299C (en) | 2006-09-07 | 2007-07-29 | A method and system for extending operational electronic range of a vehicle |
Country Status (8)
Country | Link |
---|---|
US (1) | US8115665B2 (en) |
EP (1) | EP2064819B1 (en) |
AT (1) | ATE481779T1 (en) |
AU (1) | AU2007293004B2 (en) |
CA (1) | CA2662299C (en) |
DE (1) | DE602007009269D1 (en) |
IL (1) | IL177948A (en) |
WO (1) | WO2008029384A1 (en) |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IL177948A (en) * | 2006-09-07 | 2011-02-28 | Elbit Systems Ltd | Method and system for extending operational electronic range of a vehicle |
US8366037B2 (en) | 2009-05-22 | 2013-02-05 | Heliplane, Llc | Towable aerovehicle system with automated tow line release |
US9456185B2 (en) | 2009-08-26 | 2016-09-27 | Geotech Environmental Equipment, Inc. | Helicopter |
US8540183B2 (en) * | 2009-12-12 | 2013-09-24 | Heliplane, Llc | Aerovehicle system including plurality of autogyro assemblies |
US8699615B2 (en) | 2010-06-01 | 2014-04-15 | Ultra Electronics Tcs Inc. | Simultaneous communications jamming and enabling on a same frequency band |
US8646719B2 (en) * | 2010-08-23 | 2014-02-11 | Heliplane, Llc | Marine vessel-towable aerovehicle system with automated tow line release |
US8774982B2 (en) * | 2010-08-26 | 2014-07-08 | Leptron Industrial Robotic Helicopters, Inc. | Helicopter with multi-rotors and wireless capability |
US8788119B2 (en) * | 2010-12-09 | 2014-07-22 | The Boeing Company | Unmanned vehicle and system |
AU2013204965B2 (en) | 2012-11-12 | 2016-07-28 | C2 Systems Limited | A system, method, computer program and data signal for the registration, monitoring and control of machines and devices |
EP3098990A1 (en) * | 2015-05-26 | 2016-11-30 | Elettronica S.p.A. | Electronic warfare system with data link communications capabilities |
US10207590B2 (en) | 2015-10-15 | 2019-02-19 | T-Mobile Usa, Inc. | Dynamic wireless communications network with a plurality of aerial drones |
US11430332B2 (en) | 2016-09-02 | 2022-08-30 | FLIR Belgium BVBA | Unmanned aerial system assisted navigational systems and methods |
WO2018045354A2 (en) * | 2016-09-02 | 2018-03-08 | FLIR Belgium BVBA | Unmanned aerial system assisted navigational systems and methods |
NO343285B1 (en) * | 2016-11-02 | 2019-01-14 | Birdview As | Drone |
NO344746B1 (en) * | 2016-12-21 | 2020-04-06 | Rolls Royce Marine As | Method, system and device for maritime pilotage |
US10885797B2 (en) | 2017-04-17 | 2021-01-05 | International Business Machines Corporation | Methods and systems for managing drones with drone operating parameters |
CN107168098B (en) * | 2017-05-12 | 2020-04-07 | 中国人民解放军海军航空工程学院 | Electronic countermeasure simulation system |
KR102078359B1 (en) * | 2018-01-26 | 2020-02-17 | 국방과학연구소 | Covert jamming apparatus using fake ack frame injection and method thereof |
GB2572842B (en) * | 2018-02-12 | 2021-10-13 | FLIR Belgium BVBA | Unmanned aerial system assisted navigational systems and methods |
US10848253B1 (en) * | 2018-06-14 | 2020-11-24 | Rockwell Collins, Inc. | System and method for historical radio performance analysis or visualization |
US20200049815A1 (en) * | 2018-08-09 | 2020-02-13 | GM Global Technology Operations LLC | Angular localization via controlled motion of radar system |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1471583A (en) * | 1974-04-03 | 1977-04-27 | British Aircraft Corp Ltd | Aircraft recovery means and method |
WO2000000842A1 (en) * | 1998-06-27 | 2000-01-06 | Dornier Gmbh | Method for simulating echo signals for doppler radar systems |
US6874729B1 (en) * | 1999-07-23 | 2005-04-05 | Advanced Aerospace Technologies, Inc. | Launch and recovery system for unmanned aerial vehicles |
EP1233905B1 (en) * | 1999-07-23 | 2008-06-11 | Advanced Aerospace Technologies, Inc. | Launch and recovery system for unmanned aerial vehicles |
US6422506B1 (en) * | 2000-10-12 | 2002-07-23 | The United States Of America As Represented By The Secretary Of The Navy | Towed airborne array system |
WO2003059735A2 (en) * | 2001-12-21 | 2003-07-24 | Arlton Paul E | Micro-rotocraft surveillance system |
US20040134337A1 (en) * | 2002-04-22 | 2004-07-15 | Neal Solomon | System, methods and apparatus for mobile software agents applied to mobile robotic vehicles |
US20040068416A1 (en) * | 2002-04-22 | 2004-04-08 | Neal Solomon | System, method and apparatus for implementing a mobile sensor network |
US7299130B2 (en) * | 2003-12-12 | 2007-11-20 | Advanced Ceramic Research, Inc. | Unmanned vehicle |
US7097136B2 (en) * | 2004-04-13 | 2006-08-29 | Lockheed Martin Corporation | Immersible unmanned air vehicle and system for launch, recovery, and re-launch at sea |
IL162224A (en) | 2004-05-30 | 2011-03-31 | Rafael Advanced Defense Sys | Unmanned aerial vehicle (uav) deceleration system |
US7509212B2 (en) * | 2005-01-24 | 2009-03-24 | International Business Machines Corporation | Enabling services on a UAV |
IL177948A (en) * | 2006-09-07 | 2011-02-28 | Elbit Systems Ltd | Method and system for extending operational electronic range of a vehicle |
USH2254H1 (en) * | 2007-11-26 | 2011-06-07 | United States Of America As Represented By The Secretary Of The Navy | Floating platform for remote basing |
IL191445A (en) * | 2008-05-14 | 2012-08-30 | Elbit Systems Ew And Sigint Elisra Ltd | Aircraft decoy arrangement |
-
2006
- 2006-09-07 IL IL177948A patent/IL177948A/en active IP Right Grant
-
2007
- 2007-07-29 AU AU2007293004A patent/AU2007293004B2/en active Active
- 2007-07-29 US US12/438,631 patent/US8115665B2/en active Active
- 2007-07-29 EP EP07789999A patent/EP2064819B1/en active Active
- 2007-07-29 DE DE602007009269T patent/DE602007009269D1/en active Active
- 2007-07-29 WO PCT/IL2007/000944 patent/WO2008029384A1/en active Application Filing
- 2007-07-29 CA CA2662299A patent/CA2662299C/en active Active
- 2007-07-29 AT AT07789999T patent/ATE481779T1/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
IL177948A (en) | 2011-02-28 |
EP2064819A1 (en) | 2009-06-03 |
AU2007293004B2 (en) | 2011-04-14 |
US20090251354A1 (en) | 2009-10-08 |
EP2064819B1 (en) | 2010-09-15 |
ATE481779T1 (en) | 2010-10-15 |
IL177948A0 (en) | 2007-07-04 |
DE602007009269D1 (en) | 2010-10-28 |
WO2008029384A1 (en) | 2008-03-13 |
US8115665B2 (en) | 2012-02-14 |
CA2662299C (en) | 2013-09-24 |
AU2007293004A1 (en) | 2008-03-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2662299C (en) | A method and system for extending operational electronic range of a vehicle | |
US5378155A (en) | Combat training system and method including jamming | |
US5228854A (en) | Combat training system and method | |
CN110855936A (en) | Low-altitude unmanned monitoring system | |
EP2239595B1 (en) | Device, system and method of protecting aircrafts against incoming threats | |
US8550817B2 (en) | Trajectory simulation system utilizing dynamic target feedback that provides target position and movement data | |
US6283756B1 (en) | Maneuver training system using global positioning satellites, RF transceiver, and laser-based rangefinder and warning receiver | |
EP1629300B1 (en) | System and method for locating a target and guiding a vehicle toward the target | |
US6584879B2 (en) | System and method for disabling time critical targets | |
EP2527865B1 (en) | System, device and method of protecting aircrafts against incoming missiles and threats | |
US20200064443A1 (en) | Method of identifying and neutralizing low-altitude unmanned aerial vehicle | |
KR20200021872A (en) | Method for identifying and neutralizaing low altitude unmanned aircraft | |
US20110196551A1 (en) | System and method for situation specific generation and assessment of risk profiles and start of suitable action for protection of vehicles | |
KR101748305B1 (en) | Low Altitude Unmanned Aircraft Surveillance System | |
CN114508966B (en) | Air-ground combined multi-level interception follow-up defense system | |
KR20130009891A (en) | Complex unmanned aerial vehicle system for low and high-altitude | |
KR20130009893A (en) | Auto-docking system for complex unmanned aeriel vehicle | |
CN117705116A (en) | Unmanned aerial vehicle laser navigation system and method | |
RU179821U1 (en) | AUTOMATED GUIDANCE AND FIRE CONTROL SYSTEM OF RUNNING INSTALLATION OF REACTIVE SYSTEM OF VOLUME FIRE (OPTIONS) | |
KR20200021871A (en) | Low Altitude Unmanned Aircraft Surveillance System | |
WO2002084201A1 (en) | Maneuver training system using global positioning satellites, rf transceiver, and laser-based rangefinder and warning receiver | |
US20030076488A1 (en) | Device and method for detecting flying objects | |
RU2820064C2 (en) | Unmanned aerial ultraviolet solar-blind optical-electronic system for automatic target reconnaissance for armored vehicles | |
Cameron | Unmanned aerial vehicle technology | |
US3430233A (en) | Apparatus for detecting the presence and location of ground acoustic information from an aircraft |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EEER | Examination request |