CA2652975A1 - Gene methylation in cancer diagnosis - Google Patents

Gene methylation in cancer diagnosis Download PDF

Info

Publication number
CA2652975A1
CA2652975A1 CA002652975A CA2652975A CA2652975A1 CA 2652975 A1 CA2652975 A1 CA 2652975A1 CA 002652975 A CA002652975 A CA 002652975A CA 2652975 A CA2652975 A CA 2652975A CA 2652975 A1 CA2652975 A1 CA 2652975A1
Authority
CA
Canada
Prior art keywords
methylation
seq
dna
halp
cancer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002652975A
Other languages
French (fr)
Inventor
Jared Ordway
Jeffrey A. Jeddeloh
Joseph Bedell
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orion Genomics LLC
Original Assignee
Orion Genomics Llc
Jared Ordway
Jeffrey A. Jeddeloh
Joseph Bedell
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Orion Genomics Llc, Jared Ordway, Jeffrey A. Jeddeloh, Joseph Bedell filed Critical Orion Genomics Llc
Publication of CA2652975A1 publication Critical patent/CA2652975A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/154Methylation markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/14Heterocyclic carbon compound [i.e., O, S, N, Se, Te, as only ring hetero atom]
    • Y10T436/142222Hetero-O [e.g., ascorbic acid, etc.]
    • Y10T436/143333Saccharide [e.g., DNA, etc.]

Abstract

The present invention provides DNA marker sequences that are differentially methylated in samples from normal individuals and individuals with breast cancer, including ductal carcinoma. The invention further provides methods of identifying differentially methylated DNA marker sequences and their use the detection and diagnosis of breast cancer.

Description

GENE METHYLATION IN CANCER DIAGNOSIS
CROSS-REFERENCE TO RELATED PATENT APPLICATIONS
[0001] The present application claims benefit of priority to U.S. Provisional Patent application No. 60/803,571, filed May 31, 2006, and U.S. Provisional Patent application No.
60/848,543, filed September 28, 2006, each of which are incorporated by reference in their entirety.

BACKGROUND OF THE INVENTION
[0002] Human cancer cells typically contain somatically altered genomes, characterized by mutation, amplification, or deletion of critical genes. In addition, the DNA
template from human cancer cells often displays somatic changes in DNA methylation. See, e.g., E. R.
Fearon, et al, Cell 61:759 (1990); P. A. Jones, et al., CancerRes. 46:461 (1986); R. Holliday, Science 238:163 (1987); A. De Bustros, et al., Proc. Natl. Acad. Sci. USA
85:5693 (1988);
P. A. Jones, et al., Adv. CancerRes. 54:1 (1990); S. B. Baylin, et al_, Cancer Cells 3:383 (1991); M. Makos, et al., Proc. Natl. Acad Sci. USA 89:1929 (1992); N. Ohtani-Fujita, et al., Oncogene 8:1063 (1993).
[0003] DNA methylases transfer methyl groups from the universal methyl donor S-adenosyl methionine to specific sites on the DNA. Several biological functions have been attributed to the methylated bases in DNA. The most established biological function is the protection of the DNA from digestion by cognate restriction enzymes. This restriction modification phenomenon has, so far, been observed only in bacteria.
[0004] Mammalian cells, however, possess different methylases that exclusively methylate cytosine residues on the DNA that are 5' neighbors of guanine (CpG). This methylation has been shown by several lines of evidence to play a role in gene activity, cell differentiation, tumorigenesis, X-chromosome inactivation, genomic imprinting and other major biological processes (Razin, A., H., and Riggs, R. D. eds. in DNA Methylation Biochemistry and Biological Significance, Springer-Verlag, N.Y., 1984).
[0005] In eukaryotic cells, methylation of cytosine residues that are immediately 5' to a guanosine, occurs predominantly in CG poor loci (Bird, A., Nature 321:209 (1986)). In contrast, discrete regions of CG dinucleotides called CG islands (CGi) remain unmethylated I

in normal cells, except during X-chromosome inactivation and parental specific imprinting (Li, et al., Nature 366:362 (1993)) where methylation of 5' regulatory regions can lead to transcriptional repression. For example, de novo methylation of the Rb gene has been demonstrated in a small fraction of retinoblastomas (Sakai, et al., Am. J.
Hum. Genet., 48:880 (1991)), and a more detailed analysis of the VHL gene showed aberrant methylation in a subset of sporadic renal cell carcinomas (Herman, et al., Proc. Natl. Acad.
Sci. U.S.A., 91:9700 (1994)). Expression of a tumor suppressor gene can also be abolished by de novo DNA methylation of a normally unmethylated 5' CG island. See, e.g., Issa, et al., Nature Genet. 7:536 (1994); Merlo, et al., Nature Med. 1:686 (1995); Herman, et al., Cancer Res., 56:722 (1996); Graff, et al., Cancer Res., 55:5195 (1995); Herman, et al., Cancer Res.
55:4525 (1995).
[0006] Identification of the earliest genetic and epigenetic changes in tumorigenesis is a major focus in molecular cancer research. Diagnostic approaches based on identification of these changes can allow implementation of early detection strategies, tumor staging and novel therapeutic approaclies targeting these early changes, leading to more effective cancer treatment. The present invention addresses these and other problems.

BRIEF SUMMARY OF THE INVENTION
[0007] The present invention provides methods for determining the methylation status of an individual. In one aspect, the methods comprise:
obtaining a biological sample from an individual; and determining the methylation status of at least one cytosine within a DNA
region in a sample from the individual where the DNA region is a SEQ ID NO:
selected from the group consisting of 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, and 265.
[0008] In a further aspect, the methods comprise determining the presence or absence of cancer (including but not limited to breast, lung, renal, liver, ovarian, head and neck, thyroid, bladder, cervical, colon, endometrial, esophageal, or prostate cancer or melanoma) in an individual.
[0009] In some embodiments, the methods comprise:

a) determining the methylation status of at least one cytosine within a DNA
region in a sample from an individual where the DNA region is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to, or comprises, a sequence selected from the group consisting of SEQ ID NOs: 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, and 265;
b) comparing the methylation status of the at least one cytosine to a threshold value for the biomarker, wherein the threshold value distinguishes between individuals with and without cancer, wherein the comparison of the methylation status to the threshold value is predictive of the presence or absence of cancer in the individual.
[0010] In some embodiments, the methods comprise:
a) determining the methylation status of at least one cytosine within a DNA
region in a sample from an individual where the DNA region is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to, or comprises, a sequence selected from the group consisting of SEQ ID NOs: 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, '242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259,'260, 261, 262, 263, 264, and 265;
b) comparing the methylation status of the at least one cytosine to a threshold value for the biomarker, wherein the threshold value distinguishes between individuals with and without breast cancer, wherein the comparison of the methylation status to the threshold value is predictive of the presence or absence of breast cancer in the individual.

In some embodiments, the methods comprise:
a) determining the methylation status of at least one cytosine within a DNA
region in a sample from an individual where the DNA region is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to, or comprises, a sequence selected from the group consisting of SEQ ID NOs: 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, and 265;
b) comparing the methylation status of the at least one cytosine to a threshold value for the biomarker, wherein the threshold value distinguishes between individuals with and without lung cancer, wherein the comparison of the methylation status to the threshold value is predictive of the presence or absence of lung cancer in the individual.

[00111 In some embodiments, the methods comprise:
a) determining the methylation status of at least one cytosine within a DNA
region in a sample from an individual where the DNA region is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to, or comprises, a sequence selected from the group consisting of SEQ ID NOs: 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, and 265;
b) comparing the methylation status of the at least one cytosine to a threshold value for the biomarker, wherein the threshold value distinguishes between individuals with and without renal cancer, wherein the comparison of the methylation status to the threshold value is predictive of the presence or absence of renal cancer in the individual.

[0012] In some embodiments, the'methods comprise:
a) determining the methylation status of fat least one cytosine within a DNA
region in a sample from an individual where the DNA region is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to, or comprises, a sequence selected from the group consisting of SEQ ID NOs: 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, and 265;
b) comparing the methylation status of the at least one cytosine to a threshold value for the biomarker, wherein the threshold value distinguishes between individuals with and without liver cancer, wherein the comparison of the methylation status to the threshold value is predictive of the presence or absence of liver cancer in the individual.

[0013] In some embodiments, the methods comprise:
a) determining the methylation status of at least one cytosine within a DNA
region in a sample from an individual where the DNA region is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to, or comprises, a sequence selected from the group consisting of SEQ ID NOs: 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, and 265;
b) comparing the methylation status of the at least one cytosine to a threshold value for the biomarker, wherein the threshold value distinguishes between individuals with and without ovarian cancer, wherein the comparison of the methylation status to the threshold value is predictive of the presence or absence of ovarian cancer in the individual.

[0014] In some embodiments, the methods comprise:
a) determining the methylation status of at least one cytosine within a DNA
region in a sample from an individual where the DNA region is at least 90%, 91%, 92%, . 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to, or comprises, a sequence selected from the group consisting of SEQ ID NOs: 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, and 265;
b) comparing the methylation status of the at least one cytosine to a threshold value for the biomarker, wherein the threshold value distinguishes between individuals with and without head and neck cancer, wherein the comparison of the methylation status to the threshold value is predictive of the presence or absence of head and neck cancer in the individual.
[0015] In some embodiments, the methods comprise:
a) determining the methylation status of at least one cytosine within a DNA
region in a sample from an individual where the DNA region is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to, or comprises, a sequence selected from the group consisting of SEQ ID NOs: 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, and 265;
b) comparing the methylation status of the at least one cytosine to a threshold value for the biomarker, wherein the threshold value distinguishes between individuals with and without tliyroid cancer, wherein the comparison of the methylation status to the threshold value is predictive of the presence or absence of thyroid cancer in the individual.

[0016] In some embodiments, the methods comprise:

a) determining the methylation status of at least one cytosine within a DNA
region in a sample from an individual where the DNA region is at least 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to, or'comprises, a sequence selected from the group consisting of SEQ ID NOs: 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, and 265;
b) comparing the methylation status of the at least one cytosine to a threshold value for the biomarker, wherein the threshold value distinguishes between individuals with and without bladder cancer, wherein the comparison of the methylation status to the threshold value is predictive of the presence or absence of bladder cancer in the individual.
[0017] In some embodiments, the methods comprise:
a) determining the methylation status of at least one cytosine within a DNA
region in a sample from an individual where the DNA region is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to, or comprises, a sequence selected from the group consisting of SEQ ID NOs: 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, and 265;
b) comparing the methylation status of the at least one cytosine to a threshold value for the biomarker, wherein the threshold value distinguishes between individuals with and without cervical cancer, wherein the comparison of the methylation status to the threshold value is predictive of the presence or absence of cervical cancer in the individual.
[0018] In some embodiments, the methods comprise:
a) determining the methylation status of at least one cytosine within a DNA
region in a sample from an individual where the DNA region is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to, or comprises, a sequence selected from the group consisting of SEQ ID NOs: 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, and 265;
b) comparing the methylation status of the at least one cytosine to a threshold value for the biomarker, wherein the threshold value distinguishes between individuals with and without colon cancer, wherein the comparison of the methylation status to the threshold value is predictive of the presence or absence of colon cancer in the individual.

[0019] In some embodiments, the methods comprise:
a) determining the methylation status of at least one cytosine within a DNA
region in a sample from an individual where the DNA region is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to, or comprises, a sequence selected from the group consisting of SEQ ID NOs: 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, and 265;
b) comparing the methylation status of the at least one cytosine to a threshold value for the biomarker, wherein the threshold value distinguishes between individuals with and without endometrial cancer, wherein the comparison of the methylation status to the threshold value is predictive of the presence or absence of endometrial cancer in the individual.

[00201 In some embodiments, the methods comprise:
a) deternnining the methylation status of at least one cytosine within a DNA
region in a sample from an individual where the DNA region is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to, or comprises, a sequence selected from the group consisting of SEQ ID NOs: 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, and 265;
b) comparing the methylation status of the at least one cytosine to a threshold value for the biomarker, wherein the threshold value distinguishes between individuals with and without esophageal cancer, wherein the comparison of the methylation status to the threshold value is predictive of the presence or absence of esophegeal cancer in the individual.

[0021] In some embodiments, the methods comprise:
a) determining the methylation status of at least one cytosine within a DNA
region in a sample from an individual where the DNA region is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to, or comprises, a sequence selected from the group consisting of SEQ ID NOs: 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, and 265;
b) comparing the methylation status of the at least one cytosine to a threshold value for the biomarker, wherein the threshold value distinguishes between individuals with and without colon cancer, wherein the comparison of the methylation status to the threshold value is predictive of the presence or absence of colon cancer in the individual.

[0022] In some embodiments, the methods comprise:
a) determining the methylation status of at least one cytosine within a DNA
region in a sample from an individual where the DNA region is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to, or comprises, a sequence selected from the group consisting of SEQ ID NOs: 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, and 265;
b) comparing the methylation status of the at least one cytosine to a threshold value for the biomarker, wherein the threshold value distinguishes between individuals with and without prostate cancer, wherein the comparison of the methylation status to the threshold value is predictive of the presence or absence of prostate cancer in the individual.
[0023] In some embodiments, the methods comprise:
a) determining the methylation status of at least one cytosine within a DNA
region in a sample from an individual where the DNA region is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to, or comprises, a sequence selected from the group consisting of SEQ ID NOs: 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, and 265;
b) comparing the methylation status of the at least one cytosine to a threshold value for the biomarker, wherein the threshold value distinguishes between individuals with and without melanoma, wherein the comparison of the methylation status to the threshold value is predictive of the presence or absence of melanoma in the individual.

,[0024] With regard to the embodiments, in some embodiments, the determining step comprises determining the methylation status of at least one cytosine in the DNA region corresponding to a nucleotide in a biomarker in the DNA region, wherein the biomarker is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to, or comprises, a sequence selected from the group consisting of SEQ ID NOs:160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, and 212.

[0025] In some embodiments, the determining step comprises determining the methylation status of the DNA region corresponding to a biomarker.

[0026] In some embodiments, the sample is from any body fluid, including but not limited to blood serum, blood plasma, fine needle aspirate of the breast, biopsy of the breast, ductal fluid, ductal lavage, feces, urine, sputum, saliva, semen, lavages, biopsy of the lung, bronchial lavage or bronchial brushings. In some embodiments, the sample is from a tumor or polyp. In some embodiments, the sample is a biopsy from lung, kidney, liver, ovarian, head, neck, thyroid, bladder, cervical, colon, endometrial, esophageal, prostate or skin tissue_ In some embodiments, the sample is from cell scrapes, washings, or resected tissues.

[0027] In some embodiments, the methylation status of at least one cytosine is compared to the methylation status of a control locus. In some embodiments, the control locus is an endogenous control. In some embodiments, the control locus is an exogenous control.
[0028] In some embodiments, the determining step comprises determining the methylation status of at least one cytosine in at least two of the DNA regions.

[00291 In a further aspect, the invention provides computer implemented methods for determining the presence or absence of cancer (including but not limited to breast, lung, renal, liver, ovarian, head and neck, thyroid, bladder, cervical, colon, endometria], esophageal, prostate or melanoma) in an individual. In some embodiments, the methods comprise:

receiving, at a host computer, a methylation value representing the methylation status of at least one cytosine within a DNA region in a sample from the individual where the DNA region is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to, or comprises, a sequence selected from the group consisting of SEQ ID NOs: 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, and 265; and comparing, in the host computer, the methylation value to a threshold value, wherein the threshold value distinguishes between individuals with and without cancer (including but not limited to breast, lung, renal, liver, ovarian, head and neck, thyroid, bladder, cervical, colon, endometrial, esophageal, prostate or melanoma), wherein the comparison of the methylation value to the threshold value is predictive of the presence or absence of cancer (including but not limited to breast, lung, renal, liver, ovarian, head and neck, thyroid, bladder, cervical, colon, endometrial, esophageal, or prostate cancer or melanoma) in the individual.

[00301 In some embodiments, the receiving step comprises receiving at least two methylation values, the two methylation values representing the methylation status of at least one cytosine biomarkers from two different DNA regions; and the comparing step comprises comparing the methylation values to one or more threshold value(s) wherein the threshold value distinguishes between individuals with and without cancer (including but not limited to breast, lung, renal, liver, ovarian, head and neck, thyroid, bladder, cervical, colon, endometrial, esophageal, prostate or melanoma), wherein the comparison of the methylation value to the threshold value is predictive of the presence or absence of cancer (including but not limited to breast, lung, renal, liver, ovarian, head and neck, thyroid, bladder, cervical, colon, endometrial, esophageal, or prostate cancer or melanoma) in the individual.

[00311 In another aspect, the invention provides computer program products for determining the presence or absence of cancer (including but not limited to breast, lung, renal, liver, ovarian, head and neck, thyroid, bladder, cervical, colon, endornetrial, esophageal, or prostate cancer or melanoina) in an individual. In some embodiments, the computer readable products comprise:
a coinputer readable medium encoded with program code, the program code including:
program code for receiving a methylation value representing the methylation status of at least one cytosine within a DNA region in a sample from the individual where the DNA region is is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to, or coinprises, a sequence selected from the group consisting of SEQ ID NOs: 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, and 265; a.nd program code for comparing the methylation value to a threshold value, wherein the threshold value distinguishes between individuals with and without cancer (including but not limited to breast, lung, renal, liver, ovarian, head and neck, thyroid, bladder, cervical, colon, endometrial, esophageal, or prostate cancer or melanoma), wherein the coinparison of=the methylation value to the threshold value is predictive of the presence or absence of cancer (including but not limited to breast, lung, renal, liver, ovarian, head and neck, thyroid, bladder, cervical, colon, endometrial, esophageal, or prostate cancer or melanoma) in the individual.

[0032] In a further aspect, the invention provides kits for determining the methylation status of at least one biomarker. In some embodiments, the kits comprise:
a pair of polynucleotides capable of specifically amplifying at least a portion of a DNA region where the DNA region is a sequence selected from the group consisting of SEQ ID NOs: of 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, and 265; and a methylation-dependent or methylation sensitive restriction enzyme and/or sodium bisulfite.

[0033] In some embodiments, the pair of polynucleotides are capable of specifically amplifying a biomarker selected from the group consisting of one or more of SEQ ID NOs:
160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, and 212.
[0034] In some embodiments, the kits comprise at least two pairs of polynucleotides, wherein each pair is capable of specifically amplifying at least a portion of a different DNA
region selected from the group consisting of SEQ ID NOs: of 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, and 265.

[00351 In some embodiments, the kits further comprise a detectably labeled polynucleotide probe that specifically detects the amplified biomarker in a real time amplification reaction.
[0036] In a further aspect, the invention provides kits for determining the methylation status of at least one biomarker. In some embodiments, the kits comprise:
sodium bisulfite and polynucleotides to quantify the presence of the converted methylated and or the converted unmethylated sequence of at least one cytosine from a DNA
region that is selected from the group consisting of SEQ ID NOs: 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, and 265.

[0037] In a further aspect, the invention provides kits for determining the methylation status of at least one biomarker. In some embodiments, the kits comprise:
sodium bisulfite, primers and adapters for whole genome amplification, and polynucleotides to quantify the presence of the converted methylated and or the converted unrnethylated sequence of at least one cytosine from a DNA region that is selected from the group consisting of SEQ ID NOs: 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, and 265.

[0038] In another aspect, the methods provide kits for determining the methylation status of at least one biomarker. In some embodiments, the kits comprise:
a methylation sensing restriction enzymes, primers and adapters for whole genome amplification, and polynucleotides to quantify the number of copies of at least a portion of a DNA region where the DNA region is selected from the group consisting of SEQ
ID NOs: 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, and 265.

[0039] In a further aspect, the invention provides kits for determining the methylation status of at least one biomarker. In some embodiments, the kits comprise:
a methylation binding moiety and one or more polynucleotides to quantify the number of copies of at least a portion of a DNA region where the DNA region is selected from the group consisting of SEQ ID NOs: 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, and 265.

DEFINITIONS
[00401 "Methylation" refers to cytosine methylation at positions C5 or N4 of cytosine, the N6 position of adenine or other types of nucleic acid methylation. In vitro amplified DNA is unmethylated because in vitro DNA amplification methods do not retain the methylation pattern of the ainplification template. However, "unmethylated DNA" or "methylated DNA"
can also refer to amplified DNA whose original template was methylated or methylated, respectively.

[0041] A "methylation profile" refers to a set of data representing the methylation states of one or more loci within a molecule of DNA from e.g., the genome of an individual or cells or tissues from an individual. The profile can indicate the methylation state of every base in an individual, can comprise information regarding a subset of the base pairs (e.g., the methylation state of specific restriction enzyine recognition sequence) in a genome, or can comprise information regarding regional methylation density of each locus.

[0042] "Methylation status" refers to the presence, absence and/or quantity of methylation at a particular nucleotide, or nucleotides within a portion of DNA. The methylation status of a particular DNA sequence (e.g., a DNA biomarker or DNA region as described herein) can indicate the methylation state of every base in the sequence or can indicate the methylation state of a subset of the base pairs (e.g., of cytosines or the methylation state of one or more specific restriction enzyme recognition sequences) within the sequence, or can indicate information regarding regional methylation density within the sequence without providing precise information of where in the sequence the methylation occurs. The methylation status can optionally be represented or indicated by a "methylation value." A
methylation value can be generated, for example, by quantifying the amount of intact DNA present following restriction digestion with a methylation dependent restriction enzyme. In this example, if a particular sequence in the DNA is quantified using quantitative PCR, an amount of template DNA approximately equal to a mock treated control indicates the sequence is not highly methylated whereas an amount of template substantially less than occurs in the mock treated sample indicates the presence of inethylated.DNA at the sequence. Accordingly, a value, i.e., a methylation value, for example from the above described example, represents the methylation status and can thus be used as a quantitative indicator of methylation status. This is of particular use when it is desirable to compare the methylation status of a sequence in a sample to a threshold value.

[0043] A "methylation-dependent restriction enzyme" refers to a restriction enzyme that cleaves or digests DNA at or in proximity to a methylated recognition sequence, but does not cleave DNA at or near the same sequence when the recognition sequence is not methylated.
Methylation-dependent restriction enzymes include those that cut at a methylated recognition sequence (e.g., Dpnl) and enzymes that cut at a sequence near but not at the recognition sequence (e.g., McrBC). For example, McrBC's recognition sequence is 5' RmC
(N40-3000) RmC 3' where "R" is a purine and "mC" is a methylated cytosine and "N40-3000"
indicates the distance between the two RmC half sites for which a restriction event has been observed.
McrBC generally cuts close to one half-site or the other, but cleavage positions are typically distributed over several base pairs, approximately 30 base pairs from the methylated base.
McrBC sometimes cuts 3' of both half sites, sometimes 5' of both half sites, and sometimes between the two sites. Exemplary methylation-dependent restriction enzymes include, e.g., McrBC (see, e.g., U.S. Patent No. 5,405,760), McrA, MrrA, and DpnI. One of skill in the art will appreciate that any methylation-dependent restriction enzyme, including homologs and orthologs of the restriction enzymes described herein, is also suitable for use in the present invention.

[0044] A `methylation-sensitive restriction enzyme" refers to a restriction enzyme that cleaves DNA at or in proximity to an unmethylated recognition sequence but does not cleave at or in proximity to the same sequence when the recognition sequence is methylated.
Exemplary methylation-sensitive restriction enzymes are described in, e.g., McClelland et al., Nucleic Acids Res. 22(17):3640-59 (1994) and http://rebase.neb.com. Suitable methylation-sensitive restriction enzymes that do not cleave DNA at or near their recognition sequence when a cytosine within the recognition sequence is methylated at position C5 include, e.g., Aat II, Aci I, Acl i, Age I, Alu I, Asc I, Ase I, AsiS I, Bbe I, BsaA I, BsaH
I, BsiE I, BsiW I, BsrF I, BssH II, BssK 1, BstB I, BstN I, BstU I, Cla I, Eae I, Eag I, Fau I, Fse I, Hha I, HinP1 1, HinC II, Hpa 11, Hpy99 I, HpyCH4 IV, Kas I, Mbo I, Mlu I, MapAl I, Msp I, Nae 1, Nar 1, Not 1, Pml I, Pst I, PUU I, Rsr II, Sac II, Sap I, Sau3A I, Sfl I, Sfo I, SgrA
1, Sma I, SnaB I, Tsc I, Xma I, and Zra I. Suitable methylation-sensitive restriction enzymes that do not cleave DNA at or near their recognition sequence when an adenosine within the recognition sequence is methylated at position N6 include, e.g., Mbo I. One of skill in the art will appreciate that any methylation-sensitive restriction enzyme, including homologs and orthologs of the restriction enzymes described herein, is also suitable for use in the present invention. One of skill in the art will further appreciate that a methylation-sensitive restriction enzyme that fails to cut in the presence of methylation of a cytosine at or near its recognition sequence may be insensitive to the presence of methylation of an adenosine at or near its recognition sequence. Likewise, a methylation-sensitive restriction enzyme that fails to cut in the presence of methylation of an adenosine at or near its recognition sequence may be insensitive to the presence of methylation of a cytosine at or near its recognition sequence.
For example, Sau3AI is sensitive (i.e., fails to cut) to the presence of a methylated cytosine at or near its recognition sequence, but is insensitive (i.e., cuts) to the presence of a methylated adenosine at or near its recognition sequence. One of skill in the art will also appreciate that some methylation-sensitive restriction enzymes are blocked by methylation of bases on one or both strands of DNA encompassing of their recognition sequence, while other methylation-sensitive restriction enzymes are blocked only by methylation on both strands, but can cut if a recognition site is hemi-methylated.

[0045] A "threshold value that distinguishes between individuals with and without" a particular disease refers to a value or range of values of a particular measurement that can be used to distinguish between samples from individuals with the disease and samples without the disease. Ideally, there is a threshold value or values that absolutely distinguishes between the two groups (i.e., values from the diseased group are always on one side (e.g., higher) of the threshold value and values from the healthy, non-diseased group are on the other side (e.g., lower) of the threshold value). However, in many instances, threshold values do not absolutely distinguish between diseased and non-diseased samples (for exainple, when there is some overlap of values generated from diseased and non-diseased samples).

[0046] The phrase "corresponding to a nucleotide in a biomarker" refers to a nucleotide in a DNA region that aligns with the same nucleotide (e.g., a cytosine) in a biomarker sequence.
Generally, as described herein, biomarker sequences are subsequences of the DNA regions.
Sequence comparisons can be performed using any BLAST including BLAST 2.2 algorithm with default parameters, described in Altschul et al., Nuc. Acids Res. 25:3389 3402 (1997) and Altschul et al., J. 1llol. Biol. 215:403 410 (1990), respectively. Thus for example, a DNA

region or biomarker described herein can correspond to a DNA sequence in a human genome even if there is slight variation between the biomarker or DNA region and the particular human genome in question. Such difference can be the result of slight genetic variation between humans.

[0047] "Sensitivity" of a given biomarker refers to the percentage of tumor samples that report a DNA methylation value above a threshold value that distinguishes between tumor and non-tumor samples. The percentage is calculated as follows:

Sensitivity= C(the number of tumor samples above the threshold) x 100 (the total number of tumor samples tested) The equation may also be stated as follows:

(the number of true positive samples) Sensitivity = x 100 (the number of true positive samples) + (the number of false negative samples) where true positive is defined as a histology-confirmed tumor sample that reports a DNA
methylation value above the threshold value (i.e. the range associated with disease), and false negative is defined as a histology-confirmed tumor sample that reports a DNA
methylation value below the threshold value (i.e. the range associated with no disease).
The value of sensitivity, therefore, reflects the probability that a DNA methylation measurement for a given biomarker obtained from a known diseased sample will be in the range of disease-associated measurements. As defined here, the clinical relevance of the calculated sensitivity value represents an estimation of the probability that a given biomarker would detect the presence of a clinical condition when applied to a patient with that condition.

[0048] "Specificity" of a given biomarker refers to the percentage of non-tumor samples that report a DNA methylation value below a threshold value that distinguishes between tumor and non-tumor samples. The percentage is calculated as follows:
(the ntcmber of non - tumor samples below the threshold) Specifr.city= x 100 (tlte total number of n on - tumor samples tested) =The equation may also be stated as follows:

(thenumberof truenegativesamples) Specifici ty = X100 (thenumberof true negative samples)+(thenumberof false positivesamples) where true negative is defined as a histology-confirmed non-tumor sample that reports a DNA methylation value below the threshold value (i.e. the range associated with no disease), and false positive is defined as a histology-confirmed non-tumor sample that reports DNA
methylation value above the threshold value (i.e. the range associated with disease). The value of specificity, therefore, reflects the probability that a DNA
methylation measurement for a given biomarker obtained from a known non-diseased sample will be in the range of non-disease associated measurements. As defined here, the clinical relevance of the calculated specificity value represents an estimation of the probability that a given biomarker would detect the absence of a clinical condition when applied to a patient without that condition.

[00491 Sofl.ware for performing BLAST analyses is publicly available through the National Center for Biotechnology Information. This algorithm involves first identifying high scoring sequence pairs (HSPs) by identifying short words of length W in the query sequence, which either match or satisfy some positive-valued threshold score T when aligned with a word of the same length in a database sequence. T is referred to as the neighborhood word score threshold (Altschul et al., supra). These initial. neighborhood word hits act as seeds for initiating searches to find longer HSPs containing them. The word hits are extended in both directions along each sequence for as far as the cumulative alignment score can be increased.
Cumulative scores are calculated using, for nucleotide sequences, the parameters M (reward score for a pair of matching residues; always >0) and N (penalty score for mismatching residues; always <0). For amino acid sequences, a scoring matrix is used to calculate the cumulative score. Extension of the word hits in each direction are halted when: the cumulative alignment score falls off by the quantity X from its maximum achieved value; the cumulative score goes to zero or below, due to the accumulation of one or more negative-scoring residue alignments; or the end of either sequence is reached. The BLAST algorithm parameters W, T, and X determine the sensitivity and speed of the alignment.
The BLASTN
program (for nucleotide sequences) uses as defaults a wordlength (W) of 11, an expectation (E) of 10, M=5, N=-4 and a comparison of both strands. For amino acid sequences, the BLASTP program uses as defaults a wordlength of 3, and expectation (E) of 10, and the BLOSUM62 scoring matrix (see Henikoff & Henikoff, Proc. Natl. Acad. Sci. USA
89:10915 (1989)) alignments (B) of 50, expectation (E) of 10, M=5, N=-4, and a comparison of both strands.

[0050] As used herein, the tenris "nucleic acid," "polynucleotide" and "oligonucleotide"
refer to nucleic acid regions, nucleic acid segments, primers, probes, amplicons and oligomer fragments. The terms are not limited by length and are generic to linear polymers of polydeoxyribonucleotides (containing 2-deoxy-D-ribose), polyribonucleotides (containing D-ribose), and any other N-glycoside of a purine or pyrimidine base, or modified purine or pyrimidine bases. These terms include double- and single-stranded DNA, as well as double-and single-stranded RNA.

[0051] A nucleic acid, polynucleotide or oligonucleotide can comprise, for example, phosphodiester linkages or modified linkages including, but not limited to phosphotriester, phosphoramidate, siloxane, carbonate, carboxymethylester, acetamidate, carbamate, thioether, bridged phosphoramidate, bridged methylene phosphonate, phosphorothioate, methylphosphonate, phosphorodithioate, bridged phosphorothioate or sulfone linkages, and combinations of such linkages.

[00521 A nucleic acid, polynucleotide or oligonucleotide can comprise the five biologically occurring bases (adenine, guanine, thymine, cytosine and uracil) and/or bases other than the five biologically occurring bases. For example, a polynucleotide of the invention can contain one or more modified, non-standard, or derivatized base moieties, including, but not limited to, N6-methyl-adenine, N6-tert-butyl-benzyl-adenine, imidazole, substituted imidazoles, 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, xanthine, 4-acetylcytosine, 5-(carboxyhydroxymethyl)uracil, 5-carboxymethylaminomethyl-2-thiouridine, 5-carboxymethylaminomethyluracil, dihydrouracil, beta-D-galactosylqueosine, inosine, N6-isopentenyladenine, 1-methylguanine, 1-methylinosine, 2,2-dimethylguanine, 2-methyladenine, 2-methylguanine, 3-methylcytosine, 5-methylcytosine, N6-methyladenine, 7-methylguanine, 5-methylaminomethyluracil, 5-methoxyaminomethyl-2-thiouracil, beta-D
mannosylqueosine, 5'-methoxycarboxymethyluracil, 5-methoxyuracil, 2-methylthio-isopentenyladenine, uracil-5-oxyacetic acid (v), wybutoxosine, pseudouracil, queosine, 2-thiocytosine, 5-methyl-2-thiouracil, 2-thiouracil, 4-thiouracil, uracil-5-oxyacetic acidmethylester, 3-(3-amino-3-N-2-carboxypropyl) uracil, (acp3)w, 2,6-diaminopurine, and 5-propynyl pyrimidine. Other examples of modified, non-standard, or derivatized base moieties may be found in U.S. Patent Nos. 6,001,611; 5,955,589; 5,844,106;
5,789,562;
5,750,343; 5,728,525; and 5,679,785.

[0053] Furthermore, a nucleic acid, polynucleotide or oligdnucleotide can comprise one or more modified sugar moieties including, but not limited to, arabinose, 2-fluoroarabinose, xylulose, and a hexose.

BRIEF DESCRIPTION OF THE DRAWINGS
[0054] Figure 1 illustrates a general overview of the experimental design of differential methylation screening. A graphical representation of the transcription start site and 5' structure of one predicted differentially methylated gene is indicated (A).
The bar graph (B) indicates the relative local density of purine-CG sequences within this region. The relative position of the DNA microarray feature that reported differential DNA
methylation at this locus is indicated by (C). PCR primers were selected to amplify the region indicated by (D).
The vertical bars (E and F) represent the microarray DNA methylation measurement representing all breast tumors (E) and all normal breast samples (F).

[0055] Figure 2 illustrates an example of McrBC-based real-time PCR strategy to monitor DNA methylation status. Panel A shows the untreated/treated PCR replicate 1 for amplification of the GHSR locus in a breast tumor sample. The delta Ct (Treated 1-Untreated 1) is 5.38 cycles. Panel B shows the untreated/treated PCR replicate 2 for amplification of the same locus from the same tumor sample. The delta Ct (Treated 2-Untreated 2) is 5.40 cycles. Panel C shows the untreated/treated PCR replicate I for amplification of the GHSR locus in a normal breast sample. The delta Ct (Treated 1-Untreated 1) is 0.18 cycles. Panel D shows the untreated/treated PCR replicate 2 for amplification of the same locus from the same normal sample. The delta Ct (Treated 2 -Untreated 2) is 0.03 cycles. Tumor samples produce a change in cycle threshold ("delta Ct") of 1.0 or greater. Norrnal samples produce a delta Ct of less than 1Ø

[0056] Figures 3A-B illustrates verification of microarray DNA methylation predictions.
Open boxes represent loci that are unmethylated (average delta Ct < 1.0), grey boxes represent loci that are methylated (average delta Ct > 1 and < 2), and black boxes represent loci that are densely methylated (average delta Ct > 2).

[0057] Figures 4A and 4B illustrate validation of DNA methylation differences in biomarkers from independent tumor and normal samples. Boxes are as indicated for Figure 3.

[0058] Figure 5 illustrates DNA methylation differences in biomarkers from a larger panel of breast tumor, normal breast and normal peripheral blood samples. Boxes are as indicated for Figure 3.

[0059] Figure 6 illustrates demonstration of threshold adjustment for determining sensitivity and specificity.

[0060] Figure 7 illustrates bisulfite sequencing confirmation of differential DNA
methylation.

[0061] Figure 8 illustrates the correlation between qPCR based DNA methylation measurements and DNA methylation occupancies determined by bisulfite sequencing.
Primers were designed to amplify approximately 150 bp amplicons within the region of three loci that were analyzed by qPCR as described above. The loci included feature ID
halp_39189 (locus number 2), hal g00644 (locus nuinber 3) and halp_104423 (locus number 12). For each amplicon, products were ainplified from three normal breast DNA
samples that reported average dCt values <0.5, three normal breast DNA samples that reported average dCt values between 0.5 and 1.0, and three breast tumor DNA
samples that reported average dCt values greater than 1Ø Amplicons were purified and cloned using TA
cloning kits (Invitrogen). At least 29 independent clones were sequenced per amplicon, per locus. The graph shows the median 5-methylcytosine content for all sequenced clones per amplicon plotted against the average dCt value for that locus in the same DNA
sample. The dashed vertical line represents the dCt = 1.0 threshold used to indicate a positive qPCR
measurelnent for DNA methylation detection.

[0062] Figure 9 illustrates an example of selection of a potentially differentially methylated region based on an analysis of CpG density (identification of a CG island).

[0063] Figure I OA illustrates the frequency of differential DNA methylation of 16 loci in stage I breast tumors relative to stage II-III breast tumors. The 16 loci include those listed in Table 5.

[0064] Figure l OB illustrates the DNA methylation density of three selected loci relative to tumor stage. The averaged approximate percent depletion of methylated molecules by McrBC was calculated to determine the load of methylated molecules in each sample [1-(1/2^delta Ct (McrBC digested - Mock treated)) * 100]. Data are plotted (from left to right) for normal breast samples, stage I tumors, stage IIA tumors, stage 11B tumors and stage III
tumors.

[0065] Figure 11A illustrates the differential DNA methylation of four selected loci in breast tumor, normal breast tissue and peripheral blood from a cancer-free woman. Each data point represents the averaged delta Ct value for an independent clinical sample.

[0066] Figure 11 B illustrates ROC curve analyses of the four loci depicted in Figure 11 A.
Sensitivity (percentage of tumor samples scoring above a methylation threshold) and specificity (percentage of non-tumor samples scoring below that same threshold) were calculated for all observed delta Ct values.

[0067] Figure 12 illustrates the analysis of DNA methylation of four selected loci by bisulfite sequencing. Analyzed loci included locus number 2 (A, B), 3 (C, D), 4(E, F) and 12 (G, H). Bisulfite sequencing was performed. The average number of molecules sequenced for each locus within each sample was 587. The calculated DNA methylation density (number of inethylated CpGs divided by the total number of CpGs sequenced) for each sample is plotted versus the qPCR DNA methylation measurement for the same sample (A, C, E, G). In addition, the percent methylation occupancy at each analyzed CpG
dinucleotide is shown (B, D, F, H). Analyzed samples included normal breast tissues (open circles), adjacent histology normal breast tissues (filled circles) and breast tumors (filled squares).
[0068] Figure 13 illustrates the correlation between DNA hypermethylation and gene expression. Transcription of GHSR (locus number 2), MGA (locus number 4), and NFXl (locus number 12) were analyzed by RT-PCR. Serial dilutions of cDNA from normal breast tissue and four breast tumors were used as template as indicated. GAPDH
expression was analyzed as an intemal control for each sample. The DNA methylation measurement (qPCR) for each locus in each tumor sample is indicated (- average dCt <1.0, +
average dCt > 1.0 but < 2.0, and ++ average dCt > 2.0).

[0069] Figure 14 illustrates the comparison of DNA methylation detection in fine needle aspirate (% POSITIVE FNA) samples relative to unmatched primary breast tumor samples (% POSITIVE TUMOR). Each sample was scored as positive if the average dCt was > 1.0, as described in Example 3. Analyzed samples included 7 FNA samples and at least 14 primary breast tumor samples.

DETAILED DESCRIPTION OF THE INVENTION
I. INTRODUCTION

[0070] The present invention is based, in part, on the discovery that sequences in certain DNA regions are methylated in cancer cells, but not normal cells. The inventors have found that methylation within the DNA regions described herein are associated with breast cancer, particularly ductal carcinoma, as well as a number of other cancers.

[0071] In view of this discovery, the inventors have recognized that methods for detecting the biomarker sequences and DNA regions comprising the biomarker sequences as well as sequences adjacent to the biomarkers that contain a significant amount of CG
subsequences, methylation of the DNA regions, and/or expression of the genes regulated by the DNA
regions can be used to detect cancer cells. Detecting cancer cells allows for diagnostic tests that detect disease, assess the risk of contracting disease, determining a predisposition to disease, stage disease, diagnose disease, monitor disease, and/or aid in the selection of treatment for a person with disease.

IL METHYLA TION BIOMARKERS

[0072] In some embodiments, the presence or absence or quantity of methylation of the chromosomal DNA within a DNA region or portion thereof (e.g., at least one cytosine) selected from SEQ ID Nos: 213-265 is detected. Portions of the DNA regions described herein will comprise at least one potential methylation site (i.e., a cytosine) and can in some embodiments generally comprise 2, 3, 4, 5, 10, or more potential methylation sites. In some embodiments, the methylation status of all cytosines within at least 20, 50, 100, 200, 500 or more contiguous base pairs of the DNA region are determined.

[0073] In some embodiments, the methylation of more than one DNA region (or portion thereof) is detected. In some embodiments, the methylation status at least one cytosine in 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52 or 53 of the DNA regions is determined.

[0074] In some embodiments of the invention, the methylation of a DNA region or portion thereof is determined and then compared (e.g., normalized) to the methylation of a control locus. Typically the control locus will have a known, relatively constant, methylation status.
For example, the control sequence can be previously determined to have no, some, or a high amount of methylation, thereby providing a relative constant value to control for error in detection methods, etc., unrelated to the presence or absence of cancer. In some embodiments, the control locus is endogenous, i.e., is part of the genome of the individual sampled. For example, in mammalian cells, the testes-specific histone 2B gene (hTH2B in human) gene is known to be methylated in all somatic tissues except testes.
Alternatively, the control locus can be an exogenous locus, i.e., a DNA sequence spiked into the sample in a known quantity and having a known methylation status.

[0075] A DNA region comprises a nucleic acid including one or more methylation sites of interest (e.g., a cytosine, a "microarray feature" as exemplified in Figure 1 C, or an amplicon amplified from select primers as exemplified in Figure 1D) and flanking nucleic acid sequences (i.e., "wingspan") of up to 4 kilobases (kb) in either or both of the 3' or 5' direction from the amplicon. This range corresponds to the lengths of DNA
fragments obtained by randomly shearing the DNA before screening for differential methylation between DNA in two or more samples (e.g., carrying out methods used to initially identify differentially methylated sequences as described in the Examples, below). In some embodiments, the wingspan of the one or more DNA regions is about 0.5 kb, 0.75 kb, 1.0 kb, 1.5 kb, 2.0 kb, 2.5 kb, 3.0 kb, 3.5 kb or 4.0 kb.

[0076] In some cases, the DNA region comprises more nucleotides than simply the wingspan of the discovery method because the relevant microarray feature or amplicon reside in a larger region of higher CG density in the chromosome. This range corresponds to identified lengths of nucleic acid sequences having higher CG density (e.g., a"CG island") than flanking nucleic acid sequences (e.g., "local minimum" CG density) (see,for example, Figure 8). DNA regions having extended sequences of heightened CG density include, for example, sequences 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 23'0, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, and 265 (see, Table 2 and section "SEQUENCE LISTING").

[0077] The methylation sites in a DNA region can reside in non-coding transcriptional control sequences (e.g., promoters, enhancers, etc.) or in coding sequences, including introns and exons of the designated genes listed in Tables I and 2 and in section "SEQUENCE
LISTING." In some embodiments, the methods comprise detecting the methylation status in the promoter regions (e.g., comprising the nucleic acid sequence that is about 1.0 kb, 1.5 kb, 2.0 kb, 2.5 kb, 3.0 kb, 3.5 kb or 4.0 kb 5' from the transcriptional start site through to the transcriptional start site) of one or more of the genes identified in Tables 1 and 2 and in the "SEQUENCE LISTING" section.

[0078] The DNA regions of the invention also include naturally occurring variants, including for example, variants occurring in different subject populations and variants arising from single nucleotide polymorphisms (SNPs). Variants include nucleic acid sequences from the same DNA region (e.g., as set forth in Tables 1 and 2 and in the "SEQUENCE
LISTING"
section) sharing at least 90%, 95%, 98%, 99% sequence identity, i.e., having one or more deletions, additions, substitutions, inverted sequences, etc., relative to the DNA regions described herein.

III. METHODS FOR DETERMINING METHYLA TION

[0079] Any method for detecting DNA methylation can be used in the methods of the present invention.

[0080] In some embodiments, methods for detecting methylation include randomly shearing or randomly fragmenting the genomic DNA, cutting the DNA with a methylation-dependent or methylation-sensitive restriction enzyme and subsequently selectively identifying and/or analyzing the cut or uncut DNA. Selective identification can include, for example, separating cut and uncut DNA (e.g., by size) and quantifying a sequence of interest that was cut or, alternatively, that was not cut. See, e.g., U.S. Patent No.
7,186,512.
Alternatively, the method can encompass amplifying intact DNA affter restriction enzyme digestion, thereby only amplifying DNA that was not cleaved by the restriction enzyme in the area amplified. See, e.g., U.S. Patent Application Nos. 10/971,986;
11/071,013; and 10/971,339. In some embodiments, amplification can be performed using primers that are gene specific. Alternatively, adaptors can be added to the ends of the randomly fragmented DNA, the DNA can be digested with a methylation-dependent or methylation-sensitive restriction enzyme, intact DNA can be amplified using primers that hybridize to the adaptor sequences. In this case, a second step can be performed to determine the presence, absence or quantity of a particular gene in an amplified pool of DNA. In some embodiments, the DNA is amplified using real-time, quantitative PCR.

[0081] In some embodiments, the methods comprise quantifying the average methylation density in a target sequence within a population of genomic DNA. In some embodiments, the method comprises contacting genomic DNA with a methylation-dependent restriction enzyme or methylation-sensitive restriction enzyme under conditions that allow for at least some copies of potential restriction enzyme cleavage sites in the locus to remain uncleaved;
quantifying intact copies of the locus; and comparing the quantity of amplified product to a control value representing the quantity of methylation of control DNA, thereby quantifying the average methylation density in the locus compared to the methylation density of the control DNA.

[0082] The quantity of methylation of a locus of DNA can be determined by providing a sample of genomic DNA comprising the locus, cleaving the DNA with a restriction enzyme that is either methylation-sensitive or methylation-dependent, and then quantifying the amount of intact DNA or quantifying the amount of cut DNA at the DNA locus of interest.
The amount of intact or cut DNA will depend on the initial amount of genomic DNA
containing the locus, the amount of methylation in the locus, and the number (i.e., the fraction) of nucleotides in the locus that are methylated in the genomic DNA.
The amount of methylation in a DNA locus can be determined by comparing the quantity of intact DNA or cut DNA to a control value representing the quantity of intact DNA or cut DNA
in a similarly-treated DNA sample. The control value can represent a known or predicted number of methylated nucleotides. Alternatively, the control value can represent the quantity of intact or cut DNA from the same locus in another (e.g., normal, non-diseased) cell or a second locus.

[0083] By using at least one methylation-sensitive or methylation-dependent restriction enzyme under conditions that allow for at least some copies of potential restriction enzyme cleavage sites in the locus to remain uncleaved and subsequently quantifying the remaining intact copies and comparing the quantity to a control, average methylation density of a locus can be determined. If the methylation-sensitive restriction enzyme is contacted to copies of a DNA locus under conditions that allow for at least some copies of potential restriction enzyme cleavage sites in the locus to remain uncleaved, then the remaining intact DNA will be directly proportional to the methylation density, and thus may be compared to a control to determine the relative methylation density of the locus in the sarnple.
Similarly, if a methylation-dependent restriction enzyme is contacted to copies of a DNA locus under conditions that allow for at least some copies of potential restriction enzyme cleavage sites in the locus to remain uncleaved, then the remaining intact DNA will be inversely proportional to the methylation density, and thus may be compared to a control to determine the relative methylation density of the locus in the sample. Such assays are disclosed in, e.g., U.S. Patent Application No. 10/971,986.

[0084] Kits for the above methods can include, e.g., one or more of methylation-dependent restriction enzymes, methylation-sensitive restriction enzymes, amplification (e.g., PCR) reagents, probes and/or primers.

[0085] Quantitative amplification methods (e.g., quantitative PCR or quantitative linear amplification) can be used to quantify the amount of intact DNA witliin a locus flanked by amplification primers following restriction digestion. Methods of quantitative amplification are disclosed in, e.g., U.S. Patent Nos. 6,180,349; 6,033,854; and 5,972,602, as well as in, e.g., Gibson et al., Genome Research 6:995-1001 (1996); DeGraves, et al., Biotechniques 34(1):106-10, 112-5 (2003); Deiman B, et al., Mol Biotechnol. 20(2):163-79 (2002).
Amplifications may be monitored in "real time."

[0086] Additional methods for detecting DNA methylation can involve genomic sequencing before and after treatment of the DNA with bisulfite. See, e.g., Frommer et al., Proc. Natl. Acad. Sci. USA 89:1827-1831 (1992). When sodium bisulfite is contacted to DNA, unmethylated cytosine is converted to uracil, while methylated cytosine is not modified.

[0087] In some embodiments, restriction enzyme digestion of PCR products amplified from bisulfite-converted DNA is used to detect DNA methylation. See, e.g., Sadri &
Hornsby, Nucl. Acids Res. 24:5058-5059 (1996); Xiong & Laird, Nucleic Acids Res.
25:2532-2534 (1997).

[0088] In some embodiments, a MethyLight assay is used alone or in combination with other methods to detect DNA methylation (see, Eads et al., Cancer Res. 59:2302-(1999)). Briefly, in the MethyLight process genomic DNA is converted in a sodium bisulfite reaction (the bisulfite process converts unmethylated cytosine residues to uracil).
Amplification of a DNA sequence of interest is then performed using PCR
primers that hybridize to CpG dinucleotides. By using primers that hybridize only to sequences resulting from bisulfite conversion of unmethylated DNA, (or alternatively to methylated sequences that are not converted) amplification can indicate methylation status of sequences where the primers hybridize. Similarly, the amplification product can be detected with a probe that specifically binds to a sequence resulting from bisulfite treatment of a unmethylated (or methylated) DNA. If desired, both primers and probes can be used to detect methylation status. Thus, kits for use with MethyLight can include sodium bisulfite as well as primers or detectably-labeled probes (including but not limited to Taqman or molecular beacon probes) that distinguish between methylated and unmethylated DNA that have been treated with bisulfite. Other kit components can include, e.g., reagents necessary for amplification of DNA including but not limited to, PCR buffers, deoxynucleotides; and a thermostable polyinerase.

[0089] In some embodiments, a Ms-SNuPE (Methylation-sensitive Single Nucleotide Primer Extension) reaction is used alone or in combination with other methods to detect DNA
methylation (see, Gonzalgo & Jones, NucleicAcids Res. 25:2529-2531 (1997)).
The Ms-SNuPE technique is a quantitative method for assessing methylation differences at specific CpG sites based on bisulfite treatment of DNA, followed by single-nucleotide primer extension (Gonzalgo & Jones, supra). Briefly, genomic DNA is reacted with sodium bisulfite to convert unmethylated cytosine to uracil while leaving 5-methylcytosine unchanged. Amplification of the desired target sequence is then performed using PCR
primers specific for bisulfite-converted DNA, and the resulting product is isolated and used as a template for methylation analysis at the CpG site(s) of interest.

[0090] Typical reagents (e.g., as might be found in a typical Ms-SNuPE-based kit) for Ms-SNuPE analysis can include, but are not limited to: PCR primers for specific gene (or methylation-altered DNA sequence or CpG island); optimized PCR buffers and deoxynucleotides; gel extraction kit; positive control primers; Ms-SNuPE
primers for a specific gene; reaction buffer (for the Ms-SNuPE reaction); and detectably-labeled nucleotides. Additionally, bisulfite conversion reagents may include: DNA
denaturation buffer; sulfonation buffer; DNA recovery regents or kit (e.g., precipitation, ultrafiltration, affinity column); desulfonation buffer; and DNA recovery components.

[0091) In some embodiments, a methylation-specific PCR ("MSP") reaction is used alone or in combination with other methods to detect DNA methylation. An MSP assay entails initial modification of DNA by sodium bisulfite, converting all unmethylated, but not methylated, cytosines to uracil, and subsequent amplification with pritners specific for methylated versus unmethylated DNA. See, Herman et al., Proc. Natl. Acad. Sci.
USA
93:9821-9826, (1996); U.S. Pat. No. 5,786,146.

[0092] Additional methylation detection methods include, but are not limited to, methylated CpG island amplification (see, Toyota et al., Cancer Res. 59:2307-12 (1999)) and those described in,*e.g., U.S. Patent Publication 2005/0069879; Rein, et al.
Nucleic Acids Res. 26 (10): 2255-64 (1998); Olek, et al. Nat Genet. 17(3): 275-6 (1997); and PCT
Publication No. WO 00/70090.

[0093] It is well known that methylation of genomic DNA can affect expression (transcription and/or translation) of nearby gene sequences. Therefore, in some embodiments, the methods include the step of correlating the methylation status of at least one cytosine in a DNA region with the expression of nearby coding sequences, as described in Tables 1 and 2 and in the "SEQUENCE LISTING" section. For example, expression of gene sequences within about 1.0 kb, 1.5 kb, 2.0 kb, 2.5 kb, 3.0 kb, 3.5 kb or 4.0 kb in either the 3' or 5' direction from the cytosine of interest in the DNA region can be detected.
Methods for measuring transcription and/or translation of a particular gene sequence are well known in the art. See,for example, Ausubel, Current Protocols in Molecular Biology, 1987-2006, John Wiley & Sons; and Sambrook and Russell, Molecular Cloning: A
Laboratory Manual, 3rd Edition, 2000, Cold Spring Harbor Laboratory Press. In some embodiments, the gene or protein expression of a gene in Tables I and 2 and in the "SEQUENCE
LISTING"
section is compared to a control, for example, the methylation status in the DNA region and/or the expression of a nearby gene sequence, and/or the same gene sequence from a sample from an individual known to be negative for cancer or known to be positive for cancer, or to an expression level that distinguishes between cancer and noncancer states.
Such methods, like the methods of detecting methylation described herein, are useful in providing diagnosis, prognosis, etc., of breast cancer.

[0094] In some embodiments, the methods further comprise the step of correlating the methylation status and expression of one or more of the gene regions identified in Tables I
and 2 and in the "SEQUENCE LISTING" section.

I V. CANCER DETECTION

[0095] The present biomarkers and methods can be used in the detection, diagnosis, prognosis, classification, and treatment of a number of types of cancers. A
cancer at any stage of progression can be detected, such as primary, metastatic, and recurrent cancers.
Inforcnation regarding numerous types of cancer can be found, e.g., from the American Cancer Society (available on the worldwide web at cancer.org), or from, e.g., Harrison's Principles of Internal Medicine, Kaspar, et al., eds., 16th Edition, 2005, McGraw-Hill, Inc.
Exemplary cancers that can be detected include, e.g., breast cancers, including ductal carcinoma, as well as lung, renal, liver, ovarian, head and neck, thyroid, bladder, cervical, colon, endometrial, esophageal, or prostate cancer or melanoma.

[0096] The present invention provides methods for determining whether or not a mammal (e.g., a human) has cancer, i.e., whether or not a biological sample taken from a mammal contains cancerous cells, estimating the risk or likelihood of a mammal developing cancer, classifying cancer types and stages, and monitoring the efficacy of anti-cancer treatment or selecting the appropriate anti-cancer treatment in a mammal with cancer. Such methods are based on the discovery that cancer cells have a different methylation status than normal cells in the DNA regions described in the invention. Accordingly, by determining whether or not a cell contains differentially methylated sequences in the DNA regions as described herein, it is possible to determine whether or not the cell is cancerous.

[00971 In numerous embodiments of the present invention, the presence of methylated nucleotides in the diagnostic biomarker sequences of the invention is detected in a biological sample, thereby detecting the presence or absence of cancerous cells in the mammal from which the biological sample was taken. In some embodiments, the biological sample comprises a tissue sample from a tissue suspected of containing cancerous cells. For example, in an individual suspected of having cancer, breast tissue, lymph tissue, lung tissue, brain tissue, or blood can be evaluated. Alternatively, lung, renal, liver, ovarian, head and neck, thyroid, bladder, cervical, colon, endometrial, esophageal, prostate, or skin tissue can be evaluated. The tissue or cells can be obtained by any method known in the art including, e.g., by surgery, biopsy, phlebotomy, swab, nipple discharge, stool, etc. In other embodiments, a tissue sample known to contain cancerous cells, e.g., from a tumor, will be analyzed for the presence or quantity of methylation at one or more of the diagnostic biomarkers of the invention to determine infonnation about the cancer, e.g., the efficacy of certain treatments, the survival expectancy of the individual, etc. In some embodiments, the methods will be used in conjunction with additional diagnostic methods, e.g., detection of other cancer biomarkers, etc.

[0098] The methods of the invention can be used to evaluate individuals known or suspected to have cancer or as a routine clinical test, i.e., in an individual not necessarily suspected to have cancer.

[0099] Further, the present methods may be used to assess the efficacy of a course of treatment. For example, the efficacy of an anti-cancer treatment can be assessed by monitoring DNA methylation of the biomarker sequences described herein over time in a mammal having cancer. For example, a reduction or absence of methylation in any of the diagnostic biomarkers of the invention in a biological sample taken from a mainmal following a treatrnent, compared to a level in a sample taken from the mammal before, or earlier in, the treatrnent, indicates efficacious treatment.

[0100] The methods detecting cancer can comprise the detection of one or more other cancer-associated polynucleotide or polypeptides sequences. Accordingly, detection of methylation of any one or more of the diagnostic biomarkers of the invention can be used either alone, or in combination with other biomarkers, for the diagnosis or prognosis of cancer.

[0101] The methods of the present invention can be used to determine the optimal course of treatment in a mammal with cancer. For exainple, the presence of methylated DNA within any of the diagnostic biomarkers of the invention or an increased quantity of methylation within any of the diagnostic biomarkers of the invention can indicate a reduced survival expectancy of a mammal with cancer, thereby indicating a more aggressive treatment for the mammal. In addition, a correlation can be readily established between the presence, absence or quantity of methylation at a diagnostic biomarker, as described herein, and the relative efficacy of one or another anti-cancer agent. Such analyses can be performed, e.g., retrospectively, i.e., by detecting methylation in one or more of the diagnostic genes in samples taken previously from mammals that have subsequently undergone one or more types of anti-cancer therapy, and correlating the known efficacy of the treatment with the presence, absence or levels of methylation of one or more of the diagnostic biomarkers.
[0102] In making a diagnosis, prognosis, risk assessment or classification, in monitoring disease, or in determining the most beneficial course of treatment based on the presence or absence of methylation in at least one of the diagnostic biomarkers, the quantity of methylation may be compared to a threshold value that distinguishes between one diagnosis, prognosis, risk assessment, classification, etc., and another. For example, a threshold value can represent the degree of inethylation found at a particular DNA region that adequately distinguishes between breast cancer samples and normal breast samples with a desired level of sensitivity and specificity. It is understood that a threshold value will likely vary depending on the assays used to measure methylation, but it is also understood that it is a relatively simple matter to determine a threshold value or range by measuring methylation of a DNA sequence in diseased and normal samples using the particular desired assay and then determining a value that distinguishes at least a majority of the cancer samples from a majority of non-cancer samples. An example of this is shown in Figure 6 and the accompanying text in the examples. If methylation of two or more DNA regions is detected, two or more different threshold values (one for each DNA region) will often, but not always, be used. Comparisons between a quantity of methylation of a sequence in a sample and a threshold value in any way known in the art. For example, a manual comparison can be made or a computer can compare and analyze the values to detect disease, assess the risk of contracting disease, determining a predisposition to disease, stage disease, diagnose disease, monitor, or aid in the selection of treatment for a person with disease.

[0103] In some embodiments, threshold values provide at least a specified sensitivity and specificity for detection of a particular cancer type. In some embodiments, the threshold value allows for at least a 50%, 60%, 70%, or 80% sensitivity and specificity for detection of a specific cancer, e.g., breast, lung, renal, liver, ovarian, head and neck, thyroid, bladder, cervical, colon, endometrial, esophageal, prostate cancer or melanoma. More detail regarding specificity and sensitivity for various cancers can be found in, e.g., Tables 5-6, and 8-20.
[0104] In embodiments involving prognosis of cancer (including, for example, the prediction of progression of non-malignant lesions to invasive carcinoma, prediction of metastasis, prediction of disease recurrance or prediction of a response to a particular treatment), in some embodiments, the threshold value is set such that there is at least 10, 20, 30, 40, 50, 60, 70, 80% or more sensitivity and at least 70% specificity with regard to detecting cancer.

[0105] In some embodiments, the methods comprise recording a diagnosis, prognosis, risk assessment or classification, based on the methylation status determined from an individual.
Any type of recordation is contemplated, including electronic recordation, e.g., by a computer.

V. KITS

[0106] This invention also provides kits for the detection and/or quantification of the diagnostic biomarkers of the invention, or expression or methylation thereof using the methods described herein.

[0107] For kits for detection of methylation, the kits of the invention can comprise at least one polynucleotide that hybridizes to at least one of the diagnostic biomarker sequences of the invention and at least one reagent for detection of gene methylation.
Reagents for detection of methylation include, e.g., sodium bisulfite, polynucleotides designed to hybridize to sequence that is the product of a biomarker sequence of the invention if the biomarker sequence is not methylated (e.g., containing at least one C-->U conversion), and/or a methylation-sensitive or methylation-dependent restriction enzyme. The kits can provide solid supports in the form of an assay apparatus that is adapted to use in the assay. The kits may further comprise detectable labels, optionally linked to a polynucleotide, e.g., a probe, in the kit. Other materials useful in the performance of the assays can also be included in the kits, including test tubes, transfer pipettes, and the like. The kits can also include written instructions for the use of one or more of these reagents in any of the assays described herein.
[0108] In some embodiments, the kits of the invention comprise one or more (e.g., 1, 2, 3, 4, or more) different polynucleotides capable of specifically amplifying at least a portion of a DNA region where the DNA region is a sequence selected from the group consisting of SEQ
ID NOs: 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, and 265.
Optionally, one or more detectably-labeled polypeptide capable of hybridizing to the amplified portion can also be included in the kit. In some embodiments, the kits comprise sufficient primers to amplify 2, 3, 4, 5, 6, 7, 8, 9, 10, or more different DNA regions or portions thereof, and optionally include detectably-labeled polynucleotides capable of hybridizing to each amplified DNA region or portion thereof. The kits further can comprise a methylation-dependent or methylation sensitive restriction enzyme and/or sodium bisulfite.
[0109] In some embodiments, the kits comprise sodium bisulfite, primers and adapters (e.g., oligonucleotides that can be ligated or otherwise linked to genomic fragments) for whole genome amplification, and polynucleotides (e.g., detectably-labeled polynucleotoides) to quantify the presence of the converted methylated and or the converted unmethylated sequence of at least one cytosine from a DNA region that is selected from the group consisting of SEQ ID NOs:213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, and 265.

[0110] In some embodiments, the kits comprise a methylation sensing restriction enzymes (e.g., a methylation-dependent restriction enzyme and/or a methylation-sensitive restriction enzyme), primers and adapters for whole genome amplification, and polynucleotides to quantify the number of copies of at least a portion of a DNA region where the DNA region is selected from the group consisting of SEQ ID NOs: 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, and 265.

[0111] In some embodiments, the kits comprise a methylation binding moiety and one or more polynucleotides to quantify the number of copies of at least a portion of a DNA region where the DNA region is selected from the group consisting of SEQ ID NOs: 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, and 265. A
methylation binding moiety refers to a molecule (e.g., a polypeptide) that specifically binds to methyl-cytosine. Examples include restriction enzymes or fragments thereof that lack DNA cutting activity but retain the ability to bind methylated DNA, antibodies that specifically bind to methylated DNA, etc.).

VI. COMPUTER-BASED METHODS

[0112] The calculations for the methods described herein can involve computer-based calculations and tools. For example, a methylation value for a DNA region or portion thereof can be compared by a computer to a threshold value, as described herein. The tools are advantageously provided in the form of computer programs that are executable by a general purpose computer system (referred to herein as a "host computer") of conventional design.
The host computer may be configured with many different hardware components and can be made in many dimensions and styles (e.g., desktop PC, laptop, tablet PC, handheld computer, server, workstation, mainframe). Standard components, such as monitors, keyboards, disk drives, CD and/or DVD drives, and the like, may be included. Where the host computer is attached to a network, the connections may be provided via any suitable transport media (e.g., wired, optical, and/or wireless media) and any suitable conununication protocol (e.g., TCP/IP); the host computer may include suitable networking hardware (e.g., modem, Ethernet card, WiFi card). The host computer may implement any of a variety of operating systems, including tJNIX, Linux, Microsoft Windows, MacOS, or any other operating system.

[0113] Computer code for implementing aspects of the present invention may be written in a variety of languages, including PERL, C, C++, Java, JavaScript, VBScript, AWK, or any other scripting or programming language that can be executed on the host computer or that can be compiled to execute on the host computer. Code may also be written or distributed in low level languages such as assembler languages or machine languages.

[0114] The host computer system advantageously provides an interface via which the user controls operation of the tools. In the examples described herein, software tools are implemented as scripts (e.g., using PERL), execution of which can be initiated by a user from a standard command line interface of an operating system such as Linux or UNIX. Those skilled in the art will appreciate that commands can be adapted to the operating system as appropriate. In other embodiments, a graphical user interface may be provided, allowing the user to control operations using a pointing device. Thus, the present invention is not limited to any particular user interface.

[0115] Scripts or programs incorporating various features of the present invention may be encoded on various computer readable media for storage and/or transmission.
Examples of suitable media include magnetic disk or tape, optical storage media such as compact disk (CD) or DVD (digital versatile disk), flash memory, and carrier signals adapted for transmission via wired, optical, and/or wireless networks conforming to a variety of protocols, including the Internet.

EXAMPLES
Example 1. Identification of breast cancer DNA methylation biomarkers.

[0116] Loci that are differentially methylated in breast tumors relative to matched adjacent histologically normal breast tissue were identified using a DNA microarray-based technology platform (US Patent No. 7,186,512) that utilizes the methylation-dependent restriction enzyme McrBC. In this discovery phase, 10 infiltrating ductal breast carcinomas (9 Stage II, 1 Stage III) and 10 matched adjacent histologically normal breast tissue samples were =
analyzed. Purified genomic DNA from each sample (60 g) was randomly sheared to a range of 1 to 4kb. The sheared DNA of each sample was then split into four equal portions of 15 gg each. Two portions were digested with McrBC under the following conditions: 15 g sheared genomic DNA, 1 X NEB2 buffer (New England Biolabs), 0.1 mg/mL bovine serum albumin (New England Biolabs), 2 mM GTP (Roche) and 120 units of McrBC enzyme (New England Biolabs) in a total volume of 600 L at 37 C for approximately 12 hours. These two portions represent a technical replicate of McrBC digestion (Treated 1 and Treated 2). The remaining two 15 jig portions were mock treated under identical conditions with the exception that 12 gL of sterile 50% glycerol were added instead of McrBC
enzyme. These two portions represent a technical replicate of mock treatment (Untreated I
and Untreated 2).
All reactions were treated with 5 gL proteinase K (50 mg/mL) for 1 hour at 50 C, and precipitated with EtOH under standard conditions. Pellets were washed twice with 70%
EtOH, dried and resuspended in 30 L H20. Samples were then resolved on a 1%
low melting point SeaPlaque GTG Agarose gel (Cambridge Bio Sciences). Untreated 1 and Treated 1 portions were resolved side-by-side, as were Untreated 2 and Treated 2 portions.
1 kb DNA sizing ladder was resolved adjacent to each untreated/treated pair to guide accurate gel slice excision. Gels were visualized with long-wave UV, and gel slices including DNA
within the modal size range of the untreated fraction (approximately 1-4 kb) were excised with a clean razor blade. DNA was extracted from gel slices using gel extraction kits (Qiagen).
[0117] McrBC recognizes a pair of methylated cytosine residues in the context 5'-Pu"C
(N40-2000) PumC-3' (where Pu = A or G, 'C = 5-methylcytosine, and N= any nucleotide), and cleaves within approximately 30 base-pairs from one of the methylated cytosine residues.
Therefore, loci that include high local densities of Pu 'C will be cleaved to a greater extent than loci that include low local densities of Pu 'C. Since Untreated and Treated portions were resolved by agarose gel electrophoresis, and DNA within the modal size range of the Untreated portions were excised and gel extracted, the Untreated portions represent the entire fragmented genome of the sample while the Treated portions are depleted of DNA
fragments including Pu 'C. Fractions were analyzed using a duplicated dye swap microarray hybridization paradigin. For example, equal mass (200 ng) of Untreated 1 and Treated 1 fraction DNA were used as template for labeling with Cy3 and Cy5, repectively, and hybridized to a DNA microarray (described below). Equal mass (200 ng) of the same Untreated 1 and Treated 1 fraction DNA were used as template for labeling with Cy5 and Cy3, respectively, and hybridized to a second DNA microarray (these two hybridizations represent a dye swap of Untreated 1/Treated 1 fractions). Equal mass (200 ng) of Untreated 2 and Treated 2 fraction DNA were used as template for labeling with Cy3 and Cy5, respectively, and hybridized to a third DNA microarray. Finally, equal mass (200 ng) of Untreated 2 and Treated 2 fraction DNA were used as template for labeling with Cy5 and Cy3, respectively, and hybridized to a fourth DNA microarray (the final two hybridizations represent a technical replicate of the first dye swap). All 20 DNA samples (10 tumor samples and 10 adjacent normal samples) were analyzed in this way. Therefore, the discovery experiment included a total of 80 microarray hybridizations.

[0118] The microarray described in this Example consists of 85,176 features.
Each 60mer oligonucleotide feature is represented by four replicates per microarray slide, yielding a total of 21,294 unique feature probes. The features represent 19,595 randomly selected human transcriptional start sites (TSS) representing 79% of the identified human genes, 1395 GenBank BAC annotated CG islands (CGi), 161 features spanning -165kb along the MTAPase/CDKN2A/B locus on chromosome 9, 66 additional features dedicated to cancer gene promoters, and 77 features desigmed as copy number (HERV, LINEs, SINE) and other controls. Together, the TSS features and CGi features scan more than 9000 UCSC
annotated human CG islands.

[0119] Following statistical analysis of these datasets, loci that were predicted to be differentially methylated in at least 70% of tumors relative to normal tissues were identified.
As described in the Examples below, differential DNA methylation of a collection of 53 loci identified by the microarray discovery experiment described herein was verified within the discovery panel of 10 infiltrating ductal breast carcinomas relative to 10 matched adjacent histologically normal breast samples, as well as validated in larger panels of independent infiltrating ductal breast carcinomas, normal breast samples and normal female peripheral blood samples. Tables 1 and 2 and the "SEQUENCE LISTING" section list the unique microarray feature identifier (Feature name) for each of these 53 loci. Locus number is an arbitrary locus identifier that will be used to identify the loci in the following examples. Of the 53 features, 48 represent sequence within I kb of at least one annotated transcribed gene.
These are referred to in the table by the Ensembl gene ID, as well as the official gene symbol for each gene (Gene Name). The genomic region in which a given microarray feature can report DNA methylation status is dependent upon the molecular size of the DNA
fragments that were labeled for the microarray hybridizations. As described above, DNA
in the size range of 1 to 4 kb was purified by agarose gel extraction and used as template for cyanogen dye labeling. Therefore, the genomic region interrogated by each microarray feature is at least 1 kb (i.e., 500 bp upstream and 500 bp downstream of the sequence represented by the microarray feature). Note that 5 features represent loci in which there is no annotated transcribed gene within this I kb "wingspan" (Locus numbers 3, 9, 20, 31, and 47). Also note that 8 features represent loci in which more than one annotated transcribed gene falls within wingspan (Locus numbers 21, 26, 27, 29, 35, 38, 39, and 53). DNA
methylation at these loci can affect the regulation of any of these neighboring genes, and thus detection of gene expression from neighboring genes is also useful for determining the presence or absence of cancer for numerous types of diagnostic tests.

Table 1 Microarray Features Reporting Differential DNA Methylation And Identity Of Annotated Genes Within 1 kb Of Each Feature.

__ .._._...._._....__._....__._.._.._...........__.___,.........___..........._...
__.._...._.. N_.__.__e_ .....___..._....u..__..._......._..._.....,____..._____.._...._.__.__._._____._ . _.__......___ (Featurename Locus Number Ensembl Gene ID Gene ame ~ ha1 00681 1 ENS600000105997 HOXA3 ha1 r 39189 2 ENSG00000121853 GHSR
ha1 00644 3 N/A
1ha'I 81674 4 ENSG00000174197 MGA
ha1 81149 5 ENSG00000122971 ACADS
ha1 ) 83841 6 ENSG00000178187 ZNF454 1ha1 p 38705 7 E11SG000001G3638 ADAMTS9 ha1 i 401G4 8 ENSG00000118855 MFSDf halr 23178 9 N/A
ha1 4G057 10 ENSG00000132640 BTBD3 ha1 40959 11 ENSG00000111707 SUDS3 1ha1 - 104123 12 ENSG00000008441 NFIX
hai. 00847 13 ENSG0000011610G EPHA4 ihalp 08347 14 E N S G0000013+1802 S L C43A3 ha1. 02416 15 ENSG00000172238 ATOHI
ha1 r 87540 16 ENSG00000159403= PREDICTED: siniilar to Coiiip lement Clrsubconr onent recnrsor jhal 110107 17 ENSG00000122254 HS3ST2 lha1 89799 18 ENSG00000163739 CXCL1 Ira1 p :15173 19 ENSG00000120915 EPHX2 jhal 80771 20 N/A
ha1p_G9107 21 ENSG00000180667 YOD1 ENSG00000198878 09P1L8 HUIv1AN
hai p 0540G 22 ENSG00000165556 CDX2 Iha1 r 80287 23 ENSG00000109113 RAB34 ha1. 02345 24 ENSG00000122592 HOXA7 ha1 36172 25 ENSG00000185070 FLRT2 I-a1p_70459 26 ENSG00000163481 RNF25 ha1p_105937 27. ENSG00000161551 ZNF577 Irai i 89099 28 ENSG000000G2485 CS
(ha1!J 03099 29 ENSG000000GG032 CTNNA2 holp G7625 30 ENSG00000130711 PRDIu192 ~hai 0021$ 31 N/A
ha1 r 12535 32 ENSG00000149090' RAIu1P
ha1 > 105474 33 ENSG00000033627 ATPGVOAI
ha1 r 74707 34 ENSG00000010278 CD9 halp 93325 35 ENSG00000101019 C20o044 1h~1 - 1011G1 3G ENSG00000130176 CNN1 (lia1 101251 37 ENSG00000142235 LMTK3 ENSG00000158927 C8ni158 Iraip_69214 38 ENSG00000158941 K1AA19G7 ENSG00000.183646 ha'Ip_88517 39 E1SG00000101412 E2F1 hal ) 103824 40 ENSG00000167178 ISLR2 Ihai r 108445 41 ENS600000175287 PHYHD'I
haii 02210 42 ENSG00000151G15 POU4F2 ha1 ) 103872 43 ENSG00000129009 ISLR
al ) 56412 44 ENSG00000175182 C3wf40 ha=I - 18292 45 ENSG00000115561 VPS24 ha1 j 12075 46 ENSG00000164619 BIv1PER
hai ) 22519 47 N/A
ha1 ) 29531 48 ENSG00000060718 COL11A1 ha1 58853 49 ENSG00000113648 HZAFY
ha1 r 35052 50 ENSG00000111341 MGP
1ha1 r 67002 51 EN5G00000159445 THEMi ha1 p 45580 52 ENSG000001G8079 SCARA5 Ira1p_1264G 53 ENSG00000.107833 NPM3 Example 2. Design of independent DNA methylation verification and validation assays.
[0120] PCR primers that interrogated the 53 loci predicted to be differentially methylated between breast tumor and adjacent histologically normal breast tissue were designed. Due to the functional properties of the enzyme, DNA methylation-dependent depletion of DNA
fragments by McrBC is capable of monitoring the DNA methylation status of sequences neighboring the genomic sequences represented by the features on the microarray described in Example 1(wingspan). Since the size of DNA fragments analyzed as described in Example I was approximately 1-4 kb, we selected a 1 kb region spanning the sequence represented by the microarray feature as an estimate of the predicted region of differential methylation. For each locus, PCR primers were selected within this approximately 1 kb region flanking the genomic sequence represented on the DNA microarray (approximately 500 bp upstream and 500 bp downstream). Selection of primer sequences was guided by uniqueness of the primer sequence across the genoine, as well as the distribution of purine-CG sequences within the 1 kb region. PCR primer pairs were selected to amplify an approximately 400-600 bp sequence within each 1 kb region. For demonstration, an example of one such PCR amplicon design is shown in Figure 1. A graphical representation of the transcription start site and 5' structure of one predicted differentially methylated gene is indicated (A). The bar graph (B) indicates the relative local density of purine-CG sequences within this region. The relative position of the DNA microarray feature that reported differential DNA methylation at this locus is indicated by (C). PCR primers were selected to amplify the region indicated by (D). The vertical bars (E and F) represent the microarray DNA methylation measurement representing all breast tumors (E) and all normal breast samples (F). For example, this locus is predicted to be hypermethylated in the breast tumors (positive value) relative to the adjacent normal breast samples (negative value). Suitable PCR cycling conditions for the 53 primer pairs were empirically determined, and amplification of a specific PCR amplicon of the correct size was verified. The sequences of the 53 microarray features, primer pairs and amplicons are indicated in Table 2, and in the "SEQUENCE LISTING" section.

, a -ZU U U UU U U U U UU U U U U UU U UU U CJ
'U

W M eP V i ~O l~ 00 O~ O r--1 N M~~~O [~ 00 O\ O~ N M ri' {Yj y~-i r~ ~=i ~--1 ~--I ~-I ~--( N N N N N N N N N N M M M M M
N N N N tV N N N N N N N N N N N N N N N N N

y O C~ N t+~ ~ V) ~O C`00 p~ o ri N M'~Y' 1~) \Q h Op p~ o~--I
\D \p \D Z \O \,p \O l- [- [- t- I- h [- h h l- 00 00 ~ .-i .-i ~-+ ~--i ~-+ ~--i ~ r--i ~ ~ r+ ~ ~--+ ~--i ~--i .-~ r..i ~ ..=~ ~
r+ ~
El . !:IU uU uU U U U U U U U U uU U U U U U U U
v ~ ~c ~o ~o ~c ~o ~c ~o ~c ~o ~ ~o ~a ~c ~o ~o =c ~a ~o ~o ~o ~a ~c ;, .C [~ 00 d~ O rl N M~! V) ~O [`OC T O r-I N M~! ~~O l'~ 00 ~ ~~" O O O H ~~--I ~ r-I N ti H r'+ ~--~ N N N N N N N N N
=~

~ ~~p t`00 O~ O ~-i N M"tt in \.D l- 00 Ct~ O~ N` M "tS' 1l) -i) if) V) tn V) tn %.o \D \G \.O YW \O \D ~O h l- [- l- t- h R c>
a' CQ
d y~

Cd YI
1~ (~ O ~=-1 N M'T in \1D h GO C~ O~--~ N
r--4 M!4' V) \1O l- 00 O\

d ~tf) 't! 00 [- C\ N t~ h\O O 0 G\
M
S~ ~ 00 00 eP h d ~ O~D [~ 1n tn ON [- h O O
~-1 O 01 00 M~ if) l1 r-i t- ci rP
Z Oo l- e--1 ir p p~ r4 7-4 M Oo M~-O o~ 00 N l- QN V) o p~ If) .p W .= 5 oI M Oo 00 00 M'V N'et e4 oI C~ o 00 00 `t 00 Z
v 1~ y Z oq aa wo a a al o; a.l a a ai ~,! aif cI bn R~ ~! .n,l c: al R~ a ~ ~--~ -q r-+ r ,-4 a r-i r-+ ,-~ rq ,-0 ." .-4 Cd a ed a m a a m cl cl 0 'm 0 kn \,O [`- 00 G, O r-i N M et M W l- 00 Q\ O ri N
C.0 u UUU~5 u u u u~CJU` ~
~.-a C~ C~ U U UUU
rn in .O I- 00 01 M[4' tn t- 00 CN O.-~ N M eP lf~ V7 t- 00 Q, C> M M M M M e- a1 r-' e4' =eP' '~T at tY ',it kn v) tn Vn V) !f) kn tI) tn M\O
tV N N N cV N N N N N N N N N N N N N N N N N N N N N
z ~

N M C9 kA t- GO C~ O r-~ N M~i!) 1.0 [- 00 Q~ O e-1 N M C4 V) IC l~
U 00 00 00 00 00 00 00 00 d1 4;1 CN QN O% O., Cn CN 01 CT C O O O O O C O
;'~` ~"~ r"~ ~"r r"'1 rl ~"'~ e~i ri r-i ~--1 r-1 rV r-~ ~-i r==i r-I e-1 ~--I
N N N N N N N N
~

bA
U U U C e ) U U U U U C,) L . ) U U Z.) U U UU U UU U U U U U
a~ ~ ~G N N ~O ~O ~O ~D N ~O ~O ~O ~O ~O ~C ~O ~D ~C ~O N N ~G N N ~D ~O ~O
3.r ~ Q~ O rl N M eP tP) \~D t- OG C1 v) ~O t~ 00 CN O~-=i N M d' ~ N M M M M M M M M M M eg "tr rY eP eP !P et eP ep et 1n !n 1n kn in 'J,~,n ,-t ~--~ ~--~ ~--i r=1 ri r-1 ~-==1 r-1 ~--i r-=~ r-i ~--I =r-~ ~--I ~--I r-I ~--1 rl !-i ti r-1 wl ~--~ ~--I r-I

~~~G t~ 00 Q1 O.-I N M eY t!) \C 1- 00 Q~ b r-i N M et 1n ~G t~ 00 Cn d'"'~
a.~ t~ [~ [~ t~ 00 00 00 00 00 00 00 00 00 00 eT O~ CT Q~ Q~ C1 Q~ O~ G~ O~ O
a M"V Il) "O t- 00 GN O~-1 N M C1' U') "G+ I- 00 ON O~--1 N M'IT if) ~G [- 00 N N N N N N M M M K) c*) M M M M M~ D' 'd' d' tP eP' '~? d' ~4 P;I

k~ tn N O~ ~ O~ GA M 00 V1 "-I' M O N N N M ON r-I
00 et [- V) M C~ 01 NT--I M~ N~ r-1 r-1 ~.-1 r-~ O\ t- ~--1 M
N M~ eh ~ O o~O N tn M'~ N N 00 IV ~' N O tf~ ln ~+ O N~D O ~a-, M l~ O N Q d M 0 0 O~ 00 en 00 ~ ~G 00 N N O~
++ ~i 00 M[- 00 ~~ O~..~ ~
ea co I I I I ~ I I I I I ~ I I ~ ~ I I ~ ~ I ~ I I I I I
~ Z c, n~o c. rs~ p, cZ. wo c1~ au c~. ~ r1, a~ p ~ a a, ~, Q ao a p, ar ca.
a. a~
H ,-, r, .1 ;~ r-, r, .-1 r, .=, r, ,~1 ~ .-1 ,~ .-1 ,-i r, ,1 CC cC 0 0 *'~ C~S e~t ftt CO t0 r" C~ C~i ~^r tC Rt ca '" ~ CC RS CC ~C tt!
cl (M ~ -~ Lt Cd y d O"~ M e4' M`C t~ OO G~ O~--I N M~P \O t~ 00 C~ O~--i N M V i IO 00 ~ N N N N N N M M M M M M M M M et ~4 `~ r4' c9 W
az o `..
U U U
ti 6b a e r--~ N M eP kn u \~O \.O \~O
~cn N N N N N
z ~
~
'r" 00 O~ O r-+ N
O O r-i r-i r-1 v N N N N N
~
~".
bA
V) 1.0 [- 00 O\
'M tn kn tn kn U'"

Fr ~C1 O O O O
a '~ O r-I rl rl ~--1 ~--I

~

ONV tn tn V7 tn M N N O ~O
~ 1n kn 00 et 00 O V') 00 tn P- kn N
M \1O et r-1 "aara~
w Z a M
v i az Example 3. Verification of niicroarray DNA methylation predictions.

[0121] Initially, the DNA methylation state of these 53 loci was independently assayed in the 10 infiltrating ductal breast carcinoma samples and the 10 matched adjacent histologically normal samples described above (i.e., the discovery tissue panel used for microarray experiments). DNA methylation was assayed by a quantitative PCR approach utilizing digestion by the McrBC restriction enzyme to monitor DNA methylation status.
Genomic DNA purified from each sample was split into two equal portions of 9.6 g. One 9.6 g portion (Treated Portion) was digested with McrBC in a total volume of 120 L
including 1X NEB2 buffer (New England Biolabs), 0.1 mg/mL bovine serum albumin (New England Biolabs), 2 mM GTP (Roche) and 80 units of McrBC enzyme (New England Biolabs).
The second 9.6 pg portion (Untreated Portion) was treated exactly the same as the Treated Portion, except that 8 L of sterile 50% glycerol was added instead of McrBC
enzyme.
Reactions were incubated at 37 C for approximately 12 hours, followed by incubation at 60 C for 20 minutes to inactivate McrBC.

[0122] The extent of MerBC cleavage at each locus was monitored by quantitative real-time PCR (qPCR). For each assayed locus, qPCR was performed using 20ng of the Untreated Portion DNA as template and, separately, using 20ng of the Treated Portion DNA
as template. Each reaction was performed in 10 L total volume including 1X
LightCycler 480 SYBR Green I Master mix (Roche) and 625 nM of each primer. Reactions were run in a Roche LightCycler 480 instrument. Optimal annealing temperatures varied depending on the primer pair. Primer sequences (Left Primer; Right Primer) and appropriate annealing temperatures (Annealing Temp.) are shown in Table 2. Cycling conditions were:
95 C for 5 min.; 45 cycles of 95 C for I min., [annealing temperature, see Table 2] for 30 sec., 72 C for 1 min., 83 C for 2 sec. followed by a plate read. Melting curves were calculated under the following conditions: 95 C for 5 sec., 65 C for 1 min., 65 C to 95 C at 2.5 C/sec. ramp rate with continuous plate reads. Each Untreated/Treated qPCR reaction pair was performed in duplicate. The difference in the cycle number at which amplification crossed threshold (delta Ct) was calculated for each Untreated/Treated qPCR reaction pair by subtracting the Ct of the Untreated Portion from the Ct of the Treated Portion. Because McrBC-mediated cleavage between the two primers increases the Ct of the Treated Portion, increasing delta Ct values reflect increasing measurements of local DNA methylation densities. The average delta Ct between the two replicate Untreated/Treated qPCR reactions was calculated, as well as the standard deviation between the two delta Ct values.

[0123] For demonstration purposes, amplification profiles for one locus (GHSR) in a tumor sample and a normal sample are shown in Figure 2. Panel A shows the untreated/treated PCR replicate I for amplification of the GHSR amplicon in a breast tumor sample. The delta Ct (Treated 1- Untreated 1) is 5.38 cycles. Panel B shows the untreated/treated PCR
replicate 2 for ai.nplification of the same amplicon from the same tumor sample. The delta Ct (Treated 2 - Untreated 2) is 5.40 cycles. The average delta Ct of the two replicates is 5.39 cycles, representing a -97% reduction of amplifiable copies in the treated relative to the untreated portions [100% -((1/2^delta Ct) x 100)]. The standard deviation of the delta Ct's between the two qPCR replicates is 0.01 cycles. Panel C shows the untreated/treated PCR
replicate 1 for amplification of the GHSR amplicon in a normal breast sample.
The delta Ct (Treated 1- Untreated 1) is 0.18 cycles. Panel D shows the untreated/treated PCR replicate 2 for amplification of the same amplicon from the same normal sample. The delta Ct (Treated 2 - Untreated 2) is 0.03 cycles. The average delta Ct of the two replicates is 0.11 cycles, representing a-7% reduction of amplifiable copies in the treated relative to the untreated portions. The standard deviation of the delta Ct's between the two qPCR
replicates is 0.11 cycles. The average delta Ct of the tumor sample would be scored as a methylated locus. In contrast, the average delta Ct of the normal sample would be scored as a relatively unmethylated locus. An average delta Ct of > 1.0 cycle, representing > -50%
reduction of amplifiable copies in the treated relative to the untreated portions, was set as the threshold for scoring a sample as positive for DNA methylation. Any average delta Ct measurement with a standard deviation > 1.0 cycle in qPCR replicates was excluded as an unreliable measurement (ND in Figure 3). Finally, any average delta Ct < 0 was adjusted to 0.

[0124] Figure 3 shows the results of the DNA methylation measurements for the 53 loci in the 10 tumor samples and 10 normal samples used in the microarray discovery experiment.
Open boxes represent loci that are unmethylated (average delta Ct < 1.0), grey boxes represent loci that are methylated (average delta Ct > 1 and < 2), and black boxes represent loci that are densely methylated (average delta Ct > 2).

Example 4. Validation of DNA methylation changes in independent breast tumor and normal breast samples.

[0125] The differential DNA methylation status of the 53 loci was further validated by analyzing an independent panel of 16 infiltrating 'ductal breast carcinoma samples (1 Stage 1, 4 Stage II, 11 Stage III) and 25 normal breast tissue samples. The normal breast tissues included in this panel were obtained from biopsies unrelated to breast cancer.
Each sample was split into two equal portions of 4 g. One portion was digested with McrBC
(Treated Portion) in a total volume of 200 L including 1X NEB2 buffer (New England Biolabs), 0.1 mg/mL bovine serum albumin (New England Biolabs), 2mM GTP (Roche) and 32 units McrBC (New England Biolabs). The second portion was mock treated under identical conditions, except that 3.2 L sterile 50% glycerol was added instead of McrBC
enzyme (Untreated Portion). Samples were incubated at 37 C for approximately 12 hours, followed by incubation at 60 C to inactivate the McrBC enzyme. qPCR reactions and data analysis were performed as described in Example 3.

[0126] The DNA methylation state measurements are suiriinarized in Figure 4.
As described above, each locus was scored as unmethylated (average delta Ct <1.0, open boxes), methylated (average delta Ct > 1.0 and < 2.0, grey boxes) or densely methylated (average delta Ct > 2.0, black boxes). Measurements with a standard deviation between pPCR
replicates > 1 cycle were not included in the analysis (ND). Table 3 indicates the percent sensitivity and specificity for each locus. Sensitivity reflects the frequency of scoring a known tumor saniple as positive for DNA methylation at each locus. Specificity reflects the frequency of scoring a known normal sample as negative for DNA methylation at each locus.
As described above, an average delta Ct > 1.0 (Treated Portion - Untreated Portion) was used as a threshold to score a sample as positive for DNA methylation at each locus (representing >-50% depletion of amplifiable molecules in the DNA methylation-dependent restricted population relative to the untreated population). Percent sensitivity was calculated as the number of tumor samples with an average delta Ct > 1.0 divided by the total number of tumor samples analyzed for that locus (i.e. excluding any measurements with a standard deviation between qPCR replicates > I cycle) X 100. Percent specificity was calculated as (l. - (the number of normal samples with an average delta Ct > 1.0 divided by the total number of normal samples analyzed for that locus)) X 100. As shown in Table 3, the 53 loci have sensitivities > 13% and specificities > 80%. Notably, 33 of the 53 loci have 100%
specificity. It is important to point out that the sensitivity and specificity of the differential DNA methylation status of any given locus may be increased by further optimization of the precise local genetic region interrogated by a DNA methylation-sensing assay.

Table 3A
Sensitivity and specificity of differentially methylated loci in a panel of 25 normal breast and 16 breast tumor samples.

_..._..~........_._......._... _.._._.____..----___-_ _.._.__ ._........... ~
.---.-. .................. __............ . ._._.__......._....___...__~__ ..____. .__......_._....
FEATURE ID LCICUS NUMBER SENSITIVITY SPECIFICITY
ha1 g_00681 1 86% 100%
ha 1 p_39189 2 81% 100%
ha 1 g_00644 3 79% 100%
ha1 _81674 4 69% 100%
Iha1 p_81149 5 69% 100%
jhalp_83841 6 69% 100%
1ha1p_38705 7 63% 100%
ha1p_40164 8 63% 100%
ha1 _23178 9 63% 100%
ha1p_46057 ' 10 56% 100%
ha1p 40959 11 56% 100%
( ha1 p_104423 12 50% 100%
! h2-1 g_00847 13 50% 100%
ha1p 08347 14 50% 100%
ha1g 02416 15 44% 100%
halp_87540 16 44% 100%
1ha1p_11+0107 17 38% 100%
ha1p_89799 18 31% 100%
halp 45173 19 31% 100%
ha1 _80771 20 25% 100%
ha1 p_69407 21 25% 100%
iha1p_05406 22 25% 100%
ha1p_80287 23 25% 100%
halg_02345 24 20% 100%
ha 1 36172 25 20% 100%
halp_70459 26 19% 100%
ha1 p_105937 27 19% 100%

Tab1e 3B
Sensitivity and specificity of differentially methylated loci in a panel of 25 normal breast and 16 breast tumor samples.
FEATURE ID LOCUS NUMBER SENSITIVITY SPECIFICITY
ha1p_89099 28 19% 100%
halg_03099 29 14% 100%
Iha7p_67625 30 13% 100%
} ha1 g_00218 31 13% 100%
jha1p_12535 32 75% 96%
(ha1p_105474 33 75% 96%
halp_74707 34 69% 96%
, ha1 p_93325 35 69% 96%
J.ha1 101161 36 56% 96%
halp_101251 37 87% 96%
;ha1p69214 38 81% 96%
halp_88517 39 69% 96%
halp_103824 40 17% 96%
j halp_108445 41 60% 95%
iha1g_02210 42 18% 95%
(ha1p 103$72 43 94% 92%
halp_56412 44 79% 92%
halp_18292 45 60% 91%
1ha1 12075 46 31% 90%
(ha1 22519 47 88% 88%
ba1 p_29531 48 88% 88%
ha1p_58853 49 50% 88%
ha1p_35052 50 31% 88%
ha1p_67002 51 64% 83%
ha1 45580 52 40% 83%
halp_12646 53 81% 80%

Example 5. Further validation of selected DNA methylation biomarkers in a larger panel of breast tumor samples, normal breast samples, and normal female peripheral blood samples.

[0127] A panel of 15 loci were selected for further validation in a panel of 9 additional infiltrating ductal breast carcinoma samples, bringing the total number of tumor samples analyzed to 25 (1 Stage II, 8 Stage III). In addition, 25 normal female peripheral blood samples were analyzed. Samples were treated and analyzed as described in Example 4.
Figure 5 shows the results of these analyses, including the 25 normal breast samples described in Example 4. As shown in Table 4, these loci display > 17%
sensitivity, > 92%
specificity relative to normal breast tissue, and > 92% specificity relative to normal female peripheral blood.

Table 4 Sensitivity and specificity of differentially methylated loci in a panel of 25 normal breast and 25 breast tumor samples and 25 normal blood samples.

FEATURE ID LOCUS NUMBER SENSITMTY SPECIFICITY VS NORMAL BREAST SPECIFICITY VS
BLOOD
ha1p 39189 2 84% 100% 96%
ha1g 00644 3 83% 100% 100%
Ihalp_81674 4 76% 100% 95%
ha1p_74707 34 72% 96% 100%
?ha1p 101251 37 88% 96% 92%
ha1g 02416. 15 54% 100% 100%
Iha1 110107 17 52% 100 /, 100%
;ha1 89799 18 40% 100% 100%
?halp_80771 20 36% 100% 100 iha1p 69407 21 26% 92% 96%
ha1p05406 22 32% 100% 100%
ha1g 02345 24 17% 100% 100%
halp 36172 25 38% 100% 100%
ha1p30459 26 24% 100% 96%
,ha1 67625 30 35% 100% 100%

Example 6. Demonstration of a DNA methylation measurement threshold.

[0128] In the examples above, a threshold for scoring differential methylation (average delta Ct > 1.0) was established and indiscriminately applied to all loci.
However, the most informative threshold is dependent upon the specific locus in question. This is demonstrated in Figure 6. The graph shows the average delta Ct (Treated Portion - Untreated Portion) for the analyzed region of the GHSR locus in 25 tumor samples, 25 normal breast samples, and 24 normal female peripheral blood samples. Using an average delta Ct threshold of > 1.0 as the criteria for a positive DNA methylation measurement, sensitivity is 84%, specificity relative to normal tissue is 100% and specificity relative to blood is 96%
(Table 4).
However, an optimal threshold may be set for each individual locus, and this threshold is dependent upon the technology used to detect the differential DNA methylation state. For example, in the GSHR example shown in Figure 6, a threshold of > 1.3 (hatched line in figure) would adjust the specificity relative to blood to 100%.

Example 7. Validation of selected DNA methylation biomarkers in a panel including approximately 100 breast tumor samples and 100 normal breast samples.

[0129] A panel of 16 biomarker loci was further validated in additional breast tumor and normal breast samples. In total, approximately 100 samples were analyzed for each group.
The total number of samples analyzed for each biomarker and for each sample category is reported in Table 5.

~:=:=:=:=~
~ -~+:o : ' ::: :: :: :: ;" ::: :; ;~; : :=
. . :
o : u4 = . . =~.
O .c--N'~ - 3f" 'f~ ^'~i+~' ~e.~~== if+' '~ .+'i~^~ a~+i+ `di~~ ys'i ~r~-~r ~. . Q+ ,~'4? l ~'=1 O O RrY ~` (Q 4 Lr ~'O G't~`
K4'J ['~f v- r+f=' Gi tf1 ~T'.' T v- T' t.
ca I::':v,.='~


~,= =.. .
d ~:or Z 44 ."''=
F y o ~"=~,:Q x~
~
=.=.=.~:;o :' :. ::: :: : :=: =: '=: =' ;= .~.
snco ~ m c= .=c~+es~z i* :-c+csss=;K-earat~ p .._. ~
o CD
~, =--~ O o CD
.. ~ ~ z ^d Al ' ~
u=w :;: . : '.' .':.= ':= = = .C~ ~ ~= px 0- ;p "CS
t~ u. ~i ,s2 >.. 1E i-~ b,A pa O O
Gf Cf R? C C1 . C
~,= = , .~ 44 q~ +9s C~ C~ O. Ct CJ p F=~
O ..' . fy, =.iõ Cri VT. fA 4HG1 V~ CTi ~~7's 'e=~ ~^ r: ri r+ t=-. =r~ r ~
lS~ PCI r'-~ (a ~
4-' f~S+f cu cc S6 :' D ~-Fi G~'=i ~
S~ { ~'' =' = = +~I d d h~pr=
,C E ' ;.~.:.,~ .: .' ;.; '. '. .'. .. '. .'. .. . . .=~'.. . F~ CD F-I
. R ! . . .o.' a. -r ~y e~ r~ ' -r t-= c~r et. a~ s~. -O +.~ + , -~
= . . .`. . 'C.+` ~C:i M C7 t5 C> P`" ~f ~S +~ C9 ~, d l'~ i.a =L~
v l.' .' . ~. +w== w+ rr`+ a++ M=+ ~w+= 'C+ w. GY v+x. .'i7%' w w w-= d id =~.~
p !. . . y~ rA H 4 "p =: : }4: : ' ~ 'V
d p is ~
~ r~
4-1 F, ua uc G~1 +' pq + y Q '+o Q= c= F, r-I 92+ .w ~I
s~a Co acisi , F-4 ua ~ ~ a rA ;-4 4~
r, Z rA Z
Cd ai dt ~~' :t c;, w= at w ra o F=~ ,.a ' = ~y M r C? h P. ~^r ,1** +tA ~.P "~, ~ M1= ~ 4 =Da H O .=C~ V4 ~"~
0~ ,~ .'m O? d+= F~ cc? ~t; +T "t Cr'~ M~'! C.=F~l LV ~'V =- ~ G d O~ 44 ~ y ,N 4-4 rt ~
r ' =' ~ jjii-i ,' ' =' ~- r..-, ~ ^d i }- ~= `õ/ p H r-~i ~ ' d F. `"+
rg ~
~
~ ~ :;~::~ . ': : : : =;. .; .; :. :. .:. .: . ;. ~ Cd .n,r o ut r-d1 ~, p.=. ,.~ 'h. ?Y~= i[S ir CU 1'.= +.~ +rT 7+. h. CU "'S == ~ O~y C~
~ H ^ rd-1 ~,, '.~~õ oo r-, r: ~+rf -r r~n n e~, + t sv nr r.t e~i p F cR pq pq pm P,i rA tL S 0 fG-i =~ ~ 0:0. ; : ::;::: :. = ~z~ o51 a a~
N
='~ D(. . . C. .C~' 'N M t H
~ =
a) .--~ ~ . ; . ; : : . : : : : : . : : : : .': : . : : . a~ o a~ ~C = ~o, ~
..~
C/2 c~ ; r .. . ~:~ : : : : . . ~ ~ =~ F, .r =rN, ~, w ii'N, *~ , r- N. ev Q1 n r. aw c~ ecr u-s . .4..
== Cl 00 :! t=r. Al" N'~=7 =!t fa.,It'! 4~ .it'a `y' y y N
.. f+:
{4 't +!t M ~ ~ ~ ~c-I Q 1~-1 ~=.~
r r .i 'rY G r } u'i OH
:GS Ca ~a `~, ea co r-. r- ca r~ p.~ - 0 O
F=i w W~ c.~
.. .~, ~ ++ (~IY ~ =~ r r i- r r r'~ r~- T T r r tr~ ~ r O O O O O O 8 ~ I,. ...._.__ . . ~. _~ . m 0 ~

Example 8. Bisulfite sequencing confirmation of differential DNA methylation.
[0130] An example of confirmation of differential DNA methylation by bisulfite sequencing is shown in Figure 7. Primers were designed to amplify a 130 bp amplicon within the 412 bp region of Nuclear Factor 1 X-type analyzed by qPCR (as discussed in the Examples above) from bisulfite converted genomic DNA. Primers sequences lack CpG
dinucleotides, and therefore amplify bisulfite converted DNA independently of DNA
methylation status. Products were amplified from one tumor sample (positive for DNA
methylation) and from one pooled normal female peripheral blood sample.
Amplicons were purified and cloned using TA cloning kits (Invitrogen). Eighteen (18) independent clones were sequenced for the tumor sample. Seven (7) independent clones were sequenced for the blood sample. Bisulfite treathnent results in conversion of unmethylated cytosines to uracil, but does not convert methylated cytosines. The percent methylation of each CpG
dinucleotide within the region was calculated as the number of sequence reads of C at each CpG divided by the total number of sequence reads. Figure 7A shows the %
methylation occupancy for each of the 18 CpG dinucleotides in the tumor sample. Figure 7B
shows the % methylation occupancy for each of the 18 CpG dinucleotides in the normal blood sample.
All 18 CpG dinucleotides are methylated in the tumor (occupany ranging from 11 % to 89%).
However, only one CpG dinucleotide displayed methylation in the normal blood sample (14%).

[0131] To provide further confirmation of DNA methylation differences and to justify the qPCR based strategy for high-throughput detection of DNA methylation, three loci were analyzed by bisulfite genomic sequencing. Primers were designed to amplify approximately 150 bp amplicons within the region of three loci that were analyzed by qPCR as described above. The loci included feature ID halp_39189 (locus number 2), halg 00644 (locus number 3) and ha 1 p_1 04423 (locus number 12). Primer sequences lacked CpG
dinucleotides, and therefore amplify bisulfite converted DNA independently of DNA
methylation status. For each amplicon, products were amplified from three normal breast DNA samples that reported average dCt values <0.5, three normal breast DNA
samples that reported average dCt values between 0.5 and 1.0, and three breast tumor DNA
samples that reported average dCt values greater than 1Ø Amplicons were purified and cloned using TA
cloning kits (Invitrogen). At least 29 independent clones were sequenced per amplicon, per locus. Figure 8 shows the median 5-methylcytosine content for all sequenced clones per amplicon plotted against the average dCt value for that locus in the same DNA
sample. The dashed vertical line represents the dCt = 1.0 threshold used to indicate a positive qPCR
measurement for DNA methylation detection. These data verify the differential DNA
methylation content in tumors relative to normal breast samples. Furthermore, the linear relationship between the qPCR measurement and the 5-methylcytosine content determined by bisulfite sequencing (R2 = 0.7965) provides justification for the high-throughput qPCR
method for DNA methylation detection.

Example 9. Selection of sequence identified as potential region of differential DNA ' methylation.

[0132] As described in the examples above, the loci identified as differentially methylated were originally discovered based on DNA methylation-dependent microarray analyses. The sequences of the 53 microarray features reporting this differential methylation are indicated in Table 2 and in the "SEQUENCE LISTING" section. Because the "wingspan" of genomic interrogation by each feature is conservatively 1 kb, PCR primers that amplify an amplicon within a 1 kb region surrounding the sequence represented by each microarray feature were selected and used for independent verification and validation experiments.
Primer sequences and amplicon sequences are indicated in Table 2 and in the "SEQUENCE LISTING"
section.
To optimize successful PCR amplification, these amplicons were designed to be less than the entire I kb region represented by the wingspan of the microarray feature.
However, it should be noted that differential methylation may be detectable anywhere within this sequence window. For each locus, the sequence representing at least this 1 kb region flanking the sequence represented by the microarray feature was selected as the claimed potentially differentially methylated genomic region. These sequences are indicated in Table 2 (DNA
Region Sequences) and in the "SEQUENCE LISTING" section. Sequences claimed based on the 1 Kb region flanking the sequence represented by the microarray feature are indicated by "1 kb' in Table 2 (Selection Criteria).

[01331 In addition, the local CpG density surrounding each region was calculated.
Approximately 10 kb of sequence both upstream and downstream of each feature was extracted from the human genome. For each 20 kb region of the genome, a sliding window of 500 bp moving in 100 bp steps was used to calculate the CG density. CG
density was expressed as the ratio of CG dinucleotides per kb. An example is shown in Figure 9 and illustrates the position of the transcription start site of the GHSR gene relative to the regional CpG density of the surrounding sequence. In this example, methylation anywhere with the -4 kb peak of CpG density associated with the promoter region of the gene is monitored and is useful in a clinical diagnostic assay. Loci in which the claimed region was determined by analysis of local CpG density are indicated by "CG" in Table 2 (Selection Criteria). As diagrammed in Figure 9, the claimed sequences were selected based on setting the local minimum of CpG density flanking the sequence represented by the PCR amplicon as the upstream and downstream boundaries.

Example 10. Demonstration that differential DNA methylation is detectable in early stage disease.

[0134] Although fewer Stage I tumors compared to Stage II or III tumors were analyzed (8 of 103 samples), the inclusion of a small number of Stage I tumors allowed a determination of whether the differential methylation events are related to tumor stage.
Figure 10A shows a plot of the frequency of hypermethylation of the 16 loci in the 8 Stage I
tumors (i.e. the percentage of Stage I tumors scoring as intermediately to densely methylated) versus the Stage II and III tumors. The relationship between the two sensitivity calculations (R2 =
0.887; slope = 0.9815) indicates that the frequency of hypermethylation of these loci is similar regardless of tumor stage. Therefore, for the majority of loci, the differential methylation events are just as likely to be present in a Stage I tumor as they are in later stage tumors. The proportion of methylated loci in tumors at each stage was then analyzed for three selected loci. The percent depletion by McrBC for each sample in which a given locus scored as methylated was calculated [1-(1/2^delta Ct (McrBC digested - Mock treated)) *
100] to provide a measure of the load of methylated molecules within the sample. The mean percent depletion at each tumor stage is shown in Figure l OB. While there is a trend for increased methylation density at these loci with increasing tumor stage, methylation=density of Stage I tumors is not significantly different than Stage II-III tumors, yet is dramatically different than the average of all normal samples. Therefore, differential methylation of these loci is independent of tumor stage in regards to both the frequency and the density of hypermethylation.

Example 11. Receiver-operator curve analysis of biomarker sensitivity and specificity.
[0135] Receiver-operator characteristic (ROC) analyses were performed for each of the 16 loci described in Table 5 to determine optimal thresholds for calculation of sensitivity and specificity of the differential DNA methylation event. Examples of the primary qPCR data for four selected loci are shown in Figure 11 A. These plots demonstrate the overall discrimination between tumor, normal breast tissue and normal peripheral blood samples.
The frequency at which tumor tissues were scored as differentially methylated at these loci was not significantly associated with either age of the cancer patient or estrogen receptor status of the patient's primary tumor. ROC curves for the corresponding four datasets are shown in Figure 11B. Optimal thresholds were identified as the maximum sum of sensitivity and specificity calculated at each observed delta Ct value. The minimum allowed threshold was set at 0.5 so that calculations could not be based on thresholds within the variability range of the qPCR platform. Results are summarized in Table 6. Sensitivity and specificity calculations based on optimal thresholds are similar to those calculated using a standard delta Ct threshold of 1Ø As hypothesized, the direct global profiling of DNA
methylation identified numerous novel DNA methylation-based biomarkers that display substantially improved sensitivity and specificity relative to the vast majority of previously identified differentially methylated genes in breast cancer. In fact, a single differentially methylated biomarker, located in the promoter region of GHSR, was capable of distinguishing IDC from normal and benign breast tissue with sensitivity of 90% and specificity of 96%. Other biomarkers displayed similar specificity, with decreasing sensitivity. Several of these biomarkers were hypermethylated at a higher frequency than the majority of previously reported hypermethylated biomarkers (i.e. 12 of 16 displayed sensitivity between 53% and 90%).

! f 0 r N~ t,p ~L7 M-R'7 .~.,, t{3 r lt"' Lo li'~ r 1 r N ln O CD M tC7 4C') tY! t SR ~ ~
O
J L~ O~D= i~= ~: tY~
t OLq O O O O O CS d~ p d d .. {

!
O _._. _...-........... .-.._~......-. ............. _......_...,.......
._..... -+7 G'r M!YS LC) ~7 <! M r r!' 'et T1' tt7 N
~ t% f- N N N r N N N N N N N N N C V N
4.. ti.. v.. 4- 4.. 4, o a o 0 0 0 o a o 0 o Q o a o o a o 'd' 49 m OD d4'tL+'i h- M M Ci -t "7' Ln N
~m 4) N N(N r N NN r= N~N(N NN N N
-o ~ - r - --{ - -~ o 0 0{ Q 4 0.e o'~ ! o'4 =y ~ ii p~ c? 4o h- pd~p r t:r Lnp OC' CD CQ
L , { ! {

> ~ -n Lt ) IY1 lt') k"i LCl Il7 -fT LLi 4? r r p N My r ~ r r '~7 LC> M
(c~ v c~'=ur;h;rr.ikr;L''u;-r,C; Iq ". d{O O~r G Q~t~ did d p~pit~ CY
d ? F- __. _...._ ~_._ ...-_... _._ ......... :__.. ........ ...... ..- -....... {..._....~... ! -{ w va r1'~+7 .7 ~ p ~! N cr~ M Oo.M dIO~Cijh Q C~ d d rrJ~ r~r~Jp,.
~ Qi ~f 4~
r Cy r r L.- v k - - 3 wf~ . +.1 ti-. v- a== ~- ~--1.m a Q Q OI iD 4 Oj Q O~ O O~ G O O
=-+ jtLY r.r~ N{'^F ta ~'{Oj00 r c~
o V,~ CM 00 cr) ^ Z lao o o ~...... f....._-~ - e Q

z ~=;, 3 cri o 0 e-o e aQ o!o 0 4w, > Z.1 CO N 1~ Ctt N M1 h.1 Cm Oo 1~ = N. h- cn !
P- P+
0"i a7 G7 o~ C-~ o=. a~ o.) ti c ~tri I, ( O " N r r t7~N~r r r!N Mr'M N
a C+ L7 0~ O ~'O(O i~ t~ ~cr~!t~10 O C
y~ {'~ r r r r r+e~ = r r r r! r r e-GS ~ MM. 4~ ~-. p 4V== W. 4- 4- 4- ~ p y- 4- 4- 4-w O O a O O O, t~ O O O O~ a O O
y5 N lQ OD to Cs Co +t '=J' r C,7 L,Lo G'Y N CY lx'i p f7i ?! 1~ tJ^ C. GO fD C8 lC'S '^:!' "Y M M
CL
a !
=~ .
>
".g ao Z.a o,C' ..a -..P a'd. O O._ o~. G O p 6=. +.O
=~ <O t7~ I~ G 01 4n M M C! CG tZi M Go N 08 } rr7 K~7 t-- N. L^ (.? { RD LA 4A 40 Ln tF9 '? !t m M
m h shln N tx7Id~NNZWIO+t N Mf~~ ~1 M rIN r N Mlllr N r N N
` r m tTl e1' lC) +_!' N. ta CY A. C NLo N Ca m lP) ~] GO t N N. O r k7 C r r ~ N eh O Gh h. +t ~- tA c0 t`r !7 `7 ef' O r c,p !t '!t P. P`- M
~,~' G7 O O i- `e!' NO G^i r e.:r N+ O lt i C.7 O N
M C r I W` P-+ d tti- t,¾ r t+'y t0 r 5~ i 4? 9~ ~s O ~ r O~C~ Ca"i'G~'^3.~ .S7.~CLlf.`d ~ f1., r r r r r S~ r!r T r r r r S~ r r LL

Example 12. In-depth analysis of DNA methylation by bisulfite sequencing.

[0136) To provide an in-depth analysis of DNA methylation states relative to the qPCR-based measurements of methylated DNA load between different tissue types, we selected four loci (Locus Number 2, 3, 4 and 12) for extensive bisulfite sequencing analysis (Figure 12). For each locus, analyzed regions overlapped those amplified in the qPCR
assay. Primer pairs were designed to flank, but not include CpG dinucleotides. For analysis of each locus, we selected tumor samples that scored as intermediately to densely methylated and normal breast samples that scored as sparsely methylated. In addition, we selected three histology normal tumor-adjacent tissue samples. Loci were amplified from bisulfite-modified genomic DNA with primers that included patient-specific sequence tags to identify the tissue sample, and amplicons were pooled and sequenced. The average number of molecules analyzed for each locus in each sample was 587. To provide a general measurement of local DNA
methylation density at each locus, the total number of CpG sites sequenced as C (methylated) was divided by the total of number of CpG sites sequenced for each individual sample. This percent methylated CpG value was then plotted against the qPCR methylation measurement for the same tissue sample (Figure 12A, C, E, G). Methylation load values obtained by bisulfite sequencing and by qPCR displayed a strong correlation for Locus number 2, 12 and 3(R2 = 0.76, 0.87 and 0.78, respectively). While tumor samples displayed higher DNA
methylation load at Locus number 4 than normal breast and adjacent histology normal breast samples, the non-tumor tissues displayed higher baseline DNA methylation densities than at the other loci (Figure 12E). Next, the average occurrence of DNA methylation per CpG site in each tissue type was calculated (Figure 12B, D, F, H). In general, tumor samples displayed higher variability in methylation per CpG site than non-tumor (i.e., normal) samples (indicated by higher standard deviations for the average percent methylated CpGs).
At each locus, the DNA methylation pattern was significantly hypermethylated relative to non-tumor samples. Furthermore, analysis of DNA methylation per CpG site provided an explanation for the higher baseline DNA methylation densities detected at the Locus Number 4(.Figure 12F). In non-tumor samples, methylation densities at the first three CpG
dinucleotides of the analyzed region were greater than 50%, while methylation of the following four CpG dinucleotides fell to lower densities more consistent with the baseline levels of methylation at the other analyzed loci. Interestingly, tumor samples displayed the same general methylation density pattern, but with significantly higher methylation density per CpG across the entire analyzed region. Together, these results confirm the hypermethylated state of these loci in breast cancer and provide an extensive validation of the accuracy of the qPCR-based method used to screen for DNA methylation changes in this study.

Example 13. DNA hypermethylation is associated with decreased transcription.

[0137] To address the association between hypermethylation and transcription repression, we performed RT-PCR analyses of Locus Numbers 2, 4 and 12 (Figure 13). Four breast infiltrating ductal carcinoma samples (>90% neoplastic cellularity) were analyzed for both DNA methylation and transcription of the three genes. DNA methylation was analyzed using the qPCR-based assays described above. For gene expression analyses, RT-PCR
was performed using gene-specific primer pairs designed to flank intronic sequences so that the contribution of contaminating genomic DNA could be excluded. Analysis of GAPDH
expression was performed as an internal control. Serial dilutions of first-strand cDNA
preparations from tumor samples and a normal breast tissue sample were used as templates for PCR. As shown in Figure 13, expression of Locus Number 2 transcript (GHSR) was undetectable in all four tumor samples, while expression was detected at 1:10 dilution of the normal breast cDNA. Consistent with the high sensitivity of hypermethylation at the GHSR
locus (90%), all tumor samples demonstrated intermediate to dense DNA
methylation at this locus. Likewise, all tumor samples displayed reduced expression of Locus Number 12 (NFXI) relative to normal breast tissue. Expression was undetectable in three of four tumor samples, whereas expression was detected iri one tumor using undiluted cDNA as template.
In normal breast tissue, expression was detected at 1:10 dilution of the cDNA.
Interestingly, the tumor sample in which NFXI expression was detected was scored as sparsely methylated by the qPCR-based assay. Methylation of the analyzed region of Locus Number 4 (MGA) was detected in all four tumors. However, reduced expression of MGA relative to normal breast was demonstrated in two of the four tumor samples.

Example 14. Detection of tumor-specific DNA methylation in fine.needle aspirate specimens.

[0138] A common procedure to biopsy suspect masses in the breast is to perform fine needle aspiratation (FNA) of the tissue. The procedure involves reinoval of a small amount of fluid and cellular material from the suspect mass using a fine gauge needle. In addition, random periareolar fine needle aspiration (RPFNA) can be used to sample breast tissue in asymptomatic women to assess the risk of breast cancer development. Both approaches typically involve a cytological based diagnosis. Therefore, applying molecular tests to specimens obtained by these approaches promises to offer significantly improved clinical sensitivity and specificity relative to the current practice. To assess the ability to detect breast tumor-specific DNA methylation of the claimed differentially methylated loci, eight loci with varying frequency of differential DNA methylation in primary breast tissue were analyzed in a panel of 7 FNA specimens taken from women with confirmed infiltrating ductal breast carcinoma. DNA methylation was measured as described in Example 3. These included Locus Number 1, 2, 3, 4, 12, 37, 38 and 43. In Figure 14, the percent sensitivity for each locus as listed in Tables 3A and 3B (i.e. the percentage of tumors that report and average dCt > 1.0) is plotted against the percentage of unmatched FNA samples that report and average dCt > 1Ø The frequency of DNA methylation detection (i.e. samples that report an average dCt > 1.0) is very similar regardless of whether primary tumor samples or unmatched FNA
specimens from confirmed breast cancer patients were analyzed (R2 = 0.7415, slope = 0.817).
These results suggest that the DNA methylation biomarkers described herein can be detected in a sample type relevant to molecular diagnostics of breast cancer.
Example 15. Analysis of DNA methylation in various cancer types.

[0139] To address the applicability of the claimed DNA methylation biomarkers to cancer types other than breast cancer, all 53 claimed biomarkers were analyzed in panels of lung, renal, liver, ovarian, head and neck, thyroid, bladder, cervical, colon, endometrial, esophageal and prostate tumors. Adjacent histology normal tissues were analyzed as controls. In addition, melanoma tumors were analyzed, although no adjacent normal tissues were available. The number of samples analyzed for each cancer type is provided in Table 7.
DNA methylation was measured as described in Example 3. For each locus and each cancer type, the sensitivity and specificity for discriminating between tumor and adjacent normal tissue are reported in Tables 8-20. For melanoma tumors (Table 20), only sensitivity (the frequency of DNA methylation detection (i.e. samples that report an average dCt > 1.0)) is reported due to the unavailability of adjacent normal tissues. For each locus, the optimal threshold for discriminating between tumor and adjacent normal tissue was calculated following ROC curve analyses as described in Example 11. These data demonstrate that particular biomarker loci are applicable to cancer types other than breast cancer.

Table 7. Number of Tumor and Adjacent Normai tissues tested for methyl"ation of the 53 biomarker loci.
Cancer Type Tumor Adjacent Normal Lung 10 10 Renal 10 10 Liver 9 9 Ovarian 8 8 liead and Neck 9 5 Thyroid 9 9 Bladder 9 9 Cervicai 10 9 Colon 8 8 Endometrial 14 9 Esophageal 9 10 Prostate 9 9 Melanoma 7 0 Table 8. Sensitivity and Specificity of differentially methylated loci in lung tumors relative to adjacent histoiogical nonnat lung tissue.
Feature ID Locus Number Threshold Sensitivity Pos. of Total Specificity Neg.
of Total ha1 p 105474 33 1.98 80% 8 of 10 100% 10 of 10 ha1 p_39189 2 1.17 70% 7of 10 100% 10 of 10 ha1 p_23178 9 3.015 70% 7 of 10 100% 10 of 10 halp_89099 28 1.38 70% 7 of 10 100% 10 of 10 halg_00644 3 1.445 60% 6 of 10 100% 10 of 10 ha1 p_40164 8 1.96 60% 3 of 5 100% 5 of 5 ha1 p_81149 5 2.37 50% 5 of 10 100% 10 of 10 ha1 p_08347 14 1.67 50% 4 of 8 100% 7 of 7 ha1 p_12075 46 2.33 43% 3 of 7 100% 7 of 7 ha1 p_40959 11 2.435 40% 4 of 10 100% 10 of 10 ha1 p_36172 25 0.835 40% 4 of 10 100% 10 of 10 hai p_56412 44 3.86 40% 4of 10 100% 9 of 9 ha1 g_03099 29 0.635 30% 3 of 10 100% 10 of 10 ha1 p_67625 30 0.965 30% 3 of 10 100% 9 of 9 ha1 p_93325 35 2.93 30% 3 of 10 100% 10 of 10 halp_103824 40 0.765 30% 3 of 10 100% 10 of 10 ha1 p_69407 21 2.77 29% 2 of 7 100% 6 of 6 ha1 p_81674 4 2.165 25% 2 of 8 100% 7 of 7 ha1 p_80771 20 1.05 20% 2 of 10 100% 9 of 9 halg_00218 31 0.71 10% 1 of 10 100% 10 of 10 halp_45173 19 1.66 100% 10 of 10 90% 9 of 10 ha1 p_83841 6 1.54 90% 9 of 10 90% 9 of 10 halp_46057 10 0.9 90% 9 of 10 90% 9 Of 10 ha1 p_105937 27 1.375 80% 8 of 10 90% 9 of 10 halp_69214 38 3.735 78% 7 of 9 90% 9 Of 10 halp_18292 45 2.06 60% 6 of 10 90% 9 of 10 ha1 p_12535 32 2.05 50% 5 of 10 90% 9 of 10 ha1 p_67002 51 2.025 50% 5 of 10 90% 9 of 10 ha1 p_87540 16 0.98 80% 8 of 10 89% 8 of 9 ha1 p_108445 41 1.9 40% 4 of 10 89% 8 of 9 ha1 p_88517 39 1.38 50% 3 Of 6 83% 5 Of 6 halp_29531 48 1.01 90% 9 of 10 80% 8 of 10 halp_58853 49 1.315 80% 8 of 10 80% 8 of 10 hal p_103872 43 2.96 70% 7 of 10 80% 8 of 10 halp_89799 18 0.5 63% 5 of 8 80% 8of 10 ha1 p_104423 12 0_83 40% 4 of 10 80% 8 of 10 ha1 p_80287 23 0.82 40% 4 of 10 80% 8 of 10 ha1 p_74707 34 0.76 78% 7 of 9 78% 7 of 9 hal p_38705 7 0.62 63% 5 of 8 78% 7 of 9 ha1 g_00681 1 1.965 56% 5 of 9 78% 7 of 9 halp_35052 50 1.6 70% 7of 10 70% 7 of 10 ha1 p_45580 52 3.1 70% 7 of 10 70% 7 of 10 ha1g_02345 24 0.51 67% 6 of 9 67% 6 of 9 ha1 p_05406 22 0.615 71% 5 of 7 63% 5 of 8 ha1 p_22519 47 1.6 100% 10 of 10 60% 6 of 10 ha1g_02416 15 0.58 90% 9 of 10 60% 6 of 10 ha1 p_101161 36 0.885 80% 8 of 10 60% 6 of 10 haig_00847 13 0.53 63% 5 of 8 60% 6 of 10 halg_02210 42 0.605 60% 6 of 10 60% 6 of 10 ha1 p_70459 26 0.54 100% 6 of 6 56% 5 of 9 halp_12646 53 5.455 78% 7 of 9 56% 5 of 9 ha1 p_101251 37 1.34 100% 10 of 10 40% 4 of 10 ha1 p_110107 17 0.55 86% 6 of 7 40% 4 Of 10 Threshold: Average dCt value established by ROC curve analysis as optimal threshold for distinguishing tumor and adjacent normal tissues. Sensitivity: % of positive (i.e.
methylation score above Threshold) tumors. Pos. of Total: Number of positive tumors relative to the total number of tumors analyzed.
Specificity: % of negative (i.e. methylation score below Threshold) adjacent normal samples. Neg. of Total:
Number of negative adjacent normal samples relative to the total number of adjacent normal samples analyzed.

Table 9. Sensitivity and Specificity of differentially methylated loci ih renal tumors relative to adjacent histological normal kidney tissue, Feature ID Locus Number Threshold Sensitivity Pos. of Total Specificity Neg.
of Total ha1 p_29531 48 0.68 80% 8 of 10 100% 10 of 10 ha1 p_23178 9 1.52 70% 7 of 10 100% 10 of 10 halp_69407 21 1.255 70% 7 of 10 100% 10 of 10 ha1 p_22519 47 1.68 67% 6 of 9 100% 10 of 10 ha1 g 00644 3 1.135 60% 6 of 10 100% 10 of 10 ha1 p_83841 6 1.2 60% 6 of 10 100% 9 of 9 ha1 p_80771 20 0.535 60% 6 of 10 100% 10 of 10 halp_103872 43 3.25 60% 6 of 10 100% 10 of 10 ha1 p_89099 28 0.935 56% 5 of 9 100% 9 of 9 halp_74707 34 1.6 56% 5 of 9 100% 10 of 10 ha1 g_02416 15 0.56 50% 5 of 10 100% 9 of 9 ha1 p_45173 19 0.675 50% 5 of 10 100% 10 of 10 halp_105937 27 0.99 50% 5 of 10 100% 10 of 10 halp_93325 35 1.155 50% 5 of 10 100% 10 of 10 halp_108445 41 1.025 50% 5 of 10 100% 10 of 10 halp_103824 40 0.82 44% 4 of 9 100% 10 of 10 ha1 p_56412 44 1.84 44% 4 of 9 100% 10 of 10 ha1 p_38705 7 1.28 40% 4 of 10 100% 9 of 9 halp_70459 26 0.74 40% 4 of 10 100% 9 of 9 ha1 p_36172 25 0.92 33% 3 of 9 100% 10 of 10 halg_02345 24 0.565 30% 3 of 10 100% 10 of 10 ha1 p_80287 23 1.135 22% 2 of 9 100% 10 of 10 ha1g_03099 29 0.555 20% 2 of 10 100% 10 of 10 hai p_58853 49 1.195 11% 1 of 9 100% 10 of 10 ha1 p_08347 14 2.65 100% 9 of 9 90% 9 of 10 ha1p_46057 10 1.325 80% 8 of 10 90% 9 of 10 halg_00681 1 1.905 60% 6 of 10 90% 9 of 10 halp_18292 45 1.09 60% 6 of 10 90% 9 of 10 halp_87540 16 0.925 40% 4 of 10 90% 9 of 10 ha1p 89799 18 0.605 40% 4 of 10 90% 9 of 10 ha1p_05406 22 0.52 40% 4 of 10 90% 9 of 10 halg_00218 31 0.505 20% 2 of 10 90% 9 of 10 halp_39189 2 1.03 80% 8 of 10 89% 8 of 9 ha1 p_67625 30 0.79 60% 6 of 10 89% 8 of 9 ha1 p_88517 39 1.98 50% 5 of 10 89% 8 of 9 ha1 p_35052 50 1.495 100% 10 of 10 80% 8 of 10 ha1p_40164 8 0.825 90% 9 of 10 80% 8 of 10 ha1p_67002 51 1.565 90% 9 of 10 80% 8 of 10 ha 1 p_40959 11 0.88 80% 8 of 10 80% 8 of 10 halp_12535 32 0.93 70% 7 of 10 80% 8 of 10 halp_12646 53 4.23 60% 6 of 10 80% 8 of 10 ha1 p 110107 17 0.53 56% 5 of 9 80% 8 of 10 halp_101161 36 0.93 40% 4 of 10 80% 8 of 10 halg_02210 42 0.52 33% 3 of 9 80% 8 of 10 ha 1 g_00847 13 0.7 56% 5 of 9 78% 7 of 9 ha 1 p_81674 4 1.365 89% 8 of 9 67% 6 of 9 halp_12075 46 1.66 89% 8 of 9 56% 5 of 9 ha1p_45580 52 2.1 100% 10 Of 10 50% 5 of 10 halp_81149 5 0.875 90% 9 of 10 50% 5 of 10 halp_105474 33 1.035 70% 7 of 10 50% 5 of 10 halp_101251 37 1 70% 7 of 10 50% 5 of 10 halp_104423 12 0.68 80% 8 of 10 40% 4 of 10 ha1 _69214 38 1.085 100 /0 10 of 10 33% 3 of 9 Threshold: Average dCt value established by ROC curve analysis as optimal threshold for distinguishing tumor and adjacent normal tissues. Sensitivity: % of positive (i.e.
methylation score above Threshold) tumors. Pos. of Total: Number of positive tumors relative to the total number of tumors analyzed.
Specificity: % of negative (i.e. methylation score below Threshold) adjacent normal samples. Neg. of Total: Number of negative adjacent normal samples relative to the total number of adjacent normal samples analyzed.

Table 10. Sensitivity and Specificity of differentially methylated loci in liver tumors relative to adjacent histological normal liver tissue.
Feature ID Locus Number Threshold Sensitivity Pos. of Total Specificity Neg.
of Total hal p_89799 18 3.01 67% 6 of 9 100% 9 of 9 ha1 p_81674 4 1.66 56% 5 of 9 100% 9 of 9 ha1 p 56412 44 1.94 56% 5 of 9 100% 9 of 9 ha1 p 67002 51 1.825 50% 4 of 8 100% 9 of 9 ha1 p 81149 5 1.39 38% 3 of 8 100% 9 of 9 hal p_83841 6 1.305 38% 3 of 8 100% 9 of 9 hal p_74707 34 1.335 38% 3 of 8 100% 8 of 8 halp_80771 20 0.87 33% 3 of 9 100% 9 of 9 ha1 p_70459 26 2.785 33% 3 of 9 100% 9 of 9 ha1 p_89099 28 2.715 33% 3 of 9 100% 8 of 8 ha1 p_12535 32 2.1 33% 3 of 9 100% 9 of 9 ha1 p_39189 2 4.805 25% 2 of 8 100% 9 of 9 ha1 g_00218 31 0.775 22% 2 of 9 100% 9 of 9 ha1 p_12646 53 3.49 17% 1 of 6 100% 7 of 7 ha1 g_00847 13 0.86 78% 7 of 9 89% 8 of 9 ha1 p_05406 22 1.465 78% 7 of 9 89% 8 of 9 halp_105474 33 1.55 78% 7 of 9 89% 8 of 9 ha1 p_69407 21 3.06 67% 6 of 9 89% 8 of 9 ha1g 02416 15 0.94 50% 4 of 8 89% 8 of 9 ha1 p 40164 8 1.91 44% 4 of 9 89% 8 of 9 halp_101251 37 1.195 44% 4 of 9 89% 8 of 9 ha1 p_110107 17 1.955 38% 3 of 8 89% 8 of 9 ha1 p_105937 27 1.585 38% 3 of 8 89% 8 of 9 ha1 p_18292 45 2.51 63% 5 of 8 88% 7 of 8 hal p_35052 50 6 89% 8 of 9 78% 7 of 9 ha1 p 67625 30 1.97 83% 5 of 6 78% 7 of 9 halp_23178 9 2.655 78% 7 of 9 78% 7 of 9 ha 1 p_93325 35 4.85 78% 7 of 9 78% 7 of 9 ha1g_00681 1 0.615 75% 6 of 8 78% 7 of 9 ha1 p_22519 47 1.975 71% 5 of 7 78% 7 of 9 ha 1 p_38705 7 2.51 67% 6 of 9 78% 7 of 9 ha1p 08347 14 1.08 67% 6 of 9 78% 7 of 9 ha 1 p_101161 36 1.07 67% 6 of 9 78% 7 of 9 hal p_69214 38 3.31 67% 6 of 9 78% 7 of 9 ha1g_02345 24 0.695 63% 5 of 8 78% 7 of 9 ha1 p_87540 16 1.45 56% 5 of 9 78% 7 of 9 ha 1 p 45173 19 4.58 56% 5 of 9 78% 7 of 9 ha 1 p_88517 39 1.86 44% 4 of 9 78% 7 of 9 ha1g 00644 3 0.545 22% 2 of 9 78% 7 of 9 ha 1 p_103824 40 1.045 75% 6 of 8 75% 6 of 8 ha1p_108445 41 1.595 67% 4 of 6 75% 6 of 8 halp_45580 52 2.055 63% 5 of 8 75% 6 of 8 ha1 p_80287 23 3.75 83% 5 of 6 71% 5 of 7 ha1 p 46057 10 1.685 67% 6 of 9 67% 6 of 9 ha1 p_36172 25 2.95 67% 6 of 9 67% 6 of 9 ha1g_02210 42 0.52 67% 6 of 9 67% 6 of 9 halp_12075 46 1.725 67% 6 of 9 67% 6 of 9 ha1 p_29531 48 3.385 67% 6 of 9 67% 6 of 9 halp_58853 49 1.905 63% 5 of 8 67% 6 of 9 halp_103872 43 1.02 56% 5 of 9 67% 6 of 9 halg_03099 29 0.68 67% 6 of 9 56% 5 of 9 ha1 p_104423 12 0.845 100% 7 of 7 43% 3 of 7 ha1 p_40959 11 3.51 75% 6 of 8 33% 3 of 9 Threshold: Average dCt value established by ROC curve analysis as optimal threshold for distinguishing tumor and adjacent normal tissues. Sensitivity: % of positive (i.e.
methylation score above Threshold) turnors. Pos. of Total: Number of positive tumors relative to the total number of tumors analyzed.
Specificity: % of negative (i.e. methylation score below Threshold) adjacent normal samples. Neg. of Total: Number of negative adjacent normal samples relative to the total number of adjacent normal samples analyzed.

Table 11. Sensitivity and Specificity of differentially methylated loci in ovarian tumors relative to adjacent histological normal ovary tissue.
Feature ID Locus Number Threshold Sensitivity Pos. of Total Specificity Neg.
of Total =
ha1 g_00644 3 0.535 100% 7 of 7 100% 8 of 8 ha1 p 46057 10 0.6 100% 8 of 8 100% 8 of 8 ha1 p_81674 4 1.47 88% 7 of 8 100% 8 of 8 ha1 p_81149 5 1.335 88% 7 of 8 100% 8 of 8 ha1g 00847 13 0.69 88% 7 of 8 100% 8 of 8 ha1 p_12535 32 0.695 88% 7 of 8 100% 8 of 8 ha1 p_69214 38 1.06 88% 7 of 8 100% 7 of 7 ha1 p_22519 47 1.395 88% 7 of 8 100% 8 of 8 halp_12646 53 0.88 88% 7 of 8 100% 8 of 8 ha1 p_38705 7 0.65 80% 4 of 5 100% 5 of 5 ha1 g_00681 1 1.01 75% 6 of 8 100% 8 of 8 ha1 p_39189 2 0.97 75% 6 of 8 100% 8 of 8 ha1 p_83841 6 0.83 75% 6 of 8 100% 7 of 7 ha1 p_23178 9 0.655 75% 6 of 8 100% 8 of 8 ha1 p_08347 14 1.165 75% 6 of 8 100% 8 of 8 ha1 p 45173 19 0.74 75% 6 of 8 100% 8 of 8 halp_105474 33 1.115 75% 6 of 8 100% 8 of 8 ha1 p_101161 36 0.53 75% 6 of 8 100% 8 of 8 halp_103872 43 0.77 75% 6 of 8 100% 8 of 8 ha1 p_104423 12 0.54 63% 5 of 8 100% 8 of 8 halg_02416 15 0.665 63% 5 of 8 100% 8 of 8 ha1 p_05406 22 0.92 63% 5 of 8 100% 8 of 8 hal p_89099 28 0.575 63% 5 of 8 100% 8 of 8 halp_103824 40 0.635 63% 5 of 8 100% 8 of 8 halp_12075 46 0.87 63% 5 of 8 100% 8 of 8 ha 1 p_18292 45 1.335 57% 4 of 7 100% 8 of 8 ha1 p_110107 17 0.7 50% 3 of 6 100% 8 of 8 ha1 p_67625 30 1.105 50% 4 of 8 100% 8 of 8 ha1 p_93325 35 0.505 50% 4 of 8 100% 8 of 8 halp_56412 44 1.63 50% 4 of 8 100% 7 of 7 ha1 Q 58853 49 1.215 50% 4 of 8 100% 8 of 8 ha1 p_45580 52 1.6 50% 4 of 8 100% 8 of 8 halp_87540 16 0.715 43% 3 of 7 100% 8 of 8 ha1 p_89799 18 0.865 43% 3 of 7 100% 7 of 7 ha1 p 36172 25 1.235 38% 3 of 8 100% 8 of 8 halp_105937 27 0.81 38% 3 of 8 100% 8 of 8 halg_03099 29 0.6 38% 3 of 8 100% 8 of 8 ha1 p_74707 34 0.665 38% 3 of 8 100% 8 of 8 ha1 p_80771 20 0.505 25% 2 of 8 100% 8 of 8 halg_00218 31 0.59 25% 2 of 8 100% 8 of 8 ha1 p_80287 23 0.675 13% 1 of 8 100% 8 of 8 ha1p_40959 11 0.515 88% 7 of 8 88% 7 of 8 halp_69407 21 1.335 75% 6 of 8 88% 7 of 8 ha1 p_29531 48 0.865 75% 6 of 8 88% 7 of 8 ha 1 p_40164 8 0.625 63% 5 of 8 88% 7 of 8 halp_108445 41 0.56 63% 5 of 8 88% 7 of 8 halp_70459 26 0.605 50% 4 of 8 88% 7 of 8 ha1 p_35052 50 1.63 43% 3 of 7 88% 7 of 8 halg_02210 42 0.715 38% 3 of 8 88% 7 of 8 halg_02345 24 0.525 38% 3 of 8 86% 6 of 7 halp_101251 37 1.045 88% 7 of 8 75% 6 of 8 halp_67002 51 1.175 63% 5 of 8 75% 6 of 8 ha1 p_88517 39 0.59 43% 3 of 7 75% 6 of 8 Threshold: Average dCt value established by ROC curve analysis as optimal threshold for distinguishing tumor and adjacent normal tissues. Sensitivity: % of positive (i.e.
methylation score above Threshold) tumors. Pos. of Total: Number of positive tumors relative to the total number of tumors analyzed.
Specificity: % of negative (i.e. methylation score below Threshold) adjacent normal samples. Neg. of Total: Number of negative adjacent normal samples relative to the total number of adjacent normal samples analyzed.

Table 12. Sensitivity and Specificity of differentially methylated loci in head and neck tumors relative to adjacent histoiogical normal head and neck tissue.
Feature ID Locus Number Threshold Sensitivity Pos. of Total Specificity Neg.
of Total ha1 p_108445 41 2.695 89% 8 of 9 100% 5 of 5 ha1 p_39189 2 1.035 78% 7 of 9 100% 5 of 5 halp_45173 19 1.195 78% 7 of 9 100% 5 of 5 ha1 p 08347 14 0.94 67% 6 of 9 100% 5 of 5 ha 1 p_105474 33 2.15 67% 6 of 9 100% 5 of 5 halp_12075 46 0.795 67% 4 of 6 100% 4 of 4 ha1 p_12646 53 2.28 67% 6 of 9 100% 5 of 5 ha1 p 67625 30 0.505 63% 5 of 8 100% 5 of 5 ha1 p_35052 50 1.575 63% 5 of 8 100% 5 of 5 ha1 p_23178 9 1.715 56% 5 of 9 100% 5 of 5 ha1 p_74707 34 0.76 56% 5 of 9 100% 5 of 5 halp_103872 43 2.535 56% 5 of 9 100% 5 of 5 halp_18292 45 1.725 56% 5 of 9 100% 4 of 4 ha1 p_22519 47 2.27 56% 5 of 9 100% 5 of 5 ha1 p_83841 6 1.69 50% 4 of 8 100% 5 of 5 ha1 p 81149 5 2.98 44% 4 of 9 100% 5 of 5 ha1p_93325 35 2.145 44% 4 of 9 100% 5 of 5 ha1 g_02210 42 1.11 38% 3 of 8 100% 5 of 5 ha1 p_58853 49 2.815 38% 3 of 8 100% 5 of 5 ha 1 p 40959 11 1.42 33% 3 of 9 100% 5 of =5 ha1 p 05406 22 0.685 33% 3 of 9 100% 4 of 4 halg_02345 24 0.54 33% 3 of 9 100% 5 of 5 hal p 29531 48 1.465 33% 3 of 9 100% 5 of 5 ha1 p_40164 8 1.63 22% 2 of 9 100% 5 of 5 halp_110107 17 0.62 22% 2 of 9 100% 5 of 5 ha 1 g 03099 29 0.68 22% 2 of 9 100% 4 of 4 ha 1 p_80287 23 1.625 13% 1 of 8 100% 5 of 5 ha 1 p_36172 25 0.73 11% 1 of 9 100% 5 of 5 ha 1 p_56412 44 1.53 89% 8 of 9 80% 4 of 5 ha1 p_38705 7 0.855 75% 6 of 8 80% 4 of 5 ha1 p_105937 27 0.545 67% 6 of 9 80% 4 of 5 ha 1 p_45580 52 1.315 67% 6 of 9 80% 4 of 5 ha1 p_87540 16 0.865 63% 5 of 8 80% 4 of 5 ha 1 p_46057 10 1.18 56% 5 of 9 80% 4 of 5 halp_104423 12 0.675 56% 5 of 9 80% 4 of 5 ha 1 g_00847 13 1.125 56% 5 of 9 80% 4 of 5 ha 1 p 70459 26 0.555 56% 5 of 9 80% 4 of 5 halp_101161 36 0.765 44% 4 of 9 80% 4 of 5 ha1 p_67002 51 1.67 44% 4 of 9 80% 4 of 5 ha1 g_02416 15 0.71 38% 3 of 8 80% 4 of 5 ha1 p_103824 40 0.525 33% 3 of 9 80% 4 of 5 hal p_89799 18 0.69 22% 2 of 9 80% 4 of 5 ha1 p_80771 20 0.86 11% 1 of 9 80% 4 of 5 ha1 p_81674 4 '1.15 78% 7 of 9 75% 3 of 4 ha1 p_69407 21 1.315 67% 6 of 9 75% 3 of 4 ha1 p_89099 28 0.59 67% 6 of 9 75% 3 of 4 ha1 p_88517 39 0.985 86% 6 of 7 67% 2 of 3 ha1g_00644 3 0.52 89% 8 of 9 60% 3 of 5 halp_12535 32 0.95 78% 7 of 9 60% 3 of 5 halp 69214 38 1.39 78% 7 of 9 60% 3 of 5 ha1g_00681 1 1.045 89% 8 of 9 40% 2 of 5 halp_101251 37 0.78 67% 6 of 9 40% 2 of 5 halg_00218 31 -- - -- --Threshold: Average dCt value established by ROC curve analysis as optimal threshold for distinguishing tumor and adjacent normal tissues. Sensitivity: % of positive (i.e.
methylation score above Threshold) tumors. Pos. of Total: Number of positive tumors relative to the total number of tumors analyzed.
Specificity: % of negative (i.e. methylation score below Threshold) adjacent normal samples. Neg. of Total: Number of negative adjacent normal samples relative to the total number of adjacent normal samples analyzed.

Table 13. Sensitivity and Specificity of differentially methylated loci in thyroid tumors relative =
to adjacent histological normal thyroid tissue.
Feature ID Locus Number Threshold Sensitivity Pos. of Total Specificity Neg.
of Total ha1g_02345 24 1.02 86% 6 of 7 100% 8 of 8 ha1g_02210 42 0.745 80% 4 of 5 100% 5 of 5 ha1 p_05406 22 0.63 57% 4 of 7 100% 9 of 9 hal p_88517 39 1.815 50% 4 of 8 100% 5 of 5 ha1 p_56412 44 2.98 50% 4 of 8 100% 9 of 9 ha1 p 45580 52 3.76 44% 4 of 9 100% 9 of 9 halg_02416 15 0.57. 43% 3 of 7 100% 9 of 9 ha1 p 36172 25 0.515 38% 3 of 8 100% 9 of 9 ha1g_00218 31 0.655 33% 3 of 9 100% 9 of 9 ha1 p_105937 27 1.055 22% 2 of 9 100% 9 of 9 ha 1 g_00847 13 1.35 11% 1 of 9 100% 9 of 9 halp_80771 20 1.305 11% 1 of 9 100% 9 of 9 ha 1 p_80287 23 1.635 11% 1 of 9 100% 9 of 9 halg_03099 29 0.76 11% 1 of 9 100% 9 of 9 halp_108445 41 0.665 88% 7 of 8 89% 8 of 9 ha1p_89099 28 1.25 78% 7 of 9 89% 8 of 9 ha1 p_29531 48 0.825 78% 7 of 9 89% 8 of 9 ha 1 p_67002 51 1.65 71% 5 of 7 89% 8 of 9 halp_39189 2 0.85 67% 6 of 9 89% 8 of 9 halg_00644 3 0.62 67% 6 of 9 89% 8 of 9 ha1 p 22519 47 2.2 67% 6 of 9 89% 8 of 9 ha1p_38705 7 1.575 63% 5 of 8 89% 8 of 9 halp_89799 18 0.775 56% 5 of 9 89% 8 of 9 halp_74707 34 0.62 56% 5 of 9 89% 8 of 9 ha 1 p_93325 35 0.935 56% 5 of 9 89% 8 of 9 ha 1 p_23178 9 0.77 44% 4 of 9 89% 8 of 9 ha1p_110107 17 0.545 38% 3 of 8 89% 8 of 9 halp_101161 36 1.11 33% 3 of 9 89% 8 of 9 ha1p_103824 40 0.57 33% 3 of 9 89% 8 of 9 halp_12646 53 4.84 33% 3 of 9 89% 8 of 9 halp_81674 4 1.43 75% 6 of 8 88% 7 of 8 ha 1 p_67625 30 0.57 50% 3 of 6 88% 7 of 8.
ha 1 p_69407 21 2.045 33% 3 of 9 88% 7 of 8 ha1g_00681 1 0.93 89% 8 of 9 78% 7 of 9 ha1p 83841 6 0.67 78% 7 of 9 78% 7 of 9 ha 1 p_46057 10 1.735 78% 7 of 9 78% 7 of 9 halp_40959 11 0.86 78% 7 of 9 78% 7 of 9 halp_45173 19 0.96 78% 7 of 9 78% 7 of 9 halp_101251 37 1.74 78% 7 of 9 78% 7 of 9 ha 1 p_58853 49 0.97 78% 7 of 9 78% 7 of 9 ha1 p 103872 43 0.83 67% 6 of 9 78% 7 of 9 ha 1 p_12535 32 1.325 89% 8 of 9 67% 6 of 9 ha 1 p_12075 46 2.32 67% 6 of 9 67% 6 of 9 halp_104423 12 1.07 56% 5 of 9 67% 6 of 9 halp_105474 33 2.395 56% 5 of 9 67% 6 of 9 halp_08347 14 1.255 100% 9 of 9 56% 5 of 9 halp_69214 38 2.315 100% 9 of 9 56% 5 of 9 halp_18292 45 0.885 100% 8 of 8 56% 5 of 9 ha1 p_81149 5 1.305 89% 8 of 9 56% 5 of 9 halp_40164 8 0.51 78% 7 of 9 56% 5 of 9 halp_87540 16 1.105 67% 6 of 9 56% 5 of 9 ha1 p_35052 50 0.825 89% 8 of 9 44% 4 of 9 halp_70459 26 0.58 88%. 7 of 8 43 /a 3 of 7 Threshold: Average dCt value established by ROC curve analysis as optimal threshold for distinguishing tumor and adjacent normal tissues. Sensitivity: % of positive (i.e. methylation score above Threshold) tumors. Pos. of Total: Number of positive tumors relative to the total number of tumors analyzed. Specificity: % of negative (i.e. methylation score below Threshold) adjacent normal samples. Neg. of Total: Number of negative adjacent normal samples relative to the total number of adjacent normal samples analyzed.

Table 14. Sensitivity and Specificity of differentially methylated loci in bladder tumors relative to adjacent histological normal bladder tissue.
Feature ID Locus Number Threshold Sensitivity Pos. of Total Specificity Neg.
of Total ha1 g_00681 1 0.865 100% 9 of 9 100% 8 of 8 ha1 g 00644 3 1.245 100% 9 of 9 100% 9 of 9 ha1 p_81674 4 1.895 100% 5 of 5 100% 6 of 6 ha1 p 46057 10 1.255 100% 9 of 9 100% 9 of 9 ha1 p 45173 19 1.39 100% 8 of 8 100% 9 of 9 ha1g_00847 13 2.315 89% 8 of 9 100% 8 of 8 halp_105937 27 0.89 89% 8 of 9 100% 9 of 9 ha1g_03099 29 1.155 89% 8 of 9 100% 7 of 7 ha1 p_12535 32 0.745 89% 8 of 9 100% 8 of 8 ha 1 p_105474 33 0.96 89% 8 of 9 100% 9 of 9 ha1 p_101161 36 1.185 89% 8 of 9 100% 9 of 9 ha1 p_69214 38 2.12 89% 8 of 9 100% 9 of 9 ha1 p_103872 43 1.045 89% 8 of 9 100% 9 of 9 ha1 p_38705 7 0.54 88% 7 of 8 100% 9 of 9 ha1 p_18292 45 2.025 88% 7 of 8 100% 8 of 8 ha1 p_104423 12 1.54 78% 7 of 9 100% 9 of 9 ha1 p_08347 14 2.225 78% 7 of 9 100% 8 of 8 ha1 p_110107 17 0.995 78% 7 of 9 100% 9 of 9 halp_70459 26 2.27 78% 7 of 9 100% 9 of 9 halp_74707 34 1.24 78% 7 of 9 100% 9 of 9 ha1 p_101251 37 1.655 78% 7 of 9 100% 9 of 9 ha 1 p_88517 39 3.035 78% 7 of 9 100% 9 of 9 halp_29531 48 0.625 78% 7 of 9 100% 9 of 9 ha 1 p_39189 2 0.525 75% 6 of 8 100% 6 of 6 ha1p_40164 8 1.815 67% 4 of 6 100% 8 of 8 ha 1 g_02416 15 2.01 67% 6 of 9 100% 8 of 8 ha 1 p_40959 11 0.54 56% 5 of 9 100% 7 of 7 ha 1 p_93325 35 1.845 56% 5 of 9 100% 9 of 9 ha1 p_22519 47 1.265 56% 5 of 9 100% 9 of 9 halp_23178 9 1.66 50% 4 of 8 100% 9 of 9 ha 1 g_02345 24 0.665 44% 4 of 9 100% 8 of 8 ha 1 p 45580 52 1.22 22% 2 of 9 100% 8 of 8 ha 1 p_56412 44 1.725 100% 8 of 8 89% 8 of 9 ha 1 p_58853 49 1.125 100% 9 of 9 89% 8 of 9 ha 1 p 83841 6 0.8 89% 8 of 9 89% 8 of 9 ha 1 p_80771 20 0.67 89% 8 of 9 89% 8 of 9 ha 1 p_89099 28 1.08 89% 8 of 9 89% 8 of 9 ha1p_103824 40 0.575 89% 8 of 9 89% 8 of 9 ha 1 p_12075 46 0.705 88% 7 of 8 89% 8 of 9 ha1p_80287 23 0.595 78% 7 of 9 89% 8 of 9 ha 1 p_36172 25 0.63 75% 6 of 8 89% 8 of 9 ha 1 p_67625 30 0.765 75% 6 of 8 89% 8 of 9 ha1 p_05406 22 2.03 56% 5 of 9 89% 8 of 9 = halp_67002 51 2.215 56% 5 of 9 89% 8 of 9 ha1 p_87540 16 1.395 89% 8 of 9 88% 7 of 8 ha 1 p_35052 50 0.65 56% 5 of 9 88% 7 of 8 ha1 p_89799 18 1.05 89% 8 of 9 78% 7 of 9 halg_00218 31 0.83 89% 8 of 9 78% 7 of 9 halp_12646 53 0.79 78% 7 of 9 78% 7 of 9 ha1g_02210 42 1.145 60% 3 of 5 78% 7 of 9 ha1 p_108445 41 1.99 100% 9 of 9 75% 6 of 8 ha1p_81149 5 0.615 100% 8of8 67% 6of9 halp_69407 21 1.185 100% 9 of 9 67% 6 of 9 Threshold: Average dCt value established by ROC curve analysis as optimal threshold for distinguishing tumor and adjacent normal tissues. Sensifivity: % of positive (i.e.
methylation score above Threshold) tumors. Pos. of Total: Number of positive tumors relative to the total number of tumors analyzed.
Specificity: % of negative (i.e. methylation score below Threshold) adjacent normal samples. Neg. of Total: Number of negative adjacent normal samples.relative to the total number of adjacent normal samples analyzed.

Table 15. Sensitivity and Specificity of differentially methylated loci in cervical tumors relative to adjacent histological normal cervical tissue.
Feature ID Locus Number Threshold Sensitivity Pos. of Total Specificity Neg.
of Total 7a1 p_83841 6 0.905 100% 9 of 9 100% 8 of 8 ha1 p_23178 9 1 100% 9 of 9 100% 9 of 9 ha1 p_74707 34 0.61 100% 9 of 9 100% 9 of 9 halp_108445 41 0.995 100% 10 of 10 100% 9 of 9 ha1 p 40959 11 1.49 90% 9 of 10 100% 8 of 8 halg_00847 13 1.01 90% 9 of 10 100% 9 of 9 ha1 p_69214 38 0.515 90% 9 of 10 100% 8 of 8 ha1 g 00644 3 0.725 89% 8 of 9 100% 9 of 9 ha1 p_40164 8 0.655 89% 8 of 9 100% 9 Of 9 halp_103872 43 0.785 89% 8 of 9 100% 9 of 9 ha1 p_110107 17 0.775 88% 7 of 8 100% 7 of 7 ha1 p_39189 2 0.59 80% 8 of 10 100% 9 of 9 ha1 p_46057 10 0.89 80% 8 of 10 100% 9 of 9 ha1 p 45173 19 0.53 80% 8 of 10 100% 9 of 9 ha1 p_58853 49 1.215 80% 8 of 10 100% 9 of 9 hal p_88517 39 0.635 78% 7 of 9 100% 9 of 9 ha1 p_80771 20 0.52 70% 7 of 10 100% 9 of 9 halp_105937 27 0.64 70% 7 of 10 100% 9 of 9 halp_101161 36 0.57 70% 7 of 10 100% 9 of 9 ha1 g 02416 15 0.545 60% 6 of 10 100% 8 of 8 halp_103824 40 0.515 60% 6 of 10 100% 8 of 8 ha1 p_38705 7 0.59 56% 5 of 9 100% 7 of 7 ha1 g_02345 24 0.56 56% 5 of 9 100% 8 of 8 halp_104423 12 0.515 50% 5 of 10 100% 9 of 9 ha1 p_36172 25 0.77 50% 5 of 10 100% 9 of 9 halp_70459 26 1.27 50% 5 of 10 100% 9 of 9 ha1 p_05406 22 0.73 44% 4 of 9 100% 8 of 8 ha1 p 87540 16 0.73 40% 4 of 10 100% 8 of 8 ha1 p_89799 18 0.63 38% 3 of 8 100% 9 of 9 ha1 p_08347 14 1.745 33% 3 of 9 100% 9 of 9 halg_03099 29 0.5 33% 3 of 9 100% 8 of 8 ha1 p_89099 28 0.8 30% 3 of 10 100% 9 of 9 ha1 p_67625 30 0.91 22% 2 of 9 100% 8 of 8 ha1 p_80287 23 0.865 20% 2 of 10 100% 9 of 9 halg_00218 31 0.705 10% 1 of 10 100% 8 of 8 ha1 p_12535 32 0.585 100% 10 of 10 89% 8 of 9 ha1 p_93325 35 0.595 90% 9 of 10 89% 8 of 9 ha1 p_29531 48 1.05 80% 8 of 10 89% 8 of 9 halp_101251 37 1.635 70% 7 of 10 89% 8 of 9 ha1 p_81674 4 0.975 50% 4 of 8 89% 8 of 9 ha1 p_67002 51 2.055 50% 5 of 10 89% 8 of 9 hal g 02210 42 0.845 38% 3 of 8 89% 8 of 9 ha1p_45580 52 1.765 67% 6 of 9 88% 7 of 8 ha1 p_12075 46 0.59 78% 7 of 9 83% 5 of 6 ha1p_81149 5 1.11 100% 9of9 78% 7of9 halp_105474 33 0.525 100% 10 of 10 78% 7 of 9 ha1 p_22519 47 1.2 100% 10 of 10 78% 7 of 9 ha1 p_12646 53 2.385 100% 10 of 10 78% 7 of 9 ha1 p_18292 45 1.195 70% 7 of 10 75% 6 of 8 halp_56412 44 0.59 90% 9 of 10 67% 6 of 9 ha1 g_00681 1 0.58 89% 8 of 9 67% 6 of 9 ha1 p_35052 50 1.135 80% 8of 10 56% 5 of 9 ha1 p_69407 21 0.665 90% 9 of 10 44% 4 of 9 Threshold: Average dCt value established by ROC curve analysis as optimal threshold for distinguishing tumor and adjacent normal tissues. Sensitivity: % of positive (i.e. methylation score above Threshold) tumors. Pos. of Total: Number of positive tumors relative to the total number of tumors analyzed. Specificity: % of negative (i.e. methylation score below Threshold) adjacent normal samples. Neg. of Total: Number of negative adjacent normal samples relative to the total number of adjacent normal samples analyzed.

Table 16. Sensitivity and Specificity of differentially methylated loci =in colon tumors relative to adjacent histological normal colon tissue.
Feature ID Locus Number Threshold Sensitivity Pos. of Total Specificity Neg.
of Total hal p_56412 44 1.855 88% 7 of 8 100% 8 of 8 ha1 g_00644 3 1.46 86% 6 of 7 100% 8 of 8 halp_40959 11 2.16 71% 5 of 7 100% 6 of 6 ha1 p_23178 9 1.805 63% 5 of 8 100% 8 of 8 ha1 p_105937 27 1.425 63% 5 of 8 100% 8 of 8 ha1 g_03099 29 0.63 63% 5 of 8 100% 8 of 8 ha1 p_74707 34 2.08 63% 5 of 8 100% 8 of 8 ha1 p_101161 36 0.65 63% 5 of 8 100% 8 of 8 ha1 p_103824 40 0.605 63% 5 of 8 100% 8 of 8 ha1 g_02210 42 0.82 63% 5 of 8 100% 8 of 8 ha1 p_81674 4 4.63 50% 3 Of 6 100% 8 Of 8 halp_83841 6 2.175 50% 4 of 8 100% 7 of 7 ha1 p_80771 20 1.31 50% 4 of 8 100% 8 of 8 ha1 p_101251 37 1.29 50% 3 of 6 100% 8 of 8 ha1 p_103872 43 2.36 50% 4 of 8 100% 8 of 8 ha1 p_67002 51 1.57 50% 4 of 8 100% 8 of 8 halp_104423 12 0.575 43% 3 of 7 100% 8 of 8 ha1 p_81149 5 2.82 38% 3 of 8 100% 8 of 8 halg_02345 24 0.58 38% 3 of 8 100% 8 of 8 ha1g_00218 31 1.745 38% 3 of 8 100% 8 of 8 ha1 p_67625 30 0.515 25% 2 of 8 100% 8 of 8 ha1 p_105474 33 1.99 100% 8 of 8 88% 7 of 8 ha1 p_18292 45 1.545 100% 8 of 8 88% 7 of 8 halg_00681 1 0.705 88% 7 of 8 88% 7 of 8 ha1 p_108445 41 2.175 88% 7 Of 8 88% 7 Of 8 halp_88517 39 = 1.645 86% 6 of 7 88% 7 of 8 halp_45173 19 1.145 75% 6 of 8 88% 7 of 8 ha1 p_89099 28 2.22 75% 6 of 8 88% 7 of 8 ha1 p_58853 49 1.85 75% 6 of 8 88% 7 of 8 ha1 p_80287 23 1.485 63% 5 of 8 88% 7 of 8 ha1 p_29531 48 1.3 63% 5 of 8 88% 7 of 8 halp_87540 16 1.52 86% 6 of 7 86% 6 of 7 ha1 p_12535 32 0.93 75% 6 of 8 86% 6 of 7 ha1 p_38705 7 1.01 50% 3 of 6 86% 6 of 7 ha1 p_110107 17 0.74 100% 8 of 8 75% 6 of 8 ha 1 p_36172 25 0.53 100% 8 of 8 75% 6 of 8 ha1g_00847 13 2.085 88% 7 of 8 75% 6 of 8 ha1 p_69214 38 2.085 88% 7 of 8 75% 6 of 8 halp_89799 18 1.295 75% 6 of 8 75% 6 of 8 ha1g_02416 15 1.295 63% 5 of 8 75% 6 of 8 ha 1 p_08347 14 1.415 88% 7 of 8 71% 5 of 7 hai p_39189 2 0.575 86% 6 Of 7 71% 5 of 7 halp_46057 10 1.06 100% 8 of 8 63% 5 of 8 ha1 p_93325 35 1.07 100% 8 of 8 63% 5 of 8 ha1 p_40164 8 0.815 75% 6 of 8 63% 5 of 8 ha1 p_70459 26 1.21 75% 6 of 8 63% 5 of 8 halp_12075 46 0.935 75% 6 of 8 63% 5 of 8 halp_22519 47 1.15 50% 4 of 8 63% 5 of 8 halp_05406 22 1.64 75% 6 of 8 57% 4 of 7 halp_12646 53 2.16 67% 4 of 6 50% 4 of 8 halp_69407 21 0.565 100% 8 of 8 38% 3 of 8 halp_35052 50 0.565 100% 8 of 8 38% 3 of 8 ha1 p_45580 52 1.505 100% 8 of 8 38% 3 of 8 Threshold: Average dCt value established by ROC curve analysis as optimal threshold for distinguishing tumor and adjacent normal tissues. Sensitivity: % of positive (i.e. methylation score above Threshold) tumors. Pos. of Total:
Number of positive tumors relative to the total number of tumors analyzed.
Specificity: % of negative (i.e. methylation score below Threshold) adjacent normal samples. Neg. of Total: Number of negative adjacent normal samples relative to the total number of adjacent normal samples analyzed.

Table 17. Sensitivity and Specificity of differentially methylated loci in endometriai tumors relative to adjacent histological normal endometrial tissue.
Feature ID Locus Number Threshold Sensitivity Pos. of Total Specificity Neg.
of Total ha1 p_39189 2 0.75 93% 13 of 14 100% 9 of 9 halg_00644 3 0.91 93% 13 of 14 100% 9 of 9 ha1 p 83841 6 1.07 93% 13 of 14 100% 9 of 9 halp_103872 43 0.75 93% 13 of 14 100% 9 Of 9 halp_56412 44 0.685 93% 13 of 14 100% 8 of 8 halp_12646 53 2.175 93% 13 of 14 100% 9 Of 9 ha1 p_40959 11 0.945 86% 12 of 14 100% 3 of 3 ha1 p_58853 49 0.51 86% 12 of 14 100% 8 of 8 ha1 p_12535 32 1.025 83% 10 of 12 100% 9 Of 9 halp_18292 45 1.32 83% 10 of 12 100% 8 of 8 halp_46057 10 0.935 79% 11 of 14 100% 9 Of 9 ha1 p_45173 19 0.6 79% 11 of 14 100% 9 of 9 halp_105474 33 0.555 79% 11 of 14 100% 9 of 9 halp_101251 37 1.28 79% 11 of 14 100% 9 of 9 ha1 p_22519 47 2.2 79% 11 of 14 100% 9 of 9 hal p_29531 48 0.82 79% 11 of 14 100% 9 of 9 halp_87540 16 0.56 77% 10 of 13 100% 9 of 9 halg_02210 42 0.665 75% 6 of 8 100% 6 of 6 halg_00681 1 1.145 71% 10 of 14 100% 9 of 9 halp_23178 9 0.795 71% 10 of 14 100% 9 Of 9 ha1 p_110107 17 0.91 71% 5 of 7 100% 9 of 9 halp_105937 27 0.525 71% 10 of 14 100% 9 of 9 halp_101161 36 0.55 71% 10of14 100% 9019 halp_69214 38 0.555 71% 10 of 14 100% 9 of 9 ha1 p_88517 39 0.855 69% 9 of 13 100% 8 of 8 ha1 p_108445 41 0.805 67% 8 of 12 100% 8 of 8 halp_38705 7 1.085 64% 9 Of 14 100% 9 Of 9 halp_40164 8 0.785 64% 9 of 14 100% 9 of 9 halp_104423 12 0.705 64% 9 of 14 100% 9 of 9 ha 1 p_89099 28 0.565 64% 9 of 14 100% 8 of 8 ha 1 p_05406 22 0.53 50% 7 of 14 100% 9 of 9 ha1 p_67002 51 2.02 46% 6 of 13 100% 8 of 8 ha 1 p_36172 25 0.56 43% 6 of 14 100% 8 of 8 halg_03099 29 0.64 43% 6 of 14 100% 9 of 9 ha 1 p_74707 34 1.885 43% 6 of 14 100% 9 of 9 ha 1 p_35052 50 1.63 43% 6 of 14 100% 9 of 9 ha1 p_45580 52 1.435 43% 6 of 14 100% 8 of 8 ha1g_02345 24 0.6 36% 5 of 14 100% 8 of 8 ha 1 p_67625 30 0.56 31% 4 of 13 100% 8 of 8 ha 1 p_80287 23 0.51 21% 3 of 14 100% 9 of 9 ha 1 g_00218 31 0.535 21 % 3 of 14 100% 9 of 9 ha 1 p 103824 40 0.645 21% 3 of 14 100% 9 of 9 halp_81149 5 1.165 86% 12 of 14 89% 8 of 9 ha1p_81'674 4 0.875 82% 9 of 11 89% 8 of 9 ha 1 g_00847 13 1.11 79% 11 of 14 89% 8 of 9 ha 1 p_69407 21 1.59 79% 11 of 14 89% 8 of 9 ha 1 p_93325 35 0.795 77% 10 of 13 89% 8 of 9 ha 1 p_70459 26 0.655 71% 10 of 14 89% 8 of 9 ha 1 p_80771 20 0.58 64% 9 of 14 89% 8 of 9 ha1 p_08347 14 1.86 57% 8 of 14 89% 8 of 9 halg_02416 15 0.61 50% 7 of 14 89% 8 of 9 ha1p_89799 18 0.52 62% 8 of 13 88% 7 of 8 ha1 p_12075 46 0.915 85% 11 of 13 78% 7 of 9 Threshold: Average dCt value established by ROC curve analysis as optimal threshold for distinguishing tumor and adjacent normal tissues. Sensitivity: % of positive (i.e. methylation score above Threshold) tumors. Pos. of Total:
Number of positive tumors relative to the total number of tumors analyzed.
Specificity: % of negative (i.e. methylation score below Threshold) adjacent normal samples. Neg. of Total: Number of negative adjacent normal samples relative to the total number of adjacent normal samples analyzed.

Table 18. Sensitivity and Specificity of differentially methylated loci in esophageal tumors relative to adjacent histological normal esophageal tissue.
Feature ID Locus Number Threshold Sensitivity Pos. of Total Specificity Neg.
of Total halp_110107 17 0.515 67% 6 of 9 100% 9 of 9 ha1 p_38705 7 2.58 43% 3 of 7 100% 9 of 9 halp_87540 16 1.21 33% 3 of 9 100% 9 of 9 ha1 p_67625 30 0.665 33% 3 of 9 100% 9 of 9 halp_103824 40 0.72 13% 1 of 8 100% 10 of 10 ha1 p 05406 22 0.71 11% 1 of 9 100% 10 of 10 ha1g_03099 29 0.6 11% 1 of 9 100% 10 of 10 halp_39189 2 1.165 89% 8 of 9 90% 9 of 10 ha1 p_29531 48 1.27 78% 7 of 9 90% 9 of 10 halg_02416 15 0.65 38% 3 of 8 90% 9 of 10 ha1 p_80771 20 0.675 22% 2 of 9 90% 9 of 10 ha1 p_45173 19 0.985 100% 9 of 9 89% 8 of 9 halp_88517 39 1.14 100% 8 of 8 89% 8 of 9 ha1 p_89799 18 0.53 14% 1 of 7 89% 8 of 9 ha1 p 40959 11 1.52 78% 7 of 9 88% 7 of 8 halg_02210 42 0.905 33% 3 of 9 88% 7 of 8 halp_23178 9 1.645 100% 9 of 9 80% 8 of 10 halp_46057 10 0.92 100% 9 of 9 80% 8 of 10 halp_104423 12 0.65 100% 9 of 9 80% 8 of 10 ha1 p_08347 14 0.75 100% 9 of 9 80% 8 of 10 halp_108445 41 1.715 100% 9 of 9 80% 8 of 10 halp_105937 27 0.855 89% 8 of 9 80% 8 of 10 halp_105474 33 1.655 89% 8 of 9 80% 8 of 10 halp_101161 36 0.785 89% 8 of 9 80% 8 of 10 ha1 p_22519 47 1.77 89% 8 of 9 80% 8 of 10 ha1 p_81149 5 2.02 78% 7 Of 9 80% 8 Of 10 halg_00644 3 0.905 75% 6 of 8 80% 8 of 10 ha 1 p_56412 44 0.74 67% 6 of 9 80% 8 of 10 halp_74707 34 1.035 56% 5 of 9 80% 8 of 10 halp_80287 23 0.62 22% 2 of 9 80% 8 of 10 halp_36172 25 0.6 22% 2 of 9 80% 8 of 10 halp_67002 51 1.925 78% 7 of 9 78% 7 of 9 ha 1 p_89099 28 0.6 56% 5 of 9 78% 7 of 9 ha 1 p_18292 45 1.18 89% 8 of 9 75% 6 of 8 halp_58853 49 1.105 100% 9 of 9 70% 7of 10 ha1p_83841 6 1.125 89% 8 of 9 70% 7 of 10 ha 1 p_12535 32 0.78 89% 8 of 9 70% 7 of 10 ha1 p_101251 37 1.025 78% 7 of 9 70% 7 of 10 halg_00847 13 0.825 100% 9 of 9 67% 6 of 9 ha1 p_69407 21 1.005 100% 9 of 9 60% 6 of 10 ha1p_93325 35 0.93 89% 8 of 9 60% 6 of 10 ha1g_00681 1 0.52 67% 6 of 9 60% 6 of 10 halp_70459 26 0.515 100% 9 of 9 56% 5 of 9 halp_40164 8 0.645 56% 5 of 9 56% 5 of 9 halp_69214 38 0.73 100% 9 of 9 50% 5 of 10 halp_103872 43 1.5 100% 9 of 9 50% 5 of 10 halp_81674 4 0.645 75% 6 of 8 44% 4 of 9 halp_12075 46 1.02 100% 7 of 7 40% 4 of 10 halp_45580 52 0.73 100% 9 of 9 40% 4 of 10 ha1 p_35052 50 1.84 100% 9 of 9 30% 3 of 10 halp_12646 53 1.085 100% 9 of 9 30% 3 of 10 halg_02345 24 0.83 89% 8 of 9 10% 1 of 10 ha1g_00218 31 --- ____ ____ ___ ---Threshold: Average dCt value established by ROC curve analysis as optimal threshold for distinguishing tumor and adjacent normal tissues. Sensitivity: % of positive (i.e. methyiation score above Threshold) tumors. Pos. of Total:
Number of positive tumors relative to the total number of tumors analyzed.
Specificity: % of negative (i.e. methylation score below Threshold) adjacent normal samples. Neg. of Total: Number of negative adjacent normal samples relative to the total number of adjacent normal samples analyzed.

Table 19. Sensitivity and Specificity of differentialiy methytated loci in prostate tumors relative to adjacent histological normal prostate tissue.
Feature ID Locus Number Threshold Sensitivity Pos. of Total Specificity Neg.
of Total ha1 p_38705 7 0.595 78% 7 of 9 100% 9 of 9 halp_36172 25 1 67% 6 of 9 100% 9 of 9 ha1 p_56412 44 1.63 67% 6 Of 9 100% 9 of 9 hai p_45580 52 1.785 67% 6 of 9 100% 9 of 9 halp_12646 53 3.13 67% 6 of 9 100% 9 of 9 ha1 p_67002 51 2.05 56% 5 of 9 100% 9 of 9 ha1g_02416 15 0.845 44% 4 of 9 100% 9 of 9 halp_103824 40 0.59 22% 2 of 9 100% 9 of 9 ha1 p_104423 12 0.655 11% 1 of 9 100% 9 of 9 halp_45173 19 0.53 11% 1 of 9 100% 9 of 9 ha1 g_03099 29 2.165 11% 1 of 9 100% 8 of 8 ha1 p_89799 18 0.51 75% 6 of 8 89% 8 of 9 halg_02210 42 0.715 75% 6 of 8 89% 8 of 9 ha1 p_46057 10 0.605 67% 6 of 9 89% 8 of 9 ha1 p_108445 41 0.83 67% 6 of 9 89% 8 of 9 ha1 p_80287 23 0.545 63% 5 of 8 89% 8 of 9 ha1 p_87540 16 0.54 56% 5 of 9 89% 8 of 9 ha1p_74707 34 1.425 56% 5 of 9 89% 8 of 9 halp_18292 45 1.5 569/0 5 of 9 89% 8 of 9 ha1 p_35052 50 0.73 56% 5 of 9 89% 8 of 9 halg_02345 24 0.635 44% 4 of 9 89% 8 of 9 ha1 p_88517 39 0.885 44% 4 of 9 89% 8 of 9 ha1 p 12075 46 1.15 44% 4 of 9 89% 8 of 9 halp_69407 21 0.75 38% 3 of 8 89% 8 of 9 halp_80771 20 0.585 33% 3 of 9 89% 8 of 9 ha1 p_05406 22 0.745 33% 3 of 9 89% 8 Of 9 halp_70459 26 0.615 33% 3of 9 89% 8 of 9 ha1g_00218 31 0.675 11% 1 of 9 89% 8 of 9 ha1 p_69214 38 1.175 88% 7of 8 88% 7 of 8 ha1p_67625 30 0.53 33% 3 of 9 88% 7 of 8 halp_110107 17 1.15 0% 0 of 8 88% 7 of 8 ha1 p 105937 27 0.545 100% 9 of 9 78% 7 of 9 ha1 p_103872 43 1.64 100% 9 of 9 78% 7 of 9 ha1 p_22519 47 1.38 100% 9 of 9 78% 7 of 9 ha1 p_29531 48 0.77 100% 9 of 9 78% 7 of 9 halp_83841 6 0.515 89% 8 of 9 78% 7 of 9 halp_105474 33 1.35 89% 8 of 9 78% 7 of 9 ha 1 p_101161 36 0.875 89% 8 of 9 78% 7 of 9 halg_00644 3 0.56 88% 7 of 8 78% 7 of 9 ha1 p_39189 2 0.53 78% 7 Of 9 78% 7 of 9 ha1 p 81149 5 1.17 78% 7 of 9 78% 7 of 9 ha 1 p_08347 14 1.405 67% 6 of 9 78% 7 of 9 ha1 p_12535 32 1.19 67% . 6 of 9 78% 7 of 9 halp_40164 8 0.7 63% 5 of 8 78% 7 of 9 halp_23178 9 1.575 56% 5 of 9 78% 7 of 9 halp_89099 28 0.5 56% 5 of 9 78% 7 of 9 halp_40959 11 0.745 100% 8 of 8 67% 6 of 9 halp_93325 35 0.535 100% 9of 9 67% 6 of 9 halp_101251 37 1.27 100% 8 of 8 67% 6 of 9 halp_81674 4 1.245 78% 7 of 9 67% 6 of 9 halg_00847 13 0.63 78% 7 of 9 67% 6 of 9 halg_00681 1 0.55 50% 4 of 8 67% 6 of 9 ha1 p_58853 49 0.835 100% 9 of 9 22% 2 of 9 Threshold: Average dCt value established by ROC curve analysis as optimal threshold for distinguishing tumor and adjacent normal tissues. Sensitivity: % of positive (i.e. methylation score above Threshold) tumors. Pos. of Total:
Number of positive tumors relative to the total number of tumors analyzed.
Specificity: % of negative (i.e. methylation score below Threshold) adjacent normal samples. Neg. of Total: Number of negative adjacent normal samples relative to the total number of adjacent normal samples analyzed.

Table 20. Frequency of inethylation of each locus in melanoma tumors.
Feature ID Locus Number Sensitivity Pos. of Total halp_81149 5 100% 7 of 7 ha1p_38705 7 100% 5 of 5 ha1 p_23178 9 100% 7 of 7 ha1 p 45173 19 100% 6 of 6 halp_12535 32 100% 7 of 7 halp_69214 38 100% 7 of 7 halp_108445 41 100% 7 of 7 ha1 p_45580 52 100% 7 of 7 ha1 p_12646 53 100% 7 of 7 ha1 g_00644 3 86% 6 of 7 halp_46057 10 86% 6 of 7 ha1 p_40959 11 86% 6 of 7 halp_104423 12 86% 6 of 7 halp_105474 33 86% 6 of 7 ha 1 p_93325 35 86% 6 of 7 ha 1 p_103872 43 86% 6 of 7 ha 1 p_56412 44 86% 6 of 7 halp_18292 45 86% 6 of 7 ha 1 p_22519 47 86% 6 of 7 ha1 p_29531 48 86% 6 of 7 halp_58853 49 86% 6 of 7 ha 1 p_35052 50 86% 6 of 7 ha1 p_67002 = 51 86% 6 of 7 ha 1 p_81674 4 83% 5 of 6 ha1 p_69407 21 83% 5 of 6 ha 1 p_12075 46 80% 4 of 5 ha1g_00681 1 71% 5 of 7 ha 1 p_39189 2 71% 5 of 7 ha 1 p_83841 6 71% 5 of 7 ha1p_40164 8 71% 5of7 ha 1 g_00847 13 71% 5 of 7 ha 1 p_87540 16 57% 4 of 7 halp_101251 37 57% 4 of 7 ha1 p_88517 39 57% 4 of 7 ha1 p_08347 14 50% 3 of 6 ha1 p_05406 22 43% 3 of 7 halp_105937 27 43% 3 of 7 halp_89099 28 43% 3 of 7 ha1 g_02210 42 43% 3 of 7 ha1 p_89799 18 40% 2 of 5 halp_80287 23 29% 2 of 7 halp_36172 25 29% 2 of 7 halp_70459 26 29% 2 of 7 ha1 g_03099 29 29% 2 of 7 ha1 p_101161 36 29% 2 of 7 ha1 p_110107 17 14% 1 of 7 halp_80771 20 14% 1 of 7 ha1 p_67625 30 14% 1 of 7 ha1 p_74707 34 14% 1 of 7 halg_02416 15 0% 0 of 7 ha1g_02345 24 0% 0 of 7 halg_00218 31 0% 0 of 7 ha1 p_103824 40 0% 0 of 7 Sensitivity: % of positive (i.e. methylation score above 1.0) tumors. Pos. of Total: Number of positive tumors relative to the total number of tumors analyzed. Note that adjacent histology normal or normal skin samples were not available for analysis. Threshold for a positive methylation score was set at an average dCt of 1Ø

[0140] Although the invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, it will be readily apparent to one of ordinary skill in the art in light of the teachings of this invention that certain changes and modifications may be made thereto without departing from the spirit or scope of the appended claims.

[0141] All publications, databases, Genbank sequences, patents, and patent applications cited in this specification are herein incorporated by reference as if each was specifically and individually indicated to be incorporated by reference.

SEQUENCE LISTING

Microarray Feature Sequences:

Seq 1: tcgtagtaggtcgctttttgcatcgcgttgtttcacgatcttgatcgcacactctgacag Seq 2: accctacagcagactctctaccactaccgagtgatacaaaggactgggattctggacagg Seq 3: cagttcctccaccgcagcggtcacaccgttgatttgatccagaaataagacggatagtac Seq 4: ctttcggtctcctccccat'tttcctagtcgtcttcggttgtggatgttgtaaactcgacc Seq 5: cccaggaggctatgggaatcagaatcacacttgcacaagagaagacccttatgggacaag Seq 6: aaataccaccttcttaaataccacccagctgtccaagatggagacttcctggcatccagg Seq 7: ggaggagtaaaggctgtttacaaacttgacgtacacacgcagtcctatccctacggtcct Seq 8: aaacaagcaccctgactggcgcattcttactcattctagcctgggtttcaacttcaagga Seq 9: cccttactgctgctgctgtaacagctaagtgccaattatctcccaagcgtgaaagcaaat Seq 10: gaaacatgcactgcctgacatcggcaagctgcccacaccaagttacaggcttatggaaag Seq 11: cgtgggccttagccaaataacttctggtaggcaaattctccccttcttcagttgagagct Seq 12: gagagggaagcctgatctgtttcctcactcgcttgctcgtggatgtcattttctgtcttc Seq 13: atacgctggaacagagcacgagcatacactcgaacacacgcgcacacactcaggacatct Seq 14: atggtttctgaaaagccctcagtcctggttcttggcttcctgattctgtggttgggattt Seq 15: caacgacaagaagctgtccaaatatgagaccctgcagatggcccaaatctacatcaacgc Seq 16: gaggcaattcagggagacaggaacacccttctctcttcacacacctcatcagttccactg Seq 17: tgtgtgtgtccatttggcgagatgtcgagagcggggggagtgtccttgtcggtgtatctg Seq 18: tctcccagcaccttgttaatttctctcaatctccagccacaaatccgagacacaacgctc Seq 19: agcgtgcctagaggagtggtcaggatagtgagggatctgtgatccttcgttctgaatcta Seq 20: ccggagagcctgtcaagggaagagctgaatcttttatcttttgtaacgactacccagtga Seq 21: ggcctgtctccttggcatgttcccttgcttctgcttgtccagttaatcctttctgacata Seq 22: gaaggaatggcccatctcttagggctctctgcttgtcacctaccaggttggtcagaaacg Seq 23: gctccagacacagagaaaggtttcttaacactcaggttcgcttctcctaaggtgtgtgcc Seq 24: ttttgacctgtgatttgttgtccggcagctttcagtgtcggtl-ttacgaggtagagtgat Seq 25: tttcctagtcgatcccagcttctctagggagtgtcaggcgcacacagggttaagttagtt Seq 26: tttccatgacagaggtttcaggatctcttagaaggaagaaagtagagacggtgaagagct Seq 27: atcctcaggagtaataacccctccgattgttgctcaggtccctccctcttgaaattcctg Seq 28: ggctcggaaagccttcatagtaagggcgcagttaagacttggatttcctgccattacaca Seq 29: catgcagaaagctgggcagcatagaaagttcacagccacggaaagatcaaagagatggtg Seq 30: tttgccatctctacagatttcaccatctctcttcccctctccccctcgttcgctttcctc Seq 31: ttccatcttttgtggcgcgaaaataaccctttgctccctcgttggttttgttgaggttga Seq 32: tgctatcttgtacctaaactgagcccttttggtggaggcagtgagggttcttgtgtgttc Seq 33: ttctccttcgagcatattcgggaagggaagtttgaagagtgagtccctgtgagggccgtg Seq 34: ggccttgagggcaagacgaggaatttcgacttaggtccttgaatctggagagctacagaa Seq 35: tggagcacacaggcagcattacgccattcttccttcttggaaaaatccctcagccttata Seq 36: agagagataaagagagatgacctcagagacaaagagactcagacccagccagaggcccaa Seq 37: tattctttgttgcccatttgtctagggactgtctgcgtggctgtgactatgagtgtcagc Seq 38: acaacctgggaactgaataactttcaaagccagtgctcagcttctctgetccgtactagc Seq 39: ctgtgtcaggtatttaacagttctggggacacgggtgttacctcctttcatggtgctctc Seq 40: agactcgctgttcccgactgtcgctccctagctctgatgaaaccccgacatttctttcag Seq 41: gtgttcttggcacatggtaggcatctgtctttgttgggcagttgcatcagaagggttaag Seq 42: ctgcactctcggcttctttctgtggcttccctctttttctcttcacctctgttttcagga Seq 43: gctaaaatcctcctggccccatcatttcttgggtcctttccagacagtgctgtgtcttta Seq 44: gggatgtgtgcctccaacttcattaagtgagggaaacatttgctggggcttgtcagggag Seq 45: tttggtttgtcacctgtgagttgcctactggacacaaagatgaagctgtcgggaaagtga Seq 46: gttgatcttcaacatggctaaccaaatggacgatcagcaggcagacacgaggtattttca Seq 47: tgtttggatgatgggacacatcaccctgggaactgtctcaaagcacaaccacatcttagg Seq 48: cctccttctccctcagagtacagttcaactcttttaagaggaaagccactgaatgaacct Seq 49: ggggagggtctctgcacctttcctgacatcttttcttcgggagatcctcatagaaccata Seq 50: gagacaacgccctcagaaatgagagaacagtaccctcttatccttgctgcactttccagc Seq 51: atgctctttgtgcccagactgccctctataaatcagcactatcaaccctgtccagagact Seq 52: gccatctgcatagcctaactctgccaccctggcttggacaattatggtgatttctctgat Seq 53: agggcctctagtttgagttttgccatctattaggatagaaagcacacagtttgcctgatt Left Primer Sequences:

Seq 54: AGATCGCCGAGCTGTCGTAGTAG
Seq 55: CGTTCTCGATCCAGTTCCATCTC
Seq 56: TATCATCATTAGACCCGGGATGG
Seq 57: TTCGGTCTCCTCCCCATTTTCCTA
Seq 58: GCAAATAGGTCAATGCTGGGAAC
Seq 59: AAGTTCCCAAGCACGAAGTGTTC
Seq 60: TCCAGGTAGTCGTTTCTGAAGCC
Seq 61: GCCCGCCCTGCAACCAACC
Seq 62: TTCTCAGAGTGTTGGTACCGCAG
Seq 63: GGTTGCCAGGACACAAAGTAAGC
Seq 64: TCAGTTGAGAGCTCAGAGCAAGC
Seq 65: TGATCTGTTTCCTCACTCGCTTG
Seq 66: atgggtggatggatggatagatg Seq 67: GGAGGACTGCCCCATATTTTCACT
Seq 68: GCGCCCCGGGACGAGGTGGAC
Seq 69: GTTAATGGAGGGTGAGGGTTTCC
Seq 70: GCTGGGTGAATAGTCACGGAATC
Seq 71: AACGCTCTTCCTCCAAAGAGGTC
Seq 72: GTTCTTCTAAGCTTCATTCCACAAGAG
Seq 73: GGTGAAATATGTGCGGACTGATG
Seq 74: CTCATTCATGCATAGGTCACACT
Seq 75: ctccttcccACTAGGCTGCAGAG
Seq 76: AGGCCTGGGAGGTGACTCATAG
Seq 77: GTAGATGCGGAAATTGGCCTCAG
Seq 78: CCTAGACAGCAACACACCCACTG
Seq 79: TTCACCGTCTCTACTTTCTTCCTT
Seq 80: CTCTAAACACTCGCCTCTACCCG
Seq 81: TAGCCCTTGACAGCAGTTGTGAC
Seq 82: AGAGCCACGTGAGCTGCATTAAC
Seq 83: CCTGGAGTCCTAGAGAGCCTCG
Seq 84: GCCGCGCCACCCCACCTGAGT
Seq 85: AGTGTTGGGTGCTGGGAGGAG
Seq 86: CTCTGGGCTTTCTCTAGCTTCCC
Seq 87: AGTTTGTGAGCTCAGGAGAAGCG
Seq 88: CCAGTCCCATAGTGGAAATGCTC
Seq 89: ACTACCTTGGGTGTCAGTCCTGC
Seq 90: TGGACACATGTGCTACACGCTAAG
Seq 91: AGGTCACTGCAGAAGGATGGAAC
Seq 92: gggactcattcaatgtcaagtgc Seq 93: TCTTTAGACGCTGCGCTCTTAGC
Seq 94: CATCTGTCTTTGTTGGGCAGTTG
Seq 95: CCCAAGTACTCGGCACTGCAC
Seq 96: TGAGATTCAATTTCTCGCCCTTC
Seq 97: TGCCGGTCTGCTCTGCTC
Seq 98: TTCTCCTGGGTCTTTCCAAACAG
Seq 99: GTTTGCCAAATGACAGCTGTTTG
Seq 100: CTCACGTTAATCAACCCGAGTCC
Seq 101: CTCCAGCACTTTGGGAATGAAAG
Seq 102: ATGTCAGGAAAGGTGCAGAGACC
Seq 103: ATCTTCCCAGTAGGGCTGAATCC
Seq 104: CAGTGCTCCGTGTCCCCAAGTAGT
Seq 105: GGGTGCAGGATGAAGACTAGCTG
Seq 106: GCCTTAGGAATTTCCATCCCAAC
Right primer sequences:
Seq 107: AGGCCAAGGAGCAGAAACTAAGC
Seq 108: ACCGAGTGATACAAAGGACTGGG
Seq 109: GGGTTAATGGAGCACTACATGCC
Seq 110: ACGGCCCCAGAGCAGCAGCAAGAC

Seq 111: ATGCCTGCCCTGACCACAC
Seq 112: TTAGAACCAGGTCTCTGCCTTGC
Seq 113: CCTTCCTTCTCTGCCTTTCAATG
Seq 114: TGCCCTCCCCAGCGTCTTT
Seq 115: GAATAAAGACATGCCAAGGCCAG
Seq 116: CATGGAAGCATAAGACCATGCTG
Seq 117: ACTTCCGGAGACAGCCGC
Seq 118: GCGATTGTTCTACGAAAGTGTGG
Seq 119: gggcGGTGATCATTTAGTTTCTG
Seq 120: CTGGCTGTCCCCTATCGTAACCTC
Seq 121: GCTGGAGGCGGCGGTGGCTGTT
Seq 122: GTTCATTCCCTCCAACATTCCTC
Seq 123: CAAGGCATAGTACTCCTCCGGG
Seq 124: GCTGTGAGAGGAGCGGAAGAG
Seq 125: GGGTTAAGGCTGGACTCTGGC
Seq 126: CCCTTTCATTCACCTGGCG
Seq 127: TGGGGAGGAGCAATAGAGATA
Seq 128: AAACAACCACTGCTCCTGTCTCC
Seq 129: TAAGGTGTGTGCCTAACCCATCC
Seq 130: ATATTTGAGCCTCTTGCCCTTCC
Seq 131: GTCTTCTCCTTGCAATGGGCTC
Seq 132: gttgctgttcttatccccattcta Seq 133: CCCATCCTGTAGACAGATCAGGG
Seq 134: GACTAATGCCCATGACCCAGAAG
Seq 135: CATGCTTAGAGGTGAACGTGTGG
Seq 136: GTGCAGGGTGGGTGAGAGG
Seq 137: GCGGCTCCGGGGCCAATGAATG
Seq 138: TGAGGGTTCTTGTGTGTTCTTCG
Seq 139: GGGTGCTCCTTCCATCTACAATG
Seq 140: GGCGTTCTGCTTTGGGAGAC
Seq 141; CTCCATGAGGTGGAGGTGAAGAC
Seq 142: GTTGAAGTGAGCAGAGGACATGC
Seq 143: TGTCTGTGGGTATTCTTTGTTGCC
Seq 144: ATGCCTAGCCAGTCAGGAATCAG
Seq 145: GGTGTTACCTCCTTTCATGGTGC
Seq 146: AAACGTCCGCTACTCTTGAGCAC
Seq 147: ATAACACTTGCACACCACCACCC
Seq 148: AGAGGGAAGCCACAGAAAGAAGC
Seq 149: AGGGATGGACCAAGAGGGAAC
Seq 150: TAACTCCACCCTGTACCTGGCTC
Seq 151: TTAGTGACCAGGTGATGGTGGTG
Seq 152: CTCAGGAATTGCAGCCTTGAGAC
Seq 153: ATCCTGCAATGTTTGGATGATGG
Seq 154: TCACCCTCTTAATGTCAGCTCCC
Seq 155: CAGGCTGTTCTCTCCTAGCAATG
Seq 156: GGCATCAAACTGAAATCCTCCTG
Seq 157: cagtccgatttcaaggtcccagtg Seq 158: CAGGGCAGTCACTGAGAATGAGG
Seq 159: TTTCTCCTCTTTCATGCCTCACC
Amplicon Sequences:
Seq 160:
AGATCGCCGAGCTGTCGTAGTAGGTCGCTTTTTGCATCGCGTTGTTTCACGATCTTGATCGCACACTCTGACAGG
GGTTTGACACCCGTGAGGGCGCACATTGGCACGCCCCCGCGGTCACGTGACACTCCGCCGCCAATGGCCGCCCCG
CGCAGACCTGGTGGGGCGAGAAGCGCAGCGCGGTGAGGGCTCCGCGCAAATCCATCTTACTCTCAATAGCTAAGT
GACATGAAAGCCATAAAAGAAAAAGTGGTCAGCAATATTTAGCAGCACGACTTGGCCCCGGGCGCAGGGAGCCGT
GC'TATAAAAAACCGCTGGAATTTACTGGCAGCTACAAATATTTGCTTAACTTGCGTCTGGAGTTGGGGGATTTTC
CGGGGAGAAGGAGAATGAGTGAGGGCTGCAAGCTGATTCTCAGGAGCCGGGATCCAAAAGGAGAAAGGCTTGATA

GGCTAGAAAGGAAAAAGGCTGGGATCTTTCTTTTCCAGGGAAGAAGAAACTTGGGGTGTCGCTTAGTTTCTGCTC
CTTGGCCT
Seq 161:
CGTTCTCGATCCAGTTCCATCTCGCACTTCCCAAAGCGTCGCAGCGAGTGGGGACCGCAGGGACCAGGCGCCGCG
AAGCGGGAGCGTGAGGCGCTCTCTCCGAAGCCCTGGGCGACGCTGGACTAGTGTGCCCCGGAAGGACAGGTCACA
CCCGGGGGTGGGGGTGAAGACGACGGTGGCGGTGGGGAGGACACCTTTAGCAGCTGGGACCTGATTTCTTCCTCC
ACAAGGCTGCAGCTGGCTATGGCCCTGGTGGAAAGAAAAAGCGAGCTTGACCAACTCGACTTGGGAAGGGGGATA
GAGAGAGAAAAGAAGGACCTTGTGTTTGTATTCATACCGGTGAGCACCAAAGAATAGTCTCACGCAGTTATAGGA
CCCaggttcagcgatgtgactacttgtccaaggtcacacagcgagctggggactcggggaccagtgtcggatctc cCACCCGGTTGGGACTTCTGAGCGCACAGGGGCAAGATATGTGAGTAAACCCTGTCCAGAATCCCAGTCCTTTGT
ATCACTCGGT
Seq 162:
TATCATCATTAGACCCGGGATGGAGCGGCGGGGGGGAGTTTCTCTTTACTTACCAAACCGCAACAACAAACAAAC
AACGACGAACAACCGCCCCCTACAAACACTCATTCTCACACAACGTTGCCCTACCTCCCTCGCCGCTTGCCCTGG
CCGCTGTTGCACACTCCCCTGGGGGCTGTCTGCACGCCCTAGAGCAGACACTGCGGTCACTTAAAGTGCGCCCAG
TTCCTCCACCGCAGCGGTCACACCGTTGATTTGATCCAGAAATAAGACGGATAGTACCGAGCGTTGGCGCTAGGG
GTTGTCTATGTCAAAGGCGAAGGTTGGCTGGGAAGTTCTGTCCGTTTCTCTTGCCTTAGCATAGGAGTCAATCCT
TTTCTTGTCACCCGATTCTGCAAATTCTCGCTGTATTAAAGGAGCAGAGATCTGGCATGTAGTGCTCCATTAACC
C
Seq 163:
TTCGGTCTCCTCCCCATTTTCCTAGTCGTCTTCGGTTGTGGATGTTGTAAACTCGACCATCCGTCTCTCAAGGTC
TTTGGCTTCAAGGTTTCCCAATGCTCTGGAGCTGTCCAAGCCCCGGTACTCCGGGGTGGAAGACCTCAGATTCAT
TTGACGGGCTTGTGGAGGTTGGGGGTCTGCGGAGCCCCGTGTGGGTGGGGCTGGGCGCGGCCGGGGCGGAGCCGG
CGAGGAGCCCTAGGGAAAGGGTGAAAGGCACAGTTGAGAAAGGCCCGCCGGGCATTGGTTTCACAGTTTCCACGA
AGGCTTCGTGTGCAAGCCTGAGGAGTTTAGGTGCCTCCCTCCTGCCTCGCCTTTCTTGGTTCTAGAACCTTCAGT
AGGCTTTTCTGGGTTGCAGGGACCCGGAAAAGCAGCGGCTTCCACTCGGGGGGCGGGTCCCAAGGGTCTTGCTGC
TGCTCTGGGGCCGT
Seq 164:
GCAAATAGGTCAATGCTGGGAACAGATGCCTGCCTGGCTGAGTGCTGGGAAAGAAAGGCAGTTGGAGGGATGTGT
GGGTGCCTGGGAGGGCGTGGGTGGTGCCCAGGAGGCTATGGGAATCAGAATCACACTTGCACAAGAGAAGACCCT=
TATGGGACAAGTAAAATCAGCATAGTTTCTTGGGCGGGGCAAAGGTGTCCTGATGAGGATGCTAGGGGTCAAATA
TGTGTCTGGGTTCTGCCCCAATCGGGAATGAGACACAGTACTGAAGTGGAACGGGGGTAGCATCTCCACCCACCT
TCACAGCCTCTGGGGAAAAGAAAGCTTTCCTTGCAGCCCAACTCCAGGGGCCTAAATATTGAGCACCAACACAAG
ACAGGTCCTTGAGCTTCTCGGAGCGAGTCGGGGAAGCAGATAATTTCAGATGCAAAGTGCCTTGAATAAACAGAA
CGAAAGATAGAGAGCCAGAGGGGGAGAAACGGCTTGGTGTGGTCAGGGCAGGCAT
Seq 165:
AAGTTCCCAAGCACGAAGTGTTCTGCGTCCCGAACATTCCAGGGGCCGCCAGCCACCATGGGCTCTGTCCTGAGG
TGCCAAGCAGGACATCCCTGCCCGACATCCTTGTCCTCCCGCACCGCACACGCGTTAGTGGCTGTGGCGTCGCCA
CCCCAGCACACGCTGGCCCGCCCGCAGTGCCAGGCTGGAAGTGTCGGGCGCTTGCCAGGCCAAGGGGCAATTCTG
TTGCCTTCCAGGCCTTTTCGGCGCGGTCCCAGTCAGGAACGCGCCCTGTCGCCTCCCACTCCGTCTTCCGGACCC
TCCCGATCCTCTCTCGTCAGCGATCGGGCGTCGCTCCCCTGGACTAACCTCCCTTGCCCCATCTTCAGCTTTTCG
CTGATCTGCATCTTCCTGCGCCTTAGTGCAAGGCAGAGACCTGGTTCTAA
Seq 166:
TCCAGGTAGTCGTTTCTGAAGCCCTAGTCCTCAGTTCCCAAAGAAACCACGTGCGCACTACCACCTAAAACTGCC
AATGAAAATGAAGGTCCTGCGCAGTAAAATATTTATACAACTGCTGGGGCCACTAGGCTTCAGCGGGTGTGGAGG
CGGGGAGAGAGGAGGAGTAAAGGCTGTTTACAAACTTGACGTACACACGCAGTCCTATCCCTACGGTCCTGGAAT
TGGGGGTTACTATCTTGGAATCTAGGGGCACTCCAGGCTCTGGGCTCAGACGGCTGGCTTCTGCCTACCCGAGCC
TTAACCTTTCAAGGACCAGAAGGATTCCAGAGCTCTTGCCCTAGGTCCTGGGGCAGCGATGACTCACTGCAGCAC
CCCCTCCCACTTCGCCAAGCTGCCGTCTCCGCCCACCCCCAAACAATCTCGACAGCGCATTTCGGGAGCCACGGC
TCCGGGCGCTTTGCTGGGGGCTAAAGGGGTTTATCCCTTTCCTTGAATCCCAGCAGGCTAGAACTACCCCCTCCC
AGTCTTCAGGCTTGCCACGCTCTCCACCCGATCCTTCCATTGAAAGGCAGAGAAGGAAGG
Seq 167:
GCCCGCCCTGCAACCAACCCGCTCAAACAAGCACCCTGACTGGCGCATTCTTACTCATTCTAGCCTGGGTTTCAA
CTTCAAGGAGCTTCAGCGCCCCTCACTCCCTTGCCCTGAAAGCTGGCTAAACTACGCACCTTTTCTGCCCTTTTG
AAATGACCTTTCCAGATATTTCTATGGAATTCAGTGCCATTTTCTGCCGCTGTTCTCACCACATTCATTCATCAT
GTTTAGTTTTAAAAGTACCAGATTCTgtcgatttctccaactgaactctgaaatctttgaggtcagggagcttgc ctcattctattttgtattcccagtacgtgacacatggctggacacaccagAAATTGTCCGATCAAGTTTGTGGGT
ATTAAGAGTGGTCAAAGACGCTGGGGAGGGCA
Seq 168:
TTCTCAGAGTGTTGGTACCGCAGATTCAACTGGGGCCAGAGAAGCCCATCACGGGAGCCCGAGGAAAAGCAGCCA
CAGCTCTCCTTCCTAGTACAAGCATTCAACAGTAAGCTCCCACGCAAAGAATCAGACTGCAGCAAATTTCAGCGC

TGCCTCAGGAACACTGTCCTTGGCTCCCACATTGCAAAGATTTTCCATTCCCTCCACAGTCACCTCATTCATGGT
TAAGGAAGAAAGCGCAGCTAACAGACAGGGTGACGACAGATGTCCAGGCACTGAGCCATCCATAGCTGTTATTTT
TCATTCACATAGGCATGTGCCGGATCCAGCAGATGAAAACCAGACCTACCCCCTTCCCCATGTGTGTGTGTTTTT
TCCCCTTACTGCTGCTGCTGTAACAGCTAAGTGCCAATTATCTCCCAAGCGTGAAAGCAAATATTGTGATAGCCC
AACAAACTCTACAAATGTTAGAGGACACAGGTGGGGATGACTGTTTTTCTGTCCTGGCCTTGGCATGTCTTTATT
C
Seq 169:
GGTTGCCAGGACACAAAGTAAGCAACAGCTGCATGACCGGTTTAGTCCTGACGTTTACAAAGAGGGACCCTTTCC
ATAAGCCTGTAACTTGGTGTGGGCAGCTTGCCGATGTCAGGCAGTGCATGTTTCACTCGATTAGGGAGAGAGCGC
ACCCTCTCCAGAGGGCTTTGGCCACGCTTAATTTTTTCTTTGTTTCCTTCTATACTGCTTTATATCTCACACATC
CCCTCTTAACTCTCCAGACATGGGAAGTTGTTGTGACAGGTCAGGAAAGTCGTATGTTTACCCTTCTCCTAGAAA
TTAGTTATGTAAGCTATTATTGTATGTATTTAGTAATGAGGGGACATGTGCATTAATCTCTTAAAGCTTTGAAAT
AATTAGCAGCATGGTCTTATGCTTCCATG
Seq 170:
TCAGTTGAGAGCTCAGAGCAAGCTGTTGGATTAAGCAAAAGCACCTTTTAAAAAATTAATATTCAAGGCAGCTGT
ACCGCGGAGGGCCTGGGTCTCGGAGTCTAAAAAATCAGACTGGACGTTACTATTTTTTTTTAGGCAAACGACAGC
TCGTTTCTCATTTGTAAAACCGGGGGAACATCTTACCGAATAAACCTTACACAAACAGAAAGGATTCCTAAGGGC
TGGGAAAATACTATTTTGCTGTCCCCAGGATGGAATATCAGCATCCTTGTCTTTTAGCTCTTAATAAAGCTCTAA
CTAGTCACAGGAGGAGCCAGGCTGCATGATCACGCACACTCTGGACGTCTAGGTTTTCCGACCTAATAAGGGGGC
AGGTCGCGTCGTTCCCTGCTTAAATTAGAGACCACCTCCACCTGCCAAGGGCCCTTCAAACCCTCCGCCCCTAGG
TCGCTAACGATCACCGCTTTAGTTCTAGCTCCAGGCGCCGCCTGGCGGCTGTCTCCGGAAGT
Seq 171:
TGATCTGTTTCCTCACTCGCTTGCTCGTGGATGTCATTTTCTGTCTTCTTGGGGGCGGCCAAAAATCGACCGGTG
TCGGGGACCAGAGGCGGCCCCGCACGCCCCCGCGTGTGCGTCCACGGGCGTCTGTGCAGACGGACACTGTGCCGG
GGCGAGCTGACAGGAGTTCACGGCTGCGATAGAACATGGAGATGTCATGGGCGCGACAGAGCCTGGCGGGGATAC
CAGCAGCGTGTGTGTGTGGACGGCAACGTTGTCTGTGCGCGTGTGTGTGAGTGAGTGAGGGAGAGAGAGAGAGAA
TAGGTGTGTGTAGAGGCTCCCGGTGCCTCTGTCTGGCTGCTGAGGCTGAGATGGGAGCAAGTGGCTGGCGAAGCT
GGTGGTGGCTTCAAACCACACTTTCGTAGAACAATCGC
Seq 172:
atgggtggatggatggatagatgaatgggtggatggatggagggatggatggacggacggacggacagatatatg gatggatgcattatggatggatgcatggacggacggacggatgcacggagagatggatggatgcatggatggata gatagacggatggacggacggatagatagatggatgCCGGAAAGGAGAAGAATGAGAGACGGATGTGAGACTAGA
TGCACGCAGGCCAGAGCACCAGCATACGCTGGAACAGAGCACGAGCATACACTCGAACACACGCGCACACACTCA
GGACATCTGCGCACAGACATACAATCCTCCGCGTCCGCTTCCACGCAGGCATTCGCGCACCTACATACACGCAGT
TGcacgcgcgcgcacacacacaggcacacacacgcagacatgcacacacacgcagacatgcacacacaccacaca tgcagacatgcacacacacgcagacatgcacacacacaccacacatacacacacacacacacacaGTTCGCCTCT
CCCTGGGTTTCTCAGAAACTAAATGATCACCGCCC
Seq 173:
GGAGGACTGCCCCATATTTTCACTCCCAAAAACCCCTTAGATGACTCCCTGCCTCACCCCCGCCCCCCAGGTTCT
GAAAGAGCCTTCCCGCCAGACTGCATTGATTAACCATTCATTGCCCCATTTTTTATTAATCAAAGACATATATAA
TTGCTCATCGGAGCTTGTGATCAGCGTGAGGCCTTACTAAGCAGCTGCCTTACTATCCTTCCAGCCCAGAGCACG
TGAGCTGACGTCTTCTTTGGCCTGTGTGGCCGTTTCCTTGCCAAAAGCTCAGTTTGGGGAGAGCTTCTTGCGTAT
TAGATGCAGTCTGCAGACTCCCAACCCCAGCTACCTGGATCCCCTGAGGGCCCAGGAACTCCAGCTATTCCAAGC
CCACTCCTCTTTTTTTTAAGAGGAAGAAATAGAGGTTACGATAGGGGACAGCCAG
Seq 174:
GCGCCCCGGGACGAGGTGGACGGCCGGGGGGAGCTGGTAAGGAGGAGCAGCGGCGGTGCCAGCAGCAGCAAGAGC
CCCGGGCCGGTGAAAGTGCGGGAACAGCTGTGCAAGCTGAAAGGCGGGGTGGTGGTAGACGAGCTGGGCTGCAGC
CGCCAACGGGCCCCTTCCAGCAAACAGGTGAATGGGGTGCAGAAGCAGAGACGGCTAGCAGCCAACGCCAGGGAG
CGGCGCAGGATGCATGGGCTGAACCACGCCTTCGACCAGCTGCGCAATGTTATCCCGTCGTTCAACAACGACAAG
AAGCTGTCCAAATATGAGACCCTGCAGATGGCCCAAATCTACATCAACGCCTTGTCCGAGCTGCTACAAACGCCC
AGCGGAGGGGAACAGCCACCGCCGCCTCCAGC
Seq 175:
GTTAATGGAGGGTGAGGGTTTCCACCCGTGGGTCTCTGAAAGGGCTCCCACAGGTTCAGCAAGAGCGTCTGGGAG
AAACCATCTGTGGAGTGGGGGACACAGGCACAGAGTGTCCCGTCCTGGGCAAGGGGTCCCCTCCTCTCGCTGCTC
CCTGCCAAGAGCCCAGAGGGAAGAAAGGACCATGGCATGAGCATCTATGTATGAAGTCTCCTCTGATCCCTAGGA
GGAGGGATGGGGCGTGTGTTGTGTGTGTCCACGCGTGTGCACAGTGGAACTGATGAGGTGTGTGAAGAGAGAAGG
GTGTTCCTGTCTCCCTGAATTGCCTCCCATGccctggcttctcccctggcttctcccTCCCACCTGGTTGCCCAT
CACCCTTACTCACATTTCTCAAGGCCCGTGTTGAATCCTGGGCTCTCCCGACAGCGTCTTCGTGCACTGTGTGCA
GAGGGAGCCCGCGTCATGCACAGCAGGGAGGGGAGGGTTTTCTGTGGAGTGGAGGGGGGACCATTCCCGGAGGAA
TGTTGGAGGGAATGAAC

Seq 176:
GCTGGGTGAATAGTCACGGAATCTCACTCACGCTCGGCTCCTCCACCCATCCCGTCTACAGCGCGTGTCCCAGTC
CAGGGCGTGCGTGCGCTCGGTGTCCGATTCCGGGCTGTGTGTGTCCATTTGGCGAGATGTCGAGAGCGGGGGGAG
TGTCCTTGTCGGTGTATCTGGGCCCAGGTTAGGGGACTTCTCCTCCCCACCCCCGCGTGGGTGTGGGGGTGTGTC
CGGGCTAGGGCGCGTGTGCTTCTGTGCCTGTGCGTGCGTGTGCGGGTCAGGGTGGTGGGACCGCGCATCAGGGCA
GGGTGCCTGCGTCTGCGTCTGGGTCTGTCTGGTCTGCATGTCGGCGCGATCTCGACCTGGATTCGTGTCCCTGGA
TGTCGAGAGGCCAGCGTGGTGGGGGTGTCCAGCCTCCCGGAGGAGTACTATGCCTTG
Seq 177:
AACGCTCTTCCTCCAAAGAGGTCGCGCCTTCTCTGTGGTGGTTCTCAGGGATCCGCCCCAGCTCCTTCTCCGTTC
CCAGCCCCACACACTGGGATCACCAGGCACCCAAGATCCCACCTCTCAGGTGGTATCTTCAGCGCAGGCTGCCAC
TCAGCCCCCCTCCAGGGATCTGGGGCAGAAGGCGAATATCCCAGAGTCTCAGAGTCCACAGGAGTTACTCTGAAG
GGCGAGGCGCGGGCTGCATCAGTGGACCCCCACACCCCACCCGCACCCCAAGCGCTCCACCCTGGGGGCGGGGCC
GTCGCCTTCCTTCCGGACTCGGGATCGATCTGGAACTCCGGGAATTTCCCTGGCCCGGGGGCTCCGGGCTTTCCA
GCCCCAACCATGCATAAAAGGGGTTCGCGGATCTCGGAGAGCCACAGAGCCCGGGCCGCAGGCACCTCCTCGCCA
GCTCTTCCGCTCCTCTCACAGC
Seq 178:
GTTCTTCTAAGCTTCATTCCACAAGAGATTGAAATCGAAgtattctgggctggcacacgatagctggaacatcat attttattctagaaacacatttgccttggcaaagaagagcgtgcctagaggagtggtcaggatagtgagggatct gTGATCCTTCGTTCTGAATCTAGAAAAGTCACTGGATATGCCCCTCCCCCGCCCCCCAACACGGTCTTATGTTCT
GAATGTAGAAGTCACTGGATGTGCTGacacacacacacacacacacacacacacacacacacacacacacacaca cacacaGAGTCTGTGGCCTCTTTCCCAGGCATTCCAAGTCCAGCAAGTTCGCAGGGAGCTGTCAGTCCGTCCAGG
AAGGCCCGGGCCTGGGTTTGCCTCTTCAAGCAGCTACTGCAGGGGCGTGGGGAGGGGGCATAAGAGACTTTGGAC
TTTCCTTTGAGACAGTAGAAAGCGTTACATCCAGAGGCGAGATTCTAGCCTGGGGTccccgccttcccggcctcc tcttcctctccctctgactccctttcctgtgcccctccccctgcctctttcccGGCCAGAGTCCAGCCTTAACCC
Seq 179:
GGTGAAATATGTGCGGACTGATGAGTCAAAGCTCTTATTCCCTGGACTGCATTAATACCCACGACGTGCTTTTCG
CTCTCCAGACAAAGAGACCGGTACTTGGCAGGTCCCTCAAGTGGGACTCAAAAGACCGAACCGAGCTGCAGCCTT
TCGCTAGCACTGGTCCTCGCCCCTTTTGGCATCTTGGTACTTGTAGTTTTGTCCACTCTATCTTTACCCGAAAAG
CCAGCGCTGAGACCACAACTCCCATCACCCTGCGAGCACCAGCGCCTTCAGAGCGCATCCTCCGAGGGGCACCAG
CGCCATTGACCACCCTGCTGGCCGAAGGGCCCGCCTTCCCGAGGCCAGGCGCTCCCGCGATTGGCCAGCCGCCCC
GCCTCTCATCGGAGGGCGCCAGGTGAATGAAAGGG
Seq 180:
CTCATTCATGCATAGGTCACACTTCTCCAAAGTTGGTATGGCCTGTCTCCTTGGCATGTTCCCTTGCTTCTGCTT
GTCCAGTTAATCCTTTCTGACATACCATGCATCTCAGGGTGAAGCGGTTGACATCAGTAAACTGTCTCCTTCTTC
TAGCTTCATCTGCTAATTCCAGTGCTTGTACAAGAACAATATCATCATTAGAGGAGAAAATGGTCAGAGGAGGTG
TATCTGGATCAGGGAAGTTACGCTGAAGTGGATCATAGTGGATGCCATCATAAATAAGCAGAACCCTTTTGGTAT
ATCCTGCATCTTCCCCAAAACGATCAATTCTTACTGTCTGTGTATCCACTACACATATTTCACATTGGTAAAACT
TGGACAAAATCGATATCTCTATTGCTCCTCCCCA
Seq 181:
ctccttcccACTAGGCTGCAGAGGCGGGGAAGACCCGCCACAGGCTGGCGTGCGGAGCCCCAGGCCGGCGGCCTT
CCGTGATTAACGAGTGTTTACAAGACTCTATTAGTAATGACACAGACACCAATGGTTGGAGACGTCGAGGCGCAG
CGCGCACTCTACGCACAACCCCTCGAAACATAATTTGCATTTTAAAAGATAAAGGGGAGGGAGGCTCGTGAGAGG
GCAGCGACCTGACACAGCTAAATATTCAAACCTTTATTGTTAAGAGCTTCCTCCTTCCAACCTGGTGCACTTTAA
CCTCCAATCACAGGTTCAAAGAATGAAATCAAGAGACTTACAAAAGAGAGGGGAAGAGAAAAGGCTATCTTGGTA
GGAATCTGAGCTTGGAGACAGGAGCAGTGGTTGTTT
Seq 182:
AGGCCTGGGAGGTGACTCATAGAGTCTGCCCCCTCTCGCCCTTCTGCCCTGGGAGGTCGGGGGTGAGGATGGTGG
AGGGGAAGCGTGCGAAGGGGGTGCCAGGGTTAGAATGAGGTGCCCACCGAGGAGAGAGACGTCTGAAGTCTGGCG
TCTTTTCCTTCAAGGCTGCTGTGTAGATTGTGAGGTGGGAGGGCTGAAGATCAAGTTCCCTCGAGGGAGGTTAAA
GAAGGGCTAAGTGGACCCGGAAACTCTGCTCTTCGGGGTGGTCTCCGCTCTGGGAGGCGGGGACTCCCCTCTGGT
ATGGGTGTTCATTGTTCTGGCCCCATTGGAATCTATCCCCCAGGGACAACTCCTTTGTGCAAAGTCCTGCAGGAT
AGAAGAGGGGGCAGTGCACAATCAATTTCACCGTCAAAGGGGACATGTCTGGTTTTATGAAGGGAGAGGGAAGAA
GAAAGGATCAAGTGGGGATGGGTTAGGCACACACCTTA
Seq 183:
GTAGATGCGGAAATTGGCCTCAGCCGCGCCATGCAGCGCGCCCTCGTCCGTCTTGTCGCAGGCGCCTTTGGCGAG
GTCACTGCAGAGCCCGGGGATGTTTTGGTCGTAGGAGGCGCAGGGCAGGTTGCCGTAGGCGTCGGCGCCCAGGCC
GTAGCCGGACGCAAAGGGGCTCTGATAAAGGGGGCTGTTGACATTGTATAAGCCCGGAACGGTCGAGGCGAAGGC
GCCGGCGCCCGCCCCGTAGCCGCTTCTCTGTGAGTTGGGAGCAAAGGAGCAAGAAGTCGGCTCGGCATTTTGGAA
CAGAGAAGCCCCCGCCGTATATTTGCTAAAAAGCGCGTTCACATAATACGAAGAACTCATAATTTTGACCTGTGA
TTTGTTGTCCGGCAGCTTTCAGTGTCGGTTTTACGAGGTAGAGTGATATATGATAACATTACACCCCCAGATTTA

CACCAAACCCCATTTTCTTTTGGACGGAGCTCGCCGCAGCACGTGACCGCCCACATGACCGCCTCCGCCAATCTC
AGCAGTCCTCACAGGTGGTCTCGCTCCGCAGGGCCCGCAGCCGCCTAGAATGGAAGGGCAAGAGGCTCAAATAT
Seq 184:
CCTAGACAGCAACACACCCACTGGAAACGCACGTGAACAAAGCTCTCGCCCCCGGGAGCCGCTGCCTGCGGTTTC
CTAGTCGATCCCAGCTTCTCTAGGGAGTGTCAGGCGCACACAGGGTTAAGTTAGTTCCCTCCCTGGTAGGAGGGA
GAGGAGGAGGAGGGGAAAAGCAGCATACTGTCTCAGGCTGGGTACCTTGTAGTTAGTTGTACGTTCGAAACCTGT
CGCCGTCACTTGCGCGTTTGGCATTATCCATTGTCACCGCGGAGGAACGAGCGCTCGAGATATCATCAGTGCCCG
CAAATCTCCGCGCCAAGGCGCTGAGCTACTCCTTTCCGAGGTGCGCCTCTGGTCCTCCGTCCCTGGTGCCCAGCA
GCGGCGAGGCGGCATCTCCGCTCCCGCCGCCGTGTCCACCGAGCCCTGGGATCAGGGTGGCAGTTCTCAACGATG
GGCAGGAGGGACCTCGGCGGCGACCCCTAAAACAATACCATGCCCCGGGATCCCCGCTGCTGCCGCGCCAGCGTC
TTCCCTTTCCACCTCCCTGACCCTGTCGGATTCGGATGAGCCCATTGCAAGGAGAAGAC
Seq 185:
TTCACCGTCTCTACTTTCTTCCTTCTAAGAGATCCTGAAACCTCTGTCATGGAAAAGTACCACGTGTTGGAGATG
ATTGGAGAAGGCTCTTTTGGGAGGGTGTACAAGGGTCGAAGAAAATACAGTGCTCAGGTGTTGCACAAAGAGGGA
TACCTTTTGGGTGGGATTTGGTACCCCCAACTCCAGTGGAAAATGGATCTAGAAGGAATGTATTTATACCAGTTT
GTATTCCTAAGGTACTGACTCCCTCATACTTCTTATGgagtataagctttgaagttggattatttgggtgcaaat tccatctccaccgctttctagccctagaattatggacaaattacttaacttccctatgtctcaatttccttatct ctagaatggggataagaacagcaac Seq 186:
CTCTAAACACTCGCCTCTACCCGCCGCCCCGCGAACCCCACACACTGCAGACGCGACACTCGCAAGTTTCGGGGA
TGGCGGCCGGCGAGGGCCATACTGCGTCTTTCCGGAGACACGGAATACGGCACCAGCCGTCCCTTTATGATGCAA
TATGTCTGCGCCCAGGGGACGCTTGCTGGGAGCAGCCATTTTCAACCCTACTGCCGTAGAGCAGGCGGAGTCCCT
CTTTTCGCGCCTTAAGACAGGTAGGTTCTGACGATGAAAAGCAATTGAAAACGACCCATTTCACCCTTTTTCCAG
TCCACGTGAACTGCTAGATCTTGGCTTTGCAACATTAGCCAGGGGCGCTACATAAACTGCTTAGTTTCTCAAAGG
CTCAAGCCTGCCCTGATCTGTCTACAGGATGGG
Seq 187:
TAGCCCTTGACAGCAGTTGTGACGGGGAGGATTGGACCGCCCGGATTAGGGCTAATTAAGGGTGGATGGGTGGCG
GGCGGGGAAGTGCGGGTGGCTAAATAGGTGCCTGATAACTCAGTTAACTTCCCTCTTGGCTTTTCCCTTTGACCT
TAACACTTTTGGGGTTATCTCTGAGGCGAATGCTAAAGGAGACGCTCCAGGACTCGACCTCTGAAGGTCCTTGGA
GCCAATTCCGTAATATGATCATGGAAACTGATCATTGCCTGATCCTTCTACCGCCTTGGCGCGCTTTCTTGAGGA
ATGTCTTTGGTTAATGGCTTCACGGCCATGGAGGTGACATCATGTGGACAACAGGCTAGGATGCCAGAGTTAGCT
GCTCGGTGGAGATCATTTGAGGTCAGCAGAGGCCACGATATTATAGATACTAACAGACCCCGATATGGGGAGAAA
AGCAAAAGCAGGAGCCTGAATATCCAGTGCTTTGTGAGCTGTCAGTTCTGTGTGTAATGGCAGGAAATCCAAGTC
TTAACTGCGCCCTTACTATGAAGGCTTTCCGAGCCAGCCACAGCTTCTGGGTCATGGGCATTAGTC
Seq 188:
AGAGCCACGTGAGCTGCATTAACCCCGTGAACTGGCCGGCGCGCAGCTCCGAGAGGCTGTTGTAGCGCAGGGACA
AGCCCAGCAGGCCGGACAGGTTGTGGGGCGCCTCGGTGAGGTTGAGCGCCTCGCAGTACAGCAGCCGCCCCTCGC
ACCGGCACAGCTGCGGGCACCCGCTGGGGGCGGCGGGCAGCATCTGAAAGCAGGCCCCCAGCAGACACAAGACCA
CCCCCGAGGGCCTCCTCAGCAGCCAGTATAGACAGAGACCGAGCAGCAGGAAATCCATTAGCGAGAATCTTTCCA
GAGAGACTGGAGAATGTCCATTGGAAGCGCTCGGTCAGAAATCTACATCATATTTTATTCCGAGGGAGGGGAAGC
GGGGGAGGGGGAGAAAAGGGCAAAAAATCAAATAAATACATAGAAATAAAGAAGGACCCCCCTCCCCAAAAACCA
CACGTTCACCTCTAAGCATG
Seq 189:
CCTGGAGTCCTAGAGAGCCTCGCCGCACCCCCTCCCCTTCTCCGTCCCCTCCTCTCCTCAGAGCCGGCTGAGCCT
CCCTCCCTGCCCTGCGCTTCCCACGGGGAGAGAAGGAAAAACAGGAGGGGGGAGGAAGGACCAGGAAGGGGAGAG
AGGAGTGGAGGGGTACTGTTTGGAGCGGTCCGCGCGCCCCCGCCCCTCGCGCTCTCGCGACGAAGGCTCCTCGAG
-CCCAGCCGGGTACAACAAGTCTGTCCTCCGACGTCAGGGGGTCATTAATAACCAATTAGGAGGGTCACTGCGGCT
CCTATAAAGGCGCTGAGATTTTGCCAAGGGGAAGACGGCCCCGGCCGAGTGTGCGAGAGGCTAGCGCGCGCCTGA
GCCCCTTGCTGCCGCTTCCCTGCAACCACCCGCCTCTCACCCACCCTGCAC
Seq 190:
GCCGCGCCACCCCACCTGAGTCCGCCGGCCAGCGCGGGGACGCACCGGGCAGCGTGTGTTTGGCGACCCTCCCGC
ACCTCTGGTCTCAGTTGCGTGTGTGCACGAGGGGTTCCATAGGGCCCAGGGATGCTTGGTACCCACGGGGGAGAA
TCCCTCGCCGAACCCTGCGGGTCTGCGGGGCGGGCCGCGAGACTGGCGCGCAAAAGCGGCTCCAAGGCGGGGCTC
CCGCGCTCCCCGGGGCCGGCTTGCCGAGTCCAAGTTGAGCAACCGGCGTCGAGAGAGACACCGCCCCTGCTGCGG
GCGGGGGCCTCTCCTCGCTTCCGATTGGCTGACGGGGGGAACCTATCGCCGTCGGCCGCCTCCGCCAGAGCGGTT
TGCTGGTTTTCATTCATTGGCCCCGGAGCCGC
Seq 191:
AGTGTTGGGTGCTGGGAGGAGGGGCCATAGGACCCTGGGCGGGAGCAGAGGTACCCAGGGCTGCGGGGCGCTCAG
GTGAGGCCGGGAGATCTTCCTACGGGAGGCTGAGACGGGAGCTGGCTTTGCCCTCTCTGACTGCACGCGGGGAGC
CTGATTAAAAGCCTGGCCTGAGGAGAAGGAGGAGTTGGTGATGGGAGGAGAAAGGGAGCCTCCCTCCACTCCGCA
CGCAACACTCCTCGTTTATCTCCTTTCCTCTCCGTTTGCTCCAGGTGATCACAGGTTGGAAAGCTTATTATCTTT

s0 TGCAACTACAGGCTACTGGAAAP.AGTTTTCCTCTTCCTATGATCCCCGTCATGGTGAATTCAGCGACATAAGCAG
CTCCTGAGCTACTGGAAAAAGTTTTCCTCTTCCTGTGATCCCCACGATGGTGAATTCAGCAACATAAATAGCTCC
TGCGCACACGCCAGGCAGGGATGGCGAAGAACACACAAGAACCCTCA
Seq 192:
CTCTGGGCTTTCTCTAGCTTCCCCAGGGAAGGGAGGCTCGGGGTGAGGTGGGCACGGGGCATCTTTCCTGCCCAA
CTGTGAAGTCCTAAAAAGCTTCACAAAGTTTCTATTGAATGACAGCTTTCTTCTTCTCTTTCTCCAGGGTTGAGT
TCCAGAATAAATTCTACAGCGGGACCGGTTTCAAGTTCTTACCCTTCTCCTTCGAGCATATTCGGGAAGGGAAGT
TTGAAGAGTGAGTCCCTGTGAGGGCCGTGTGCCCCATGCTACCCTCCCCGCCTCCCTCCACAGTGATCAGCTGTG
CCTCTCTGCCTGTTGGTTGTGATCTGTGGGCACCAGCTCATTCGTGTCACCCTGTCTGTGAGTCATTTAGATAGA
ATAGTCCTCCTTGGGTCTCCCACCACCCCTAGCTTTGTGTGTAGTGTAGTGATTTTCTGGCTGTCACTCATACTC
ACTGGGCACCAGCCTTGCCCTCTTAGCCTCCATCCATCCAGACAGCCCTTCCCACCTCCTGGTGGTGAGCCAGTC
TGCATTCCCACGCCATCCCAAAGCCCTTTCATCTTCCCCGTGCATTGTAGATGGAAGGAGCACCC
Seq 193: 1 AGTTTGTGAGCTCAGGAGAAGCGCTCCGAGCTCGGCATCTGGAGCAGTTCAAGGCAGCAGCGAGCAAGTCCAAAG
ACGCAGGAGGGAGGGTGGGGTGGAGGAGTAGAGAGAAAACAGAAGCCGTCTACAGACCCTTTTTCCCTCTGGGGC
AACTAAACCTCAAGTGCAGGAAGCGCTTGGGGACTGCCCAGCCCTCAGCTGTGTTATTATTCGGTGATAGGTATT
TGCTAATTACTTCCAAAAGCCTCCCATCTGTCATCCCACCCAGACTGCGCGCTTCTAATTCCTCCTACCCCACAT
GCTGTGCCCAATGAAAAGTATGGTCAGCGAGCGAAGGTTTGCAAGGAGACAGACGAGGGCGAAATTAAGCCAGGC
GGCTTCCCTTTAAATCCTCGCAAAGCAGAAGGGCCCCTCACTCTGGCAGCAGGCCTTGGCCAAGGGGCCTTTAGC
CCTGACGACCCGGGGAAGAGTCTCCCAAAGCAGAACGCC
Seq 194:
CCAGTCCCATAGTGGAAATGCTCTCGTATCCAGACGTGCACCGTCTCCAGTCAGCAGCTGAAAATAACTCGTTCT
TGAAAGGAGAAAGCCAACCGCCCCCTTTCTCCTGCACAACTGACTGAGGGCTTGAAGGAGGCTTGTATAAGGCTG
AGGGATTTTTCCAAGAAGGAAGAATGGCGTAATGCTGCCTGTGTGCTCCAGTTTTTTTTTCCCCCTAGTTTTGAA
TCCTTTCCAGTGAAAATACTTcacacacacacacacacacacacacacacacacacacacacacactcacaGGCC
TGCAGGTGCTCAGAAAAATCTTTTACAAACCTGAACTCAGGAATTGGAAACGGAATTCCAACCCAAACCAATTTA
ATTACTCTCTGATGTCATGCTGTCTAAACTCATTTAAGTGCGATATATTTATGTGAAAAAAATCACCGCTGCCCT
TTCGAGGCCATGGCTCACGGGGGCTCCTGGCACAGAGCCCTGCAGCGGGACTCTAGGCTTAGGGGGCCTCCCCCT
CCACGGGGCAGACTCAGGGGTCTTCACCTCCACCTCATGGAG
Seq 195:
ACTACCTTGGGTGTCAGTCCTGCTTCAAGACTCCAGAGAGATAAAGAGAGATGACCTCAGAGACAAAGAGACTCA
GACCCAGCCAGAGGCCCAATGGACAGTGGGAGGGGTGGGTGGAAGAAGGCTGGTCTCTGTCTGACCAAGCCCCCC
CAGAATAACGCAGGCTGCCCCCCTAGGTGGAAACAATGACACAATCAGCTCCCAATACCAAGGGCCTGACATCAC
AAGGGGAGGGGAAGGCAGCTGAGGTTGTGGGGGGAGGTGCCCCGCCCCTTGGCAGGCCCCTACAGCCAATGGAAC
GGCCCTGGAAGAGACCCGGGTCGCCTCCGGAGCTTCAAAAACATGTGAGGAGGGAAGAGTGTGCAGACGGAACTT
CAGCCGCTGCCTCTGTTCTCAGCGTCAGTGCCGCCACTGCCCCCGCCAGAGCCCACCGGCCAGCATGTCCTCTGC
TCACTTCAAC
Seq 196:
TGGACACATGTGCTACACGCTAAGATGCAGATGTCAGGCACGCGCAGCCCACACACAGCTGACACACGTCGCAGG
GACCCTCATAGACAAGCGCATCACATACAAAGGTGGACAGCCATCAGCAGACGGGGACACGTACACGTCACACAC
AAAGACGCAGGGACCGCACTGGAAACGCACAGGCAGGCCAGCTTCCAGCACAGATGCACCCGGCCACGCAGGAAC
GTCAAAGCATCACAAAGACCCACACATGCCCCGGACAAAGTAAAGCCCCAGATCCACAGACGCACACGCCACAGA
CAAAGATCCCCACGGACACCACTGTGACATGCTGACACTCATAGTCACAGCCACGCAGACAGTCCCTAGACAAAT
GGGCAACAAAGAATACCCACAGACA
Seq 197:
AGGTCACTGCAGAAGGATGGAACTGACCTTTATTCCCCAGTGGGCAGTTACTGAGCTTTCCTCCTCAGAGCCATG
CTGGCAGCCCTGGGACAGAGAACGGTGTGGCTTTGGCTGCCTCTGCATGGAATCTTGCCCCGGACTCCTGAAGAC
TGCACAAGGAATGAGGAAGATCAGGGACAACCTGGGAACTGAATAACTTTCAAAGCCAGTGCTCAGCTTCTCTGC
TCCGTACTAGCGTTTAcaggtcttaattcaaaccagatgcctgtactagtttttagaccccaagtcaacctttct gagccacagcttcccgctgggaataatgatgcctgccctatctacctcacagacttgttatgaggataaagtgag attaaactgcctcaaagtgctttgtaAACCTCAGGTGAATAGGAAAGGGGAAAGTAAGGCTGGAGTGATGATGGG
GAGGTCGGXGGATAAGGGGGGGCTGGGATTGCTAATGGGGACTAAAATGGCCAGTCTCCTGGCAAGATTTTGAGC
AGGTCATTTCATTGAGGCCTCTTAGATTTCATATTTGAGAATTAGGGCACTGATTCCTGACTGGCTAGGCAT
Seq 198:
gggactcattcaatgtcaagtgcttacaacgggggctggcgcagaggaagcccacaGGTCCGTGCGGCCGAATCC
CAGGCATCCCGACGCCCGCCCTCTCTGGCACTAAGCGCAGCCCTTTCCCctcccctccgtgactctggccctccc ttcaacccgttctccacacagcagccggggggagcttttaagatgcgaaagaggaggtgtcacttcggtctccag tgactccttggcccctgaataaagcttaagactgaacgccccactccaggagcaccactctgaccctcacctcag gaccgcagccacactgctttctctccggtcctctatcccgctccctcctgcccaaggcctttgcccatcgtgtcc tctgcttggtgttttcttcctctggttaactcctacttattttacagcgctcagcttaagcaccacccattccag aacgcctttcccgattttctcatttatgcagatctcctctttcagacccTGAGAGCACCATGAAAGGAGGTAACA
cc Seq 199:
TCTTTAGACGCTGCGCTCTTAGCCTGTCTCTCTTCCCCACCCCCTCCCCTAGCTCATTAAGATGCTCAACACTCA
AATCGGGGTATTGATCTCCACGGAAGCCCCAAACCCTCGCCATCGAGAGACCCCCATGGCCCGGGGTGATGGCTG
TGGGGCTTGGTGCTCCCAGAGAGCTCAGTGGCTACAGAATGGGTGGGGATTCTGCGTGTCTCCCGGAGCCTGAAC
CCCTTTCCTGGTTATGGCCGGTAGCTGTCTCCAGGGCTAACGTGGGCAGCGCAGGGGGGCGGAAACCGGGTTTTA
GCCAAATGCCTCGACATCGCCGCGCCTCCGCCTCCTCGTCGCTGAAAGAAATGTCGGGGTTTCATCAGAGCTAGG
GAGCGACAGTCGGGAACAGCGAGTCTGCCGAAGCCGGCTGTTGTGTGAGGGTGTGAGACGGCGGGGCGGTGAGGG
GCCACCGCGGCTTGGGGGATAGTGCGTGTGGGGTTGACCGTGTGTCTGCTTGAGAGGCTGTGAAGATATGGGGGG
CAGATATGGGAGAAATGCTCGGGCCTGAAGTCCCCAGCCCACCGTGCTCAAGAGTAGCGGACGTTT
Seq 200:
CATCTGTCTTTGTTGGGCAGTTGCATCAGAAGGGTTAAGGACAGCTGGGAACACATCCTGCCTCTAGTGAACCTC
GTGGTTCTGTCATCTGCCTGCCCCTCACCCAGCCTAACCCCTCTGAACCAGGAGCCTGAGCTGCACTTACTGCTC
CCCCCTGCCCCCCGGACGGCCTGGACCAAGCAGCAGCTCCCAGAGCGGTGGCCCAGCAAACACGACTTGACTCGA
GGCCAAGGCTCTTGAGGGCTGAGCAGTGTCCCCATGCACACTCCTGAAACACTTTGTCCCTTCGCCATTCAGAAG
GCATCATTTTGGGGAAGGCAGCAGCCGGTTTTTCAGAGCCAGCGAGTGGCCCTGCCAGCTGCTGAGCAGGGCAAG
CTGAGAAGGGTGGTGGTGTGCAAGTGTTAT
Seq 201:
CCCAAGTACTCGGCACTGCACAGCACCTCGCCGGGCTCCTCGGCTCCCATCGCGCCCTCGGCCAGCTCCCCCAGC
AGCTCGAGCAACGCTggtggtggcggcggcggcggcggcggcggcggcggcggcggaggccgaagcagcagctcc agcagcagtggcagcagcggcggcgggggcTCGGAGGCTATGCGGAGAGCCTGTCTTCCAACCCCACCGGTGCGT
ATTTCTGCATAATCACCGCTTAAAGGCACATTTTGACAGCCCCCTTTATCTGCTTGATGTTTTTTTCATGTCTGC
ACAGCAAATCACCCCACACCTCCAACCAATTTTCCCCTCTCTCTCTCTTAAGTATTCAGCAGGTCTTGCCTTTCA
TATTAATTTTTATGACCTGGGATGTTGCCTGTGCGCGTGTTGTGTTGTGTTTCGTTGTGTCTACAGGCTCACTTT
CCTCCTCCTCCTGCACTCTCGGCTTCTTTCTGTGGCTTCCCTCT
Seq 202:
TGAGATTCAATTTCTCGCCCTTCCCCCGCTAAAATCCTCCTGGCCCCATCATTTCTTGGGTCCTTTCCAGACAGT
GCTGTGTCTTTAAGGAAGTTGAAGCTGCTAAAAGTGAGTGAGAGAGAGAGAAAAAACACAACCCAAAAAAATTTG
GCATCTCTTCCCCCCTCAAGTTTCTGGTGTCACTTATGAAACACAGGTCCTTGTTGCTGCAGAGAAGCAGTTGTT
TTGCTGGAAGGAGGGAGTGCGCGGGCTGCCCCGGGCTCCTCCCTGCCGCCTCCTCTCAGTGGATGGTTCCAGGCA
CCCTGTCTGGGGCAGGGAGGGCACAGGCCTGCACATCGAAGGTGGGGTGGGACCAGGCTGCCCCTCGCCCCAGCA
TCCAAGTCCTCCCTTGGGCGCCCGTGGCCCTGCAGACTCTCAGGGCTAAGGTCCTCTGTTGCTTTTTGGTTCCAC
CTTAGAAGAGGCTCCGCTTGACTAAGAGTAGCTTGAAGGTAAGCCAGTGGGGAGGAGGGCTCCAGGGCCAGCGGC
GGGAGCGGGAGGCCTGTTGGACATAGGGGCTGGTTCCCTCTTGGTCCATCCCT
Seq 203:
TGCCGGTCTGCTCTGCTCGGCGCTGTGCCAGCAGGCGGAGAGCTCGCGCCTTCCGCGCTGACGTCAGCGCATCCC
GGGCCGTATCCCGGGAGACCCTGTTGCGTGGTGATGGGTTGCCAGGGAGACATACACCTTTTCTCTGGGCCTGGG
CCGCAGCTGCGCGGAGCGCCGGGCACGGATGGCGGCGGCTGAGGGGAGCGAAGCGAGGGAGGGAGAGCAAGCTAA
GAAACACCCAGCAGGTGCTCCCCCGCCTAGGCCTGGCTGGAGGCTACTGGCGCCACCCTGGGGGCCCTGTCAGCC
AGGTACCCAAGGGGAGGGATCGAGGGTGGGCCTCAGGTCAAGGGGCAGTGTTGGCTGCCCTTGTGAGGGACGGGA
ACGTGATAGAAGAGAGCTGGGCAATGCCGGGGAGGGATGTGTGCCTCCAACTTCATTAAGTGAGGGAAACATTTG
CTGGGGCTTGTCAGGGAGCCCTGAGCCAGGTACAGGGTGGAGTTA
Seq 204:
TTCTCCTGGGTCTTTCCAAACAGCCCCATGACGAACTGAACCCGTCTTGCCCCTTCCGGCTTTCAGTTCCCCGCG
CCCAGGCAGGTCACGGGCAGCCGCCTGGGCGGGGCCCGCGGAAAAGGAGGTAGTCCCAACCCCCAGAGTAGGGAG
CGGCGGCACTAGGGGATGTTGCGCATGCGCCATACGCCTGCGCAGAATCGAGTGAGTGGGAGACTAGTCAAAAAG
GCTGACGTCATCGCACATGTTCTGGTCATGTCTGTGTGGGGGAGACCACGGATTCGGTGCTTTTCGTAAGGTGTA
GAAATGATTGCTCTGAAAGATACGAA.TTTGTTGGCTACAACTGCTTCTAATACTTCACCTAAACCTAGATGTTGC
ACCAGAAGTCTGGATCTCCACGCAGACGTGTACACTTAGCATCACTTTCCCGACAGCTTCATCTTTGTGTCCAGT
AGGCAACTCACAGGTGACAAACCAA.AAATAACCTCTTTTTCCTCCCGCCAACCCACTCCTCCCCTCTGCTTGCAC
CACCATCACCTGGTCACTAA
Seq 205:
GTTTGCCAAATGACAGCTGTTTGCCTCCCAGGCAGGCTTTGCTGTCATCAGAGACAGGGATGGAGGGAAAATAAT
GCCATCATCTAGGGGAAGGGTCTTGTGTTGATCTTCAACATGGCTAACCAAATGGACGATCAGCAGGCAGACACG
AGGTATTTTCATTTTCACTCTTATTTCAAGAGATTTGTGATGGTGTTTCATAGTCTAAAAATAAAGGATCCGCCC
GCAGACATTTCTCCCTCCACTACCCTCATCATATTAGCTGCTGCGTTTTCCTCTCCAGATTTTGATTCTATTATT
TTTTATTATAAATGAAAGGTCAAGGAATACTTTTCGTATTCCATAATAGGATTGGTTCTGGAAGAATCTTTGAAA
AAAAAAATACGTTCAAGACATTGGGGCTGGGAATAGAACGGAAGCATCTCAAAAGCATGTTTTTCTGGTTAAGGA
AAGCACACGAGAACGTTTCACAGCGGTGCTCTGCTATCTTCTCTGTACCCCTCCGCCCTACGCTCATGGGAGAGC
TCATTTCTCTCCCCATCAGACACTGGGAAATACTCCCAAGGCTCTGGCAGTCTCAAGGCTGCAATTCCTGAG

Seq 206:
CTCACGTTAATCAACCCGAGTCCATCTTGGTGGGATTGTCTTGCTCCGAGGCCCTCCCACTGAGCTTTATTTTCC
TGCCTGATTTCGGGGTCCGCTAACAGGATGAACAGCGGACCATACAGGCACGGTGAAAATGACACTTGGTGACGT
GGAAGACCCAGCTTGCCACAGTTGAGGCAGAGCTCCTCAGGGTCTTTTGTCTTAGTTATCCCCGAGCTATTTTTC
AGGAACCGACAGGCTCCCCCACCCCAACACCGGATGAAGGCCAGCAACTGGAGGCCAGGAATAATCAAGCACGCT
CTCATTTCAAAGAGGTGACGATTGTGCCCGTGTTTAAAAGGGATGCCTGAGACCATGAGGATTTGGAGTTTTGGA
GGCGGATCTGCCTTTGGGGAGTGAGCGTAGGGCCCTAAGATGTGGTTGTGCTTTGAGACAGTTCCCAGGGTGATG
TGTCCCATCATCCAAACATTGCAGGAT
Seq 207:
CTCCAGCACTTTGGGAATGAAAGGAATTGCAGGAGAGCCCCGGAGCACACGGAGTTTTCAAGGAGCTTCTGTATT
CAATAAAAACAGCTACTTGTCTACTTGCACCCGTCTGTTAGCCTCTCGCTGGTCGGCGGGAGAGGGGAGGAGGCC
AGCGCCTGATCGGCCACACCGCTGGAGTCCTGGGCTGGCAGCGGTAACCTTATCCTTGTGCAAAAATCTGCTTCG
TATGGCAGACGTGGAACCAGTGGACTCATTGCGCTGCCTACTCTGAAAAGTGtttttatttttatttttttaaCC
CAATAATTAGAAGAAAGGAATGAAGATAGAATGGAGGGACCCTAGAAGTCAAAACCTAGAGCATGTAGGGAAGTC
CTCTTTGGAGATCTGAAACTGACAGGTTTATCTCTTAAACGTTTAAATTCAGCACTAGGTTCATTCAGTGGCTTT
CCTCTTAAAAGAGTTGAACTGTACTCTGAGGGAGAAGGAGGAAAAAATTTATGGGAGCTGACATTAAGAGGGTGA
Seq 208:
ATGTCAGGAAAGGTGCAGAGACCCTCCCCCACACACCACATTGTTGTTCCATCCTTCTCTGTGCCTTTGGGCAAG
GACTCTCCGTTCTGTAGGGACCACCAGGTGGAATTAAAGTCTACACTCCTCCAAGAGCTGATCTTGGGGCGGCCC
CACCTCCATGCCCCTCTACAGCGTGCCATTCTCATAGAACACACTAGGACCTTTGTCCTCTGGAGCTGTTCAGTG
CAGCAGCTCTGACCTCATCCTTCTCCAGAAGCCTCCACCTTCTCTCCCCTCTCTCCTCCTGCGCTTTGTGTGTCC
TGTTCTTCCACTTCGGTGACCTGTCTCCTCCCCTAATCTGGCTCAGAGAGGGGTACCAGCTGCTGCTGCTGCTAT
TGCTTCTTCTTCTGTTAAAGGTTTTTTATTTTTTTCCAATGACAAAGCTATGCTCATTCTGAAAACATGAAAAAT
AAAAATGCTCAAAAAATAAAACTCACTCTACATTCATTGCTAGGAGAGAACAGCCTG
Seq 209:
ATCTTCCCAGTAGGGCTGAATCCTAGACCAATCTATCAATCCCAGACTAATCAGGCATTTGCCTGGGGATATGCA
TCTTTGGCATTTTTCCAAGGGTTCATCAGGATGGAGATATCCGGTGCACCATGAGTTCTGTTTCCTTAATCAACA
CCGTTGTAACTTGCCCATCCAGTTTTGTGACATTAATTCAAACCTGTGCCCTAGTCCTCTTTTAGGCAGCGTATC
AGTGCTGGAAAGTGCAGCAAGGATAAGAGGGTACTGTTCTCTCATTTCTGAGGGCGTTGTCTCGATAATTAACTA
ACTTGATAGACTTtttagtgagtggcaggtgagatgcaaggtactgtgctaggtgctgtgggggatgtacagaca aacaacacaCCTCCCTAAGGAGGTAAGTAATAGCTACTTACTATTCACTTTGCTCTTTCACTGTAATGTATCCTC
AAGCACAGGTTTTCACTACACCATCAGGCCCAGAAGTACTAGCTTATTTTCCACAGGAGGATTTCAGTTTGATGC
C
Seq 210:
CAGTGCTCCGTGTCCCCAAGTAGTTATCCCTCCCCCGGAAGACTGAAGTCCCTGGGGCGGGTAGGAGCGCACGCT
AGGAGTAGTATGAATAAAGTGTTTTCTTGGAGGTCATGGGCAAGTCTCTGGACAGGGTTGATAGTGCTGATTTAT
AGAGGGCAGTCTGGGCACAAAGAGCATTTATACGATCGAAAAGCTGCTTTCCCTGCCAACAGCCCCATACCCTCC
CCAGGAGCGCGCTTACGCCTTAAAAGACTCTTTTGTTATGTAAACTGACagttaaattaaacgaaggtaatggat actaaaggcgtaacaggtattgtaactattttactgttatcgatgcttttgaggttacttacctcgcttgtattc gtatggtgggaatactaggcgcataccttctgagcttcgaattcagtaacctcactgggaccttgaaatcggact g Seq 211:
GGGTGCAGGATGAAGACTAGCTGGCTGTCCATAGCAATTCAGTATGGGAGGGGGACCCAGGCACGAATAATCCTA
AACCTGAGCATGATTGCTTACGTTTGAAAAAGGACATCTAggccgggtgcagtgactcacacctgtggtcccagc actttgggaggctgaggtgggaggattgcttgagcccacccacaagttcaagaccagcctgggcaacatagtgag accccatctctaaaaaaaaaaaaaaTCTCTTTAAAGGCAATCTAACCATATGTGAAGGGAGCTGCTAAATTCAGA
TTGAGGTGGTAGTATCAGGGGCATCAGAGAAATCACCATAATTGTCCAAGCCAGGGTGGCAGAGTTAGGCTATGC
AGATGGCTTCCAGAGGACAGCACCCAGAGGTAACATTCATGAATGCATTCCTGTTTGTTGGTGAAAAGTTCAGCC
TCAAGACTCCAGGGTCAGGCTTCGTACATGAAAAGTGTTTGCCAAGACTCAGCTGTGTCACTGCAGCTGCCCGCC
CACAGCTGAGTCAGAAACGCCGTCCTCATTCTCAGTGACTGCCCTG
Seq 212:
GCCTTAGGAATTTCCATCCCAACACGTCTGTCCTGTCTGTCCTCTCGGCTAAGCCTCTCTTAATTCTTCCTGCTC
TAAAGACCCCGCAACTTGCTATGCCTTCACTGAGACTTAGCTGCTGGCACTTGCTAGCAGAGGACTAGTTAGCTC
ATGTGTGTTGGCTGTTCCTGGCCCACCCACGCTTTTTGAGCTTTTAATTCCAAATCATCCAGGAGTATCTTTGCG
CCGTGGATTATTTTGTCAGTTTATGCTACTCGCGCCATCTTTCGCCTTTTAAGAATCAGGCAAACTGTGTGCTTT
CTATCCTAATAGATGGCAAAACTCAAACTAGAGGCCCTATTTCACATCCAGGTTATAACTGTGGCAAGAGGGTGG
GGTGGCTTGGCTAAAAACTAGTCTACTTTTCTTAGCTCTTGTCTTAATGAAAATCTGGAAGTCTTACTGGTGATG
GAGGTAGGGGAGGGCTGCCTTCAAGATCCAATCTCTAACTTGGAACAGCTGTGGAGAGGAGAGAATACCTGCTTG
TAGGTGAGGCATGAAAGAGGAGAAA

DNA Region Sequences:

Seq 213:
GGAGCTCAGGTTGTTTCTGCACAGAGGTCCTAACTCCAAGAGTGGAGCAAGAAGAGATTCCAACTGCACTAGACC
CTACTTGCCCTTGGAGAAGTCCAGAGGGACTCCCAGCAGGTCTCTGGTGTTTTCCAGCCTACAGAGGCCTATCAC
CTCCCTAAGTTGCAAAGACTATGAAAACCTTTTTGGTGGGCAGTGGTGTGGGAGCAGTGAATTCCAGACATGCTC
CATCGCTCCTAGGCTGTGCTGGATGTCGTGGGCAGTAGCTTGGGGACCAGGAGCCAGGCCAGAGGACCCTCTTCC
AGAAGGCACTCCTTTACCTGAGCTGGAGCTGCTGGTTTTCTGCTTTGTGTTTTGTCGAGACTCTTTCATCCAGGG
GAAGATTTGTTTGGCCACTGTGGGTGAGTTGAGCAGGGGGCTCTTGGCCGCGTTGGCAGGGGTAGGGTTGTTGCT
GGCATTCTGAGGAGGGGAGGCAGAAGAGggaggcgggggcgcggcaggggtaggtgcagggggctgaggtgcggg ctgaggcggctgtggggcagggggcgcggcctggggcggcggcgggtgcaggggcggCTCTCCCAGGCTTGGAGG
CTGGCTAGGTGGGGCGCTCAGGGTGCGCAGGCACGCCTCACTCAGTTCGTGTGCCTTGGGGTGGCCCCCGGCGCT
GGAGGGAGACTGGAGGGAGCAGGCGGGTCGGTGGTACTCGCCGTCGGCGCCCAAAGCGGCGGACGCCGGGTACGG
CTGCTGATTGGCATTATAAGCGAACCCGTTGGCTGCCTGGTAGGGGTAGCCACCGTAGATCGCCGAGCTGTCGTA
GTAGGTCGCTTTTTGCATCGCGTTGTTTCACGATCTTGATCGCACACTCTGACAGGGGTTTGACACCCGTGAGGG
CGCACATTGGCACGCCCCCGCGGTCACGTGACACTCCGCCGCCAATGGCCGCCCCGCGCAGACCTGGTGGGGCGA
GAAGCGCAGCGCGGTGAGGGCTCCGCGCAAATCCATCTTACTCTCAATAGCTAAGTGACATGAAAGCCATAAAAG
AA.AAAGTGGTCAGCAATATTTAGCAGCACGACTTGGCCCCGGGCGCAGGGAGCCGTGCTATAAAAAACCGCTGGA
ATTTACTGGCAGCTACAAATATTTGCTTAACTTGCGTCTGGAGTTGGGGGATTTTCCGGGGAGAAGGAGAATGAG
TGAGGGCTGCAAGCTGATTCTCAGGAGCCGGGATCCAAAAGGAGAAAGGCTTGATAGGCTAGAAAGGAAAAAGGC
TGGGATCTTTCTTTTCCAGGGAAGAAGAAACTTGGGGTGTCGCTTAGTTTCTGCTCCTTGGCCTCCTCCAGAGGG
CCCAAGACTCCTCCACTCTGGGAATGTTGGGAAGGGAACGAGGAGGCAAAGGGGAGCTTGGGTCGCCAATGTTTT
CTCCGCTTTAGGACTGATGTTTGCCAAAAGAGCCCTGAGATGGGGTAACTTCCCACCCAGCTCCTTCTTGGACCT
TCCTGCTCCCAAGAGAGGTTTGCACAAAAAATTTCAGGCAATTTGCCCCATCCAACCATGCTGGATTTCAGAAGC
TGAGCTTGTTAGGAAGTTAATCCACCTTGTTGGGGATATGACTCACCTCCTCCAAATGAACCCCTTGTGGCCAAG
CCAAGGGGGGAGGGAAAACTTTGTGTGGAACACATtgcgtgtgtgtgtgtgtgtgtgtgtgtgtgtTTAGGGTGA
GGGACCAACAGTAACACCCCACCCAGCAAGTCACAACTAAAATCCTGGAGAGTTCTTTACTCCTTTCCTCTCCCT
GTTTCTCAGGCACTTCCCAGCAAGCCACCCCCACTTCTTTACTTCTTTCCCCCAGTTACAGAAGGTTCCCAGAAC
CTCCTGTCTTGGACTTTCTAAGGTGCTGTTATTCGGGGCAACTATCAAATTCTACCTGTTAAAACATGATGGATT
AGAGGGGGAAAAAAAACCCCTCCAGGAACCTGAAAAACCAGCGTTCATCTCCATGACCACAGTTTGAACTCTCCT
TCCAACTTAACGATAATAGGTTCTGTCTTAGAAACTGCTATGTAATTTGATGTATGGGGGTCATTTGGCTCCCGA
CGAGGGATGGAAGCACAAGCCATAAAATCCTGCCAGAGTTTCCTGATCTTTGTGTGCTGTTGTTGTTGTTGATAT
TTTGTTACTTGGCCTATTTACCTGCTTCAGAAATACCAAGTAAAGGATAACCCTGAAAATCTAAAAAGCAGTTGA
AAACCTCCTCAACCCTCTTTCATTTAGAAAGCAGTTTGCAAAAGTTAAATCTGTTTTCTTTTTGTTTTCAACCAC
TGCATGGTCAACCTCTAGTTCTCAGCACAGAAAAGTTCCATGTGAGTTTCAAATATTCACCCACACACACACTCA
Seq 214:
TACAAAGCTGTATGAACAGCAGCAGGGTAAACAGAATTGATGCAATTATCTGAAAAAATGCAGGGCAGAAAACAA
ATCACAATATTGAAAGAAAAATGAATAATCTCTAAGAGGATTATCCAAATTGATCATGTCTTTGGTTGAATTTAC
CGCTGAACGCTTTCTAGATCCAAACCCTGCTTTTCTTAATGTAACTTAGATATTCACAAATCCTACTTGAGGCAG
GAAGTCAGTCCTCACTTTTAACGCTTAAAGACCACAA.TGGACTTTTATAAGATATCTCGATTTTTAAAGTGGAGT
TTCTGGGCTGATATAAAATTTATTTTAGGGAAATACAAATATGGGACATTTTTGCATgaaagagagaaaggagag acaggaagaaagagacacaaagagatagagacggtaagaaagacactgacaaagtaaagggggaggagagagaga gacagagacagagagaaagattgagagaTCAAAAACATCACTCAAGAAAGCAAGAGGAGAGAATAATTGAGAGAA
ACGCAGAGAGACAGAGGCCCAGAGAAACTGAAGAAAGAGGTAGCGACTCAGGGGGAAATAGAGATGGAGACTCAG
AGAGAAGGGAGAAGGCACAGGGAGAGGATAGGACCCGCGAGAGAAAGCCTGAGCGCGCGCTGAGACCCACCCAGC
ATTTTCACGGTTTGCTTGTGGTTCTGGTCCCTGAGCGAGGCACCCACGACAGCATCGCCGCGCCTCCTCCGCCAC
AGCTTCCTGCCGATGAGACTGTAGAGGACCGTGAGACAGAAGACAGGAAGGAAGAAGAAGATGCTGGACACCCAC
ACCATGACCGTGAGCAGTCCAGAGCGCACCGCAAACTCGGTGGGGCGGCACTCGTTGGTGTCCCAAGGGTCGGTG
CCGTTCTCGTGCTCCACCCCGACTAGCACGAAGATGGGCCCGGCGCTGCAGAAGGCCACGGCCCAGATGACGAAG
ATGACCAGCTTCACCCGCCCCTTGGTGACCACCACCTTGGCCCGGAGTGGGAAGCAGATGGCGAAGTAGCGCTCG
ACGCTCAGCGCTGTGATGGTGAGCACCGTGGCGTAGGTGCAGCTCTCACTGACGAATTGGAAGAGTTTGCAGAGG
AGGTCGCCGAAGTTCCAGGGCCGGTACTGCCAGAGGCGAACGAGGTCCAGGGGCATGCAGAGGAAGATGAGCAGA
TCGGAGAAGGCCATGCTGGACAGGTAGAGGTTGGTGGTGGTGCGCAGCTCGCGGAAGCGCGACACCACCAGCATG
GTGAGCAGGTTGCCAGCGATGCCCACCACGAAGAGTGCCACGCAGGTGGCTGTGACGCCCGCCAGCAGCGGCGCG
GGGAAGAGCTGCAGCAGCTCGTCGCCCAGCGAGTCGTTGCCGGGGGAAGCATCCCAGTCCAGGTCGGCCAGTGTG
AGGTTGAACCCCGGCTCTTCGCTGGGCGTCGCGTTCCACATGCTGCCGGCTCAGCTGAACAGGCTCTGGGACGTG
ACTGCGCTGGGAGGCTGGACCGAGCTGGCTCCCGAGGAGGTCCGCTTAGGCGCGGGAGGGTGCGAGGGAGGAGCG
GGTGCAGACGCGTAGGGAGGATGCTTGGAgaagaaagagagggaggtgagaggcagaagccgaggaagaaggtga gatggggacaaggaagagggagagagaCTGGTGGTCAGTGGGTGAGAGAGTGACCCACTGCTTTCTCTGACACCT
CCCCTTTCCCCCACCAACTCCCCCAAAGTTTCTCCCAACACATCCTCCGGCCGGCGCCCACACGCATACCTGTCA
CCAGCCCTGCCTCGCATTTGCGTTCTCGATCCAGTTCCATCTCGCACTTCCCAAAGCGTCGCAGCGAGTGGGGAC
CGCAGGGACCAGGCGCCGCGAAGCGGGAGCGTGAGGCGCTCTCTCCG.AAGCCCTGGGCGACGCTGGACTAGTGTG
CCCCGGAAGGACAGGTCACACCCGGGGGTGGGGGTGAAGACGACGGTGGCGGTGGGGAGGACACCTTTAGCAGCT
GGGACCTGATTTCTTCCTCCACAAGGCTGCAGCTGGCTATGGCCCTGGTGGAAAGAAAAAGCGAGCTTGACCAAC
TCGACTTGGGAAGGGGGATAGAGAGAGAAAAGAAGGACCTTGTGTTTGTATTCATACCGGTGAGCACCAAAGAAT
AGTCTCACGCAGTTATAGGACCCaggttcagcgatgtgactacttgtccaaggtcacacagcgagctggggactc ggggaccagtgtcggatctccCACCCGGTTGGGACTTCTGAGCGCACAGGGGCAAGATATGTGAGTAAACCCTGT
CCAGAATCCCAGTCCTTTGTATCACTCGGTAGTGGTAGAGAGTCTGCTGTAGGGTATATTACTTTTGCTTGATGC
AAACCTGGTGGCGGGGTGCCGAGGTTGGTCAGGGAGGGAACAGGAGAAAGGAAAAAGGCAGGGTTGGAGGTGTGT
GGAGGCGGCAAGTGAAGAAGAGGCTGTGAGGCTGGCGCGTCGAGAGTGTGCAGGAAACATTTTTTGAGGCATAAC
TGAGAGAGAtcagccatttagtagccgtattcccttgggcaaggtcttcaacctcctgagcattacgtctttttc tttgAATTGCAATGATTTGTGCGGACCACTGGGGGTGATATCAAGTGTCAGGGACCACCGGAGGCACTCAATAAA
TAGAAGACGCGTTGCTGTTGAGAAGTAGAAGCTGTGCCGGTGGGAACAGGTCAAAGGCCACCCCTACACTAGCAA
GGTGACCCTCTGGACGCGGTCTGTGCGTCTCCTGCTCAGAGCCAGAAATCAGCACCCGAAGGCATGAGACTGCCA
GTTGCCAGCGAATTCACAAATCCGACCGGCCCCTCCCGGCCCACCGACCTCGGGACCGCCCCAGGAACATATTCA
GCACTGTGGCCAGCGCCACATCCATCCTACCGCAAAGCGCCGCTGGAGGAATGGCTTCCCTGTCACTCCCACCGT
TTTTAACTTGCGCTTCTAACGCCTCAGTCCTACCCCACGGAGGAGCAGGGCAGACTCCCACGAAGCACAGGCCGG
CGTTAGTCACTGCCTTGACCATACACATCGGCGCTCACCCGATGAGATACCACGTACTGTGTATGAGAGAGTATC
CCCCTCAGTTGAATGCGTTTGTACTTGCCTTTCACAGACAGTTTGTACCACCTCTACTACCTAAATTGTTAATAC
TTAAAAGTCCACAAAGACCTAAGACTGAATGTGTGCACAAATGCGTGAAAGACTCCATGCAGTAAATTACTACAT
GAGAGAAGTTTGATACAGGAAATTTAACATAGTGGTTTGGTTGCCGCTGGTGTGTTAGACATTGGACCAAACTGA
gttttgtttcgttttgctttgttttgttttgttttgctggttttgttttgttttgttttgagacggagtctccct ctgtcgcccaggctggagtgcagtggcgcgatctctgctcactgcaacctccgcctcccagtattggatctccca cccgtttggacttctgagcgcataagtccaggttcaagcaactcttctgcctcagtctctctagtagctgggact acaggcgtgtgccaccacgcctggataatttttttttgtatttttagaagagacagggtttcaccatactggcca gtcttgtctcgaactcctgacctcgtgatctgcccgcctcggtctcccaaagtgctgggattacagccgtgagcc actgtgcccggccCCAAATTGAGTTTTTAAAACATTAATTTCAGACTACTATTTTTTAAGTATTACAACTAAGTC
AAACTACCAATTACAAACAAGTTTTTATTTAATCAATAACTTTGTTACTCCCTGACCTATATTATCAGTAGGTTG
ATGTATGTGGAAAGAAAGGGAGAGAAAGTGGACTGGGATAAATCAGAATACTATGGGAAGTTATTGCCTAAGACT
GAGAATCAGGAAAATATTGTTGGATATATTTCTAGTCTACTCAGTGCTAAAGCTATGGCTGATAGTTGAAAAAAC
TGAAAACAAAAACCACCAAAACTATTGTGATAAA.AAAAATTTTCATGTTA

Seq 215:
TAGATACATACGGGATTCAGACTAGATTTTTGGAAGGCCCTCTACCCCAGAAGCACAGCCTTAGAACTCATCAGT
TTTAAGATGTATTCCTGAGCTCTGGGGGACACAGAAGTTGCTACTATTCTAGGCATTTCCCTGAAATGTTCAACT
TTCCATTGACCAAGAAAGCAGCTCGCCCAAGTGTGTGGGAAGCACTTGGGTGGGACACTTTTCTGCCCCATTTCC
AGAAGGATTATCTTGGTCTGAGGCCTTCTAGTGACAGCTTTAGAGAAGCTGACTTTAGTATTCGGAGAGAACCAG
GATTGCTCCAACTTTCTCAGCGGTATTTTTTCGGAAAGCCATTAAATTCGTGGCTCCTCTGTGCGAAGTTGATTT
CTATTTGGCTTTGAATTGTTGACGGCTATTTCTTCCTTAATGAAAGTGTTGTCTGGGTGAAAAATATATCAGGTG
GCTGGGAAATTGGTTGATTTTTTTTTGAGATAGGTGCCCAGTGTCCTATTTTTCTATCTGAGGAAAGATTTTCTG
CAGACTACAGAAATTGACAGCATTGTCCGGGTAATAACCGTCGTCGACAATATTTTCGAAAGGGCATTTGAGTGC
CGAAAGCATTTGGATATTGCTTTTTCCAATAAGAAATTTTCTGCCCTGAGCTTCTTTGATTTTATAGGGGGTGGG
GAGTTGACTAGGGGGGCGATGGGGAAGAAGGAGCCTCGCATTGGCAAAGAGATGCCTTCCCCATCCTCCCAGTCC
TGGAATACCAAGGTGCTTGTCAGCTTCACCTGGAATTCCTGGATCTGAAGAGCCCTCAAATAATTCGGCTGCGAG
TCAAAAGGGAATTTCAGGAATGAGGAATAACACTCTTCTTGCGCTCCTGTAAAGCAAGTGATGGAAGCTCTGAAA
GTTTGCCTGCTCTCAAGTGGGAAGTTAGGAAGTGTGCGTTCTTTCTGATTTTTTTAAAAATAAAAAGTGTCTAGC
TTTGATTCGATTCAGGAAAGCTCCTCTTGGGCAACCATTGTCCGTTAGGGGCTTCAGATCTCATTTTAAGACCTT
AACAGTCCTCGCCGTTCTAATTAAGGAAAGGCAGGCGAGCCTGCCAGCCGAGAGCGGTTGGGTCAGCGGCTTCAT
GGTGCAGCCGAGTCTCAAAGCGGGTCTGCACTCTCGCCTCCCTCTGCATTCTCTTAGCCACTATTTGCCTGGTCC
CGTCGCGTGTGTGCAGGAAGTTTCAGTCTTGATTTATCCACTAGTCAAGTTCCCGACCAGCTCTTTTTCTGGATG
TCAGCACTAACCCCCTCCCGGAGCTTGGTAAACACAGCGCGCGCATTTTTCTGCCTCAGATTGGCATGTTGACGA
CTCTGCTTGAAGGAATGTGACAATAAAGTGGGAAACCAAAGCTTGGCAAGCACTTAATCAAGGATAAAAAGGTTC
CGTTGTAAGGATGTCACTCAATTTATTGTGAAAGTCGAATGAATTACGTTTAATGAAAGTGCTCCCCAGATGAAT
ATTACCAGCAATTTCCTGAGTTGGCTCTGTCAGCTCGAGATGAGGAAATGCCAACCCAGATCAGAAAAGAGCGCC
CGTCTCAATTACTATGCAAGCTTTCCAAGAGCGGCTTTTTATTGAGATAATATATTTTGGCGGCTTCTTCAAACC
CCTCCGCGCGCCC.AAGAGCGCGTTTGCGCATTTTCCAAGTTTGCCCTGCCCTCGCGGGTTGGTGGCTGTTGTTTA
AACTTCTGATGAGCGCGCTGCGTTTCTGCTACGGGATGAAAACCTAATTACCTCCTCTGCAAAGAGCTTTCCCTA
GTATATTTTATTGATTGCGGAGGTGGGAGCCGGCAGGGGGTCTGTGGGGGTGGGCGGGGAGGGGATTCTCTTGCT
CCGGTGCCCTCTGTTGCCGAAAGTTCCTTAGGCGTCTAGTCAGGGGTTCGGGGTGGTGGAAAGCGAGATGGCGTT

GGGAGCCAGGGCGTTGGGACGGCACAAGCAGTGGGGTCCCAGGAGCAGCAAGACAGTAGCTCCTCTCGGGCCACG
GCTTACGAAAAGCTTTCCTAGCTCCTTCTTCCTATAAATTAATGAGGGTATTTTACTCGTTCAAGCCGGAAATAC
GATGGGGAGGGGGAGACACAGGCCGCATCCAGAGCGCATCGCCTCATCTGCATGAGAATGGAGAACCGGGAGGCT
TTTCTTGTACTGTTTCTTTCTCCCACAATAAGACAAATTGCTGCTTAGAA.AAACTGAGTGTTTCCTTAGAAACTG
GCTTGCGGGAGCTCTGCGCGTCCCCGCTGAACCTGCCTCTGGCCGCGCCTCGCCATCACCCCCGCCGCCCTAATG
GATTCTGAAGCGAAGGATCCTAGCTGCCGCGGCTAAGGGCGCAGGGGGAGGCCGCGCGTCCTCGCCACACCGGAA
GGAGAGGGCATCCGGCTCACACATCCCACCCTATGTCTTAGACCCCGTCCTCACACATTGACTTTAAAAGGCCAT
TTTCCTTCGTCTTCTACAAGAAGCAAGAAACTTTTTTCGACGTAGGCTTCATACCCTCCCTTCGGAAACTCAGTC
CGCTGACCAAAGCCGCAGTGTTCAGGCCCCGGGGTTTCCCAGCCGTAGTGGCCGCCGCCACAGCTGCGCGCTTTA
TTGTCTGCTTTCAGTCGCAGGTGACCTCGAGCGATCTCGACAGGTTTATGGAAACACAGATGCAGCCCTCTCGCG
TCCGGAGCCCAAGTCCCCATGCAAAAGCGCTGTTTCTGGGTAATTTTCGTCGACGCCACCAAGCTTCGGTGCTTT
TGGGACAGCGGGCTGGATAGCGGCAGTTCTCGGGAGAATAGGCCGCGGGCTATAAGATTTGATCGCGGGCAGGCG
GGCGTGGGGCACGCCAGGGCCGGGAGAGCGACTCTTCAGCACCACGGCCAGCGCCACAGGCTCCGCCCCGCCTGG
TGCCAGCAGTAGGGCCTGCCTCCCCCGCTGCCGCTCCGGCTGGGTCCTTAAAGTCGAGTTAGCACTCTCGGTTTC
CGCAGATACCTCCTCAAGGCCCGCTCGCGACTGTGACGACCCGCCTACCCCTTCCAGCTATTCGGGGGGCAGCTA
GCTCCCGTCTCTAGGTCCCCAGCATGACCTGCGGTCAGAAACTCTTGCTTGCACCCCTCTCCATTACCACACTCA
GTGGTTGCGGCGTCACGTGATCACCACGGAGATTTTGCGAATCCTTCTTTTCCCCAACTTCTCCCCCTACCCAGT
CTCCCATTCTTTCACAGTTCATTAAATCTACCCCTCCCCCGAAACAGAAACGTGAAGGCTGTAACGAAGAGCTAG
AAGTGTCTCTAGTAATGTAAAAGTCTCAACTGACAGACAAGGAAACTGAGGCAACCAACTTATTCGCAAGAGTAA
AACCCTATGGGGAGAAGCGATTCCTGCCCCTCTTCCCCCGGCGAGGAACACGGCTGGAGCCACCCAGGCGCCTTC
CAGGCTAAGGCGCCTTTAGCGGCGCGCAGGGGTGAGGGAGAGGGTGGGGAGAGTCCTAATTATTATGAATTTCTA
AAGGCGCAGTAATTATTCACGGGGAGCAGGACAAACCATGGCTAGGCAGGGAAATCGATATATTTGCTATCGAAA
GTTCCTGGCTCGCCTTTAATGCAGACGAATGGGGGATGCAGCCTCATTATTTTCCGTGGTTAGGCTCGCCAGCGT
GGGGCCTGATGCAGCGTGAAATCTATCATCATTAGACCCGGGATGGAGCGGCGGGGGGGAGTTTCTCTTTACTTA
CCAAACCGCAACAACAAACAAACAACGACGAACAACCGCCCCCTACAAACACTCATTCTCACACAACGTTGCCCT
ACCTCCCTCGCCGCTTGCCCTGGCCGCTGTTGCACACTCCCCTGGGGGCTGTCTGCACGCCCTAGAGCAGACACT
GCGGTCACTTAAAGTGCGCCCAGTTCCTCCACCGCAGCGGTCACACCGTTGATTTGATCCAGAAATAAGACGGAT
AGTACCGAGCGTTGGCGCTAGGGGTTGTCTATGTCAAAGGCGAAGGTTGGCTGGGAAGTTCTGTCCGTTTCTCTT
GCCTTAGCATAGGAGTCAATCCTTTTCTTGTCACCCGATTCTGCAAATTCTCGCTGTATTAAAGGAGCAGAGATC
TGGCATGTAGTGCTCCATTAACCCGTAGCATAAGTTAGCTCGGACATAAGGCAAGCCCTCGAGAAGGGAACGAAT
CAGAAGGTGAAAAGAGCGGTCGGAAGGTGAGGAAGAGAAGGTTTAGGCGCAACGCCTCGGAGGTATTCTCTGAGG
CCCTGGCGAGATTTCGGCCTTTAGCTTAAGGGCCAGCCCGCTAGTTTTCTAGGACTGGGTATAGGCCCCGCCTCC
ACCCACCGAGGTCACTGAACTGCCCAGGGTCTTGCCTGCTGGATTACAAGCCTATTCCCATTTCTCCTCTCTTCC
GCAGTCCACCCTCCCTGGCACAGTCTTTTTCACACTCAGAAGTTGCCTGATGCCCCCGATGGACAGCTGCTGGGA
TGAAACTTGTATTCCTGTACAGGTGTCTTCGCAGTTACCTGCAATACCATAGTACTTAGGGTTAACTGAGGTGTG
TGTGTGTGGTGTGCATTTGTCAGTGCCTCGTCTTCATCGTCTTCATCTAGCTCGCCCCTCCCTTATAACAGTGAA
TCAATCGCTGCAAAGAAGATAGGATGTAGCAGTTTTAAAATAACCTAACTCCTCCTTCATTGCAGTAAAATGATC
GCATTTATAATAACATTAATGAGAACAAAATTAAAAATTATGGCCTTCCAGGCATTAAAGTAATACTATCTGTCC
TCTTCTCTTGGATTTTCTTTTCCTCAGAGCCCAGCCTTTTTATGGCATATTGTGATTACCTGAGTGTCTTTGTTT
CCTTGTGGTCAGAGACAGCTAGCCAACACAATACTAGGACTGTATGATGTAGGGCATGATTTCCTCCCACCCTCT
TCATTTTTAGAGGCTTTGTAATTAAACTCTGTGAGATATACGTAACTTAC
Seq 216:
CTGGTGTCAGGAGCACAGAAGAAAGAACAGCTGGTAAGGAGTAGAGAAGGAGAAAGAAAACTACTTTTTGAAGGT
TAGGAGAAATACTGTCCATTGATTTACTTCAGCAACTGCCTGACACATAATAGATATTCACTAATACTTTCTTTG
CACCTCATAGCTTAAATGTCTTGAAGAAACAAAAATTGAATGCACAGGATCAAGGCACTAAAGCTTAGATAACAC
ACTCCTGCATCGTTTCCCTGTTTTATCAAGATATCTTTCATCTTTATATCCGGCAATTTAGTGGCAACTCTTCGC
TTTCCAACTGCGCACTGAGTCTTTCGGTCTCCTCCCCATTTTCCTAGTCGTCTTCGGTTGTGGATGTTGTAAACT
CGACCATCCGTCTCTCAAGGTCTTTGGCTTCAAGGTTTCCCAATGCTCTGGAGCTGTCCAAGCCCCGGTACTCCG
GGGTGGAAGACCTCAGATTCATTTGACGGGCTTGTGGAGGTTGGGGGTCTGCGGAGCCCCGTGTGGGTGGGGCTG
GGCGCGGCCGGGGCGGAGCCGGCGAGGAGCCCTAGGGAAAGGGTGAAAGGCACAGTTGAGAAAGGCCCGCCGGGC
ATTGGTTTCACAGTTTCCACGAAGGCTTCGTGTGCAAGCCTGAGGAGTTTAGGTGCCTCCCTCCTGCCTCGCCTT
TCTTGGTTCTAGAACCTTCAGTAGGCTTTTCTGGGTTGCAGGGACCCGGAAAAGCAGCGGCTTCCACTCGGGGGG
CGGGTCCCAAGGGTCTTGCTGCTGCTCTGGGGCCGTTTGGACTCCTGGTGTTGGGGGAGGGGTCAGGGAGGTGCT
GCTCGCGTCTCCTTTTGCGCCTGCGCGGCGGGCTCCGAGCGGGTAGGAGCGCGTGCGCGGTGACGTGGACGTCCG
GTGCGCGCGCGCAGGCTCTTCAGCTGGAGCGGACACACGGTGTGCGAACCGAACAGAATAACCCGCCCCCAGCGG
GATGTGAAGGACTCCGGGTGAGGCCGGCCACGCCCCGCACGGTAACTCTCGGGCCTGGGTGGAGGGCATCGCTTA
GTACTGGCCCGATTGGAGTTTTTCGAGAGTTTGAAGCTCTTGTGTATTTGAACGGCGTGAGAAACGTTCCGCTGA
GAGAGCTTCGCACGCCCTCGCCAGGCCGGGCCTTGCGCAGGGCCGCCTTTGGCGCGCCCCTGTGGTCCCTGAGCG
AGGCTGCGCATGTCACCTCGCGCGCGTCCCCGGCCTCACTTCCGCGTCGCTCAGCTACCTAACTGGGAACATCGA
CGCCAGAGAGAGCGGCCACGAGGCGGGAGGGGTGAGAAGCGCCCATGGCTCGGCCCTGCCCTCGCGTGTGTGGGG

TGCCGCTCCGCGTGGTACGGTCCGCGTGACGACTTCTCGCCCGGCGCCGGGCTCTAGGTCGAGAGCCACGCTTAC
GCGCTTTTCAGTTTAGAGCCTAGGTCTCGTGGTTCTAGAACTCCAAGGGAAACGGTGTCGGCGTCGCTTTTCTGA
GAACTTGGCGCAGCGTTTTGACACCTGTGCAAACGTCTTTTCTAACAAGTAATTTCCGGCCAAATTGTTTGAGGC
AGGACGTCAAGTTTAATAAAGGAGGGCGAGGAAGTGAGCTGTAGGAGTGGGGACTTGGTAAACAAAGGACCGGTG
GTGTGTAAGTGCAGAAATGAGGGAGGGGAAAACAGGTGGGAAGAGCAGGTGTTATTTTCTTTATTCCTCTGTGGG
GCAGCCTTTTACCTAGTTCTGTTTATGGGGTTTCCCGTTTCTGTTAAATGGTCAAGTAGGTCTCTGCCCTCAGTG
CAAGGTATCTGGGACATTAACATCACCCCCCCACCGCCCCCCCAAAGCTCCAGTAGCCAAAGTTGAGGGATCTAT
GTGTCAGAAGAATATGGGGAAACTAGGGATCGTTTCAGACTGGGTCGGGAGTGCAAAAGTGGTAGTGTCTTGCTG
TACAGATTTTTGCCTTGCCTTTCGAACCCTGGGAATGCCTTCTTTCTCTGGCCGGGGTGGAAGCAGGAACGGGTA
AATGAGGTCTGAAAGGAGGGGTTACTGATGGCAGACCAACACGAGAAACCAAAGTGCACTCTTTTATTGGGAAGA
TAACTTTCCCAAGGTTCGCCTCGCCGGAGCAAACACGTGGATCATGAGAAGTCTCGAGCCCACCCGCGCGTGTTG
TTGTAGAGCTTGCCAGGCTTATGCGGCTGAGTCCCTGGTTAACAACTGCTTGCTCTGTTCGTTCTTTTTGGGCAC
GATGCCGCGGCTAGGCTGCAGGGAAAGTGCCTGGGGGCGGCGTGACGGCTGCTGGGAAGGGGGTTGGCAGGGGAG
GGTCTGGTGGCTGGTTCTGTAGTCTCCAAGGTAACAGAACGCGGCTGGGTCCCGCAGAGCGATCATCGGGTTCCG
GCCGGCGGCACGTGATCTGTCGGGACTCTTCCCCGGAAGAGCTTTCCTTGCGGCATTTTTTCACGTGGTTCTTGG
CCAGCTGTCCTTTGCAGTTGAAAAGCGGCGGTTTGTGGGTCATTAATAGTCGACGGCGTCTGCTCCTCTCGGGGA
AGGCAGTGAGACCGAGCCTTTTACTTTCCTGCGTATCGGAACAGCGCTAGTGTTTCTTGCCGCCAACGGTTGTTT
CTAGCGTTTGTGTGGGTTAAGTGGGTTGGGTCCACTTTACAGAAAACACAGGCTAAAGACTTGAGGAAATTCAGT
GCCCTGGGTACCTTGGCATACTTACTTCAAGTTTGACTACTGCCAGTTTCTGCCTTAAAAGTTCTTCAAATTCTG
CTTACCCAACTGCTAGAGACCTGTCAGCTTTCTGGCCCTGAGTTGTAGTTAGGGTCCATTCTTAGGAATAAAAAA
TACTCCTGCGGCTAGCAGTAACAAATGATATCTGGGAAGAGAAGGAGGCAGTACTCTCTTACGCAGGTGCAATTC
TGTGCCTTAAAACCTAAAAGTGTTTCAGATAATATTTTGACATTTGCCCTATAAGGTTGTGACGATAAAATGCCC
AGGATATTGTCTGTTCCGAAGTGAGTAGTTCTTAATAAATGGCAAGTACCATTTATTAAATTAGTAAAAATAAGC
AAATGATGGTTAAGAGCGATTAAGAAAGTATTAATAGTTGGCTATTTTACTGTCTTTGCCACCATTTGCTTTCAT
TTTATTATATTTATATCCACATTCTGTTTTTAAGAAACTTAAAATTTCTTGACCCAGTGTTTATTGGCTAAATAC
TGAAATCTGAGTGAACCTGTTCTCTTGAAATTTGAGTTTCACAAATGTAATTTAACCATATTCTTATAGTGAAGG
ATCATATTAAGGAATATACTAACATCTTGGTGCCTGCCATACTACTGTATTTATTGTATGAAAGGTTGTAGAAGT
TTGTAGCAATTTGGAAAACGTTCAG

Seq 217:
GGCAAATAGGTCAATGCTGGGAACAGATGCCTGCCTGGCTGAGTGCTGGGAAAGAAAGGCAGTTGGAGGGATGTG
TGGGTGCCTGGGAGGGCGTGGGTGGTGCCCAGGAGGCTATGGGAATCAGAATCACACTTGCACAAGAGAAGACCC
TTATGGGACAAGTAAAATCAGCATAGTTTCTTGGGCGGGGCAAAGGTGTCCTGATGAGGATGCTAGGGGTCAAAT
ATGTGTCTGGGTTCTGCCCCAATCGGGAATGAGACACAGTACTGAAGTGGAACGGGGGTAGCATCTCCACCCACC
TTCACAGCCTCTGGGGAAAAGAAAGCTTTCCTTGCAGCCCAACTCCAGGGGCCTAAATATTGAGCACCAACACAA
GACAGGTCCTTGAGCTTCTCGGAGCGAGTCGGGGAAGCAGATAATTTCAGATGCAAAGTGCCTTGAATAAACAGA
ACGAAAGATAGAGAGCCAGAGGGGGAGAAACGGCTTGGTGTGGTCAGGGCAGGCATCCATgagacctaaacgaag agggggcattccagacaaaaggaacagtgatcacagaggccccgagtcaggaaccagctaagggtcttagagaag agctgcctcgtaaagctaagcaacaataaccagggaacggtgggcatgggccctgatagacaaggcaggtcttgg ctttttaagccatagaattggattttaggagggatgggcccgccgacaaagccaacaaagttttaacccgaagat cgctatcttatttatgctttaaaaagacctctctggcctttctgcgaagctctatccttagctttctcttgttag cattttgattaacgaATGTGGGCACGAACAGCCAGCTGACCGACCGCGCGCGCAGTCGAGCGTCGGTTCCTCGCC
TTGGGAGGGACCACTGGAGGCCCCGCCCCCTGGCCGCGAGCGCACCTCGGCCCCGCTCCCGAGGCCCTACGGGCG
TGGCCTCTGTCCCGGGTCCCGCCCCCCAGCACTCCGGAACAGCGCGCTCGCAGCGGGAGGTCGCGAAGCCTGGGA
CTGTGTCTGTCGCCCATGGCCGCCGCGCTGCTCGCCCGGGCCTCGGGCCCTGCCCGCAGAGGTGAGTGCGCTGGG
GATCCGTACGGCGGGGCTTCAGCCCGCGTCTGGCCCAGCGGGCGGAGGTCCTGGCGGCCGGCTCTGTCAGAGCCG
CTGGCAGGCGGAGCCCCACTCCGGGAGCGCTCACGGCCTTTGCCCCAGTTCTGCTGCTCCTTGCGCCGACCCAGC
CCGGCCCTTCAGGCGTCCCTGGTTCCTGCACAGACCCCTACCCCCCGATTGACCCCAGCCACCAGCCCAGTTCCC
AGTTCCCATATCTCCCTCCCTTCATTTCACCCCCACtagaggttcagggtgcgtccttcttccggagccaggcct gggattgaaccagacccgcatctgtgaccttgggcaagacagcccctcctcagcctcggttggcccatgtgtaaa atgtccacagagaaaatcagagttgttgggaggattaaatcatagggtatgtaaagcacttcgtgcctggcgtgt aacaggtgttccacaaatgctcgttcttGCTGGTTAATACAGTACCTTTCCCATCTTACGTGTCTCCAGTTGTAG
CAGCCGTGACACATATAGCCACGGCTTCCTTTGCCTGGCCTGAATTACAAGGGGAACGCTACTGAGAACTGTGTT
AAGCGCTAGTTAGTCTTTCTTTCGCACTCCGAGGAGCGGAAtactattcgcctccacttgttatagaaacggagg ctcactgacgtttaaaacccttgcctaaggtcacagagctGAGGTCTTATTACTGTTGGTATTATACTGAGGACT
GAAGGATGTAGTGTATGGAAATGTCTAGTGAGTGTACTAAGCATTCAGTTAGTATggggttttcagtggccgcca.
tggacattttgggctgacagttctttgttgtgggggctgtcctctgccttgttggatgttcagcagggatcccgg acccctatccactgggtaccaatagtattcccctgctctagttgtgacaactagaactggctccagacattgcca 'Seq 218:
ccatgtcactctttcaaatctaatcatttccaggcacagaaataaatccaaatttccttccttcaaggcctgtag ttactcctgcaacagcatctcgcagtcttccttgttcagtaggccctcgccagtcatactgaccttgccaagcct ggagttcaccaagcacacttctctctggtcagcatttctgttccctccctttagaaggcactttacccatacagt cacatcgtttcttccctcactgtattcaaatctctgctcaggtgttacctcctcaaagagaacttccaaaactgc tgcttgaaataattccccgccccatcacaccctaacccctaacagtagtgttatcactaccagataaatactttc tacttgtctgacccctcctctagtacaattaaaactccatgagtgcagggttttcacagctatttctccagcccc tggACTCGGGGTTCTTACTCTCTGGAGCCCAGTTTGAGTGACCTGGAGTCACGAGGGAGGCGAGAGAGAAGGGTT
ACCAGCGATACTCACACAACATCCTCCCCCTCTGGTGCTTTGCCGGGTCCCTGGGAACTGCTACAGGGGCTGCAC
AGCGGCTGACCCTGGCCTTGTCAAGCACTTGACACATAAGTGCTCCAAAGTGTCTATGGAATGAAATCTTCAATA
AAACTCCAAACAGAATGCTGTAGTCACTGACACTGCTTCCTAAAACGTGGCCAACAATTCCGTATGTGACAAACA
GGTCACATTCTTGATTTTTTTTAACGACCAACAAAGTTAAAACCCTCTCATCTTTCCTTCCTGAGCTCCATGCAA
ATTACCTATTCAAAAGCAACTAAGTATCTCCAGTTGGATATTCTTAGGCATCATCTCATCCTTGCCAGTCTCTGC
AAAATATGGTCGACAAAAATAAATACCACCTTCTTAAATACCACCCAGCTGTCCAAGATGGAGACTTCCTGGCAT
CCAGGCGCCTTCCTCTCCCTCGTCCCCACCTCTGAGAAGTTCCCAAGCACGAAGTGTTCTGCGTCCCGAACATTC
CAGGGGCCGCCAGCCACCATGGGCTCTGTCCTGAGGTGCCAAGCAGGACATCCCTGCCCGACATCCTTGTCCTCC
CGCACCGCACACGCGTTAGTGGCTGTGGCGTCGCCACCCCAGCACACGCTGGCCCGCCCGCAGTGCCAGGCTGGA
AGTGTCGGGCGCTTGCCAGGCCAAGGGGCAATTCTGTTGCCTTCCAGGCCTTTTCGGCGCGGTCCCAGTCAGGAA
CGCGCCCTGTCGCCTCCCACTCCGTCTTCCGGACCCTCCCGATCCTCTCTCGTCAGCGATCGGGCGTCGCTCCCC
TGGACTAACCTCCCTTGCCCCATCTTCAGCTTTTCGCTGATCTGCATCTTCCTGCGCCTTAGTGCAAGGCAGAGA
CCTGGTTCTAAAGCGAACGGAACGGAACCGATTCTGTAAGTTGCAATGAGCGCGCTGAGGTCGGCGTGGAGGGGT
CTCTGGGAAAGGTAGTTTCCGCGCCTAAAGCGCCGGGGCCGGGCCCTGTTCCCGCAGGCGCAAGGCAGCACTGTC
TCCGCCGATTGTCCCTCTGGGAAGTGGAGTCTGGCCGGCGGAACTGCAGCAGCCCTGAGACTTGTGGGAATTCGG
CCCAAGGGTTCCCAGGGCAACGCGCAAGCGCAGTTCGGCTCCCGGCTGCAGACTCCAGCTCATTGTGTTCTGACT
GCGATGTGGCGCTTGCGATCTCTCGCCGCCGGCAGAGGCTCCTCGAAGAGCGACACGGGGCTGACCAGGCACGGT
GGTCAAAGCCGCAGAGGGAGAGCGGGAGCGGTCGTGAGGTCGTCTGGGGAGAAGGGCGGAGGCAAAGCCGAGGAG
GTGCGGGTTGTGGTCCATTCTGGAGGACGCTGATCGAATGCCCCAAACTTCCCGGAATGTATGTCTGAGATTTGA
TCCCAGAGAGGGAGGACGGCCAGGGGTGGTCATCCTGGGCTGAGGGTCGAGTCTGTGAGTGCCTGTGGAGGAGAT
GGAGCCAGGGCCTCTGGCATGTGTCTTGGAGCGGACTCCGAGAAGCCCAGGGTTTCCTCTCAGGTGATAGATACA
CGCCTGGCGTGGTTCCGAGTCCTGCGCCAGGAACTCGCCAAGGCCGGAGGCAGCCGCTGCGCAGCCCCTGCCACA
GCCCCCGAGGGACCTGGCGAAGCGGCAGGGGCGGGACGGGGCTGTGTGTGATTAGGGTTCCTAACCCTTCCCTCT
CCCCTCCCGCCCAGCTCACACAAACGCCGCTTCTGCCCACCCGTGACTCCAGGCCACCCAGACTGGGCCCCAGAG
AGTGAGAACACTGAGGCCAGAGAAGGGTTTGCCTGAGAGGCTTCGACAGTGAAGAGCCTTCTTAGCCTCCTTTCT
GAGGAGGAAGAAGACCACCCTCCTTTTCCTCTTCTCCTGTCACTGCCAGATAAGGCAGCTGTTCCAAAGCCGCAG
AGGGAGAGCGGAGCGGTCTTCCAATCCAGTCGAACCCAGACACTGCCCTCCGTTGCCTCTCCCCAGCGCTCCCAC
CTTTTCGGGTACATCCTGGTGGGTTCTGGAGCTGAATAACTTGTTAAAGAGATAATTCTCggccgagtgcggcgg ctcacgcctgtaatcccagtactttgggaggccgaggcgagccgatcacctgaggtccggagttcgagaccagtc cgaccaacatggtgaaatcccggtctctactaaaaatataaaaaattagccgggcgtggtggcgggtgcgtgtaa tcccagctactccggagactggggcgggagaatcgcttgaacccggaaggcggaggttgcagtgagccaagatcg tgccactgcactccagcctaggtgacagagcgagactctgtctcaaacaaacaaacaaaaaaagaaTTCTCTTGA
GATCGCTCAGTGAGGCTGAAGGGAAAGACCAGAGGGTGGGTGGAAGGCATGAGAACTGGACCTGGAGCAGGCTTT
CTGCAGGGAAAAGTCAATGTATAGTACCCTCAGAAGGAGGAGAGAGAATGGGGAGCAAACAGGAACCAAAACACT
CACTGCTTGGGGTACTGGAGGCCTCCCAGGATGTGAATGCTCACTGCCTCGCTCTGGACTGCTGTATGAGAGCTT
TTGACCCAGTTCTCTCCTAATAGCAGGTGTGTGGACCCTTCTAGCCTGAG
Seq 219:
AGAAGACCAAGTAAATTCCAAGGCACAAAGGCAATGAAGACTAGGATTGAGGGTGGGGTGCAGAGAAAGCAGTGT
AAAACCCATGGCCTGAAATGCAGGATTTGTGGAGGAAAGATTGGGAGCTGAGACTGGACATGTGGATGTGAGTGA
GTGCACTGTAAATAGTCTTAAATGCCAAATGGAGTTAGCGATCGAGGAGAAAGACTGGAGAAGAAGCCCAGTGTA
ATATTTCTTAGACATCAGTCCTAAGGAGAGAGGGGGAGAAAAGTGAAGCGGGATAGATTTAGGGTAGAGATGTTC
AGGAGAGGCGGGCGACCCATCTCAGATGAAATTCAGAAAAACTGACAACTGACTAGGGGTGGCAGGATGGCACAG
CCCACTCCAAAATCTGGTAGACTCTGGTAGACTCTTCAAGATTTCCTGG.A.AGACTCCTAGGCGGAG.AACTAGCAA
CATCTTGATGCCACTGCTGCAGAAGTGGTAAGGGGAAGTCTTGGGAGGAGATAACTTCCAGAAGGAAGACAAAGG
GGCAGGGGTTTTGGAGCTAGATTAATGGCTGAAGATACGAAGAACCAGAACGCATATCTTTAAGATGTATGAGGG
CCCTTTTCCCCAAAAGAGGCAGACTGCGAATTAAACGCAATATAAATGAGGTTATCACAGTCCAGGTAGTCGTTT
CTGAAGCCCTAGTCCTCAGTTCCCAAAGAAACCACGTGCGCACTACCACCTAAAACTGCCAATGAAAATGAAGGT
CCTGCGCAGTAAAATATTTATACAACTGCTGGGGCCACTAGGCTTCAGCGGGTGTGGAGGCGGGGAGAGAGGAGG
AGTAAAGGCTGTTTACAAACTTGACGTACACACGCAGTCCTATCCCTACGGTCCTGGAATTGGGGGTTACTATCT
TGGAATCTAGGGGCACTCCAGGCTCTGGGCTCAGACGGCTGGCTTCTGCCTACCCGAGCCTTAACCTTTCAAGGA
CCAGAAGGATTCCAGAGCTCTTGCCCTAGGTCCTGGGGCAGCGATGACTCACTGCAGCACCCCCTCCCACTTCGC
CAAGCTGCCGTCTCCGCCCACCCCCAAACAATCTCGACAGCGCATTTCGGGAGCCACGGCTCCGGGCGCTTTGCT
GGGGGCTAAAGGGGTTTATCCCTTTCCTTGAATCCCAGCAGGCTAGAACTACCCCCTCCCAGTCTTCAGGCTTGC
CACGCTCTCCACCCGATCCTTCCATTGAAAGGCAGAGAAGGAAGGATGTGCTTGGGAACTTTAAGACCCACGAAC

GACAGCGCACTGATGGAGCAGCCCAGTGTCTGGGGGTGAGTATCCAAGGCCCCGCTTAGAAAAGGGAGGGAGGGG
CTGTGGGTGCTTCGGGAAGAATAAAGGCATCACCGGGCACAGTGCCTACGACCCCATTGCGCTTACAGCGCCGTG
CGCTGGGAGAGACTGACCCGGGAAAGTTTCTGCGTCACACGCGCGTGGCAGAAACGCACGTCGCTTGGGAAAGTC
AAGGACCACCCTTGCTCGGGCCAGAACCGTACCGCAGCGACTCCTCAAATGTCGTGGAGAAGTGGGGGGCAGATG
CCTTGTAAGATCCACTGGAGGGCACATGCGGGGGTCGACAGAGAGTCGGGGAACCAACGTGGATTCCCTGCTAAA
TGCTATTTGGCAGCGCAAGAAGGCGGCCTCCCCGCCCTGCCTCAGTCCCTAGGGAAACGTGCGCCGCAGGCTCCC
TCTCTCCACTCCCTGGAACCCGTGAGTAGTAGAAACCCCAGAGGAACCGAAATCACGTCCGGACAGCCTCTCCAG
GCTGTCTCCCACTATCCCGTTTCTCCCGGCCACCCCGCCAGTAGGGTGCAGAGTTGGACTGCGCTGCACCCCCAC
TCTCGGTTCCACCCCAATTCAAAGCGTCCGGGGTAGGCTCCGCCTTCTCCCCCGCCCCCAGAGCCCTCGGCCCAC
CCTTCCGTTCCTGGGACGGGACCTGCTCCCTGTCAATCCAGTTCAGCCTCAGGGTTCCTGGCGCGTGAATAAAGG
CCCTGAGAGAAAGCGGGGACTCTAGATTACGCACCGCCCTCCACAACACACACTGAAGGAACTCCCAGTGCCTTG
GGCAGGGGATCCTCAGCCCCACATCCCCGATGCAAGGCGCACCAATAAGGAGTCTGGTCCGCCCTGCGCTCAGCG
GCTCCGCTCCCGGGTGGCCAAGTTTGCTGCAGGGAACCGCAACTCCAGTAACTTTCTCCGAGTTTGGAAACTGAC
TTCCAGGCCGCCTCGCAGCGTTGGGCAACGCGCCGCTGAACCGAGTCCAAACTCCAGAAAGCTCTGAAACATCCA
GAAGCCCCTGGGGGCGGGTGTGTGCGCTCCACGCCAGTGTACTCGCACGCACAGAGCTAGCTACCCAAACCATAC
GAGTTTCTAGCTGATATTTAACGCCGGAGAGGAGCGGAGCCTCGCCACAGTGAGGGTCTCTAGGCTTAGAGGACA
ATTAAGTCTTCTAGAAGCGGGCGAGGAGGCGGAAGGGGAGAGGAGGTGGCGCGCGCCCACTTACCATTCCTGAGC
AGAGGCTGATGACGGCCGTGTGCTCGGAGTTGGTATTGACATAGCCTTTGTAGAAACAGTGCTTGAGTTCCGCTT
CCTCTTCGGAATAAAACTTGGTCTGATTCACCCCGGGCGTCCCGAGGAGGGTGACAGTGAACAGTGGAGCGATAA
ATCCGGCATTGGCGGTGAGATTAAATAGAAACTGCTGGCCGAAGGCAGAGAGGCGGTAATGCGCCTGggaggagg tagaggaggaagaggaggaggCGAAGGCAGGCCAGGGGTCAGTGGCAGAGTTAATGCTCCGTCGCGTTCTTTTGA
AGTGGACGTTCGTGGGAAAGGGTTCTCCGAGAGCGTTCACTCGGATGGGAGACACGATTTCGTATTCGCTCAGGG
TCTCTAATAATTTCACTGCGGAGAGAAGCAGAGGTATATGAACCAATAATTCATTTTTCCTTAAGCTTTAATTTA
AAACGAAGGTGGGGACTTTGTTCTGACCTTATTTTCCAGCCCATTCGAGTCAATCCCTTCACCCTTAAtcagtgg acaaatatttgctgagcacctactatgtgccagtaacaggacctgtgctaggtgctgaggatacactattccgag ccagacaATTAACAAGTCAAAATATATATGATTTCAGATATTGATAAATAACCTGAATAAAATAAAACATGACGC
TATCTGGTGCCCCCAATTACTAAGTTACTTTAGTTTGCGGCGTGGGAGTGGGGATGGGGATATATCTGGCAACAG
CAAGGTAGGGGGGGGTTGCCTAAATTCGTTTCCATAGTGTCCCTCCCTAGCAATTGGTTGGGGATGACCCAAAGA
AGGGAGAGGCTGCAAAGCGGGAGATAATTCTTTCTAGGAAAAGGAGAGAAGCCTCCGCTGCGGGGTGCCCCTGCC
CAGGAGCGAGGACCGGGAggcggcgtcggggccggcggggtcccgggggccggAGCCTGGTTACCTTGCCTCGGG
TGCAGCCTGTCCTTGCGCACGGCCGCCGCGGCGTCTGGGCTCCCCATCTCGGCCAGGTCCCGCACCAGGAGCGTT
AGCAGTGTGGCCCAGGATACAAACTGCATGGTGCTTCCCACCCCTCCCTCCGCTGCCCCCACCCCCCTCCCTCCT
GCCCTCCTTGGCTGCGGCGGCGACGCGAGGCAGCGGCCGTGGAGAGCGCGCGGAGCCCGGCGCCCGCCGCCAACT
TTTGACTTTAGGAGTCGCTGAGGTCTCGCTGCGAGGGTCCCGTCTGCGCTCGGCTGAGCAACGCCGCCGCCTGCC
GAGAGCTGAGCCGCTCGGGCCgcaggaggagccggaggagcaggaggaggaggaggaCTGGGGCTCGGCTGCTTG
GCCGCATAATGCCCAGCGAGCGGGCAGGAGAAGGCGAGGAACTTGCGCTCCGAGGCGCGCCGGGCGCCCTGTGCT
GGCCGGGATAGCTGAGCGGCTTCTTGAATggggggctgggggggcggaggcgggggggccgcgggTCCACAGCCT
CTCAAATGCCCCCGGTGCACGCCTCTAAGAGGAGGAGAGGGGAGGAGAAAGCGAGACGAACGGGGACCGCCTCCT
TCCAGACCATGTCCCCTCCTCGGCCGGCCCGTGCGGGACTCGCAGCCGGAGGCCCTGCCGGCTGCAAGAGGCGGA
GGCCAGAGGCGTCACCAGCGCCGGGGCAGCTGTTCCTGGTCCCCGCCACCTCGCTGAAGTGGGGTTTTCTGAGAT
TCCCTGCCCCGGGGAGGGAAAGCAGGGAAAGTTCTCTCCCTTTCCTGGCGCGCGTGCAGCCACTtcccctctcgt ctttttcctctcctctcctctctctcctcccttcCGAGTCTCTTTTTCCTCCTCCCCCTTGTCTCTCTGCTGCTG
TGCCTCTCGGACTCTGTCCCTTCTCCCCATTTTCCCCTGTGATGTCTGTCTTCTCCCCGCCCCACCGTGTCCCTG
TCTGTTTCTCACATTTCTCCTTTTCCTTTCCTTTCTCTTCCGTCCCCATCTCTTGCCACCAGTCCCCATCTTTTG
GTTTCTTACAAGTGAAAGTGGCCCAGCGCCGGAGCGCCTTCCCTTCCTACACTTTTTCATTCGGGAAGAGATTTG
GCACCTGAGCTCCGCTCTCGATTTAATCACCCCAAGTCAAGAGTTTTAGAAATGGGGTTCTTAATCCTGCAGGTC
GGAGTGTGTTTCTAATACGTGGTCTCTTGAAAATTTCGCAAAATATTTAAGCTGTGCTTTCCACCAACCTCTGTC
ACCATTCATGGAGGGTCCATAGCATTCTGTAGGTCCCCTGCCCCAAAAAAGGTTAAGAACAAATTTTGGCAGCAA
GAA.GGGGCGGGGACTCTGGCGCCCCTCACTACCAGGGGGTTTAGAGATGGGAGGGGAAGGGGGGATGGAGTGTAA
AGTTGTAGATCCCTGTGGGAGGCACCAGTCCCTGGAGGGATTTCTCAATCACTTCCGCTTGCTTTCAGCCTGAGA
GATGCTTGGAAAGACTGGGAAAGACTGAAAGCAGGCGCTTCAAGCTACACCTTCgtgtgtgtgtgtgtgtgtgtg tgtgtgtgtgtgtgtgtgAATTGTTCAATCTTGGGTGGTTCAGTGGCGCCTTTTCTTTAACCAGCCCTCAGGAAG
ATAGAATTTCAAGATAATTTCAAGAGGAAAGACATGACAATATCGttaaaaatatataaatatatgactaataaa tatatatttGCCCAAGTATCCTAGAACGGGGGTTGAGGTTCTGTTGCGTGGTAGGTTAGCACTCAGGACTAGAAA
TACCAAAGATTGCCAACACCAGGAACCAAATCGCAATATGCTAGCAATGTCAACTATTCTTGAGATACTAATACA
TATATTTCTTCTGGTGAAGGGTAAAAATGACTTGGCAAGACGAATTTGCTAAATAATTGTTAACCCAAATTGATA
ATGTTACCATCGTCTTATTACTGGAATTTCATAATGGATATGTAAAATGTAAGGATGGAAAAATAACATCTGTAT
TGTGCACAATTAGAGATTTTTAGAGAATGGCATTTAAACCTTGAACCTCCAAATTAATTCACTAAAATACGTTTC
TTCTAATACACAATCTTTCTTTTTATTATAACAACATTCCCCACAATCACAGTGTCTGGGAGTTGCTGAAAATTT
AGTAAGGAACAGAAAAATATCAAGAAATCAATCTATTGGCTGATTCCTGTGGAAAATATTCCAGTACTTCCATTG

TAAAATTACTCAAAAATATAGCACTTTCCAGTATTTCCCATTAAATCTTTTTTTCTCTTTCAGTTCAAATCCTTC
CTGACAAAGAGAAGTTAACTAATGGTATAGAAATTACGATATGTAGGGAC
Seq 220:
tcaattgatagaagttgagtaagatgacagagaagtgactaatgtatttggaaagatggagttattactcctctc ggcaagacagttttattagatcgggagctcctccactggagctgaagagagaatggactgtgaaagtggagatat gtatagacatctcAAAGGCAGCACCTGATCCTTGACACTCTCTCCTACCTCCTTCTCTCTCTAAATTTTGATCTC
TATTGGCGGCCCAAGCTAGAAATCTGGGAGACACTCTCAAGTCTTTCCTCTCTTTCAGATCGCATAGGCTATTAT
TTACAGTTATTCCCATTTTACCTCCTAAATAATTACTGATTTTCTTCTGTGCCATTCCTGCTTTTTATTGCTAAC
AGGCCCTCGTCATCTCTAATCGTTACGACTGCAGCATCTTCCTAATAATCCTCACAGTTTTCAGCCTCTAGCTTT
GACGCCCTCAAAATTCTGTTAGTAAAGCCTGAGGGCTCCCAGAAAGCGACGATGGTGCTGTGCTGGCAGACCGAA
TGTTTTTTAAAACACAAAGCTTGCAGTCCTGCTGCTGTGCTCAAAATCCTTGCATGGCTCTTCTTGAAACAGGTT
TAGTGTTTCTACTCGAGTTCCTTCTCTGTCGTTCAACACAAACACATACACACCCAGTTCTGTTTCACGCTTTTG
TCTTTATTATCCCTCGTAACTGCCCGCCCTGCAACCAACCCGCTCAAACAAGCACCCTGACTGGCGCATTCTTAC
TCATTCTAGCCTGGGTTTCAACTTCAAGGAGCTTCAGCGCCCCTCACTCCCTTGCCCTGAAAGCTGGCTAAACTA
CGCACCTTTTCTCCCCTTTTGAAATGACCTTTCCAGATATTTCTATGGAATTCAGTGCCATTTTCTGCCGCTGTT
CTCACCACATTCATTCATCATGTTTAGTTTTAAAAGTACCAGATTCTgtcgatttctccaactgaactctgaaat ctttgaggtcagggagcttgcctcattctattttgtattcccagtacgtgacacatggctggacacaccagAAAT
TGTCCGATCAAGTTTGTGGGTATTAAGAGTGGTCAAAGACGCTGGGGAGGGCAGTGCTGGGAGAAGGGCAGCGCG
CGTCTTGGCGACCCCAGCGCAGTTCGAACTACTCCGGAGTCTGGTGTGGAGCCGAGAGGGAGCCCCGCACTTTTC
TCCCCGCGGAGCTGCGCTGAGTCTGAAATAGGTGTACGCGTCAGCGGGGCAGGAAACGGAAAGACAGTGCAGTAA
TTGGTGGAAAGCTGGAAGTGGGCACCTCGAGGGCCTCAGCCCCACGAACACAGTCACCCAGGAAAAGCGAACCGC
GCCAGGCCCTGTCATCGACCGCTGGGTCCGTCCTCCCAGCGCTCGCGGCCGCTCACATGGGCGTGGCCCTGCGTG
ACCTGCCGGGGCGTCACGTGAGCTCCCGGAGTCATGTGACCGCCGTCTTGACAGTGTTCCACGGGCGCTGCTTCC
TGCCTGGGTTTGGAGTTGTCACCACTTTCCCCTCTCCGTCTCCTGCGGGCGCAATGGAGGAGGAGGATGAGGAAG
CGCGGGCGCTCCTGGCAGGCGGCCCTGACGAGGCCGACAGAGGTGCCCCGGCCGCCCCTGGAGCCCTGCCGGCCC
TCTGCGACCCCAGTCGCCTGGCGCACCGGCTTTTGGTGCTGTTACTGATGTGCTTCCTTGGCTTTGGTGAGCCGG
CCGGGTGGGTTGGGGCTGATCTTTAAGGAATTCCCGACTTTCTCTTCGAGGTAGATCGTCATCGTGGTCACTGGT
GCCACGGGGCCTCAGCGCAGCTTCTGTCTTAAGCTCCTGGGCCTCCTTATTTTCCCCTTTGCGATCGATTCCAGC
CACACCTGTGGATGTTGCTAGTTACTCCGCGTCCGGAACGTGGAGGTCGAGGGACTGAGCTGGGCGAGTTTTGTG
GCACTCCTTTGCTCTTCAGTAAGTCCCAGGGGCTAGCGACTCGCCCTAGAGGCGATAGATATGAAGGTAACTCCA
GATTTTCAAGGTTCCTCTTTTGGCACACGTGGTCGGAGGAAATTCAGAAAGCTTTAACTGTTCCTAAACAACttt tgtttgtttggttttaggtgagacaggggcttgctctgtcacccagcccggagtgcagtgttgtgaaagtggctt actgcagcctccacctcctgggttcaagcaatcctcccgcctcag=cctcccgagtagctgggaccacagatgggg cgccaccacacccggctttattattattattatttttagacacagggtcttacaatgttgtccagCTTTTAAAAA
ACGTGAATGATTTCGTCGGCAGTCTTCTATATATTTTTCACCCTCTTTGAGAAAATGTATGAGTGTGTCTTGCTG
ATAGCTTCAGTGAATAGATATTGTTCTCTTAATCTTCCACTCTGCCACTGTGAAGCAATCATATTGGACGGGACT
TGTGGTAGTCTTGACAGTGGTTGGTTTCTCTTATGAAATCTGATGTCTCCGAAAACAGTTTCTTGATAATTAGAA
AAAAATTTTCCTTCCTATGTTACAGTTTTTAATTTATTAAGCAAAATTCTAATATTAATTTGGTATGAATGTGTT
TTTCAGGAGGCTAGCTGGAGCCCGTGTAATCAGCAGGTTTAAGAACATTATGGTGGATAACTATTCTAGCGCTGA
ACATATAAGTAGACATGAAGGATGCTTTGGGCTTTGGTTTCCTTGCAACTCCTTTTTCCCCCCTCCCCTGTTTTT
TAAAAGATGATGCCCATCCATTAGCTTTAAAGCAGGACGTTGAATCCTTAAAAGAGATTAAAGCAGGGTTTAGAA
ACAACCACCACCACAACAAAGAAAGAACAACAATAAAACATTAAAAAAAATGGTCCCCACTCAAGCAGACAGACA
GTTTTTGGTAAATTCTGGTTATCTGCCTAGAATTCAGAAGCCAGATTCATTCCTTTCTAATGACAGTTTTTATTG
TCATTAGAACCAATAGCCTCGTGCACTTGTAGAGTTAGTAGAGCTATGGAGGCAATATTTTCTTGTAGCCTACGA
AGGAATCTCAATTATTTTATCTTTAAAATAAATCCGAGTGCATGGTCAGATCTCTCCCTACTTCTCTCTTTCCAG
TTCCCCCAAAGACATGTTTTAATTTAATCCTTTAGAATTCTCAGTTTCATTTTTTTTTCACTCCTGGCCCTGTAT
TCACTAAATTATTTGATTTTGGGTAGTTTGTAGAATTAGAGAACTTGTTTCAAATATTGGTTTTGTCAGAATGGT
TACACTCCATTCCTTTGTCCTTAAGCTAACATTATTAGGAAACTGATGAGGTTGTAAAGTTTTTAGTGTATGTGT
GTTTGTAAATAAGGAAATAAATAAA

Seq 221:
TTTTGGGAAACAATACAGTGATCTATATCAAGACATAAAAATACTCACATCCCTTGACTCATTCTCTGGAAATGC
TGaaggaagttattcaaaagaggaaagaagctatacccaaaaagttattcattgttgggttttttataacaagta ttggaaatgtttaacaatgagggagggtgaacttaaccacggtacatccgctctgaaataataccacaactataa aatagtgctgatgaagagaaacaatgtaagaacatgtttatcataaaattttaagtgaaaaCAATATATATTATA
CAAAAATTCTATTCACACACTGATTATAATTACGCTGAAGGATGTTGGCAGGTGGGTGAAAACTGAAAAAAAAAA
AAACTAAA.A7ICAGTTATGCTTGGTTGGTGGGCCCGTAAGATGTTTATTTCCATTCTGTTTCTGTAAGATTCTCAG
AGTGTTGGTACCGCAGATTCAACTGGGGCCAGAGAAGCCCATCACGGGAGCCCGAGGAAAAGCAGCCACAGCTCT
CCTTCCTAGTACAAGCATTCAACAGTAAGCTCCCACGCAAAGAATCAGACTGCAGCAAATTTCAGCGCTGCCTCA
GGAACACTGTCCTTGGCTCCCACATTGCAAAGATTTTCCATTCCCTCCACAGTCACCTCATTCATGGTTAAGGAA

GAAAGCGCAGCTAACAGACAGGGTGACGACAGATGTCCAGGCACTGAGCCATCCATAGCTGTTATTTTTCATTCA
CATAGGCATGTGCCGGATCCAGCAGATGAAAACCAGACCTACCCCCTTCCCCATGTGTGTGTGTTTTTTCCCCTT
ACTGCTGCTGCTGTAACAGCTAAGTGCCAATTATCTCCCAAGCGTGAAAGCAAATATTGTGATAGCCCAACAAAC
TCTACAAATGTTAGAGGACACAGGTGGGGATGACTGTTTTTCTGTCCTGGCCTTGGCATGTCTTTATTCATTGTA
ACAGCTCTCATTAAAGGAGGATCTGGTAGGTGCAAAGCTTTCTGCTAACACCTTCAGCACTTTGCATTCTTTATT
TTCTCATTTATCTCTTGGCATTTTGTTGTTGCCCGTATCCCCACGACCCACGAATCCAGAGGTAAGTTTTGCTTT
TCTTTGCCTAGAAAAAGCTCCATTAAACCACCTATTCTCAGGACCCAACTTCACATGGGCTGATATGAATACTTT
CTTCAAATATTTGAAGGCCTGATGTATCGTAGTATTGTATTGCAGTAGGTAGTATTGTAGTATTATAGTAGGTGC
Tttaatcagggttttccagagaaacacagccagtaggagatgatagtcatagagagatagatagatacatacata catacagatttatttttcaggaattgaatcacacaattatagaggccaaaagtctaaagttttcagggtaggcca gtgagccggagacccagggaagagttaactttacagctagagtctgaggactgtcttaaggcagagttccctgtt ccttgagggatctgtctgtattttcctaaggccttcaactgtttggatgaggcccacccacattatgagggggta acctgcattactcaaaatctactgatgtaagtgttgatctcttctaaaaataccttcacagcaacatctagagtg gtgtttgaccaaatatctgggtacctggcctagtcaagttcatatataaa Seq 222:
CTTCCCTTATGTTTGCAATGATTATGAACAGTTTAGTTAGAACCTTTATTTGTTGTTTTGCCTTGAAGTTACTGG
ACTGTTGCTTAGCTTGCAAGTCTTTTGTGGGTTTTGTATGTTGGGGAAGGGGATGTTAAAAATGCAGGCTGCTGT
GAATTAATGAGTTGCCTCTGTTTATAGAAATGCGATGATGTTCAATAATGATTTGATGGCAGATGTACATTTTGT
GGTTGGGCCACCAGGTGGGACTCAACGGTTGCCAGGACACAAAGTAAGCAACAGCTGCATGACCGGTTTAGTCCT
GACGTTTACAAAGAGGGACCCTTTCCATAAGCCTGTAACTTGGTGTGGGCAGCTTGCCGATGTCAGGCAGTGCAT
GTTTCACTCGATTAGGGAGAGAGCGCACCCTCTCCAGAGGGCTTTGGCCACGCTTAATTTTTTCTTTGTTTCCTT
CTATACTGCTTTATATCTCACACATCCCCTCTTAACTCTCCAGACATGGGAAGTTGTTGTGACAGGTCAGGAAAG
TCGTATGTTTACCCTTCTCCTAGAAATTAGTTATGTAAGCTATTATTGTATGTATTTAGTAATGAGGGGACATGT
GCATTAATCTCTTAAAGCTTTGAAATAATTAGCAGCATGGTCTTATGCTTCCATGGCAAGCTACCCTGTGTACCT
TGGCTTTTTCAAAGCAGTAGATTTTAGGTACGCTATGTTTACTAAACCTGATTGCCTAGTGTTGTTTTTCTGCAT
TGATTTGCTGGAAATGCCTTCAATTTAGTGTATGAAATAAGATTTCCCTTTCTACACAGTATGTTTTAGCTGTTG
GGAGCTCTGTGTTCCATGCGATGTTTTACGGAGAACTTGCAGAGGACAAAGATGAAATCCGTATACCAGATGTCG
AACCTGCTGCTTTTCTCGCTATGCTGAAGTAAGCATCATTCGTGTGTTTGGAAAGAGTTTGTTTATGCTGTATTT
GTACCCTGCTGGTTTCACAGTTAAATTTAAGTTCTGCATAACAGAAAAGAAGACTGATGAAGAAAGAGGGTGCTG
CTTACCTTGTAAATGTTTTCGGAAAAGAACACTTTAGCTTTCCGTGGAAAGCATATGGAATTATGCAGCATTTAT
AATCGCACCTTGACGTAGAATTTGGGAGCAAGTGGCATGTATAGTGATGATTTTTAACAACTTAAAATTAAAGAC
AAATAACTTTCTGGTATTAGCATTATTTAATAGAAGATGTTCTCTCTGAAAGCATTGTGTGTGAAAAAGTCTTTA
AACAAATGTTTTTGCTTCACAATTTCAGAAGTTAAGTACCTTATTTAAGTAACACCAGTTGGGAGATTTCTGAGT
ATTCTAAGAGTTATTGTCTCCTAAGAGCAAATGAAAAACTTACCATCTGTTGAAATAATCTGATCTTTGTGTACA
CATACATATACATACTCATATAAAATCAGACACTCTCAAGGGTAAAAAGTACTTGCATTTGACATTACAGGGGAA
ATCTTAGAAAGATATGGATAGTCTCGTACAGTTTCATGTGGATTTATACAGAAGAACTTTCATTGGTAATACAGA
AGTATGAAACTTAAAGATACGTTATATATTTATAAAAAAGATAGTTTTCTGTCTGGTGGGTCTTCTGCAGGCACC
AGTATGTGTTAAACAGGTTATAGAATCAGCTTCTTTATCATGTACGGTACTAGACAGTGTGGTAGTTCACCAAGT
GATCATAATCTAATTATTATTCTAAGTAGTATTTATATGATTTTTCCTAATCTTTATTCTAGCACAGCAAAGTGT
ATTACTTTAAGGTTATCTGTTGCTCTAGGGATTTCAGTTCATTGGAATAAGTAAAATGTTTGTTGAAAAAAGTAT
TCAGTGGGTCAACAAGTTGGACAGTACTCCTACATATAGTTAAAATGTTGCCATACATTGTTTACTGTCTTCTGA
AAAATAAGTACTGTAGTTAGTTCTAGAACTTAAAAGTATTTAATTCATTA

Seq 223:
CCAAGATTTTAATTAAAACAAGGTAGTAAATAAATGTCAAAATAAGTGGGATGAGAATAACGTTTCATTTTCAGA
AGAGTCCATAGGGAACAATTCAGAGATAAATTTAATCACAAAAGGTCTGAGAATGGGAATATTCGGTTCCACCCT
GGTTTTCACATCTGTTCATTTTCACTACTGGTTGCGTTTCCTACGGAGACTCGGGTGGAACATAAAAGTGGGGCT
ACTTTGGACAAACCATTAAAAACCTTACCCTTTTTTCTCGCTACACACAACTAGACCACATTGCTCTTAGCTAAA
GGGACACCTTAAATCTATTCGTTCAGCAAAACTTATAACACCGTGTTCCTTTTCTACTCAGAGGGAATCGCACAA
ATTAATTCTTGCAGATACTCAGCTCTCCTGTTTTTTAAGCTTCCACGTGGGCCTTAGCCAAATAACTTCTGGTAG
GCAAATTCTCCCCTTCTTCAGTTGAGAGCTCAGAGCAAGCTGTTGGATTAAGCAAAAGCACCTTTTAAAAAATTA
ATATTCAAGGCAGCTGTACCGCGGAGGGCCTGGGTCTCGGAGTCTAA.AA.AATCAGACTGGACGTTACTATTTTTT
TTTAGGCAAACGACAGCTCGTTTCTCATTTGTAAAACCGGGGGAACATCTTACCGAATAAACCTTACACAAACAG
AAAGGATTCCTAAGGGCTGGGAAAATACTATTTTGCTGTCCCCAGGATGGAATATCAGCATCCTTGTCTTTTAGC
TCTTAATAAAGCTCTAACTAGTCACAGGAGGAGCCAGGCTGCATGATCACGCACACTCTGGACGTCTAGGTTTTC
CGACCTAATAAGGGGGCAGGTCGCGTCGTTCCCTGCTTAAATTAGAGACCACCTCCACCTGCCAAGGGCCCTTCA
AACCCTCCGCCCCTAGGTCGCTAACGATCACCGCTTTAGTTCTAGCTCCAGGCGCCGCCTGGCGGCTGTCTCCGG
AAGTCGCCTGCGAGCCTCGGGGTCCTGACCGCTGCTGGGCCTGCCCGTAGATTTGCCTGACTCTAGCGAACCTGG
CTCCGCCCCTCCCCCACTATACGTTGAGGATTTTAAGACGGCGATGAAAGGGCTGAGGTTGTGGCGACGGGGGCG
TCCAGCGGCATCTCCACTCCCCCAAGGATGGCGGAATCAGGCCGTTGTCGGGCAGCTCTCGACCCGGAAGTCGCT

CGCGGCGCGAGGCCCCCGTTGCCGAGCGCGGGCGCGGGGGGCGGAGCTCGGCGGAGACGGGGAAGGGGTCGCCGT
GGCTGCCGGTCCTCGAGTTGGGGGCTGCCGCGGACACTGCTAGGCAGACGGCGAGTACCGAGCGCGGGTGGCCGC
GGTGTCCGTGGGCCACGCTCAGCTGCGGTCAGAGGCGACATGAGTGCCGCGGGGCTGCTGGCCCCGGCCCCGGCC
CAGGCTGGAGCGCCGCCGGCCCCCGAGTACTACCCCGAGGAGGATGAAGAGCTGGAGAGCGCCGAGGACGACGAG
CGCAGCTGTCGGGGCCGCGAGTCGGACGAAGGTGAGTCCTGCCGCTCGCCCGGCCGCCCGGAGCGGAGGTGGGAC
CGCTGGGGGAGGGGGTGGGGCTGTTCGGGAGAGGGGCGGGGCGGCCTCCGGGGCCTGGGGCTGCGTGGAGGGGCC
GCCGGGAGTTGCGGGGCTCGGGGAAGTTACCCCCATCCGTGCTGGAGTAGCGGGGAAGCCCTGGGTGCGTTACAC
TCGACCGTGATGGGGAGAGGGGACTTAGATGTTGTCACGCTGGGGGTCCCTTTAAGACCCCGTCCTCCCTCCCAG
CCGTTTCTGATTGAACCTCACTCACTAGTAGGAATTAGAAACTCATTTACTGAATACATCGAGTGTAGTTCGCCC
CTTTTTTGTGTGTGAGAGCATCAGAGTCCAAAGTTGCCCCTCCCCACCCCCGAAATGCATAAGTCATCTATACTT
TAGGTAGTACACTATTgagaactcaggttggttaaaggaaagggacctagaaccagccagatacaggtttaaatt tggctttgtcacttaactcagctttgtaaacttaagttttccagcctcgatttacccaactgtaatggagctgtt taattcccacacctgccctagaaggcacttcctagggtcggtatagggattaaatgacatgcgcataaagtactt ggcctggtactgtaaatactccgtaaatgTTCTCCCCACCCGCCCCCCTCCCGGAAACAGGTAAGAGAGGGAGAG
ATTTGCTTAATGGTCCCCAGGTGTTGTGTTTTCAGTCCCACGCTCTTTGC

Seq 224:
CAGGTAAGAAAACTAATCTCAGGTCAACTGGAGAGGGCAGATCTGGAGAATTAAATGCCTGTGCAGTGGTGAGGG
GCGTTGGTCAGATTCCTTGCCTCTGCTCAGAGGTAGTGTCCATCTTTTTGCCTTTGTCACTTCTCCCCGGGTCTG
GCTGTTGTTTGTGGCTGCGTGTAGAGCTTGTCAGGCGGAGTGCTGTGACAGGAGGCTATTTTAATAAACTGTTGC
AGTTTCTCGAGCCGAGCTGTGTTGCGTTGGCATCCCTCGTCACCGCTAATGGAGTGTGCGTGGCTGGGTGTGGGC
CGAAGGAGGAGGCTGAGCTTGCTGGGGGCTGGGGGAGAAGGGAGGGACGTGTGGGGTGCTGGCCTCCCCCTTGTC
TGAGAGTGCTCCTTCAGCAGCCAGACCTGGGGGCATCACAAGGTGGCAGTACCCTGGGCACCAGATCCCTGCCCT
GGAAGTACTGCTGGCATGGACACTTTCTGAGCTCTCTTTCTTCTTATTTCTATTCATAGCACCGCAGGCCCGTGT
GTATGTGGCCGGGGAGGAAAACTTCCACTCGCCCCTGTGTGCTCCATaggaagaaaaaaaaaaagaaagaaagaa atagaaacagaaaaagagaGTGTGCAGGCCCGAGAGAAAGACTGAAACCAAAACACAGAGAGAAGGCGCAGCTGC
TTCCCCAAGGCCTTCTGGGGCTCCCGCCCGCCAGCCCGCCGGGAGTCAGGCCTTTATTTATTTATTTTTCAGGCT
TAAAAAAAAATTTCGAGTCTTCCACAATCCCAGTCCCCCCCAATGCCCCACCCCACCCCCAGATTTGCTGGGTGG
CTGCTGCCAAATGGACCCGAGTGGGAGCCTGGAATGAAAAATTCATAACTGCTGGACTTTGCTTGTTCATTAGAC
GTGAACTTGTCGATTGGGCAAATTGTTTTTGGTCTCCAACTGCCGGGGGCTCTCCCCACCCTCCCTGCTCGCCCG
GTTCCCTCCTCCCCTTGGACGCAGCCATTGGCTGCTCGTGGATGTCTCTTTGCCAAATAGGTGGATCCTtctctc tctttctctctctctctctctctctctctctgtctctttctcCCCCCACCCCTTTTTACTGGCTTGGCACAAGCA
AATGGATGGGGATTGAGCCTGAAAGgagagagagagagggagtttgagagagagaaaaggagcaaaaaaaaaaaa CACCCCAAAAACCCAACCAGTGCGCACACACACGCGCACACTCACACACACGCCCCATCCCATCCACGTCCTCCC
TCGATCCTCGAtctctccctcccccccttcttcctttcctccctccctcgctccctctctctctTTTGCACGCGT
CTGCCAGCAACGGTCTGCAGCCGGTCAGAACTCGTCCTCTTCCCCGGGAATCTGCGAGCTCCCCCTTTTCCTCCG
ATCAGGCAGCTCGAAGTTTACACCCCTGTGCCGCTGCCAAAGCCGAAAGCCTTTTTCTTCAGCTGCCGCTTTTTC
CCTCCTGGGttttgtttttgtttttgttttGCACGGGGGTGGGGTGGGGTGCGTTGTTGGTTGTGGGGAGATGGT
GGGAGGCTGGTTTTGATTTTTAAATTTTGCAtttttttctttttttttttttttAAACTGGAAGAGGATGCACAG
GGGAAGAAATTGAAAAAAAAATTTTGTTGGCTTTTGTTTACCTGGCGTGTGTGGCAGCCGGCTCGCTCCCTCTCT
CTGCTTGCTATCCCTGACCTTTCTTTCTTTTTGCTCCTTTTCAAAAAAAATATTAATTTCCCCCTTCTGTGCAAT
GGAGCATGGGGGGGGGGAGGAGGGGGAAGGGTTTGAGAATCCACCCAAGCCCGGCCCCTATTCCCCAGAACACCA
ATAATAACCCCCTTTAAAACATTTAccttcctcccctgctcctcctcctcccccctccccccacccgcccccAAC
TCACAACTCTTTTGAGTCCAGAATCTCAGAATCGGGCGTTGGGCTTTGCCGGGTGCTTCAGATCAATGGTAATTA
TTTAATTTTTTCCAGTTTTATTTTTGTAAACAGAAATCAATTATTATTTAAACTTcaaacaagcaaacaaccaaa aaaaaaaaaaaaaaccaaacaaaACCGAGAGAGCCCATCCTTCTGTCACCTGACTGAGTGGGAAAAAGGGTGAAG
GGGTTGTGGGAGGCTGGGGAAGGGGTCGCAAGAAGACCCATGTAGCTTTTAACCCTAATGTGGCCGAGACAAGCA
CCTTATTTGTGCTAACAAGAAGTGTTTTGTTCATTATTACTGTGATTAACATTAGTATTGGTGTCGATAACAAAG
CTGAAATCACATATTTAGGATTTAGGTCTGATTAAAAAATGTTGGGGTGGATGTTCCAACTGGATCAGGAGAAAA
GAAAATGAAAACAGCCTGGGGAGAGGGAAGCCTGATCTGTTTCCTCACTCGCTTGCTCGTGGATGTCATTTTCTG
TCTTCTTGGGGGCGGCCAAAAATCGACCGGTGTCGGGGACCAGAGGCGGCCCCGCACGCCCCCGCGTGTGCGTCC
ACGGGCGTCTGTGCAGACGGACACTGTGCCGGGGCGAGCTGACAGGAGTTCACGGCTGCGATAGAACATGGAGAT
GTCATGGGCGCGACAGAGCCTGGCGGGGATACCAGCAGCGTGTGTGTGTGGACGGCAACGTTGTCTGTGCGCGTG
TGTGTGAGTGAGTGAGGGAGAGAGAGAGAGAATAGGTGTGTGTAGAGGCTCCCGGTGCCTCTGTCTGGCTGCTGA
GGCTGAGATGGGAGCAAGTGGCTGGCGAAGCTGGTGGTGGCTTCAAACCACACTTTCGTAGAACAATCGCAAGAG
AAAATTGTTGGGGGGAGGGAGGAGGAGGAGAAGGCGGTTTTCCTTGTGCccccccttctaacgctgcttttctcc ttctctctttccccctcatcccgtcttcccctcctcccgtcctccctcgccccGCATGCTCCCGGCTTGCCGCCT
GCAGGATGAGTTCCACCCGTTCATCGAGGCACTGCTGCCTCACGTCCGCGCTTTCTCCTACACCTGGTTCAACCT
GCAGGCGCGGAAGCGCAAGTACTTCAAGAAGCATGAAAAGCGGATGTCGAAGGACGAGGAGCGGGCGGTGAAGGA
CGAGCTGCTGGGCGAGAAGCCCGAGATCAAGCAGAAGTGGGCATCCCGGCTGCTGGCCAAGCTGCGCAAGGACAT
CCGGCCCGAGTTCCGCGAGGACTTCGTGCTGACCATCACGGGCAAGAAGCCCCCCTGCTGCGTGCTCTCCAACCC

CGACCAGAAGGGCAAGATCCGGCGGATTGACTGCCTGCGCCAGGCTGACAAGGTGTGGCGGCTGGACCTGGTCAT
GGTGATTTTGTTTAAGGGGATCCCCCTGGAAAGTACTGATGGGGAGCGGCTCTACAAGTCGCCTCAGTGCTCGAA
CCCCGGCCTGTGCGTCCAGCCACATCACATTGGAGTCACAATCAAAGAACTGGATCTTTATCTGGCTTACTTTGT
CCACACTCCGGGTAGGTCGTTCTCAACCATTTTTCCCTCTCATTTTATTTTCCTTGCTGGCATTTGTTCTGTTTA
TTGTTCCTCTAATTTCCAAGCGATAACTCGCCATGGGCCTAACTGGTGTATGCCCGTCCTGCGGGGCCTGCAACA
CGGTTCTATGGGCCCTTTTCCTTTTTCCTGTCTTCTGTCTCCCCCGACCTGTTCTATTCTTCCTCCTCTGCCCCC
TGGCCATGGTATCGACTTTGTGCATCTCCATCTTTGGAGGACTTATCTGATCAGAAAGATGCTGCAGGTCTTAGG
ATTGGGGACATGATGCCCCCAGAATTATCCATGATGGTGAGAGTTTGAGATGAACAACAACAGCAAACCAGTAAT
TGCTCTTATTAAAATGAGTCAGAAGAAGTATTGAGGGGCAGGTGCTAGTTTTACTGCAGCTTCACCTCCAGTCCC
AGGAAAAACTGGGTTTGGTACAAGCGGGATGGGCAGGAGTCCGGTGGAGAGAAGGGGCATGTGAAACCCTGGGAT
ATGAGACTGAATGAACAGAAAAGAGGAGAGAAGACAGTAGTGGGCAGATT
Seq 225:
ATAACTCATCAGGGTGACAGAGCCACAAGTGAATTCTCTCTTCTATCAGAGAGTATCCTATCCAAAGGGTCAGGA
AAAGGCTCTCCCTAACATTTTCCCTTCCACAACCAAGTAAATAGTCCCTGAATATGGTATCCGCTGCTTTTTTAA
ATATCAAAGTTTCAGAAAGAGGGAATGCCAGACGTGCAGAATCAGAATGCAAACGTACCGAAAGTATTCTCTCTT
TCTCAAGATGTGTTGGGGGACAATCAGAGACTCGTCTTCCACCCGTAGGAAATCACTGGCTTGAATTTTAGGTAT
GGAGTGCTGCCTAACGGCTTTAGTGTGCTTGTGCTACACCTGAGTGCGTCAAAGCTTGGGGGGAAGGGAGGACAG
CCCACCGAGCTGCGGTACCCCGCTCAGGCTAGAAGAGCGCTAGGTAAGGGGAACATCCAAAGGGACGCAATGAAT
TCAAAACCTCTCTTTCCCACCGAGATCTGCAGTCCTGGGGGTCGAAAGGCCCACCTCAAAGGAACCACTGGGTTA
TTAATTTGATCAGCCAGGCTGGCTCTTCAGGCTGGGGGAGGGGTGGGAATGGGAAGCCGCCATCCGTGCTCATGC
GCACCCCAACACTCAAGCTTACCCCCAGACCCCTGGATTCTGCCCACTTTCCCTCTCATTTCACCTCAAAGTCAA
TGGAGTTAAAAATCAGTCTCTTTCCCCTACTTTTCCCGGGGAGTCTGAATTCCTGGGGTCTGTTAATGATTTTAA
AATGTAGAGCCTTCCCTGGGTCGCTCCCGCCTGGAGTTCCCGCCCCCTTCCCTCCTCTCCTCTCCCCACCGCCAA
CCCCCACCGCAACCATTCTCTTCTCTCTGTCCCTAGAGAAAAGCCCGCTACATCCATTTGGATTTATGTAAGGTG
GATTAGGGACACAAAGGAAACAATAAGACCCAATTTACAAAAAAAGGAGGGAGTAGAAAGGGAGGGTAAAAGAGA
GAAAAGGAAACGTGATGGGAATAGAAAGCAACAAAGTGAATTAATTTTTAAGGGGGAGGTGGGGGAGGGGAGGGG
AACAGACCTCCCTCCCTCCCCTTCAACATTAGCCTAGGGCTCTCAGAGCCTTTTTGTCTTGGGCTCCCAAGTTTT
TCTCCCCCCCCCCCAAAAAAAGAGGGGGTTTAAAAAAAAGAAAGAAAACAGTCTCTACATCTGGGGCGAGAGAGG
TCTCAGGGGACGTCCTAACAAGTGTGTGAAGTGGCCAGGAGAACGCGGGATCCACGATTCCTCTCAGGGGAATGA
ATAACCCTAGGGACCGAGGGGCGGCGACGGCCGAGATGGCACCAGAACCACCAGAAGCCACGTCGGAAGGAGATG
GGAGATCCAGAGGGCGAGAGAGGGCCCCTTTCCTCCCAAGCGATGTCTGTGGGCAGGTGTATAAATCTCTCAGAG
CCTCCGTCTGGAGGGCTCCGGGTACCGGCTGCCCAGCCAAGGCTAAGTTGGTTTTTGGCTCCCTCCTTCGGAACA
GAGAAAACGATAGATTACACAGggatggatggacggatgtctggagagatggaaagatgaatggatggatggatg ggtggatggatggatagatgaatgggtggatggatggagggatggatggacggacggacggacagatatatggat ggatgcattatggatggatgcatggacggacggacggatgcacggagagatggatggatgcatggatggatagat agacggatggacggacggatagatagatggatgCCGGAAAGGAGAAGAATGAGAGACGGATGTGAGACTAGATGC
ACGCAGGCCAGAGCACCAGCATACGCTGGAACAGAGCACGAGCATACACTCGAACACACGCGCACACACTCAGGA
CATCTGCGCACAGACATACAATCCTCCGCGTCCGCTTCCACGCAGGCATTCGCGCACCTACATACACGCAGTTGC
acgcgcgcgcacacacacaggcacacacacgcagacatgcacacacacgcagacatgcacacacaccacacatgc agacatgcacacacacgcagacatgcacacacacaccacacatacacacacacacacacacaGTTCGCCTCTCCC
TGGGTTTCTCAGAAACTAAATGATCACCGCCCCCCCGCCCCGCCCCACCTCCCGACACAGACACACAGGCACATA
CAATCCTCCCAGCACGTCCGAACGGATGCACAGAAAACTGAGCACCCAGACGGGTCCCGTCGACCCCGCACGTTA
GCTCTAAACTGTGTGCAATTCTGGGGCGAAAAGCTAAAACTCGACTGCGTTCAACTTGCCGGCGGGTTCCCCAAG
TCTGCGGGGCGAAGAGCTCGGGCCCCTCAGGCCCGCAATCGCACCCTCGGGGCGCTGGGCTTGGCGAGGAGAAAG
GTGTCTGACTCCGGGTGCTAGAAATCAGGTCACTGGCGCCTGACGAGCGGCGCCACGACCGCTGCGCTGCGGAGC
AGGCCCCGCAGCCCGGTCCCGAGAAGCGCAGGGCTCGGGAAACTTTGCAGAAACCAGAGCTCGAAAGGCTTTCGC
TAGAATCCGGGAGCACCAAGCCTTCACTGTGCTCCAGGCTGCGTTTTCCCCTCGCCCCGGGCTGGCTCAGGAGAG
GACGTGGTTCTTGTAATTTTTTTTTTAAATCCCGGCGTTGTCTCCCGTGCATCCCCTCAGGGCGCCTCGAGCGGG
CCTCTCTGGCGGATGCTGATAAACTTTGGCCTTTGGTTACAAACTTGGACAGACCCGCCGCGTGCACGGGTCACC
GCCTCGGGGCAGGCTGTCCGGCGGTTCCCCGCTGCCCCTTCGCCGATCCCCTCGCCTCAGCCCCCTTCTCCCGAA
TCGGGACGCACCATTCACACTGGGCTCCCCCCGCACCACCTGGCCCTGCGCTCCTGAGGACCCCTCACCCGCGAT
GGCCCCTCGCTGTCCCCGACCACAGAAAGGCCGTCCCGCTCTTACCTTCATTCGCGGGGTATACCCTGGAACCTG
TGACAGCGTCGCAAATCCCGAAGAGACACGAAAATAGGGCGAAATAGAAAATCCCAGCCATGGTTCGCCGGTGCC
AACGCTGCTCCTGCCGCTTCTATCCCAGTGGAATAAATGCTTAAGTTAGGAGAGCAGCGGGCTGAAGACATTGCC
AAGGGGGCGGGCCCGGCCGGTGACGTGAGCCCGCCAGTCCGGGGCCCGCGGCCAATGGCGGCGCAGACAGGGCGG
CCGAGCCCCGCCTTCACCGAGCAGGGCCCGCCCCAGGGTTCCGCCCCCTCCGGGCTCCACGGGGCGCGCGGTCTC
CCGGGGCTCTAGGGGGCGAGCACGGCCGGTCCCCGCCCCCGCCTGCCGGAGGGAGCCAGCGGGATCCCCCACGTT
ACCTCGAAGGTCGAGCCCCTGGACGGCGGAGGGACTTTGGAAAAGCTCGGAATTGACCGAGGGGAGCCAGAGAAG
AGGTTGGAAACCTTTTCTCCCACCACGGGCGGTTTAAGATGGAGGAAAACGCTCT.TTTATTGAAATAAAAGAAGT
CTAAGCTGACCTGCGGTTGCTTCTTTAGGAGAGTCGACGTGTCTGCGTCCAGCGCGCCCGGGCTGAGCTGCAGAC

TCGCGCCTGCCACCGCCACCCTCTGCCACCTTGCCCTGTTTTGTCTTTATGGCGCTTCCCCCTCTGAAATACTCT
TTGCGGGGAGTTTTGTGGCTCTATCACTCGCTTCTTCCCTGGCTCCCCAGATGCCTGGAGAGCGGGGACCTACTT
GGTCCCCAACGTCCAGTCCGCAGCAGGGCTCCGTCACTGTCTCCAGAGACTGAACGAATGACTTTCTAGCAGTAA
GGAAGTCCCCGCTGGCCCCGTCCCCCTGCACACGCCGTGGACCTCGCCCAGGGCCCAGGACGCCCCGAGATGGCC
TTGGGCAGGGAACCAGTTGTGGATTTCCCGGGGGCAGGGTTGGGGGCAGTCCCTGGAACCGGGCCTAGCCCGTCT
GGGAGCGGTGGGGTAGAAGTGAAAGGCTTAAGTGTGGGTGCGGGGACTTGCAGCCGCACAGACAAGGCAGACCGG
GACTGGGAAGCTGCCCGGAGCGGCTGCTGCGACTCTCCGCTCCGACCTAGCCGGGGCAGCCCTCCCTGCCCCGGG
AGAAGACGGCGAGCAGGAGGACCCGCAGAGCCCCGCCCGGCTGCTCCGGCCCCGGGGGCACTGGCACCATCGGGC
TGTGGTCTTTTCCCGATGCCCGAGCCGTGGACGCGGCCACCTAAGAGCGGTCCGGCGAAGGCAGCGCAGCCGGTG
TCCCAGGGACCGGTCCCCAACGCCACTCGGTGCATTTCCCCAGGCGCTGGCAGGGGCACTGATTCCTAGCAATGA
GGCCTCCCTTCCCCTTCCCAGGCCGCCCCTCCTCTGACTCCCTCCAGAGCAGGGCCGAGTTTTCCTGGGGAGCCT
GGGTCCCGGCGGCCGGGCGGCCGCTGGGAGGTGGAGGAGCCTCTCCAGCCCCGGCCGCAGCTCATCGTGAGCCAA
CCGCGCCACCTGCCGGCCAGATGCGGGAGTGTGCGGCCCCGGAGGAAGGGCGAGCGGACAAAGACCGCAACCCGC
AATCCGCAACCCCGCAGAGAGGTGGTGCGTGCGTTTGGGCGAGCTTTTCAGCCACCGCCAAGTCTCGTGCACTAG
GGCTACTCCTACCGTGGGGCTGCGGACAGCGCTCAAGAGGTCCTGGAGTCTGTCGTGACTCTCGCCTGCTGGATT
TCAAAAGATGGAATCGGAAAGCGTTTCAAGGAGAAACTCCTAACAAACCTTCCGGGGGTTGCCTGAGTGGCTGCT
CTCGGAAAAGCGGATCCTAAATAAAGCGGGAGGGTTATAGGGCGACGTCGAGGAGAGGACAGGTCTCGAGTCACT
GCTACAGTTTCAGGTCACTGGGCTCCGCAGCAGATCGTGTTTTCTCCCGTGGCTCGAGAGCTGCGCTGGTTTCTC
ATGCAAACTCAGAGCCGAGCTAATGACATGAGCAACTTTTACTTTTACACAAGATGAGCACGCGTGCCGAGGCGC
TGGGCGGCGGCTGTGTGAGTTGGTGGCCCAGACGAACAGCTTGTGCGAGACTCTGGGCATTTCGGTTTCTAGATA
CAAGATTTGCTTAAATGTCACAGTCCAAAGAAGTGGATTTCAGTCATTGTAGCTACTGATTGCACACAAGTAAAA
AGGGAAAAAATATGTACTCGGGGGATATATGTATGTGTGTGTGCGTGCATAAATTATTTAAAATAACTGCACTAA
ATCCCTTTAAGAAATGCATTTCTGGGTTCTTTCATGTGTCTTTCTGAGTTTTACAGAAAAAGAAGACGAATATTG
GTCCCTGTCATTTGGCACACAGATTCAAAAGAGAAAAGAGCAATCCGAATTCTTTTTGAAACCTTTTTAAACAAT
AGATGCTGGCTGCCTCTCTGCAGGATCTTGAGTGTTGCATGTATCTATCTGTGTTTGAAACGGGAAACTGACTGC
CTGCATTGTTATAAACAGTAAAATTTCTAAAACATGTACCATTTTTTTCCCCAGGATATGCACATTGAATATTAA
ACAAAGTCTTTCCAGACACAGCTGCCTGAAAGCAAGGCATCATTTGCTAGAGTACATTCACTGACTTTCCCTTTT
TTCTTCCTATGTTTTAGTTCAGGACCCAAGGCAGCCCGATAATCAGGAGAACCAAGAAGCAGGAAATGCTAACTT
GGAAAAA.CTGAACTATAACTTCCTCTTTAAATCATTTCTGGGTTGCAGAACAGAAATGAGCTGCTGAAAATTCCT
CTGTCCATTGTGACTACCTAGAACA

Seq 226:
CTGCTGACCCTTCCTCTCATCATAGAAAGAGGGGTGGGCAGGGGGCAGAGTCCTTCCTGCTCCTTGCCACCACGT
GGGAGCCAGACTTAACTTCCTTAGAAAAGTCATCCCTGCCCTTACCAGCCTGCCCTGTGGCATTGCCAATCGGCC
CAGCATCTGGTCCACACAGATCCTTAAAGTAATCTTCATTCTTGAAGACAAACACTAGTGAAGGCCAGCCAAAGA
GGACGCCAGCAAAGCCCAGGCATTCCAGCAGCCCAGTCAGCAGTGTGGCCACGTGCAGGGGCAGGCCCTGGCCCG
CCATGAGCAGAAGTGGAGTGGATCTTCAAATCCCACTTTGTCCTCCTGGACGGATCACAGGCGCCGTAAGCCTGG
CGTTTGAGCACTTGGAAAATTCCTCTGGCAAGCCAAGCCCTTCCTTTCCCGTAGCTCTCTGGTTGTTTCAGGCCT
GGGCAAA.AACCATCAGCGGGTGATTCTCTGGATCCTGTAGAATAAAGATAGAGGCTGCTGGAAGAGGAGGCCTGC
GGGAAAGGGAAAGGTAGACTAGAGTTATTTGTGAGGTGCATTAAGAGGCAGGATGATCATGGCCGCTGGCAGCAA
ATGTGGGGAATAAATACTCCAATACATCATCTTAGGCACTGCATTTGAGTAACCACGTGGCAAGTAGAGAGGCAG
GTCTTGATGGCCACCTGGAGTCACAGGTGAGATAAACGACTTACCCAATAGCTCCCCGGGAGCAGGTGGAGAAGC
GGAGCTCCTGCGCTCGAATTCTGAATACCGTCCCCTAAAATAATGACAGCAACTCAACCAGGTGCAGAGGCAGGG
AGATTTCATACAGAAGACACAAACTCCCGCTGCCAAGTTGGtgttatcttcagtttactgacaatgaaacaaaag ctcccatggatttcaggaacttgcccaaggtcacagggctagtTTAGTCACGACGCAGGCCATTCTACTGCCAGA
AATACCCCCAACTCCCATGACCCTCGCCTAGGACTCGCAAACCTGGTCCCCGCCGCCCTTCCTCGCATCAACTTC
TACCAGGAAAGCCTCCGGGGGCCGCTCCCCGCCAGCCTCCGCACCCCGCTCCAGCCTGCGGCCTGCCCTCCCCGC
AGAGGAGCCCGAGGGGCCAGGCCGCGCTCGGCGCCCCATGGCGCCCGAAAGGGGACCCTTCGCCCTACCCGCCTG
CTCCGCGCCGGGGCTCTCCGCGCCCTTTCCGCACGGGCCAGGTTCGCATTCGCGCCTCTCGCAGCCCCTCCCAGT
CCCCTGCTCGCCTCCGCCCCCTCCTGCCCGCCCGGAAGGGGCTGGGGCAGAcctcccactctccatcacttcctt cttcttttcccttgctcacagcctcccgcgccctttttacctctccctcttgaaacttctccctctAGAACCCCC
TAGAACCCCAGCGGTGTCTTTCCCTCCCTCCTCGCTGCCTTTCAGCCTCCCAGCCCCCTTGCCTCTGCCTCCCCT
AACCAAGTTAGTTGAATGCTGTTACTCGCTCAGGCCCACCTAGGGAAAATGTCACACCCAGCACCCAGAGGACAC
ACAGACAGCACATGAGGGCATAGGGACACACACACTCTATTTGTGCATTTTGCCTTGACCGCTGGGTTGGCAGGG
AACATATTTTTCCTATTTGCTCACCAGCTTAACCGTCTCTCCCAGTTTCACACTCCCAGAGCTGCCAAAAAAATC
CCAACCACAGAATCAGGAAGCCAAGAACCAGGACTGAGGGCTTTTCAGAAACCATCCCCTGGAGGACTGCCCCAT
ATTTTCACTCCCAAAAACCCCTTAGATGACTCCCTGCCTCACCCCCGCCCCCCAGGTTCTGAAAGAGCCTTCCCG
CCAGACTGCATTGATTAACCATTCATTGCCCCATTTTTTATTAATCAAAGACATATATAATTGCTCATCGGAGCT
TGTGATCAGCGTGAGGCCTTACTAAGCAGCTGCCTTACTATCCTTCCAGCCCAGAGCACGTGAGCTGACGTCTTC
TTTGGCCTGTGTGGCCGTTTCCTTGCCAAAAGCTCAGTTTGGGGAGAGCTTCTTGCGTATTAGATGCAGTCTGCA
GACTCCCAACCCCAGCTACCTGGATCCCCTGAGGGCCCAGGAACTCCAGCTATTCCAAGCCCACTCCTCTTTTTT

TTAAGAGGAAGAAATAGAGGTTACGATAGGGGACAGCCAGAACTGAGGATTTTCCAGCTCACCACCAAAGCACAA
AAGATAAAAGTCTGCAACCACCCTAGTGACTTGACTGAAtggaggaagggtggctggggtcctgtaccccaagct actcactagttatacaacctgaggcaagctctttggctgccccacctgtaagacgaggacaatagtaccttaatt ataggaattgtcataaaagaagtataagatgggtgtatgAGGTCCCTGCATGGCGCAGGTGCTATAGGCAGATTG
TAGGGTAGTAGATTTTCTAGTCTGCAGTTATGTAGACAGAGCCAGAGAAGCAGCTCTGGGGAGGAATTTCAAAGG
AACTTGCCCACGGTCATTCTACAAAGCTGCAGTACCTTCCCAACTCTGAAACGTATGCTCTCATCACCCCGTCTT
AACAAACATTTGGACATTAGAGAAAACAAGTCTTTTCTTAAAATAACATTATTTATGGGAGAAAATCCACAAAAA
TATAGCATCCCAGGACAAACAGGGCTTAAGATGCAAGATTTTCTATTTTACTGCAAGACACAAAGACTCTGAAAT
TAATGCATGCCCTATCTTCTGCTCTGGCATACATTTTAGTCTCCTGGGGGGATCAGTAAGTGTGGAAGTAGCAAG
GGAGAAACAGAAAAAAGTCAAAGTAAAGAGACAGATTTTAGAATGTTAATCTGCAGGAGCCTGCCAGAAAGATCT
AGCTCATGGGCTATCTGTACATCCAGGACTGAAGCACGGGACACGGGGCAGGTCGTCCAGGGTTCTGTCCACCTT
ATCTTGTTACCTCTCTTGACTCTTAGAGCCTCCACTCCACATCTCCCATCAATGTCTGCAGAAGACGTGGCCTCC
ACTAACACAAGTCTTACTGAACTGATGGGACAGGAAATTAGAATATCCTCTGAACCATTCCCATGTTCTTTGGTT
CGAATTCCAGCAGCTAGAAAAGGCAGATGCTATTCTGATCACTCTCCTGCGTGGCTCCAATGAGGATTAATGAGT
AACATCAGAGAGAGAAGTGATTATAATAAGGTCTGACGGTGCACCCGATGTCTTCATCCTTTTCTCTTCGCCTCC
TTCCTCATCATCTCACACCTTTTTTTTTTTAATTGACTGattggttcaacaaatacatgtggtacctcaggctct gtgccaagtgccgggattcgtagagaagagattcagtgcctgctctcaaggggctcattctcttgtgggagagac agacAAAGAAACCCAAGATTTCTGGAGTGTGGGAATGGTCTTCCAGGCAGATGCTAGCACAGCACATTGAAAGGC
ACGGAACCTCAACAAAACAATAACATTTAGGAACCAGCTAGAGCACAGGGTGGTGAAGAAAGTGGAAAGATTTGA
GGCCAGCGTCGCCATCTAAGTGAGGGCATTAAGAATTCAGCCCACATCAATCAATCATGTCCTATTGATTTCACC
CCTTAATATCTCTCCTATCTATCCGTGGCCACTGCTCTATGCAGACACTCATCATCTCTCACAGAGGCATCATCT
GCTTCCAAGCCATCGCCATTCTCCTGCAAGAGTTTATTTCCATGGTTCCCACTGGATGGCTTCACTTAACTGCTC
AAAACCCTTCTGAGGTCCAGTCAACTGGCTGGTAAGGACCAGTCCAGGGTCTGGGGATGCCAGCCATGAGACATT
GCTTTGAGGGGAAGAGGGAGCATAGAACTGGATCTCCTGCATCCTACTGCCCAAGTACCAATGCTGGAGGTGGTT
TTCCTTCCCATCATCAGCAAGTCTG

Seq 227:
GAAGAAGAAACAGGTGAAGAATAATGTCTTAAACATCATTTTAGCACCCTATTCTGCCATTCTGTATCTTTATAG
GATATGTCCAGTCCAGTCCCAGAAAATCTACTGCCCAAGGAGTTCTAGATGACAGGTTAGATCAAGCCCCGGCAA
ATGTTTGCGAAAACAACATTCAACTGCCTCTGGACATTGCAAAGACATATTCCAGGGAGCTATCTCTTGGGCTCT
TTTTTAACATCTCTCCTAGAGGATGAGACTCCTTTCGGGATTACAGCCACTGGGAAAGTAAAAGCAACAGTAGCA
TCAACAGGTTGCATCGCACTCCCGCGCCCCAGGGGCGGTGCAGGAGAGCGCCCGGAGCCAGAGCCAGGGCGCGCT
GGGCGCAAGCTGGGGCGCGCCCAGGGCCAATGAGCTTCTGATTGGCTCTTTG'CTGTGAATAGACTAGGCCGAGGC
TAATAGGACCGGAGGGGGCGTTCACCTGGGAATTGGCCTCCCCCCCTTGCCAAGGACCTCCCTGATTGTATGGGG
CGGAGTGGGGTGGGGGTGGGGGCTGGAAAGGGGAAGCCCACCCTAACTAAACGGAGGGGCGGGAGGAGGTTAAAC
TGAGGAAGCCACGAGCCCGCAGTAAAGAGAGGGCGATCGAGGCAAAAGGGTAGGTAACTTGGGACTTCTGTGCCT
TGAAAGTGTTAAGGATTGCAGGGAATGCAGGCGCCTTTCATTTTACTTTGGGCACCCTCCCCTGGCTGGGCATTT
AATGAGGAGTCCTACTGTGTGTGTTGAAACTCTGCATAATACCGTAAAATATTCTGGCCCTAAATTACACTCAAC
GGAGAGATTTAGGCAGATTACAATCCTAATTGGCCGCAGGGTGCTGGGGAAAGGGGACAGAGAGAATTGGGGGAT
CTGGAATTTGGTGTGCTATCACTACACCGCAGCTCTATTTTCCATTAAGAAAAAGATCATATGACGAAGTCGAAC
TAAGAGATCTGAAGTAAAAAATGAAAAGATGGAGCAAAAGTAAGAAACATACTCTGAGACGAGTGGGTTTTCCCC
CTTTATTCCAACAGCAATCTTAAATGATGGACGTCATGTAGCAGTTATATATCTATGAACATGCATGAGAGATTT
ATAAATACCTGCATACATAAATACAAACATCCTATTATACATGAGAAATCGTAAATGCTTGGGCATCAGAAGTGG
GAGCTGTGATCCTAGCTTGGGGGCAGCACAGGGTAGGCGGCCTTCTCTCTGCTTTGAGTGGCTTCTGGGCGCCTG
GCGGGTCCAGAATCGCCCAGAGCCGCCCGCGGTCGTGCACATCTGACCCGAGTCAGCTTGGGCACCAGCCGAGAG
CCGGCTCCGCACCGCTCCCGCACCCCAGCCGCCGGGGTGGTGACACACACCGGAGTCGAATTACAGCCCTGCAAT
TAACATATGAATCTGACGAATTTAAAAGAAGG CCTGAGCAGGCTTGGGAGTCCTCTGCAC
ACAAGAACTTTTCTCGGGGTGTAAAAACTCTTTGATTGGCTGCTCGCACGCGCCTGCCCGCGCCCTCCATTGGCT
GAGAAGACACGCGACCGGCGCGAGGAGGGGGTTGGGAGAGGAGCGGGGGGAGACTGAGTGGCGCGTGCCGCTTTT
TAAAGGGGCGCAGCGCCTTCAGCAACCGGAGAAGCATAGTTGCACGCGACCTGGTGTGTGATCTCCGAGTGGGTG
GGGGAGGGTCGAGGAGGGAAAAAAAAATAAGACGTTGCAGAAGAGACCCGGAAAGGGCCTTTTTTTTGGTTGAGC
TGGTGTCCCAGTGCTGCCTCCGATCCTGAGCCTCCGAGCCTTTGCAGTGCAATGTCCCGCCTGCTGCATGCAGAA
GAGTGGGCTGAAGTGAAGGAGTTGGGAGACCACCATCGCCAGCCCCAGCCGCATCATCTCCCGCAACCGCCGCCG
CCGCCGCAGCCACCTGCAACTTTGCAGGCGAGAGAGCATCCCGTCTACCCGCCTGAGCTGTCCCTCCTGGACAGC
ACCGACCCACGCGCCTGGCTGGCTCCCACTTTGCAGGGCATCTGCACGGCACGCGCCGCCCAGTATTTGCTACAT
TCCCCGGAGCTGGGTGCCTCAGAGGCCGCTGCGCCCCGGGACGAGGTGGACGGCCGGGGGGAGCTGGTAAGGAGG
AGCAGCGGCGGTGCCAGCAGCAGCAAGAGCCCCGGGCCGGTGAAAGTGCGGGAACAGCTGTGCAAGCTGAAAGGC
GGGGTGGTGGTAGACGAGCTGGGCTGCAGCCGCCAACGGGCCCCTTCCAGCAAACAGGTGAATGGGGTGCAGAAG
CAGAGACGGCTAGCAGCCAACGCCAGGGAGCGGCGCAGGATGCATGGGCTGAACCACGCCTTCGACCAGCTGCGC
AATGTTATCCCGTCGTTCAACAACGACAAGAAGCTGTCCAAATATGAGACCCTGCAGATGGCCCAAATCTACATC
AACGCCTTGTCCGAGCTGCTACAAACGCCCAGCGGAGGGGAACAGCCACCGCCGCCTCCAGCCTCCTGCAAAAGC

GACCACCACCACCTTCGCACCGCGGCCTCCTATGAAGGGGGCGCGGGCAACGCGACCGCAGCTGGGGCTCAGCAG
GCTTCCGGAGGGAGCCAGCGGCCGACCCCGCCCGGGAGTTGCCGGACTCGCTTCTCAGCCCCAGCTTCTGCGGGA
GGGTACTCGGTGCAGCTGGACGCTCTGCACTTCTCGACTTTCGAGGACAGCGCCCTGACAGCGATGATGGCGCAA
AAGAATTTGTCTCCTTCTCTCCCCGGGAGCATCTTGCAGCCAGTGCAGGAGGAAAACAGCAAAACTTCGCCTCGG
TCCCACAGAAGCGACGGGGAATTTTCCCCCCATTCCCATTACAGTGACTCGGATGAGGCAAGTTAGGAAGGTGAC
AGAAGCCTGAAAACTGAGACAGAAACAAAACTGCCCTTTCCCAGTGCGCGGGAAGCCCCGCGGTTAAAGATCCCC
GCACCCTTTAATTTTTGCTCTGCGATGGTCGTTGTTTAGCAACGACTTGGCTTCAGATGGCAGCTACATTTGATG
GTTTGCAAATGCCGCCGCTGTTCCAAACTTCCTACGGTCCATATTGTTTGATGAAAACTTTCTGTTAAAATTGTG
TCCTTTCCGCCCACCTTCTGCTCCCCCTTTAGATAGATACGGTATAATTGTAGGTACCCGTATATGGCATCATTA
TTCTAGTTCCCTGCTGCCAATACGCTGCTAAAACGTCGCATCTTCTCTGTCACTGGTTTGGGTTTAATTTATTTT
ACGCCCTGGGCATCCATCCTTGTGTGTTGCGCACTCAAGTGTGGGAGATTTAGTCTTCCGAAGTTGTTTTCCAAA
ATGCACAATGAAACGCAAAATTAGTGCTTCCAAAGTGGATAACTTTTGACTATGGAATTGTTAGAAAACAAGAAA
CTTTAAGGTTTATATATTGTATAAACATACCCAGTATGTGCATCCGATCGCGAGAACGTTGGCGTCTTTTAGGAA
ACTCCGCGCACGCACTTTATCAGCCGCTGCTGCGGTGGTGGCTCCAGGAGAAACTCAACTGCCAATTGCAGACCA
GTTTTTTTTTTTTTAAACACAGCCACTTATAATTCTTAAGCTCTTTGCAAATGTTTGTTTAAAAAATGAAAAATT
AAAAAAAATCTAGTAGTGTCAAACGCATTTGGTCAATTTTATTTTGCTTTGTTAATATTAGAAAACTTATTTATT
ATTGTTTGCTACCATTTCTACTTATCTTGATTCATTTTTTACGTTTTCTACTCGAGATCATTTTATTTTAATTTA
GCAAAGCCAACTGCCCTTGTTTAATGTATTTTGTTTTGCAAATGATTAAAATAAATGTGAAAAGAAGCCTTTTGT
CACTTATTCCTTGAGTATAACTACTGAAAACAATTTTCAAATGAATGACTTTGAAGAATTGAGTTAAGTCTTCTA
TTCAATGTCATTTATGCGATCTTACAGTTTTGAAGAAAAATGTTGTAAACTTGGTGCCTTCAGGTAGTATCAAAA
CCCCTTCAAAGAAAAGCACTCAAGTCAATAATTAAATTGTGAGATAAAACTTCTTCCAAATTTGCAGCACAGTTT
TGCCTCTTTGATGGCCAGGATCTTCCCAGTCTTCTTTACTCCTTGCCCCAACAACATCTGCAAGGGGGGGAGGCC
Seq 228:
AATTCCTCCTGGGGTGCTGGGCCGGCTCTCTCCCCTCAGCCCTGGGCTCTTACCTCTATGAGCTGGTAGCCTTGC
TTGCAGGTAGCAATGAAGTAGTCACGGAACTGGTACTGAGGCTGCAGGTTCTGGATGATGGTGAACTCGTCTAGG
GTCTTGGGCTGGGGGCACTTGATGACTGTTGGGGAGACCAGGGGGCATATTTATTTCAGAGCCACTTGTCCTTCC
TTCTTCCCCCCTTTTCCCCATTGCTGGCCATCGAGGGAGGCCTGCAGGGAGCCTTACTCTCGGTGGTGTAGCGCA
GCTTCCAGCCCCGGCTGTCCCCCGACTCATCTGTGAAGAACAGCAGATCCACAGCATTGCTGCTGGTGTCGAGGT
CGGGGGGCCTTTGCTTCCCACAGAACTCGCCAATGTTCTTCCCGTTGGCATAGATCTAGTAGGGGAGGAGGGTTT
TTTTTTTTCAGCTTGGACGTTTTTACACAGGGCCAACTGGGTAGTAGCCTGGTGGCCAGGGTGGTGGTGGTGGTG
ATGAAATCCTGCCTTATGTGTGTTTTCAGGGGAAGGTGAAAAGGGATCCCCATGACCCAATTCTAGTTGTGTGGG
AACTTACCCAGCCCATGGGTGATGTTGGCCGTTCCTGCCCCAGCTGGCCAGGGGATCCAGGAGGAAGTTGGGACA
AGAGGAGCCAAGTGCAGACAGAAGGGGAGGAAGGGGTCTTTCAGGGGTAGGACGGCTGTACCTGTAGCTGGTCAT
AGGGGCAGTGTACTTGCTGGTGGTCATCAATATCAAAAGGCTCCAGGAACTTGAGGTGCAGGGTGAGGCCCCGCT
CCACCCGGATGCTGTAGTTGCAGCGCAGGTCAGGGGGGTAGGACCGAGGGTACTCCAGGCTGGAGATGTAGCCTG
ATGCCTCCGTGTACAGCTCGCTGCTGCACTCAGCTGTGAGAGCAGAGCCACAGGGCATTACGGGGGACTCCAGCT
GGCCCAGCAAGCCCTGGCTCAACCCCTTCCCCTCTGCTACACCACTCTGGCTCACCCTGGCAGGAATGCGTGTCT
TCCTGAAGCTCATAGCCTGGACGGCAGGAACAGAAGTAGCCTCCAACGTAGTTGTGACACAGGTGCTGGCACTGG
GGCTGGGGATCCTCCTCCCCTGATTTGCTCCGGGAAGCACATTCATCAAGGTCTGGAAGGCATTCAGGAAGGAGG
GTTAAGCTTCTGCTGGGAGACCTGAGTAGTGGCTCTGATCTTAGGGAGGTCACTCACCAGAGACCTAAAGACAAA
GGCATCTTTAGGCCACCTGGACCTCCAGGCCTCTCCAATGCTCTCTGGGGACTGCTCCATGGGGACAGAGCCCAG
GTTGACAGGCCTCGTTAGGAAAAGCTCTCTCGAGGGGAGGAACAAGGAAAGCCAGGCTTTCGGCTTCTTTGCATT
CAAGATTCCCTTTCTTGGCCCCCCATTCAATATGGCTGAGGTCAGAGAAAAGGGATCCCTGGGGGGCTACTCACC
CACAGCTTGGTAGTAGGCCAGGAAGCCCTTGTAGAACATGATGGTCCCATTCTCCTCGTTGGAGAAGTCTGTGTG
GAAGGTCAGCAGCATCTTGTTCCCTTGGGACATAAATTCCTTCTTTCCCGGGGGGTTGCCCAGTGGAGAACCCAG
TTGCCCACAGAACCTCCCCAGGCTTTTCTTATCAGCAGAGATCTGGTGGAAGAAGGACAGTGGGTAGGAAGAAGA
TCTGTTGCGGAGTGGCGCACGTGGTGGCTCAGTGATGGTCCTCCTTGTCTCGCCCAGAGTGCATCATGCACCGCA
ATGGCTCTGGCTGGTCACTACCTGCTGGGCTCAGCTGCTGCAAACTTCCCCATGTGACTTTCAGCTGTTCCCTGA
GTCTCCCACTGATTCACTCTTTGCGTGTTGTCCTGGACTGGGTACCTCACCCTTTCCCTGTTTTCTGCTCCTCTG
GCAGGTTTCAGGTCCTTCTCCATCCCCACCACCTCCTATGGCCTGTTCCCCTGGGGTCCTGGTTGTCTGTACCCA
GCCTTTACCTGCCCCTCATTCCCAGAGCTCAGACAGCTCCGCTTTATTTTCTGTCTTCAGATTCCACCTCAGCCT
AATCAAACCATTCACACCTCGAGTGCCTCCTGATGCCCTCGGCGGAACATGAGCCCTGAAGCCCACCCATCTCAG
TGTCAGCAGGCACTGCCTCGTCCCTCTTCCTTCCTCCTCACAGCCTCCTCAACCTCTCCTTGACTCTGCCAGCAA
ACGCCCTCCCCCAACACTGCACACTCGCCAAGTCTTCTGAGCCGGTAAGACGTGCCATTGTCATGTAATTCACGC
ATAATCTCCAGGGGTCTCCTGGGAATGGTAGTTGTTGGACCTTCGCAGGCTCTGCTTGAGCCCTGAATCTCATTT
TTACTGGATAGAGAAAGACAGGCCTGGGAAGGTACCCTTGGTTGCCACAGAGGTGAGGGTTCTGAGCACACTGTC
CTTGCTGAAGGCTATTCCTGTGCTGCCAGAGCCCACATTTCTCCTCCTCATGTCCCTGTGTTCCTGTTGAAGCAG
GCAGCCATGTCAATCATTTCCTTGGAGACAGGGAAGCTGAGGCACAGTGGTTTCCCAAAGACTCTCAGCTAGACA
GCAGATGGGGAAGGTTTTCCTGACTCAGTGGATGTTGAATTTCCTGAGTGGGTCCTGTCCCCTTCCTTCTCTGTG
CTTCTCCCCTCAGTGCTCACCGAGGGCCTCTACACCAGTGAGCGCCCATCCAGGGCATCCCCGGGCTCTCAGAGA

GGCCGTTGGCCATCAGCTCTTGTGGGGCTGGGCTGTGTCTGGGGGTGTGCATGCCATACAGATCCCAGATCCCAG
AGGGCCCAGTTTTGTCTCCCCTCTGCCCGCCCATCCTGCCCCTACCTTGACATAATCATAGAAGCAGCCTTCAGA
AGGCTCCAGGTCAAACTGCTGGAAGACGAGCTTCACCCTGTATCCCGTGGGGACTGTGATCACAGTGGTTGTTTC
AAAGTTGTTGGGGTAAGGCTTGGGGAACAGAGGGGAAGTCACCTCCCCAAATAACTTCTGAGGGATGGGAATGGA
GCCTCCTGCCCTGCAGAACAGGGCCGGCACCAGGAGGTACAAGAGCCACCTGCCAAAACAAAAGAGAGTATCTGG
AGCTGGAGGGGTTCAGCACTCTTGCCATGTGGGCAGTGGCTGTGGCAGGGGATGAGACGGCCATACCACTGGGCA
TTCTCCTCTCTGCCCACCCTGAACCTCACAGACATGTTCTCAGCAGGGGTGCGTGGGTGGGGAGGATGGCCTGTG
CAGCTGCTGCATCGGGTCACTCTCCAGGGCAGTGTCCAGTCCAGAGGCCACCACACTCCCCTCACACTCCCTTTC
CAGCCTCCTCCCCTGCCCGGACGCGTCCCTCCCCTCCCCTTCCAGGAATAGGACTGGCTTGGGACCAGTTAATGG
AGGGTGAGGGTTTCCACCCGTGGGTCTCTGAAAGGGCTCCCACAGGTTCAGCAAGAGCGTCTGGGAGAAACCATC
TGTGGAGTGGGGGACACAGGCACAGAGTGTCCCGTCCTGGGCAAGGGGTCCCCT'CCTCTCGCTGCTCCCTGCCAA
GAGCCCAGAGGGAAGAAAGGACCATGGCATGAGCATCTATGTATGAAGTCTCCTCTGATCCCTAGGAGGAGGGAT
GGGGCGTGTGTTGTGTGTGTCCACGCGTGTGCACAGTGGAACTGATGAGGTGTGTGAAGAGAGAAGGGTGTTCCT
GTCTCCCTGAATTGCCTCCCATGccctggcttctcccctggcttctcccTCCCACCTGGTTGCCCATCACCCTTA
CTCACATTTCTCAAGGCCCGTGTTGAATCCTGGGCTCTCCCGACAGCGTCTTCGTGCACTGTGTGCAGAGGGAGC
CCGCGTCATGCACAGCAGGGAGGGGAGGGTTTTCTGTGGAGTGGAGGGGGGACCATTCCCGGAGGAATGTTGGAG
GGAATGAACTATTTGCATAAACAAAAGATCTGAGTTTCCACTTTAA.TTTAGTTTTGGTTTTGAAATCCCTGTTTG
TGGTGCCACCTGCTGGTCGGTGAGGGAAAGGGCTAAGGAGACGGGAGTCTGGCTTTTTAGGGCCCGGGGAGCCTT
GGGTTGGAGGCCCAGATGTCTCAGTCTCTAAATCTGATCAGCTTCTCCCTTCTTCCAAGACTTTCCTGGGGGCTG
CTGCTGTGTTTACAAGGTTCCTACCAAAGCAGTGGGAGACCACAGGTGGTGGTGAATTCTCTTTTCTGGGCTGTC
CTTTCCCATTGACCCTGTTCTTCCTGCCCTCATTCAGCCCACAGCCCTGGTCCAAGAATGGCCCGGGTTTCAATG
CCCAGGACGTAATGATAGGAACACTGGGGCAGAGGAGGGTGTGTGGGAGCGGGCAGAGGAGAGAGGAGCTTGGTT
GCCTTGGGGCCCTGGCCTGCTTTAGCCATGAATGACACTTGGACATAGAATAGGGTTGGCCATGTCAGGGCAACC
CTAAATCAGCCCTGGGTTTGAGACCCTCTGGGGCGGCTGCGGAGGGGGTAAAATGTCCCCATCTCCTTAGCATCT
GCTCAACACAACTGCCAGGGCTGAAGCTAAGGATGCGGGTGTGGAGCAAGAGGGACTCGGTTTTTCTGAGATGAA
GCCAGGCCCCTGGGAGGGAGGAGGGACCCTAGTCTCTCCTGTCCATCAGGCCATAGTGTCCTGCTTTAAAACTTT
TGCTCTTggccacgtgtggtggctcatgcctgtgatgccagcacttttcgaggccagggtgggaagatctcttga gcccaggagttcgaaaccagcctgggcaacatagtgagatctcgtctctaaaagttaaaataaaTTAAAAAACAA
TTTCATTGTTTTTGGAAGGCTTTCTTCATCAACTCTCCATGGCACCAAATATCTGATGGCACTTCATCCCACGGA
GGGGCTTGGGCTGCAGAGCAGGACTCTGCGTTCTTAAGCCTTTGTAGGCTGTTCTGCTTGTTTCCCTTATTAGAT
GAATCCCTCCAACCTCCACCCTTCTGCCCCCACCCCCGTTCATCCATTTATGGGCTACCTGTTTAATGTGCAAGA
CACTTTCCCAGGCAATAGATTGCAAGAATTCACAGAGCTGATGCAGTTCCCCATCAGGCAGTGACCACATCATCA
GTAGTTAGACAGCAGGCACACAGAAGGTGCAAGATCCACCAACGCTTGGAGGGTTTCTCCAGCAGGCCTGTGTGT
CAGAGCTGAGGACTGAACCTAACGGAGGGCTGGTCTGTGATGGGATCAGCATATGATCCACAGCCTTGTTAGATC
AGGAAAGACAAAAGATGGGGGAGAAGGAAAAGCACCAGATCAGAGGACGAGAAGGAAGGGGAATCTCGTCTAACA
AACTGCACATTAATATCCTAGCAGCAGTTtgtgtgtgtgtgtgtgtgtgCACGCGCGCATGTGCCGTATGTTCAT
AATGGAGGCAGAGGGAACAGGTAAGGAGGTAAGTCTTAGCTGAAGCTCTTCCGTCCATCCTAGGGATTCTCAGTT
CTGCATTGGCATTGTGCAACACGCTTGGAGAGCGGCAAACCTGGATGTCATTAGCTCAGTCCCAGCCCTGTCTCC
ACTCTGCCCAACCATTCAAAATAACCTTTACTCACACATTTTTGTTATGTCCTTGACTTTGTTTTGTCCTTGACT
CATACCAAGAAGGAAAAAAATGCCATATGAAATGCTGCTGCATTTGTTTTAAAACAATTATTGAGGATATAGTCG
GTTACAGTGTTTGTTCCTTTAAGGATTTGATTCTTGGGAAAAAGATTTCTCTCTTAAAGTAGTGGTAGGTTTTCC
TCTGTGGATATGTCTCTATCGCTAGCTCATCTATCTCCATCAAGTCTATCTCTTACCTCCCTCTCTCTCTCATTG
TCGATATCTCTATCTCTAGACAGAGACAGCGATGGAGatgtagagatatagatctagacatacacatataaatat aggtatatatatatatTTTTTGCCTTGGCAGGGAGAAACTCATATCATTTTTTGCAATCATAAAAATAAGCAAAA
TAAAATAAAAACATTTCATGCTCATTAAACAAATTTTAGCCAATAGAGAATAGTGGAAAACCAAACAGCCAAAAT
CTTATCAATAAAACCACCTCTGTTTAGTATTTTGAGAGAAttattattatatttttggagatggggtttcactat gttgcttaggctggacttcaactcctgggctcaagcgatcctcttgcatcagcctcctgagtg Seq 229:
TATACCCTGATCAGGGTGGGGGTCATGGTGGTCATCTAGACATTCTATGGCTGGGTGGTGGTGGAGGGCACTCAC
CTTGTGAACACTCGGACATGGTGAATTGGCATTGGCATTGCTGTTGAAGGACAACTCAGCCGTGTTCTTAGCCAT
GGCCATTTAGGCCTGTTCTGATGCAGGGTTCTGATCCAAGGTACCAGTGTGGTCCCTCAGGGAAGTACTGGGGAT
CGTCACTTATGCCTGTTCTGGACATGGTCACCGAGAACTGTCCTGTAGGCATTCACTTAGGAATCATTCGAAGTG
GAATTGCTCCTGGATACGTTCTCCTTGTACTCTGTTTCCTCCTCCTAGTGTCTCTGTGTGAAGAAGCCCTCCTCA
CTCAGCCCTCGGCGACCCTCTGGTACCCTGGACAGCTCCCCGGGGAGCAGTCTACCGCTAGGCGGCGGCTGCTAA
GAGAGGAACCCTCCTGACGCGGAGTCTGCCGCTCCGGGGCTCGCTCTCCGGCAGGCCCGGGGAGAGGTGGGGTGA
CAATGGGTTGGGGTGCGCGCGTGCCTCATAGGTGCGAGACAGAGCGAGCCGCCGGGGTGTGAGTCAGCGCGCTGG
GGGCTAAGAAGCTGGGTGAATAGTCACGGAATCTCACTCACGCTCGGCTCCTCCACCCATCCCGTCTACAGCGCG
TGTCCCAGTCCAGGGCGTGCGTGCGCTCGGTGTCCGATTCCGGGCTGTGTGTGTCCATTTGGCGAGATGTCGAGA
GCGGGGGGAGTGTCCTTGTCGGTGTATCTGGGCCCAGGTTAGGGGACTTCTCCTCCCCACCCCCGCGTGGGTGTG
GGGGTGTGTCCGGGCTAGGGCGCGTGTGCTTCTGTGCCTGTGCGTGCGTGTGCGGGTCAGGGTGGTGGGACCGCG

CATCAGGGCAGGGTGCCTGCGTCTGCGTCTGGGTCTGTCTGGTCTGCATGTCGGCGCGATCTCGACCTGGATTCG
TGTCCCTGGATGTCGAGAGGCCAGCGTGGTGGGGGTGTCCAGCCTCCCGGAGGAGTACTATGCCTTGACACCTTC
GTTTCACCGCCCCAAAGCTGGCCTGGGGCTCCGTAGGGAGTGGCCTGCATGGGGAGGGCCCGCGTGCTGTGTTTC
TGGGAGGGGTAAGAGAGTGGGGGCGCAGGGGGCGGGCCAGGTCCCTGGGCGCGGCGCGGGCTCGGGGGACCCGCG
CGGCTGACGTCAGGCCACTCCTTAAATAGAGCCGGCAGCGCGCTCCGCTCGGCATTTCCCGAAGAGCCAGATCGC
GGCCGGCGCCAGCGCCACCGTCCGGTCCACCCGCCAGCCCGCACAGCCGCGCCGCCGCCGAGCGTTTCGTGAGCG
GCGCTCCGAGGATCAGGAATGGGGCTTCGGGCGCTGGGCGCGCTCCGAACCCGGCGCACGTAAGAGCCTGGGAGC
GCCCGAGCCGCCCGGCTGCCCGGAGCCCCATCGCCTAGGACCGGGAGATGCTGGAAATGCAACCGCCTGTTCCCC
GAGGAGCCGCTGCCCCCGGGACCCCCTGGCACTGTGCGCACCCTGGTCAGCAGCCCCCGGAGAAGACGGCGCCCC
CAACGCCCGACCCGCGTGGCCGTGGCAGCGCCACGCGAGCCCTCTAGGCGACCGCAGGGCCACAGCAGCTCAGCC
GCCGGTGCCCCCTCGGAAACCATGACCCCCGGCGCGGGCCCATGGAGCCATGGCCTATAGGGTCCTGGGCCGCGC
GGGGCCACCTCAGCCGCGGAGGGCGCGCAGGCTGCTCTTCGCCTTCACGCTCTCGCTCTCCTGCACTTACCTGTG
TTACAGCTTCCTGTGCTGCTGCGACGACCTGGGTCGGAGCCGCCTCCTCGGCGCGCCTCGCTGCCTCCGCGGCCC
CAGCGCGGGCGGCCAGAAACTTCTCCAGAAGTCCCGCCCCTGTGATCCCTCCGGGCCGACGCCCAGCGAGCCCAG
CGCTCCCAgcgcgcccgccgccgccgtgcccgccccTCGCCTCTCCGGTTCCAACCACTCCGGCTCACCCAAGCT
GGGTACCAAGCGGTTGCCCCAAGCCCTCATTGTGGGCGTGAAGAAGGGGGGCACCCGGGCCGTGCTGGAGTTTAT
CCGAGTACACCCGGACGTGCGGGCCTTGGGCACGGAACCCCACTTCTTTGACAGGAACTACGGCCGCGGGCTGGA
TTGGTACAGGTAAGGACCAGGAGCTCCGCTCCGTGCGCCGGGTCTCTGATCGCTTCCATTGGGAGAGCCATCCGT
CTCTTGTGTTTTCTCTTTCTTTTAACCCAACTCATTGTATGGGTTCAGGCTGACACACAGGGCCATGGGGGGCTA
TAGCAGAATTTACCCAGAACTTCCCAGTGATAATCTAGACGGGCAGTTTCTGGAACTGCAAAGGGCGTTCCCTCG
TCACTGGAGTCGTTGGAAAAGGATTATCTCCAGTCAAACCTAAGTGCCAGCTAAAGGGCTAACTCCCTCTGTGAC
CAGCCCTTAGGGTGCCCAAGGAAGGGACAGGCGAGGACCTGTGCTGCCTGAACACGGCACCATCCTAACCCTCTG
TAGGTCTTTGCTGGTACCCAGCCCCTGAAGGACCCTGAGAAAGATAAGGCAGTTCAGAGACCCCTTGCAGCAAGG
CTCTGTTTGGGAAAGGTCCCCAGAGTTCAGGCCAAATGACAGTGCATCGCCAGAGGTCTCCAGTAAGAAAGATGC
CTTAGGGAGTCTCAATCTCAAACCCAGGTATTTGCTGCTGTACTGGGGCTGAGACCCCCAGTAGCTCTGGCCCTG
GTAGGTggtctttgagtagtggaaa Seq 230:
TCTCTAGAACTTCTGGAGAAAAAAGTAATAAAGCTACCAGGTTAAATGACTGAAATTCCTGAGAGAAAACAACAT
GTGTGTGTTTCTCTAGAAAGGGGGCCCAATACTGAATACCAGGAAGTCCTATAGTAAATGGAATGTGACTCTATG
TGGGATCCGGCGTTCCTATTTCATCCGAATGCATGTCTGCTGCTTCAGTGGGAAGGGTGCTTGCACACCAGGTAC
CCACTCCCTGGTGTCATGTGCTATGCAGTCCAAAGACAGAACCAGGAATGGTGAGCCCATGAGCCTGCTGGACCC
AGCCCCTCCGAGGTCCGGAGTGACAACCAGTGCCGTATTTCTAGATCAAACCTGAACCCCTCCTACAGGGAAAAG
ATTTCCAGGGGATTTTGAAAGTTCCAACATTTTACAGGGAAGAAGGAAGATAAGCAGGATATGAAAGAAGAGTTC
ATGTTATACAGCCCTGGCTTCCACTGACGCTAACACTGGATTCAGCTTTTGACACTGATAATCTGTTGCCACCAA
ATGGAAAACGTAAACAAGATATTCTAAGTGTGGTTAGAGAATATGCAACACAAGGAACAAGCAGAACATTCTTCT
CTGGAATCTGACATAATGGACTGTACTTTCACAGACAGCACTGATGTTAGATGTACGTGAAATAGGCTAAACTGA
AAATAAGAAAGGCTGAGGCAGAGAGGATAATATAGCTCCAGCCTATCTCCCAGCACCTTGTTAATTTCTCTCAAT
CTCCAGCCACAAATCCGAGACACAACGCTCTTCCTCCAAAGAGGTCGCGCCTTCTCTGTGGTGGTTCTCAGGGAT
CCGCCCCAGCTCCTTCTCCGTTCCCAGCCCCACACACTGGGATCACCAGGCACCCAAGATCCCACCTCTCAGGTG
GTATCTTCAGCGCAGGCTGCCACTCAGCCCCCCTCCAGGGATCTGGGGCAGAAGGCGAATATCCCAGAGTCTCAG
AGTCCACAGGAGTTACTCTGAAGGGCGAGGCGCGGGCTGCATCAGTGGACCCCCACACCCCACCCGCACCCCAAG
CGCTCCACCCTGGGGGCGGGGCCGTCGCCTTCCTTCCGGACTCGGGATCGATCTGGAACTCCGGGAATTTCCCTG
GCCCGGGGGCTCCGGGCTTTCCAGCCCCAACCATGCATAAAAGGGGTTCGCGGATCTCGGAGAGCCACAGAGCCC
GGGCCGCAGGCACCTCCTCGCCAGCTCTTCCGCTCCTCTCACAGCCGCCAGACCCGCCTGCTGAGCCCCATGGCC
CGCGCTGCTCTCTCCGCCGCCCCCAGCAATCCCCGGCTCCTGCGAGTGGCACTGCTGCTCCTGCTCCTGGTAGCC
GCTGGCCGGCGCGCAGCAGGTGGGTACCGGCGCCCTGGGGTCCCCGGGCCGGACGCGGCTGGGGTAGGCACCCAG
CGCCGACAGCCTCGCTCAGTCAGTGAGTCTCTTCTTCCCTAGGAGCGTCCGTGGCCACTGAACTGCGCTGCCAGT
GCTTGCAGACCCTGCAGGGAATTCACCCCAAGAACATCCAAAGTGTGAACGTGAAGTCCCCCGGACCCCACTGCG
CCCAAACCGAAGTCATGTAAGTCCCGCCCCGCGCTGCCTCTGCCACCGCCGGGGTCCCAGACCCTCCTGCTGCCC
CAACCCTGTCCCCAGCCCGACCTCCTGCCTCACGAGATTCCCTTCCCTCTGCAGAGCCACACTCAAGAATGGGCG
GAAAGCTTGCCTCAATCCTGCATCCCCCATAGTTAAGAAAATCATCGAAAAGATGCTGAACAGGTGAGTTATGGT
TTCCATGTACACAGGCGACTGGAGCCGTTGGTCAGAAATACTGGCATGTGCCCCCTAAAAATAAAATCAGGAAAA
CCCAGGGGTTAGTTGAAGGACTAGAAATTGGGATTATTGTTTTCACAATTAAGGTTTCCTTTACGATAATTACTG
CTCTGGTGCCAGAGGATATTCCCAATGCCTGGCGTCCCCACCCTGGTTCTTCCTTCGTTCCAATGAATGTAGGTA
AAACTGCCTTCATTTGAGGCCCAGTAGGACAAACAGCAACAGGTTCTGGCTGTTTTTAATCCAATAGTACAGTGG
AGACCACCGCCCCACCCCACCCCCATTCCTAAAAGAGCATCCCAAGCTTAGAGGTCCCTGCCACACAGCACAGCT
GTCATAGGCAGTAGCCACTTGGTTGCCAGGCTGGGGAAACTGCATTCGGAAAACTCTAGAGGCTGGAGGAGCAGG
GCAGGAGAAGAGTGTTGTGCAATCAGCTTTCCCGAGCACCTACTCAGGGCACCCATTTTCTCATTGCAGTGACAA
ATCCAACTGACCAGAAGGGAGGAGGAAGCTCACTGGTGGCTGTTCCTGAAGGAGGCCCTGCCCTTATAGGAACAG

AAGAGGAAAGAGAGACACAGCTGCAGAGGCCACCTGGATTGTGCCTAATGTGTTTGAGCATCGCTTAGGAGAAGT
CTTCTATTTATTTATTTATTCATTA

Seq 231:
TGTTCTGAAACATCCGGTGTCATCCAAGTCCAAAATTGGACAGCTTTTTTTTCAGTTCTTCCTGTAACATTTGGC
AGTGTTGGCCACTCTCTGCTTCTTTGGCAAGAATCTCAGAAAACACTAATAACTGCTCCAGGCAGGAGCCTGGAA
GAGGTTACCAAGCTAGAGAAGGAAGCAAcagcatagcttgctaagggcaaacagcccagaggaaacccacggctc tggtcaatcctgttgttgattgctagatccagagactgttgtagacctcccagttacagtgaggtatctgacaac ccctcacaaggttcttgAAGCTCCGTGGTGGAGGGTATCTTGGATAAATCCACAGAGACACATTCAAGAGTAAAT
TCTCCACTGTTGGAGACCTCACTCACTCTGTTTGGTCTCCACCAAAGACACGGTTTTTAATTCATGGAGCTGCAC
TACAACAGCTCAAGAACTCCCAGCCAAAGTTTTAGTTTTTCTAGGAACATAAACGAGCCAATAGTGTGGAAATCG
GTGATTAAAAACAAACCTCGCACATTTTAAGACAGAATTATTACAAGTAGCATGTACAAAAGGAAAATAATAGCC
TACATTTAGTTCTTCTAAGCTTCATTCCACAAGAGATTGAAATCGAAgtattctgggctggcacacgatagctgg aacatcatattttattctagaaacacatttgccttggcaaagaagagcgtgcctagaggagtggtcaggatagtg agggatctgTGATCCTTCGTTCTGAATCTAGAAAAGTCACTGGATATGCCCCTCCCCCGCCCCCCAACACGGTCT
TATGTTCTGAATGTAGAAGTCACTGGATGTGCTGacacacacacacacacacacacacacacacacacacacaca cacacacacacacaGAGTCTGTGGCCTCTTTCCCAGGCATTCCAAGTCCAGCAAGTTCGCAGGGAGCTGTCAGTC
CGTCCAGGAAGGCCCGGGCCTGGGTTTGCCTCTTCAAGCAGCTACTGCAGGGGCGTGGGGAGGGGGCATAAGAGA
CTTTGGACTTTCCTTTGAGACAGTAGAAAGCGTTACATCCAGAGGCGAGATTCTAGCCTGGGGTccccgccttcc cggcctcctcttcctctccctctgactccctttcctgtgcccctccccctgcctctttcccGGCCAGAGTCCAGC
CTTAACCCGGGCAGAGGGCGGAGTCCCGTTAAgggggtgtggggaggaggcggggccagggcaggggcggggcag agccgggccaagctgggcgggTCATGCGCCCTGGCCTTCGCGCATCTCCCAGGTTAGCTGCGTGTCCGGGTGCTA
GGCTGCAGACCCGCCGCCATGACGCTGCGCGCGGCCGTCTTCGACCTTGACGGGGTGCTGGCGCTGCCAGCGGTG
TTCGGCGTCCTCGGCCGCACGGAGGAGGCCCTGGCGCTGCCCAGGTAAGGGGGCCCAGCGCCGCCGCCGCAGTGG
GTCGGGGCCTCAGGAGGCAGACCGCGCTGGGCTTGCAGCCCAGCTTTCAGATTGCTCCTGTGCCGGAGCCCTGCG
AATCATGCGAATCATGAAACTGAAGACCTGGCCCTGAAGTCCCAGTGCATATGAGGAGATCCGTTGTCTTTCTAA
ATGTTCATAATTAAACGTTGCCAAGGTCTCCAAAATTGCTTTCTGTGAACTTTTCCAAAAGGGAGAGGAGTTACT
CATGGAGCTTTGTGCTTCTGCTGCCTCCTGTCTAATGGGGTGGCGCTTAAAGATGCGAGCCGAGATTCAGGAGAG
AAGAAAGTTCTCTCCCCAGGTGTGGGTTGCATGCTTACTTGTGTAATAGCAAACTGCAGCAACCGCCCAAAGCCA
CATCACTGGGAAATGGTAGATGGGGTGTGCAGAGTGAGAGCTCAGGGACTTGGGAAAACACCTGTTCTACTACAT
GAAAAAACCACCCCACCAGAATCTGAAGCTATTTATACAATATGGTTTCAGCTATGGAAAAAAGGTACATGCAGA
AAAGTGCCTGAAAGAAATAGGCCAAAGTACATCAAATGAGATTAGGAATAATGTAATGAttttctttctctctct cttttttttgtgttttttttttttGTAGTTTCCAACTTCTAAATTTATAAACAATGTATTATTCCCACATTCAGA
AAGGAGAGAAGTATACTTATTTATA
Seq 232:
tcaaaaactactaagaattttaagagggcaatggcagagcattaaaccaggcatcagccctttcCttttttttaa tttttaaaatatttatttaGATTTTCTTTTTGTTAGTAATTAAATCTttcttcttcttcttcttctcctcctcct ccttctccttcctctccttcctcttcctcttcttcttcttccctcttccctctctcctcctcctcgtcctcctcc tcctTGAAACagtgcagtggcacaatctcagctcactgcaacctccactttccatgttcaagtgattctcatgcc tcagcctcccgagtagctgggattacaggtatgtgtcaccatgcccagctaatttttgtatttttagtagacact gggttttgccatgttggccaggctggtctcaagtgatccgcccgcctcagcctcccaaagtgctgggattacagg tgtaagccaccgcacctggctCTTTTTTTGTTTTGTTTTGTTAagtataaaacctcacctggaagcaccagccct ttctgagtgtgcgggcctgtgccactgcgtgggttgcacgtccattaagctggtcTACCTGCCATCCACTTCCTC
AACCCAATGGCATTCTCCTGTTTCTTAGATATGTACCAACCGGTTTTCTGTTTTATCTTAGCATGGCTCACTACT
CCTCATTAGGGTCTCTCAGCGAAGGGGGTAGCCttttttttttttttttttttttttgagacagagtcttgctct gctgcccaggctggagtgcagtggccagatctccactcactgcaatctctttggttcaagcattctcctgcctca gcctcccaagtagctgggattactggcccacgcccggctaatttttgtatttttagtagagatggggtttcacca tgttggccaggctggtctcggactcctgacctcaggtgatccacccgccACcactccagcctgggcaacagagtc tgagactccgtctcaaaaaaaaaaaaaaaaaaaaaaaaaaagtcatactggcatagagtgaacccctaatccaat atgactggtatccttataaaaaTACtttttttttggagacggagtctctctctgtcgccccaggctggagtgcag tggcgcgatctcgactcactgcaaccaaaaggagacattttgacatggagacatatacagggaatatgccctgtg aacatgaagatggccatatgcaagcccaggagagaagcctggaagagaccgtttcctcacagcgctcagaaggaa agaaccctgccaacatcttgctttcagatgcccccaggattgtcagacaataagatctgttattgacgccaccgg gttggtgatacttaggtacagcagccctagcaaacgaatacacccccatgagaactaagctccctgagagcggta agctgccttgtcttgctcacagctgacaagaacacgcctgtacggtcacttagcacctagtaCTGCCATTTAACC
GTTTCACTAGTATGTATGAACCGGAGAGCCTGTCAAGGGAAGAGCTGAATCTTTTATCTTTTGTAACGACTACCC
AGTGAAAGAAACCGCGGGTATGCAATAAAAACCTGTTGAATCGATTAAACCATTTCCCTTATTTCCAGATTTTTG
CGGAAAGCGCCAGTAGGTGAAATATGTGCGGACTGATGAGTCAAAGCTCTTATTCCCTGGACTGCATTAATACCC
ACGACGTGCTTTTCGCTCTCCAGACAAAGAGACCGGTACTTGGCAGGTCCCTCAAGTGGGACTCAAAAGACCGAA
CCGAGCTGCAGCCTTTCGCTAGCACTGGTCCTCGCCCCTTTTGGCATCTTGGTACTTGTAGTTTTGTCCACTCTA

TCTTTACCCGAAAAGCCAGCGCTGAGACCACAACTCCCATCACCCTGCGAGCACCAGCGCCTTCAGAGCGCATCC
TCCGAGGGGCACCAGCGCCATTGACCACCCTGCTGGCCGAAGGGCCCGCCTTCCCGAGGCCAGGCGCTCCCGCGA
TTGGCCAGCCGCCCCGCCTCTCATCGGAGGGCGCCAGGTGAATGAAAGGGGGGCGTGTCGGTGCGCGGTGCTCCG
TGGCTGCGCTGCTGGAACCCGCTGGAAGGTGAGCGCGAAGAAGCGGGTTGGCGCTGCCGCTTTCGTTGGTTTGGG
GAGGATTCCTAGCACCCGGGAGGCTGGCTGGAGATTGGGGTTAGCGGGCAGGGTTGCCCCCACTCAGTCATCCTC
CTTCGGACCGCTTGGCCCTGGCAACTCCTGGGACCTCCGCCCCGCGAGCCCTTCTAGCGTGGGGAGGGGCAGGCG
CGGCCGTGGGGCCCCAGCTTCCCTGTCATTGGGTGTCCTCCGCGTCGTCCAGCCGGGGGTCGCGGCGCCGACTAC
TTCCACGGTGAATGGTGCCCAGGCGTGGGGGGCTCGGCCACACTGGAGAAGTGCCAGCGGCAGCGATGGCCACTT
TGTCCGCGGGAGGCCATGGGAGGGGCTAGGCCTTGGGGTCCCACCCTCGGGGGCCGTGCCCTGTAGCTGGTTCTG
GTGGCCTCTCTGCAGGTCGTCTGATGCTGGACGGGGGAGGGTCTGTCTTGCGAGCAGTTTAGATGCAGTTGACCC
TGAAATTCTTCGTATGGAAATGGAAACTTCTCCAGTGTCCTTCTCCTCCGATCCATGCCTAAAAGAAAGGAGTGA
CTTCCCCAACCTGTCGCATCGTGTCCTGGAGGGTTTGAGGAGGCCGGTtagcatagtggttaaggatgtcaaccc gggagtcagtcggatctctgttctattactaacttggtgatgttatctgcatctttgaatctcagttcctcctct gaaaaagaggatgtagttagagtatctgtcgtactggattattgtgaggtgaaaactaatgtgcttgtaaaagcc aggcatggtggcgcgcacctgtagtccctgctactcgggaagctaaggttgggaggatctcttgagcccaggagt tccaggctgcattgaggtaggatcgtgcactccaacctgggcaaccgagcaagaccgtgccttttaaaaaTTTTA
ATTTAAAAAGTAAAATGAATATGCTTGTACTTTGTACAGTGTTTTATAAGGAATAGTGCTTAATATTTACTAAAA
TTGAGGAGCAGGTTTTTGTTATTCTCAGGTTGGTGGGACTGGAGGAGTCTTGTCAGAAAGGGTCGGAGGTGGAAT
TCAAGGCTGCTTTTGGCCTCTGAACAGAGACAGTTGTGTGATCTGGCTAGGACTCCCTCAAGGGTATATGAGAGT
TTGTATTGCAGGTAGTTGTGTTGGCATCTGCTGTCTCCTGGAGGACAGGCACTATACTTGGTTCATTTTTCTATT
CCTGGCATCTTCCTTGTGTCAGGCATTGTATGTAGCCGGTAACCGTTGAATTGAGTTGGAACCGTGGGATGGTTG
GGAGGTTCCCTGCCAGAGTGCGGATAAATGTGCTTCTGAGAGCAGTCTGCCCTAAGAGCTGCTCTTCTGGGATAA
GTGGTGATCCTCAGCACTTCCCGGGGCAGCAGAGCACTTCAGGCAAATGGGGGTGATATAAATAAATATTTACAC
AATATATACCAAGTACAGGATTGGGGAAAATTTTGAAGAAAATACTATACGGATAGACTTTTGCAACGTCAGGAA
GTAGAATAAAAATAATTGCAATAGAATAAAAAATAATTTCAGTAAGAAAGCCAAAAGAAATTGGTTTTAGGTGCT
ATTTCTGGAAAGGAGGCTTTTCCAGTGAAAGACGGAAGTGCCCTGGGAAGAGCCCCTATAGATCAGACCATACTA
CAAGTTAAGAAGTGTTGTGCGTACTTACATATTTATCTACCTGGCTTACCAACTCCTTACCCCTCTGCCCTGCCT
CCTTTTTTTCTTAGTTAACAAAGAAAAaagccaaggcagaaggatcacttgagtccaggagttcaagaccattga gaccagccagggcaacatagtgagaccccatctctacaaaaaaatgttttcagaattagctgagtgtggtgctgc atgcctgtagtcacagctacttgggaggctgaggtaggaggattgcttgagcctgggaggtcgaggcggcagtga actgtgatcatggactgcactccagcctgggtaacaaagtaagaccccgtctcaaaagaaaagaaaaGCAATACA
TGCACATAGTAAAACATTCTATCAGAAAGGTTTAAAATGAAAGGCGAAAGTCCCTCCACACACttgttttttttt ttttttttgagatggagtctcgcactatcgcccaggctggagtgcagtggcacaatctctgctcactgcagcctc cgcctccaccgcctcctgggttcaagtgattctcctgcctcagcctcccgagtagctgggattacaggtgcccgc caccatgcccagctaatttttttgtatttttagtagagacggggtttcactacgttggccaggctggtctcgaac tcctgaccccaggtgatctacccaccttggcctcccaaagtgctgggattacaagtgtgagccaccacacccggc cCCAAGTGGATTTTAAACTTGGTTTATAGTTTATCTACTAAGCAGTTAAGAAATGAATATTCCTTTtttgcttaa caaatctattttgtccaaagcactctgccagatactgtaagggatataaaattgaataagacatggctcatgctt tcaaagggcttgtagttcattgacagagaagggccaggacataaataataaacaggagttaaccaagggtagTGG
AATCAgtcagttaggagtctcccagttgcatgaaatagaaaacccaactCAGAggccaggtgtggtgtctcacac ctgtaaccccagcactttaggaggctgaggggggcagatcacttgaggccaggagttcgagaccagcctgggcaa catggcaaaaccctgtctctaccaaaagtacaaaaaaaattagcctggcgtgggggtgggtacctgtagtcccag ctactcgggaggctgaggtaggatgattactttagccagggaggcggaggtcagagtgggccgagatcacaccac tgcactgcagcctgggtgacagagtgagaccccatcccccatctcaaaaaataataataataatatttaaaaaag aaaaCCCAACTCAGACCAGCTAAACCAAAAAGGAACTTAATTGGCTTCTGGCACTGCTTGAGTTGGGGCTCCAAT
GTTGTCCCCAGGCTCCATCP:GCCTGAGCTGGGCTGTCATCTTTGTTAGGCTGACTTCCCTGGTGGTATGGCAGCA
acatccctcacatcctgcatcccacagagcaaagagtgctcttttttgaaattccagcaaatgtttcattgcttt tcattggctctgaaaactacatggccatctccgagccaatcactgtggtcacagggtgggatgccttaattttat tagcctacattatagcttacacacctggtgcttgaggatggcaccagctttatgcaaagcatgttggccaagaat gggggaaggatgcttccatcaaagccgaaaaaaggcactagaaccaaaagaatggggaatgcatgctggCTAGCC
CAAGAATCCACCAAATACTTCAGTATAATGATGATAAAGGGAGACCAGTCTTgttcgtgaccagcctgggtaaca cagtgaaaccccatctctactaaaatacaaaaaattagctgggtgtggtggcatacacctgtaatcccagctact tgggaggctgaggcaggagaatcgcttgaatatggaaggcggaggttgcagtgagccgagatcgcgccattgcac tccagcctgggcgagagagggagaatctgtctcaaaaaaaaaaaaaGACCAGTCTCAAAGTTTTGAATTGGGACA
CTGGAggctgggtgtggtggcttatgcttgtaatctcaggactttgaggggtggaggcaggaggatcgcttgagg caaagagcttgagaccagcctaggaaacataccaagactgccatctctacaaaaaaaaatttttttttaattggc caggcgcagtggtatgcacctgtagtcctaggtcttgggaggctgaagcaggagggttgcttgagcccaggagtt tgaaggtgtagtgagctatgatcacaccatttgcactctggcttgggcgacagacccaagacccttcctctaaaa aagaaaaCCAGTTTCAGATTGATACACTAAACACTCAAGTATAAtttttttttttttttttgagacagaatctca ctctgtcgcccaggctggagtgtagtggcgcagtctcagctcactgcaacctccgcctcctgggttcaagcaatt ctccttcctcagcctcctgagtagctgggactcaggtacccgccaccacgcctggctaatttttagtagagatgg tagttttagtagagatggggttttgccatgttggccaggccggtctcaaactccagacctcagctgatctgcccg cctcagcctcccaaagtgctaggattacaggtgtgagccaccgtgcctggccTCAAGTATAATTCTTAGATGTGG
ATATTTTCTATAGTTTGAGCCTTGAAGAAAGTAGaatgtagtacattagagcattggctctggaggccaatagac ctgattttgagtcccagatctgttacaactgggtcatctcctaccctcaatttccttatcagaacaagggagaca atattaatatttacttacaaggtttttataaaaattcattgaaagaattcatgtaaaacagtaagcactgtgctc acatgcaattagcTATAGTTATTTTTTTCCATAAATTAACCCAGTTGGATAACCTCTTATTTTTATTAGATCCAA
AGCAGACCATATTATTATTATTAttttgagacagaatcttgctctgtcacccaggttggagtgcagtggcacaat cttgtttcacgcagcttacatctcctgggttcaagcgattctcccacctcagcttccctagtagctgggattaca ggcccggctaagttttgtatttttagcagagaaggggtttcaccatgttgggcaggctggtctcaaactcctgat ttcaagtaatctgcctgccttgtcctcccaaagtgctgggaAGCCCATATCCTAAAGACACTATTGCACCACTGG
TTTTGGAAAAGTTGTTTAAAATTTTTAAAAGAAATCTTATTggccgggcgtggtggctcacgcctgtaatcccag cgctttgggaggccgaggcgggcggatcacgaggtcagaagatccagaccatcctggctaacacggtgaaacccc gcctctactaaatatacaaaaaatttgccgggcgtggtggcaggcacctgtagtcccagctactcgggaggctga ggcaggaggatggcgtgaacccaggaggcggaggttgcagtgagccgagattgcgccacttcactccagcctggg caacagagcaagacgctgactcaaaaaaaaaaaaaaaaaaaaaaaaaaagaaATCTTGTTTGTAAAGGTTGGGAT
TTGTGAATTAACTTAAGAAAAATCTTGGCAGAGATACAGGTTTGCTCTGGAGCAGCAGCAGCTGGCGGAGCAATG
GAGATGCAATCCTATTATGCCAAGCTTTTGGGGGAGCTGAATGAACAGAGAAAGAGGGACTTTTTCTGTGACTGC
AGCATCATTGTGGAAGGGCGGATCTTCAAGGCCCACAGGAACATTTTGTTTGCTAACAGCGGCTACTTCCGAGCC
CTGCTCATTCACTATATCCAGGACAGCGGGCGGCATAGCACCGCCTCCTTGGACATTGTCACCTCTGATGCCTTC
TCCATCATCTTAGATTTCCTCTATTCTGGGAAGTTGGATTTGTGTGGGGAGAATGTGATTGAAGTGATGTCGGCT
GCCAGCTACCTGCAGATGAATGACGTGGTGAACTTCTGCAAGACATACATTAGGTCATCCCTCGACATTTGCCGA
AAGATGGAGAAGGAGGCTGCTGTggctgcagcagtggcggcggcagcggcggcggctgcagcggcggcagcagcg gcggcTCATCAGGTTGACAGTGAAAGCCCCAGTTCAGGCCGGGAGGGGACCTCCTGTGGTACCAAGAGCTTGGTC
TCCTCTCCAGCCGAGGGAGAAAAGAGCGTGGAGTGCCTGAGAGAGTCCCCTTGCGGTGACTGCGGAGACTGCCAC
CCCTTGGAACTGGTGGTGAGAGACAGCCTTGGCGGTGGCTCGGCTGACAGCAACCTCTCTACTCCACCCAAACGG
ATAGAGCCCAAGGTGGAATTTGATGCTGATGAAGTGGAGGTGGACGTTGGTGAACAGCTGCAGCAGTATGCTGCC
CCGCTGAACCTGGCCCACGTGGAGGAGGCCTTGCCAAGCGGCCAGGCGGTTGACTTGGCTTACAGCAACTACCAC
GTGAAGCAGTTCCTGGAGGCGCTCTTGCGCAACAGCGCTGCCCCGAGCAAGGATGATGCAGACCATCACTTTTCT
AGGAGTTTGGAAGGAAGACCAGAAGGTGCAGGAGTAGCCATGAGTTCCATGATGGATGTCCAGGCTGACTGGTAT
GGAGAGGACTCAGGTGAGCTCCCTTAGCATTCATCAGCCCTGCCAGTGATTGAGTACACACTGTCTGTGCCTTGT
GTTCTCCcatcatcatgatcattatcaccatcatcattgtcactaccaacattatcagtaccatcatcaccagta ccatcatcattaccatcatcaccag Seq 233:
CCTCATTCATGCATAGGTCACACTTCTCCAAAGTTGGTATGGCCTGTCTCCTTGGCATGTTCCCTTGCTTCTGCT
TGTCCAGTTAATCCTTTCTGACATACCATGCATCTCAGGGTGAAGCGGTTGACATCAGTAAACTGTCTCCTTCTT
CTAGCTTCATCTGCTAATTCCAGTGCTTGTACAAGAACAATATCATCATTAGAGGAGAAAATGGTCAGAGGAGGT
GTATCTGGATCAG.GGAAGTTACGCTGAAGTGGATCATAGTGGATGCCATCATAAATAAGCAGAACCCTTTTGGTA
TATCCTGCATCTTCCCCAAAACGATCAATTCTTACTGTCTGTGTATCCACTACACATATTTCACATTGGTAAAAC
TTGGACAAAATCGATATCTCTATTGCTCCTCCCCAAGTGTCATCCCTTTTGATCCAGTCACAGTACTCTTGATTT
GTTTTTCCCAGTATTGCCTCACTATAGAAGTCTGGATCGCTTGCTACAATTTGTGCTATGAGGCGTCTCATCTCA
GGGGCACAAGCTGGATTCAAGACTCCTCCTTCGACGACATAGTACACACTAGTAAAGAGGCAAGAGTTGTCTGCT
GGGACCACGGTTCTGGTAAGCACAGGCAAAGTTTCCCTGACGTAACTAGAAGCACCACGTTTAGTAAATGCAGGT
GAACTTCTGGGCCTGGTTTGGTCTTCTTCAATGATCAGCATGTCACCTGTTAAAAATAAAACAAATCCCGATCTG
CAAAGAAATTACAGAAGAAACCGAGTGTTCTCTAGCCAAGTCTGTAAATTACAAACTGAAGGAGTTAAAGCATAA
ACTGGGGTTACTAAGGAGAATACAGTTTTGCAAGTAAGTTACCAGTAAGAATCTTTGTTCACTGAATTTTCATAA
AGATGAP.AAAAGAACAAAAAACACTTGAGGTTGCATCCCAATTTAGTGAAGGGGTCTGGAGTAAACAACTTCAAG
CTTACCTAAAAAGATACATTTCAA.AAACAAAATTTCCTTTCCTTATACAGTATTTTACAGAAGGTGCTCACTACA
GAGTAGGCCGCTAGGGGGTTCTCCTTCTCCGGAAACTTATCTACTCTAGAGTGTTTACAACATCCTTGATACAGC
AACTGAAAGCTTTTAATTATAAACACTGATGTTCAAGTTTTGATATGGCACAGAAATAACTGCTGCTGGTTAGAA
ATTGAAAGAGCTTTCAGTGGGTGTTTTAAAAGCTAACTCGAA.AATGAGTATGCCTGTCAAACGAAGTATCTACGA
AGGGGACTGCAAAAATGAATCAAG TCCTGCACCCTTGAGATCTCATCGGTGATATAGGGAAAAAG
AGACATAAGGACAGAGAAAATAGGCCCTACTTTATATTTTTGTGGACGCCGAGGGAAAACAAAATGGGATAGTTT
CAAAGCCGACCAGIIAAGCGGAATGGGGAAGGGGGTCTTCAAGGCTTTGGGTTCCCTTTCAACCCTGTGTCAAGAC
AAGGAGTTGCTAGACACTTGCCCTGGCCCCCGTCAGCATTCTCTGTTCTTTGATCTATCCTCGCCCCTGGCCTCA
AAGCCCCCCCGCCGACTCACAGCCACCTTGCCTTGACTGGTGTTTTGTTCTCTCTCACGCCCCTCTCCATCCTCC
CGGGACTTTCCCTGGCCCCAGCCCTGATTCCTTACCAGATTGGATGGGCAAGTCTTCCAGAATGGTATCCCCATT
GCTGAGATCCAGGCACTCGGGAGGGTATCCGACGAGGATTCGCTGACCGCCGGGGGCGATCCCGGTGATGGCGGC
AATTTGGCCCTGGAGTTCCCGCACCCGGGTCCGGCTGGACAGCCCCTGCAAAACATGGGTGCCGTCCTTGGCCTT
GCAGCGGAGCCGCCACATCGTGTCGGTCCGGCTGCCCACAGGCCAGGCACCCGCGGGGCCAGCTTTGGTCCCGGC
AGCCTGTTGGGAGACGCCGCCGGGGAAACCAGGCGCCGGGTGGACTCCAAAATGGCGACCTTTAGCGGGGCCAAA

CATCGCGAGAAGTTGCGGGTGGTTGCAGTTATCGCGACGCTTCGGTGCGGCTTCTGCCTTAGTACCTTAGCAAGC
GCGAACTCTTTTAAAGTGACAACTGATTTTTCCCCCACCCTCAGAACGAFIGATGTAAACCTCCGTATTCCTAAAG
GACAACGGGTCTTGCTACCTATAGAGCGAGTGAGGTGCCCTCCGCGTGGGTAGCATATATGCTCAAGAAAAGAGG
GCGGGGGAAGGAGTTCCTGAATGAAGGTCTGGAGATTGGAATGTGACCTTGCACTTAGTGAGGTCGGAAATTATT
AAATTGGGGCTTCCACACTACACCCAGACTACACCAGGAGAAACAGAATCATAGTTCACAACGCAAACGAATGCC
AGGAATGGTCAGTGAGTCAAAGGACCAGTCAAAAACAATCACACTTGTGACTAGACTCGTGGCTGCATTAAACAT
TGACTCATTGGGGTTCCAGGGGCCAAAAGACTGGCCTTTCTGCCTCCCTGGGACTGTGCTTGAAAACGTCTATTT
GCCACTTCAGAAAGCACAGTATGAGGTCAGCATCTGGGCCCAGGGCAGCTGCCTCATTCAGGTGGTGGCAGTGTA
AGGAGGAGTCGTGTAACGCGTGTCATCAGATTCCAGTTCAGTTCCTGGGCATACAAATATGAAGACTTCATTCCT
GCCTTCATTGTAACAAGTATTCATTGCAGTTGGGAGACAGGGTGGGGTGTGAGACACACAGCCACTGAATTTCAA
AGCAACGTGATAATGCTAGATTATC

Seq 234:
AGATGGAAGCCCACCCCGAAAACAGCTGTCATTGTGGGCACATGTTGTAGAGGGGGTGTGGGGGTTACTACTTTG
CTTTACTACAAGTGGAAAGCGGGGCTCAGGAGCTGACAAGTCGCCAGAATCATCCCCCAGACACACCAGGCCCAT
CAGGTGGAATTCTGAGCTGGGCTCTGGCCGAGGGAACAGGCAGAAAACCCCTCCTGCTGGGGACACTTTATACCT
GCCCAGACCAGGTTTGGCGTTTGGTACTTTTTCTTTTTTGATCCTCCATTTATTCCTGCTGCAAATCCGGCCAGA
GTTATCCTGACCAGTGATCTATGCTCATTGGATTGAGTCAACATATTAAATCCCAGATTGATTGTTTTACTGAAG
GGCCTTGACAAATAGTGTCCACAATGTTGGAGCAGGCCCGAGCCTGGCGTCTCCACCAGGTCTGTCTTGGCTCAG
CCCTTGGCAGAGCCCTGGCCAGAAGCTGTTCTCTCTGGCTCCGTCCCACTTTTGGGTCTTCTTGCAGCTGAACAG
GTTCAATCGCCCAGTGCCCAATCCCACAGAAAGATCTGAAGGGCCTGGGAGTTGCCTGGAGGTGTTTAATGCCCC
GCAGGCTGACTTTGTTCAGGTAAAACCCTTTGCAAACCACAACAAAAGCGTCCTGGGAAGATACAGGCCTGATCA
GAGGGAGCTCCCCCGAGCCGCTGAAAGGCCAACACAGCCGCAAACAATGCAGGACAAGGCGATCTTATCAAAGAA
AAGCCCTTTCAATGCCTTAATAACAACCACATTCTGTTTGAATTACCACTACTGAGCAAATGGCGGCCCCGGCTT
TCATCCCCCTCCCCGCCAGGCGCATTAACATAAACACGACCCTGCAGGCGCATTTGAATGGGGCTGCGGCCCCGA
CCCCGCGCCTGCTATGAAAGTAAAGGGAACTAACGCGACTTTCTCCGCGGTGGACGCTCGGACACGCGTGACCGC
CTCAAACCCACTCCAGGCTGCCATTGGTACTCGcccctttttacagatgaggaaatggagaatcagaCCGGGTCA
CGCAGATAGTATCAGGCGGGGTTGGCACCGGAGCCTGGCTGGAGCCACAGAGGACACCTCCGGAGCTGAGGCGCA
GGGCAGTTCCCTCAGCCGAACACCCCGGGAGGGAGACTCGCCTGGAAGTGTCTCGGAGCGACCCTTGCTCGGGTG
CTGCCCCTTCAGTGTCCCGGACGTGCCGGGCAACGCGATGACCAGACCCTGAGCGCTCTTCGACCCATGCCCCAA
GGGCCTTGGAGGCGCCCCACACCCCCTGGGAACCTAGGAGCGGGGCTATGGAGGGGAGGGATGAGAGGGACTTGT
CAGAATTCATTATTGACTGCGAAAGTCACCACCCTCTTTCCGGGCCCTAAAAGAGACAATGGCAGGGCTGGGAAG
GTGTATATCAAAGCAAGCCAGGCCGCGTCCCCCCCTCCACCCCCACACCTTGACAGATGACGCTCCGCAGAGGAG
CCCGGCTCCGGCCCGCGGGCTGCGGCCACCCCACATTAACATCACAAGGGCACCCGGCGCCGACTGCGGCCTTGC
CACCTCGGCGCAGGACTTCACAGCGGCCTCTCATCTGCTGACCCCGCGGCCTGGGCTCTGGCGGCTTCCCTCCCG
CCCCCTTCCCGGCCCTCACCCCGCGGCCGCTCTCCCGGGACACGCAAAGGTCTTCCTTAGGGCGTGCGCCACCCC
CGCCAACCGCGCCCCAGACAGGGGCTGTAGAAAGTGGGTCTTTGGGAGCCAGGATCTGGGAGCCCCTGCTAGGAG
AAAGGCGCCTCCTCTAGGAGAAGGGACCAAGCCAAAGCTCTGAGGCTCACCCGAGGCTGATCTGTGGCCTTCTCC
CCGGTCGGCGGCATTCCCACCAGGACTCTCCCTAGCATGTGCACAGTGACGCAGAAACCGATGCCCAGAGACAGC
CCCCAAAGGGCGCTTTGATTTATACAGTTGTAATTGGCTATAAACTTCTGCAAAGTGCCCATAACCAGCGTGCCT
GCCCAATTGGGGCATCAAGGAGCGAAGCAAGAAAAGCGGAAGCGCTGAGGGCTGGGGAAAGACTTTAAAAGGGGC
ACTCAACTAGGACTCTCCCCACCGCACTTCCTTGCCACCTCTAGGCACACTCGAACACCAGAAGGGGCAGACCCA
GAGTCAATGAGCCCCACAGTCCGGCAAACCTAGGATCTTTTTCAGTTGCACACACACACTCACAGACATCCCTGA
CACCCTTGAAAGGAAGCTTTGGGAGAAATGACCCCTACCTGGAGCGGCGGCTTAATTCCCACCAGGGTTTCCTCC
CCGTCTCCCTGCTCTCTCCGCAGACGCCTGCCCCTAGGCTTCTTGCCCCTAGCCTTCCAGCTTTTGCTTGAAATG
ACCCCTTCACAGGTCAGAGGTTCAGAGACGGGGCGCGCCCCCGTCGCCTTAGCAGCTGGGGCTAGCACCTTCTTC
CCAGCGACAGCAGCTCTCCCTGGTCTGCCTGCTCGCTGTACCTTGAATTGGCCCGAGTGGCCAAACCCGGTCCCA
CACACAGCCTAGCCATCCTCCGACCCCCCCAGGTCACTTCTCTTCTTAGATGGCTCAGATGGGGAAAGAGAGAGC
GGAGATAAATGGCCTAGACCTAGCCCAAGAAGGTTCGAGCCTCCCTCTCTCCTCGGCGGCCAGGAGCCACGCAAG
GAATGCATGCCGCAGCAAGTGCCGGAGGACGCGATTCTGCCGGCGTCCAGCAGTGCTCACGCCGACATTCCCCGG
AGCTTCCCGAAGGTGTCCCGGGGTTGCGAATGAGGAGCTCTTGGAAAGAGGACGCCTGAACACGGTGTTGAGACT
CAGAATATTCACTCCCAGGCTCAGTAGGTCAGAGAAGCCCCGACGGGCCAGAGGCCCCCGAATTTGTCTCCGGGC
CGTGCCCCTCCTGGCGCCGAGCTCCCAGACAGCCCGGGACGCCCCTGTGCGCACTGGACGCGCGACGCGCAGCAG
CCACTGGCTCGACCCGCGCCTTCCCAAGCACCCTCCGAAGGGGCGCAGCCTCTGCTTACCTTGGCTGCCGAGGGA
CTGCTGCGCCGGCTTCCGCATCCACTCGCACAGGTTCCGCCGCTGGCCGCCGGGAGACAGCTGCTCGGCGGCAGC
GGTGGCGGCGGGCCCAGGAGGGCCGGGGTTGAGCGTTTGCAGCAGCCCAGAAGCGCAGGAAGGCGCGGCGGCCGg gtggtgcgggtggtgatgcgggtggtggtgcggatggtAGTCTGCGGGGCTGCTGTAGCCCATGGCTGCGGCCGG
GGAGCCACCGTTGAGGCCGTGAGCCACGGCGTTggcggcggccgcggcgcctccgggcgcgTAGCCATTCCAGTC
CTCCCGGAGTGGGGCGCCATACGCTGCCGGCCAGGATGGCCCCGGGGACTGCGCGCTGTCCAAGTTCGCTGCCGC
TGCAGCTGCGGCCGCCACGTGGTAACCGCCGTAGTCCGGGTACTGCGGGGGGCTGACGAAGTTCTGCGGCGCCAG
GTTGAGGCCGCCAGAGTGGCGCACGGAGCTAGGGTACATGCTCACGTCCTTGTCCAGGAGGTAGCTCACGTACAT

GGTGGCGAGGGTCCGGGAGCAGACCTCACCATGCTGCCTGGGGACCGACGCTGGAGGCTGCCGGGGGGCACGAAG
GGAAAGGGGCGAGGGGACTCGAGGAGCGGCGGGTGGCTGCGCCCCAGCCCGCGGTGCTCCGCTGGCTCCTCGCGG
CTCTTCTGCCTCCGAGGCGGtccctccctctggcctgcctcctccctccctccctttcttccttctttcctccca cctccttcccACTAGGCTGCAGAGGCGGGGAAGACCCGCCACAGGCTGGCGTGCGGAGCCCCAGGCCGGCGGCCT
TCCGTGATTAACGAGTGTTTACAAGACTCTATTAGTAATGACACAGACACCAATGGTTGGAGACGTCGAGGCGCA
GCGCGCACTCTACGCACAACCCCTCGAAACATAATTTGCATTTTAAAAGATAAAGGGGAGGGAGGCTCGTGAGAG
GGCAGCGACCTGACACAGCTAAATATTCAAACCTTTATTGTTAAGAGCTTCCTCCTTCCAACCTGGTGCACTTTA
ACCTCCAATCACAGGTTCAAAGAATGAAATCAAGAGACTTACAAAAGAGAGGGGAAGAGAAAAGGCTATCTTGGT
AGGAATCTGAGCTTGGAGACAGGAGCAGTGGTTGTTTATGCATTTGCAGGGAAGAGGGCGGTCAAGAAACTCCTT
CTGTCCCAAAGAGAAAAGAAAAGAGAACCATTGCTTTGATGAGAACGTTTCTGACCAACCTGGTAGGTGACAAGC
AGAGAGCCCTAAGAGATGGGCCATTCCTTCCCGCCCTGTGCTCCTGGCCCGGACGACTGCAGCCCCAAACAACTG
TCACCTCCAGTTATTTTCTTGCCCAAGGAAATTACTCGCCCTCCGCACAAGACAAATTATGATCCTAGATTCAGG
CTGCATCTCTGACTTCATCTTACATTTGAAATTTGAGTTAAATTCAAGCGATTTATTGTTAAACGTTTACATTCA
AGAATCAGaagttttaaactacagaagtaatgggcatgtggtagaagttaggctagtggttattggcgtgcataa ctggaggcgagctaggggatcgttggtaaagcagtttcttaggctgctggttacacagaatgtcagtttgtgaaa attcattgagctacacttgtATGTTTATTATACTTAAATATAAGGAAAAGAGAATTTCTGCTAATGCTTACCTAG
GTATTTATGTGTCTTACATCATACCTGTATCTTTAAAACTCTCTGTCCTTTACAAAGGGAAACGTTCTCCGAAGA
AATTTATTTCTCATTTCCAGGAGATGATAAGGCAACTCAGGGCCATTATTAACGACTGCTAATGAAAAGCTCTGA
GTTGAGAAAGGATCTCTCTTGGTTTGGGAAGCGCTGCGGCCAAGGGGCCTAGGGCTGGAAGTGGCCGTCTTGGGG
ACCGAAGCCGCGCAGCCCGGGATCGGGAGCTGCCCCGACAGGAGCGCGGAGGCGGCGAGATTCGGCCCCCGCGCG
CGCCCAGCTCGGTTTCAGCAACCGCGTGGAGTGGGCCTGCGGCCGCCGTTCACCTCCTAATACAAGCCTTTGACA
GCGCTGCCAGATTCGGGAATGAGGATCACTGCGGCGAGGCCCGGCGGGCTGGGCAGCCTGACTCGGCGGCTTTGA
GCGCTCTCAGAACCCGCGGGCGCTCGCGGCACTCCTGGAGACCTGCACTTGTCTGTTCTCATTGTCAAGCGTTTC
GCTCGGATATTTGTCACCATCGCCTTCATCCTGTCATTTCTAGGGTGCTCTCCAGTGTCCTTTATCTCCCTTGAG
CCTCACATCCCCCTAGGATCTAGAACAAAATCTGGGAGGTGTTTTTATCCTCCCCATTTTACAGGTGACAACCAG
CAACTTGCCTCTGCAGACACCTGAAAGCGATCAGAACTAGCCTAGGGCTGCGGGATCCCCTGTTTTCTGGTTCCT
CCCACCCTTCGTGTTTGTAAGGAAGAAGGCTGGAAATGGGGGTGGTGGGGTACTCAGGGGCCAAGGAGCTGTGCA
CTCAAGAGGTGGGAGACCGAGCTGGTCCTCCTGGGGGACTTCCAGCGCCTGGCCTGGACAGCCGAGTGTCATCGG
ACTTCCTGAGAAATACAACCGGAAGCAAATTGCAAACCCCGTTACAAAATCCGAATCATTGAGAGAAGGGCAGTA
GGGGAGGTCCGCAGACCTGATGGGGTGGGAATGTGGGAGGTTAAGTGGTGGGCACTTCGAACTTTTGATCTAGCA
AACATCTTCCTCCTCTTCCTGGAGACACAATTCCCCTTTCCATCCCCCATACCATCCCCGCTCCCAGGCCTGAGC
TCTGGAAGCCGAGGCTGAGGCTCCAGCCTATGTCTTCGGAATGCGGGCATTCTTTGGAACAATCGCTTTATTAGG
GACAGCCATTCCCTCCGCCCTGCGGTGGCCGCTTCCTGCTTTTTTATGGCCCAGGCTGCCGGCCGCTGGCTAATT
GTCCCTGTTTTCCAGCTGTGTCTCTGTGCTGTGCCCTGAAGACGTGGCTCTGGCCTGCTCATCCAACTGCTTTGG
GAGTGGCCAGGGCTGCTCTGGCCCCTCAGGTCAAGCCAGGCCTCAGAGCAGGCCAAGCCACAGGGAAGCCCGAGG
CTCACTTGGAGTGCTCCAGCCATGGAAAGGAAATCATTGTGAACACGAATGTTTCCCTCATTGCAAAAAATGGGT
CTCCTTAGCAATGGCATGGCACAGCTGTGGTCCCAGGGTCTAGACCTGTTCGGTGAGGGGAAAGGAGCTGGTAAA
TGATGTCCTCGGACAAGCTTCTTAGAATGTAAGCGTCCCCATACATCCTGGTTGCTCTCAGCCAGGAGAGGGCCC
AGCTGGGTCCCTGAAAAGGCAGGGTTGTGGGAGCAGTCAGAGAGGGGTAGAAGGTGGCTGACAGAACTCTAGGAG
CCTGGTTGTCTTGGCATTTAGACAGCCCTGGCCCCTAGCAGGTTGGTGCCCCATGACTGGCCTCTGGAGATTCGC
TCTGCTCAGGGGCAGCCTCTCCAGCTTCTAAGTGCAGGCCTGTGTCCCTGGGAGGAGGCAGAAGCCACCCACATC
AAGGCCCCATGCAGGGCTTTCTTAGTCCTAGGCCCCAGGTGCTTGGCGTCTTTCTTAGGAGCCTTTTGGCCTGCA
CTGAGAAGCCCCCAGGAAGGGACAGGGATGGTCATCCCTAACCCTCGATGCCAGAAGGGCCCTTCTACCCTGTAA
GTCCTGCTGCTGGGCCAGAGAAGCCTGTAGCAACTCACTCTGGGAGAGGCAAACTTGTTTGGGAAGCTTGGGCCT
Seq 235:
TTCTACCCAACCCCATCTCATAGAACTCACAACAACCTTGTTGGGAGAAAAGGAGGGGATACAGGGGCTTAAAGA
GGGGGAAATAACCATATAGCTGGTAGGGGCTGAAATGAAGCCCCAAGGGGGTGGTTGTTTACCCTCGCTATGACT
ACAGAGTTTCCTGGGACCTCCTCTCTTTGTTGTGGGTGTCCCTAACTCACCCCACGGTGCCTGTCCGGTGCTCCT
GGCAGGCGCAGGTGACGCGGGGGTGGAAGTCTTTGTGCCCGTGCAAAGCGGCCTCCTTCCTCAGGCACTTAGTGG
GAAGGATGGAAGAGAATGGAGCTTCCTACTCCTGGCCCTTGTCCCGCAGCCAAGCGGCCCGGGTAGGGGTGGAGT
GCAGGGACCACCCAGAAGCACCAGGCCTAGCTGGGTGGCAGGGCTGGGCCCAGTCCTCTAACTGGTCTGGTGCCG
CCTCCTCCTCGCCCACACCCCGGGCTGTAGACTGAAGCCCGACGTGGCCCCGGCGCCTACCTGGGGCAGCTCCGC
CAGGACGCGATCCCTCCGCACGGGTGCCAGAATGTTCATCCTGCCTGCGGCCTTGCAGGGCGCCCTGAGAAGGCG
CCGAGGCCGGATCCGCGTCAGCGACCCGGGCGCGTGGAGACCCGACGATCACCCGCGGCCGGGGTGTCCCGACTA
CAACTCGGGGCCACGGGGACCCTACGGGAGTCCGCGGTCTCGGAGACGCTACGACCACCGCGGGCCACGGAGATG
AAACAATCACCCGGGGCCGCGGCGAGCCCAAAATCACCCGGGCCCTGGGCGTCCCGAAGATGACTCTGGGGCGAG
GAGACTCTTCGGCCGCCAATTGGGGGCGGGGAGTCCCGTCTGGTGGGGGCCGGGCCCGCGCAGACCCTACGATTA
CGCGGGGCCGGATAGTTCCTACGATTACGCGGGGCCGGATGGTTCCTACAATAACCCGGGGCCGCGGAGACCCGA
CGTCATCTCGGGGCTGAGGCTGCCCTACCATTACAGAgcggcccgggggcgcggagcggccccgccACACGGGGT
CAGTGTGGGCAGGGGCGGCGCTGCCAAGGCCCGCAGGCCGCTGGAGGAGGGGGCGAGGGGCCCAGTCCGGCTACA

GGGCCTCGAGTCCCACTCCGCTCGGGCTCCGCCAACGCTGTAACACGATCCCCGGAAATTCCTGGAGAAGGGCCG
CCCCCCGCCCCTCTCCTGGCGGCTCCAGGCCTCGCTGCCCGCCCTCGCCACCCCCTCCTCTCCACCCTTCTGCGT
TGCCCCGCTCAGGCTCCCTCTTTTGACGCTTCACCGGGCACCAGGACCGCCCCGACCCAGGCTGGAGCCTATCCA
GATAGGGACTCCCCAGGCTGCTCTCCCCTGCACCTCTATACCCGGCTGCGCCTTCATGGGGACCCTTACCCAGCC
GAATTGGTGATGGGGAATCGGAGACTGCTGCGCAGCATCTGGCGATGCCAGGAACCAGCAGGGAGGGGAAAGGGG
GAGAGAAGGGGCCCAAGGAGAGGCGGCGCTTCCCTCCTCAACTCCAGGCCTGGGAGGTGACTCATAGAGTCTGCC
CCCTCTCGCCCTTCTGCCCTGGGAGGTCGGGGGTGAGGATGGTGGAGGGGAAGCGTGCGAAGGGGGTGCCAGGGT
TAGAATGAGGTGCCCACCGAGGAGAGAGACGTCTGAAGTCTGGCGTCTTTTCCTTCAAGGCTGCTGTGTAGATTG
TGAGGTGGGAGGGCTGAAGATCAAGTTCCCTCGAGGGAGGTTAAAGAAGGGCTAAGTGGACCCGGAAACTCTGCT
CTTCGGGGTGGTCTCCGCTCTGGGAGGCGGGGACTCCCCTCTGGTATGGGTGTTCATTGTTCTGGCCCCATTGGA
ATCTATCCCCCAGGGACAACTCCTTTGTGCAAAGTCCTGCAGGATAGAAGAGGGGGCAGTGCACAATCAATTTCA
CCGTCAAAGGGGACATGTCTGGTTTTATGAAGGGAGAGGGAAGAAGAAAGGATCAAGTGGGGATGGGTTAGGCAC
ACACCTTAGGAGAAGCGAACCTGAGTGTTAAGAAACCTTTCTCTGTGTCTGGAGCTGAATTTGAGGATGTAAAGA
TGACCAGGACACGGAAGGGAAGACTAGTTTAGGGCAGGGGATTGTGAGTGAAGTTACTAACCGGAAAAACTAGCG
AATCTTGGAGAAATGTGTGGAATTTTCATAGAACTTCAAATGCATTATCAGGAAACGCAGTAAAACTTGACAGTA
TCAGTGTCGCAGGTAAAGAGGGGCAGGTGTGGCCGCCTTGTACTTCCTCTGACACTTCCCCCTCGTGACTCGAtt atttatttatttatttatttatttattttgagacagggtctcactctgccacccaggctggaatggctcattgca gcctcgacctccagggctgaagcgatcctcccacctcagcctcccaaggaactgggactacaggcacgcaccacc acgcccggctaatttttgtattcttttgtagagacagggtttcgccgtgttgcccagggtggtctcgaactcctg ggctcgaagcaattcgtccacctcggcctcacaaagtgctgggattacaggcgtgagtcaccgcgcccggccCTG
ACTTGATTTTTTtctgccaccaaatcactgtgttattgataaaccacattcctctctggacctcagttCGACCGA
GCAAATCCTGCTCCAGCACTCTAGAACTTAGCTGTATCTAACTCCCGAGTCAATCCAAATGTGTTCTTTCCTCTT
GGCAGCGTTCCTGCCTCCTGGCATGGCAATCCTCTTCCCTGAGACTGGCAGTTGCTCAAGATAGGAAGCTCCCGG
GACCAGACCCGAGCGCCAGCCGGCTACGCCGTCCGCTGGCCTGAGCAAATAAACGCGTGTCTTCAAAAAACTACA
ATCCCcatggtggcacgcgcctgtagtcccagctactctggtggctgaggcaggagaatggcgtaaacccgggag gcggagcttacagtgagccgagatcgcgccactgcactccagcctgggcgacagagcgctcaaaaaaaaaacaaa aaacaaaaaacaaaaaacTACAACCCCCATGAAGCTTTAGTGCCTTTGAGGGGAGGAGTGGCGCATGTTTGTTCA
CGCACGAAAAAGAAATTAAACCTAACTACCGTTCCCAGAGGGCGCCGCTCTGCAAATTACCCAATCAGCTCTAAG
TACAAAGCATCGCGAGTCTTTAGTGCTCTTTGGCGCTATAAGCCCGTGGGAACGAGCATTGGAGACCCTTTTCAC
AAGATGGCGCCGAAAGCGAAGAAGGAAGGTGTGTGTTGGTGATGGGGCCGCAGCTGGTTTACCGGGGATTGCCGC
GCCGCAGAGCGAACGAATTGGGAACACGGCTGCTGGGCTAAGCCCTGAGGGCTCTGCTCCGGGGCTGCTCCCTGC
GTTTCGGACACGCTGCAGTATACGTGGGCCGCGTGGGCCCAGCCTCGTGGGCTGAGTTCCGGTAGAGGGAGTTGG
GGGGGGGCAACGCGGCAGGCATCATCCGCCAGGGAGGGCCAGACATTCGGTTCTGGGAAGCTACATGCATCCACT
GGTTGGAGCTCCATGTCCCCGGGCCTGTAAGGAATTAGTGCCCTCAGCTTTAACCATTTTCCTTCTGGTTCATGT
TCAACCGGGCTACATTACCCGCCCCTCTCTCCGCAGCGTGGTTTTGCGATGGGGTATGTGTAAAATTCGTAGGAC
ATTTTCTGGAAAGTATCAAGCGTTCATTCAGTGCTACTTTGTTTCATAGTCGTATCCCTGGAGTTACTTAGAGTT
GGTCGCTTTCGCCTCTGGTATCGTGCATATGATGGAAAAGTTTTAATCTCCTGACACTTGTGATGTCTTCAAAGG
AACCACTGATGCACCTGTGGCCAGGGTGGCCCACTGCAGTTCTTGGGGCCGGAAGTGACCGATTTCTAAATCCCG
CACCCACGTTTTCTTTCCTTTTCTCCCAGCTCCTGCCCCTCCTAAAGCTGAAGCCAAAGCGAAGGCTTTAAAGGC
CAAGAAGGCAGTGTTGAAAGGTGTCCACAGCCACAAAAAGAAGAAGATCCGCACGTCACCCACCTTCCGGCGGCC
GAAGACACTGCGACTCCGGAGACAGCCCAAATATCCTCGGAAGAGCGCTCCCAGGAGAAACAAGTCAGTACTGCC
CCCTGTACCCATGAAAAGATTTGGGTATTCTCCATTGGTAATTTGGAAATTCACTCACTCTGCGTGATGGTTTCT
CAAACGCAAATTGTGTCCAGTGTGCTTCTCTAATTGGAAGTATGAGGAGATTGTTTCTGCTGCATTTACAAAACT
GGCAGGATCAGCCCAGAggccgggcgcggtggctcacgtctgtaatcccagcactttgggaggccgagggggggc ggatcacttgaggtcaggggttcgagaccagcctgagtgacatggagaaaccccgcgtctattaaaaatagaaaa ttcgccgggcatggtggcgcatgtctgtaatcccagctactcgcgggaggctgaggcaggagaatcgcttgaacc cgggaggtggaggttgcggtgagcggagatcgtaccattgcattccagcctgggcaataagagtgaaactctgtc tcaaaaaaaaaaaaaCCCTGAGTCTCTCAAAATTTGTTAGGTTAATTATTGCTTCACATGTGGTCACGGTTTGAA
AACTTATTTTGGGGGGAGTATAAAGTAGAATACAGAGATTCCTTGCTCATAGCTCCTACTGCTATCGGGAACAAT
CCTTGAGGGTGAGAACGTGGATTGATTCTTGATTGATAGTGGGGATTCCATTATCTGTATTTGGCAGTTATGGCC
TGCTGCGGTGTATAGAAGCTTCTTTCCATTCATTTTCCCGAATTTTCATACTGCTCAAGGAACAGTTGGGGGGGA
ATGGGCAGAAGGTTGGGCACTTGAGTATTTGAGCTATCGGTAATAACTGACTTTTTAGGGAGCACAGATTTGAGT
AGAGCCATGGTAGTAGTTAGTACCAATGGGTTTTTGCTGCTTCTACTCTTTCTTAACAGAAAAAGTGGATTGTGT
Seq 236:
GTGAGAGGCCCTGGAGGGCTTGGCTCTCCTAGCTTTTGAGAAAGAAATGTCAGGCAGCAAGGAAAATGAGgagag agagaagaagaaagggagggagggtgacagaggagggagaaagagagacagaATAGCGAACAAACTTAATGTTAA
AATTCCAAGACAAATGGAGTTAAATAAATTTACGAGGATCGAACCCATTAATTGGGCCATAAAAAGTTTTATGAG
CCTCATTTACATACAATGCTATGGGCTCCACGCAATGGCGCCTCCGCTCCAATTAAAACCAGAAAGGCTGCGCCG
GGAGTCACGGGGCTACCGGCTCGCAACAGCCTGGCTCCGCTCTTCCGGCCCCGCGCCCCGCGCTCCGCGCTCCCC
AGCGCTGCGCTCCCCGCTCCCGGTCCCGCTCCGCCAGCCTGGCCCGCCTAGCGACTGCGCCTACCTGAAGACCGC

ATCCAGGGGTAGATGCGGAAATTGGCCTCAGCCGCGCCATGCAGCGCGCCCTCGTCCGTCTTGTCGCAGGCGCCT
TTGGCGAGGTCACTGCAGAGCCCGGGGATGTTTTGGTCGTAGGAGGCGCAGGGCAGGTTGCCGTAGGCGTCGGCG
CCCAGGCCGTAGCCGGACGCA.AAGGGGCTCTGATAAAGGGGGCTGTTGACATTGTATAAGCCCGGAACGGTCGAG
GCGAAGGCGCCGGCGCCCGCCCCGTAGCCGCTTCTCTGTGAGTTGGGAGCAAAGGAGCAAGAAGTCGGCTCGGCA
TTTTGGAACAGAGAAGCCCCCGCCGTATATTTGCTAAAAAGCGCGTTCACATAATACGAAGAACTCATAATTTTG
ACCTGTGATTTGTTGTCCGGCAGCTTTCAGTGTCGGTTTTACGAGGTAGAGTGATATATGATAACATTACACCCC
CAGATTTACACCAAACCCCATTTTCTTTTGGACGGAGCTCGCCGCAGCACGTGACCGCCCACATGACCGCCTCCG
CCAATCTCAGCAGTCCTCACAGGTGGTCTCGCTCCGCAGGGCCCGCAGCCGCCTAGAATGGAAGGGCAAGAGGCT
CAAATATGCGGCCAAAGAATccgcccgcgcccggcgggcctggcgcgtcccgcggAAAAAGACCTGGAGGCTCCG
CGGGAGCGCCCAGCTGGCGGCCAACCTCCGCACTGGGGTCTGCGGACGCCAGGCGGCCCGGCCCCACGCAGCACC
CCCCACCCCGCCCCCCCGCCGACTCCTGCTAGTGAGCCCTGGACCAAGCTTGGGATCCTCCCCATCCCTCTCCTG
TCCGCCTGCCCAGACCCTGGAAGGGTCTCTGTCCCCCGCAACAGCCTGCCCCGCGGTGGCCTTGTGGGCAGGACT
CAGCTATGAGCAGATCGACTCTGCCCAAGTCTTCTCTCACCCAGGTCCAGTGGGCGACAGGCCGGACTTAGACTC
GGATCCAGACGGGGAAGGCGCAGCATCTCTTGCAGCTGCAGAGAGATTGCCACCGCAAACTGGAGCCATGTGGTT
CGAATAAAGTCAACGTCTCCCAGCTTCCTTTCCTTAATCGGAGGCACACTGTTTATCCGCCCTAAAGGAAGCAGT
GAAATATTTATCTATTAATGAGACTCATTTGCCAACAGATTTATTAACGTGGGGTTCCCCTCCCTCCTCCCGGAC
GCTGTAGTGCTGCAGGCTCTGTGCCTTCGCTCCTGGGCACCTGGCTGGCTCCAGCAGTCCGATAAATTGCTAAAG
ATTCCTTTGTCCTTTCCACAACTTCTGGTTCCCCTCTGGCGCATGGGGAGCCAGGGCTGTTTCCCCCAGCTTGGA
AAAATCTCGGGCCTGCACCCTTCCAGGCACTCCCAATACTGGAAGGTTTCTGGGGTAGGCCGGGGTGCCTGGGAA
CAATACATGCTTTAGAGCGGATTTG

Seq 237:
CCTCTTCTGGGGCTGGCAAGGCTCAGAGAGGCATTTGAAATGGCTATTATTGACACCCATAGACTTGGGTATGTT
TCAGAGAGAAACTATAACATCTATCTCATGGGAAAACACACTTTCTCTGTTTTTAAATA.ACTCCGTTTCAGCAAG
ATCCATGTGTGTAGCCTCTGAATACTCTATAAAGGCTCCGTATTTCTTTCTTTCTTTCCTTAGTCCGGAATGGAG
ACAGAAGAAAGATTCGGTTGAAGATGTCCCTGTGTGGATCTCAGTTTGCGCTCTGAGCGACGTCCTGGCTCATTT
GGGTGTGACGGTGAGAGCAGAGGCGCTCTGCTGACAGTTTTTTCTTGTCTAAGCTTCCATTCCGCATCCACAATA
TGACTCGCCTTCCACTCCAGTTAACTTCTTGGAAGTCCAGAGCACTTAGTCAAAGCTGTTTACAAAATGCAAAGC
ATCTGGGCGGCCAAGGCAGAGGCTCCTGTGTTCTCTATGTAACCGCCTCCAAAAAAGCTGGGAAATTTCGCGGAT
CAAAATGTAGGCGCTTAAAGCTGACCCTCTGCTGTCAATGTTGGGACTTAGATACATTTTTTGCATCGTCATTCT
TGTGTGTGTTTCCCGTTTATTCCATTCTAAGGCTCAGGCTCGCGCTGTTTCTCTCGCGCGCGCTGTCCCCTCTCT
CCATTTCCCATTCACACATCAAACTCCGTCCTCCGCACCCCTATCTTCCCGTGTCTTCTTAGTTATGTGAATGTG
TGTCATTAGGCTTACTCGGACACTGGATGGGTGAGTGGGAGGCAGCTTTTCTTGCGGTTTCATTTACACTTGGCA
TGGGTGGGTGGGTGCCCTCCACAATTCGTCTCGCACACGGAACACAGTTAAAATCTGTAGCTAGAACGAGTGAAA
AGTTCCGAATCTTTAAAGCGCAGCTAGGACAGGAAATAATACAGGGTTGGGGGATGTGGACGGGGGCGGAGAGCA
GAGAAGTAAAGGAATAAAACCAACTTCGCTGGCAACTTCAATAAATCCGGTAACTGGAGGCAAAAAATAGACTCC
GAGGGCTGGGTCTGGTCCGGATGAAACGCTAGGGCTCCTTCCCTTCCTTGAATCTTGGGCGCTGGAAGCCAGCCA
CGGGCGTCTTGCCACGCGAGTGCCCCTAGACAGCAACACACCCACTGGAAACGCACGTGAACAAAGCTCTCGCCC
CCGGGAGCCGCTGCCTGCGGTTTCCTAGTCGATCCCAGCTTCTCTAGGGAGTGTCAGGCGCACACAGGGTTAAGT
TAGTTCCCTCCCTGGTAGGAGGGAGAGGAGGAGGAGGGGAAAAGCAGCATACTGTCTCAGGCTGGGTACCTTGTA
GTTAGTTGTACGTTCGAAACCTGTCGCCGTCACTTGCGCGTTTGGCATTATCCATTGTCACCGCGGAGGAACGAG
CGCTCGAGATATCATCAGTGCCCGCAAATCTCCGCGCCAAGGCGCTGAGCTACTCCTTTCCGAGGTGCGCCTCTG
GTCCTCCGTCCCTGGTGCCCAGCAGCGGCGAGGCGGCATCTCCGCTCCCGCCGCCGTGTCCACCGAGCCCTGGGA
TCAGGGTGGCAGTTCTCAACGATGGGCAGGAGGGACCTCGGCGGCGACCCCTAAAACAATACCATGCCCCGGGAT
CCCCGCTGCTGCCGCGCCAGCGTCTTCCCTTTCCACCTCCCTGACCCTGTCGGATTCGGATGAGCCCATTGCAAG
GAGAAGACGCAGCCGTCAGGTAAAAGGGGCTGCGTTGCCAGGTGAAGTTTCCAGTAACCGGCCGAGCTGCTGCTA
CGCTGGCACCACGCTGTCTCTTCGGGGGATTTTTTTTTTTTGAAAGAGCTGGGGGTGGTCATCTTAAGTGGGGTG
CTCTAGGCTTTGTCTTTCACCTGGAGAGAAAATAGGCAGCTTAGCTCTCTCTCGACTTTGGGGACATCTGTCTGC
TGGTCGAATCCACCTCCTCTACGGAGCATCATGACTGAGTTCTGGGTCAAAACGCAAATTTTCTTGCCTGGTAGA
'I=GCATCGATGCTAAATTGGGGTTCTCAGTGCCCCTAACCTTGTCAGAGTTCAGTCTCCTACTTCCCTAGATTGAA
TCTCTTAACTTTCACCAGTAACAACCCTCTCCCCTCCACAAGCTGTTGTTAATGTCACCAGCGTTATTATCAGGC
TGTTGTATCTAAAGACACCAACCTACTACCTGCCCGTAATCTGGGATCTATTAGCAGTTAAACAGATGCGGTGGA
TACTAATTCCTTTTCCTTCCAGTTGGTGGGGGCGGGTGGGGCTTTTTCCAAAACCAAGTCCCTTCCAGCCCTGCT
TGTCCTCTTCGGGCTGGCGGGCACTGAGCTGGGGCCATCACGCCTTTCTAGAGCGCCTGCGGAGGTGGCGAAGGC
TTGGAGAGCATACGAGGCGGAATCCGGATCGAGTGAGTTCCTTGAGCCGCTTGCGTGGGACGCAGGGAGAGGGCG
AATAACGCCCTCAGGCGCTGAATGCAGGGGCAAGGAGCCAGCGAGGGTGGCTGGAGCAGGCCTTGCCAGCTGTTA
CCAAGTCTCTCCACAGGCTTGGGGGCTTGGGGCCTCCTGGAAAGATCCCTCCGCCGCGCTGACCAGTACGGGGCT
CGCTCCCGCACTTTGAAGGCTGCCGCGGTCTTTCGTCATTTATAATCAAGCCCAAGATCAAGGTTGCAAGCTGAG
GTCGGGGTACTGACAACGGGAATGAAGCCATAGGGGAAGAGGATAACTGGGACGGGCTGGACCCATACTTGATAC
CCGGGAAACTCCTAGAGCGTGTGGTGCTCCTGCCAGCGGCAGTTACTGGTGGAGCTGAGGCCACCGCTACTGTCG
TCGTTGGCGCTTTGCTTCTGGAACCTCCCAGCAAGATGGCACTCACTGTCTGTTCCCTTCCGATTAGCACCCCCA

GCCGCGCTCCCTCCTCCCCGGGATACGTATTAGTCACATACTGTGGGGAGAAGATGGGCTATGTAAATGTAAGTC
AACGCGCTTTCCCAGCCACCTTTGCATAATGCAACAGGAACAGCGACCCGCGCGCACGAACCGGGTAgtgtgcgc gtgtgtgtgctcgcgtgtgtgagcgcgtgtgccagcgtgcgtctccgcgcgggcgtgcgtCTGGGTGGATCCTTG
CGTGGCTTGGGAGGCAAATCGGGCGTTTCTCCAAGTCGTCTTAACATGATTTAGGCTCTCAAATACGTGAAAGCG
GTAGACACAACAGGGATGCGAAGGAAATAAAAAACAATTGGGGAAGTGGTGCCAAGTCACTCAGGCTTTGAACTG
AGGACGAGTAGTGCGGTCGCGCCTGGGGCGCGTCCGGAAATCATCCTCAGCCTGTGGCGGCCACTGCCCCACTTA
AACTCTTCTGCGGGGAGAGTTGAGCGGATCCCTGGGGGGTTGGTCCTGGGCTAGTTTTAAACTCTCCGGTTGCAT
CTCGCGTGGCCCCACCGACGGCGCGTCTCGGCGTAGCTCTTGGCGCGGGCTCGTTCTCCCTCTTCTGTTCAGATT
CAGCCTCACCGGACTTGTTACAACATGACAGCAACTTACTGGAGGCAGGAAGAGCAGCACGAAATAAGATGAGAA
AACCAAAAACATCTCCTCCTTCCTAAATAGAGACGTGCACCTAGCTTTTTTTACTTGTTTGTTTGTTTTTTACAT
TACCCTTTAACCTTTGGAAAGAGACTGCGAAGTGGAAACGTTGCCTGTACAGAAATCAGGCTTCTTAGCTGTCAA
GACTGTTTCCTAATCTTTAGGCTGAATCTTTCTTTGTCCGCTGCAATCTATGGGGAAATTTAACAACGCTCTTGC
CAGAAGCAGCCAGGTTGAAGGAAGAAAGTGGGGGTGTTTAAATTAATCCTATTAAATTTTGGATTACTCCCCCAG
TTAAAGTCATTTAAGGTGGTCCAGGATGAGGGAACTAGTGATGGGGTGAGGAGTGGGGGGCACATCACCAAGGTT
GCCTGCATTTGAAATAACGCCATTT

Seq 238:
AGTGTTGTTAAGTCTTAGGCAGAAACTTCAAAATATAAAATATAAAGCTTCACACCTCACAGATAACAGTGTAGT
TCTGGCTGACATGGGAGTGGGAGTCTCACAGTACTACAGGCTGCTGCACTCATTGTTGCTGTCTCCATGGCTCAA
GGTGTCTCCCCTGAATCTTAAAAGTTCCCCTGAACAGGTAAACTGTAAgttatcccagcgctttgggaggctgag gtgggaggatcacttgaggccaggagttcgagaccagcctgggcaacaaagcgagacactatctctacaaaaaat aaaaaattaactggacacggtggtcccagctacttgggagactgaggcagaagaatcacgggagcccaggaggtc gaggctgtagtgagccatgatcttgccactgtactccagcctgggtgacaaagtaagactctgtctcttaaaaaa aaaaaaaaaaaagaaGTTTCCCTGAACACTTTGAAAACCAGTAGTCTAGATACTCTTAATAACGGCCAGTACTAG
CTGGGCTCCCTGAACCAATGTAACATTGAGGTGTAGCCTCAGTCAAGTGGCCCTTCAATACTTCGCCCACCCTAG
TTATATGGGTCCTGGATGGGATGGTGGTAAGGTGGTGACAACAAAATGGGGGAGGGGggccgggcgcggtggctc aggcctgtaatcccagcactttgggaggctgaggcgggtggatcatgaagtcaggagatagagaccatcctggct aacagggtgaaaccccgtctctactaaaaatcacaaaaaattagctgggtgtggtggcgggcgcctgtagtccca gctactcgggaggctgaggcaggagaatggcatgaacccgggaggcggagcttgcagtgaaccgagattgcgcca ctgcactccagcctgggcgacagagcaagactccgtctcaaaaaaaaaaaaaaaaaaaaaaaaaaTTGGGGGAGT
GGGGACTGAAGAATGTCCTagtacaaagaatctaaggtgtggagtcagacagatatggatttctattcataattt tctatcttttggcaaatcactttacttctttgggactcaTCTAGTCTTCCCAGGTGCCTGCACCTCAGTTATTAA
TGAAAAGGAggccgggtgtggtggctcacgcctgtaattccagcaccttgggaggctgaggtgggaggatcactt gaacccaggggttcaagaccagtctggccaacatggcaaaactccgtctctacaaaaaatacaaaaattagccag gcatggtggcacacacctgtagtctcagctactcggaaggctgaggcagaaggatcacctgagcctggggaggtc gaggctgcagtgagccgtaatcgcaccaccgcactccagcgtgggcgagagtgagactctgtctcaaaaaacaaa acaaaacaaaacaaaaAACAGACttaagtatattacaaatccgtcgtgatcctctcaactattctgaggtaaatg ccacacccactttttttttttacagctgaggacactgactcacagaagctagatggcctgttcagcatcacacag ctaataaaatgtggagttaacccacattgatcctacttccaaatcccagagtccttccaTGTTCTAGTCTTTGGT
TAAGAATGCTTGAGAGAAGGACTAGAGGGACTTTATATGAAGTGTAAAGCTTTATTCATACAATAGTCCTCACTA
GTGCTGTGTGAGAGAGAGAAGGCTGAGGAAAGCGTCGGCGGAAAAAGGCTGATCCAAGGGGAAAGGGGGCCGGAA
CTGGAGGGCACTGGTTCTGAGAGGAGAAAGGGAGATGGGGAGGTCTGATGGGCAGGCATCCCCCAAAGCCCCTGA
GAAAATTCATTTGAGGAGGAGAGAAAGGGATGGCGTGAAGCTGGAGGAAAAGGGATCGAACCGGATGCGGCGAGG
CCTGAACTGGCCTGGCGGGCGCCGACCCGTTCTCCTCTCACTCAGATCAGCGCCCCTCCACCCTCCCGTTCCCCA
GTCCAGCTTTCCCAGAGATGTCAGCATCTCTGCCATCCCTCATCCCTCGCTCCACCCCACACGCCCGCCGTACGG
ACCGTCTGCGACAGCTGCTAGGCCTCTGGACTAGATCCAGGCTGTCAGCCAAAGCCCATGCCCCCAAAGTTACCA
GTCCTCCTCCCCTGCAGCTGCAGACGCAGACGCCGCCATATCTTCACCGGCCCGCAGCCGGAACCGGAAATGCCC
TTAGGGAAGTCGGAGGCGGAAAACTAAGAGGGGTGGGCAGCTAGCGTCGTTTCTAGGCAACCGCAGACTCCGGGT
CCTTAGCCGGGCCTGATGGCCCTGAGGCAGTTCGGATGTGTCCCAGGAAGTGCCCATGTGTGGTCCGCCGTCCAT
TCCACACCTCTGAGCGCCTTTGTCCTCTGAACTTCTCACCAGTTCTAGCGAGTAAAATTGTAAGAAAGGGAGCCG
AAAGAGACCGGAGGGAGAGGCGGGTGGAGAAGAATTATAAGTCAGGCAACGTATGCAGGCAGCCAGAAGAGATGG
GGCTAAACGCCAGGGAATCCGTCCCTTGGCCTGAGGAGCTTGGAGCTCCTAGGCTGGGGGTGAGAGAGGGGCTCT
GGCCTGCGAAGCGCACGGGCCAGGGGGTCTGAGAGCGGGTGCTGAGGAGTCTGGGAGTGGCAGGAACTTGGGGGA
GACTCAAAGGAGCAGGGTTGGTTGGGCGAGGCTAGGTTGAAAGAGTAGGGTCGAGTGAGCCAGGCTGGGTGAGGG
AGAAGGGGAACCAGGTGTTAGTTGGGCATGGGGCCGGGTTGGGGACAGGAGGATGAAAGTGGGGAGGAACTACAA
AGAGAAGCTCTGTTTGTTCCAAGAGCGCATCATCTTTGCATGCATTCCACCCTCCCATGTTTTTTGAGGCTTTAT
TGTGAAAAAGAGGAAAAGGCAAGGTGGCTAACATTTTTCCTTTCCCGTGCCCCAACTAGGCGTCCCAGATGTTGT
GGAACTGTCCCTGGATCTATAGCTCTTCACCGTCTCTACTTTCTTCCTTCTAAGAGATCCTGAAACCTCTGTCAT
GGAAAAGTACCACGTGTTGGAGATGATTGGAGAAGGCTCTTTTGGGAGGGTGTACAAGGGTCGAAGAAAATACAG
TGCTCAGGTGTTGCACAAAGAGGGATACCTTTTGGGTGGGATTTGGTACCCCCAACTCCAGTGGAAAATGGATCT
AGAAGGAATGTATTTATACCAGTTTGTATTCCTAAGGTACTGACTCCCTCATACTTCTTATGgagtataagcttt gaagttggattatttgggtgcaaattccatctccaccgctttctagccctagaattatggacaaattacttaact tccct'atgtctcaatttccttatctctagaatggggataagaacagcaactgattgatggagtttgaggattaaa tatgttttcacattaaatcacttagtacagtgcctggctgttagtaaaca Seq 239:
atgcaaaaatattaaataaaattttagcaaataaaatccagtctcatattaaaagaacaaaccattattgacaag tatggtttattccctcaggaatacatgaaattggGAAATAGAGCAACACAAATCAAAGAAAATTTTAAAGAGAAA
AAAATAAATGAAAATAATTGTAATGGTCAAAAGCCCTTAGGAAAGAGAAATAAAAACTTGATAAATCACAGTAat tatttattcagaccatactacgtacctagtactacactttgaacatacttaaagaacatttgctcacttaatctt cataatgattccatgaaaaagaaactatgacagcttttttccacaaataaggaaactgactcagagattaacgta cccaagtcagaggcagaggcaggtacttcttactccacagtccatacacttgccacCTGGCTAAAATTATTTGCA
GATGACAAAAATGCTCAACTAGAAAAAAGACGTCAATTTATAAGTTATATGTAATGACATGAGTACAATGAAGTG
ACAGAATAAACATATATATTTTTAACTTCTGTTCTTGTCAACTAAGTAAAATTAGGAACAAAAAAGGAAAGGGGG
AGGGGTCTTATGCAAAAAAAnAGTCACGATTTACAACAAAAAGTATTAACTATGTAGAAATAAGCATAACCAGAA
ATGTCCAAGATACGTATGGAAAAACACTACAGATAGTCAAACAAATAAAAATATTGGGTTAATAGAAATCCATCA
CATGTTCCTGAAAGTGTTGTATCTAGATCTACATCAATTCTACCCAAATTAAAGCAACCACTTGATGAAACTGCA
GCAATTTAAAAAACTCTCAAAGAGCATGTAATATGGGAATACGAAGTTGACAAGATGTTATTAAAGACGAATAAA
ATTATACCAATACCTAGACACCTGATCCCAACATTAAACATGAAATACACTAAACCAGAGTTATTTTCTGGAGGA
GTATTTAAAATGATGGGGATGTTATTACTTGGGTCGCAATGAACCTGAAAACCCATTTTCTACAGAATATACAGC
AGCAGGGAAGCAAGGGGACCAGCAGACCCCTTTTTAAGTACGCATGTGATAAGCAATGAACACGAACTGCCCAGA
GCAGTCTCCAACACTGACACGATTCGCTTCCCCACCACGACGCCCTAGCGCTACTGTGCAACGAAGACCTCCCAA
GCACTGGTTCCAATGCGGAGACCATGGGCTCCCAGACTCTGGGAACTCCAACACGACTGCGAAACGAACTCCGAG
CGAGGACTCCCCGAGAGCTCCCCGCAACACGGACCTCACGCGCTAGCGAACAACAG GCGCGCTCT
CCCTGCCCCTGAAACATTCCCAGAAGCCCACGCAGACCAGACCGATGACCTGTCTCCACTGCTGGAGGCGAGTCA
GGGACCCGAAGTCTCTAAACACTCGCCTCTACCCGCCGCCCCGCGAACCCCACACACTGCAGACGCGACACTCGC
AAGTTTCGGGGATGGCGGCCGGCGAGGGCCATACTGCGTCTTTCCGGAGACACGGAATACGGCACCAGCCGTCCC
TTTATGATGCAATATGTCTGCGCCCAGGGGACGCTTGCTGGGAGCAGCCATTTTCAACCCTACTGCCGTAGAGCA
GGCGGAGTCCCTCTTTTCGCGCCTTAAGACAGGTAGGTTCTGACGATGAAAAGCAATTGAAAACGACCCATTTCA
CCCTTTTTCCAGTCCACGTGAACTGCTAGATCTTGGCTTTGCAACATTAGCCAGGGGCGCTACATAAACTGCTTA
GTTTCTCAAAGGCTCAAGCCTGCCCTGATCTGTCTACAGGATGGGTAGAGATGGTCACAGACATTTAGGCACTTT
GATCCTAAGAAGAATGGAAAGAAACCATGTGGCGCGGCAGTCTTACAGGAATTTCAAGAGGGAGGGACCTGAGCA
ACAATCGGAGGGGTTATTACTCCTGAGGATGCATCTGGCTGGAGAAAGCAGCCTTTGAGAACTGCCTAAGAAGTA
TCTTTACATCTACATCAGATGTAGCCTCAGAGGAAGGAGTCAGTCATAGAATGGATAAAACAACCGCGTGTTAAA
GCTTTGGTTATAATTGGTGTGGAGAATGGAGAACACAGTTGATCAGCAGTTGACAAAGTGGGGAACCAACACGAA
AACAGGGCTCTCTCACCCTGGAAAAGCCAAAGGCAGAACAAGCCTTTACATCCAGGAAGGTGGGAGCAACTTGAA
ATCAAAACTCTGAAGGGGAGATGATTCTGTTCAATACTGAAACTCAGCTGATCAATTAACTGATGAATTCTAGCA
CCAAACCTGCTCCCTATAATTTTATAACCAGCCTCAGAGAACCTTTAAAGGGATTGATCATTCactcatttatcc agcgaatgtttataaaatgcctaatgtgtcaaacactgttgtgcgtgctgggaatacaacagttggaaattcagg cacaaagactctcattcatggagattacattctactggCAATttcagtgtgtgagctaaattgagtggtgctaac tgttgacttggctggttgactgaaacttggactcaaaatttgcctacactaaatgaagtttaaatgccagaaatt tcctcatatattataaagtacccaaagataaatggagtttggaatgctagaatgaatttatcatgtaaaatcaag Seq 240:
AGAAAGTTCCTGGATAAAGTAGACTTAAGATCAACGGCATAACCTGGGTAAGCAAGTAGTATGACGGTCATGTGA
CCTTGGCATTAGTATCTCTTGCCGAGGATCTTCATTTATTGGCTTGCAGTTTGGTGGAAACACCTTTCTGGTTCT
TTCTGCAATCATGTATGATAGTCATGCAGGAGGTTGTACAGAAGTGCTCCACCCCACCCAAGCTCCTCCTATATA
AAAAGTGCAAGAGTCCCAAGGACAAAGAGGAGGGCCTGAAGGACCCACTCTTGTGCTCGGCGTGGTCACCGAAGG
CTTAAATAATAGGCTTGGAGAAATGGAAACAGGCAGTTCGGGAACTGACAAGGCCCTTCCTACAAAGCAGAGGAC
GAAATTAGCCACTGCTCCAGAGTGAGCACATATCTTCACTCCCGCTCCCTCCACCAAACTGACTGTAACTCCAGT
GGAACACCACATCTCTAGTCTCTACCAGAGGTTCCTGTCTCGGCTCCTTGCTATTTCAGGGCCACGCATCCCTTC
CCCTTTCATTTCAGACATGCGGGGTGACAGCAGGGTCGGCCTCCTCACGCGTTCTGGACTGCGGGCCGAGGGCGG
GCGGCGTGCACTTCACCCCCAGGAGCCAGAAGGGAAGCGCGGCACATGGTCCTGTAGCTTCACGCAGGGCTGGCG
GCCAGCCAAGCGCAGGGCCCTTTAAGGCGCGCAGGGTGCGCACGGGTGTGGGAGGGAGACCCCGGCGCCGGAGGG
CCTGCGGTCGCCTCAGCCCCACCCTGGGACGGCGTGCTCCCTCCCCTCGCTGCTCACCTTGGTTCCCAAGAGCCG
GGCGGCCGCAGTAAGTAAAGCCATGGCGGGCGATCTCCGGGATCTGGTGGGGAGGTAAGAAAGGGAGAGAGCTGC
GGCAGGAACAGGAGCCGCCGCCGCTGCACCAGAGGCCGCGCCGACGGGTTGACAAGGTTGAAAGGAGGCGGCTGA
AGGAAAGAGTAGACGAACCGGCGGCGGCGCCCAGCCCGGGGTCCTCAAGGAGGCCCCGCCCACTGGCCGGAACCC
GAGCCCGCCCCTCTCAAGGGACTCTCCCCGGGCCCGGCCATTGGTCCGGTATGGAAGCGGGGCGGGACCTTAGCC
CTTGACAGCAGTTGTGACGGGGAGGATTGGACCGCCCGGATTAGGGCTAATTAAGGGTGGATGGGTGGCGGGCGG
GGAAGTGCGGGTGGCTAAATAGGTGCCTGATAACTCAGTTAACTTCCCTCTTGGCTTTTCCCTTTGACCTTAACA
CTTTTGGGGTTATCTCTGAGGCGAATGCTAAAGGAGACGCTCCAGGACTCGACCTCTGAAGGTCCTTGGAGCCAA

TTCCGTAATATGATCATGGAAACTGATCATTGCCTGATCCTTCTACCGCCTTGGCGCGCTTTCTTGAGGAATGTC
TTTGGTTAATGGCTTCACGGCCATGGAGGTGACATCATGTGGACAACAGGCTAGGATGCCAGAGTTAGCTGCTCG
GTGGAGATCATTTGAGGTCAGCAGAGGCCACGATATTATAGATACTAACAGACCCCGATATGGGGAGAAAAGCAA
AAGCAGGAGCCTGAATATCCAGTGCTTTGTGAGCTGTCAGTTCTGTGTGTAATGGCAGGAAATCCAAGTCTTAAC
TGCGCCCTTACTATGAAGGCTTTCCGAGCCAGCCACAGCTTCTGGGTCATGGGCATTAGTCTCACTGCCACTCTG
GTCACGTAACCCCACACAGCAGCTCACCCCACTTTAGCCACAGATTAGGAGCCGCAGACTAGCCCCTCATCGAAG
ATCCCCTTTGGTCACATTCTCTAGGGCCTCTGGGCCACTTCTCCTACTTGGCAGTCTTCTATGCTCTCTTATCTT
GTGCTCCCCAGAGACCATGACACGACCCTGAAGTGATATTCCGCACCACTTTCTAAATCCTCTGGGTAGACGAGG
CTTCAGGACTTTTGTGCCTCCCTAAGCCTGTCGTAGTCATTGACCCCAAGGACAAGAGCATCTTATCTACAAACC
TCCAGCCCCAAGTGAAAAGCCttttttttttttggagacagatcttgctctgtagctgaggctggattgcagtgg tgcgatctcagcctcctgagtagctgggattataggcgcccgccaccacgcccagctaatttttgtattcttagt agagatggggttttgccatgttggtcagactggtctcgaaatcctgacctcaggtgatccacccgcctcgggctc ccaaagtactgggattacaggcgtgagccaccgtgcccagctGTGAATAGCCCTTTTATCTCACCACATAGCAGT
AACAAGGATCACAGGTCTCAGTATCCACCT.AAGCCAGGTTTAGATAGATCTCCTTTACAAAGAACCGAGTTTCTA
GCTTGGACTTGGAAAAAGAGATAGAAAACCCCTATTTTCTCTTCTTAATTTTCTTTATACTCAGCTTCACACCTA
ACAACCAATGCTCTTCTGGCCTGGGGATCAGATAGTTAGGTCTCAGGAAAAA.ACTTTAGGCAATGCTCCAGAGGA
GCACTGACCTCAGCTACCTTTGAAGACCCCGGTGACTTCAAAGCTTCACTGATCAATATTTGCTCCCCATTTAGC
ATCTCATAAAGGATTTCCACATAACCCTAGAATAGTCTGACCTGGTTCCTTTTCTCTGGTTAATTATCCACAGAG
Seq 241:
TAAATGCtattttattttaaacattttagtttacaaaaaaaaaaaaaatCAATGATTGGTACCTTTTTTACACTC
TCAGATTCCTGAATATGGACAGATCTTCAAAGGGAGGAAGGAGTTCTCATATGAAATTTAAGATAGACTGTCCTG
AAGGTTGTGGGGTGGGGTTTTTTGTTGTGTTTTAATTCGCTTTTGTTTTTAAGACACAATAAAGCTAAAATGTCA
AGTCTCTGGGAGAGATCCCCTTAAAGTTTCAGTCAAGGAGCATATCAGAGCACAGACAAGGAGACCCCAGCCTGG
TGCCCGCCGGCCCGTCCCGGCTGCCCAGGCGTATTTGGTAGCGCATGGGTTGAGAGCCACTGGGACAATCACACC
TCGCATTCCCTCGCGGGCTGCTGGTGGCAGGTACACGAGCCATACTCGTTGATGATCACCAGGGCTCCCTCAATG
TGGTTCGGTTTGTAATCAACGTAGTATTCCTGGGCAGACATGGCAGCCATCTGATGCATGGTCTGTTTCTGCTTT
TGCTTCCTGCGCTGCGTGACAAAGCACTGTCTGAGCTGCCTGAGGCTGGCTGGGAAACACTTCCAGGACACGTAG
AGCACCAGGACCACGATGAGGAAGGAGAAGATGAGGGCCATGGTGCCCGTGACCACCTTGTGGATCTGCACGGCG
TTCTCGGCGTGCTCGCCGCCTGGAAGAGCCACGGTGGCAGGCTCGAATGTGCCGTCGTGCTGCCCCTCCCCGCCG
TCCGCGAGCGTGGTGGCCGAGCTGGCAGGGGGCCCCAGATCACTGCGGTTGGTGACGGCCGAGAGCAGGTGGCCG
CTGGTGGGCTCGGCCCCATCCTCGCACAGGTGGAAGGCGTACACGGCGTCCAGGACGTCCTCGCCCTGTGCGTAC
TCCGGGCTGGCGCACTGCAAGTTGCCATCGTAGCGCCCCTGGAAGTTGTTGAGCCACGAGGCTAGGGCACACACG
TTGCGCCCGCAATCCCACAGGTTCCCGGCCAGGGTGATGCTTGTCAGGGACTTCCAAGAGTTGAGGATCCGGGGC
TCGATGTAGGTGAGGCGGTTGGAGTCCAGCTGCAGGGACTGCAGGTGCGGCACGGTCTCGAACACATGGGGCTCC
ATGTACTCGATCTCGTTGCCCGACAAGTCCATTTTCTCCAGGTTCCAAACCCAGTCCAGCGAGCTGACCACAATG
GCCACCTTGTTCCTCCGCAGGCAGAGCGAGTGCAGGGAGATGAGGCGCGGGAAGTGGGCGAAGTTCACCTTGACC
AAGTCGTTGTGCTCGAGGTGCAGCTCGGTGAGCTTAAACAAGCCGGCGAAAGAGTTGCGCGCCAGACTCTTGAGC
TGATTGTATCCGATGTCGAGAAACTTGAGGCTGCGGCAGTCCTGGAAGATGCGCACGGGCACAAACTGGATGGCG
TTGGCCCGCATATGCAGCGTGGTGAGCTTCCGCAGCCCGTGGAAGAGGTCGGGCGCGAGCGCCTGCAGCTTGTTG
TACGAGAGGTCCACGCTGCGCAGGTTGGGCATGGGCCGGAAGGTGGTGTTGGGCAGTTGGGTGATCTGGTTGGAA
CTCAGCGTGAGTTCCTTAACTCGGCGCAGTTTCTGAAAGGCGTCCCCCTGCACGGAGCAGATGTGATTGTGATCC
AGATAGAGCCACGTGAGCTGCATTAACCCCGTGAACTGGCCGGCGCGCAGCTCCGAGAGGCTGTTGTAGCGCAGG
GACAAGCCCAGCAGGCCGGACAGGTTGTGGGGCGCCTCGGTGAGGTTGAGCGCCTCGCAGTACAGCAGCCGCCCC
TCGCACCGGCACAGCTGCGGGCACCCGCTGGGGGCGGCGGGCAGCATCTGAAAGCAGGCCCCCAGCAGACACAAG
ACCACCCCCGAGGGCCTCCTCAGCAGCCAGTATAGACAGAGACCGAGCAGCAGGAAATCCATTAGCGAGAATCTT
TCCAGAGAGACTGGAGAATGTCCATTGGAAGCGCTCGGTCAGAAATCTACATCATATTTTATTCCGAGGGAGGGG
AAGCGGGGGAGGGGGAGAAAAGGGCAAAAAATCAAATAAATACATAGAAATAAAGAAGGACCCCCCTCCCCAAAA
ACCACACGTTCACCTCTAAGCATGCAGAAAGCTGGGCAGCATAGAAAGTTCACAGCCACGGAAAGATCAAAGAGA
TGGTGATTTGGTCCATGTTAGATGCTGCAGCAAAGAAAAGGGAGG TCTTCGGGAAAGAATTTAAT
TAAAAAGTGTCTTACCCACCCTTTTCCAGAGAGTGACAACCTCCATTCAGCTGCTCCCTTTGTGTGCAGGCTAAT
TATATGCAGGGCGAGAGAAGACCCCTCTGTGTTTCCGAGGCAGCCCCGGTCCGCGGCCGGCGGATCTGGCAGGCG
CACAATGTCTCACTTTGCTGCTCGGCTCGGGGCTGCAAGGGCGGCCGGCAAGGCGGGGAGGCGACTTCTAGGACC
CGCAAGTTTCCCAACTACGTGCCGGAGCCCGAGCTTCGCCTTCCTGCCGCCTTCCTTTCCCTCTGCAGTTCGGAC
TGTGACGTTGTGGGGGGAAAAAACTCCAAACTCGGGGCTCGCGACTCCCCAGGATCTGACAGTCTGGTTAATGTC
CGTCATTGGAAACGACCACTGACCGGCGCCACCTTTTACTCCGCGGAAACAGCCTGCCATTCGCGCCCCGGGCAG
CTGCAGAGAGCGGGCTCACTCATGCTTTgcgggcggcgggcggcgggcggcgggcggtggggaggtgcggacggc ggcgcggggagcggcgagcggCGCCCGGGCTCCTTCCCTCCACCAGGCAGTGTGCGGCGCGAGCTTGCACAGGCA
CCTACTGCTCACTGAGTGTCGTAAGCTGCTCACGATTGTGCGTCTTCCCCGAGCACCTCAGACATGGGCAGATTG
AAAAGGGGTGGGCATAAAACCAACATTTTACCGAACCACTAAAGTAATATATGTTTTTTGATGAAACGGAAAACA
CTTTCAGCTTTTTTGTCCATATTTCaaaaaaaaaaaaaaaaaaaaaaaGGAGGGGGGAGGGAGGTGGAGGTAGGG

GTAGCATCATCCACGACAAGATATTTCCAAGTGGGAAACTGAAATGTTCTGTGCTCTCCCCCTTGCCTTTTGGGG
ATATATTCTTTTCCCCTTTAAAACTGTCTACGTGTAAGAGATACGTAGGAATCTGTAGAGAAATCAACGTTTGGA
CCTTTGCTTTAGAAAAGCAACTTGAGAGAAGACACAGGAAGGCAATGATTTGGGGCTTGGCTAAGATTTTTGGGG
TTTTTTCCCCCTCTTGCGGGTACTGGAATTCTGCAGTCAGCCAGCCCTTTTTTGAGGTGGAGAGGGGAAATGCTT
TCCAAACCCACCTAGTTTGGGAAGCCATCCAAGTCCCGGTGGTGTGAGATCCAGTGTGGCAAAAAGGTATGTCTG
TGTGCAGGGAGACTTGACTGAGATCCCTCCGGGGCTTCATCAGGCTCCACAGATACATATGGGGTACAGAGTGGA
TTAAAGAACGATTGTACTGTCTGACATGGGGAGGGCTTACCCTGACTTGTGCTGTTCATGGTGATTACTGGGCCC
TGCAGTGCACCCCACTCCAAGAGAGTGTGAATGTGTAGGGACGTGATAGTTTAAGCCATAATGAAGCCTACCCGT
CTCCATACACACATCCTAATTAATCTTTGAGACTGCACTAAGTTGTGCCACTTTTTCCTCTGAGTATGACGAGAA
GCCTTTGCCTCATTATTTCTATTCATAATCATTTATAGATAGGAGTCCTTACAATGAGCTCTCCCCCCACCTCCC
CACACACACACCTTGTGCCTACTGGTCTGTAGAGGGTCTGCCCTGGGGAGGGTCAGTTGGTCATCTGTTTAAACA
AAGTCCTCCAAGATGGCTGAGAAAGCCTGCGGGAAGTGAGTGTGGGCAAGCCTTCCTTCTTGACAAAGATGCCCA
GGGAGATGGTAGGGAGAGTCAAATG

Seq 242:
GGCTCCTTCTGGCTGCCCCTAGACCCACCAGAGGGGCAGGCAACAGAGGAGGGTGAGCTGGAGGCTGGAGGGGCC
AGGGAAGACGGACAGGGAGGGCGCCTGCCTCCCACAGACCCCAACCAGCCTGCCCTCTTCAACCTTTCCCTGCTG
TTTTCCCCAGGACTCCTTTTGCCCTCACACTCCAGTCTCTCTGTAGCACCCTGTTGCTCCCTCTTGGTGATCCAG
CTCTTGAAAGCCTCTCCAGGCCTCCCGCTCTTTCGGAAGCCGTGCCTCTCCCCCTCTGCTTCCTTCATCTCCGAG
TCTTTGTACCCCTGCGTCTCCGACTCGGCCTTTCATCTGCTCCCTCCACCTCGGCATCGCCTTGCCTCAGTCTCC
CCCGACCCCTGTCTCGCCCCCTCTGCTTCCAGAAGCCTGCGCCTCTGTCTCTCCCACCGCCCGGTCTCCTGGTGT
CCCCGGCGTCTCTCCCGTCGTTCCCGCCGCCTTGATCAGCCTGGGCTGTGGCGCTGGCATCGCTGGCCTGGGGAC
CGGGGTGTGGGCGATGGAAGGGGGTTCGAGAGGCGCAGGGGAGGGGCTTCCCCTCCTCCGCCCCTGGGCGCCTGG
GGAGACTCGCGTGCCAGTCACCTGCCGGTCGGGGCGCCGACTTCGCGCCTACGCACTCCACGTGGGCGCCCCGGG
GCGCGCCTTTGTCTCTCCCGAGCCTTGAAAGCTAATTACATTGGGAGGGGACAGGGGTGGGGTGGGAGAGGGGGC
CGCTGTCCCCATTCACTGAGCCGAGGCCGCCACTCCGCCGGCAGCCCCGCGCAGGCCTGGCCCCGAGTCACGTCT
GTTGAAACCGTTTTTTTCGGCCTCGCCCCCACCCGCCTTGGCAGCCAGCCGCGCCTTTGTACGCGCCGGCGGGGG
CGCCCTGGAACCCTGAACCGTCTTACGGGGAACGGGGGTGGGGGGAGGGGAGCGGCGCGGGCCCCACGCGAGGAA
GGAATTTCCTGGGCCACTGCGAAAGATTGAGGCTCAGAAAGCCAgagagagacgtgcgaggaggaagcggagagg gtgtgcgaagctggagagggagtcggagcgccagcgaaagaggggagcgctggggaaggaggaagagaaggagag ggggagaagagagaCGCGGATGCTGGGCGCGCGACGGCAGCGGGCGGAGGAGGGGAGCGGCCGGGAACCTGCGCG
CAGGGGAAGCCAGGACGGAGCGCAGCACCGGCAGGGGAGGGTTGCCGAGGGGCTGTGCCGAGGAGCCCGGGTGGG
GGCGGCTGGACCGCGGGCCGCGGGACTCACAGACAGTGCGAGGCGGCGCGGGGGCCCCTCTCCCTATGCGGGGCT
GGGGCGCAGGGGCTGGGCGGGGCGGGTGGGCGTCTGAGCGCGGCGCGGGCGCATTCTTCGCCTTTTCTTCCTCGG
GCTCATTCCGGCCGATCGATACCTGCGCGGGACCTGCCCCCGCCGCTAATATCTTTTTAATGAGTTCGCCAGGCT
TAAAGCGAGCGCGATCTGCCCTCCAGGGTGGATTTTCCCCCGGCAGATGTTTCGGGAGGAGGAGGCGCGCGGAGC
TCCCGGGAGGGGGGACAAATCTCTCCCTCCGAGGGGCGAGAACAGGAGACTTTCTTCTAAAGTTCAAAAGAAAGA
CGGGCTTTCACTCGGCCCCCAAAAATGTATTTCTCGGCGGACAATGGGCTTCTTTCTGCGCCTCTGAGGGCCGGC
GGGGCGGGCAGGGCGGGGACCCGTGCGCTTTGGCCCCGCCTGACCGACTCGCACCCCCCTCCCCCGCACCCAGGC
CCGGGCCCCAGAGCGAGGGCGCAGGAGCCGCGAAGCCGGCCGCCCTTCCGAGCGTCCCCCTGAAGCGCACTGTCG
GGACCTGGCTCTCCCGGAGCTAAGCCCCGGCGCACCGGCGAGAACGAAAGCGTCGTGCGGGGCCCTGGGCTGTCC
CACACGCCCCCGTTCTCATAGGTGCCTCAGCCGGGCCGAAGGGACGCGCGCTGGTGCCTCAAGGGGAGGACGAAC
GGACCTCCGGGCTTGGGCCGCGGCCTCCTTCCCCTCGGCGCTCCGCCCTGAGCGGGGCAACAACTAGAAATTAGC
CAACCCCGGGCGGCTGCCGGGCCCTGAGACTGTCTTGCCCGCCCCGGCCCAGCCACCCCTCCGGGTCGCCCCTGC
TCTTCTCCTCCACTTCCCCTTCAATGTCCCTCCGTGGGGCCGTCGGCCTGCCGCGGCGGCCCTCTCTCCACTCCC
GTGGGCTCAGGGGAAGAGGGCACCCGGGCGGCGAGGATGACCTCCGAAGAGCCGCGGCAAATTGATTCGTTCCGC
CCGGAGCCGGGGCCGCGTGAATgggggcccgggcggcggcggcAGCGGAGAAGAGGATAAAGATGTTCTCCCTGA
AAGGGGGAGGGGGCGCGGAGCGGGAAGCGGGGCCATTCACTCCTGGCCCGGCCCCTCGGGAAGCCGCGCCGAAGA
AAGGGGGCCGAGGCCTATTCAAGTCCTACGAGCCGCCCACAATGGACCGATATACTGAGGGCCTCTCTATTAACG
CCCATGAATATTAAAGAGATCGCCAAGTGGCGGCCAGCGGGCGAGGGGGGCGACGGAGCCTGAGAGCTCCGGCCC
GGCCGAGGGGAGGGGGCTTTTGCGCGAGCACATTCCGCGCCTGGGCCCCGCGGAAAATGACAAAATAACACGGGT
CATCCGCTGGGAAAGCCCGGAATGTTTCCCCTCGAAATCTCCTCCCGGGGAGATGTGAGCACAGGGTCTTGCTCC
CTATTTCAATGCACCTTGAGACTGGGCGCTACCTACGGGCTCCTTTTTCCCCGGGCGGGGGTCCAGGTGGGTTTT
GCCGCTAGACTAGAAGCACAAAATGTGAGCGCGGTGGAGATTTGGGCGCACCAGCTGGGAGGACGTTCTGCGCTC
CGCTTCTGCCCGGCTCCCAGTACTGCTCTCCGGGCTTGCGGGTCCGGAGGAGAGGAATGGGACTCCCTGGCCGCA
GTCCGAGCCCGTGGTCACTGCGCCAGCGGAATCCAAGCCTCTAACTCTAAGCCGGGGTTCAGGACCCAAACGCTG
CACCCCAGCACGGAGGATGCACAGACCTGAGGGCTTCCCGCAGTGGGACGTGGCCCTGGAGAGGGCAAAATCCTC
GGGGTTGTCGTGGGGTAAAGTGATCTTACCCAAAGAGAGACCAAGCAAAGAAACCTCagttcacaaagtccaact caaaccattgcacagacagggacaccgaggcccagagaggaaaggggcagtccacaggacacacagcagTCCTTA
TCCCCCTTTGGTGTCCTGGAGGAACTGAGGTCGCTTTCGGGGCTTGGGAGCTGCCGCAGCGCTTGGCTCCTGGCA
GCGCTCCCCGACGTCGTCTCCCTCGCTCCTAGCACTTTGTCCTCTCCACCTAGGTCTTCCCAGAAGCCAAGAAGT

AGGCCCCGGTGAGGCTCCCCTGCAGGAGCCATCGGACTCCATACGCCCCCTCAGACTCGAGCTCTGGCCAGGGAG
CCGATGCGACCCACAAGCTGCGTCGAAAAATGAGTGGAGGGTTCGGCGACCCTAACCCACCTCCCTCCTCAGCAG
CGCTGCCCTCTGCTGGCGCCCTGCCCAACGGTCCTGCCTTCTGCCAGGTGTGCCCTTCCTTGGGCTCCAGCCTCG
GGCGGACCCGGACGCAGGGTCTGAAGGCCAGCTACCGCCGCCTTCCTCCCTTTGCGTCCCAACGGGGACGGGGGA
TGCCGGAGACTACTGGCAGGAACTGGGGACCAGGGGTCTGGAGTCTGGACGCCAGGTGTGAGACCCTCTTAGCCA
AGGCGCGTCCGGGTGGTGGAGGGGCGTCTATGCCAACAGGCGTTTGGACAGGGTCTCGCTCATGGGAGGTCAGCT
CGCTGTTCTTCCACCCAAGTCCTCCGCGCTGAGGAGAAGGTCTAGGGAGTCCACACAGTCCAGCGGAGACTAATC
CGTGAGCCTGACCCACGCCGAGAGGGTCCAGGCACCTCTGTTAGCGGCATCTGAAATTGTAGGCTGGTGATGGGA
GCCAGAAGTGCGGCAGGTGGGGTGAGCTCCCTCACCCAGCATGTCAGGGCCTGGGGTCCGAGGCTTGAGGCTGAC
ACTGGGGAGCCGCGAAGCCTGCAGGAAGCGGGGCCTTCCGCTGGGCTCAGCAGCTACCTGCTTCGGGAGAGGGGA
TCGCTGGGCTCCGAGGTGCCTCGAAACCGCCGCAAAGCAAGTCTGCTCCTGGGATGATGGGCAGGAGGAATagag gagaggaagggaaagaagagagaggcagaggagaaagaaagaactaggaggcaagaaggaaggggCGCCGCAACG
CCACCGGCTTCCCGAGGTTGCAGCTCAGCAAGGAGCCGGAAAGCCGGGCCGCAAGCCGAACCCGCACTGAGGCCT
CTCGCGGAGCTGCCTGCAGTTTCTGAGGGACTTCGCTCTCAGGCACGCCTGCTCCCACCTAGGAAGGGTCTCGGG
ACCCCTTTCAATCCCCCTATATCCCGTAGGAAATTCTTTTCCCAGAGACAGGCTGCCAGGGCGATTCCTGTCCGC
CCATCTCGACCCCCGACCTGGCCCCGCAAGGGCCGGGAGCCTGGCCTTCCATGAAGCTGTCTCAGGCCGGGACCA
GCCCCAGCCCCGACGGCCGCTGCGGCCCCGCCTCGGCAGCCCCGTGAGCCCGCGGAGGAGTTTCGCACCCGACCG
TGCACAGCGACCGAGTTGGCGCGGCCCGTATGAAGCGAAGCGCCGGCTTCAGCAGCGCAGTCTGAGCAGGGGATC
CGCGTGGCAACTAGGGCTGCGCGCGAGCTCGGGGCGACTGTGGCGGCCCGGGGAGTGCAGGGCCGGAGAGGGAAG
AGGACGCGGGCTCTGGCCGGGGAGGGAGAGCGGTGCAGGGCTGGGCCGGCCAGCCGGGGCAGCAAAGTAAAGGTG
AACGCCGGGCTGGGCCAGGCCGGTGAACATAGATCAGGCCTGAGGGGAGCGCGGGGCCCGAAGCCAGGCGTCCCC
TCTTGTCTAGCCTGGTCCCTGGAGTCCTAGAGAGCCTCGCCGCACCCCCTCCCCTTCTCCGTCCCCTCCTCTCCT
CAGAGCCGGCTGAGCCTCCCTCCCTGCCCTGCGCTTCCCACGGGGAGAGAAGGAAAAACAGGAGGGGGGAGGAAG
GACCAGGAAGGGGAGAGAGGAGTGGAGGGGTACTGTTTGGAGCGGTCCGCGCGCCCCCGCCCCTCGCGCTCTCGC
GACGAAGGCTCCTCGAGCCCAGCCGGGTACAACAAGTCTGTCCTCCGACGTCAGGGGGTCATTAATAACCAATTA
GGAGGGTCACTGCGGCTCCTATAAAGGCGCTGAGATTTTGCCAAGGGGAAGACGGCCCCGGCCGAGTGTGCGAGA
GGCTAGCGCGCGCCTGAGCCCCTTGCTGCCGCTTCCCTGCAACCACCCGCCTCTCACCCACCCTGCACcccccgc acccgcctccgcctccacccgcgtctctccaccctccgcgccgcctttgccatctctacagatttcaccatctct cttcccctctccccctcgttcgctttcctcccagtcgccccctcacctcccgctccctcctgcgtcctcctcctc tccgtcctccccctgctctggttccttctccatcgcagcgctctcctctcgccccttgggctcccctctcgcccg cccacctccccCGTcggcccggccgtcccccggcgccggggagctccgggccgcccATGATGGGCTCCGTGCTCC
CGGCTGAGGCCCTGGTGCTCAAGACCGGGCTGAAGGCGCCGGGACTGGCGCTGGCCGAGGTTATCACCTCCGACA
TCCTGCACAGCTTCCTGTACGGCCGCTGGCGCAACGTGCTCGGGGAGCAGCTCTTCGAGGACAAGAGCCACCACG
CCAGCCCCAAGACAGCCTTCACCGCCGAGGTGCTGGCGCAGTCCTTCTCCGGCGGTGAGTCCAGCCGTCGGAGCC
CGGCGCAATCCCTCCTCCCGGCGACCCCCATTCCCGTCCTGGCGATGCGCGAGACGCGGCTGGGATACCCGGCCT
CGCTGCTACTCGCGCCAACCTGGGCTCTCCCGGCGCTCGGTGCACCTCAGTTTCCCCATGGGCCAAACCAGGACG
CGAGCCACCAAGCAGCTCCGCAGCCCACCCGGCTCAAGGACCGACCCCGGCGACCCCGTCGCTCGGCCCCGACGC
CCCCGCCGGCCCCTCCCTTCCCCTCCTGCGCTTGAGCTGGCGGGTTCCCGGCATTTACAGCCTTACTAGGCGTGT
AATAGCAGTTGACTCAAAAAGAAGGGGTTTTAAATTCATTTAGTTAACTTGGGCTTGACCCACGAAAGTTCCCAC
TTAAACCAAGAACTTTAAAAGGCAGCCGGGGCTGgggagggggtggagggagggcgggcggggagaaaaagccgc ggggagagcgagggagagaaagagagagcgagaaaagTTTCTTTTCTTTAAGATGTCTCAAGTTCTTATTCCTCA
TTCATCAACCCGCAAACAATATCTTTCCCTGGCTCTGGCATCTCTGCGCGTCGCCCTCTTTTCCCCCTTTACGAT
TTCTGTTCCTCTCTTAATTTACCGTGAAGACTAATTCCACTTCCATTCACGCTATGTCAACCATCTAATCCCCCT
TTTTTGTAAGGGGAATTCCTCGGCCCCTTTTA.AACAAGTCCCCTCCGCATTGAGCTACAATTTACTGCTACAGCA
TTCTTCCAGGGCTAATGAATTTAGAATTAGCAATTTCTTTCGAATGGAGCCGAATGAATGCGATCACTTTAACAG
CGTGACAAATTGCCCGCCGCGCCGCAATGGACACCGTTTAACCCCCCCCTTTCAGCCGGCCCGCTCGCCGGGTAT
TTTCCCAGGTAGCTTAGAGGGGAACCTTGTAAGACATGGAGGCCGCCCTTGTGCGCCTCGCCGCTTCCAGCCCTG
CCGCAGATGCCCGACAGGGGAACCCTCGGGGAGCTGGGGGCCGCCGCGGCTCCTCCCCGCCCAGAGAGATGACAT
CGGGGTTTGTCTGAGCCCGGGCGCCGCCCTCCCTGGCACCCCAGGGCCTGGGAGCAGAGAGGGACTCGGGCGCGC
CCGGGGTCACACAGCGAGCGCAGAGCCTGGCCAGCTGCTGCCGGTGCTTCTTTGGCACCTCCAACACCTGCCAGC
CCGAGGTCTGTCCCCAGCGCTGATCACGGCCCGGCTCCTCTGCCAGTGCCCAGAGCCTGGACACACAGTGGGCTC
CCGGAAGCCGACTAGGCGAAAGAGTCTCCGGTTGGCCTTCACCTCCTTGCAGGACCTGGCCTCAGTTTCCCTGTG
CATAAAACCGCTCGCTGCCGTTGGCTCATTAATTCTTAAACTTATCCGGGGCAGAGGATGGAAGAAGTTGCGAAT
GCTTTGAGAATTCGCGGAGAGACTAAAAACCCACTTCTAAAAATGATCCCCAACGCACCACTCGCTTTCCAGGGC
ACGGAGGGTCTCCAGGTTGCAAACAGAGGAGAGGTCGTTGAGCCTCCGCACATCCGACTTCCTCCACACCCGGGT
GGCTTCTCTGGATTTGGGGCCGACTTGGGTTTGGCTGGTCTGGGCAGGACCGAAGCCGGGGTCCCGGCGGGGAAG
GAAGGGCCGGGCCTCGGCTGCCTCGGGCTCTGACCGGTTTTCCTGGCCCCGCCGCCGCAGAAGTGCAGAAGCTGT
CCAGCCTGGTGCTGCCTGCGGAGGTGATCATCGCTCAGAGCTCCATCCCTGGCGAGGGCCTCGGCATCTTCTCCA
AGACGTGGATCAAGGCGGGAACCGAGATGGGCCCCTTCACCGGCCGCGTGATCGCCCCGGAGCACGTGGACATCT
GCAAGAACAACAACCTCATGTGGGAGGTACGCGCGGGCTGGGGCAGAGGGGCGCAAGGGCCGGCGAGGGGCGCTG
GTCGCGGGTAGGACTCGGGCGTCCGGCCGTCGCCGCTTCCACCCGGGCTGAGAGCGGCGGACACTCCTGGCCTGG

ACGCCCCCTGAGCCGGGACTCTAAGCCGCCCGAGCCTGGAGCTCACCCCGCCTCTAGGCTCCTCCCAACCCGTGC
CGAAAATCCGACCCTCCTTCCCCCGGacaccctggcagagcaagactgtggttggctccacttggcagatgaggg cactgagacccagagcagtcaggtcgcttgcccagggtcCCCACGCGCCATCCCTCCAGGCCTCTTCCCAGCCAC
TTACATTCTTTCCCTGGCCCCGGAAGCAGCCTGGGAAGCCCCTCAAGGCCAGTCCTGGGCTGGGGGTGAGGTGGG
GCTGGAAAGGAGAATGCCTGGTGAAAGCAGAATGACATTCACGATGACTGTGGCTGAGGTGGCATTGAGTCAGCT
TCTGTGTCCCCAGCCTGCAGTCACGGATGACCTCAGTAGCCCATGCCTTACTGTTCCCTTTTCACGGAGGCTCCA
AGAGGCTTCCATCCTAGGCCTTTCCACCCATCACAGTGCCAGTGCCAGGGAGGGCCACCCCTGTGCTTCTTCCTA
ACTTTGCAGAACGGGAAACCCACTGAGGCCAGACTGGTGCACACCCTTCCTAAACTCATTCCCTCGCCCGCTCCC
CCACTCCAGCTCCCCCCGGCGGACCCTGGAGAAGCCCAACTTGATAGAACTGCGGGATGGCCCAGAGGCCTCTCT
TGACCTCATCTCCCTCCTCTGGAGGGCTGGACCACTAACCACCTTCTCCAGTTGCTGGGTCAGGAAGTTGGGGTC
CAGTTTGACCTCTGAGTGGCCTTGGCAGCTCCCGTGAAGGGGTTTAGGCCAAGCTGGAGTGCCACAGTGACCCAG
CCCTCCCTCCCTGGACTCCAGGATCCTCCCTCTCTGAGGCCTGGCTGATG
Seq 243:
GATCTTAGGTAGTTGTCTTGCACTAGCACTTCAAGTACAAAGATACCTTTGGTGAATTTTCAAGAATGAATATAA
AATCAATTTAAGTTCCAGTTTTTTTTTTTTAATGACTCTCACACAAATCAACTGGTTATAGGCTACTTCAGCTTC
TTCCTGAAGCAGTTGTAGCTCCTAATTAATGTGAACTCCACGAAGAAAGAACTCCCACCATTTTATGTGCTCTGG
GATGCGGCTGAGTCTTTCCAATTGCAGTCTGTTTACTCTTTGGACAGCTGCATCTCCTCCTTATCTGCTGAACTG
AGGACTGTACAAATGTTTCTTGTGGGTCAGTGTAATATTAAAGAATAGCTATGTTTAGAAGGCCAGTTACCGTTG
CTGTACCCACACGTCAGGGGCAAAGGCTGAGTGGGCAGATGGGGGGCTGCCACCCCTCCTCACGCCCGGCTTGGG
ACCAGCCTGGAGTCTCAAGCCGAAACCCCTCACGCGGGTGGGCACACAATGCCCGGCGTGTCGCCTGGGCCTCCT
CGGAGGTGCTTTAACAGGCTCTTGCGCTTTTGAACGGCCCTCCTGGACTCTGATCTGTTTAAACTAGAGGCGTTA
ATAAGTGATAACCTGGATCTGCCCTCCTTGGAAGCTGCCTGCCtatattttattgtttaaaataaataaaaatGG
TGCCCCGGGAGAGAAGATGGGGTTGTTTCCTTTTTCCTCTGGCTCTGCCCCGAGAAAGAGGGCGGGATCCTCACG
GCTCACAGTGGGGAGGGTCTTTCGTCGGCCGCCGGCTCGCCTCGGAGGGCCTGGACCACTGGACCGCCCTTCCCC
GGGGCCCTGCCGCGGGACCGCGGGCTTCTGGCTCCTCCTGGGGCTGCGTCCGTATGCGCGGAGCGTGTGGCCGGG
CCGTCGCCGCGCCACCCCACCTGAGTCCGCCGGCCAGCGCGGGGACGCACCGGGCAGCGTGTGTTTGGCGACCCT
CCCGCACCTCTGGTCTCAGTTGCGTGTGTGCACGAGGGGTTCCATAGGGCCCAGGGATGCTTGGTACCCACGGGG
GAGAATCCCTCGCCGAACCCTGCGGGTCTGCGGGGCGGGCCGCGAGACTGGCGCGCAAAAGCGGCTCCAAGGCGG
GGCTCCCGCGCTCCCCGGGGCCGGCTTGCCGAGTCCAAGTTGAGCAACCGGCGTCGAGAGAGACACCGCCCCTGC
TGCGGGCGGGGGCCTCTCCTCGCTTCCGATTGGCTGACGGGGGGAACCTATCGCCGTCGGCCGCCTCCGCCAGAG
CGGTTTGCTGGTTTTCATTCATTGGCCCCGGAGCCGCCCCTGGATTTCCATCTTTTGTGGCGCGAAAATAACCCT
TTGCTCCCTCGTTGGTTTTGTTGAGGTTGAGGGGTGGGACTGTGTTCCCCTCTGCTCGCTCTCGTTTTTCCTGCC
CTTTAACAGCTCGCCCCCAGCCCCAACCCCCAAGGAAGAAAGAGGGAGGTAACGCTGAGGAAGGGTGGAAAGCAG
TTCTGCGTCCGTGGGTGGAGCCCGCCCCTTGGCTGACCGCATGGTGCCCGCACGGTCCCTTCCCTTCCCCCAGCG
TCCAGCGCCCGGAGGTTCTGGATTTGCGCCATGCTCAGCAGCTGGAGTCACATCTTCGTTTCCCTGCCCATTTCC
AACATCTTAGAGTTGATGCGTCCTTTTTTACTTAAAACAACTACAACCAACCATGTTCTCAGGTACCAGAACTTT
TCTGGGCTTCTAGAGAAATCGACTCGCCCTGCCCGCTCCCTTCCTAAACCCCTTTGTGGTCCACAGGGTTGTTTT
AAGCAAAATCAAACAACCCCTCCAAAAAAAGCAAACGAAAAATTCCGGGTAAAATCAACTATGCTGAGACCACGT
TTTCGTTGAAGCTGCCCTAAGACCAATGAAGCTGAGACCGACCTTCAAGGATTAACGATTTCTGTAGCTGAAATG
TTCTAATTTCACTGACGTTTGGTGGAGACGGTGAGAAAAAATAAATATGAATTTGACTTGGAAAAGCACAAAACA
AACGAAATAATAATATTTAATTTGATTAACTGAGAAGGCAAACAGCCACAGTGGTGTATTCTAGGTACTGGTGTC
TTTGGTGAGTTTGTAATTATATAAATAAATTGCTGTTGGTTTCATCAAAAATACAGATCAGAACTCTGGCCGTGA
CAAAAAAGGAAGGAAGTATAAATTTGTTTGGTATATCTAATTTTATAACAGACTTTACCAACCTTTCATTATCTG
GAGAAAAGGAAATGTACCAGTTAACAATATAAGTTAATTTGTTTGCAGATAATTGTTCATTTTTTGTCTTGACAA
AATACTCTGTTTGGTTAAAAACGGTAAAATGATAATTCAGTAAATATTTAAAACTTTGAGAGAATTGGTTTAAAT
CAGGGAGTTCAAAGATTTTCTCTGTGTTGTTTACTCTTAGTGATGTTACATCTTGTGATGTTACATCTTCTTCTG
AGTGCTTTTGAAAAAATTATTAGTTCTGTGTTAGTCTCTAAAAACTAAAGTAACATAAATTGCCATGTACCAAAA
TTTTAAAACAAATTTTAACAACTGAATTGGTTAGTAAAGAAAAACTACTT
Seq 244:
TAGCAAGGGCTCTCTTTCCCCTGCTTCATGTGCATCCTGAAACCCTAACAAAGTTAGATGTCCATCAGCATAATC
AGTCCATGTGCTGGATGTGTGAATATATGTCCTCCAGGTAACGGaggaacttgggttcagaaactagacagcctg agctcaccctgggctccactactctgccagtgtagttgtttatttatttattgtggaaaatatatacataacaaa aaattacctttcaaatcgttttttgtttggtttttttttgttttgttttgttttggagacagagtctcactctgt cgcccaagctggagtgcagtggcgcgatcttggctccctgcaagctccacctcccaggttcacaccattctcctg cctcagcctcccgagtagctgggactacaggcgcctgccaccacgcccagctaattttttgtatttttagtagag acagggtttcactgtgttagccaggatggcctcgatctcctgacctcgtgatctgcccgccctggcctcccaaag tgctgggattataggcatgagccactgcg.cctgcctcaaatcgtttttaagtgcatggttcagtggcataagtac attcatactattgtgcaaccatcaccaccatctatctccagaactttttgctattccacattgaaactctgtacc catcaaataataactcccattccatcttctcctgggccctggcaattaccaccctactttctgtctacatgaatt ]11 tgactattctaagtacctcatataagtggcatcacagaacatttgtctttttgtgtctggcttctttcacttagc ataaggtcttaaggttcatctgtgttatagcacgtatcagaatatcctttatttttaaggctgaataatattccg tcgtaggtgtatactgtatcttgtttatcaatggacattcgggttgtttccaccttttggctattgggaataatg ctgctatgaacattgatgtaaacatatctaatcaagtccctgctttcaattcttttgtgtatacacccagaaatt gaattgctaaatcaaatggtaattctatgttcaatttttgggggaaccatacttgtatatccttaaacctctgtg tatcatagaacctctctgaacctcatctgtaaaacacggataataacagcaatgccatttcagggtggtctgaga attaatgcatatgaagcctttggctcaaagactggacacattaataaatgttcactaaatgtttgcttgatGTtt aatctcttcatcctctgaattgagggactcatactaaaataatttctaaagtcactctcagctcctaaactccat gatcccatcattAAATTATTTTCCTGTTGGGGATGCCAGGAGCTCTCAGATTGTATATTAGGGGAACACCCTCTT
CATGATCCCCGCAAAAATCCACCCGTGCCAAGAAGGCCCAATTTTCCTAGCTTTCTCCTAGGAATTTGCCAACAT
ATCCCAGTGTAATCTCACATCTCATTTTTCTTGCCACTCCTTCTCCCTTGCTTTCTTTCCATGTTTCCTTTCTCG
GCTGGCTTTTCCTGCCCACTGAATATCTGCACTTCAAATTATCTTCCCTGGTTGCATTTATGTTCATTCCCCACA
AGTTAATGTCTGTTGGAAGCAACACTTGTGAAGTTCTCCAGATTAAGTTTTCATTCCCAAGAGTCCCATATTTTA
AATGAGGTTTTCCTCTTCGGCAGAATCACACTGGCAGAGCTACCGCAATTTGGTGAAGTCAGTGGAGTTGGGTTT
CTCCCCTCATTCTGTTTATGTTGGGTTATCGCTTGGCCTCATGTTTGGATTCTCATCCTCCCAACATGTGTCACA
TGCCAGTGAGAAACAACACTCTCTGGTACCATCCCAGTGGATGTTTACAATTCAGCAAATACTCTTTTTAGAAAA
GTTAATTAGAGGAAATACGCTTCCAAGCTTTTCTTGCCTGGGGCCAGATTCAGCATCCCAGCAGGGAGTGGACTT
CCTTCACTCCTTGAGGAAATATTTTCCTTCTCCACGCTATTCCTCCGTCTTCCCTCGAAATGTGAGTAAAACATT
CAACAACTAAAATATCCTTGCTAAACACATGAAGCTGCGCTCTGGTTCAGGCAGCAGTTTAGCTACCAACAAACT
GCGTATCCTCTCTGAAGCTTTTTCACAGCCAAAGGTAAAAGAGGTTCTCGGGTCAGAAATAAATGGATTTTTCAG
ATTCTGGGCTAGGAAAAAGAGCCAGCTCAGGTTTTTTTATTTTCTTTTAAACTTTTATGGCTTTGAAGCGCCTCA
CCTGCCATGTAATAAAACAGGAAGCAGGGGAACGCTGATGTAACCCTGAGGAATCAAATCCACTGAGCCCTGGCA
CTCTGAGAAGAACCAGGTCCTCTGGAGCTGGTCCACCGACACCATGCAAAGGCGAAGATGAAGTAGGGAGGTGCC
TTAATGCAAAGTCACCCACTTACCCCTAGGCAAGTGTTTAGGTTTATGGATTGTCAGCCCTTATGAAGGGCTCCT
TCTTCCTTTATTATTGTCTTTGGGCTGCTCCAGACACCATGGAGGCAAAATTCAAATGAAACACTCACCATCTTT
ATTGTAAATCATTAAGGAAGATCCTACCTGGGCAGGCAGGCTCTAGGTAGATGGAAAGTATTGACCAAAATGAAG
GGCAGGGGGGTTTGTGTATCTCAGCTTTTCGTTGATCATGAAGGGATGTGCCTATGGCTAAGTTTCCCTTCTACA
CAGGTTATTGCATTTAGTATCCTCCCCACCCGACCTGGCCTGTTTCATTCTCAGGCACTTGCCAGCTACTTGCAG
CGGCAGAGCACCCAGCTCTCAGATAGAGTTCAGGTGACAGGTAACCAGCACAGAAGGGAAGCAGCGAAGGCTCGT
ACATAACCTGCCCCTATTCAGAGCTGCCCCGTTTGGTCATTTCTGTACATCTCGGCCTGCCCTCATCTCATGAGG
TCTCACTTTACCCCCTGGGCCATAGAAGGACAGATGTTCCTATGACGTTCCCACTTCCCCGCCTGCCAGCAAGCA
GGATCTGCCATGTCCTCGCTTCTGCCCTTAGCTGGATCTCCGTATCATGTCCCAGCCTCATTTGTCCCCAGAAGC
CCATTTGACCTGGGGATTGTGGCTTAGAAAATGATATATGAAAACCAAAGAAGCCAGAGCTCTTTCAAAACAAAC
CCTATGCATCCCAGAAACAATCTGCACTTTTAACCTTGGCTTTTTCTTCTTTCTCACTCTCATCAGAAAGGAAGT
GTGTCTATATATGCTGAGTGAGTCAATCTCCTGTGCTTGGATCTACTCCGAAGGGGTATGGCTGTAGGAGTTCGT
GAAGCAAGATTCACCAGAAGAACACCAAGCAAGCCCTGCtctttattcctttctttctttccctctcttctttct ttcttGCTCACCTCTGAGGGAGCCCTTTCCAAGAGAAACTTCGCTTTTGCAAGTCAGAGCGGGTAACTCAGAATT
GATTCCCTAAGGCAATTTGGTACTTTTAAAATGATAAAAAGAGCAAATAAAATAGGAGCTGGTCCGCTTTCCTGA
GACAGTACAGCCCCACGATTTGGGATGACAAAACCACGTCACAGTCTCAGGGAGGGCCACAGGAGCTCCAGCACC
ACCAGCCAAGTCCCTAAAATTATCACTGGAAAAGCACCACCCCCCCTCAACCCCTCACCCCAAACACACACAGCC
CACCTCCTGAGACTCCCAGTCCTGCTCCCAGGCAGACCCCAGGAGGAAAATGCTCCCTCCTAGGGTGTCCTCCTA
GGGTGTCCCGGACGCTACTCACAGTACCTCTTGGCAAGGACGAGATGAGAAGGAGCTGAAGAAAAGTGAGCCCCA
ACTGCGTCCAGCAACCCAGCTCCATCCTTGCCGCGGCTGGTGCCCGAGCGTCTACTGGGGAGGGAGAGGAGGGAC
CCAGGGAGGCCGGGGGCAGGCGGGTTTTACAGGGACCTCCCCGAGCCCCAGCTGAGCGGGAGCTCGGGTTTCAGC
TCGCCAGGCTCTCCCATCCTCATCTGAGGGGAACCACCTTCAGCCAGAGCGACGTCAGCCCAAACCTCTCCTCTC
TGCTGCCTTAACCCTTGCGGGGCCCCGGGAGGTGTGGCCACGCCTGGAGACCCGCGGACGGCGGCTGCAAAGGAA
GCTGCGGGGGAGGGAGGCCAGCCTGGGTACAGGTGGGGTCCCAGTGTTGGGTGCTGGGAGGAGGGGCCATAGGAC
CCTGGGCGGGAGCAGAGGTACCCAGGGCTGCGGGGCGCTCAGGTGAGGCCGGGAGATCTTCCTACGGGAGGCTGA
GACGGGAGCTGGCTTTGCCCTCTCTGACTGCACGCGGGGAGCCTGATTAAAAGCCTGGCCTGAGGAGAAGGAGGA
GTTGGTGATGGGAGGAGAAAGGGAGCCTCCCTCCACTCCGCACGCAACACTCCTCGTTTATCTCCTTTCCTCTCC
GTTTGCTCCAGGTGATCACAGGTTGGAAAGCTTATTATCTTTTGCAACTACAGGCTACTGGAAAAAGTTTTCCTC
TTCCTATGATCCCCGTCATGGTGAATTCAGCGACATAAGCAGCTCCTGAGC'1'ACTGGIIP.,AAAGTTTTCCTCTTC
C
TGTGATCCCCACGATGGTGAATTCAGCAACATAAATAGCTCCTGCGCACACGCCAGGCAGGGATGGCGAAGAACA
CACAAGAACCCTCACTGCCTCCACCAAAAGGGCTCAGTTTAGGTACAAGATAGCAAGTGACATCTCGAAATGAGG
AAGAAGGATGTTTCATAATAGGTGACTTTTTAAAATAAACTCCTCCgtgccaggtgtcatgtaccttacatgtat taactcaattattcctcacaataaacctagcctctgtattttacaattagagaaacggaaccattgaggattaca ataactcatccaaggccacacagttagtgaggggcagagccagggtttgaacccgggcagcttaggcccacaggc tatagtcttagccactaggctataGAGCTTCTTAGGATGCTACATATGCAGAATTGTATTTCACCATTtgatatg gcttcgctgtgtccccacccaaacctcatcttgaattgtggttcccataaaccccacgtgtcatgggagggacca ggtggagataattgaatcatggggacagttacccccataaaagttttaattttgttctctagatgttgGCGGGCC
CTGGTGGTTTACAAGTAGGGTGTGCTGAGCTCAAAGCAAAGTCTCGGGAAGAGAAGTCACCCTGGACTATTGATG

AAGGCCTGGAGTAAGGATTAAGAAATGGAAGTGGAAGGGAAAAGATAAGGGGAGAAACCTGAGGAAGGTAGAATC
TGTAAAGCTCAGGACAGATCAGAAGGTCAGGAGCCCTGACACAGGTGCTCTACTAGAAAGA.ATTTCTGAACTCCA
GCCCTGCTTCTGGGGGCCTATTGCAGTGAAGTgactggaagcaagaactcagcaggcctgtgttctaattttgtt gattcaccactttctggctgtgtgaccttaagcaagttaactctctgaatctcagtcttctcatctataaaatgg aaataataatcaaacctactttgtagatcactggaagaatttaataagattacgcatgtaaggcccatagcacag agcctaccacatattaagtgcacactaaatattaatcattatctctattatCTGACCTGAGACTGCCCCCAAGAA
CATCTCATGGTATGAGTCTTGTTCCTACACTCAACTTCCATATCGAGATGAAATCAGTTAAAATAAGCACC.AAGA
GTAGCCTTAAACAGGAGCAGAATACCAGAGGGCAGCATATACCTAAGAGGTAGAGGGCAGAGGTTCGAAGAAGGG=
AGGTTCACCTTGTTGCTGGCCAACCAGTCCTGGTCCTTTGGTGATGGGAGTGGGAAGAAGATGACTTAGTTCCCA
AATAACTGTAGGCATAAGAGCCTCTCAGGAGTCTGTTTCAACTCCAGCTGACGGCACCTGAGCTTTACAGATTCT
ACCTTCCTCAGGTTTCTCCCCTTATCTTTTCCCTTCCACTTCCATTTCTTAATCTTTACTCCAGGCCTTCATCAA
TAGTCCAGGGTGACTTCTCTTCCCAAGACTTTGCTTCGAGCTCAGCACACCTTACTCCTAAACCACCAGGGCCCA
CCAACATCTAGAGAACAAAATGAAAACTTTTatgggggtaactgtccccatgattcaactatctccacctggtcc ttcccatgacacgtggggtttCTTTTCATCTTCCCTCTCCCCACCTCCCAGCCCCCACCACACACACCTCTCTGA
GTCAATACCAAGCAGCCTCATCCCTACATGAATTGCATCCCCCTGACAGAATGGGGCTCTAAGTGATGAACCTGA
Aggatagcagtctataccacccccaaatatgcccctttggcataaggattattttgagctgaaagcagttaagaa gaagtagatacaagaataggtctctgttctccccccattttcctaaaagcagacttgaatttataaaagtatagt gtctccacctcccctctctaccaggacggacagaagttaatcattggagacaaccctagacccttatcagcccag aggaatctacataccaaaacttact Seq 245:
GCTCGCCCTTTTGCTCCCCCAAGGAAAAATAACAAGCAAACAGAGGTGCTTGCCCAGTGTCTCTGGAGGGGCTTC
CCTTAGAGGTGGGCTGTGTGATCCCCTGCCAGGAGGGGGCGATGGGGGCCACTTGTTCATTAACGATGTTAGGCT
CAAGGTAACTGAACTTTTTTTGCACATGCCTCTCTGCAGAGAGTTGTGCATAAACACACTGCTCGGCAGGACAGA
GCAAGATTGGGAACTGAGGGCAAATCCCTTCCTCCGTGCGTCGAACTCTTGATCCCAGGCCTTAAAAGTGGGATC
TCTGCACTCTGGGCTTTCTCTAGCTTCCCCAGGGAAGGGAGGCTCGGGGTGAGGTGGGCACGGGGCATCTTTCCT
GCCCAACTGTGAAGTCCTAAAAAGCTTCACAAAGTTTCTATTGAATGACAGCTTTCTTCTTCTCTTTCTCCAGGG
TTGAGTTCCAGAATAAATTCTACAGCGGGACCGGTTTCAAGTTCTTACCCTTCTCCTTCGAGCATATTCGGGAAG
GGAAGTTTGAAGAGTGAGTCCCTGTGAGGGCCGTGTGCCCCATGCTACCCTCCCCGCCTCCCTCCACAGTGATCA
GCTGTGCCTCTCTGCCTGTTGGTTGTGATCTGTGGGCACCAGCTCATTCGTGTCACCCTGTCTGTGAGTCATTTA
GATAGAATAGTCCTCCTTGGGTCTCCCACCACCCCTAGCTTTGTGTGTAGTGTAGTGATTTTCTGGCTGTCACTC
ATACTCACTGGGCACCAGCCTTGCCCTCTTAGCCTCCATCCATCCAGACAGCCCTTCCCACCTCCTGGTGGTGAG
CCAGTCTGCATTCCCACGCCATCCCAAAGCCCTTTCATCTTCCCCGTGCATTGTAGATGGAAGGAGCACCCATGC
CATTCACATCTAGACTTTGAGTTCCCTGCATCTGCCACCGTAGTTTCTAGCAGGAGTAGTGGGGGGAGTAATACA
GATTCTTCCCTAGAAGGGGACACTGGTAACATGTCCCACTCTTGGATTAGCAGGGGTGGGTCCAGGAAGATGATA
TTTGCGTCTT

Seq 246:
TTTCTGGTGAGCAGAATTTTGAGGTCTGTTCCTTTCACTTCTTGGTATTTCGGTTGTTTCTGTAATGACTGTATC
TTGCTTTTGTAATCATAAAGGACAGTAAAGGAAACTTCATTTTGAAAATAATACAAAGGGATTCGGGGACTTCAA
AAGAAGGTGACTCTCCTCGTCCACTCCAGAGAATCAGGAAAGGAGTGTTTAAAGACCCACAGAATTCCTACAAGT
GACGTTGGGGGGGGGCCAGCCAGCCAGGGCGCATGCCGGCCAGCGAGTGGGGTGGGCTCTGGGTCCGGGAGAAGT
CAGATCAGTGCTCTGTACAGGGCCTTGAGGGCAAGACGAGGAATTTCGACTTAGGTCCTTGAATCTGGAGAGCTA
CAGAAAGTTTGTGAGCTCAGGAGAAGCGCTCCGAGCTCGGCATCTGGAGCAGTTCAAGGCAGCAGCGAGCAAGTC
CAAAGACGCAGGAGGGAGGGTGGGGTGGAGGAGTAGAGAGAAAACAGAAGCCGTCTACAGACCCTTTTTCCCTCT
GGGGCAACTAAACCTCAAGTGCAGGAAGCGCTTGGGGACTGCCCAGCCCTCAGCTGTGTTATTATTCGGTGATAG
GTATTTGCTAATTACTTCCAAAAGCCTCCCATCTGTCATCCCACCCAGACTGCGCGCTTCTAATTCCTCCTACCC
CACATGCTGTGCCCAATGAAAAGTATGGTCAGCGAGCGAAGGTTTGCAAGGAGACAGACGAGGGCGAAATTAAGC
CAGGCGGCTTCCCTTTAAATCCTCGCAAAGCAGAAGGGCCCCTCACTCTGGCAGCAGGCCTTGGCCAAGGGGCCT
TTAGCCCTGACGACCCGGGGAAGAGTCTCCCAAAGCAGAACGCCCGGTCCGGCGCCCAGACCAAACGCGGGGGAA
CCGGAAGGGCGAGGCCTCCACGTAAGTCCGCGGTAAAAGTGGCAGGGAGTGGCTGCCTGCAAAGACCCCAAGACG
GCTTGAAGAAGGAGTGGGTGGCGGGTGGGGGTTAGGGCGACTAGGCGGGGAAACAGGGAGAGGGTCGGGCTCCGC
GGGGCAGCTGGGGCCGGGGCTCGCCGACCTgggcgggggcggggggcggggggggtgcggcccqggcggggccgg tggggcgggaggcgtggccggcggggggagtgggggcggCTTTTCCCGGCACATGCGCACCGCAGCGGGTCGCGC
GCCCTAAGGAGTGGCACTTTTTAAAAGTGCAGCCGGAGACCAGCCTACAGCCGCCTGCATCTGTATCCAGCGCCA
GGTCCCGCCAGTCCCAGCTGCGCGCGCCCCCCAGTCCCGCACCCGTTCGGCCCAGGCTAAGTTAGCCCTCACCAT
GCCGGTCAAAGGAGGCACCAAGTGCATCAAATACCTGCTGTTCGGATTTAACTTCATCTTCTGGGTGAGTGAGCG
CGACTGCCGCGCGC'BCCTCTCAGGGCCCACCTGTTCGCGGGCCCCGGACACTGGCCGCGGCCGCGAGTGCCGGCA
GCTGGCACTGCCCGCACCGGGCAGGCACCGGGCGGGAAGAGAGAGCGCCCTGCGGCTGCCAGCTGGCTCCAAGGC
CGGGTCCAGAGCCGGGCGGGACGGCCGCGACGGGCGCATTCGGGTGGGGGCTCATCACCGCCCAGCCGGCGTGGG
GAGCCGGGCCCTCTTGAGATGAGGCGTGCGGGAGGGTCCTGAGCACTTTAGCTCGCCTAGGATTTGAGCTGGGGT

GTGTGTCTGCTCCCAGCTCAAGTCCCTCCGAGTGCCAGAGAGGAAGGCAGGGAGAAGCGGAGCACCCCTCTTTGG
GCCAAGGCCAAGGAGGACTGTGGTGAGGAGTATGGCTTGTGACCGGGTGGGGTCTCCCAGGTAGTAGGGGGCGCC
AGGAAGGGAGGGTGCGGGCACGGCGAGAGCTCAGCCAAGAGCGGCTCTCACTTTTACGCAGGAGCGGCAGGGGTG
CCTCGGCCGCGGGTCCGGCCCCGGGACCCAGTCCCTGAGAGTCGGGGGCCCCTCCACCCTTGAGGAGGAACCTCG
CAGGCCCCCGTTCCCTCAGACTTTGATTCTGAGCCACCGTGAGAGCGCCGAACTCCCTGGTAGCTCCCTGAAAGA
CTAGCTTGTCTTGATTTCTTTCAAGGACGATAAGTATCTTCACTGGAGAGAACTCAGAGTTCGGGAGAGGAGGGG
GCAGATACCTATCTGCGCCTCTAGTGGGATGAGTCCTGTGTGTGCATTTCCGGGAGAGATCAGGTGCCAGCCAGC
TGCCCGCCCAGGAGAGCCTTGGCCTTGCCCTCTCCCCTCCCCGCCAGCCCAGGCGGCCCACCCAAGGCCAGGCAG
GGCGCAGAGCGGACGTTCATCTGGAGAGGCCAGCGGGGCCAGGAGCTCCAGAGACACCTGCTGCAGGCCACTCAG
CCTCTACAAATGGGAAGGCTGAGAGGCGACAGAAGCAAGGAATAGGAAACCCTTGTGTCCTTGTTTCTATAGCCA
CATTCCCTGCACACACATGACAATACTTGCCGCTCTGCAGGCAGGAAGAGAGTCTCTATGCCACTCTCAAGATAG
ATGGATGTAGAAACAGGTGCATGCCACCAGAGTCTTGTAACAAAAAAGTGCACTTggccaggcacagtggctcat gcctgtaatcccagcactttgggaggctgaggcaggaggatcgctttcatccaggttcaagaccagcctgggtaa catagtgagacccccatctccacaaaaaaataaaaaattagctgggcgtgttggcatgcacctgtgatcgcagct actcaggaggctgagatgagaggat Seq 247:
CTGAAGACGTTCCGGGCCAGGGGGGGCCTCTCCTTGGCCTCTGCTTTGGCCAATCCTGGCCTGGTCCCCTGGGGT
CTCTGGCCCAAGTCAGGGGCACCCAACACAGTGCAGATGAATTCCAGGTCCAGCCAAGCCAGGTACCAAAGCAAG
AAAGTGAGGAGTTTGGGGAGTCTCATCCTCTGGCCAGCCGCTGAATGACACCAAAGAGAACAGCGGCAGCAGCAA
AGGTGCCTCTGGTTTGGCAGGAAAAACCATGAAAGGAGTGGACTTTCAAAagcagcggcagcagcagtagcagca gAAGGAAAGGCTTTCTCCTCAGTCTGAGACTCTTGAAGTCTGCCGGGTGTGTGTTTGTATCCAGTCCCATAGTGG
AAATGCTCTCGTATCCAGACGTGCACCGTCTCCAGTCAGCAGCTGAAAATAACTCGTTCTTGAAAGGAGAAAGCC
AACCGCCCCCTTTCTCCTGCACAACTGACTGAGGGCTTGAAGGAGGCTTGTATAAGGCTGAGGGATTTTTCCAAG
AAGGAAGAATGGCGTAATGCTGCCTGTGTGCTCCAGtttttttttCCCCCTAGTTTTGAATCCTTTCCAGTGAAA
ATACTTcacacacacacacacacacacacacacacacacacacacacacactcacaGGCCTGCAGGTGCTCAGAA
AAATCTTTTACAAACCTGAACTCAGGAATTGGAAACGGAATTCCAACCCAAACCAATTTAATTACTCTCTGATGT
CATGCTGTCTAAACTCATTTAAGTGCGATATATTTATGTGAAAAAAATCACCGCTGCCCTTTCGAGGCCATGGCT
CACGGGGGCTCCTGGCACAGAGCCCTGCAGCGGGACTCTAGGCTTAGGGGGCCTCCCCCTCCACGGGGCAGACTC
AGGGGTCTTCACCTCCACCTCATGGAGCAGCCCACCCCACTTTCCCGAGGAGAGATGCTGAAGAATGAGCTCAAA
GATCTTAAGCCCCAGAAGCATGGGGAGTGTGGGTTTGTAGTTAAGTTCTTAGAGTGTTTTTAAAGCAGTTTCAAC
TCCTGCATCT

Seq 248:
gcagattgcttgagcccagaaatttgagaccagcctgggcaacatagcgagaccccgggcaacatagcgagaccc catctctaaaaaaataaaataaaattagccaggttggtggcacaagtctgcaattctaactacttggatgggctg agatgggaggatcacttgagcctgggaggtcaaggctgcagtgagctgtgattgtgccactgcactccagccgag gggacagagtgaaaccttgccttaaaaagaCTGCTATGGCCCGAGTCCCTCTGCtgtgccgggcactgtgctggg catgtaacaggcatattcttctgatctttacaactctcccatgaggcaggcactatcgttagcccattttacaga tgtggccatagaggcccagagaggagaaggggcttacctaaggctatagactgttggtatctggagataaacccg ggatGGTGCTCACTAAACTACCTTGGGTGTCAGTCCTGCTTCAAGACTCCAGAGAGATAAAGAGAGATGACCTCA
GAGACAAAGAGACTCAGACCCAGCCAGAGGCCCAATGGACAGTGGGAGGGGTGGGTGGAAGAAGGCTGGTCTCTG
TCTGACCAAGCCCCCCCAGAATAACGCAGGCTGCCCCCCTAGGTGGAAACAATGACACAATCAGCTCCCAATACC
AAGGGCCTGACATCACAAGGGGAGGGGAAGGCAGCTGAGGTTGTGGGGGGAGGTGCCCCGCCCCTTGGCAGGCCC

TGTGCAGACGGAACTTCAGCCGCTGCCTCTGTTCTCAGCGTCAGTGCCGCCACTGCCCCCGCCAGAGCCCACCGG
CCAGCATGTCCTCTGCTCACTTCAACCGAGGCCCTGCCTACGGGCTGTCAGCCGAGGTTAAGAACAAGGTAGGGC
TGGAGGGCCTCCCTGGCCTGGCCCACACGTCCTGCCAGGCCAGAGCCCTGAGCTTGGGGTCCCTTGAACCCCCTC
CTGCCTATCC
Seq 249:
ATGGAGCGTCGTCATGGCAACTGGCTCCCCCGTAGCATTGGCTGCCaggagggaggggaggaaatgggaggggga gggaCAGACAGGGACCGGCACACACTTGCAGCgggggtgggggggCAGGGCCCACGGGTGCCTGGCCCGGACACC
GCTGTGACATGCCACCAGCATGGACACATGTGCTACACGCTAAGATGCAGATGTCAGGCACGCGCAGCCCACACA
CAGCTGACACACGTCGCAGGGACCCTCATAGACAAGCGCATCACATACAAAGGTGGACAGCCATCAGCAGACGGG
GACACGTACACGTCACACACAAAGACGCAGGGACCGCACTGGAAACGCACAGGCAGGCCAGCTTCCAGCACAGAT
GCACCCGGCCACGCAGGAACGTCAAAGCATCACAAAGACCCACACATGCCCCGGACAAAGTAAAGCCCCAGATCC
ACAGACGCACACGCCACAGACAAAGATCCCCACGGACACCACTGTGACATGCTGACACTCATAGTCACAGCCACG
CAGACAGTCCCTAGACAAATGGGCAACAAAGAATACCCACAGACACAAGTATCACATACATGCACGTCACacaga catgcacagacagcaattgcacagacacacgcagacacacacatcacatgaactaacatagacacggacacagca gctacacagagacaggcacatcacatacatgagtacacagaaacataatacatgcatgtatacggacacgtaaca tgcatcactcacacggacacaagcttcactcacatggatacacacagacacactacatacacatgcatgcgggca cacacaactcatacatacagggctacataaatcacatgcaaaaatacacataaatacaccacacactgatacata cagacacatataacatgcacatatacacagtcacacatacataagcacagacataggcacacagatcaaatacac agacacacagagttgcacacatcacatacctaaacagacatggacacacacatcacaaatacacacacctttcac acaaggttac Seq 250:
CCTCTCTTGAGTCGAGGGCTGAATCTTTCTCCTCTAAGCAGTCTGGTCAGGAACCTTGGTTTCTTGAGAGGCCCC
CAAGATGCCGCAGCTCCAGGGCTCTTCCTCCTCACCAGAAATCCCTGGGCTTCCACAATGTGAACTCACTCATTG
TCAGGTGTCCGTGGAGTGTTTTTGGCATGGTGACCTGTCTGGGCCCAGCATGTTGCAGATGTGTATTTATGCGCA
ATGGTATGCATATCTCTGTGTGACTGTCAGTGTTGCAAGCTGGCTGGATCCAACCATCTCTTCTGAAATAATGCA
TCCAAAGGGTTGATATTCTGGGGGAGGTCACTGCAGAAGGATGGAACTGACCTTTATTCCCCAGTGGGCAGTTAC
TGAGCTTTCCTCCTCAGAGCCATGCTGGCAGCCCTGGGACAGAGAACGGTGTGGCTTTGGCTGCCTCTGCATGGA
ATCTTGCCCCGGACTCCTGAAGACTGCACAAGGAATGAGGAAGATCAGGGACAACCTGGGAACTGAATAACTTTC
AAAGCCAGTGCTCAGCTTCTCTGCTCCGTACTAGCGTTTACAGGTCTTAATTCAAACCAGATGCCTGtactagtt tttagaccccaagtcaacctttctgagccacagcttcccgctgggaataatgatgcctgccctatctacctcaca gacttgttatgaggataaagtgagattaaactgcctcaaagtgcttTGTAAACCTCAGGTGAATAGGAAAGGGGA
AAGTAAGGCTGGAGTGATGATGGGGAGGTCGGAGGATAAGGGGGGGCTGGGATTGCTAATGGGGACTAAAATGGC
CAGTCTCCTGGCAAGATTTTGAGCAGGTCATTTCATTGAGGCCTCTTAGATTTCATATTTGAGAATTAGGGCACT
GATTCCTGACTGGCTAGGCATGGTGGTCACTGGCTTGAGTCAGACCAGGAATGTCTCTTAGAAATGGTCACTGAT
AGGCATCCTTCTCCTCCAGTCAGGAGGGGCTGGTTTCCTTATCTGTTGCAGTCTCGACTGCCAGAGGGAGGCGAG
CGTGGTAGGC Seq 251:

ctacttgggaagaaggagggtcaggtcccttccagcCAGGGCTGTGGTCAAGGTGCTGAGTCACTAGGGGCAGTG
GGGAGGGGGTGGGAGACAGCTTTGCCTCCCTCTGGAGTTGGGGCATGAGGGGGCCAGGACAGAGCCGAGCACAGC
GGTGAACGGTGGAGAAAGGGCTCAGGGCCGTGGCTGGTGCCCATGGTGGCCGCAGGGCCACCCATGGCCCCATGG
GAGGGTGACTCTGAGCAGCCCTTACCAACTGTAGGACTCTGCTGCCCTGGAGTGGGGCCTGAAGAACTCTGGGGG
CGGCACTAGAGTCAGGAGTGAGGGGCCCTTGCGTTTCCAGGCTCCCCTTCCCCAGTCAGCCCAGCCTGGAGCTGC
CACAGAGTGGGGTGACCGCTGCTGTGATTGTCGCCAGCCCCCCGCCAACACCAGACACACAAATGGGGTGGGCTG
AGGGGTGGGAGGCAGCAGGGGCAGTGACACTGGAGCAGGGACAAGAGGAGACATGGAGAGACAGAACAGGTCACA
CAAGGGCAGAAAGGTCAAGAGAAAACAGCAGGGCCAGAGAGAGGGGAAGAGACCCAGAAACAGCGGCGGGGCCCG
AACAACCCCGGAGGGTGAGACTAACAGAGACTCGGGTAGGGAGACACCGCGAGCAGAGCCCGCGCCCACTCACGT
CCTGGAAGAGCGTGTGTCCGGCGGGCCCCGGGTCgggcgcgagctgggggtgccgcggggtctggggctggggct ggggcgcgggcGGCCGGAGCAGGCACACGGTGAGCAGCCCCGCGCACGCCATGGCGCCGCCACCCGCTCGGGCTC
GGCTGCGGTTGCTGCCGACCCTGGACGCCGCGGCGGACTCGGTGTGGCTAGAGGCCGCCCCTTggcgccggcgcc gacgcgcgggctcaggccccgcccccgccccgcccccgcggacgccgggTTCCCTCGCCTCAAGGTCCAACTCCA
GCGCCGCGGGCCTCCGCGCTTCCGCGGCCACGGCGGAGGGGGAGGCGCCCGAGGGCTCCGGTCCCGCGACGGCCT
GTCGGGAGCAGAACCTAGGGGCTGCGGGCCTACCCAGAGGGACAGGATGACCAAGCCAGTGCCGAGGTCAGGGTG
ACACAAGTGGGTAAAACCCACCAGGacttcaccttttggggcgtctgtatcctcatctacaaaaatggtactggc agacaccctatgcaattgttgggactcattcaatgtcaagtgcttacaacgggggctggcgcagaggaagcccac aGGTCCGTGCGGCCGAATCCCAGGCATCCCGACGCCCGCCCTCTCTGGCACTAAGCGCAGCCCTTTCCCctcccc tccgtgactctggccctcccttcaacccgttctccacacagcagccggggggagcttttaagatgcgaaagagga ggtgtcacttcggtctccagtgactccttggcccctgaataaagcttaagactgaacgccccactccaggagcac , cactctgaccctcacctcaggaccgcagccacactgctttctctccggtcctctatcccgctccctcctgcccaa ggcctttgcccatcgtgtcctctgcttggtgttttcttcctctggttaactcctacttattttacagcgctcagc ttaagcaccacccattccagaacgcctttcccgattttctcatttatgcagatctcctctttcagacccTGAGAG
CACCATGAAAGGAGGTAACACCCGTGTCCCCAGAACTGTTAAATACCTGACACAGAACCAGCCCACTGTATTTGT
TACATGTTTACTAATGTCCAGAAACGTCTGGAAGGAAGACAGCAAACTGAGCAGAGTGGCCTCTGGGGCTGGGGA
AAGGAGAGGCCACTCATTACTCTGCACTTCGGGCAGCACTGAATAGCATTCTTGGCTTTCTACAACAAIIAACCTT
TACTGGATCTGCTTTTGAGTTAGGACCAAAACAGCGAGGAAGCTGACCTTTCTTCGAGTTATGAGGCTCAAATCA
AATCGGGCACGGACAGGGAGAAGGGAAGTGGAGAATGGGCATTTCCCCAGCAACCTTGGCCTCTCCCGCCCCGAA
ATGTTCCCAACAGAGTCCCAAAACCCGGCCCAAACGTCATCAAAATATTTATTAAAACCAAAGCAGGAGGGAACA
GAGCTGTTAGGAAGCAAATCAAAGTGCAGATTGGAGGGTGGGGCAGAGCAGTGGGGAGGCAGGCGCTTCAGACAC
TGCAGGAGGGACCACAGGGTCTGGGCTGGGGGAGGCCTTCACCACCCCTCCTGCCCACATCAGTGAAGGTCCCCC
ACTCACCTCTCCCATCTCATATCCATCCTGGGGGGCAGCTGGGGCCCTGAACTGGCCCCCTGGAGAGGGCCCACC
CCACCATCTGACCACCCATGGCTGTCAGTCAGTCTGTCTCCCTCCCTCACTTTCCCAATAAATAAATCACCCAGG
CCTCAGTTCCTTCAGTATGGGGCAG

Seq 252:
AGCCAAGGTGCTCCCCTGTGGAGGAGGCAGGACACAAGCCTGTAGGGGTGTGTGCAGCAGAACCTTTTATCAAAC

TTGTGTCCCACTCTGCAAGGCAATAATAATGGCTAATTCAGCTATTATataaaaaacgtatctcaagtactgagc actaagtgtcaggtactaagtgctttgcgtacattgattcatttaatcctcaaggtgaccgaaaagcataggtat ttttttttttttttttttttttttgagacagagtctcgctctgtcgcccaggccggaatgcagtggcactatctc ggctcactgcaacctctgcctcccgagattctcctgcctcagcctcctgagtagctgggattacaggcatgcacc accacgcccggctaatttttgtatttttagcagagacgaggtttcaccatgttggtcaggctggtctcgaactcc tgaccttgtgatccgcccgcctgggcctcccaaagtgctgggattattacaggtgtgagccaccgcgcctggtca gtactcttatttatgcctttttttcttgaggcacagagaggttaaatagcttggctaaggacacacagtcagtac ataatggagtctgacgctaggacctgcccgcctgacGACTACATAGAACCTGTACAAGGAAAGGCCGGAGGAGGG
AGTATAAACAGGGCCTGGCTTCCCTGAGGAGTGATCTTTCGACTGGIIAATTAGAAAAGGAAAGCAGCTTCTTGAG
GGTGTGGGGCTGGAGAGAACATTtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtg tgtgtctgtgCGCGCAGAAGCTGAAAGATGGGAAGTAGTGAGTGTTCAGGGGCTTCTGACTGGAGGGCAGCCTTG
GGGAAGGTCTCCGCAGCCTTAACCGGCTGCTATGCTGGGGATGTTTGATGCCCATCTGGGCCCCGGCTTTCTTAT
TCTCAGAGGCCCTTCCCACATCTTTAGGCAAGTCCATTAAATCCTCCGCGTGCCACATTAAAATACAAGGGCAAG
TACAACTCTGAGTGCAGTTGCAACAGAATCGTTTGCACAATGTCGCATGTCTTAAACATTCAATCAAACATCGAT
TACTTCCAATTTTGCAGTTTTCTTTGCCCCTGTTAGCGCCAACAGATTTTTTTTTCCAGATCTCAGACATTTATT
TTAATAGGCCCCTGACAAAGTCATAAGACTCAGAGAGAAGGGAGAGTGGGAGAGGTGTATAGGAAGGTTTTGTGC
CAGGGACTAGTCGCTCAAGAATTAGGAGACGCCCTGGGCACTGGAAACTACGCAGCGCGAAGTAGGGACAGCGCC
TGTGTTGTGTAGTGGACCAGAGGTTGCTGATACCTGGGACATAGACTGGGTGGGCACGGGAAGTAAAGCCTCGGG
ACTTTGGTTAAGCGCGCCCCACTGGCGTATCGCGCCGCGGGACTGCAGAGCCGTGAGCAGCGGTCGCCTTGGTGC
AGGGTTCCAGCCACATCTTCCTCGCCCAGCCAGCACCCTCTGCCGTTGACCCGCCTCTGCGCCCGGCAAGCGGCT
TCCAGCAGGGGGCGCGCGCGGACCAGGCTTGGGCCCTAGAACAGCGCGGATGGAGTCGCTGGAGCAAGTCCCCAG
ATCCAACCGGTTTCAACCCTCCCCACCCTCCCGACGCTCCGGGTTCGCGACGTTGAAGTTAAGGGTCGATCCGCA
GAAAGCGGCCAGGGGCTCCAGCTCTCCATTCCTGGGTCTGTCTGGGGTCGGCTCCAGCCTGGTTAGAAGCCTTAG
TCTGGATTCGGCAGATTCTGAATCTGGGACCCTCTGCGCTAGCGGCTTGGAACCTTGTCACCCTCCCCTCCCCCA
CCCCTACTTCCACACACCTGATTAGTTGTCTGTTTCTTTAATGATCAAAGACGTGGGCGGCGGCGGGATGAGGTC
TTGGTTCCCGGCTCCACAGCCCTCCCTAACTGTCATTATTAACGTTATAAACATTAGACCCGCTTCTGCGCGCCG
GACGGCGCCGGACGAGGTGCGCGCAGTCTTCTAGCTGAGCTCGGAGGCAGATCCAGAAGTCGCGGCTCCCACCCC
AGGCCTCGGCGGACTCTGCCTGGGGCGACTCGGGCTCCAGCCCTGCCCGGGCGGGCACTGGGCTCTCCAGGGTCG
AAGGCAGGGGTAAGGGGCGTCTTTCCCCCAGGGCAGCCTCCGGGAACAAAAGCATTTGCTGTAGAGTGAGCTAGA
GCCTCCGGGCCCGCGGGAGTCAGCTCCCGCCCAGGGGTGGTCACCGCGTCCTTAACCACCCCAGGAGCCCCGTCT
CCCTGCCGAACTCCTTGGCTTCTGCAACCCTGTCAAGACAGCAAGGAAAGGGGGTCTTCCCTGGTCCTCGGGCCC
CGAAGTTTCGGGGTTGCTTATAGGACGGGTTCCTGCAGTCCAGGGAAGCTCTGGGCAGATAGCGAGCCCATTCTC
CCTTCCATTACCCAGATTCTGCCTCCCTGCGGAAGGCAAAAAAGAAAGAAAGAAAATAGGTAAAAACCGGCGGAG
GGCCTTGAGCCTCCCCGCCTGGCGCCCCTCACTCAGTCCCGAAAAGTCCCCTGGACACGCCATGCCGGACCGGAC
TCAGCTCCCGCTGCTGGGCCCCTGCCTCCAAATATCCTTCCCAGGCACAGGCTCCCAAGACCGCCCCCTCAGGGT
TCCCAACACCCGGACAACTGCCCAAGACGCCGCTCCCCGCCCCCACCCCCACCTTGTTCGGCAGACAAAGAAGGG
TGTGCTGGCCCCGCCGTCTGCCTCCTTCTCCCGACCCCACAAGGCCTAGAAACCTCAGGGACTCACCCCGGGCTA
GGGACCCAATCCTGGCTGTCCCACCACAGGATCCCCGGCAGGGACGGGTCACAGTGCTCTCACCCCTCGACCATT
TTCGAAGACACCTTCCCTGAAAGGCGCCTTGCGCCCTCCCCATGGGTCGGCGGGGGGGGACTCCAGGCCCGAGCA
GGCGGTGTGAAGTTCTGTGTTCTGAACTGGGGCTGAGCAAGATGCGATGGTCTCAGCCCGCTGGGCCGCCCGTAG
CGACGGCAGGAGTAGGGGAGAGGGAGGGACGCTTGGAGTGTGAGCGCACCAGTCTGTTCATATTTAATTTACAAA
GCAGCCTCGGAACCCCGGGCCGGGTGGTCTCTTTAGACGCTGCGCTCTTAGCCTGTCTCTCTTCCCCACCCCCTC
CCCTAGCTCATTAAGATGCTCAACACTCAAATCGGGGTATTGATCTCCACGGAAGCCCCAAACCCTCGCCATCGA
GAGACCCCCATGGCCCGGGGTGATGGCTGTGGGGCTTGGTGCTCCCAGAGAGCTCAGTGGCTACAGAATGGGTGG
GGATTCTGCGTGTCTCCCGGAGCCTGAACCCCTTTCCTGGTTATGGCCGGTAGCTGTCTCCAGGGCTAACGTGGG
CAGCGCAGGGGGGCGGAAACCGGGTTTTAGCCAAATGCCTCGACATCGCCGCGCCTCCGCCTCCTCGTCGCTGAA
AGAAATGTCGGGGTTTCATCAGAGCTAGGGAGCGACAGTCGGGAACAGCGAGTCTGCCGAAGCCGGCTGTTGTGT
GAGGGTGTGAGACGGCGGGGCGGTGAGGGGCCACCGCGGCTTGGGGGATAGTGCGTGTGGGGTTGACCGTGTGTC
TGCTTGAGAGGCTGTGAAGATATGGGGGGCAGATATGGGAGAAATGCTCGGGCCTGAAGTCCCCAGCCCACCGTG
CTCAAGAGTAGCGGACGTTTTGCCACCATCCTTGTCTGTGCTACTGTCTGCTGCAGCTTCCGTGCCCCGTTCTCC
TGGAGCAGGCAAGACCTGGAGTGAGGTGCTTGGGTGCGCTCGAGAGAGCTTCCCCCTGCTCCACCTGTCCCGCGG
TGCGCGCAGGCCAACGCGTCGGGCAGTGGGCTTCAAGCGCTGGTTTAGCCACAAAAGACCAGAAGTAAAGAGTTC
CGGCTTAAGAGGCTGGGCAGGGCTGCGGTGGGCTGGGGAGGGGGGTGTCCCTTCCCAGCACGCCCTGCAGGGCTG
TGCGTTCTGGTGTCGGGTTAGACTAGCAggcggggcgggggggttggggcggcggggcgggggAGACTAGGGCTT
ATATCAGCCCAGATCCAGGCAAAAATGGTAGGGAGGGTGCGGCGCTCTGCTAACACTATCAATTATGCATCATGT
TGAACGTGGCTTCGGGGAGGAGGCGGCTAGCAGCGGGGGGTGCGGGAGGGAAGGGTCCGCGCGAGCTCGGCTGCG
CGCAGCTCAGCGGGTCCCGCTCGAAGTCTGTCGGTGCCACCGCCTGCATTTGCAAAAAGAGTTTAAAGGCAAAGA
CACGCCTTCCCCCCCCACTTCAGCCGCGCGCCTTTCCTTCCCCCAAATTCCTCAAAGATGGTTTGTCTCACGTGT
TGCAGGGCGTAAAAGCGGCTTGCATTCAATTAGCAGCGAAGCTCGCGGGCGCTGGCGGGACAGGCGCGTGAGGGT
GAGTTCGCGTGAATGTGTGTATGCGTGTGCGAGAGGAGAACGGTAAGTGTCCCGGGTGCAGGTGTGCCCGTGAAA
ATGCGTGTGAATGTAGCAGGGGCTGAACACATTGATGCGATTATTACCTGACCATGGATGATTGTAAACTGTGAA

GGTCGGCTATGGGGAGGGTGTGAGGGACTGTGTGCGCGAATGTGTTTGAACGTGGGGTGGGGGAGGTGGTGTGAT
CAGGGACAGTAACAATGCCAGCGGCTGTGTAAATGTGGGGGTACGTGGGTTATGGGGGTGCAGTAGGCTGCGAAG
AGCCCAGCCAGGACAGTGGGCGTGGGATGCCCCTTATGACCGACGTGTCTTGGCCTTGGGGAGGGTCTCCGTGGC
TTTAACAAAAGTAGACCAAGCAGGAGGCGGGAGAGGCTATGCGCGTCCCCGCCAGGCCCGGGAGTGCGCAAGGAC
TTTCTCCAACCTGCAGCCAGAGAGGTGGGGGAAACGGACGCAAAAGGAAAAATTGAAGTGGTACTTTGGGGCCAC
CAAGTCCCCAAACTTACCTGTCCCTTTCTTTGCCCCCCGCCCCCCGTTTTCCCCACAGCCACAACACATGCGTGT
ATCTTGCTTGGGCTATCTTCCCTGCTCTGCCACGCCGGGTCTGGAGAAGGGGTTTCAGCCCCAGGACATTTACTG
AGAGTCGGCGAATATTGGGTAAGCAATGGGGGCCACCCCACAACCTTGACCCAGGTGGGGTTAGGTCCAGCCTAG
GGCACCTGATGGGGTGCGGGGCTGGTGGGGGTGCTGTCTGGCAGGAACCGGGAAGGGAGGGAAGGGACCCTCCCA
GAAGAGCAAAGGCAGAGTGAAGGAGCAGGTTCCCAAAGACAAGTTGTGGGAGGGGCTCTGCCAAACCTGACAGGC
GCTCCAAATGGGGGCAGGGAGTCTGTGCAAGTTCGTTTGTGTGACCGGGCTTAAGGTGTTATGGGGAGGGGGTCC
TTAGGCACCGCAGAGCTGTGGAGAAAGGCGCAGAATCTTTCATCTTCTCCAGCTTCATTAGCTAGTGGCAGCCCC
ATGACCTGTTGGCTGAGGACGCCTCTGCCCAATGGGAGCCGCCTGAGGGA

Seq 253:
ccccatctctactaaaaaatataaaaaattagccaggcgtggtggcaggcgcctgtaggcccagctactggggag gctgaggcaggagaatggcgtgaacccgggaggcggagcttgcagtgagctgagattgcgccactgcactccagc ctgggtgacagagcgagactccatctcaaaaaaaataaataaaataaaaaataaataaataaataataTTCCACT
CAGAACAGCCCCTGCTAACATTTGGTGAACAACTTGTTcaccagttggtaggcacttactcagcgccaggcctgg tgccaagctctttatcagctgcgaagcattcatcttatttactgctcacaggggatcctactgctagccccaaat tacagactgggaaagtaaggcCTGAACATCTGGGACGCAAACACAGTCTGCTTCACTGAGTCTCTACTACAAGCC
TTCTGTGGGGGCTCCCAGGGGAATGGCTGGCCCAGTCCGAGGGGACCTCAGTGTTCTTGGCACATGGTAGGCATC
TGTCTTTGTTGGGCAGTTGCATCAGAAGGGTTAAGGACAGCTGGGAACACATCCTGCCTCTAGTGAACCTCGTGG
TTCTGTCATCTGCCTGCCCCTCACCCAGCCTAACCCCTCTGAACCAGGAGCCTGAGCTGCACTTACTGCTccccc ctgccccccGGACGGCCTGGACCAAGCAGCAGCTCCCAGAGCGGTGGCCCAGCAAACACGACTTGACTCGAGGCC
AAGGCTCTTGAGGGCTGAGCAGTGTCCCCATGCACACTCCTGAAACACTTTGTCCCTTCGCCATTCAGAAGGCAT
CATTTTGGGGAAGGCAGCAGCCGGTTTTTCAGAGCCAGCGAGTGGCCCTGCCAGCTGCTGAGCAGGGCAAGCTGA
GAAGGGTGGTGGTGTGCAAGTGTTATtctctctttttgtttttgtttttgttttttgagatggagtcttactctg tcgtccaggctggagtgagtgccgtggcatgatctcggctcactgcaacctccgcctcctgggttcaagcgattc tcctgcctca Seq 254:
CCCCCGAGGGTGTGTGTGTGTGTGTCTGTGTTGTGGGGTGTATTCAGCAGCATATGCGCTGTGTAATTTCTGACC
TTCCCTCTCCCTGTCAGTTGCCCCTTCTTCCTTTGATTGTGGCTAATGAAGAATAATAAATCCAGGGGCAGGGTT
TGCCAGTGGATCCTTCCAAGACTCAACTCGAACTGTACTGGATACAgggaggaggaggaagagaaaaggggggca agaggagcgtgtgtgtgtgcctgtgtgtatgtgtgtgtgtgtTGTGGGAGGGGTGGGGACAGCGGGGAGGGGGAG
GAGTCGCATGCGCACAGACGACCCGAGCCTGCTCCGCGGCTGTCCAATCCGCTGAGAGCTGCGAGAAATCGAGTG
AGAGAAAGCCCTGCAGCCCCTCCGACCCCATGTCTCTTTGGCACCAGGCACCCGCCGGGCCGTGGGGGGCTCGTA
GCCGAACGCCGACCTCCGCTCGTATTGGGCTGGGAGTTCAGAGCCGCGCGCAGAACCCGGGTTGGCCGCAACGTC
TGTGTTCTCAGCGGTGGCCGGGAACCTGGGATCAGGGTCACCTGAGCTGACGGGGTGGGGGCGGGCCGAGTGGGG
TTGGAAGCCTGGAACTTAGTGGTAAGCAGGAGGCGTAGGAGGTGGCAGCCAGGTAAGAGGCACTCTTACCTACCC
AACGCTGGCTTGGGCCGCAACTTTATTTGGGAGTTTCTTTTTCCGGTGAGACAGAGACCCGGCAGAAGAAGCGGG
AGGGGCTGGAGGCTGGTCCTTAGGTAGGCACTGCCCGGCGACTGGAGCGCGGACCTGGCCATTTGGGTGGGGTTG
AGTGGGGGCGCGATTGTGAGTAGCAGCCGCGGGACGCTGCGAAGGGGCGGCGGCAACAGAGCACGGGCGGGGGCA
GAAAAGAGGCGGCGGAGGGCGCGGTGGGGGAGCGCGAGGCGAGTGCTGAGAGAGCAGAAAGGACTCAAGCCTGAG
GGGAGTAGAGAGGAAGAAGGGGCAACGCGAGAAACCGAACAGGAGCCGGCGTTTCCTGGCAAgggagggcggagg cgcgcgggagagagggagagagggagggcggggggcgcgggggtaggcgcggggagaggggagTATAACTCGCCG
GCCGCGAGGAGCGGGGGCAGTTTCGGGTGCCGAGGTCTGCAGCTAGCGGCAAGCGGAGTCAGGCATCCGTTCAGA
CTGACAGCAGAGGCGGCGAAGGAGCGCGTAGCCGAGATCAGGCGTACAGAGTCCGGAGGCGGCGGCGGGTGAGCT
CAACTTCGCACAGCCCTTCCCAGCTCCAGCCCCGGCTGGCCCGGCACTTCTCGGAGGGTCCCGGCAGCCGGGACC
AGTGAGTGCCTCTACGGACCAGCGCCCCGGCGGGCGGGAAGATGATGATGATGTCCCTGAACAGCAAGCAGGCGT
TTAGCATGCCGCACGGCGGCAGCCTGCACGTGGAGCCCAAGTACTCGGCACTGCACAGCACCTCGCCGGGCTCCT
CGGCTCCCATCGCGCCCTCGGCCAGCTCCCCCAGCAGCTCGAGCAACGCTggtggtggcggcggcggcggcggcg gcggcggcggcggcggaggccgaagcagcagctccagcagcagtggcagcagcggcggcgggggcTCGGAGGCTA
TGCGGAGAGCCTGTCTTCCAACCCCACCGGTGCGTATTTCTGCATAATCACCGCTTAAAGGCACATTTTGACAGC
CCCCTTTATCTGCTTGATGTTTTTTTCATGTCTGCACAGCAAATCACCCCACACCTCCAACCAATTTTCCCCTCT
CTCTCTCTTAAGTATTCAGCAGGTCTTGCCTTTCATATTAATTTTTATGACCTGGGATGTTGCCTGTGCGCGTGT
TGTGTTGTGTTTCGTTGTGTCTACAGGCTCACTTTCCTCCTCCTCCTGCACTCTCGGCTTCTTTCTGTGGCTTCC
CTCTTTTTCTCTTCACCTCTGTTTTCAGGattattattattattattttaaCGATCTGGGAATGTTGTAGGCGCG
GCGACGGTGTCGAGCCCTGGGCCGGGGCTTCCGGAGAGAGGGCGTACAATTCCCTGCTGAGCGTAATGTGTGCCT
TCTACTTACAATTGCAGAGCAATATATTCGGCGGGCTGGATGAGAGTCTGCTGGCCCGCGCCGAGGCTCTGGCAG

CCGTGGACATCGTCTCCCAGAGCAAGAGCCACCACCACCATCCACCCCACCACAGCCCCTTCAAACCGGACGCCA
CCTACCACACTATGAATACCATCCCGTGCACGTCGGCCGCCTCTTCTTCATCGGTGCCCATCTCGCACCCTTCCG
CGTTGGCGGGCACGcaccaccaccaccaccatcaccaccaccaccaccaccaACCGCACCAGGCGCTGGAGGGCG
AGCTGCTGGAGCACCTGAGTCCCGGGCTGGCCCTGGGCGCTATGGCGGGCCCCGACGGCGCTGTGGTGTCCACGC
CGGCTCACGCGCCGCACATGGCCACCATGAACCCCATGCACCAAGCAGCGCTCAGCATGGCCCACGCGCACGGGC
TGCCGTCGCACATGGGCTGCATGAGCGACGTGGACGCCGACCCGCGGGACCTGGAGGCATTCGCCGAGCGCTTCA
AGCAGCGACGCATCAAGCTGGGGGTGACCCAGGCAGATGTGGGCTCCGCGCTGGCCAACCTCAAGATCCCCGGCG
TGGGCTCGCTTAGCCAGAGCACCATCTGCAGGTTCGAGTCCCTCACACTGTCCCACAATAATATGATCGCGCTCA
AACCCATCCTGCAGGCATGGCTCGAGGAGGCCGAGAAGTCCCACCGCGAGAAGCTCACCAAGCCTGAACTCTTCA
ATGGCGCGGAGAAGAAGCGCAAGCGCACGTCCATCGCTGCGCCAGAGAAGCGCTCGCTCGAAGCCTACTTTGCCA
TTCAGCCTCGGCCCTCCTCTGAAAAGATCGCCGCCATCGCGGAGAAGCTGGACCTGAAGAAAAACGTGGTGCGCG
TCTGGTTCTGCAACCAGAGGCAGAAACAGAAAAGAATGAAATATTCCGCCGGCATTTAGAAGACTCTTGGCCTCT
CCAGAGACGCCCCTTTCCTCGTCCGCTCTTTTCTCTCCTCTCTTCTGCCTCTTTTCACTTTTGGCGACTAGAAAC
AATTCCAGTAAATGTGAATCTCGACAAATCGAGGACTGAAGAGGGAGCGAACGAGCGAACAACTGAGCCCAAGCC
GGTGAGAATGTGAAACAGTTTCTCAAAGGAAAGAATAACAAAAGATGGTATTTGTCTGTTGTAGCAAAGTTGTCC
CTTTGAACCCCACCTCGGCTTCTTCAGAGGAAGTGTGGAGATGGCTGTTTGCAGGAAGGCAGACGAGACAGTGTT
TAAAAAGTCCACAAGAATGATCAAGTAAGATTTGTTTTTATTCTTACAGACATCACCCGTGTTCAAGTTTAAAAG
TACACTTTGCAACTATTTTTCAGAAATAGAAATTGATTCAGGACTAAAACTTTAAACTAGAGTTGATGCTTAATG
TGATAGAGACATCTCTAAAGTATTTTGAATTTTAAAAAAAGATGGCAGATTTTCTGCATTTACACTGtatattat Seq 255:
TTCTGTGGCCTTGCTTGGTGACAGGGAATGGGGTGTGATGAGCTGGGGCAGGCTTCCTGGGGATGCTTTCAGCCA
AAGATGAGCCCTGTCTGCCCTTGGCCCTGCTGAGAGGGTAAGTTGAGTCATGAGCAGAATTCAACCAGTTATCAG
ATGGAAGGCCAAGGAAGCTTGGGGAGGGCTACTGAGGGGATACGGTAGGCTTGTCTGTGGAGAGCAAAATTCTTC
AGTCTACAAAGTTCTTTTCTGGGCTCCTTCATCTTTCGGTTTCTCTTCCAGCTCCCTCGTTTTGGGCCTCTTTTG
TTTCCCCATTCCCCTCCCCTGGGCCTTCCCGTTTGGAAAAGGGGTCACATATCCTCACCCTGGAGGCGTCTGCCC
CTTCCACACAGTTGGTGTTGGAACAGTGGAGCTCAGAGAGGCCGATGCTGACCGCGTAGATGTCCAGCACCAACA
GTGGGATTTTGGGCCCTGTGGGGGACACAGAGAGAACTCTCCGGGAGTGCGGCCCCTTGGCCTCCCCTCTGGGTG
CCCAGTGGGCAGTGGGCCTGGGTGGCTCAGAATCCCAGCCAGGAGCACTGAAGGTCAACAGGCTCCCGCCCTGAG
TTTTCTGAGCCAGGCCTCCCTGTTTCCTCCCCAGCCAGTGGGGAGCGCAGTGAGGGGCGGGGCCTGGAGTCTTGG
GAGCTCCCTGGACAACAACATGCATTTAGCGCAGCTCAGTCTCAGAGCCAGCAGGATATGTTTTCTTAAAAAAAA
AAAAAATGCCTAACATCTTGGCTTTCACCGAAGGGTTGGTATCTGCTTTGTACACTTTGGCCTTCTTGGCTTTTC
ACTGAAACACACACACATGGATGCACACTCACTTCcacacacaaacccacaccaagacagacacacacacacact cacacacaaactcatgtacatggtttcatacccacatccatgcaaacacacatacaaatccagaaatacgcaccc tcacacccacaaacttgtacacacacacacacgtatacacaccaacacacatacaACCCTGGCTTGGACAAAAGC
TTCCCGTTTTTTCTTGTTTGAAGTGGAAATCTCCCACCTTCCATGAGATTCAATTTCTCGCCCTTCCCCCGCTAA
AATCCTCCTGGCCCCATCATTTCTTGGGTCCTTTCCAGACAGTGCTGTGTCTTTAAGGAAGTTGAAGCTGCTAAA
AGTGAGTGAGAGAGAGAGAAAAAACACAACCCAAAAAAATTTGGCATCTCTTCCCCCCTCAAGTTTCTGGTGTCA
CTTATGAAACACAGGTCCTTGTTGCTGCAGAGAAGCAGTTGTTTTGCTGGAAGGAGGGAGTGCGCGGGCTGCCCC
GGGCTCCTCCCTGCCGCCTCCTCTCAGTGGATGGTTCCAGGCACCCTGTCTGGGGCAGGGAGGGCACAGGCCTGC
ACATCGAAGGTGGGGTGGGACCAGGCTGCCCCTCGCCCCAGCATCCAAGTCCTCCCTTGGGCGCCCGTGGCCCTG
CAGACTCTCAGGGCTAAGGTCCTCTGTTGCTTTTTGGTTCCACCTTAGAAGAGGCTCCGCTTGACTAAGAGTAGC
TTGAAGGTAAGCCAGTGGGGAGGAGGGCTCCAGGGCCAGCGGCGGGAGCGGGAGGCCTGTTGGACATAGGGGCTG
GTTCCCTCTTGGTCCATCCCTGCTGGTCTGAGGTGCGTGGGACAATCCCTAGCTTGGAGCCGTCCAGGGGGCATC
TGCTTCTTCCACAACCCACAACTGAGGCCCCAGAAATCCCAGCTGCGTTTGGGCTGAGCCTCTGGCCTCACCCAA
GTCAGCTGAGAGGTCCTGGCGGGGGTTTATTTAGGCAGCTGCCTGGCTAAGTTTGAACAGAACAGGCCACGGGTG
TGATTCCACAGAAAAGGCCTGGTGTCTGCTGCGGTCATGGCCGGAGGAGCGGGAGAGGGCGGGTGGAGTGGATGG
GGGTGGTGTGCACTGCACAAGGGGCCTCGTC:PGGGCCAAGGCAAAGCATACCTATGGGGGGCTCCGGTGGGAGGG
ACTGCGGCCAGGATGTGGGAGGGCAGGGGGAGGTTCTGCAAAGTGCTGGGGGAGGGGGGTGGCTGGAAAACAGAT
TTC.AAGTCATAAAGTCAGCTAGGAACAggccgaggcagggagaactctccactcggaggaggagctggggtcctc ttccatcccgtcttcatcctgcctggctgcgtgacctcgggcaagtctccgcccttctcttggcctcagtttctc cttccgtaggatgggggcggtgggctaggtggtGTTGGGATTTAGCTGGGTTATGTGGGACAGGGCCTCCTGATG
GGAAAGAGCTCTGGCTGGGCTTGTGGGAGGAATGAGTCCCTTTGGCAGGTTCTCGGGATCCCCTGGGTGACATGC
CTTTCTCTGCAGGAGGCACCATGCAGGAGCTGCATCTGCTCTGGTGGGCGCTTCTCCTGGGCCTGGCTCAGGCCT
GCCCTGAGCCCTGCGACTGTGGGGAAAAGTATGGCTTCCAGATCGCCGACTGTGCCTACCGCGACCTAGAATCCG
TGCCGCCTGGCTTCCCGGCCAATGTGACTACACTGAGCCTGTCAGCCAACCGGCTGCCAGGCTTGCCGGAGGGTG
CCTTCAGGGAGGTGCCCCTGCTGCAGTCGCTGTGGCTGGCACACAATGAGATCCGCACGGTGGCCGCCGGAGCCC
TGGCCTCTCTGAGCCATCTCAAGAGCCTGGACCTCAGCCACAATCTCATCTCTGACTTTGCCTGGAGCGACCTGC
ACAACCTCAGTGCCCTCCAATTGCTCAAGATGGACAGCAACGAGCTGACCTTCATCCCCCGCGACGCCTTCCGCA
GCCTCCGTGCTCTGCGCTCGCTGCAACTCAACCACAACCGCTTGCACACATTGGCCGAGGGCACCTTCACCCCGC
TCACCGCGCTGTCCCACCTGCAGATCAACGAGAACCCCTTCGACTGCACCTGCGGCATCGTGTGGCTCAAGACAT

GGGCCCTGACCACGGCCGTGTCCATCCCGGAGCAGGACAACATCGCCTGCACCTCACCCCATGTGCTCAAGGGTA
CGCCGCTGAGCCGCCTGCCGCCACTGCCATGCTCGGCGCCCTCAGTGCAGCTCAGCTACCAACCCAGCCAGGATG
GTGCCGAGCTGCGGCCTGGTTTTGTGCTGGCACTGCACTGTGATGTGGACGGGCAGCCGGCCCCTCAGCTTCACT
GGCACATCCAGATACCCAGTGGCATTGTGGAGATCACCAGCCCCAACGTGGGCACTGATGGGCGTGCCCTGCCTG
GCACCCCTGTGGCCAGCTCCCAGCCGCGCTTCCAGGCCTTTGCCAATGGCAGCCTGCTTATCCCCGACTTTGGCA' AGCTGGAGGAAGGCACCTACAGCTGCCTGGCCACCAATGAGCTGGGCAGTGCTGAGAGCTCAGTGGACGTGGCAC
TGGCCACGCCCGGTGAGGGTGGTGAGGACACACTGGGGCGCAGGTTCCATGGCAAAGCGGTTGAGGGAAAGGGCT
GCTATACGGTTGACAACGAGGTGCAGCCATCAGGGCCGGAGGACAATGTGGTCATCATCTACCTCAGCCGTGCTG
GGAACCCTGAGGCTGCAGTCGCAGAAGGGGTCCCTGGGCAGCTGCCCCCAGGCCTGCTCCTGCTGGGCCAAAGCC
TCCTCCTCTTCTTCTTCCTCACCTCCTTCTAGCCCCACCCAGGGCTTCCCTAACTCCTCCCCTTGCCCCTACCAA
TGCCCCTTTAAGTGCTGCAGGGGTCTGGGGTTGGCAACTCCTGAGGCCTGCATGGGTGACTTCACATTTTCCTAC
CTCTCCTTCTAATCTCTTCTAGAGCACCTGCTATCCCCAACTTCTAGACCTGCTCCAAACTAGTGACTAGGATAG
AATTTGATCCCCTAACTCACTGTCTGCGGTGCTCATTGCTGCTAACAGCATTGCCTGTGCTCTCCTCTCAGGGGC
AGCATGCTAACGGGGCGACGTCCTA
Seq 256:
GGAAAGAAGGCAGCAGGAAGAGAGAAGGAAGGCAACCCTCCTGCAAAGGGTCCAGGGTGGCGGTGGTGGGGGGGA
CAGTGATGGCGGAAGAACTCAGTGTGCTTTCCAAGAGGAATGGGTAGGCTGGGAAACGGGAAGGAGAGTCAGAAT
TTATCATTGTTTGGTTTCACCCTAGGGTTTTGAGGCAAAATTTATCCAGAGCAGGAAGGTGGCAAGTGGGCTGCC
ACAGAATGGCCCCAGGGGCCCGAGGGTCAGTGATGTGTGGGATGGGGGCTTTTAGAGTTGAGGAGAGCACTCAGT
GGGCGCTGGTCTTCTGGAAGGTGGGGGAGGGGCCGAGAAATGATACGGCAATACTGGATGAAAATGGGGATCTCT
GCAGAAGTAGGGGCACAGCTCAACAGCCTTTCCCCTTCCTCTCAGTGTCCTCGGACCCCGCTTGGGCTGTGGAGT
GGATCGAACTTCCTCGGGGTCTCTCTCTATCCTCTTTGGGATCTGCTCGAACCCTCCGAGGCTGGAGCAGGTCCT
CCCGCCCTTCCTCGGTGGACAGTCAGGACTTGCCAGAGGTGCTGGGCCCCTGGTGGTGGGGGGAAGGAGGACGTC
ATCCATATAAAGGGGATCTGCAGCCCCCACCCACGCCTGGCCAGCCAGCTTCTGGCTCCCTTTTCCGGCGGGCGG
AGGCGCTATccggcggcgggccgggaggccgcccccgTGCCGGTCTGCTCTGCTCGGCGCTGTGCCAGCAGGCGG
AGAGCTCGCGCCTTCCGCGCTGACGTCAGCGCATCCCGGGCCGTATCCCGGGAGACCCTGTTGCGTGGTGATGGG
TTGCCAGGGAGACATACACCTTTTCTCTGGGCCTGGGCCGCAGCTGCGCGGAGCGCCGGGCACGGATGGCGGCGG
CTGAGGGGAGCGAAGCGAGGGAGGGAGAGCAAGCTAAGAAACACCCAGCAGGTGCTCCCCCGCCTAGGCCTGGCT
GGAGGCTACTGGCGCCACCCTGGGGGCCCTGTCAGCCAGGTACCCAAGGGGAGGGATCGAGGGTGGGCCTCAGGT
CAAGGGGCAGTGTTGGCTGCCCTTGTGAGGGACGGGAACGTGATAGAAGAGAGCTGGGCAATGCCGGGGAGGGAT
GTGTGCCTCCAACTTCATTAAGTGAGGGAAACATTTGCTGGGGCTTGTCAGGGAGCCCTGAGCCAGGTACAGGGT
GGAGTTAGGAACTTACGTGCATCAGACTTAGGCCTTGCCATCCTGAGCTCCCTCGGGAGACAGACAAGGGCAATG
ATGGGGGCGGGGTGTGTCAGAGAAAAGAAGAGGCTGTCGGCTGAAAGCATTATTTGCAGGTGACACTTGAGATGG
GCCTTAAGTGATGGCAAGCATTTTTTCACGTAAGGATGGCATTCTTGGCCCAGAGGAAAGCTGAGTTCCTTTTCC
TGGAGGCAGGCGGGCTGCTTGCTGACAGGGATTGGTGGAGAAGGGTTTTTGttttttgttatttatttttatgta tttatttatttgagacggagtttcgctcttgttgcccaggctggaatgcaatggtgcgatctcggctcaccgcag cctctgcctctggggttcaagcgattatcctgcctcagcctccagagtagctgggattacaggcatgcgctgcca cgcccggctgattttgtatttttagtagaggcggggtttcaccatgttggccaggctggtctccaactcccgacc tcaggtgatccgcctgcttcggcctcccaaaatgctgggattacaggcgtgagccactgcgcccggccTGAGAAG
GGGGGTTTTATTGGGCAGAGGAGATCAGCAGTGGATTCAAAGGAGGCTTGGAAGGAGGCAAGGGTGTCACAGAGT
GGGATCCTTCAGGGCCTGGGTATGATGCCTGCACTAACCTCACTGGACAGTAGCGTAGGCTAGACAAGATTTTAG
AGATGTGTTGTGACCAGCTGCACTCCAGGAAAACTGTTTACATTATATCTTACCTCATTCATCCAGCCTTTGCAt ttttgtttgcttgtttttgagacagagtctttttctgtcgcccaggctggagtgcagtggcacaatcttggctca ctgcaatctccgcctcctgggttcaagcaattctcctgcctcagcctcctgagtagctgggataacaggcacccg ccaccatgccctgcccattttttaaattatttttagtggagatggggtttcaccatgttggcctggctggtctca aactcctgacctcagatgatctacccaccttggccccttggcctcccaaagtgctggaattacaggcgtgagcca ccacgcctggccCAGCCTATGCAttttttttttttttttttttttttgagatggagtcttgcaccgtagcctaag ctggagtgcagtggtgcgatctcggctcaccgcaacctccgcctcccgggtcctggttcaagcaattttcttgcc tcagcctcctgagtagctgggattacaggaacgtgccaccatgcccagctaatttttgtatttttagtagagacg gggtttcaccatgttggccaggctggtcttgaactcgtgacctcatgatccgctcacctcggcctcccaaagtgc tgggattacaggcatgagccactgacgcctggccAGCCTATGCatttttaagaaattattctgtattaggtgctg tgctaaacattgggcactacagtgaccaaaacagactgaattccccaagagccaaagaccagtgagggagaccaa caagaaacaggaaatgcaaaagagaccattattactcactatgactaagggccacaaatggggtacgttgatgga gagtgatttgttaagagactacagagggaggacagactaccaagaggggggccaggaaagctcctctgacgaggt ggtatttcagcccaaactggaagaatgagaaagagctagccaGCCATCAGAATAGTCCAGAAGAGATGGGGAGCA
CTACACTCACTACACTTTGGCCTGAGAAAATAGCATGGGATTGGAGGAGGCTGGGGGAACACCACTTCTGCCGAC
CTGGGCAGGAGGCATTGAGGGCTTG

Seq 257:
caagctcccaggtgatgttgatgctgctggttggcatttgagtagcaAAGCTGTGCCGTATTTAAAGAATTAGCC

CTAACTACCAATATGAAAACTTTACATCCCTGaatcttcaattactctgaggtgacactactattattctggctt cacagtcgagaaggcactgagaagtgaactttccagagatcacagagctgagatgtgggaaggcaggattcaaac ttaggttgactgactgcagggCATTTTCAACTGTTTGCCTCCCAATATTATCTCAATTAATAGGTAACGAGAGTT
CGAAGCCGGGTCCAGAGCTATCTTCTGTAACATTCTTCTGGGTCGAGTCCCTGCCCCGCTACGGTATGTGCCTAG
GGTCAACACAAGGGCTGGGGAAAGAGGAAACTGAGCCTCTTTTTCAACACAACAGGGAGGACGGAGAACAGACGG
CTCCTCCGGCAGACGCGACCCGGCCCGCTCCAAACAACGCTTCGGGCAGGAGAAGGTTCTCCGGGTGGTCCGCAG
CCGGGCTGGAGGGGTGGGGCCTACGCTGGGAAAAGGTTCCGGGCGGGTCGTACCAACGCGCGCAGGGGGAAGAGG
TTTCCGAGGCCAGGACGGTGTCGCTGCCTACGCGCTCAGTGGCGAGGTGGAGAAACTCTTCATCCACCCTCGGCT
ACCTGTTCGAGAGCCATGGCACCAGGAGCTCTCGCGTCCCACAGCCGACTCCTAAAGACTCTTCCTCCGGCCCCC
CTGTCGAGTGGGAGTCCCCGGAAATGGGGGCCGGGCGGTATCGGGCAGGCGGTGGGGAGAAGAGTGTCCTGTCAT
TTACCAACTTCACTACGCCCCACACAGATCCACCCGCTTATCTGCCGCCGCCGTAGCCCTTACCAGTTCTTTGGG
CGGCTTCTCCTGGGTCTTTCCAAACAGCCCCATGACGAACTGAACCCGTCTTGCCCCTTCCGGCTTTCAGTTCCC
CGCGCCCAGGCAGGTCACGGGCAGCCGCCTGGGCGGGGCCCGCGGAAAAGGAGGTAGTCCCAACCCCCAGAGTAG
GGAGCGGCGGCACTAGGGGATGTTGCGCATGCGCCATACGCCTGCGCAGAATCGAGTGAGTGGGAGACTAGTCAA
AAAGGCTGACGTCATCGCACATGTTCTGGTCATGTCTGTGTGGGGGAGACCACGGATTCGGTGCTTTTCGTAAGG
TGTAGAAATGATTGCTCTGAAAGATACGAATTTGTTGGCTACAACTGCTTCTAATACTTCACCTAAACCTAGATG
TTGCACCAGAAGTCTGGATCTCCACGCAGACGTGTACACTTAGCATCACTTTCCCGACAGCTTCATCTTTGTGTC
CAGTAGGCAACTCACAGGTGACAAACCAAAAATAACCTCTTTTTCCTCCCGCCAACCCACTCCTCCCCTCTGCTT
GCACCACCATCACCTGGTCACTAAACCCTAGGCATCGTCCTCTCTCCCCTCTTACCAAGTCCCAACCATTCTAAC
TTCAATATGTCTGAACTTCAACCCTCCCCTTTCCATCCCAACTGCGGTCGTTTTTTTTCAGGCCATCGCCCTTTC
CAGCGTGGGCGATTCCTGCCTAGCATTTGTCCATGTGTGTCCCGTCCTACACGCCACACTGACCGTGAGCTTAAT
CACACTCTCAAAGGAATCTGACTAA.AGAGAACTAGACACATTTTAGCACGGACAGTTCCTGATTAGGCCTATACG
GTGAGCTGATGGTTACTGTCATTAACTCATCCGAGGATGGTGAAGGGGACCATTTGTTACCTCAGCCCCATACTC
CTGTCTctggtggaatcataaaatggttcggcagctttgaaaacattttgacaatttcttaaaatgctaaacaaa gccagccttccattcctagctatttacccaagagggaaaaaagcatatgttcttacaaagacttgtacacaaatg ttcatagcagctctatttgtaatagccataaactggaaacaatccaaatgtctatcaacaagtgaatggataaac cagtcgtgattgatccatacgaaggaatagtactgagcaataaaaaagtaaactattgataaatgcaacagcatg gatgaatctcaaaataattctgccaagtgaaagaagccagaaccgtatgattccatttacataacattctggaaa atgcaaactaatacatagtgacagagagtacatgggcggttgctagcggataggagtggggtcagaaagaggcag aaaagagggattacaaagagacacgaagtttagggggatgatggataatatcttgattgtgatgatggtttcaca gatgtatacaatatcaaaacttaccaggttggacactaagtatgtgcgatttattttatgtccaatcatacttca ataaaGTTGTTTTTAAAAAAGCACTGCCTGTTCATTGTGAAAAGTTAAACCCTCATTCTCACTTCCTCAGGGGAA
AAGGTCTCAAAGGATTCACACCAACTATTAAATATAGTGTGAATCTTCTGAAACCTTTTCCTTTGGAAAATATAC
ttttatttttatttatgtatttgtttttgagaccgggtatcactttgtca Seq 258:
GGGATACTTCAAGGAGAAGTTGACTCTTTGACTTCATACATAGAGAGACTAGAAATTCCGATGAGAATATACACG
CTGATGTGGGATCAGCTTCCCCTGCTTCCTCCTCCTTGGGGCACTTGAAACAAGACATCCATATTCCTAACAACA
AATTCCTATTTGAGCCATCTTGAGACTCTCCACATGGACCACTATTGTGTAAGTTCTCAGATAATAAAAATTTGA
GTAAGCATCAAAATGTCCTATTTGTGCTCAGCAATGGTGATGGCTTTTGAATCAAGGTGAAGATCTCTTTCGTGC
TTCTCACTGTGCCAGAAGTTACACCACAGTGTTTGTGTGATCTGCTGTTGTCTGTTGTCTTATTTTCCCCAAGAG
CTTGTAGGTTTCTGGAGACTAGGAACCTTGCTGTATGATTTCTGTCTCCCTCCCGCAGCACTGAGTATAGTGATA
CGTGTGCCAAGGCTTTGTTTTTCAGCTTTAGAGCCTCCACTGCTAAGCAACTTTCCCTCTCAGAGTCGCCAGGCT
GGGGCATCTATCCCAGGAAATTGGCTATTTGGGATGAATGTGGGTCTACCTCCAGGGGTATTTGTATTTTGGTGG
GGAATTCTTGAAGGCAGCAAAATCTGTAAGCTCCTCCCCAACAAAGACTACCGGGATGGAATAACAGGGCACCCC
GCCACTTTATTCCCAGCAGTCACACTACCTGGCCTGTGTGCTTCATTGACATATTGAGTATTGTTCACTCGGGCA
GAAAAAAATACCACAACCTCACAGCCTTCTTAGTTTCCTGAAIIAAAGATCTGTCACTTTGAATTTGCTAGTTTGC
CAAATGACAGCTGTTTGCCTCCCAGGCAGGCTTTGCTGTCA.TCAGAGACAGGGATGGAGGGAAAATAATGCCATC
ATCTAGGGGAAGGGTCTTGTGTTGATCTTCAACATGGCTAACCAAATGGACGATCAGCAGGCAGACACGAGGTAT
TTTCATTTTCACTCTTATTTCAAGAGATTTGTGATGGTGTTTCATAGTCTAAAAATAAAGGATCCGCCCGCAGAC
ATTTCTCCCTCCACTACCCTCATCATATTAGCTGCTGCGTTTTCCTCTCCAGATTTTGATTCTATTATTTTTTAT
TATAAATGAAAGGTCAAGGAATACTTTTCGTATTCCATAATAGGATTGGTTCTGGAAGAATCTTTGAAAAAAAAA
ATACGTTCAAGACATTGGGGCTGGGAATAGAACGGAAGCATCTCAAAAGCATGTTTTTCTGGTTAAGGAAAGCAC
ACGAGAACGTTTCACAGCGGTGCTCTGCTATCTTCTCTGTACCCCTCCGCCCTACGCTCATGGGAGAGCTCATTT
CTCTCCCCATCAGACACTGGGAAATACTCCCAAGGCTCTGGCAGTCTCAAGGCTGCAATTCCTGAGACCGGGGAC
TCTGTGCTGCCATCTCGTGGCAGATCTCAGACACAGCAAGCTGGCTGCCGGAATCCTGTTTGAACTTGGCTTGCG
GCGGGAGCTGTGGTTTGGCTCAAATCCTTATAGAGCTTTGTTGCCAGTCATGTTGATTTTTAAAAAATGTTTTAC
TCCCTATGCCCCCCTTTTAGTTTTTCATGTTGGCACTTCATTTAATGTGCCTCCAGAGGCTACATTTTGGGTTTT
GATGTGTTTGGTCAATGTTAAAGAATCGGTTAACTATCTTCCTGAAAGAAGGCAGTAATGCAGACAGACGCCTTT
GACAGCAGGTAGACCACTGGCTGGCAACCGTAGAAAGAGGGACACACGGGAGACTAAGAATGAAAGATGCAGTAA
GGTTTATTGCTCTTATTCATTGGTTAGGttttttttttttttttttttAGAGTATTCTGACCTTTTCCTTGAGTG

TATTTTTGCTACCATTTCTCTTGTTTAGATCTGGAGAGACTCAAACTCAAGCTGGGATTTGGGGAAAAGTGTTTG
AGGATGCCAGTCTGGCTTTCAGAGGCATGATAGGCACATCTCTGTTGATATCCAAATTGGAACAACTTTCCTTGT
TACCAGAAAACAGCTGGTGTCTGCAGACCTTCCCATGGTTGGCCATGACACAGGCCCCTGGAGTTGCTCTGCTTT
Seq 259:
CTTTAAACAGCACAGATATGCAATGAAATTTCCATTAATCCAGAATATACATAGTGGTTAACATGCAGTGATTTG
AAATAAAATATTATTTGAAAAGCTATTTTTATAGCTGCAAAATATTGCATTGAAGAGGCTGCCACCAATTATTTG
TTTCCATATGAGCATTTTAAAGGCTGATACACAACATTTTA.AAAATGTATATgcaccttgagaggcccaggcgtg cagatcacgagatcaggagatcgagaccatcctggctaacacggtgaaaccccgtctgtactaaaaatacaaaaa attagccaggcgtagtggcgggcgcctgtagtcccagctactcgggaggctgcggcaggagaatcgcttgaacec gggcggtggaggttgcggtgagccgagatcacgccattgcactccagcctgggcaacaagagcaaaactccgtct caaaagacaaacaaaaaaCTATATGAAAAAGTCTCTCATTATTTTCACAAGCATTAAGAATCTCACTTAAAAACA
Tggctgggcgcggtggttcacgcctgtaatcccaccactttgagggggcgaggcaggcagatcacttgaggtcag gagttcgagaccagcctggccaacagggtgaaaccccgtctctactaaaaatacaaaattagccggtcgtggcgg cgcgcgcctgtaatcctaattactcgggaggctgagacaggagaattacttgaacccaggaggcagaggttgcaa tgagccgagattgcaccactgcactccagcctgggcaacaagcgcgaaactctgtcgcaaaaaataaataaatac atacatacatacatacaAATATTGCCAATTTGATAGGCAAAAATATATGCAAATTATGTTTTAACAAATATTAAT
AAAGTTGAACAATGGCCCAATGTAATTTGTTACCTATCTGAAAGACATGCACATTCAGGGAGTTACAGTACTTTT
TCATGTCTTGCAGCATCAACAAATTGTTTTCTAAATGTGGAAA.AAGAGACATTCAGTACAGGCTAACGTAACGTG
GGACAGCATGCAAAGCCATGAGAAGTGGGAAAATGAGAGAGAATCTGGGCGTGGCTTACAGGGCTGCTGAAGTAA
GACACACCCTTCGCTTCACCTGTGGCCTCCCGCGGCGGCTGCGGCTCCTTCGCAGGACCGGTAGGGGGCGCGCGC
GGTTGAGTCCAGCAATTGCGAGGACCTCCGCAGGCGCAGCCCAGCACTGACGCCTCTCCGGGCCGTGGCTCCTCT
TTCCCAGGCCGAAAGCGGCCGGGCCCTCTGCTCCGCTGCGCCCTGGCGCGGCCGCACCCACTGCGCGTTTGTGAG
CTGGCCATCGGTCACACTGGGATACTCGAGGAGGAGGCCTGGGGCCTGCATTCAATTCCCTAAGAGGGACCCGCG
CTGGCCGCTGCAGGCGGGTGGAGAACGGGCGTCTGAGTctttggctttcgtaccggaatctccccgggagatttt acaagcccctccgaatgttctgattgaattggtctgggggggtcggtccgggcatcTAACGAGCAGCCGGGATGG
AGAATTACTAGTCTGGATTCTGGTCCTCAGAGGTTCACTCACGTTAATCAACCCGAGTCCATCTTGGTGGGATTG
TCTTGCTCCGAGGCCCTCCCACTGAGCTTTATTTTCCTGCCTGATTTCGGGGTCCGCTAACAGGATGAACAGCGG
ACCATACAGGCACGGTGAAAATGACACTTGGTGACGTGGAAGACCCAGCTTGCCACAGTTGAGGCAGAGCTCCTC
AGGGTCTTTTGTCTTAGTTATCCCCGAGCTATTTTTCAGGAACCGACAGGCTCCCCCACCCCAACACCGGATGAA
GGCCAGCAACTGGAGGCCAGGAATAATCAAGCACGCTCTCATTTCAAAGAGGTGACGATTGTGCCCGTGTTTAAA
AGGGATGCCTGAGACCATGAGGATTTGGAGTTTTGGAGGCGGATCTGCCTTTGGGGAGTGAGCGTAGGGCCCTAA
GATGTGGTTGTGCTTTGAGACAGTTCCCAGGGTGATGTGTCCCATCATCCAAACATTGCAGGATAAGTCAAAGTT
ACAGAAAGACTCTAGTTTACTTCCAGCCTAACATTACCAAAATACGGTATTTGTCAGAAAACATGTAGTATTTGT
ATAATTTGAGAATGTAATTGAAGAACCCGATATAGAGCTTTTAGAAAGGGGAAATAGAAAACTTAAAAAGAATCT
TGCTTGGTATATTAATACCAACATCTAAAATATAATAAAATTGAATAAACCAGTGAGTTTTATACTATGATTGAA
ATAAAATGCCACTATGTTCTTAAGAGTGCTAGTTTAACAGGAAATCTCCAATGCATTATTATCTAGACTCATCTC
Seq 260:
AAGACTGTGCCTCAAACAAAAGCTTTGTATAACTGCCCTTGTGTTCAAGGTAATATTTTTCCTCTTTTCAAAGAG
GCTGGAAAGTGGTGAAGGGCATTTTCAGCAGGCTCTCCTCCTGACAGATCTTTTTTTCCTGCTACCTACCTCGTC
TCCCTTTATTGTCCCGCCTACATTCATCTCTTTCTCCAGTTTCCAATTCCAACCTGGTAGCAGCTACAATCTGGA
TTGTATTTAAGGGAATTGCTTTTTTTTTTTTTTCTTGAAGAGCGGGGAGGAAGGGTAAAGTGGGGGGAGGGGCGC
AGAAGCAGTAGGACCGACGGCAATCTCCCACCTCCCCAAATCCATTTTTTCTTACCTCCTCTGACCTCTCTAGCT
TGGAAGAGGAAGGTCAATGCGAGGGTTGTTACGGTGAAATCCCAGAGCCACCGTTTCGTTTTCCACCTAGAGGAC
CACGGCTCCATCTCCGAGCCCCGCACTCACAACTGTGAACTCAACCCACGAAATTGCGACTGCAGACCAACTTCG
TCCTTTCCAAGGTATCGCCAGGGATGTTTGCTACACAGCCATTGGGGAGGGAGAGGGGGAP.AAAGTCAAAGGGCT
TTTTCTTCTAAATTTGATGGTTTGCGTTCTTCGTGTCTCTAGCCCTTTCCTCTCCCTCTGAGTTGGCCCCACCGG
CCGGGACCCTCCGGCCGCGACCCTCTGATCCTTCCTCTGCCGGGCCCTGCCTTCAGAATGAAGGCAGATGAGGGG
CTTCCACCAACAAGCTGAGAGTACTGTGTGCCCCTAAAGGCTTCATGCCGTCAGTGGGCTGGACGAGTGGCTCCG
GGCAGccccctcctccgcccactcccctccctgctcccagetccccctcccAGGGCGAAACTGACAAGCAGGCTG
AGGGTCAGACCCAATCACACGACTCTGGGGCGGCCCCAAGCCCGCCCCCGCCTCCCTCAGCCCAAGAATGAGGAC
TCCGAGCAGGCCCAGCCCACCAACCACCCCCCATCTCCCCACTCCTCTCCTCCCTCCTCGCCTACCAAATCCCCG
AGAAAAAATGGGAGGGAGTTACGGGGGACGCGTGCTTGGCTCCAGCACTTTGGGAATGAAAGGAATTGCAGGAGA
GCCCCGGAGCACACGGAGTTTTCAAGGAGCTTCTGTATTCAATAAAAACAGCTACTTGTCTACTTGCACCCGTCT
GTTAGCCTCTCGCTGGTCGGCGGGAGAGGGGAGGAGGCCAGCGCCTGATCGGCCACACCGCTGGAGTCCTGGGCT
GGCAGCGGTAACCTTATCCTTGTGCAAAAATCTGCTTCGTATGGCAGACGTGGAACCAGTGGACTCATTGCGCTG
CCTACTCTGAAAAGTGtttttatttttatttttttaaCCCAATAATTAGAAGAAAGGAATGAAGATAGAATGGAG
GGACCCTAGAAGTCAAAACCTAGAGCATGTAGGGAAGTCCTCTTTGGAGATCTGAAACTGACAGGTTTATCTCTT
AAACGTTTAAATTCAGCACTAGGTTCATTCAGTGGCTTTCCTCTTAAAAGAGTTGAACTGTACTCTGAGGGAGAA
GGAGGAAAAAATTTATGGGAGCTGACATTAAGAGGGTGAGTAATTT.AATTTTCCAGCTGATTCTGTTCTGATCCT

GGATGAGGGGGTACTGAGGAGTGTGTAGAAAAGGCGAGGAAAGCAACTAGCAGAAATCTCCAAGAGGCTCGGCCC
ACAGCTCCTCATTAAGGGCCTGGCCCTGGCCCTCAGCCTCGGGAGCCAAAAACGTGGTCACTCCACAGTGAGAGT
AATGAAGAGGGCAGGTTTCTAAATTCCCTCTCTACTTAACCCATCCTCAAAGTAATCCTCTTACACCTGGAATAT
AGATTCCCAAGTCACTTTTTCCACGTTAAAATCATTCCATTCTATTGACTCCTTTTTGTTCGTTAATAATTCCTA
AGATGTTTCTCTCAAAGATTTTCTGGAAcagtgcccatcagggtgccagcatacattagccactcaatagagatg ggttggatgaatgaaCACATTTTTCTGTTGACAAAGACTAGAAGCATTGGCCAGGGCCTACTTTGAGTATTTAAG
TCATTTAAATGCTTAAAGGCCCTCAACTAAGTTTACTGGGTACATATGTTCAATTCTACAGCTGCCACTAATCTT
TAGGAACTCAGTTTTCTATTAGTCATCAAAATATGCCTCATGATCTATCAGATTACATCAAATCTCTTCATGCAG
TTTAAAATTGGAAGAAAGGTGATCAAAGACTAGATTGAGCCCTTATAGGG
Seq 261:
AGTGCCCCCTCTAATTGTCTATTCTTATGTGCTGTTTACTGGGTCATTAAAATCTTACAAGGCCTTTATAGTCAT
TGTAATTGTTGAATTCAAGGTTTGTCCCAGTTGTTTGTACAGAAGTCTCTCACTTTGAAACTCAGAAACATTTCC
CCTAACATCTTGTCTAAAAGAACCTTTCAAGCAATGTACTGACCAACTCCTTGAGTGATCTGTGGCCCCTGCAGG
AGTGGGGGTAGGGAGCGCCATGTCGCACACCTGTTGTCAGGTGACACTGCCAGCAGCATCCTGCACACTCACCTC
CCCACTCCACCCCACCCCCAGCGAGGCTCTTTCCTGCTGGCCTTCTCCACCCGGGGAAGCCTACAGCCTTCCGGA
GTTACCTTTTAAAAAAAGCAAACCCTTCCTACCACAAAGCAAACAAAAGGCTGATACCGAGACAATCGGGAGCAG
CGGGGGTTCCCGTGGCCCCTCTCCAGCCCATCCTTGGACCACTCCCCAACCCGGTCCCCCGCACCAGCCCGGCTT
CAATCCCGCGAGTAGCCCCCGCCTTCCCCTCCCTGCAGATAGCGAGCCAGACGCCTACACCTCGGCCCCCCGGGG
CTCGGGCCCGACTTATTGTGCCGGGGCCGGCAACTCGCGGGCCGGCGGGGGCCTCACCAAGTACAACTCTGCTCA
CAGCAGCTCCCGGGTGCCCAGGCCCAGACTGCCTAGCCAGCGCCGCGGGGCCTCCTGCGGCCTCGGGCCTGGCCC
GTGAGCCCGCCCCAGGAAGGGTCGCCAGGGTAGGCGCCAGCACCGCTTTTTTCCCACAAAAGCGCCCAGGCGCGG
GCAGGGGGATGCGTTTCGAAGAGAAGTTGGTTTCCAGGTTTCTTTTTTGAACAAAACCAAAGGGAATCCCGCGCG
GCCCGACAAGGCCTGGGAGGACGTAGTGCACGCGCGAGGACCCGGCGTGGGCCACACCGAACCCGGCGGCCCGAG
CCCGGCCCGCACCACACCGGTGCGCGCCAGGCCGGGCCGCTCCCGGGCACCCGCGGCCGGACCCGAGCGGCGGGG
ACAGGGAGTGCGGCAAGGGGGCCCGCGCGGCACTTACGCGGCGGCTCGGTGGCGGCGGCGGCAGCTGCAAGGTGT
CTCGGCCTGAGCCCTCCTGGCCGCTCGCGCCTTTTCTCTCCGCGCTCCTCGCTGGCCCGCCCGCCTCTTCGCTTc ccgcccgcgcggcccgcgctctccccctccgcccggcgccgcTGCCGAGTGAACTGGAACCAGTCCTCGCGGCCG
GCTTCCCACAATGCACAGCGCGCCGCTCGTCACATCCCTTcgcggccccgagcgtccggcctccgcgcccgtgcc gcccggcgccccggccTTGACCCCGGGCCCGCGCCCTACCCGTTGACGCCGGCCGCTCTGCGCCCAGGCACCAGC
CCGCACCCCGGACGCGAGGTCTGACCCATGACCCCGGGGACGCCCAGAGCCCAGTCCTTGGGAAGGGCCAGGCCC
CTGGAGAGGAGCTTCTTCAGGGCGCGTCCCAGACTCTGCGTCTCGAGTGAACGCCTACTGTGTGCCTGGCTCTGA
GCACGGGACTGTCGCTGCCACGGCATCTTTAGGAACCTTCCCACTAACCCAGTGGGAAGGCACAATGGCTGTTAC
CAGCGATCGCTCTTCCCTCCCCAGTCAATGCCAACTCCCCCCTGCCCCGCCTCAGAGACCCCGCTGTCTTTAGAT
ACAGGCCACCGCCAAGCCCTGGTCTGCCCCAAGATCAATTACTGCGCACCCGGTTCCCCTGGGGTCCTTCAGTTA
ATCCTCCTCACCCCGAAGTCTGGAACCTGCCTTGCACATGGAAGCGGTTAGCTACTTCGCTTCAGCAAAAGTTCA
CTTTCGGACCCAAGTTGGGAATTACTAATGTAGACAGTGATTCCTTATCATCACACACGTTTTTTAAAIIACTGCG
GACAGGCCGAAAGAGGAGGAGCCGCCACAAAGCCCGCCACGTCTTCCTAAATTGGTTTACCGCCTGAAGGCATTG
GTGCCCCATCCCGGGTACTTAAATGGGGGCCTGCCCTCTACTCCCCTCCCTCCAAAGTGTGGAGCCGGAAGCCAC
TTCTCCATCCAGCTGTGAACTaaatttggataataatacacatccctcagggttgatgtgaagtttaaaGTGCCG
CTACTGGGGATTATGGAGGTAATTAGAGACCCCCACCCCCACCCCCCAGTCCTCAGGCTGCGCGGGAATCGCAGC
GGCAGTAACCTCCACCTCACCGGGATGCTTTACACCTTACTTTAAGAGTTTGCAAAACAATGTCCAATACCTGCC
attcatgcattcgttaattcgattaagtactgagaacgtattttgtgtcatacatcgatttgggtgctggatatg aaacagccaagagaacaggcagaaatctctgccctcctgtagtttgcagtctcgtgggggaaagacagacaaacg ggagaatgtgtcagagggtctccatggggtggagaaaaataaggcggagaaggggaataggaagtgtgagataag agtgaggctcaaatacaagagaaggcctctatgagaaagtaacatttaaagcctgaagaaattgagggagcaagc cgtgtggatgtctggggaagaactgcgccgagcatgaggaatagcaagtgcaaaggctggggtaggagtgtgtcc aaaatagtcaagacagagcgagtgtgaggttggagtagaatgggtgaaggggaaagtaacaggagatgaagctgg aaaaatgatgATGCTTATGATGCTTCTGGTCCCAAAACAAAGCATTATGGTTCTATGAGGATCTCCCGAAGAAAA
GATGTCAGGAAAGGTGCAGAGACCCTCCCCCACACACCACATTGTTGTTCCATCCTTCTCTGTGCCTTTGGGCAA
GGACTCTCCGTTCTGTAGGGACCACCAGGTGGAATTAAAGTCTACACTCCTCCAAGAGCTGATCTTGGGGCGGCC
CCACCTCCATGCCCCTCTACAGCGTGCCATTCTCATAGAACACACTAGGACCTTTGTCCTCTGGAGCTGTTCAGT
GCAGCAGCTCTGACCTCATCCTTCTCCAGAAGCCTCCACCTTCTCTCCCCTCTCTCCTCCTGCGCTTTGTGTGTC
CTGTTCTTCCACTTCGGTGACCTGTCTCCTCCCCTAATCTGGCTCAGAGAGGGGTACCAGCTGCTGCTGCTGCTA
TTGCTTCTTCTTCTGTTAAAGGTTTTTTATTTTTTTCCAATGACAAAGCTATGCTCATTCTGAAAACATGAAAAA
TAAAAATGCTCAAAAAATAAAACTCACTCTACATTCATTGCTAGGAGAGAACAGCCTGCTCCCATTCCAGCCTTT
TTATCTATATCCACTTAACATTAAA

Seq 262:
CAGAAGTTTTGGCCATCGTATGCTTGGGGACAGACCTGGGCAAAAGCCCACAGAGGAAGTTGCCACAAACACATG
ATCTACCCTCCTGGCCCTGACCGCAGGGCTTTTGGGTTTGGTCCACAGACAGAGCCCTAGTGTTCTGTTTGTTAC

CCTGATTGATTGATGAGAGGTTTTGGGGGAGAAAGGACTTCActttcttttcttttcttctttttaacctttgcc tcttcttctAGGAGAACTTCGCTTTCTACACTGATTATAATTTAGACATCTTCCCAGTAGGGCTGAATCCTAGAC
CAATCTATCAATCCCAGACTAATCAGGCATTTGCCTGGGGATATGCATCTTTGGCATTTTTCCAAGGGTTCATCA
GGATGGAGATATCCGGTGCACCATGAGTTCTGTTTCCTTAATCAACACCGTTGTAACTTGCCCATCCAGTTTTGT
GACATTAATTCAAACCTGTGCCCTAGTCCTCTTTTAGGCAGCGTATCAGTGCTGGAAAGTGCAGCAAGGATAAGA
GGGTACTGTTCTCTCATTTCTGAGGGCGTTGTCTCGATAATTAACTAACTTGATAGACTTtttagtgagtggcag gtgagatgcaaggtactgtgctaggtgctgtgggggatgtacagacaaacaacacaCCTCCCTAAGGAGGTAAGT
AATAGCTACTTACTATTCACTTTGCTCTTTCACTGTAATGTATCCTCAAGCACAGGTTTTCACTACACCATCAGG
CCCAGAAGTACTAGCTTATTTTCCACAGGAGGATTTCAGTTTGATGCCTCTGGTTATCTTGTATAGAGAGGtctt ttctttctttctttttttccccattcttttGCAATCACAAAATCTGTCCTACCAGATGTGCCTCTCTTGCTTGGG
AACCCAATAGTTTTCTTTGCAGACAACAGACTTGAAGTCACAGAGCAGCAGATTGTAGAAGAGCTACAGCTTCGG
GACCTCTGACTCTTGAGCTGGAACAGCAATAGGGCTGGGTTGGGGGTGGGGTGGATGTGTCTTTCAATACTGATG
TATTTCAAGG

Seq 263:
tggatcaaatatttttttaaagggaagataaaagctgtggtatcttttagttcacgtcactttaatctttgaaaa ataaa.aacagcctcaaatattattggtaaaatacagatgttgtcaaaatataaatagacagactaaattatgcag ttcaggtAGCGCCCTGCCGACCCTGTCTCTTAAAAAACAAAAAAACGGGGTCACCTTTCCATCCCTTTTCTAACG
GTTTGAATCTCAGGACTGTATTCCTAGGCCCCTGTTGCTTATGCTGCCCTGTGGTGCCCAGGTGAGCTTTTATTC
TGAGATTGGCTGGTTGGGGTATGGATAACAATCGAAGGCTCTGTTACCGCAGGCGTGTTTCTGAGTCCTGCTCCC
GCCCCATGCCCGAGGGTGCCCAGACTCACCAGCTCGGGTCGCGGCTCGCTTCCCGGCAGGCGCCGGCCTACTGGC
GGCAGGCACAGAGCCCCCAGCGTGCGGAGGCGCGCGGCGCAGCTCCTCAGCATGGCTCCGGGCCGCGGGGCCGCG
CTTGCTCTAGCCCTGGACGGCGCACTCTACCTCCGCCACAAGAGCGCGCGTGCGAGTTAACCCCTGGGGTGGACG
CAGGGCGGGGCTTGGGGAGGAGGCGGTGCGCACTACTGGCGGCTGGCTGGCCGGGGTGTGAGGCCGGCGGGGTCC
GGGTAGGGCATCGCTGTTGAGTCTATCTTCTGGTTCCGGCCTTTTCTTTCCGAAGACCTCCCGCTGCGGCCAACA
GCCGGGCCACTTCCGGGGCTTCTCAAAGGCAAGAGGAGCGCGGCCGGAGCGGATCCCGGTTATCGCCTTGGGCCC
CTCAGCCCCTCAGCCCCGGAACCCGCGCGCCGACTGGAGGCTTTGCGGTCATCCTTCCCACATGACCCAGGGCGT
ACGCAGTGCTCCGTGTCCCCAAGTAGTTATCCCTCCCCCGGAAGACTGAAGTCCCTGGGGCGGGTAGGAGCGCAC
GCTAGGAGTAGTATGAATAAAGTGTTTTCTTGGAGGTCATGGGCAAGTCTCTGGACAGGGTTGATAGTGCTGATT
TATAGAGGGCAGTCTGGGCACAAAGAGCATTTATACGATCGAAAAGCTGCTTTCCCTGCCAACAGCCCCATACCC
TCCCCAGGAGCGCGCTTACGCCTTAAAAGACTCTTTTGTTATGTAAACTGACagttaaattaaacgaaggtaatg gatactaaaggcgtaacaggtattgtaactattttactgttatcgatgcttttgaggttacttacctcgcttgta ttcgtatggtgggaatactaggcgcataccttctgagcttcgaattcagtaacctcactgggaccttgaaatcgg actgggttggagtattcccattactcagataatgcaaatccgggcCATCATACCCCTTTATTTTTAAATGCTTAC
CAGTATGCCATAGCCCTAGTCCATCCTAAGGTGAAGACTCTAATGGGTTTTTTTTgagacagagtctcgcagaga tactgctattgcacttcagcctgggcaacatactgatgccccatctcaaaaaagcaataaattaaaaagaaaaCT
CGAATGACCTGAATGCATTAGATATTTTGCCTTGATTCCTTTCCCATGAACAACTCCAGCAGTTTGTCAGTAGGT
AAGAACACCTAGATACATTTTAAGCCTACACTATTAACTGGGGGAAGGTGTAACATTCTGAGAGAAAGGGAATTG
GGGAGAGAAGGCAATGCAGTTAGGAGGGGCCCCTTGGAATCCTAGAGCTACTGAACCGAAGATCAGGCATAAAGG
ATGGTTGTTGAGATTCTGTAATTCTAAGAGGTTGTATTCTGATATCTCCTAAGCACCCCCCCCAACCTCCCACAT
TCCCTTTATCTCAGTTGTCTTCCTT

Seq 264:
CTGAGCCATCTGCACCCTGAGTAGGCTCTTGAGCTGTGACATGAGTCAGGTGGAGTAGCCACCAAGGCAATAGCT
TCCCTCTGGCACCCCAAATGCAGGCTCACATTCTCTCCAGCCCAGGCAGTTGGATGAGGGCCCGGCAGATATCTG
CGGGCCCAGCAGGCGGGGACCTTCCCACCTGGAGAAGGCACCTCCAGGCTCTAGGTCTGAAGTTTCCCAAACTCT
GTACTCCTCTCCATCCAGTTCACTCCAGTCTCCTCCAGCTGTCTTTGAGACAGCATGCCCAGGAGATAGGACAAA
ATTAGTACCAAGACTCACCTGAGTGCCCCTGGCTGAGGCTGTAGAGCCTTGTCCCCTCAGATCTCAGCATTTGCC
ATGGTGGCCAGAGAGCTGGCTGCCACCACGCTGAGAGCCAGGCCGCCCCTCGGACCGCGTCCCCACAGCCAGCCA
AATCCAGATGGAGTCATAGAAAGGGGCTGCAGGGGCGCCCAGGGACGAGTCTCAGAGCAGGACCACAGGGGCCAC
TTCTGCAGGAGGACCAGGTCAAGATGCAACCTGTGGCAGAGTGGGGGTCTGGGCCTGGGGGACCCAGAATGGGGG
GTGTGCGCCTGGGACTCCCTGTCCTTGGTGCCTGGTCCTGGGTAGCGATCAGGAGATGTTCTGAGGAGGCACCGG
CAGCTCCTCTAGGTACTGCCTGAGATGCGAACTGCAGCTGCTCTCGCCGCCAGTCCGTATAAAATAAAGTTCTTG
GAGCAGTTGCGGAGGCTTCTGCAATGGGGTCTGGAATACGGCCCCCCTCCTGCGGCCAATCGTGGCATTACAGCC
CCGTGTGGGAACGCCCGCTGGGCCCAGAGCAGCGCGGTCGGCCTTGGCCTTGGGACTCCAACACCCCAGTCTAAA
GGTCCtgctcaaaatactttttggaagacttctgggggagtggcagctagacctggcttatgagccacgcaagaa aaccagtcttgtaaatttatttatagcacagaattggcatggctcaattcattcaccaagcttggcacagagtta cttcatgtattttcctggagtcacattcatcctcagtggacacggattggccacactgggggtagtcaggaaaat gccccaggGGGTTCCACGGAACTCAGCAGCAGAATCAGCGTTTCTGGCTCATTAACGCTGCACAGGGGCTGGGGG
GTGCAGGATGAAGACTAGCTGGCTGTCCATAGCAATTCAGTATGGGAGGGGGACCCAGGCACGAATAATCCTAAA
CCTGAGCATGATTGCTTACGTTTGAAAAAGGACATCTAggccgggtgcagtgactcacacctgtggtcccagcac tttgggaggctgaggtgggaggattgcttgagcccacccacaagttcaagaccagcctgggcaacatagtgagac cccatctctaaaaaaaaaaaaaaTCTCTTTAAAGGCAATCTAACCATATGTGAAGGGAGCTGCTAAATTCAGATT
GAGGTGGTAGTATCAGGGGCATCAGAGAAATCACCATAATTGTCCAAGCCAGGGTGGCAGAGTTAGGCTATGCAG
ATGGCTTCCAGAGGACAGCACCCAGAGGTAACATTCATGAATGCATTCCTGTTTGTTGGTGAAAAGTTCAGCCTC
AAGACTCCAGGGTCAGGCTTCGTACATGAAAAGTGTTTGCCAAGACTCAGCTGTGTCACTGCAGCTGCCCGCCCA
CAGCTGAGTCAGAAACGCCGTCCTCATTCTCAGTGACTGCCCTGCCTGACTGCCTAGGAAGCAGCTCCAACATCA
AACTCCATTTTACAGAAAGAACAAATGATAATTGTATCATTATGGTAATAATCCCAGGGAGCGGAGGAGGAGAAG
GAAAAGAAGACAACACTTTATAGCAtataccatgtgtttcttatatattagctcattgaacctattcaacaaccc cctgaggcaggtgctgctattatgctcatttacagagacagagaggaagtgacttgtccagggtcttgtagccag taagtggcagagctagtattcaaccctaggcaatgtgatcctagggtctatgctcttaacccctcccctgtacca Seq 265:
GCGGTGCATGGCACATGGAGCTGACCTGAAAAGAGGAAACAAGGAATCAGCATTTAGGCCCTCACCTGCTTCTCC
TGCCCCTTCCCAGAGCCTGCTAGGCACTTCTCCCCGCAACTCACCTAGGAGGGCTAGGGCCTGCCCCCCTGCTTT
TTGGCAGGAAGGATGGGGCACAGCTCAACTTCTTCCTCATCACTGTCCTCTTCCTCTTCCTCGCTCTCCTCCTCA
GAAACATCATTGCTCATCGTAACTGGTGGACACACAAGCAGTAGAAGGATGGGGTGTTAAGACCAGACCGTTTCA
CACCGCATGCCATTTCTTCACGCCGTGGTGTTAGGCTTACAGGGACCATGACCTCCCAGTGCTTATGGGCTAGGT
GGGAAGAACCTCAGACCCTAAACTGGGTCACAAAGAGCCAAAGGAGTCTTCATTATTGGAGCTGGAGAAGTTGGG
CCATGTTCCATGGAGGAGGTAGGCTTGAGTAGACGGAAAGGAGAGGGCATGTCATGCACAGGGCACAGCGTGGAG
GGCACACAGACCTGTACAGGGCTGCACTGGGAGATGAGGGTGGGATGGGGCAGGAGTGCGGAGTGGGGGAAGCCT
GATGGGAGAGTCCACTGGAAGCAAAGGAGAGGGCCCTCCCCTCTTCTCACCAATCTGGTGCCGCCCAGTGATCCG
CACAGGGCCAGAGCCCGACTTCAGGCGGAAGGTTACAGGTGGTTGGAGCTGGAAGTCATCCAGACTGAGCTGGGA
GGAAGACAAGGATGAAGGCCTGGCCCACTCCTAGCCCACCCCACACTGTAATGAGTGCTAACGTCCTCAATCCCC
TcaccaccaccaccaccaccaccaAGGCAGAGCTGGGGAACTCACCATGGGTTGGCAGGACAGCTTGAGGTTGGC
CACAGGGACTGCGATCTCCTGATGGTCATGGTTCCGGGCCACAACTTCTACCACATTACACTCGTCTTTGGCTCC
CTCGGTGAGGCAGAGCTGGGAACGGTACACAGGGCCTCAGGGTCTCCTCAAGTGAGGGTTGACACCACAACTAAA
GGCATCTACCCTAGCACCTGCCCAGCCTCAGAGGTCCCGGTTCACCTGGCCAGGGGAGCCGCCCATGCCGGGGGG
TTAGGCTGAGGATGTGTCTCCAAGTAAAGGGGATCCGGAGGTTGGGTAGAGACCTATATTGCCTGCCTGGGCTTA
TTCATTAAAACCCCACTCCCCTGCCCCTCACCATGGTTAGTGCCAGCACGTGCTCCGCATCATCCTCTTCCTCTA
CCTTAAAGGTGAAGGAGCGGGTGTGGCCGGAGAGCTCACAGCCTGGTAGAAATAACAGTGAGTATGCCTGAGCGT
GTGTACGGGGCTGGGCAGCGGGGGATGTCACCAACCCGCCGTCACGTGTAACCTTGGGCGGACGGGTCATTTACA
CGTCCACCTCCGTCTCTTCTCTCAGAACACCTGGGACGCTCTGCCGTGGGCCCCGCCCAACACATCTGGGGCAGG
GATCTCGCCACCCCCTTTGGCTGTGCGTGCGAGGCCCCCTCTCCTGCGGGAACAGCGAAGCAGCCCTCCGCCCAC
ACCCACGCCTTGAAACCCTCCGCATTCCCGCCTCACATCCCTACCTCTTACCGCCCCAGTACCACCCTCAGCCTC
TCCCTTCACTAATACCGAAGAAAAAACTGTCCATAGTGACCGGGGCCGGGACCCGTAGGCCCCCGACACCCCCGG
CCCGCGTTCGGCTCTCCTGACTCAAAAACGCTAAGGCAGCTGCAGTACCGGCGGCCATGCTGTAAGAGCCTTCTT
CAAACTCCGCCCCCGACACGCACAAAGCCGGGGACCCTCGGCCAGTTCCGGCCCCGCCCATTAAAGGAGACGCAC
AGTCCTGGAAAAGAAAAGGCGCCGAGACCCCGCAGCCCTACCCGGAGCCCGCAGCTTCTGCTCATATTTTATCAA
GACCGAAGAGAAAGGAAGTAACATCACAGAAGAATGGATTTGGGGTTTATGTTAACATCCTTGCTCATTTCCACG
ACCATGAGGGTGTCCACTTCCCCAAGCTCCTCGCTCTGTGTCGGAAGAGTGTCTCCCACTCTTCCAACCCAGGGT
AAGCTTTCGTTAAAGGAGTTATAGATATAAAAATGTAAACCCTTCTTACTCCTCCCAGCAAAGGTGGGGTTCAGG
GCAGTGCTTTTCTGCTACAAGCAAAGGAAATGCACTCAGATTGTCTTTGCCTCAAGAGAGCCGAGGAGCCTTAGG
AATTTCCATCCCAACACGTCTGTCCTGTCTGTCCTCTCGGCTAAGCCTCTCTTAATTCTTCCTGCTCTAAAGACC
CCGCAACTTGCTATGCCTTCACTGAGACTTAGCTGCTGGCACTTGCTAGCAGAGGACTAGTTAGCTCATGTGTGT
TGGCTGTTCCTGGCCCACCCACGCTTTTTGAGCTTTTAATTCCAAATCATCCAGGAGTATCTTTGCGCCGTGGAT
TATTTTGTCAGTTTATGCTACTCGCGCCATCTTTCGCCTTTTAAGAATCAGGCAAACTGTGTGCTTTCTATCCTA
ATAGATGGCAAAACTCAAACTAGAGGCCCTATTTCACATCCAGGTTATAACTGTGGCAAGAGGGTGGGGTGGCTT
GGCTAAAAACTAGTCTACTTTTCTTAGCTCTTGTCTTAATGAAAATCTGGAAGTCTTACTGGTGATGGAGGTAGG
GGAGGGCTGCCTTCAAGATCCAATCTCTAACTTGGAACAGCTGTGGAGAGGAGAGAATACCTGCTTGTAGGTGAG
GCATGAAAGAGGAGAAAAGGGAGGGGGCAGACAGGAAATAGATTCACACAATACAACACGACAAGCATTCACTTC
AAGTTTTATTTTGCCTCTTGCATGGTCTTTTACAGTTCGTTTTCTACAGG

Claims (21)

1. A method for determining the methylation status of an individual, the method comprising:
obtaining a biological sample from an individual; and determining the methylation status of at least one cytosine within a DNA
region in a sample from the individual where the DNA region is at least 90%
identical to a sequence selected from the group consisting of SEQ ID NOs: 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, and 265.
2. The method of claim 1, wherein the determining step comprises determining the methylation status of at least one cytosine in the DNA region corresponding to a nucleotide in a biomarker in the DNA region, wherein the biomarker is a sequence selected from the group consisting of SEQ ID NOs:160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, and 212.
3. The method of claim 2, wherein the determining step comprises determining the methylation status of the DNA region corresponding to the biomarker.
4. The method of claim 1, wherein the sample is from blood serum, blood plasma, fine needle aspirate of the breast, biopsy of the breast, ductal fluid, or ductal lavage.
5. The method of claim 1, wherein the methylation status of at least one cytosine is compared to the methylation status of a control locus.
6. The method of claim 5, wherein the control locus is an endogenous control.
7. The method of claim 5, wlierein the control locus is an exogenous control.
8. The method of claim 1, wherein the determining step comprises determining the methylation status of at least one cytosine in at least two DNA regions selected from the group consisting of SEQ ID NOs: 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, and 265.
9. A method for determining the presence or absence of cancer in an individual, the method comprising:
a) determining the methylation status of at least one cytosine within a DNA
region in a sample from an individual where the DNA region is at least 90%
identical to a sequence selected from the group consisting of SEQ ID NOs: 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, and 265;
b) comparing the methylation status of the at least one cytosine to a threshold value for the at least one cytosine, wherein the threshold value distinguishes between individuals with and without cancer, wherein the comparison of the methylation status to the threshold value is predictive of the presence or absence of cancer in the individual.
10. The method of claim 9, wherein DNA region is a sequence selected from the group consisting of SEQ ID NOs: 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, and 265.
11. The method of claim 9, wherein the determining step comprises determining the methylation status of at least one cytosine in the DNA region corresponding to a nucleotide in a biomarker, wherein the biomarker is at least 90%
identical to a sequence selected from the group consisting of SEQ ID NOs: 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, and 212.
12. The method of claim 11, wherein the determining step comprises determining the methylation status of the DNA region corresponding to the biomarker.
13. The method of claim 9, wherein the sample is from blood serum, blood plasma, fine needle aspirate of the breast, biopsy of the breast, ductal fluid, or ductal lavage.
14. The method of claim 9, wherein the methylation status of at least one biomarker from the list is compared to the methylation value of a control locus.
15. The method of claim 14, wherein the control locus is an endogenous control.
16. The method of claim 14, wherein the control locus is an exogenous control.
17. The method of claim 9, wherein the determining step comprises determining the methylation status of at least one cytosine from at least two DNA regions.
18. A computer-implemented method for determining the presence or absence of cancer in an individual, the method comprising:
receiving, at a host computer, a methylation value representing the methylation status of at least one cytosine within a DNA region in a sample from the individual where the DNA region is at least 90% identical to a sequence selected from the group consisting of SEQ ID NOs: 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, and 265; and comparing, in the host computer, the methylation value to a threshold value, wherein the threshold value distinguishes between individuals with and without cancer, wherein the comparison of the methylation value to the threshold value is predictive of the presence or absence of cancer in the individual.
19. The method of claim 18, wherein the receiving step comprises receiving at least two methylation values, the two methylation values representing the methylation status of at least one cytosine biomarkers from two different DNA
regions; and the comparing step comprises comparing the methylation values to one or more threshold value(s) wherein the threshold value distinguishes between individuals with and without cancer, wherein the comparison of the methylation value to the threshold value is predictive of the presence or absence of cancer in the individual.
20. A computer program product for determining the presence or absence of cancer in an individual, the computer readable product comprising:
a computer readable medium encoded with program code, the program code including:
program code for receiving a methylation value representing the methylation status of at least one cytosine within a DNA region in a sample from the individual where the DNA region is a sequence selected from the group consisting of SEQ ID
NOs: 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, and 265;
and program code for comparing the methylation value to a threshold value, wherein the threshold value distinguishes between individuals with and without cancer, wherein the comparison of the methylation value to the threshold value is predictive of the presence or absence of cancer in the individual.
21. A kit for determining the methylation status of at least one biomarker, the kit comprising:
a pair of polynucleotides capable of specifically amplifying at least a portion of a DNA region where the DNA region is a sequence selected from the group consisting of SEQ ID NOs: 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, and 265; and a methylation-dependent or methylation sensitive restriction enzyme and/or sodium bisulfite.
CA002652975A 2006-05-31 2007-05-30 Gene methylation in cancer diagnosis Abandoned CA2652975A1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US80357106P 2006-05-31 2006-05-31
US60/803,571 2006-05-31
US84854306P 2006-09-28 2006-09-28
US60/848,543 2006-09-28
PCT/US2007/012847 WO2007143037A2 (en) 2006-05-31 2007-05-30 Gene methylation in cancer diagnosis

Publications (1)

Publication Number Publication Date
CA2652975A1 true CA2652975A1 (en) 2007-12-13

Family

ID=38802050

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002652975A Abandoned CA2652975A1 (en) 2006-05-31 2007-05-30 Gene methylation in cancer diagnosis

Country Status (6)

Country Link
US (2) US8067168B2 (en)
EP (1) EP2024515B1 (en)
JP (1) JP2009538624A (en)
AU (1) AU2007254983A1 (en)
CA (1) CA2652975A1 (en)
WO (1) WO2007143037A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016020551A1 (en) * 2014-08-08 2016-02-11 Ait Austrian Institute Of Technology Gmbh Thyroid cancer diagnosis by dna methylation analysis

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9797017B2 (en) 2007-11-30 2017-10-24 Genomictree, Inc. Diagnosis kit and chip for bladder cancer using bladder cancer specific methylation marker gene
US10113203B2 (en) 2007-11-30 2018-10-30 Genomictree, Inc. Diagnosis kit and chip for bladder cancer using bladder cancer specific methylation marker gene
US9670552B2 (en) 2007-11-30 2017-06-06 Genomictree, Inc. Diagnosis kit and chip for bladder cancer using bladder cancer specific methylation marker gene
US9783857B2 (en) 2007-11-30 2017-10-10 Genomictree, Inc. Diagnosis kit and chip for bladder cancer using bladder cancer specific methylation marker gene
US9670551B2 (en) 2007-11-30 2017-06-06 Genomictree, Inc. Diagnosis kit and chip for bladder cancer using bladder cancer specific methylation marker gene
WO2009069984A2 (en) * 2007-11-30 2009-06-04 Genomictree, Inc. Diagnosis kit and chip for bladder cancer using bladder cancer specific methylation marker gene
US20120004118A1 (en) * 2009-01-30 2012-01-05 Cold Spring Harbor Laboratories Methods for the subclassification of breast tumours
JP2011160711A (en) * 2010-02-09 2011-08-25 Keio Gijuku Method for using frequency of methylation of specific gene as biomarker for gynecologic cancer
US20120064521A1 (en) * 2010-09-09 2012-03-15 James Yen Detection of dna hydroxymethylation
US10316361B2 (en) 2011-07-15 2019-06-11 The John Hopkins University Genome-wide methylation analysis and use to identify genes specific to breast cancer hormone receptor status and risk of recurrence
EP2821487B1 (en) * 2012-02-29 2016-10-26 Sysmex Corporation Method for determining presence or absence of cancer cell derived from hepatocellular carcinoma, and determination marker and kit
WO2014086374A1 (en) * 2012-12-05 2014-06-12 Aarhus Universitet Biomarkers for clinical cancer management
US8962236B2 (en) * 2013-03-12 2015-02-24 The Chinese University Of Hong Kong Epigenetic biomarker ADAMTS9 for diagnosis and prognosis of gastric cancer
US9284611B2 (en) 2013-03-12 2016-03-15 The Chinese University Of Hong Kong Epigenetic biomarker ZNF545 for diagnosing and prognosis of gastric cancer
ES2809479T3 (en) * 2013-03-15 2021-03-04 Univ Iowa Res Found Promoting compositions
US20160208334A1 (en) * 2013-09-30 2016-07-21 Us Biomarkers, Inc. Biomarkers for detection of colorectal cancer
US11898199B2 (en) * 2019-11-11 2024-02-13 Universal Diagnostics, S.A. Detection of colorectal cancer and/or advanced adenomas
EP4150121A1 (en) 2020-06-30 2023-03-22 Universal Diagnostics, S.A. Systems and methods for detection of multiple cancer types

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040023230A1 (en) * 2000-06-30 2004-02-05 Alexander Olek Method and nucleic acids for pharmacogenomic methylation analysis
MXPA03001834A (en) * 2000-09-01 2003-08-01 Epigenomics Ag Method for determining the degree of methylation of defined cytosines in genomic dna in the sequence context 5 -cpg-3.
JPWO2005010180A1 (en) * 2003-07-23 2006-09-07 北海道ティー・エル・オー株式会社 Method for determining cancer by homeobox gene expression
CA2617738A1 (en) 2005-08-02 2007-02-08 Sequenom, Inc. Methods and compositions for disease prognosis based on nucleic acid methylation
EP2097538A4 (en) * 2006-12-07 2011-11-30 Switchgear Genomics Transcriptional regulatory elements of biological pathways, tools, and methods
US20090170082A1 (en) * 2007-02-02 2009-07-02 Orion Genomics Llc Gene methylation in renal cancer diagnosis

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016020551A1 (en) * 2014-08-08 2016-02-11 Ait Austrian Institute Of Technology Gmbh Thyroid cancer diagnosis by dna methylation analysis

Also Published As

Publication number Publication date
US20120100541A1 (en) 2012-04-26
EP2024515A2 (en) 2009-02-18
WO2007143037A2 (en) 2007-12-13
US8067168B2 (en) 2011-11-29
EP2024515A4 (en) 2010-10-20
EP2024515B1 (en) 2012-08-22
US20070298506A1 (en) 2007-12-27
AU2007254983A1 (en) 2007-12-13
JP2009538624A (en) 2009-11-12
WO2007143037A3 (en) 2008-11-20

Similar Documents

Publication Publication Date Title
EP2024515B1 (en) Gene methylation in cancer diagnosis
US7960112B2 (en) Gene methylation in cancer diagnosis
US20210254169A1 (en) Method of screening for colorectal cancer
US20090170089A1 (en) Methods and compositions for differentiating tissues or cell types using epigenetic markers
CN113557308A (en) Detection of endometrial cancer
TW202144586A (en) Methods and kits for screening colorectal neoplasm
US20110217706A1 (en) Gene methylation in cancer diagnosis
US20070224626A1 (en) Comprehensive DNA methylation profiling in a human cancer genome identifies novel epigenetic targets
EP2971170B1 (en) Differential methylation level of cpg loci that are determinative of a biochemical reoccurrence of prostate cancer
US20230242997A1 (en) Differential Methylation Level of CpG Loci That Are Determinative of a Biochemical Reoccurrence of Prostate Cancer
US20090186359A1 (en) Detecting prostate cancer

Legal Events

Date Code Title Description
EEER Examination request
FZDE Dead

Effective date: 20140530