CA2648566C - Container for products containing aromatic compounds - Google Patents

Container for products containing aromatic compounds Download PDF

Info

Publication number
CA2648566C
CA2648566C CA2648566A CA2648566A CA2648566C CA 2648566 C CA2648566 C CA 2648566C CA 2648566 A CA2648566 A CA 2648566A CA 2648566 A CA2648566 A CA 2648566A CA 2648566 C CA2648566 C CA 2648566C
Authority
CA
Canada
Prior art keywords
container
shoulder
acrylonitrile
barrier unit
polymeric material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA2648566A
Other languages
French (fr)
Other versions
CA2648566A1 (en
Inventor
Joel Millon
Yu Shi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Colgate Palmolive Co
Original Assignee
Colgate Palmolive Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=38441594&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CA2648566(C) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Colgate Palmolive Co filed Critical Colgate Palmolive Co
Publication of CA2648566A1 publication Critical patent/CA2648566A1/en
Application granted granted Critical
Publication of CA2648566C publication Critical patent/CA2648566C/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D35/00Pliable tubular containers adapted to be permanently or temporarily deformed to expel contents, e.g. collapsible tubes for toothpaste or other plastic or semi-liquid material; Holders therefor
    • B65D35/02Body construction
    • B65D35/12Connections between body and closure-receiving bush
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1334Nonself-supporting tubular film or bag [e.g., pouch, envelope, packet, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1334Nonself-supporting tubular film or bag [e.g., pouch, envelope, packet, etc.]
    • Y10T428/1341Contains vapor or gas barrier, polymer derived from vinyl chloride or vinylidene chloride, or polymer containing a vinyl alcohol unit
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1334Nonself-supporting tubular film or bag [e.g., pouch, envelope, packet, etc.]
    • Y10T428/1345Single layer [continuous layer]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • Y10T428/1379Contains vapor or gas barrier, polymer derived from vinyl chloride or vinylidene chloride, or polymer containing a vinyl alcohol unit
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • Y10T428/139Open-ended, self-supporting conduit, cylinder, or tube-type article
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • Y10T428/1397Single layer [continuous layer]

Abstract

A container is provided for substances that contain an antibacterial compound. The container is comprised of a tube body and a tube shoulder that includes a tube nozzle. The tube body may have a laminate structure. The rube shoulder may be comprised of an alkene based polymer such as a polyethylene or a polypropylene. Such alkene based polymers have a high absorptivity for antibacterial compounds such as triclosan. It has been found that the absorptivity for triclosan can be reduced through the use of at least one of polytrimethylene naphthalate, polyethylene naphthalate and acrolonitrile/methacrylate as the surface contacting the composition containing the antibacterial. This surface can be a film on the tube shoulder/ nozzle, the full structure of the tube nozzle, an insert in the rube nozzle or a co-injection molded surface on a shoulder/ nozzle. The absorption is less than 10 mg/dm2.

Description

=

CONTAINER FOR PRODUCTS CONTAINING AROMATIC COMPOUNDS
[0002] The present invention relates to tube containers having shoulder portions that have a barrier unit that has a low absorption for antibacterial compounds, and in particular for aromatic group containing antibacterial compounds. The barrier unit can be a three dimensional insert, a film attached to the inner surface of the tube shoulder/nozzle portions or an inner layer of a co-injection molded tube shoulder/ nozzle.
BACKGROUND OF THE INVENTION
[00031 Tube containers are used to hold and to dispense a wide range of products. These include adhesives, lubricants, lotions, medicants, shampoos, hair dressings, and various oral care products. Some of the lotions, medicants and oral care products contain an antibacterial compound. A problem with such products is that the antibacterial compound may be absorbed or otherwise degraded by the tube materials.
The result is that the tube structure needs to be modified to reduce or to eliminate the absorption by the tube structure for the antibacterial compound. In many cases, and especially for oral care products, it is desirable also to reduce the absorption of the tube structure for other contained substances such as flavors and fragrances. Some package materials absorb flavor and fragrance components in an inappropriate ratio depending on the flavor and fragrance molecules. Thus the flavor or fragrance is changed. This Problem needs to be solved for flavors and fragrances to preserve the taste and olfactory properties of the products.
[00041 Traditionally, barrier materials have been used to reduce the loss of flavors or fragrances, and in some instances antibacterial compounds. It is widely believed in the industry that a good barrier to flavors and to fragrances is also a good barrier to antibacterial compounds, and that barrier improvement would be similar for all of these organic compounds.

[0005] The barrier layer is normally selected based on the flavor or fragrance barrier properties. As used herein the term shoulder/nozzle refers to the shoulder and nozzle as one part or as two separate parts. The shoulder/nozzle, however, poses most of the problems because the shoulder and nozzle are relatively thick compared to the remainder of a tube. This is needed to maintain the mechanical strength of the tube.
Further, in order to have good adhesion of the tube body to the shoulder and for cost considerations, polyolefins are usually used as the material for the shoulder/nozzle.
The thicker the polymers the greater the absorption. This thickness leads to an unacceptable level of antibacterial compound adsorption. This problem is thought to be solved for flavors by the use of an insert which is a material that has a very low absorptivity for the flavor components. This insert can be an interference fit into the top part of the tube, a film layer onto the inner surface of the tube or a layer co-injection molded onto the inner surface of the shoulder and nozzle.
[0006] Unfortunately, the traditional belief that a good flavor barrier leads to a good barrier for antibacterial compounds is not accurate. Polymers will have different adsorption affinities for flavors and for antibacterial compounds because of the differences in structure and polarity of these compounds. It is an objective of the current invention to provide a barrier for tube shoulders, and preferably also the nozzles, for antibacterial compounds as well as for flavors.
BRIEF DESCRIPTION OF THE INVENTION
[0007] Tube containers are comprised of a tube body and a tube shoulder/nozzle. The tube body usually is of a laminate structure and the tube shoulder/nozzle of an alkene polymer containing plastic. These usually are polyethylenes and polypropylenes. The tube body will be crimp sealed at the bottom after filling. At the other end the tube shoulder/nozzle will be injection molded and attached to the tube body or compression molded and directly attached to the tube body. While the degree of absorption of an antibacterial can be readily controlled in the body of the tube by an appropriate multi-layer laminate structure this is not the case with regard to the shoulder/nozzle.

[0008] It has been found that the aromatic group containing antibacterial compounds such as triclosan [5-chloro-2-(2, il-dichlorophenoxy)phenol] are absorbed at a low level in injection molded shoulder/nozzle parts of a tube container if a barrier unit of a copolymer of acrylonitrile and methylacrylate, a polyethylene naphthalate polymer or a polytrimethylene naphthalate polymer is used. The barrier unit can be a three dimensional insert, a film layer attached to the inner wall of the shoulder/nozzle or a co-injection molded layer on the shoulder/nozzle. In addition the shoulder/nozzle can be solely of these materials. The copolymer of acrylonitrile and methacrylate can have an acrylonitrile content of about 70% to about 80% and a methacrylate content of about 20% to about 30%. Through the use of such a shoulder/nozzle barrier unit the absorption of triclosan by the shoulder/nozzle can be reduced to less than about 10 mg/dm2, preferably less than 5 rrig/dm2, and most preferably less than 1 mg/dm2 for a dentifrice containing about 0.3% triclosan. The absorption can be more than 20 mg/dm2 when a barrier unit made from currently used flavor barrier materials such, as polyethylene terephthalate or polybutylene terephthalate, are used. It can range higher when other polymers with barrier properties are used.
[0009] It also has been found that when the barrier unit is a polyethylene naphthalate polymer or a polytrimethylene naphthalate polymer the absorptivity for antibacterial compounds can be considerably reduced if the polymer has been biaxially oriented. Such barrier units will usually be in the form of a film. If films of these polymers are to be used polymers are to be used the biaxially oriented version is preferred.
=
[0009a] In accordance with an aspect of the invention, there is provided a container for a substance that contains at least one antibacterial compound, the container comprising a lower body portion and an upper shoulder portion, the upper shoulder portion having a shoulder wall comprising an alkene polymer, a barrier unit coupled to an inner surface of the shoulder wall, the barrier unit comprised of a polymeric material having an adsorption for the antibacterial compound of less that about 10 mg/dm2 at 40 C for 90 days.
[000913] In accordance with another aspect of the invention, there is provided a container for a substance that contains at least one antibacterial compound, the container comprising a lower body portion and an upper shoulder portion, the upper shoulder portion having a shoulder wall comprising an alkene polymer, a barrier unit coupled to an inner surface of the shoulder wall, the barrier unit comprised of a polymeric material, the polymeric material comprising acrylonitrile and methacrylate copolymers.
10009c1 In accordance with another aspect of the invention, there is provided a container for a substance that contains at least one antibacterial compound, the container comprising a lower body portion and an upper shoulder portion, the upper shoulder portion having a shoulder wall comprising an alkene polymer, a barrier unit coupled to an inner surface of the shoulder wall, the barrier unit comprised of a polymeric material, the polymeric material comprising biaxially oriented polyethylene naphthalate polymers having an adsorption for the antibacterial compound of less than about 10 mg/dm2 at 40 C
for 90 days.
[0009d] In accordance with another aspect of the invention, there is provided a container for a substance that contains at least one antibacterial compound, the container comprising a lower body portion and an upper shoulder portion, the upper shoulder portion having a shoulder wall comprising an alkene polymer, a barrier unit coupled to an inner surface of the shoulder wall, the barrier unit comprised of a polymeric material, the polymeric material comprising biaxially oriented polytrimethylene naphthalate polymers having an adsorption for the antibacterial compound of less than about 10 mg/dm2 at 40 C
for 90 days.
10009e1 In accordance with another aspect of the invention, there is provided a container for a substance that contains at least one antibacterial compound, the container comprising a lower body portion and an upper shoulder portion, the upper shoulder portion 3a having a shoulder wall comprising an alkene polymer, a barrier unit coupled to an inner surface of the shoulder wall, the barrier unit comprised of a polymeric material, the polymeric material comprising amorphous polyethylene naphthalate polymers having an adsorption for the antibacterial compound of less than about 10 mg/dm2 at 40 C for 90 days.
[0009f] In accordance with another aspect of the invention, there is provided a container for a substance that contains at least one antibacterial compound, the container comprising a lower body portion and an upper shoulder portion, the upper shoulder portion having a shoulder wall comprising an alkene polymer, a barrier unit coupled to an inner surface of the shoulder wall, the barrier unit comprised of a polymeric material, the polymeric material comprising amorphous polytrimethylene naphthalate polymers having an adsorption for the antibacterial compound of less than about 10 mg/dm2 at 40 C for 90 days.
BRIEF DESCRIPTION OF THE DRAWINGS
[0010] Figure 1 is an exploded view of the tube, three-dimensional insert, shoulder, nozzle and closure prior to the tube being filled.
100111 Figure 2 is a cross-sectional view of the shoulder with the insert of Figure 1.
[0012] Figure 3 is a cross-sectional view of the shoulder with an attached barrier film.
3b [0013] Figure 4 is a cross-sectional view of the shoulder/nozzle barrier co-injection molded with the shoulder/nozzle.
[0014] Figure 5 is a graph of the absorption of triclosan by polyethylene tube shoulders during a 90 day test period.
[0015] Figure 6 is a graph of the absorption of triclosan by the shoulder/nozzle of a polyethylene terephthalate shoulder/nozzle of a tube during a 90 day test period.
[0016] Figure 7 is a graph of the absorption of triclosan by the shoulder/nozzle of a tube comprised of high density/medium density polyethylene during a 90 day test period.
[0017] Figure 8 is a graph of the absorption of triclosan by the shoulder/nozzle of a tube comprised of polybutylene terephthalate during a 90 day test period.
[0018] Figure 9 is a graph of the absorption of triclosan by a silicone insert during a 90 day test period.
[0019] Figure 10 is a graph of the absorption of triclosan by a film of a copolymer of acrylonitrile/methacrylate during a 90 day test period.
[0020] Figure 11 is a graph of the absorption of triclosan by a nylon film during a 90 day test period.
[0021] Figure 12 is a graph of the absorption of triclosan by a biaxially oriented polyethylene naphthalate film during a 90 day test period.
[0022] Figure 13 is a graph of the absorption of triclosan by a tube shoulder/nozzle of a copolymer of acrylonitrile/methacrylate during a 90 day test period.
[0023] Figure 14 is a graph of the absorption of triclosan by a tube shoulder/nozzle of a copolymer of polyethylene naphthalate during a 90 day test period.
[0024] Figure 15 is a graph of the absorption of triclosan by a tube shoulder/nozzle of a copolymer of polytrimethylene naphthalate during a 90 day test period [0025] Figure 16 is a graph of the absorption of triclosan by the polyethylene shoulder/nozzle of a tube during a 40 day test period.
[0026] Figure 17 is a graph of the absorption of triclosan by a three dimensional polyethylene terephthalate barrier unit in the shoulder/nozzle of a tube during a 40 day test period.
[0027] Figure 18 is a graph of the absorption of triclosan by a three dimensional polyethylene naphthalate barrier unit in the shoulder/nozzle of a tube during a 40 day test period.
[0028] Figure 19 is a graph of the absorption of triclosan by a three dimensional acrylonitrile/methacrylate copolymer barrier unit in the shoulder/nozzle of a tube during a 40 day test period.
DETAILED DESCRIPTION OF THE INVENTION
[0029] Figure 1 is an exploded view of a tube container 10 that has a barrier unit in the shoulder/nozzle. The tube container 10 has a body portion, a shoulder portion 14 and a nozzle 16. The nozzle will usually have exterior threads 18 for the attachment of a closure 26. The nozzle has an exit opening 20 for the tube container 10.
The barrier unit 22 has a section 24 that conforms in shape to the inner wall of the tube shoulder 14 and nozzle 16. This barrier unit will be located between the shoulder/nozzle and the substance to be dispensed contained in the tube 12. The barrier unit can be a three dimensional unit having a shape that conforms to the shape of the shoulder/nozzle 14/16 and is an interference fit into the shoulder/nozzle 14/16 as described in Figure 2, a film unit that is attached to the inner wall of shoulder/nozzle 14/16 as described in Figure 3, or a barrier unit that is a co-extruded layer on the inner surface of shoulder/nozzle 14/16 as described in Figure 4.
[0030] Figure 2 is a cross-section of the tube 10 shoulder/nozzle 14/16 with a barrier unit 30 in place. This barrier unit is of a polymeric construction that has a low absorptivity for antibacterial compounds, and in particular for aromatic group containing antibacterials such as triclosan. The polymer preferably can be any one of a copolymer of acrylonitrile and methacrylate, a polymer of polyethylene naphthalate or a polymer of polytrimethylene naphthalate. If a copolymer of acrylonitrile and methacrylate the acrylonitrile content can be from about 70% to about 80% with the remainder primarily being methacrylate. The barrier unit 30 can be injection molded to produce barrier units that maintain their dimensions and do not have any micro-cracks that would permit the substance to be dispensed from the tube from contacting the shoulder/nozzle 14/16 wall inner surface.
[0031] Figure 3 is a cross-section of the tube 10 shoulder/nozzle 14/16 with a barrier unit 32 in place. This barrier unit is of a polymeric film construction that has a low absorptivity for antibacterial compounds, and in particular for aromatic group containing antibacterials such as triclosan. The barrier unit is a laminate film of at least one barrier film and at least one attaching film for attaching the barrier unit to the shoulder/nozzle 14/16. There can be an intermediate film or layer to assist in the laminate bonding of the barrier film to the attaching film. In addition there can be an additional barrier film such as a metal foil in the laminate structure. The barrier polymer preferably can be any one of a copolymer of acrylonitrile and methacrylate, a polymer of polyethylene naphthalate or a polymer of polytrimethylene naphthalate. If a copolymer of acrylonitrile and methacrylate the acrylonitrile content can be from about 70% to about 80% with the remainder primarily being methacrylate. The thickness of the barrier film will be about 1 Mil (25 microns) to about 30 Mil (750 microns). The barrier film 32 can be attached to the inner wall of the shoulder/nozzle 14/16 at the time that the shoulder/nozzle is being formed and attached to the wall of the tube body 12. The barrier film cut to the appropriate shape will be placed on the mandrel of the mold and be attached to the plastic of the shoulder/nozzle 14/16 as the shoulder/nozzle is being formed and attached to the tube body. The barrier polymer will be adjacent to the substance to be dispensed.
[0032] Figure 4 is a cross-section of the tube 10 shoulder/nozzle 14/16 with a barrier unit 34 in place. The barrier polymer comprising the barrier unit 34 is co-injection molded with the shoulder/nozzle 14/16 polymer which is an alkene polymer such as a polyethylene or polypropylene. As above the barrier polymer is of a polymeric type that has a low absorptivity for antibacterial compounds, and in particular for aromatic group containing antibacterials such as triclosan. The polymer preferably can be any one of a copolymer of acrylonitrile and methacrylate, a polymer of polyethylene naphthalate or a polymer of polymethylene naphthalate. If a copolymer of acrylonitrile and methacrylate the acrylonitrile content can be from about 70% to about 80% with the remainder primarily being methacrylate. The barrier unit 34 is co-injection molded with the shoulder/nozzle 14/16 with the barrier unit being adjacent to the substance to be dispensed form the tube 10. At the same time as the shoulder/nozzle 14/16 with the barrier unit 34 is being formed it is being attached to the tube body 12.
[0033] Figure 5 is a graph of the absorption of triclosan by a high density TM
polyethylene shoulder/nozzle of a tube. The product is Sorisso (Brazil) dentifrice which has a triclosan content of 0.3%. The test is conducted by having tubes with polyethylene shoulder/nozzles filled with the Sorisso dentifrice, closed and maintained in a temperature chamber at 40 C for the times set out in the graph of Figure 5. Tube shoulder/nozzles areas were removed from the tubes and tested for triclosan adsorption. It is seen that about 45mg/dm2 of triclosan has been absorbed by the polyethylene shoulder in a period of 90 days.
[0034] In Figure 6 the graph of the absorption of triclosan by polyethylene terephthalate shoulder/ nozzles. The test procedure consisted of shoulder/nozzle TM
samples filled with Colgate Total Whitening Plus gel dentifrice with a 0.3%
triclosan content and sealed in aluminum foil. The data on the graph shows that after 90 days at 40 C more than 30mg/drn2 of triclosan has been absorbed by the polyethylene terephthalate nozzle shoulder.
[0035] Figure 7 is a graph that gives the data for the absorption of triclosan by a shoulder/nozzle comprised of high density/medium density polyethylene. The test procedure consisted of filling tubes having high density/medium density polyethylene shoulder/nozzles with Colgate Total Whitening Plus gel dentifrice containing 0.3%.

After 90 days at 40 C the high density/medium density polyethylene polymer shoulder/ nozzle has absorbed about 35 mg/ drn2 of triclosan.
[0036] Figure 8 is a graph that gives the data for the absorption of triclosan by a shoulder/nozzle comprised of polybutylene terephthalate. The test procedure consisted of filling shoulder/nozzles with Colgate Total Whitening Plus gel dentifrice containing 0.3% triclosan and sealing the filled shoulders in aluminum foil.
After 90 days at 40 C the polybutylene terephthalate polymer has absorbed about 30 mg/dm2 of triclosan..
100371 Figure 9 is a graph that gives the data for the absorption of triclosan by a silicone insert. The test procedure consisted of immersing the silicone inserts in a closed jar containing Colgate Total Whitening Plus gel dentifrice, the dentifrice containing 0.3% triclosan. After 90 days at 40 C the silicone insert has absorbed about 90 mg/dm2 of triclosan.
[0038] Figure 10 is a graph that gives the data for the absorption of triclosan by a film barrier unit of acrylonitrile/methacrylate. The test procedure consisted of immersing film samples in a closed jar containing Colgate Total Whitening Plus gel dentifrice, the dentifrice containing 0.3% triclosan. After 90 days at 40 C
the acrylonitrile/methacrylate polymer has absorbed less than 0.8 mg/dm2 of triclosan.
[0039] Figure 11 is a graph that gives the data for the absorption of triclosan by a nylon. The test procedure consisted of filling Colgate Total Whitening Plus gel dentifrice into a migration cell with a nylon film on one surface. The dentifrice contains 0.3% triclosan. The migration cell was closed, inverted so that the dentifrice contacted to nylon film and placed into an oven kept at 40 C. After 90 days at 40C the nylon has absorbed about 18 mg/dm2 of triclosan.
[0040] Figure 12 is a graph that gives the data for the absorption of triclosan by a film of biaxially oriented polyethylene-2,6- naphthalate (DuPont Tejin film, Teonex Q51 - 48 gauge). The test procedure consisted of immersing film samples in a closed jar containing Colgate Total Whitening Plus gel dentifrice, the gel dentifrice containing 0.3% triclosan. After 90 days at 40 C the polyethylene naphthalate polymer has absorbed less than 0.05 mg/dm2 of triclosan.
[0041] Figure 13 is a graph that gives the data for the absorption of triclosan by shoulder/nozzles of acrvlonitrile/methacrylate polymer. The test procedure consisted of filling the shoulder/nozzles with Colgate Total Whitening Plus gel dentifrice, the dentifrice containing 0.3% triclosan. The filled shoulder/nozzles that were sealed aluminum foil and placed in an oven at 40 C. After 90 days at 40C the acrylonitrile/methacrylate polymer has absorbed less than 0.4 mg/dm2 of triclosan.
[0042] Figure 14 is a graph that gives the data for the absorption of triclosan by shoulder/nozzles of amorphous polyethylene naphthalate polymer. The test procedure consisted of filling the shoulder/nozzles with Colgate Total Whitening Plus gel dentifrice, the dentifrice containing 0.3% triclosan. The filled shoulder/nozzles that were sealed aluminum foil and placed in an oven at 40 C. After 90 days at 40 C
the amorphous polyethylene naphthalate polymer has absorbed less than 9 mg/di-n2 of triclosan.
[0043] Figure 15 is a graph that gives the data for the absorption of triclosan by shoulder/nozzles of amorphous polytrimethylene naphthalate polymer. The test procedure consisted of filling the shoulder/nozzles with Colgate Total Whitening Plus gel dentifrice, the dentifrice containing 0.3% triclosan. The filled shoulder/nozzles were sealed in aluminum foil and placed in an oven at 40 C. After 90 days at 40 C the amorphous polytrimethylene naphthalate polymer has absorbed less than 8 mg/dm2 of triclosan.
[0044] Figure 16 is a graph of the absorption of triclosan by a high density polyethylene shoulder/nozzle of a tube. The product is Colgate Total Whitening Plus gel dentifrice which has a triclosan content of 0.3%. The test is conducted by having tubes having a diameter of 28 mm containing 114 gms of tooth gel being maintained within a temperature chamber maintained at 40 C for the times set out in the graph of Figure 5. Tubes are removed at 10 day intervals and the shoulder/nozzles tested for triclosan adsorption. It is seen that more than 20mg/c1m2 of triclosan has been absorbed by the polyethylene shoulder in a period of 40 days.
[0045] Figure 17 is the graph of the absorption of triclosan by a polyethylene terephthalate three dimensional barrier unit as illustrated in Figure 2. The same test procedure as that for the above polyethylene shoulders was used. The dentifrice was Colgate Total Whitening Plus gel containing 0.3% triclosan. The data on the graph shows that after 40 days at 40 C more than 30mg/dm2 of triclosan has been absorbed by the polyethylene terephthalate barrier unit.
[0046] Figure 18 is a graph that gives the data for the absorption of triclosan by a polyethylene naphthalate amorphous barrier unit film as illustrated in Figure 3. The film could be in both the shoulder and nozzle or only the shoulder. More absorption will occur in the shoulder due to the larger surface area of the shoulder. The same test procedure as for the polyethylene shoulders was used. The dentifrice was Colgate Total Whitening Plus gel containing 0.3% triclosan. After 40 days at 40 C the polyethylene naphthalate has absorbed less than 5 mg/dm2. This is less than a polyethylene shoulder and less than a polyethylene terephthalate barrier unit.
[0047] Figure 19 is a graph that gives the data for the absorption of triclosan by a acrylonitrile/methacrylate copolymer three dimensional barrier unit as described in Figure 2. The same test procedure as for the polyethylene shoulders was used.
The dentifrice was Colgate Total Whitening Plus gel containing 0.3% triclosan.
After 40 days at 40 C the acrylonitrile/methacrylate copolymer also has absorbed less than 0.5 mg/dm2. This, like polyethylene naphthalate, is less than a polyethylene shoulder and less than a polyethylene terephthalate barrier unit.
[0048] The test samples were prepared as set in the description of each sample in the description of the particular graph. The dentifrice containing 0.3%
triclosan was in intimate contact with the surface of the test sample for the given time period.
Depending on the test sample 3.5 grns to more than 50 gms were used. Some of the samples were taken from the oven in 20 day intervals and analyzed. Occluded dentifrice was removed from the sample surface by wiping and the surface rinsed with water to remove all occluded dentifrice. After surface drying defined surface areas were cut from each of the samples and each sample extracted with dichloromethane.
Extraction was by immersion in the dichloromethane for 24 hours at 40 C. To ascertain that the extraction was complete the procedure was repeated for each sample.
These dichloromethane extractant solutions were analyzed for triclosan content by gas chromatography. The concentrations of triclosan in each extraction were added together to provide a final level of triclosan absorbed by the particular polymer. An HP
6890 gas chromatograph was used for the analyses containing a DB 1 (30m, 0.32mm, 0.25 micron) column at 50 C. Hydrogen was used as the carrier gas.
[0049] The test results are given in the amount of triclosan absorbed by the milligrams of triclosan that is absorbed by a given area of the sample polymer at 40 C at day intervals for 90 days. The early work on the samples of Figures 16 to 19 was conducted for 40 days with later work extending to 90 days. At 40 days at 40 C, in general, an equilibrium will be reached where the absorption of triclosan and the desorption of triclosan will be in equilibrium. This validates the early work.
A
temperature of 40 C is the typical highest temperature that a dentifrice will experience for an extended period of time. The substance from which the triclosan is absorbed is the Colgate Total White gel dentifrice which has a triclosan content of 0.3%.
The more valuable data is the comparison data. That is, the comparison of the data from polyethylene naphthalate and polytrimethylene polymers and acrylonitrile/methacrylate copolymers with the date high density polyethylene (HDPE), medium density polyethylene (MDPE), amorphous polyethylene terephthalate, and polybutylene terephthalate. HDPE and MDPE are common shoulder and nozzle material. Polyethylene terephthalate, and polybutylene terephthalate are known barrier materials for flavor oils and related substances. Nylons also are known barrier materials for various substances. Acrylonitrile/methacrylate copolymers have triclosan barrier properties that are about 60 times better than polyethylene terephthalate polymers and about 40 times better triclosan barrier properties than polybutylene terephthalate two well known barrier materials. Amorphous polyethylene naphthalate has barrier properties about 4 times better than polyethylene terephthalate with biaxially oriented polyethylene naphthalate having barrier properties of more than 100 times that of polythylene trerphthalate.
[0050] Based on the foregoing data in order to minimize the adsorption of triclosan by the structure of a tube container there should be used a barrier unit, comprised as a three dimensional, film or co-injection molded layer barrier unit of polytrimethylene naphthalate polymer, polyethylene naphthalate polymer or acrylonitrile/methacrylate coploymer. Barrier units comprised of these materials will limit the loss of triclosan in the formulation by the adsorption of the triclosan by the materials of the shoulder/nozzle of the tube. Further a biaxially oriented polyethylene naphthalate and a biaxially oriented polytrimethylene naphthalate have a significantly lower absorption for triclosan than each of these polymers in a non-biaxially oriented version. These polymers and copolymers have a significantly lower absorption for triclosan than the range of other polymers that have been tested as shown in the graphs.

Claims (32)

1. A container for a substance that contains at least one antibacterial compound, the container comprising a lower body portion and an upper shoulder portion, the upper shoulder portion having a shoulder wall comprising an alkene polymer, a barrier unit coupled to an inner surface of the shoulder wall, the barrier unit comprised of a polymeric material having an adsorption for the antibacterial compound of less than about 10 mg/dm2 at 40°C for 90 days.
2. The container as in claim 1 wherein the polymeric material has an absorption for the antibacterial compound of less than about 5 mg/dm2 at 40°C
for 90 days.
3. The container as in claim 1 wherein the polymeric material has an absorption for the antibacterial compound of less than about 1 mg/dm2 at 40°C
for 90 days.
4. The container as in claim 3 wherein the polymeric material is selected from the group consisting of acrylonitrile/methacrylate copolymers, biaxially oriented polyethylene naphthalate polymers, and biaxially oriented polytrimethylene naphthalate polymers.
5. The container as in claim 4 wherein the acrylonitrile/methacrylate copolymers contain about 70% to 80% acrylonitrile and about 20% to 30% methacrylate.
6. The container as in claim 1 wherein the polymeric material is selected from the group consisting of acrylonitrile/methacrylate copolymers, polyethylene naphthalate polymers, and polytrimethylene naphthalate polymers.
7. The container as in claim 6 wherein the acrylonitrile/methacrylate copolymers contain about 70% to 80% acrylonitrile and about 20% to 30% methacrylate.
8. The container as in claim 1 wherein said antibacterial compound contains an aromatic group.
9. The container as in claim 8 wherein said antibacterial compound is triclosan.
10. The container as in claim 9 the polymeric material is selected from the group consisting of acrylonitrile and methacrylate copolymers, polyethylene naphthalate polymers, and polytrimethylene naphthalate polymers.
11. The container as in claim 10 wherein the acrylonitrile and methacrylate polymer contains about 70% to 80% acrylonitrile and about 20% to 30%
methacrylate.
12. The container as in claim 1 wherein the barrier unit is a molded insert having an outer surface with a shape that conforms to a shape of the inner surface of the shoulder wall of the container.
13. The container as in claim 12 the polymeric material is selected from the group consisting of acrylonitrile and methacrylate copolymers, polyethylene naphthalate polymers, and polytrimethylene naphthalate polymers.
14. The container as in claim 13 wherein the acrylonitrile and methacrylate polymer contains about 70% to 80% acrylonitrile and about 20% to 30%
methacrylate.
15. The container as in claim 1 wherein the barrier unit is a film that is applied to the inner surface of the shoulder wall of the container.
16. The container as in claim 15 the polymeric material is selected from the group consisting of acrylonitrile and methacrylate copolymers, polyethylene naphthalate polymers, and polytrimethylene naphthalate polymers.
17. The container as in claim 16 wherein the acrylonitrile and methacrylate polymer contains about 70% to 80% acrylonitrile and about 20% to 30%
methacrylate.
18. The container as in claim 1 wherein the barrier unit is an inner layer on the inner surface of the shoulder wall, the barrier unit being co-injection molded with said shoulder wall.
19. The container as in claim 18 the polymeric material is selected from the group consisting of acrylonitrile and methacrylate copolymers, polyethylene naphthalate polymers, and polytrimethylene naphthalate polymers.
20. The container as in claim 19 wherein the acrylonitrile and methacrylate polymer contains about 70% to 80% acrylonitrile and about 20% to 30%
methacrylate.
21. The container as in claim 1 wherein the substance is a dentifrice containing about 0.3% antibacterial compound.
22. The container as in claim 1 wherein the container is a tube container.
23. The container as in claim 2 wherein the container is a tube container.
24. The container as in claim 3 wherein the container is a tube container.
25. The container as in claim 4 wherein the container is a tube container.
26. The container of claim 1 wherein the barrier unit is located only within the shoulder portion.
27. A container for a substance that contains at least one antibacterial compound, the container comprising a lower body portion and an upper shoulder portion, the upper shoulder portion having a shoulder wall comprising an alkene polymer, a barrier unit coupled to an inner surface of the shoulder wall, the barrier unit comprised of a polymeric material, the polymeric material comprising acrylonitrile and methacrylate copolymers.
28. A container for a substance that contains at least one antibacterial compound, the container comprising a lower body portion and an upper shoulder portion, the upper shoulder portion having a shoulder wall comprising an alkene polymer, a barrier unit coupled to an inner surface of the shoulder wall, the barrier unit comprised of a polymeric material, the polymeric material comprising biaxially oriented polyethylene naphthalate polymers having an adsorption for the antibacterial compound of less than about 10 mg/dm2 at 40°C for 90 days.
29. A container for a substance that contains at least one antibacterial compound, the container comprising a lower body portion and an upper shoulder portion, the upper shoulder portion having a shoulder wall comprising an alkene polymer, a barrier unit coupled to an inner surface of the shoulder wall, the barrier unit comprised of a polymeric material, the polymeric material comprising biaxially oriented polytrimethylene naphthalate polymers having an adsorption for the antibacterial compound of less than about 10 mg/dm2 at 40°C for 90 days.
30. A container for a substance that contains at least one antibacterial compound, the container comprising a lower body portion and an upper shoulder portion, the upper shoulder portion having a shoulder wall comprising an alkene polymer, a barrier unit coupled to an inner surface of the shoulder wall, the barrier unit comprised of a polymeric material, the polymeric material comprising amorphous polyethylene naphthalate polymers having an adsorption for the antibacterial compound of less than about 10 mg/dm2 at 40°C for 90 days.
31. A container for a substance that contains at least one antibacterial compound, the container comprising a lower body portion and an upper shoulder portion, the upper shoulder portion having a shoulder wall comprising an alkene polymer, a barrier unit coupled to an inner surface of the shoulder wall, the barrier unit comprised of a polymeric material, the polymeric material comprising amorphous polytrimethylene naphthalate polymers having an adsorption for the antibacterial compound of less than about 10 mg/dm2 at 40°C for 90 days.
32. The container as in claim 1 wherein the polymeric material is selected from the group consisting of amorphous polyethylene naphthalate polymers and amorphous polytrimethylene naphthalate polymers.
CA2648566A 2006-04-19 2007-04-19 Container for products containing aromatic compounds Expired - Fee Related CA2648566C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US79304206P 2006-04-19 2006-04-19
US60/793,042 2006-04-19
PCT/US2007/066949 WO2007124350A1 (en) 2006-04-19 2007-04-19 Container for products containing aromatic compounds

Publications (2)

Publication Number Publication Date
CA2648566A1 CA2648566A1 (en) 2007-11-01
CA2648566C true CA2648566C (en) 2014-02-18

Family

ID=38441594

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2648566A Expired - Fee Related CA2648566C (en) 2006-04-19 2007-04-19 Container for products containing aromatic compounds

Country Status (16)

Country Link
US (1) US8383215B2 (en)
EP (1) EP2007640B1 (en)
JP (1) JP2009534261A (en)
CN (1) CN101426691B (en)
AT (1) ATE456518T1 (en)
AU (1) AU2007240381B2 (en)
BR (1) BRPI0710158A2 (en)
CA (1) CA2648566C (en)
DE (1) DE602007004584D1 (en)
DK (1) DK2007640T3 (en)
ES (1) ES2337625T3 (en)
HK (1) HK1125611A1 (en)
MY (1) MY146787A (en)
PL (1) PL2007640T3 (en)
RU (1) RU2389665C1 (en)
WO (1) WO2007124350A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101678596B (en) * 2007-03-28 2012-07-04 东洋制罐株式会社 Biaxially stretched blow-molded container and process for producing the same
DE102011055726B4 (en) * 2011-05-11 2015-10-08 Linhardt Gmbh & Co. Kg tube package
CN103619577B (en) * 2011-06-06 2017-02-15 爱索尔包装有限公司 Material composition, laminate tube and method for manufacture thereof
JP6072512B2 (en) * 2012-11-02 2017-02-01 花王株式会社 Dentifrice composition in a container
FR3000035B1 (en) * 2012-12-21 2016-01-08 Albea Services IMPROVED TUBE OPERATING THE PROPERTIES OF THE SKIRT FOR THE TUBE HEAD.
FR3012349B1 (en) * 2013-10-29 2020-07-31 Albea Services TUBE HEAD INCLUDING AN INSERT FORMING A BARRIER
AU2014403800B2 (en) 2014-08-19 2017-10-05 Colgate-Palmolive Company Flavor barrier composition
SI3259197T1 (en) * 2015-11-02 2022-04-29 Kimpai Lamitube Co., Ltd. Shoulder for a tube container made from melt-blended resin and tube container with this shoulder
JP7267671B2 (en) * 2017-04-24 2023-05-02 サンスター株式会社 Liquid composition for long-term storage
CA3015303A1 (en) * 2017-12-19 2019-06-19 Trudeau Corporation 1889 Inc. Food dispensing device
WO2021127680A1 (en) * 2019-12-19 2021-06-24 Colgate-Palmolive Company Valve apparatus and container including the same
DE102020207861A1 (en) 2020-06-25 2021-12-30 Robert Bosch Gesellschaft mit beschränkter Haftung Method for carrying out a secured start sequence of a control unit

Family Cites Families (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3295725A (en) 1962-12-07 1967-01-03 American Can Co Collapsible dispensing container with an impermeable barrier both in its laminated wall and in its headpiece
US3260411A (en) 1964-07-13 1966-07-12 American Can Co Collapsible container structure
US3426102A (en) 1965-08-18 1969-02-04 Standard Oil Co Polymerizates of olefinic nitriles and diene-nitrile rubbers
NL157268C (en) 1968-03-20
US4060179A (en) 1972-05-02 1977-11-29 Colgate-Palmolive Company Collapsible tube structure
US4011968A (en) 1973-08-31 1977-03-15 Colgate-Palmolive Company Collapsible containers
JPS583902B2 (en) 1975-06-27 1983-01-24 カ−ル・メ−ゲルレ packaging tube
JPS5213580A (en) 1975-07-23 1977-02-01 Kureha Chem Ind Co Ltd Preparation of multiply resin laminate
US4185757A (en) 1977-07-08 1980-01-29 Schultz Robert S Collapsible dispensing tube having an anchored barrier member
US4338278A (en) 1977-07-08 1982-07-06 Schultz Robert S Method for making a collapsible dispensing tube having an anchored barrier member
US4265948A (en) 1977-11-07 1981-05-05 Ethyl Corporation Collapsible dispensing tube
US4262819A (en) 1979-08-09 1981-04-21 Ethyl Corporation Toothpaste tube with laminated headpiece
DE3042073C2 (en) 1980-11-07 1982-08-26 Aisa Automation Industrielle S.A., Vouvry tube
CH652966A5 (en) 1981-05-07 1985-12-13 Maegerle Karl Lizenz METHOD FOR PRODUCING A PACKAGING CONTAINER AND TUBE-CONTAINER CONTAINED THEREFORE.
US4493439A (en) 1981-07-20 1985-01-15 William Ledewitz Collapsible dispensing container
US5024354A (en) 1981-07-20 1991-06-18 William Ledewitz Collapsible dispensing container
DE3240225C2 (en) 1982-10-29 1984-08-30 Automation Industrielle S.A., Vouvry Packing room
DE3241977C2 (en) 1982-11-12 1985-11-28 Automation Industrielle S.A., Vouvry Packing room
US4526297A (en) 1983-01-25 1985-07-02 Goodway Tools Corporation Collapsible laminated tube container and method for making it
JPH0624352Y2 (en) 1984-11-09 1994-06-29 大成化工株式会社 Extruded tube with blind lid
US4693395A (en) 1984-12-28 1987-09-15 Colgate-Palmolive Company Ethylene propylene copolymer in a substrate and collapsible dispensing container made therefrom
JPS62238717A (en) 1986-04-09 1987-10-19 Nissei Plastics Ind Co Method of molding tubular container
FR2622542B1 (en) 1987-11-03 1991-01-04 Cebal TUBE FOR DISPENSING A PASTE WITH STRIPES COMPRISING A MONOBLOCK DOUBLE SKIRT HEAD
US5260062A (en) 1988-12-29 1993-11-09 Colgate-Palmolive Company Anti-plaque and anti-tartar dentifrices in plastic pump dispensers
US5234688A (en) 1988-12-29 1993-08-10 Colgate-Palmolive Company Anti-plaque dentifrice packaged in resilient squeezable form maintaining dispensing container
US5035349A (en) 1990-02-26 1991-07-30 Betts Packaging Inc. Multi-component striping paste dispenser
ZA91924B (en) 1990-02-26 1992-10-28 Colgate Palmolive Co Collapsible laminated tube for dentifrice
DE4009656A1 (en) 1990-03-26 1991-10-02 Automation Industrielle Sa Forming collapsible laminar plastic tube - moulding e.g. three-ply top on to suitable plastic tube and forming final shape in additional stages once each stage has stabilised
JP2771024B2 (en) 1990-08-30 1998-07-02 関西チューブ 株式会社 Laminated tube container with improved shoulder barrier
US5203379A (en) 1990-09-12 1993-04-20 Courtaulds Packaging Inc. Headed thermoplastic tube
CH682480A5 (en) 1991-01-21 1993-09-30 Maegerle Karl Lizenz Packaging tube.
FR2679527B1 (en) * 1991-07-25 1993-09-24 Cebal TUBE HEAD IN PLASTIC MATERIAL WITH INTERIOR COATING WITH BARRIER EFFECT AND PART USED FOR SUCH COATING.
JP3315733B2 (en) 1992-09-10 2002-08-19 ライオン株式会社 Oral composition
FR2700727B1 (en) 1993-01-27 1995-03-10 Cebal Method of manufacturing a walled tube containing more than 60% of plastic material and having a skirt and a constricted head, and corresponding tube.
US5386918A (en) 1993-04-22 1995-02-07 Colgate-Palmolive Co. Closure with tamper evidence structure
US5650204A (en) 1993-09-16 1997-07-22 Mitsui Petrochemical Industries, Ltd. Polyester bottle and method of removing adsorbates on the bottle
JP3617732B2 (en) 1996-07-10 2005-02-09 大和製罐株式会社 Retort sterilizable container
US6042906A (en) 1996-08-12 2000-03-28 Toyo Seikan Kaisha, Ltd. Flavor-retaining plastic multi-layer container
AUPO617497A0 (en) * 1997-04-14 1997-05-08 Jacobs, Ian Orde Michael Injection moulding
FR2784657B1 (en) * 1998-10-19 2000-11-17 Cebal MULTI-LAYERED HEAD TUBE AND MANUFACTURING METHOD
US6331331B1 (en) 1999-04-29 2001-12-18 Colgate-Palmolive Company Decorated polyester tube package for aqueous compositions
US6295725B1 (en) * 2000-02-09 2001-10-02 A-1 Security Manufacturing Corp. Capping system and method
ES2254423T3 (en) 2000-05-25 2006-06-16 Crown Packaging Technology, Inc. DISPENSER CLOSURE.
GB2368059B (en) 2000-10-17 2004-05-26 Arista Tubes Ltd Tubular container and method of manufacture thereof
DE60142021D1 (en) 2000-12-27 2010-06-17 Toyo Seikan Kaisha Ltd Container mouthpiece
PL202642B1 (en) 2001-07-11 2009-07-31 Procter & Gamble Multi-chambered tube comprising a flow regulating element for uniform dispensing of fluids
US7044333B2 (en) 2004-01-22 2006-05-16 Church & Dwight Co., Inc. Toothpaste tube

Also Published As

Publication number Publication date
CA2648566A1 (en) 2007-11-01
AU2007240381A1 (en) 2007-11-01
US8383215B2 (en) 2013-02-26
JP2009534261A (en) 2009-09-24
PL2007640T3 (en) 2010-07-30
ES2337625T3 (en) 2010-04-27
US20090294457A1 (en) 2009-12-03
WO2007124350A1 (en) 2007-11-01
MY146787A (en) 2012-09-28
HK1125611A1 (en) 2009-08-14
AU2007240381B2 (en) 2011-01-20
CN101426691B (en) 2011-07-06
CN101426691A (en) 2009-05-06
EP2007640B1 (en) 2010-01-27
RU2389665C1 (en) 2010-05-20
DK2007640T3 (en) 2010-05-10
ATE456518T1 (en) 2010-02-15
EP2007640A1 (en) 2008-12-31
DE602007004584D1 (en) 2010-03-18
BRPI0710158A2 (en) 2011-08-23

Similar Documents

Publication Publication Date Title
CA2648566C (en) Container for products containing aromatic compounds
US4756437A (en) Closure cap with vapor impermeable lamina
EP2943335B1 (en) Layered materials comprising aluminum foil and tubes made therefrom
WO2008042181A1 (en) Wine cork flavor protector
EP3489014B1 (en) Sealant film, multilayer film including same and packaging bag
US10407219B2 (en) Barrier tube shoulders
MX2007001537A (en) A plastic dispensing container having reduced moisture penetration and method for same.
EP2718097A2 (en) Material composition, laminate tube and method for manufacture thereof
EP3603965A1 (en) Oxygen absorptive film, packaging laminated body and packaging body using oxygen absorptive film, and method for processing contents using packaging body
EP3412596A1 (en) Barrier mouth stopper and container with barrier mouth stopper
WO2012151679A1 (en) Mulitlayer plastic tube
EP3174930B1 (en) Flavour barrier composition
MX2008012961A (en) Container for products containing aromatic compounds.
US20110215007A1 (en) Container or molded package with buffering capacity
JP2022015026A (en) Delamination container
EP3482928A1 (en) Laminated material for forming a flexible container, assembly comprising said laminated material and a tube head, and flexible container comprising said assembly and a cap
CA2205631A1 (en) Multilayer film material
KR20140022415A (en) Multilayer packaging structure
CA3221945A1 (en) Sterile dropper tube
JPH1086952A (en) Sealable multi-layered tube container
WO2006063416A1 (en) Film for packaging liquid products or the like
JP2000175736A (en) Container select method and product by select method
KR20060134012A (en) Film for packing liquids or the like and method for manufacturing such a film
JPH1053259A (en) Tube as container having check valve

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed

Effective date: 20190423