CA2639298A1 - Oxygen liquid hydrogen under pressure - Google Patents

Oxygen liquid hydrogen under pressure Download PDF

Info

Publication number
CA2639298A1
CA2639298A1 CA002639298A CA2639298A CA2639298A1 CA 2639298 A1 CA2639298 A1 CA 2639298A1 CA 002639298 A CA002639298 A CA 002639298A CA 2639298 A CA2639298 A CA 2639298A CA 2639298 A1 CA2639298 A1 CA 2639298A1
Authority
CA
Canada
Prior art keywords
hydrogen
oxygen
under pressure
liquid hydrogen
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CA002639298A
Other languages
French (fr)
Inventor
Stephane Labelle
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CA002609018A external-priority patent/CA2609018A1/en
Priority claimed from CA002635646A external-priority patent/CA2635646A1/en
Application filed by Individual filed Critical Individual
Priority to CA002639298A priority Critical patent/CA2639298A1/en
Publication of CA2639298A1 publication Critical patent/CA2639298A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/011Oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/012Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0165Applications for fluid transport or storage on the road
    • F17C2270/0184Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Description

i t T CA 02639298 2008-09-03 OXYGENE LIQUIDE HYDROGENE SOUS PRESSION

Jusqu'à maintenant il y avait quatre obstacles majeurs à l'utilisation des piles à
combustibles utilisant l'hydrogène comme source d'énergie. Premièrement l'espace qu'occupent les réservoirs d'hydrogènes à cause de la faible densité
par mètre cube de celle-ci à temperature ambiante, l'approvisionnement en hydrogène, le coût par kW, et la puissance des piles à combustibles.

Dans le but d'emmagasiner plus d'énergie par mètre cube, d'obtenir un meilleur rendement de l'hydrogène, d'obtenir plus de puissance à partir des piles à
combustibie et même pour les usages ou nous avons besoin de plus de puissance d'accélération ce système pourrait servir pour alimenter un moteur à
explosion où tout autres système à combustion tel une turbine.

Lorsque nous regardons la nouvelle BMW 7-série qui fonctionne à l'hydrogène liquide dans le but d'alimenter un moteur à explosion conventionnel. Malgré la perte de rendement du au choix d'un moteur à explosion, le choix de ce procédé
permet d'obtenir une voiture sportive avec une capacité d'accélération incomparable pour une voiture à hydrogène. Pour réussir à stocker suffisamment de carburant l'hydrogène doit être cryogénisé donc conservé à une température de 20 k et il est nécessaire de laisser l'hydrogène s'évaporer à l'intérieur du réservoir pour conserver cette température et il est presque impossible de créer un système de réfrigération adéquat pour un véhicule automobile. Le problème est que cette température est très près du zéro absolue donc très difficile à
obtenir et impossible à conserver à long terme même en utilisant les techniques les plus avant-gardiste d'isolation thermique.

Si nous choisissons plutôt de garder l'oxygène à l'état liquide à des températures plus élevé entre 90k et 130k il serait possible de profiter d'une plus grande inertie thermique puisqu'il faut environs sept foie plus d'énergie pour évaporer une mote d'oxygène qu'une mole d'hydrogène et que malgré le peut de différence ~
r ~ CA 02639298 2008-09-03 apparente de température entre 100k et 20k il est beaucoup plus facile d'obtenir une température stable à cette température. II est intéressant de constater en regardant sur un diagramme PS de l'hydrogène qu'à 100k et à 20Mpa nous obtenons une densité de plus de 37kg/m3 et en regardant le diagramme de l'oxygène qu'a 90k et 0.1 MPa nous obtenons de l'oxygène liquide avec une marge de sécurité de 65 degré avant d'atteindre la température critique et que le nombre de kJ/mole pour changer de phase liquide à gazeux est de 6,6 fois plus élevé que celle de l'hydrogène. En s'évaporant l'oxygène pourrait servir à
refroidir l'oxygène et l'hydrogène. A ces températures il serait encore difficile de créer un système de refroidissement pouvant garder la température stable à
l'intérieur des deux réservoirs mais beaucoup plus facile que de maintenir une température de 20k.

Ce système pourrait alimenter une pile à combustible qui offre le meilleur rendement, un moteur à explosion ou une turbine. L'avantage d'alimenter en oxygène pure ces trois systèmes est que ceux-ci produise plus de puissance par kg tout en laissant s'échapper aucune pollution à la sortie. II est possible par la suite d'utiliser l'énergie thermique résiduelle pour pré réchauffer l'hydrogène pour produire de l'énergie mécanique à l'aide d'une turbine par la suite. Dans le cas d'une pile à combustible il sera nécessaire de faire bruler les gaz résiduels et d'utiliser cette source de chaleur pour augmenter d'avantage la température de l'hydrogène avant de l'acheminer vers la turbine. Ce qui permettrait d'augmenter le rendement total de l'utilisation de l'hydrogéne plus de kj/kg.

Puisqu'il est possible d'obtenir plus de puissance avec un mélange sous pression d'oxygène pure et d'hydrogène avec une pile à combustible de même grosseur et méme avec un moteur ou une turbine d'une mëme grosseur, il serait facile d'obtenir des système plus performant autant au niveau de la puissance par kg mais aussi plus de puissance par dollars investit.

_i f CA 02639298 2008-09-03 Puisque nous avons une marge de sécurité assez grande au niveau de l'oxygène avant que l'oxygène n'atteigne la température critique. Dans le but d'obtenir un meilleur rendement il serait facile et préférable de laisser la température monter au fur et à mesure que le réservoir se vide afin d'obtenir une pression à la l'intérieur et à la sortie des réservoirs constant.
i t T CA 02639298 2008-09-03 OXYGEN HYDROGEN LIQUID UNDER PRESSURE

Until now there were four major obstacles to the use of batteries fuels using hydrogen as a source of energy. First the space occupied by hydrogen reservoirs because of the low density by cubic meter of it at room temperature, the supply of hydrogen, cost per kW, and the power of fuel cells.

In order to store more energy per cubic meter, to get better hydrogen yield, to get more power from the batteries to combustibie and even for uses where we need more than acceleration power this system could be used to power a motor to explosion where any other combustion system such as a turbine.

When we look at the new BMW 7-series that runs on hydrogen liquid for the purpose of supplying a conventional combustion engine. Despite the loss of efficiency of the choice of an internal combustion engine, the choice of this process allows to get a sports car with an acceleration capability incomparable for a hydrogen car. To successfully store enough of fuel the hydrogen must be cryogenized so kept at a temperature 20 k and it is necessary to let the hydrogen evaporate inside of tank to keep this temperature and it's almost impossible to create a refrigeration system suitable for a motor vehicle. The problem is that this temperature is very close to absolute zero so very difficult to obtain and impossible to conserve in the long run even using the techniques the most avant-garde thermal insulation.

If we choose instead to keep the oxygen in the liquid state at temperatures higher between 90k and 130k it would be possible to enjoy a greater inertia thermal, since it takes about seven liver more energy to evaporate mote of oxygen that a mole of hydrogen and that despite the difference can ~
r ~ CA 02639298 2008-09-03 apparent temperature between 100k and 20k it is much easier get a stable temperature at this temperature. It is interesting to note in looking on a hydrogen PS diagram than at 100k and at 20Mpa we obtain a density of more than 37kg / m3 and looking at the diagram of the oxygen that has 90k and 0.1 MPa we get liquid oxygen with a safety margin of 65 degrees before reaching the critical temperature and that the number of kJ / mole to change from liquid to gaseous phase is 6.6 times more high than that of hydrogen. By evaporating the oxygen could be used to cool the oxygen and hydrogen. At these temperatures it would still be hard to create a cooling system that can keep the temperature stable at inside the two tanks but a lot easier than maintaining a temperature of 20k.

This system could power a fuel cell that offers the best efficiency, an internal combustion engine or a turbine. The advantage of feeding pure oxygen these three systems is that these produce more power by kg while leaving no pollution at the exit. It is possible over there then use the residual heat energy to preheat hydrogen for produce mechanical energy using a turbine later. In the case of a fuel cell it will be necessary to burn the residual gas and to use this heat source to further increase the temperature of hydrogen before transporting it to the turbine. Which would allow increase the total efficiency of the use of hydrogen over kj / kg.

Since it is possible to get more power with a mix under pure oxygen and hydrogen pressure with a similar fuel cell size and same with a motor or a turbine of the same size, it would be easy to get more powerful system as much at the power level per kg but also more power per dollar invests.

_i f CA 02639298 2008-09-03 Since we have a fairly large safety margin at the level of oxygen before the oxygen reaches the critical temperature. In order to to get a better return it would be easy and preferable to leave the temperature rise as the tank empties to obtain a pressure in and out of tanks constant.

CA002639298A 2007-09-28 2008-09-03 Oxygen liquid hydrogen under pressure Withdrawn CA2639298A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA002639298A CA2639298A1 (en) 2007-09-28 2008-09-03 Oxygen liquid hydrogen under pressure

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CA002609018A CA2609018A1 (en) 2007-09-28 2007-09-28 Systeme permettant de mieux exploiter la geothermie haute temperature
CA2607248 2007-10-23
CA2619604 2008-01-22
CA2619374 2008-01-24
CA002635646A CA2635646A1 (en) 2008-06-26 2008-06-26 Exploitation of seabed thermal energy
CA002639298A CA2639298A1 (en) 2007-09-28 2008-09-03 Oxygen liquid hydrogen under pressure

Publications (1)

Publication Number Publication Date
CA2639298A1 true CA2639298A1 (en) 2009-03-28

Family

ID=40475150

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002639298A Withdrawn CA2639298A1 (en) 2007-09-28 2008-09-03 Oxygen liquid hydrogen under pressure

Country Status (1)

Country Link
CA (1) CA2639298A1 (en)

Similar Documents

Publication Publication Date Title
EP2724099B1 (en) Method for liquefying natural gas with a mixture of coolant gas
EP3271635B1 (en) Method for cooling a liquefied gas
EP0655596B1 (en) Process and plant for the cryogenic purification of hydrogen
WO2016075399A2 (en) Device and method for cooling a liquefied gas
EP3732743B1 (en) Energy production assembly coupling a fuel cell and a reversible thermodynamic system
WO2019115120A1 (en) Method for storing and producing energy by means of compressed air with additional energy recovery
CA2639298A1 (en) Oxygen liquid hydrogen under pressure
KR101186290B1 (en) Engine system and engine operating method using brown gas
WO2014020277A1 (en) Device for storing and restoring electrical energy and method for storing and restoring electrical energy using such a device
KR102578402B1 (en) Boil-Off Gas Proceeding System for Liquefied Hydrogen Carrier
KR20200009221A (en) Boil-Off Gas Proceeding Method for Liquefied Hydrogen Carrier
WO2022234176A1 (en) Fuel storage and supply system, method of operating such a system and marine vessel
FR2640322A1 (en) Rocket motor, or combined motor for a space vehicle with an essentially closed auxiliary hydraulic circuit
KR102578403B1 (en) Boil-Off Gas Proceeding System for Liquefied Hydrogen Carrier
FR3111742A1 (en) ENERGY STORAGE AND RECOVERY SYSTEM
EP3724471A1 (en) Improved system for storing and harvesting energy
Al-Baghdadi Combating climate change with hydrogen
WO2024078930A1 (en) Fuel conditioning system for supplying an aircraft turbine engine, and method for supplying a turbine engine
WO2022194837A1 (en) System for the thermal compression of a gas
WO2023152232A1 (en) Heating turbomachine for a fuel-conditioning system configured to supply an aircraft turboshaft engine with fuel from a cryogenic tank
GÜNEŞ HYDROGEN PRODUCTION FROM RENEWABLE ENERGY SOURCES AND ITS STORAGE
FR3117163A1 (en) method for storing and recovering energy comprising a gas turbine for reheating compressed gas during expansion
FR2537206A1 (en) Closed-cycle, heat-energy installation. Application to underwater missiles
WO2022117397A1 (en) System and method for storing and recovering energy using compressed gas with reheating of liquid
FR3097305A1 (en) High efficiency solar hybrid thermodynamic device and hydrogen-oxygen couple producing a plurality of energies

Legal Events

Date Code Title Description
AZWI Withdrawn application