CA2618496C - Method for production of panels - Google Patents

Method for production of panels Download PDF

Info

Publication number
CA2618496C
CA2618496C CA2618496A CA2618496A CA2618496C CA 2618496 C CA2618496 C CA 2618496C CA 2618496 A CA2618496 A CA 2618496A CA 2618496 A CA2618496 A CA 2618496A CA 2618496 C CA2618496 C CA 2618496C
Authority
CA
Canada
Prior art keywords
groove
starting sheet
lower groove
panels
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CA2618496A
Other languages
French (fr)
Other versions
CA2618496A1 (en
Inventor
Johannes Schulte
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102005038975A external-priority patent/DE102005038975B3/en
Application filed by Individual filed Critical Individual
Publication of CA2618496A1 publication Critical patent/CA2618496A1/en
Application granted granted Critical
Publication of CA2618496C publication Critical patent/CA2618496C/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27FDOVETAILED WORK; TENONS; SLOTTING MACHINES FOR WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES
    • B27F1/00Dovetailed work; Tenons; Making tongues or grooves; Groove- and- tongue jointed work; Finger- joints
    • B27F1/02Making tongues or grooves, of indefinite length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27MWORKING OF WOOD NOT PROVIDED FOR IN SUBCLASSES B27B - B27L; MANUFACTURE OF SPECIFIC WOODEN ARTICLES
    • B27M3/00Manufacture or reconditioning of specific semi-finished or finished articles
    • B27M3/04Manufacture or reconditioning of specific semi-finished or finished articles of flooring elements, e.g. parqueting blocks
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F15/00Flooring
    • E04F15/02Flooring or floor layers composed of a number of similar elements
    • E04F15/02038Flooring or floor layers composed of a number of similar elements characterised by tongue and groove connections between neighbouring flooring elements
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F2201/00Joining sheets or plates or panels
    • E04F2201/01Joining sheets, plates or panels with edges in abutting relationship
    • E04F2201/0107Joining sheets, plates or panels with edges in abutting relationship by moving the sheets, plates or panels substantially in their own plane, perpendicular to the abutting edges
    • E04F2201/0115Joining sheets, plates or panels with edges in abutting relationship by moving the sheets, plates or panels substantially in their own plane, perpendicular to the abutting edges with snap action of the edge connectors
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F2201/00Joining sheets or plates or panels
    • E04F2201/01Joining sheets, plates or panels with edges in abutting relationship
    • E04F2201/0153Joining sheets, plates or panels with edges in abutting relationship by rotating the sheets, plates or panels around an axis which is parallel to the abutting edges, possibly combined with a sliding movement

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Architecture (AREA)
  • Wood Science & Technology (AREA)
  • Forests & Forestry (AREA)
  • Manufacturing & Machinery (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Finishing Walls (AREA)
  • Floor Finish (AREA)

Abstract

The invention relates to a method for production of panels for floor, wall or ceiling coverings, with the panels being cut from a large starting sheet and provided on their long sides (11, 12) with locking strips (15, 16). The starting sheet is hereby provided with parallel grooves (4, 5) along the topside and underside thereof, with the upper groove (4) and the lower groove (5) extending in the sheet plane (PE) at an offset in relation to one another at a distance (a), thereby forming a breaking web (6). The starting sheet (1) is then divided along the breaking web (6) such that projecting longitudinal strips remain along the long sides (11, 12) and are used for shaping the locking strips (15, 16).

Description

Method for Production of Panels The invention relates to a method for production of panels for floors, wall or ceiling coverings.

Heretofore, coverings in the form of panels with various surface coatings as well as different decor and geometric configuration are oftentimes used as floor covering as well as wall or ceiling paneling.

Laminate floorings are widely used for example. A laminate floor panel includes a panel sheet of fiber material, mostly of highly compacted fiber board or fiber board of average compaction, with a decorative paper impregnated with resin being applied on its topside. The decorative paper is determinative for the look of the panel. The so-called overlay or the sealing forms a useful layer made of varnish and impregnated with special resin to thereby impart the floor panels the ability to withstand great surface strain. Applied to the underside of the panel sheet is a so-called counteracting layer which provides stable shape and a moisture barrier.
Optionally, an impact sound insulation may further be provided on the underside.
The production of laminate floor panels as well as of panels for wall or ceiling paneling is realized by way of a continuous run-through process which applies on a large starting sheet of highly compacted fiber material or fiber material of average compaction the multiply layer structure with decorative paper, sealing as well as counteracting layer. Subsequently, the sheet is subdivided into panels.
Thereafter, the edges of the panels are profiled to establish locking strips on their long sides and end sides. The locking strips are predominantly configured as groove and tongue on the confronting marginal sides of a panel. When the covering has been installed, the locking strips of neighboring panels engage one another.

Cutting the panels to size from the large starting sheet is implemented by a sawing cut. Thereafter, the edges are finished and profiled, as mentioned, to form the locking strips. The saw cut and the profiling works cause necessarily loss of material. Therefore, it is desired to streamline and optimize the production process.

The invention is based on the object to provide a more efficient method of making panels, which saves material and is cost-efficient.

An essential feature of the invention is the measure to provide the starting sheet on its topside with an upper groove and on its underside with at least one lower groove, with the upper groove and the lower groove extending in parallel offset relationship. The starting sheet is then divided. As a result of the cut pattern of the groove, projecting longitudinal strips remain along the long sides and can be used for formation of the locking strips.

As the partition is implemented in a manner that the required cuts in the form of grooves are carried out in the regions which are trimmed when shaping the locking strips, waste caused by cutting is minimized when dividing the starting sheet.
The need for a continuous saw cut is eliminated in accordance with the invention.
As a consequence, the otherwise typical material loss, which is commensurate to at least the width of saw blade, can be omitted during each dividing step in length direction of the starting sheet. Overall, the process according to the invention results in a better utilization of the starting sheet by up to 8 % depending on the panel width and profile of the locking strips.
The offset between the upper groove and the lower groove may basically correspond to the width of a saw blade so that the grooves meet on confronting cut edges, i.e. virtually run into one another. Longitudinal strips are then formed on the long sides of the panel boards in correspondence to the thickness of a saw blade.

In a particularly advantageous configuration of the basic inventive idea, the upper groove and the lower groove are arranged offset to one another by a distance so as to establish a breaking web between the grooves, and the starting sheet is then divided along the breaking web. Preferably, the partition is carried out in horizontal direction parallel to the fiber material of the starting sheet.

As the individual panel portions are connected by the breaking webs even after providing the grooves, it is possible to transport the starting sheet as a whole and to transfer it to the shaping tool. This is beneficial as far as manufacture is concerned. The starting sheet is divided into individual panels only during or before shaping the longitudinal strips on the long sides.

Basically, different starting sheets with finished surface coat can be used.
Known laminates or parquet as well as starting sheets with a surface coat of linoleum, cork, or a direct varnish as well as with a surface of a textile coating may be worked on with the method according to the invention in order to make panels for floor, wall or ceiling coverings.

In particular when starting sheets with a so-called aggressive surface are involved, i.e. a highly wear-resistant or non-abrasive coating, it may be suitable to trim areas of the surface in the region of the upper groove to be made beforehand. This is realized with a milling tool. The milling tool produces a broached groove and broaches the running surface of the starting sheet. The width of the broached groove is hereby sized to almost reach the respectively finished edge of the panels to be manufactured. The upper groove is then produced in the previously made broached groove. In this way, the milling or cutting tools used for producing the upper groove can reach a significantly longer service life as they have to work only on comparably softer material, for example MDF. This measure also positively affects the precision of the groove being produced. The upper groove may be so configured as to be guided in front of the end face of the later locking strip to be produced in a shaping operation, for example a tongue.

Within the scope of a further advantageous embodiment of the invention, a 1st lower groove and a 2"d lower groove is made on the underside of the starting sheet. This is realized at a horizontal distance to one another.
The arrangement and configuration of the 1 st lower groove and the 2"d lower groove is implemented in dependence on the shape of the longitudinal strips during the following operation. Basically, the 1st lower groove and the 2"d lower groove may be cut in a run-through process in parallel or staggered in time. The introduction of the 1 St lower groove and the 2nd lower groove may be realized before or after partition of the panels. In reality, it is contemplated to first provide the upper groove and the 1St lower groove in the starting sheet, then to divide it, and subsequently to provide the 2"d lower groove before the shaping operation of the longitudinal strips. The inner 2nd lower groove serves in particular as guide groove for a shaping tool by which the longitudinal strips are worked on and the locking strips are produced. Primarily, the use of a so-called double-end profiler is here considered for use.

The 1st lower groove and the 2"d lower groove may be cut at different depth.
This is undertaken in dependence on the shaping operation to be executed and the shape of the locking strips to be produced.
According to further features, the grooves have each a slanted groove base. It is advantageous for the partition procedure when the groove base of the upper groove and the groove base of the lower groove are slanted in the same direction. When the starting sheet is broken along the breaking web, a kind of desired breaking line is realized in the direction of the slants in the groove base.
According to further features, the depth of one groove should correspond to a value which is 0.3 times to 0.6 times the thickness of a starting sheet. In practical tests, the upper and the lower grooves have been slitted by about half the thickness of the starting sheet and subsequently divided. This resulted in very good outcomes. The upper groove and the lower groove may also have different length. Placement and the depth of the grooves are implemented in dependence on the configuration of the locking strips to be produced.

The horizontal distance between the upper groove and the lower groove is dimensioned by a value which is between 0.5 times to 3 times the width of a groove. The distance between the grooves is dimensioned in dependence on the profile to be realized of the locking strips so as to attain a reliable partition along the breaking web.

In accordance with this invention there is provided a method for production of panels for floors, wall or ceiling coverings, with the panels being cut to size from a large starting sheet and provided with locking strips on their long sides, wherein the starting sheet is provided on its topside and on its underside with parallel grooves, with the upper groove and the lower groove extending at offset relationship in the sheet plane and with the starting sheet being divided so that projecting longitudinal strips remain along the long sides which are used for realization of the locking strips, characterized in that the upper groove and the lower groove extend in offset relationship at a distance to each other in the sheet plane, thereby forming a braking web, and the starting sheet is divided along the breaking web.

The invention will now be described with reference to the drawings.
It is shown in:
= 23824-193 Figures 1a to 1c a schematic representation of three different process steps involved in the operation for dividing a starting sheet;

Figure 2 a vertical section of two adjacent panels with illustration of a portion of the long sides;

Figure 3 the top view of a starting sheet;
5a Figures 4a to 4e various working steps showing the process for manufacture of panels from a starting sheet;

Figures 5a to 5g a further exemplary embodiment of the method according to the invention;

Figure 6 a side view of a starting sheet during production of the upper and lower grooves; and Figures 7a and 7b a summarizing illustration of the procedure during production of the grooves.

Figure 1 a shows a portion of a large starting sheet 1. The starting sheet 1 is made of a highly-compacted fiber material or fiber material of average compaction.
Already applied onto the starting sheet 1 is the typical overlay and optionally also the counteracting layer. The starting sheet 1 is then divided in a run-through process first in length direction and then in transverse direction to there produce individual panels.

Dividing the starting sheet 1 in longitudinal direction involves, as shown in Figure 1 b, the provision of parallel grooves 4, 5 in the topside 2 and underside 3 of the starting sheet 1, as viewed in the drawing plane. The upper groove 4 and the lower groove 5 are arranged at offset relationship at a distance a in the horizontal sheet plane PE so as to leave a breaking web 6 between the grooves 4, 5.
Thereafter, the starting sheet 1 is split and divided along the breaking web 6, as shown in Figure 1 c. The emerging panels or panel boards are designated with 7 and 8.
It can be seen that the grooves 4, 5 have each a slanted groove base 9, 10, with the groove base 9 of the upper groove 4 and the groove base 10 of the lower groove 5 being slanted in the same direction. The depth t of the groove 4, 5 corresponds to about half the thickness d of the starting sheet 1. The distance a between the upper groove 4 and the lower groove 5 corresponds to the width b of a groove 4, 5.

In view of the offset cutting pattern of the grooves 4, 5, projecting longitudinal strips 13, 14 remain on the panels or panel boards 7, 8 along the long sides 11, 12 once the starting sheet 1 has been divided. The long sides 11, 12 are profiled in a following processing step and locking strips 15, 16 are carved out from the material using the long sides 13, 14, as shown in Fig. 2. The contours of the locking strips 15, 16 on the confronting long sides 11, 12 complement one another and engage one another when making a covering of neighboring panels.

Figure 2 shows the profile of a panel or panel board 7 and 8 shaded on their long sides 11, 12. The area shown in dashed lines between the panels 7, 8 has been trimmed during shaping of the locking strips 15, 16 after the starting sheet 1 has been divided.

Further shown are an upper saw blade 17 and a lower saw blade 18 for making the upper groove 4 and the lower groove 5, respectively. The upper groove 4 and the lower groove 5 extend parallel and in horizontal sheet plane PE at distance a relative to one another. It can be seen that the grooves 4, 5 are introduced in the area of the starting sheet 1 that has not been shaded, i.e. in an area which is trimmed during production of the locking strips 15, 16. In this way, material can be saved because of the absence of a continuous saw cut which would involve a partition of the starting sheet 1 across its entire thickness d.

It should further be noted that the underside of the panel boards, designated with 3 in Figure 2 analogous to Figure 1 b, forms the facing or topside of a finished panel 7 and 8, respectively.

Figure 3 shows a starting sheet 19 with finished coat and with a length I of 2,100 mm and a width b of 1,300 mm. The starting sheet 1 is divided in longitudinal direction into a total of five panels 20 which are profiled along their long sides 21, 22 and provided with locking strips 23, 24, as is illustrated with reference to Figures 4a to 4e.

The topside 25 of the starting sheet 19 is first provided with broached grooves 27in a run-through process with the aid of milling tools 26. The hard topside 25 of the starting sheet 19 is hereby trimmed in the area of the broached grooves 27.
When viewed together with Figure 7a, it becomes clear that the topside 25 is broached in the area of a broached groove 27 almost up to the finished edge 28 of a finished panel 20.

Subsequently, the topside 25 of the starting sheet 19 is provided with an upper groove 29 and its underside 30 is provided with a lower groove 31. The upper groove 29 is hereby established in the previously produced broached groove 27.
This takes place in the run-through process by means of diamond saw blades 32, 33.

It can be seen that the upper groove 29 and the lower groove 30 extend parallel and in the horizontal sheet plane PE at distance a in relation to one another.
Breaking webs 34 remain between the grooves 29, 30, respectively, so that the starting sheet 19 remains still connected initially and thus can be transported as a unit. The starting sheet 19 is then transferred to a shaping station in which the long sides 21, 22 of the panels 20 are shaped and the locking strips 23, 24 are produced. The starting sheet 19 is hereby divided along the respective breaking webs 34 which define a desired breaking area, as shown in Figures 4c and 4d.
It can be seen that the longitudinal strips 35, 36 remain along the long sides 21, 22 and are worked on by means of a shaping tool so that the locking strips 23, 24 are produced, using the material of the longitudinal strips 35, 36, as can be seen in Figure 4e.

Also in the process for the production of panels, as described with reference to Figures 5a to 5e and Figure 6, the topside 37 of a starting sheet 38 is first provided with a broached groove 39 and areas of the topside 37 are trimmed. An upper groove 40 is provided within the broached groove 39. Parallel thereto, a 1St t lower groove 42 is produced on the underside 41 of the starting sheet 38.

The upper groove 40 and the 1St lower groove 42 extend at a distance a in relation to one another and are still connected in this process state according to Figure 5d by a breaking web 43. In the next step (Figure 5e), the starting sheet 38 is divided along the breaking webs 43 so that individual panels 44 are created that have long sides 45, 46 with projecting longitudinal strips 47, 48.

Before the longitudinal strip 47 of a panel 44 is shaped, the underside 41 of the panel is provided with a 2nd lower groove 49. The 2nd lower groove 49 extends at a horizontal distance al to the 1St lower groove 42 so that a vertical web 50 is realized between 1St lower groove 42 and 2"d lower groove 49. The 1St lower groove 42 is slightly cut deeper than the 2nd lower groove 49.

The longitudinal strips 47 and 48 are then shaped so as to form locking strips 51, 52 on the long sides 45, 46 of the panels 44.

The 2nd lower groove 49 forms a guide groove for a shaping tool, a so-called double-end profiler, during the shaping process. In addition, the 2"d lower groove 49 is used to produce an undercut on the locking strip 51 to form a locking recess 53 for a terminal locking web 54 on the corresponding bottom-side latching tab 55 of the locking strip 52.

The dashed lines shown in Figures 5b to 5g are intended as aid to illustrate the position or configuration of the longitudinal strips 47, 48 in relation to the later locking strips 51, 52.

Figures 6 as well as 7a and 7b show an overview of the position of the milling and sawing tools in relation to the locking strips 51, 52 formed on the finished panels 44.

The travel direction of the starting sheet 38 through the processing station for producing the broached groove 39 as well as the upper groove 40 and the lower grooves 42, 49 is labeled by the arrow LR in Figure 6.

Looking at Figure 7a and Figure 5b, it becomes clear that during production of the broached groove 39 the topside 37 of the starting sheet 38 is broached by means of the milling tool 56 almost up to the finished edge 28 of the panel 44. The upper groove 40 is produced in the broached groove 39 by means of the upper saw blade 57, with the saw blade 57 cutting hereby directly in front of the end surface 58 of the tongue 59 to be realized later on the locking strip 51. The underside 41 of the starting sheet 38 is worked on by both saw blades 60 and for producing the 1 st lower groove 42 and the 2nd lower groove 49.

Further shown in Figure 7b is the imaginary desired breaking line, labeled with SL
and extending along the breaking web 43 which is formed between the upper groove 40 and the 1St lower groove 42, as shown in Figure 5c.

List of reference Signs:

1 - starting sheet 2 - topside of 1 3 - underside of 1 4 - groove 5- groove 6 - breaking web 7 - panel 8 - panel 9 - groove base 10- groove base 11 - long side 12- long side 13 - longitudinal strip 14 - longitudinal strip 15 - locking strip 16 - locking strip 17- saw blade 18 - saw blade 19- starting sheet 20 - panel 21 - long side 22 - long side 23 - locking strip 24 - locking strip 25- topside of 19 26 - milling tool 27 - broached groove 28 - finished edge 29- upper groove 30- underside of 19 31 - lower groove 32 - diamond saw blade 33 - diamond saw blade 34 - breaking web 35 - longitudinal strip 36 - longitudinal strip 37 - topside of 38 38 - starting sheet 39 - broached groove 40- upper groove 41 - underside of 38 42 - 1St lower groove 43 - breaking web 44 - panel 45 - long side 46 - long side 47 - longitudinal strip 48 - longitudinal strip 49 - 2nd lower groove 50 - vertical web 51 - locking strip 52 - locking strip 53 - locking recess 54 - locking web 55 - latching tab 56 - milling tool 57 - saw blade 58 - end surface 59 - tongue 60 - saw blade 61 - saw blade PE - sheet plane a - distance al - distance t- depth of 4, 5 b- width of 4, 5 d - thickness of 1 LR - travel direction SL - desired breaking line

Claims (8)

Claims
1. Method for production of panels for floors, wall or ceiling coverings, with the panels being cut to size from a large starting sheet and provided with locking strips on their long sides, wherein the starting sheet (1, 19, 38) is provided on its topside (2, 25, 37) and on its underside (3, 30, 41) with parallel grooves (4, 5; 29, 31; 40, 42), with the upper groove (4, 29, 40) and the lower groove (5, 31, 42) extending at offset relationship in the sheet plane (PE) and with the starting sheet (1, 19, 38) being divided so that projecting longitudinal strips (13, 14; 35, 36; 47, 48) remain along the long sides (11, 12; 21, 22;
46, 47) which are used for realization of the locking strips (15, 16; 23, 24; 51, 52), characterized in that the upper groove (4, 29, 40) and the lower groove (5, 31, 42) extend in offset relationship at a distance (a) to each other in the sheet plane (PE), thereby forming a breaking web (6, 34, 43), and the starting sheet (1, 19, 38) is divided along the breaking web (6, 34, 43).
2. Method according to claim 1, characterized in that the upper groove (4, 29, 40) is produced in a previously created broached groove (27, 39) on the topside (25, 37) of the starting sheet (1, 19, 38).
3. Method according to claim 1 or 2, characterized in that a 1st lower groove (42) and a 2nd lower groove (49) are produced at horizontal distance (a1) on the underside (41) of the starting sheet (38).
4. Method according to claim 3, characterized in that the 1st lower groove (42) and the 2nd lower groove (49) are cut with different depth.
5. Method according to one of the claims 1 to 4, characterized in that the grooves (4, 5) have a slanted groove base (9, 10).
6. Method according to claim 5, characterized in that the groove base (9) of the upper groove (4) and the groove base (10) of the lower groove (5) are slanted in the same direction.
7. Method according to at least one of the claims 1 to 6, characterized in that the depth (t) of a groove (4, 5) corresponds to a value which is 0.4-0.6 times the thickness d) of the starting sheet (1).
8. Method according to at least one of the claims 1 to 7, characterized in that the horizontal distance (a) between the upper groove (4) and the 1st lower groove (5) is measured between 0.5 - 3 times the width (b) of a groove.
CA2618496A 2005-08-16 2006-08-01 Method for production of panels Active CA2618496C (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE102005038975A DE102005038975B3 (en) 2005-08-16 2005-08-16 Panel production process for floor, wall or ceiling panels has initial board with parallel grooves in upper and lower surfaces
DE102005038975.9 2005-08-16
EP05022574.7 2005-10-17
EP05022574A EP1754581B1 (en) 2005-08-16 2005-10-17 Method for manufacturing panels
PCT/EP2006/007604 WO2007019957A1 (en) 2005-08-16 2006-08-01 Method for production of panels

Publications (2)

Publication Number Publication Date
CA2618496A1 CA2618496A1 (en) 2007-02-22
CA2618496C true CA2618496C (en) 2010-02-09

Family

ID=37092603

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2618496A Active CA2618496C (en) 2005-08-16 2006-08-01 Method for production of panels

Country Status (2)

Country Link
CA (1) CA2618496C (en)
WO (1) WO2007019957A1 (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE467015T1 (en) 2002-04-03 2010-05-15 Vaelinge Innovation Ab FLOOR PANEL WITH INTEGRATED CONNECTING MEANS AND METHOD FOR THE PRODUCTION THEREOF
US7841144B2 (en) 2005-03-30 2010-11-30 Valinge Innovation Ab Mechanical locking system for panels and method of installing same
SE530653C2 (en) 2006-01-12 2008-07-29 Vaelinge Innovation Ab Moisture-proof floor board and floor with an elastic surface layer including a decorative groove
SE533410C2 (en) 2006-07-11 2010-09-14 Vaelinge Innovation Ab Floor panels with mechanical locking systems with a flexible and slidable tongue as well as heavy therefore
US8689512B2 (en) 2006-11-15 2014-04-08 Valinge Innovation Ab Mechanical locking of floor panels with vertical folding
SE531111C2 (en) 2006-12-08 2008-12-23 Vaelinge Innovation Ab Mechanical locking of floor panels
BE1018494A3 (en) * 2007-11-28 2011-02-01 Flooring Ind Ltd Sarl PROFILE FOR FINISHING A FLOOR COATING AND SET OF PARTS FOR SUCH PROFILE.
BR112012001968B1 (en) 2009-07-31 2021-09-28 Välinge Innovation AB METHOD OF PRODUCTION OF MECHANICAL LOCKING SYSTEMS ON A FLOOR PANEL
RU2534578C2 (en) 2009-07-31 2014-11-27 Велинге Инновейшн Аб Methods and systems for trimming of construction board edges
BR212012016569Y1 (en) 2010-01-12 2020-05-19 Vaelinge Innovation Ab set of floor panels that are mechanically connectable to each other along a pair of adjacent edges
CA2786680C (en) 2010-02-04 2018-06-12 Vaelinge Innovation Ab Mechanical locking system for floor panels and a tongue therefore
UA114715C2 (en) 2011-07-05 2017-07-25 Сералок Інновейшн Аб Mechanical locking of floor panels with a glued tongue
US9725912B2 (en) 2011-07-11 2017-08-08 Ceraloc Innovation Ab Mechanical locking system for floor panels
US8650826B2 (en) 2011-07-19 2014-02-18 Valinge Flooring Technology Ab Mechanical locking system for floor panels
US8763340B2 (en) 2011-08-15 2014-07-01 Valinge Flooring Technology Ab Mechanical locking system for floor panels
US8857126B2 (en) 2011-08-15 2014-10-14 Valinge Flooring Technology Ab Mechanical locking system for floor panels
PL2861391T3 (en) 2012-06-19 2019-07-31 Välinge Innovation AB A method for dividing a board into a first panel and a second panel, a method of forming a mechanical locking system for locking of a first and a second panel, and building panels
LT2923012T (en) 2012-11-22 2019-11-11 Ceraloc Innovation Ab Mechanical locking system for floor panels
MX367290B (en) 2013-06-27 2019-08-13 Vaelinge Innovation Ab Building panel with a mechanical locking system.
EP3019677A4 (en) 2013-07-09 2017-03-29 Ceraloc Innovation AB Mechanical locking system for floor panels
CN105658883B (en) 2013-10-25 2019-07-26 塞拉洛克创新股份有限公司 Mechanical locking system for floor panel
EP3146126B1 (en) 2014-05-14 2019-12-18 Välinge Innovation AB Set of two idencital panels with a mechanical locking system comprising a flexible tongue
US10246883B2 (en) 2014-05-14 2019-04-02 Valinge Innovation Ab Building panel with a mechanical locking system
EP3224427B1 (en) 2014-11-27 2019-09-11 Välinge Innovation AB Set of essentially idencial floor panels with mechanical locking system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1307424B1 (en) * 1999-04-29 2001-11-06 Costa S P A A METHOD FOR PROFILING STRIPS FOR PARQUET AND SQUARING MACHINE SUITABLE TO CREATE SUCH METHOD.
ATE467015T1 (en) * 2002-04-03 2010-05-15 Vaelinge Innovation Ab FLOOR PANEL WITH INTEGRATED CONNECTING MEANS AND METHOD FOR THE PRODUCTION THEREOF
NZ542034A (en) * 2003-02-24 2007-04-27 Valinge Innovation Ab Lock together floorboards with fibre matt surface

Also Published As

Publication number Publication date
CA2618496A1 (en) 2007-02-22
WO2007019957A1 (en) 2007-02-22

Similar Documents

Publication Publication Date Title
CA2618496C (en) Method for production of panels
US8726511B2 (en) Method for production of panels
US9758972B2 (en) Mechanical locking system for floor panels
EP1890853B1 (en) Method for manufacturing floor panels
JP4926983B2 (en) Building panel with compression edge
EP1989372B1 (en) Finishing profile for a floor covering and methods for manufacturing such finishing profile
US4188762A (en) Triple lap hardboard siding
CA2587378A1 (en) Panel production method
US8268110B2 (en) Method and apparatus for floor planks
CN113490582A (en) Cutting device for a continuous milling machine and method for manufacturing panels
CN101688399A (en) Method for processing lock catch of lock catch floor
CN112752658A (en) Method for producing a panel from a sheet, press plate, method for producing a sheet and sheet
EP1659234B1 (en) Profiled strip
CN212562327U (en) A scribble dress board installation device for public rental room
JP2000169263A (en) Surface processed light-weight cellular concrete panel
JP2005336839A (en) Wall face material and its manufacturing method

Legal Events

Date Code Title Description
EEER Examination request