CA2614414A1 - Ngl recovery methods and configurations - Google Patents
Ngl recovery methods and configurations Download PDFInfo
- Publication number
- CA2614414A1 CA2614414A1 CA002614414A CA2614414A CA2614414A1 CA 2614414 A1 CA2614414 A1 CA 2614414A1 CA 002614414 A CA002614414 A CA 002614414A CA 2614414 A CA2614414 A CA 2614414A CA 2614414 A1 CA2614414 A1 CA 2614414A1
- Authority
- CA
- Canada
- Prior art keywords
- column
- feed gas
- temperature
- stream
- plant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/0204—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
- F25J3/0209—Natural gas or substitute natural gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/0228—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
- F25J3/0233—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 1 carbon atom or more
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/0228—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
- F25J3/0238—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 2 carbon atoms or more
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/0228—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
- F25J3/0242—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 3 carbon atoms or more
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/02—Processes or apparatus using separation by rectification in a single pressure main column system
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/04—Processes or apparatus using separation by rectification in a dual pressure main column system
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/74—Refluxing the column with at least a part of the partially condensed overhead gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/76—Refluxing the column with condensed overhead gas being cycled in a quasi-closed loop refrigeration cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/80—Processes or apparatus using separation by rectification using integrated mass and heat exchange, i.e. non-adiabatic rectification in a reflux exchanger or dephlegmator
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/90—Details relating to column internals, e.g. structured packing, gas or liquid distribution
- F25J2200/94—Details relating to the withdrawal point
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2205/00—Processes or apparatus using other separation and/or other processing means
- F25J2205/02—Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
- F25J2205/04—Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum in the feed line, i.e. upstream of the fractionation step
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2210/00—Processes characterised by the type or other details of the feed stream
- F25J2210/06—Splitting of the feed stream, e.g. for treating or cooling in different ways
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2215/00—Processes characterised by the type or other details of the product stream
- F25J2215/62—Ethane or ethylene
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2220/00—Processes or apparatus involving steps for the removal of impurities
- F25J2220/60—Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
- F25J2220/66—Separating acid gases, e.g. CO2, SO2, H2S or RSH
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2230/00—Processes or apparatus involving steps for increasing the pressure of gaseous process streams
- F25J2230/08—Cold compressor, i.e. suction of the gas at cryogenic temperature and generally without afterstage-cooler
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2230/00—Processes or apparatus involving steps for increasing the pressure of gaseous process streams
- F25J2230/60—Processes or apparatus involving steps for increasing the pressure of gaseous process streams the fluid being hydrocarbons or a mixture of hydrocarbons
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2240/00—Processes or apparatus involving steps for expanding of process streams
- F25J2240/02—Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2245/00—Processes or apparatus involving steps for recycling of process streams
- F25J2245/02—Recycle of a stream in general, e.g. a by-pass stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2260/00—Coupling of processes or apparatus to other units; Integrated schemes
- F25J2260/02—Integration in an installation for exchanging heat, e.g. for waste heat recovery
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2270/00—Refrigeration techniques used
- F25J2270/12—External refrigeration with liquid vaporising loop
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2270/00—Refrigeration techniques used
- F25J2270/60—Closed external refrigeration cycle with single component refrigerant [SCR], e.g. C1-, C2- or C3-hydrocarbons
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2280/00—Control of the process or apparatus
- F25J2280/02—Control in general, load changes, different modes ("runs"), measurements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2290/00—Other details not covered by groups F25J2200/00 - F25J2280/00
- F25J2290/40—Vertical layout or arrangement of cold equipments within in the cold box, e.g. columns, condensers, heat exchangers etc.
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02C—CAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
- Y02C20/00—Capture or disposal of greenhouse gases
- Y02C20/40—Capture or disposal of greenhouse gases of CO2
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Separation By Low-Temperature Treatments (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Extraction Or Liquid Replacement (AREA)
Abstract
Contemplated plants and methods for NGL recovery from feed gases having a carbon dioxide content equal or greater than about 2% employ temperature control configurations that allow high-level and flexible recovery of ethane and heavier components while avoiding freezing of the carbon dioxide in the process. Where the feed gas has a significant fraction of C3+ components and moderate carbon dioxide content, a single column configuration with an intermediate reflux condenser may be used, while two-column configurations may be used for feed gases with high carbon dioxide content and relatively low C3+
component concentration.
component concentration.
Claims (20)
1. A method of operating a plant for NGL recovery from a feed gas, comprising:
separating the feed gas in a refluxed column to thereby produce a residue gas, and using a portion of The residue gas after cooling as a first reflux;
expanding a portion of the feed gas upstream of the column to thereby form a second reflux; and controlling temperature of the column by using at least one of (1) a control circuit that is configured to control a temperature of an expander discharge stream that is fed to the column in response to a temperature in the column, and (2) an intermediate reflux condenser disposed between an upper section and a lower section of the column that maintains temperature of the lower section above a temperature sufficient to prevent carbon dioxide freezing.
separating the feed gas in a refluxed column to thereby produce a residue gas, and using a portion of The residue gas after cooling as a first reflux;
expanding a portion of the feed gas upstream of the column to thereby form a second reflux; and controlling temperature of the column by using at least one of (1) a control circuit that is configured to control a temperature of an expander discharge stream that is fed to the column in response to a temperature in the column, and (2) an intermediate reflux condenser disposed between an upper section and a lower section of the column that maintains temperature of the lower section above a temperature sufficient to prevent carbon dioxide freezing.
2. The method of claim 1 wherein the feed gas comprises at least 2% carbon dioxide, and wherein the column is operated such that at least 90% of ethane is recovered from the feed gas.
3. The method of claim 1 wherein the step of controlling temperature of the column is performed using the intermediate reflux condenser, and wherein the upper section of the column generates a liquid product that is used is cool the feed gas.
4. The method of claim 1 further comprising a step of cooling the feed gas and separating the cooled feed gas separator into a vapor portion and a liquid portion, wherein a portion of the vapor is further cooled and expanded to form the second reflux.
5. The method of claim 1 wherein step of controlling temperature of the column is performed using the control circuit, and wherein the column is a demethanizer that produces a bottom product.
6. The method of claim 5 wherein the bottom product is fed to a second column that is operated at a lower pressure, and that produces a natural gas liquids bottom product and an ethane overhead product.
7. The method of claim 6 wherein at least part of the ethane overhead product is compressed and routed back to the demethanizer.
8. The method of claim 1 further comprising a step of splitting the feed gas into three streams, wherein the first stream is cooled to a first temperature before entering the column, wherein the second stream is cooled and expanded in a turbo expander before entering the column at a second temperature, and wherein the third stream bypasses the feed exchanger and is used for temperature control by the control circuit.
9. A plant comprising:
a column having an intermediate reflux condenser that is configured to operate at a temperature of between about -20 °F and about -40 °F and that is located between a fractionation section and a rectification section of the column, and wherein the column is further configured to receive a first and a second reflux stream and to produce an overhead product;
a circuit coupled to the column such that a liquid stream is fed from the fractionation section to the rectification section via a heat exchanger that is configured such that the liquid stream is heated in the heat exchanger; and a recycle circuit that is configured to provide a portion of the overhead product as the first reflux stream to the column.
a column having an intermediate reflux condenser that is configured to operate at a temperature of between about -20 °F and about -40 °F and that is located between a fractionation section and a rectification section of the column, and wherein the column is further configured to receive a first and a second reflux stream and to produce an overhead product;
a circuit coupled to the column such that a liquid stream is fed from the fractionation section to the rectification section via a heat exchanger that is configured such that the liquid stream is heated in the heat exchanger; and a recycle circuit that is configured to provide a portion of the overhead product as the first reflux stream to the column.
10. The plant of claim 9 wherein the heat exchanger is a feed gas exchanger, and wherein the feed gas exchanger is configured to heat the liquid stream to a temperature that is suitable for at least partial removal of methane and ethane from C3+
components in the rectification section.
components in the rectification section.
11. The plant of claim 10 wherein the feed gas exchanger is further configured to cool the portion of the overhead product.
12. The plant of claim 9 further comprising a second heat exchanger that is configured to cool a vapor portion of a feed gas using refrigeration cold of the overhead product to thereby produce a cooled vapor portion.
13. The plant of claim 12 further comprising an expansion device that is configured to reduce a temperature of the cooled vapor portion to thereby form the second reflux stream.
14. The plant of claim 9 wherein the column is further configured to provide an ethane product stream and a natural gas liquids product stream.
15. A plant comprising:
a first column configured to receive a first and a second reflux stream and further configured to receive an expanded feed gas stream;
a temperature control unit thermally coupled to the first column and configured to determine a temperature in the first column;
a heat exchanger that is configured to cool a first and a second portion of a feed gas to thereby form the second reflux stream and a cooled second portion of the feed gas, respectively;
a bypass valve configured to control flow volume of a third portion of the feed gas to the cooled second portion of the feed gas; and a control system that is configured to adjust the flow volume of the third portion of the feed gas as a function of the temperature in the first column.
a first column configured to receive a first and a second reflux stream and further configured to receive an expanded feed gas stream;
a temperature control unit thermally coupled to the first column and configured to determine a temperature in the first column;
a heat exchanger that is configured to cool a first and a second portion of a feed gas to thereby form the second reflux stream and a cooled second portion of the feed gas, respectively;
a bypass valve configured to control flow volume of a third portion of the feed gas to the cooled second portion of the feed gas; and a control system that is configured to adjust the flow volume of the third portion of the feed gas as a function of the temperature in the first column.
16. The plant of claim 15 further coinprising a recycle circuit that is configured to provide a portion of an overhead product of the first column back to the first column as the first reflux stream.
17. The plant of claim 15 further comprising a second column and an expansion device, wherein the first column is configured to produce a bottom product, wherein the expansion device is configured to receive expanded bottom product, and wherein the second column is configured to produce a natural gas liquids bottom product and an ethane overhead product.
18. The plant of claim 17 wherein the expansion device is configured to reduce pressure of the first column bottom product by at least 50 psi.
19. The plant of claim 17 further comprising a circuit that provides at least a portion of the ethane overhead product back to the first column.
20. The plant of claim 15 further comprising a turbo expander that is configured to receive the cooled second portion and the third portion of the feed gas, and that is further configured to provide expanded feed gas to the first column.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US69745805P | 2005-07-07 | 2005-07-07 | |
US60/697,458 | 2005-07-07 | ||
PCT/US2006/004346 WO2007008254A1 (en) | 2005-07-07 | 2006-02-07 | Ngl recovery methods and configurations |
Publications (2)
Publication Number | Publication Date |
---|---|
CA2614414A1 true CA2614414A1 (en) | 2007-01-18 |
CA2614414C CA2614414C (en) | 2012-03-27 |
Family
ID=37637452
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA2614414A Expired - Fee Related CA2614414C (en) | 2005-07-07 | 2006-02-07 | Ngl recovery methods and configurations |
Country Status (8)
Country | Link |
---|---|
US (1) | US20100011810A1 (en) |
EP (1) | EP1904800A1 (en) |
AU (1) | AU2006269696B2 (en) |
CA (1) | CA2614414C (en) |
EA (1) | EA014452B1 (en) |
MX (1) | MX2007015603A (en) |
PE (1) | PE20070408A1 (en) |
WO (1) | WO2007008254A1 (en) |
Families Citing this family (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2662803C (en) | 2006-06-27 | 2012-09-18 | Fluor Technologies Corporation | Ethane recovery methods and configurations |
WO2009103715A2 (en) * | 2008-02-20 | 2009-08-27 | Shell Internationale Research Maatschappij B.V. | Method and apparatus for cooling and separating a hydrocarbon stream |
US10451344B2 (en) | 2010-12-23 | 2019-10-22 | Fluor Technologies Corporation | Ethane recovery and ethane rejection methods and configurations |
FR2992972B1 (en) * | 2012-07-05 | 2014-08-15 | Technip France | PROCESS FOR PRODUCING NATURAL GAS PROCESSED, CUTTING RICH IN C3 + HYDROCARBONS, AND POSSIBLY A CURRENT RICH IN ETHANE, AND ASSOCIATED PLANT |
WO2014018045A1 (en) * | 2012-07-26 | 2014-01-30 | Fluor Technologies Corporation | Configurations and methods for deep feed gas hydrocarbon dewpointing |
CN104736504A (en) * | 2012-07-26 | 2015-06-24 | 氟石科技公司 | Configurations and methods for deep feed gas hydrocarbon dewpointing |
DE102012017486A1 (en) * | 2012-09-04 | 2014-03-06 | Linde Aktiengesellschaft | Process for separating C2 + hydrocarbons from a hydrocarbon-rich fraction |
US20140075987A1 (en) * | 2012-09-20 | 2014-03-20 | Fluor Technologies Corporation | Configurations and methods for ngl recovery for high nitrogen content feed gases |
BR112016007567A2 (en) * | 2013-10-09 | 2017-08-01 | Lummus Technology Inc | addition of split feed in open cooling lpg recovery with isopression |
MX2017003628A (en) | 2014-09-30 | 2017-07-13 | Dow Global Technologies Llc | Process for increasing ethylene and propylene yield from a propylene plant. |
CN104792116B (en) * | 2014-11-25 | 2017-08-08 | 中国寰球工程公司 | A kind of natural gas reclaims the system and technique of ethane and ethane above lighter hydrocarbons |
FR3032890A1 (en) | 2015-02-20 | 2016-08-26 | Air Liquide | METHOD AND APPARATUS FOR SUBAMBIAN TEMPERATURE SEPARATION |
MX2017008683A (en) * | 2015-02-27 | 2017-10-11 | Exxonmobil Upstream Res Co | Reducing refrigeration and dehydration load for a feed stream entering a cryogenic distillation process. |
FR3033257A1 (en) | 2015-03-05 | 2016-09-09 | Air Liquide | METHOD AND APPARATUS FOR SEPARATING A GAS MIXTURE WITH SUBAMBIAN TEMPERATURE |
FR3033258A1 (en) * | 2015-03-05 | 2016-09-09 | Air Liquide | METHOD AND APPARATUS FOR SUBAMBIAN TEMPERATURE SEPARATION |
FR3033260A1 (en) * | 2015-03-06 | 2016-09-09 | Air Liquide | METHOD AND APPARATUS FOR SUBAMBIAN TEMPERATURE SEPARATION |
TWI707115B (en) * | 2015-04-10 | 2020-10-11 | 美商圖表能源與化學有限公司 | Mixed refrigerant liquefaction system and method |
US10619918B2 (en) | 2015-04-10 | 2020-04-14 | Chart Energy & Chemicals, Inc. | System and method for removing freezing components from a feed gas |
DE102015009254A1 (en) * | 2015-07-16 | 2017-01-19 | Linde Aktiengesellschaft | Process for separating ethane from a hydrocarbon-rich gas fraction |
US10006701B2 (en) | 2016-01-05 | 2018-06-26 | Fluor Technologies Corporation | Ethane recovery or ethane rejection operation |
US10330382B2 (en) | 2016-05-18 | 2019-06-25 | Fluor Technologies Corporation | Systems and methods for LNG production with propane and ethane recovery |
US11725879B2 (en) | 2016-09-09 | 2023-08-15 | Fluor Technologies Corporation | Methods and configuration for retrofitting NGL plant for high ethane recovery |
EP3382306A1 (en) * | 2017-03-31 | 2018-10-03 | Linde Aktiengesellschaft | Overhead recycle process apparatus and method of overhead recycle processing of hydrocarbons |
BR112019023852A2 (en) | 2017-05-24 | 2020-06-02 | Basf Corporation | MIXED ADSORBENT / DISSECTANT BED, MIXED BED, WATER REMOVAL SYSTEM AND WATER REMOVAL METHOD |
EP3694959A4 (en) * | 2017-09-06 | 2021-09-08 | Linde Engineering North America Inc. | Methods for providing refrigeration in natural gas liquids recovery plants |
CA3077409A1 (en) | 2017-10-20 | 2019-04-25 | Fluor Technologies Corporation | Phase implementation of natural gas liquid recovery plants |
CN108507277A (en) * | 2018-04-28 | 2018-09-07 | 中国石油工程建设有限公司 | A kind of the cold comprehensive utilization device and method of natural gas ethane recovery |
US12098882B2 (en) | 2018-12-13 | 2024-09-24 | Fluor Technologies Corporation | Heavy hydrocarbon and BTEX removal from pipeline gas to LNG liquefaction |
RU2757211C1 (en) * | 2020-11-27 | 2021-10-12 | Андрей Владиславович Курочкин | Integrated gas treatment plant with lng production and increased extraction of gas condensate (options) |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3212997A (en) * | 1961-03-13 | 1965-10-19 | Phillips Petroleum Co | Automatic control in fractional distillation |
US4687499A (en) * | 1986-04-01 | 1987-08-18 | Mcdermott International Inc. | Process for separating hydrocarbon gas constituents |
US4854955A (en) * | 1988-05-17 | 1989-08-08 | Elcor Corporation | Hydrocarbon gas processing |
US5335504A (en) * | 1993-03-05 | 1994-08-09 | The M. W. Kellogg Company | Carbon dioxide recovery process |
US5345772A (en) * | 1993-05-14 | 1994-09-13 | Process Systems International, Inc. | Single column distillative separation employing bottom additives |
US5568737A (en) * | 1994-11-10 | 1996-10-29 | Elcor Corporation | Hydrocarbon gas processing |
US5566554A (en) * | 1995-06-07 | 1996-10-22 | Kti Fish, Inc. | Hydrocarbon gas separation process |
RU2144556C1 (en) * | 1995-06-07 | 2000-01-20 | Элкор Корпорейшн | Method of gas flow separation and device for its embodiment |
US5953935A (en) * | 1997-11-04 | 1999-09-21 | Mcdermott Engineers & Constructors (Canada) Ltd. | Ethane recovery process |
US5890377A (en) * | 1997-11-04 | 1999-04-06 | Abb Randall Corporation | Hydrocarbon gas separation process |
US5992175A (en) * | 1997-12-08 | 1999-11-30 | Ipsi Llc | Enhanced NGL recovery processes |
US6182469B1 (en) * | 1998-12-01 | 2001-02-06 | Elcor Corporation | Hydrocarbon gas processing |
US6116050A (en) * | 1998-12-04 | 2000-09-12 | Ipsi Llc | Propane recovery methods |
US6244070B1 (en) * | 1999-12-03 | 2001-06-12 | Ipsi, L.L.C. | Lean reflux process for high recovery of ethane and heavier components |
US6354105B1 (en) * | 1999-12-03 | 2002-03-12 | Ipsi L.L.C. | Split feed compression process for high recovery of ethane and heavier components |
GB0000327D0 (en) * | 2000-01-07 | 2000-03-01 | Costain Oil Gas & Process Limi | Hydrocarbon separation process and apparatus |
US6453698B2 (en) * | 2000-04-13 | 2002-09-24 | Ipsi Llc | Flexible reflux process for high NGL recovery |
FR2817766B1 (en) * | 2000-12-13 | 2003-08-15 | Technip Cie | PROCESS AND PLANT FOR SEPARATING A GAS MIXTURE CONTAINING METHANE BY DISTILLATION, AND GASES OBTAINED BY THIS SEPARATION |
US6516631B1 (en) * | 2001-08-10 | 2003-02-11 | Mark A. Trebble | Hydrocarbon gas processing |
FR2831656B1 (en) * | 2001-10-31 | 2004-04-30 | Technip Cie | METHOD AND PLANT FOR SEPARATING A GAS CONTAINING METHANE AND ETHANE WITH TWO COLUMNS OPERATING UNDER TWO DIFFERENT PRESSURES |
US6978638B2 (en) * | 2003-05-22 | 2005-12-27 | Air Products And Chemicals, Inc. | Nitrogen rejection from condensed natural gas |
US9080810B2 (en) * | 2005-06-20 | 2015-07-14 | Ortloff Engineers, Ltd. | Hydrocarbon gas processing |
-
2006
- 2006-02-07 US US11/917,383 patent/US20100011810A1/en not_active Abandoned
- 2006-02-07 EP EP06734542A patent/EP1904800A1/en not_active Withdrawn
- 2006-02-07 CA CA2614414A patent/CA2614414C/en not_active Expired - Fee Related
- 2006-02-07 AU AU2006269696A patent/AU2006269696B2/en not_active Ceased
- 2006-02-07 EA EA200800270A patent/EA014452B1/en not_active IP Right Cessation
- 2006-02-07 WO PCT/US2006/004346 patent/WO2007008254A1/en active Application Filing
- 2006-02-07 MX MX2007015603A patent/MX2007015603A/en active IP Right Grant
- 2006-02-17 PE PE2006000200A patent/PE20070408A1/en not_active Application Discontinuation
Also Published As
Publication number | Publication date |
---|---|
MX2007015603A (en) | 2008-02-21 |
PE20070408A1 (en) | 2007-04-25 |
EA014452B1 (en) | 2010-12-30 |
WO2007008254A1 (en) | 2007-01-18 |
EP1904800A1 (en) | 2008-04-02 |
US20100011810A1 (en) | 2010-01-21 |
AU2006269696A1 (en) | 2007-01-18 |
EA200800270A1 (en) | 2008-04-28 |
AU2006269696B2 (en) | 2009-05-07 |
CA2614414C (en) | 2012-03-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2614414A1 (en) | Ngl recovery methods and configurations | |
US9541329B2 (en) | Cryogenic process utilizing high pressure absorber column | |
EP1554532B1 (en) | Low pressure ngl plant configurations | |
EP1680208B1 (en) | A membrane/distillation method and system for extracting co2 from hydrocarbon gas | |
CA2752291C (en) | Hydrocarbon gas processing | |
KR101080456B1 (en) | Multiple reflux stream hydrocarbon recovery process | |
US8959952B2 (en) | Method for separating a mixture of carbon monoxide, methane, hydrogen and optionally nitrogen by cryogenic distillation | |
US20080271480A1 (en) | Intergrated Ngl Recovery and Lng Liquefaction | |
KR101522853B1 (en) | Iso-pressure open refrigeration ngl recovery | |
EA017240B1 (en) | Plant and method for improved natural gas liquids recovery | |
CA2616450A1 (en) | Ngl recovery methods and configurations | |
AU2001271587A1 (en) | High propane recovery process and configurations | |
KR20070011467A (en) | Hydrocarbon gas processing for rich gas streams | |
US20170336137A1 (en) | Systems and methods for lng production with propane and ethane recovery | |
CA2560554A1 (en) | Hydrocarbon recovery process utilizing enhanced reflux streams | |
WO2007116050A3 (en) | Method and apparatus for liquefying a natural gas stream | |
US20140069142A1 (en) | Two Step Nitrogen and Methane Separation Process | |
EP3479037B1 (en) | System and method for producing liquefied natural gas | |
US20040255618A1 (en) | Method and installation for helium production | |
US20150308735A1 (en) | Methods and systems for separating hydrocarbons | |
EA023957B1 (en) | Hydrocarbon gas processing | |
CA2511403A1 (en) | Hybrid turbo expander and refrigerated lean oil absorber system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EEER | Examination request | ||
MKLA | Lapsed |
Effective date: 20210208 |