CA2612958C - Process to prepare a sweet crude - Google Patents

Process to prepare a sweet crude Download PDF

Info

Publication number
CA2612958C
CA2612958C CA2612958A CA2612958A CA2612958C CA 2612958 C CA2612958 C CA 2612958C CA 2612958 A CA2612958 A CA 2612958A CA 2612958 A CA2612958 A CA 2612958A CA 2612958 C CA2612958 C CA 2612958C
Authority
CA
Canada
Prior art keywords
hydrogen
gas
burner
water
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CA2612958A
Other languages
French (fr)
Other versions
CA2612958A1 (en
Inventor
Jacobus Eilers
Johannes Cornelis De Jong
Franciscus Johanna Arnoldus Martens
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Products and Chemicals Inc
Original Assignee
Shell Internationale Research Maatschappij BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shell Internationale Research Maatschappij BV filed Critical Shell Internationale Research Maatschappij BV
Publication of CA2612958A1 publication Critical patent/CA2612958A1/en
Application granted granted Critical
Publication of CA2612958C publication Critical patent/CA2612958C/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G21/00Refining of hydrocarbon oils, in the absence of hydrogen, by extraction with selective solvents
    • C10G21/003Solvent de-asphalting
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/36Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using oxygen or mixtures containing oxygen as gasifying agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/48Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents followed by reaction of water vapour with carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/82Gas withdrawal means
    • C10J3/84Gas withdrawal means with means for removing dust or tar from the gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/82Gas withdrawal means
    • C10J3/84Gas withdrawal means with means for removing dust or tar from the gas
    • C10J3/845Quench rings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/002Removal of contaminants
    • C10K1/003Removal of contaminants of acid contaminants, e.g. acid gas removal
    • C10K1/004Sulfur containing contaminants, e.g. hydrogen sulfide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/002Removal of contaminants
    • C10K1/003Removal of contaminants of acid contaminants, e.g. acid gas removal
    • C10K1/005Carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/08Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K3/00Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide
    • C10K3/02Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by catalytic treatment
    • C10K3/04Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by catalytic treatment reducing the carbon monoxide content, e.g. water-gas shift [WGS]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/025Processes for making hydrogen or synthesis gas containing a partial oxidation step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/042Purification by adsorption on solids
    • C01B2203/043Regenerative adsorption process in two or more beds, one for adsorption, the other for regeneration
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0475Composition of the impurity the impurity being carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0485Composition of the impurity the impurity being a sulfur compound
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/80Aspect of integrated processes for the production of hydrogen or synthesis gas not covered by groups C01B2203/02 - C01B2203/1695
    • C01B2203/84Energy production
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1846Partial oxidation, i.e. injection of air or oxygen only

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

A process to prepare a sweet crude from an ash containing and heavy fraction of a tar sand oil by: (a) supplying an atmospheric distillation bottoms of a tar sands originated feed to a vacuum distillation to obtain a vacuum gas oil and a vacuum bottoms, (b) contacting the vacuum gas oil with hydrogen in the presence of a suitable hydrocracking catalyst to obtain a sweet synthetic crude (c) separating the vacuum bottoms obtained in step (a) into an asphalt fraction comprising between 0.1 and 4 wt% ash and a de-asphalted oil, (d) feeding said asphalt fraction to a burner of a gasification reactor where the asphalt fraction is partial oxidised in the presence of an oxidiser gas in a burner to obtain a mixture of hydrogen and carbon monoxide, (e) performing a water gas shift reaction on the mixture of hydrogen and carbon monoxide, (f) separating hydrogen sulphide and carbon dioxide from the shifted gas in an acid removal unit thereby obtaining crude hydrogen, (g) purifying the crude hydrogen (in a pressure swing absorber) to obtain pure hydrogen and (h) using part of the pure hydrogen in step (b), wherein in step (d) the asphalt fraction is provided to the burner in a liquid state and wherein in case separation step (c) fails to provide sufficient feed for step (d), step (d) is performed by feeding the vacuum bottoms of step (a) to the burner in a liquid state.

Description

PROCESS TO PREPARE A SWEET CRUDE
The present invention is directed to a process to prepare a sweet crude from an ash containing and heavy fraction of a tar sand oil.
US-A-3537977 and US-A-5958365 describe a process to upgrade a crude mineral oil by means of hydroconversion.
The required hydrogen may be prepared by gasification of the bottoms of a solvent deasphalting unit, which is fed by the vacuum residue of the crude mineral oil. It is know that crude oil contains only a very low amount of ash.
US-A-6702936 describes a process wherein various distillate fractions of a tar sands feed are subjected to a hydroprocessing step to obtain a sweet synthetic crude.
From a vacuum residue fraction of the tar sands feed an asphalt fraction is isolated and fed to a gasification unit to obtain a mixture of carbon monoxide and hydrogen.
From this mixture substantially pure hydrogen is recovered and used in the hydroprocessing unit.
A disadvantage of this process is that it is sensitive for process failure. For example the hydroprocessing unit requires a very high availability of hydrogen. On the other hand it is known that gasification units and de-asphalting units do not have the high reliability to ensure a high hydrogen availability.
The present invention provides a solution to the above problem.
A process to prepare a sweet crude from an ash containing and heavy fraction of a tar sand oil by:
- 2 -(a) supplying an atmospheric distillation bottoms of a tar sands originated feed to a vacuum distillation to obtain a vacuum gas oil and a vacuum bottoms, (b) contacting the vacuum gas oil with hydrogen in the presence of a hydrocracking catalyst to obtain a sweet synthetic crude (c) separating the vacuum bottoms obtained in step (a) into an asphalt fraction comprising between 0.1 and 4 wt%
ash and a de-asphalted oil, (d) feeding said asphalt fraction to a burner of a gasification reactor where the asphalt fraction is partial oxidised in the presence of an oxidiser gas in a burner to obtain a mixture of hydrogen and carbon monoxide, (e) performing a water gas shift reaction on the mixture of hydrogen and carbon monoxide, (f) separating hydrogen sulphide and carbon dioxide from the shifted gas in an acid removal unit thereby obtaining crude hydrogen, (g) purifying the crude hydrogen to obtain pure hydrogen and (h) using part of the pure hydrogen in step (b), wherein in step (d) the asphalt fraction is provided to the burner in a liquid state and wherein in case separation step (c) fails to provide a feed for step (d), step (d) is performed by feeding the vacuum bottoms of step (a) to the burner in a liquid state.
Applicants found that by performing step (d) on a liquid asphalt feed it is possible to quickly change to a liquid vacuum bottoms feed in case the de-asphalting operation fails. If separation step (c) fails to provide sufficient feed for step (d) the hydrogen manufacture is
- 3 -not disturbed because step (d) can be then performed on the vacuum bottoms of step (a).
In order to further improve the reliability of the hydrogen production it is preferred to perform step (d) in n parallel-operated gasification reactors, wherein n is at least 2, preferably at least 3 more preferably at least 4. In case one gasification reactor would fail the hydrogen availability would then only be reduced by at least 33% or 25% in the latter cases. By designing some extra capacity for these gasification reactors one can also avoid any loss in hydrogen production by increasing the production in the remaining reactors in case one of the reactors fails.
The reliability may be further improved by positioning in parallel a spare gasification reactor in addition to the parallel-operated asphalt fed gasification reactors. In the event of a failure of one of the asphalt fed gasification reactors additional mixture of hydrogen and carbon monoxide can be provided by partial oxidation of a methane comprising gas in the spare gasification reactor. The use of a methane fed gasification reactor is advantageous because these reactors are not very complicated and because they can advantageously make use of the oxidiser which is at that moment not used in one or more of the asphalt fed reactors. The methane feed is preferably natural gas, coal bed methane or the off-gas as separated from the effluent of hydroprocessing step (b). The gasification process for such methane comprising feeds are for example the "Shell Gasification Process" (SGP) as described in the Oil and Gas Journal, September 6, 1971, pp 5-90.
Other publications describing examples of such processes
- 4 -are EP-A-291111, WO-A-9722547, WO-A-9639354 and WO-A-9603345.
Steps (a), (b), (c), (f), (g) and (h) may be performed as described in for example US-A-6702936.
The burner in step (d) is preferably a multi-orifice burner provided with an arrangement of separate co-annular passages, wherein the hydrocarbon feed flows through a passage of the burner, an oxidiser gas flows through a separate passage of the burner and wherein the passage for hydrocarbon feed and the passage for oxidiser gas are separated by a passage through which a moderator gas flows and wherein the exit velocity of the moderator gas is greater than the exit velocity of the oxidiser gas.
Applicant found it advantageous to perform step (d) with said burner in said manner to avoid burner damage. A
problem with the gasification of an asphalt fraction originating from a tar sands is that the feed will contain ash and that the feed will be very viscous. The highly viscous feed will require high feed temperatures in order to improve the ability to flow of the feed. In addition the feed may contain next to the ash also solid hydrocarbon agglomerates and lower boiling fractions. The high feed temperatures and/or the presence of lower boiling fractions or solids in the feed could give cause to a short burner life-time because of burner tip damage.
By operating step (d) as above it has been found that burner damage can be avoided.
Without wishing to be bound to the following theory but applicants believe that the more stable and less damaging operation of the burner results by using a moderator gas having a high velocity as a separate medium _
- 5 -between oxidiser gas and hydrocarbon feed. The moderator gas will break up the hydrocarbon feed and act as a moderator such that reactions in the recirculation zone at the burner tips are avoided. The result will be that the hydrocarbon droplets will only come in contact with the oxidiser gas at some distance from the burner surface. It is believed that this will result in less burner damage, e.g. burner tip retraction. The invention and its preferred embodiments will be further described below.
As explained above the relative velocity of the hydrocarbon feed and the moderator gas is relevant for performing the present invention. Preferably the exit velocity of the moderator gas is at least 5 times the velocity of the hydrocarbon feed in order to achieve a sufficient break up of the liquid feed. Preferably the exit velocity of the hydrocarbon feed is between 2 and 40 m/s and more preferably between 2 and 20 m/s. The exit velocity of the moderator gas is preferably between 40 and 200 m/s, more preferably between 40 and 150 m/s. The exit velocity of the oxidiser gas is preferably between and 120 m/s, more preferably between 30 and 70 m/s.
The respective velocities are measured or calculated at the outlet of the said respective channels into the 25 gasification zone.
Oxidiser gas comprises air or (pure) oxygen or a mixture thereof. With pure oxygen is meant oxygen having a purity of between 95 and 100 vol%. The oxidiser gas preferably comprises of a mixture of said pure oxygen and 30 moderator gas. The content of oxygen in such a moderator/oxygen mixture the oxidiser gas is preferably between 10 and 30 wt% at standard conditions. As moderator gas preferably steam, water or carbon dioxide
- 6 -or a combination thereof is used. More preferably steam is used as moderator gas.
The asphalt feed is liquid when fed to the burner and preferably has a kinematic viscosity at 232 C of between 300 and 6000 cSt more preferably between 3500 and 5000 cSt, having a bulk density of between 650 and 1200 Kg/m3. The ash content is between 0.1 and 4 wt%, especially between 1 and 4 wt%. The ash may comprise silicium, aluminium, iron, nickel, vanadium, titanium, potassium, magnesium and calcium. The feed may comprise halogen compounds, such as chloride. The sulphur content is between 1 and 10 wt%.
An example of a typical asphalt as obtained in step (c) is provided in Table 1.

ak 02612958 2007-11-30
- 7 -Table 1 Specific Density Bulk Density Kg/m3 1181 Chloride Kg/m3 670 PPmw 10 Carbon %w 85.7 Hydrogen %w 6.7 Sulphur %w 4.4 Nitrogen %w 1.6 Ash %w 1.3 Oxygen %w 0.2 Ash %w 1.3 Viscosity @ 330 F cP 26700 @ 410 F cP 1340 @ 232 C cSt 4660 The multi-orifice burner is provided with an arrangement of separate, preferably co-annular passages.
Such burner arrangements are known and for example described in EP-A-545281 or DE-OS-2935754. Usually such burners comprise a number of slits at the burner outlet and hollow wall members with internal cooling fluid (e.g.
water) passages. The passages may or may not be converging at the burner outlet. Instead of comprising internal cooling fluid passages, the burner may be provided with a suitable ceramic or refractory lining applied onto or suspended by a means closely adjacent to the outer surface of the burner (front) wall for resisting the heat load during operation or heat-up/shut down situations of the burner. Advantageously, the ak 02612958 2007-11-30
- 8 -exit(s) of one or more passages may be retracted or protruded.
The burner preferably has 4, 5, 6 or 7 passages. In a preferred embodiment the burner has 6 or 7 passages. In an even more preferred embodiment the burner has 7 passages wherein a shielding gas flows through the outer most passage at a velocity of between 5 and 40 m/s. The shielding gas is preferably the same gas as used for the moderator gas. In the embodiment wherein the number of passages are 7, preferably the following streams flow through the below listed passages:
an oxidiser flow through the inner most passage 1 and passage 2, a moderator gas flow through passage 3, a hydrocarbon feed flow through passage 4, a moderator gas flow through passage 5, an oxidiser flow through passage 6, and a shielding gas flow through outer most passage 7, preferably at a velocity of between 5 and 40 m/s.
Alternatively the number of passages is 6 wherein the passage 1 and 2 of the above burner is combined or wherein the passage 7 is omitted.
The process according to the present invention is preferably performed at a syngas product outlet temperature of between 1000 and 1800 C and more preferably at a temperature between 1300 and 1800 C. The pressure of the mixture of carbon monoxide and hydrogen as prepared is preferably between 0.3 and 12 MPa and preferably between 3 and 8 MPa. The ash components as present in the feed will form a so-called liquid slag at these temperatures. The slag will preferably form a layer on the inner side of the reactor wall, thereby creating an isolation layer. The temperature conditions are so ak 02612958 2007-11-30
- 9 -chosen that the slag will create a layer and flow to a lower positioned slag outlet device in the reactor. The slag outlet device is preferably a water bath at the bottom of the gasification reactor to which the slag will flow due to the forces of gravity.
The temperature of the syngas is preferably reduced by directly contacting the hot gas with liquid water in a so-called quenching step. Preferably the slag water bath and the water quench are combined. A water quench is advantageous because a water-saturated synthesis gas is obtained which can be readily used in the water shift step (e). Furthermore a water quench avoids complicated waste heat boilers, which would complicate the gasification reactor.
The direct contacting with liquid water is preferably preceded by injecting water into the flow of syngas steam. This water may be fresh water. In a preferred embodiment a solids containing water may partly or wholly replace the fresh water. Preferably the solids containing water is obtained in the water quenching zone as will be described below and/or from the scrubber unit as will be described below. For example the bleed stream of the scrubber unit is used. Use of a solids containing water as here described has the advantage that water treatment steps may be avoided or at least be limited.
In a preferred embodiment of the present invention the liquid water of the quenching step and the water bath for receiving the slag for is combined. Such combined slag removing means and water quench process steps are known from for example in US-A-4880438, US-A-4778483, US-A-4466808, EP-A-129737, EP-A-127878, US-A-4218423, US-A-4444726, US-A-4828578, EP-A-160424, US-A-4705542, EP-A-168128.
- 10 -The temperature of the synthesis gas after the water quench step is preferably between 130 and 330 C.
The process is preferably performed in a reactor vessel as illustrated in Figure 1. The Figure shows a gasification reactor vessel (1), provided at its upper end with a downwardly directed multi-orifice burner (2).
Burner (2) is provided with supply conduits for oxidiser gas (3), hydrocarbon feed (4) and moderator gas (5). The burner (2) is preferably arranged at the top end of the reactor vessel (1) pointing with its outlet in a downwardly direction. The vessel (1) preferably comprises a combustion chamber (6) in the upper half of the vessel provided with a product gas outlet (7) at its bottom end and an opening for the outlet of the burner (2) at its top end. Between the combustion chamber (6) and the wall of vessel (1) an annular space (9) is provided. The wall of the combustion chamber protects the outer wall of vessel (1) against the high temperatures of the combustion chamber (6). The combustion chamber (6) is preferably provided with a refractory lined wall (8) in order to reduce the heat transfer to the combustion chamber wall. The refractory wall (8) is preferably provided with means to cool said refractory wall.
Preferably such cooling means are conduits (10) through which water flows. Such conduits may be arranged as a spirally wound design in said tubular formed refractory wall (8). Preferably the cooling conduits (10) are arranged as a configuration of parallel-arranged vertical conduits, which may optionally have a common header at their top (11) and a common distributor at their bottom (12) for discharging and supplying water respectively from the cooling means. The common header (11) is fluidly connected to a steam discharge conduit (13) and the ak 02612958 2007-11-30
- 11 -common header (12) is fluidly connected to a water supply conduit (14). More preferably the cooling conduits (10) are interconnected such that they form a gas-tight combustion chamber (6) within the refractory wall as shown in Figure 2. Such interconnected conduits type walls are also referred to as a membrane wall.
The cooling by said conduits (10) may be achieved by just the cooling capacity of the liquid water, wherein heated liquid water is obtained at the water discharge point. Preferably cooling is achieved by also evaporation of the water in the conduits (10). In such an embodiment the cooling conduits are vertically arranged as shown in Figure 1 such that the steam as formed can easily flow to the common header (11) and to a steam outlet conduit (13) of the reactor vessel (1). Evaporation is preferred as a cooling method because the steam may find use in other applications in the process, such as process steam for shift reactions, heating medium for liquid feed or, after external superheating, as moderator gas in the burner according to the process according to the present invention. A more energy efficient process is so obtained.
The gasification vessel (1) preferably comprises a vertically aligned and tubular formed outlet part (16) fluidly connected to the lower end of the combustion chamber (6), which tubular formed outlet part (16) is open at its lower end, further referred to as the gas outlet (17) of the tubular outlet part (16). The outlet part (16) is provided at its upper end with means (18) to add a quenching medium to the, in use, downwardly flowing mixture of hydrogen and carbon monoxide. Preferably the vessel (1) is further provided at its lower end with a combined water quenching zone (19) and slag discharge ak 02612958 2014-11-18
- 12 -water bath (20) as described above. The water quenching zone (19) is present in the pathway of the synthesis gas as it is deflected at outlet (17) in an upwardly direction (see arrows) to flow upward through, preferably an annular space (21) formed between an optional tubular shield (22) and outlet part (16). In annular space (21) the synthesis gas will intimately contact the water in a quenching operation mode. The upper end (23) of the annular space is in open communication with the space (24) between outlet part (16) and the wall of vessel (1). In space (24) a water level (25) will be present. Above said water level (25) one or more synthesis product outlet(s) (26) are located in the wall of vessel (1) to discharge the quenched synthesis gas.
Between space (24) and annular space (9) a separation wall (27) may optionally be present.
At the lower end of vessel (1) a slag discharge opening (28) is suitably present. Through this discharge opening (28) slag together with part of the water is charged from the vessel by well known slag discharge means, such as sluice systems as for example described in US-A-4852997 and US-A-6755980.
Figure 3 illustrates how the process according to the present invention and the reactor of Figure 1 can be applied in the production of pure hydrogen. In this scheme to a gasification reactor 105 an asphalt feed 101, oxygen 102 and super heated steam 119 from a gas turbine/steam turbine utilities block 114 are fed to a burner according to the process of the present invention as present in combustion chamber 106. Oxygen 102 is prepared in air separation unit 104. Nitrogen 103 as prepared in the same unit is used as purge gas in the gasification reactor 105. In gasification reactor 105 ak 02612958 2014-11-18
- 13 -slag 108 flows to a water quench 107 to be disposed as slag via 110. The flash gas 112 separated from the slag 110 is send to Claus unit 109. A water bleed 111 is part of the process as illustrated.
The wet raw synthesis gas 113 as prepared is optionally treated in a scrubber unit to remove any solids and ash particles which have not been removed in the water quench before being further processed in a sour water gas shift step 122 yielding a shifted gas 123 and sour water, which is recycled via 124 to water quench 107. Between sour water gas shift step 122 and the gas turbine/steam turbine utilities block 114 heat integration 121 takes place. The shifted gas 123 is sent to an acid gas removal step 126 yielding a carbon dioxide rich gas 131, crude hydrogen 130, H2S 129 and steam condensate 128. The carbon dioxide rich gas 131 is compressed in compressor 136 to yield compressed carbon dioxide gas 137. The carbon dioxide may be advantageously disposed of by CO2 sequestration in for example sub-surface reservoirs. The crude hydrogen 130 is further processed in a pressure swing absorber (PSA) unit 138 to yield pure hydrogen 140. Part 134 of the crude hydrogen 130 may be used as feed in the gas turbine/steam turbine utilities block 114. The hydrogen rich PSA off-gas 139 is compressed in compressor 133 and used, optionally blended with nitrogen 132, as feed in the gas turbine/steam turbine utilities block 114. Gas turbine/steam turbine utilities block 114 is further provided with a fuel gas, natural gas, feed 115, a water feed 116 and a flue gas outlet 117 and an optional high pressure outlet 150.
In Table 2 an example is provided of the composition of the streams of Figure 3 when a feed according to ak 02612958 2007-11-30
- 14 -Table 1 is used. The numerals in Table 2 refer to Figure 1.
The process according to the invention is further illustrated by means Figure 4. Tar sand derived oil 31 is diluted with naphtha 32 to obtain diluted tar sand derived oil 33, which is supplied to atmospheric distillation unit 34. In atmospheric distillation unit 34, diluted tar sand derived oil 33 is distilled and two atmospheric distillate streams, i.e. naphtha stream 32 and atmospheric gasoil stream 35, and atmospheric residue 36 are obtained. Atmospheric residue 36 is vacuum distilled in vacuum distillation unit 37. Vacuum gasoil stream 38 is obtained as distillate stream and vacuum residue 39 as bottoms stream. Vacuum residue 39 is supplied to solvent deasphalting unit 40 to obtain deasphalted oil 41 and liquid asphaltic fraction 42. The liquid asphaltic fraction 42 is fed to a gasification unit 43. In case of a failure of solvent deasphalting unit 40 vacuum residue 45 is fed directly to gasification unit 43. In Gasification unit 43 hydrogen 44 is prepared as illustrated in Figures 1 and 2. Distillate stream 35 and 38 are combined with deasphalted oil 41 to form combined hydrocracker feedstock 48. Combined feedstock 48 is hydrodemetallised in hydrodemetallisation unit 49 in the presence of hydrogen 50. The hydrodemetallised combined feedstock 51 and additional hydrogen 52 are supplied to hydrocracking unit 53 comprising a first catalytic zone 54 comprising preferably a non-noble metal hydrotreating catalyst for hydrodesulphurisation of the feedstock and a second catalytic zone 55 comprising preferably a non-noble metal hydrocracking catalyst. The effluent 56 of the second catalytic zone 55 is separated in gas/liquid separator 57 into upgraded sweet crude oil
- 15 -product 58 and a hydrogen-rich gas stream 59 that is combined with make-up hydrogen 60 to form hydrogen stream 52 that is supplied to the first catalytic zone 54. Make-up hydrogen 60 and/or hydrogen 50 are hydrogen 44 as produced in gasification unit 43. Upgraded sweet crude oil product 58 may be fractionated into several upgraded distillate fractions (not shown).
- 16 -Table 2 Component Wet raw Gas ex Sour CO2 137 Raw Pure PSA
syngas shift gas 112 Hydrogen Hydrogen offgas 113 section 130 Methane %mol 0.05 0.07 <0.01 0.05 0.11 - 0.74 Argon %mol 0.02 0.03 - - 0.04 0.04 0.06 COS %mol 0.04 - - -1., m H2S %mol 0.48 0.74 61 5 PPm -_ 1., ko H20 %mol 56.18 5 0.05 -- _ m 1., H2 %mol 15.36 59.23 <0.01 0.7 93.81 99.82 60.87 0 ...3 1-,
17' N2 %mol 0.53 0.76 - - 1.20 0.14 7.04 w CO2 %mol 0.54 38.01 34 99.1 3.01 - 19.53 CO
%mol 26.79 1.15 <0.01 0.1 1.82 11.78 HCN
%mol 0.01 - - --%mol 0.01 0.02 0.01 - --

Claims (12)

Claims:
1. A process to prepare a sweet crude from an ash containing and heavy fraction of a tar sand oil by:
(a) supplying an atmospheric distillation bottoms of a tar sands originated feed to a vacuum distillation to obtain a vacuum gas oil and a vacuum bottoms, (b) contacting the vacuum gas oil with hydrogen in the presence of a hydrocracking catalyst to obtain a sweet synthetic crude, (c) separating the vacuum bottoms obtained in step (a) into an asphalt fraction comprising between 0.1 and 4 wt % ash and a de-asphalted oil, (d) feeding said asphalt fraction to a burner of a gasification reactor where the asphalt fraction is partially oxidized in the presence of an oxidizer gas in a burner to obtain a mixture of hydrogen and carbon monoxide, (e) performing a water gas shift reaction on the mixture of hydrogen and carbon monoxide, (f) separating hydrogen sulphide and carbon dioxide from the shifted gas in an acid removal unit thereby obtaining crude hydrogen, (g) purifying the crude hydrogen to obtain pure hydrogen and (h) using part of the pure hydrogen in step (b), wherein in step (d) the asphalt fraction is provided to the burner in a liquid state and wherein in case separation step (c) fails to provide sufficient feed for step (d), step (d) is performed by feeding the vacuum bottoms of step (a) to the burner in a liquid state.
2. A process according to claim 1, wherein step (d) is performed in n parallel-operated gasification reactors, wherein n is at least 2.
3. A process according to claim 2, wherein n is at least 3.
4. A process according to claim 2, wherein in addition to the parallel-operated gasification reactors a spare gasification reactor is positioned in parallel, which spare gasification reactor may, in the event of a failure of one of the other gasification reactors, provide additional mixture of hydrogen and carbon monoxide by partial oxidation of a methane comprising gas.
5. A process according to any one of claims 1 to 4, wherein the burner in step (d) is a multi-orifice burner provided with an arrangement of separate co-annular passages, wherein the hydrocarbon feed flows through a passage of the burner, an oxidizer gas flows through a separate passage of the burner and wherein the passage for hydrocarbon feed and the passage for oxidizer gas are separated by a passage through which a moderator gas flows and wherein the exit velocity of the moderator gas is greater than the exit velocity of the oxidizer gas.
6. A process according to claim 5, wherein the exit velocity of the moderator gas is at least 5 times the exit velocity of the hydrocarbon feed.
7. A process according to claim 5 or 6, wherein the exit velocity of the moderator gas is between 40 and 150 m/s.
8. A process according to any one of claims 1 to 7, wherein the mixture of hydrogen and carbon monoxide as obtained in the gasification reactor is cooled by contacting with liquid water as injected into the mixture of hydrogen and carbon monoxide.
9. A process according to any one of claims 1 to 8, wherein the mixture of hydrogen and carbon monoxide is cooled in a water quenching zone by passing the gas through a water bath.
10. A process according to any one of claims 1 to 9, wherein the burner is positioned in a vertical positioned vessel, the vessel comprising a combustion chamber in the upper half of the vessel, a product gas outlet, and wherein the burner protrudes through the vessel wall into the combustion chamber and wherein the combustion chamber is provided with a refractory lined wall, wherein the vessel also comprises a vertically aligned and tubular formed outlet part fluidly connected to the lower end of the combustion chamber, which tubular formed outlet part is open at its lower end, and is provided at its upper end with means to add a quenching medium to the, in use, downwardly flowing mixture of hydrogen and carbon monoxide, and wherein the vessel is further provided at its lower end with a water quenching zone as present in the pathway of the gas outlet of the tubular part and the product gas outlet and means to refresh the water of the water quenching zone.
11. A process according to claim 10, wherein the refractory lined wall comprises vertically aligned conduits through which, in use, evaporating water flows, and wherein the vessel is further provided with an inlet for water and an outlet for steam both fluidly connected to the vertically aligned conduits.
12. A process according to claim 10, wherein the refractory lined wall comprises one or more spirally wound conduits through which, in use, cooling water flows, and the vessel is further provided with an inlet for water and an outlet for heated water both fluidly connected to the spirally wound conduits.
CA2612958A 2006-12-01 2007-11-30 Process to prepare a sweet crude Active CA2612958C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP06125232.6 2006-12-01
EP06125232 2006-12-01

Publications (2)

Publication Number Publication Date
CA2612958A1 CA2612958A1 (en) 2008-06-01
CA2612958C true CA2612958C (en) 2016-01-19

Family

ID=37964585

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2612958A Active CA2612958C (en) 2006-12-01 2007-11-30 Process to prepare a sweet crude

Country Status (2)

Country Link
CN (1) CN101260313A (en)
CA (1) CA2612958C (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9056771B2 (en) * 2011-09-20 2015-06-16 Saudi Arabian Oil Company Gasification of heavy residue with solid catalyst from slurry hydrocracking process
CN103242894A (en) * 2012-06-18 2013-08-14 上海河图工程股份有限公司 Heavy-oil slurry reactor hydrogenation combined process without external hydrogen source
US9114984B2 (en) * 2012-06-25 2015-08-25 Battelle Energy Alliance Llc System and process for upgrading hydrocarbons
EP3046992A1 (en) * 2013-09-18 2016-07-27 Shell Internationale Research Maatschappij B.V. Methods and systems for supplying hydrogen to a hydrocatalytic reaction
EP3046993B1 (en) 2013-09-18 2018-08-22 Shell International Research Maatschappij B.V. Methods and systems for supplying hydrogen to a hydrocatalytic reaction
CN104789271B (en) * 2015-04-07 2017-03-29 龙东生 Powder low temperature distillation gasification installation

Also Published As

Publication number Publication date
CN101260313A (en) 2008-09-10
CA2612958A1 (en) 2008-06-01

Similar Documents

Publication Publication Date Title
US8052864B2 (en) Process to prepare a sweet crude
US9487400B2 (en) Process to prepare a mixture of hydrogen and carbon monoxide from a liquid hydrocarbon feedstock containing a certain amount of ash
US10422046B2 (en) Hydrogen production from an integrated electrolysis cell and hydrocarbon gasification reactor
KR101856088B1 (en) Gasification of heavy residue with solid catalyst from slurry hydrocracking process
CA1166178A (en) Producing liquid hydrocarbon streams by hydrogenation of fossil-based feedstock
EP2737031B1 (en) Process for the gasification of heavy residual oil with particulate coke from a delayed coking unit
CA2612958C (en) Process to prepare a sweet crude
WO2008113766A2 (en) Process to prepare a hydrocarbon
KR20140063613A (en) Production of synthesis gas from solvent deasphalting process bottoms in a membrane wall gasification reactor
GB2056479A (en) Producing liquid hydrocarbon streams by hydrogenation of fossil-based feedstock
US20190100707A1 (en) Two-stage gasifier and gasification process with feedstock flexibility
Higman Gasification process technology
EP2830992B1 (en) Integrated process for the gasification of whole crude oil in a membrane wall gasifier and power generation

Legal Events

Date Code Title Description
EEER Examination request