CA2612248A1 - Presbyopia correction through negative high-order spherical aberration - Google Patents

Presbyopia correction through negative high-order spherical aberration Download PDF

Info

Publication number
CA2612248A1
CA2612248A1 CA002612248A CA2612248A CA2612248A1 CA 2612248 A1 CA2612248 A1 CA 2612248A1 CA 002612248 A CA002612248 A CA 002612248A CA 2612248 A CA2612248 A CA 2612248A CA 2612248 A1 CA2612248 A1 CA 2612248A1
Authority
CA
Canada
Prior art keywords
eye
spherical aberration
presbyopia
prescription
mitigating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CA002612248A
Other languages
French (fr)
Other versions
CA2612248C (en
Inventor
Seema Somani
Kingman Yee
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AMO Manufacturing USA LLC
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CA2612248A1 publication Critical patent/CA2612248A1/en
Application granted granted Critical
Publication of CA2612248C publication Critical patent/CA2612248C/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/103Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for determining refraction, e.g. refractometers, skiascopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/1015Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for wavefront analysis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/10Eye inspection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/14Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
    • A61F2/16Intraocular lenses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/14Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
    • A61F2/16Intraocular lenses
    • A61F2/1613Intraocular lenses having special lens configurations, e.g. multipart lenses; having particular optical properties, e.g. pseudo-accommodative lenses, lenses having aberration corrections, diffractive lenses, lenses for variably absorbing electromagnetic radiation, lenses having variable focus
    • A61F2/1637Correcting aberrations caused by inhomogeneities; correcting intrinsic aberrations, e.g. of the cornea, of the surface of the natural lens, aspheric, cylindrical, toric lenses
    • A61F2/164Aspheric lenses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F9/00802Methods or devices for eye surgery using laser for photoablation
    • A61F9/00804Refractive treatments
    • A61F9/00808Inducing higher orders, e.g. for correction of presbyopia
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/04Contact lenses for the eyes
    • G02C7/041Contact lenses for the eyes bifocal; multifocal
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/04Contact lenses for the eyes
    • G02C7/041Contact lenses for the eyes bifocal; multifocal
    • G02C7/042Simultaneous type
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F2009/00844Feedback systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F2009/00861Methods or devices for eye surgery using laser adapted for treatment at a particular location
    • A61F2009/00872Cornea
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F2009/00878Planning
    • A61F2009/0088Planning based on wavefront
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F9/00802Methods or devices for eye surgery using laser for photoablation
    • A61F9/00804Refractive treatments
    • A61F9/00806Correction of higher orders
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C2202/00Generic optical aspects applicable to one or more of the subgroups of G02C7/00
    • G02C2202/22Correction of higher order and chromatic aberrations, wave front measurement and calculation

Landscapes

  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Engineering & Computer Science (AREA)
  • Surgery (AREA)
  • Vascular Medicine (AREA)
  • Optics & Photonics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • General Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Cardiology (AREA)
  • Transplantation (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Otolaryngology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Pathology (AREA)
  • Electromagnetism (AREA)
  • Prostheses (AREA)
  • Eyeglasses (AREA)

Abstract

Devices, systems, and methods for treating and/or determining appropriate prescriptions for one or both eyes of a patient are particularly well-suited for addressing presbyopia, often in combination with concurrent treatments of other vision defects. High-order spherical aberration may be imposed in one or both of a patient's eyes, often as a controlled amount of negative spherical aberration extending across a pupil. A desired presbyopia-mitigating quantity of high-order spherical aberration may be defined by one or more spherical Zernike coefficients, which may be combined with Zernike coefficients generated from a wavefront aberrometer. The resulting prescription can be imposed using refractive surgical techniques such as laser eye surgery, using intraocular lenses and other implanted structures, using contact lenses, using temporary or permanent corneal reshaping techniques, and/or the like.

Claims (17)

1. ~A method for treating presbyopia of a patient having an eye, the method comprising inducing a presbyopia-mitigating quantity of high-order spherical aberration in the eye.
2. ~The method of claim 1, wherein the eye has a pupil, and wherein the spherical aberration extends across the pupil.
3. ~The method of claim 2, wherein the presbyopia-mitigating quantity is in a range from about 0.05 to about 0.4 microns of negative spherical aberration across the pupil.
4. ~The method of claim 3, wherein the presbyopia-mitigating quantity is in a range from about 0.1 to about 0.3 microns of negative spherical aberration across the pupil.
5. ~The method of claim 4, wherein the presbyopia-mitigating quantity is in a range from about 0.15 to about 0.25 microns of negative spherical aberration across the pupil.
6. ~The method of claim 1, wherein the spherical aberration comprises a radially symmetric negative spherical asphericity.
7. ~The method of claim 6, wherein the spherical aberration correspond to at least one significant high order Zernike polynomial coefficient.
8. ~The method of claim 7, wherein the spherical aberration consists of a plurality of significant, high order Zernike polynomial coefficients.
9. ~The method of claim 8, further comprising combining the spherical aberration with a plurality of wavefront Zernike coefficients, the wavefront Zernike coefficients defining a refractive defect-correcting prescription for the eye, and wherein the combined presbyopia-mitigating quantity of spherical aberration and refractive defect-correcting prescription are induced in the eye by at least one of reshaping a cornea, inserting a lens into the eye, positioning a lens in front of a cornea, laser eye surgery, LASEK, LASIK, photorefractive keratectomy, a contact lens, a scleral lens, an intraocular lens, a phacik intraocular lens, or a combination thereof.
10. ~The method of claim 1, further comprising measuring refractive aberrations of the eye with a wavefront aberrometer;
determine wavefront Zernike coefficients of the measured refractive aberrations; and defining a prescription for the patient by combining the wavefront Zernike coefficients with at least one high-order Zernike coefficient corresponding to the presbyopia-mitigating quantity of spherical aberration.
11. ~The method of claim 1, wherein the eye has a cornea and a retina and wherein the treated eye is configured so that an image in a plane between the cornea and the retina, of a point source at a viewing distance from the eye, has a central area with a central intensity surrounded by a peripheral area with a peripheral intensity, the central intensity being higher than the peripheral intensity.
12. ~The method of claim 11, further coinprising sharpening the image using residual accommodation of the eye.
13. ~The method of claim 1, further comprising:
identifying the presbyopia-mitigating quantity of spherical aberration; and determining a presbyopia prescription providing the identified quantity of spherical aberration;
wherein the presbyopia-mitigating quantity of spherical aberration is induced by superimposing the determined presbyopia prescription on the eye.
14. ~A method for treating presbyopia in a patient having an eye with a pupil, the method comprising altering refraction of the eye so that the altered eye has a negative spherical aberration in a range from about 0.1 to about 0.3 microns across the pupil so that the effect of the presbyopia is mitigated.
15. ~A method for planning a presbyopia treatment for an eye of a patient having a pupil where a plurality of Zernike polynomial coefficients correspond to measured aberrations of the eye, the method comprising deriving a prescription for the eye by combining the Zernike polynomial coefficients with at least one high-order Zernike polynomial coefficient of a presbyopia-mitigating negative spherical aberration.
16. ~A system for treating presbyopia, the system comprising a prescription generator module coupled to an output, the prescription generator module defining a presbyopia-mitigating quantity of high-order spherical aberration for the eye, the output configured for communication to a lens producing or modifying assembly.
17. ~The system of claim 16, wherein the prescription generator has an input, and further comprising:
a wavefront system coupled to the input of the prescription generator, the wavefront system generating a plurality of refractive Zernike coefficients corresponding to sensed aberrations of an eye;
the lens producing assembly, including an ablative laser beam for imposing a prescription on the eye by directing a pattern of laser energy toward a cornea of the eye;
wherein the prescription generator combines the refractive Zernike coefficients with at least one presbyopia-mitigating Zernike coefficients, the at least one presbyopia-mitigating Zernike coefficient comprising at least one high-order Zernike coefficient corresponding to the presbyopia-mitigating quantity of spherical aberration, so as to provide the eye with between about 0.1 and about 0.3 microns of negative spherical aberration across the pupil.
CA2612248A 2005-06-30 2006-06-19 Presbyopia correction through negative high-order spherical aberration Expired - Fee Related CA2612248C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/173,904 US7261412B2 (en) 2005-06-30 2005-06-30 Presbyopia correction through negative high-order spherical aberration
US11/173,904 2005-06-30
PCT/US2006/023820 WO2007005261A2 (en) 2005-06-30 2006-06-19 Presbyopia correction through negative high-order spherical aberration

Publications (2)

Publication Number Publication Date
CA2612248A1 true CA2612248A1 (en) 2007-01-11
CA2612248C CA2612248C (en) 2012-09-11

Family

ID=37589047

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2612248A Expired - Fee Related CA2612248C (en) 2005-06-30 2006-06-19 Presbyopia correction through negative high-order spherical aberration

Country Status (8)

Country Link
US (5) US7261412B2 (en)
EP (1) EP1895928B1 (en)
JP (1) JP4917599B2 (en)
KR (1) KR101274321B1 (en)
AU (1) AU2006266300B2 (en)
CA (1) CA2612248C (en)
MX (1) MX2007016344A (en)
WO (1) WO2007005261A2 (en)

Families Citing this family (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7320517B2 (en) * 2002-12-06 2008-01-22 Visx, Incorporated Compound modulation transfer function for laser surgery and other optical applications
US7434936B2 (en) * 2002-12-06 2008-10-14 Amo Manufacturing Usa, Llc Residual accommodation threshold for correction of presbyopia and other presbyopia correction using patient data
US8342686B2 (en) 2002-12-06 2013-01-01 Amo Manufacturing Usa, Llc. Compound modulation transfer function for laser surgery and other optical applications
US8911086B2 (en) 2002-12-06 2014-12-16 Amo Manufacturing Usa, Llc Compound modulation transfer function for laser surgery and other optical applications
EP1567907A4 (en) * 2002-12-06 2009-09-02 Amo Mfg Usa Llc Presbyopia correction using patient data
DE102005013558A1 (en) * 2005-03-23 2006-09-28 Carl Zeiss Meditec Ag Method and device for increasing the depth of focus of an optical system
US7413566B2 (en) * 2005-05-19 2008-08-19 Amo Manufacturing Usa, Llc Training enhanced pseudo accommodation methods, systems and devices for mitigation of presbyopia
US7261412B2 (en) * 2005-06-30 2007-08-28 Visx, Incorporated Presbyopia correction through negative high-order spherical aberration
CA2644775C (en) * 2006-03-08 2012-06-05 Scientific Optics, Inc. Method and apparatus for universal improvement of vision
US7879089B2 (en) * 2006-05-17 2011-02-01 Alcon, Inc. Correction of higher order aberrations in intraocular lenses
US8016420B2 (en) * 2007-05-17 2011-09-13 Amo Development Llc. System and method for illumination and fixation with ophthalmic diagnostic instruments
DE102007032001B4 (en) * 2007-07-09 2009-02-19 Carl Zeiss Vision Gmbh Device and method for determining the required correction of the refractive error of an eye
US20090059163A1 (en) * 2007-08-30 2009-03-05 Pinto Candido D Ophthalmic Lens Having Selected Spherochromatic Control and Methods
JP2011502011A (en) * 2007-10-29 2011-01-20 リャン,ジュンジョン Method and device for refractive treatment of presbyopia
US20090157179A1 (en) * 2007-12-11 2009-06-18 Pinto Candido D Ophthalmic Lenses Providing an Extended Depth of Field
US9724190B2 (en) * 2007-12-13 2017-08-08 Amo Groningen B.V. Customized multifocal ophthalmic lens
US7802883B2 (en) * 2007-12-20 2010-09-28 Johnson & Johnson Vision Care, Inc. Cosmetic contact lenses having a sparkle effect
US7753521B2 (en) * 2008-03-31 2010-07-13 Johnson & Johnson Vision Care, Inc. Lenses for the correction of presbyopia and methods of designing the lenses
MX345877B (en) 2008-04-02 2017-02-21 Liang Junzhong Methods and devices for refractive corrections of presbyopia.
CA2721743A1 (en) 2008-04-22 2009-10-29 Amo Development Llc High-order optical correction during corneal laser surgery
US8241354B2 (en) * 2008-07-15 2012-08-14 Novartis Ag Extended depth of focus (EDOF) lens to increase pseudo-accommodation by utilizing pupil dynamics
US8292952B2 (en) * 2009-03-04 2012-10-23 Aaren Scientific Inc. System for forming and modifying lenses and lenses formed thereby
US8646916B2 (en) * 2009-03-04 2014-02-11 Perfect Ip, Llc System for characterizing a cornea and obtaining an opthalmic lens
MX339104B (en) * 2009-03-04 2016-05-12 Perfect Ip Llc System for forming and modifying lenses and lenses formed thereby.
EP2453841A4 (en) * 2009-07-14 2014-03-19 Elenza Inc Folding designs for intraocular lenses
US8342683B2 (en) * 2009-08-27 2013-01-01 Novartis Ag Optimizing optical aberrations in ophthalmic lenses
EP2473876A1 (en) 2009-09-01 2012-07-11 Arthur Bradley Multifocal correction providing improved quality of vision
WO2011035033A1 (en) * 2009-09-16 2011-03-24 Indiana University Research & Technology Corporation Simultaneous vision lenses, design strategies, apparatuses, methods, and systems
US8409181B2 (en) * 2009-11-05 2013-04-02 Amo Development, Llc. Methods and systems for treating presbyopia
US20110144629A1 (en) * 2009-12-10 2011-06-16 Rupert Veith Method for Complementing Conventional Vision Correction with Laser Correction of the Cornea
US8331048B1 (en) 2009-12-18 2012-12-11 Bausch & Lomb Incorporated Methods of designing lenses having selected depths of field
US9504376B2 (en) 2009-12-22 2016-11-29 Amo Wavefront Sciences, Llc Optical diagnosis using measurement sequence
US20120123534A1 (en) * 2010-11-11 2012-05-17 University Of Rochester Modified monovision by extending depth of focus
CA2819451A1 (en) * 2010-11-30 2012-06-07 Amo Groningen B.V. Method for designing, evaluating and optimizing ophthalmic lenses and laser vision correction
US11135052B2 (en) 2011-09-16 2021-10-05 Rxsight, Inc. Method of adjusting a blended extended depth of focus light adjustable lens with laterally offset axes
US10874505B2 (en) 2011-09-16 2020-12-29 Rxsight, Inc. Using the light adjustable lens (LAL) to increase the depth of focus by inducing targeted amounts of asphericity
US11191637B2 (en) 2011-09-16 2021-12-07 Rxsight, Inc. Blended extended depth of focus light adjustable lens with laterally offset axes
FR2980095B1 (en) * 2011-09-19 2013-10-18 Frederic Hehn DEVICE AND METHOD FOR AIDING THE TREATMENT OF THE CORNEA
US10613347B2 (en) 2012-01-11 2020-04-07 Rodenstock Gmbh Population of an eye model for optimizing spectacle lenses with measurement data
DE102017007974A1 (en) 2017-01-27 2018-08-02 Rodenstock Gmbh Assignment of an eye model for the optimization of spectacle lenses with measurement data
DE102012000390A1 (en) * 2012-01-11 2013-07-11 Rodenstock Gmbh Spectacle lens optimization with individual eye model
US9829715B2 (en) 2012-01-23 2017-11-28 Nvidia Corporation Eyewear device for transmitting signal and communication method thereof
TWI588560B (en) 2012-04-05 2017-06-21 布萊恩荷登視覺協會 Lenses, devices, methods and systems for refractive error
USRE47984E1 (en) * 2012-07-02 2020-05-12 Nvidia Corporation Near-eye optical deconvolution displays
US9494797B2 (en) 2012-07-02 2016-11-15 Nvidia Corporation Near-eye parallax barrier displays
US9841537B2 (en) 2012-07-02 2017-12-12 Nvidia Corporation Near-eye microlens array displays
US9557565B2 (en) * 2012-07-02 2017-01-31 Nvidia Corporation Near-eye optical deconvolution displays
US9201250B2 (en) 2012-10-17 2015-12-01 Brien Holden Vision Institute Lenses, devices, methods and systems for refractive error
AU2013332247B2 (en) 2012-10-17 2018-11-29 Brien Holden Vision Institute Limited Lenses, devices, methods and systems for refractive error
US10238534B2 (en) * 2013-03-07 2019-03-26 Novartis Ag Systems and processes for eye moisturizing during ocular surgery
BR112015030160A2 (en) * 2013-07-08 2017-07-25 Wavelight Gmbh methods of determining a corneal ablation pattern to treat presbyopia of a human eye, treating presbyopia of a human eye and generating a control program for an ophthalmic laser apparatus, and, computer program
US9582075B2 (en) 2013-07-19 2017-02-28 Nvidia Corporation Gaze-tracking eye illumination from display
US9880325B2 (en) 2013-08-14 2018-01-30 Nvidia Corporation Hybrid optics for near-eye displays
US9207466B2 (en) * 2013-11-26 2015-12-08 Johnson & Johnson Vision Care, Inc. Determining lens alignment on an eye using optical wavefronts
US10485655B2 (en) 2014-09-09 2019-11-26 Staar Surgical Company Ophthalmic implants with extended depth of field and enhanced distance visual acuity
SG11201807531TA (en) 2016-03-09 2018-09-27 Staar Surgical Co Ophthalmic implants with extended depth of field and enhanced distance visual acuity
US10406352B2 (en) * 2016-10-13 2019-09-10 Ronald Michael Kurtz System for temporary nonpharmacologic constriction of the pupil
US20180104098A1 (en) * 2016-10-13 2018-04-19 Ronald Michael Kurtz System for nonpharmacologic long-term constriction of a pupil
US10925479B2 (en) 2016-10-13 2021-02-23 Ronald Michael Kurtz Networked system of mobile communication platforms for nonpharmacologic constriction of a pupil
US20180104508A1 (en) * 2016-10-13 2018-04-19 Ronald Michael Kurtz Optical system for nonpharmacologic constriction of a pupil
US20180104099A1 (en) * 2016-10-13 2018-04-19 Ronald Michael Kurtz Digitally controlled optical system for nonpharmacologic constriction of a pupil
US10406380B2 (en) * 2016-10-13 2019-09-10 Ronald Michael Kurtz Method for nonpharmacologic temporary constriction of a pupil
US20180104506A1 (en) * 2016-10-13 2018-04-19 Ronald Michael Kurtz Mobile platform for nonpharmacologic constriction of a pupil
US20220087522A1 (en) * 2016-10-17 2022-03-24 EyeQue Inc. Methods and Apparatus for Addressing Presbyopia
EP3522771B1 (en) 2016-10-25 2022-04-06 Amo Groningen B.V. Realistic eye models to design and evaluate intraocular lenses for a large field of view
CA3046728C (en) * 2017-02-10 2021-12-28 Novartis Ag Optimization of spherical aberration parameters for corneal laser treatment
WO2018146519A1 (en) 2017-02-10 2018-08-16 Novartis Ag Calculation of actual astigmatism correction and nomographs for corneal laser treatment
US10739227B2 (en) 2017-03-23 2020-08-11 Johnson & Johnson Surgical Vision, Inc. Methods and systems for measuring image quality
US11000363B2 (en) * 2017-05-02 2021-05-11 Alcon Inc. Accommodating intraocular lens devices, systems, and methods using an opaque frame
AU2018376564A1 (en) 2017-11-30 2020-06-04 Amo Groningen B.V. Intraocular lenses that improve post-surgical spectacle independent and methods of manufacturing thereof
EP3749941A1 (en) 2018-02-08 2020-12-16 AMO Groningen B.V. Wavefront based characterization of lens surfaces based on reflections
AU2019219296B2 (en) 2018-02-08 2024-08-29 Amo Groningen B.V. Multi-wavelength wavefront system and method for measuring diffractive lenses
KR20230113645A (en) 2018-08-17 2023-07-31 스타 서지컬 컴퍼니 Polymeric composition exhibiting nanogradient of refractive index
US11340531B2 (en) * 2020-07-10 2022-05-24 Taiwan Semiconductor Manufacturing Company, Ltd. Target control in extreme ultraviolet lithography systems using aberration of reflection image
CN116829110A (en) * 2020-12-19 2023-09-29 爱尔康公司 Ablation system and method for treating presbyopia
CN114748242B (en) * 2022-04-13 2023-01-10 南开大学 Corneal ablation design method and device for wavefront-guided refractive surgery

Family Cites Families (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4665913A (en) 1983-11-17 1987-05-19 Lri L.P. Method for ophthalmological surgery
US4770172A (en) 1983-11-17 1988-09-13 Lri L.P. Method of laser-sculpture of the optically used portion of the cornea
US4732148A (en) 1983-11-17 1988-03-22 Lri L.P. Method for performing ophthalmic laser surgery
US4773414A (en) 1983-11-17 1988-09-27 Lri L.P. Method of laser-sculpture of the optically used portion of the cornea
US5207668A (en) 1983-11-17 1993-05-04 Visx Incorporated Method for opthalmological surgery
US5219343A (en) 1983-11-17 1993-06-15 Visx Incorporated Apparatus for performing ophthalmogolical surgery
US5108388B1 (en) 1983-12-15 2000-09-19 Visx Inc Laser surgery method
US4669466A (en) 1985-01-16 1987-06-02 Lri L.P. Method and apparatus for analysis and correction of abnormal refractive errors of the eye
EP0201231A3 (en) 1985-05-03 1989-07-12 THE COOPER COMPANIES, INC. (formerly called CooperVision, Inc.) Method of treating presbyopia with concentric bifocal contact lenses
US5163934A (en) 1987-08-05 1992-11-17 Visx, Incorporated Photorefractive keratectomy
US5204702A (en) * 1991-04-15 1993-04-20 Ramb, Inc. Apparatus and process for relieving eye strain from video display terminals
US5144630A (en) 1991-07-29 1992-09-01 Jtt International, Inc. Multiwavelength solid state laser using frequency conversion techniques
GB9220433D0 (en) 1992-09-28 1992-11-11 St George S Enterprises Ltd Pupillometer
US5520679A (en) 1992-12-03 1996-05-28 Lasersight, Inc. Ophthalmic surgery method using non-contact scanning laser
US6302877B1 (en) * 1994-06-29 2001-10-16 Luis Antonio Ruiz Apparatus and method for performing presbyopia corrective surgery
JP3169779B2 (en) * 1994-12-19 2001-05-28 日本電気株式会社 Multi-thread processor
US5646791A (en) 1995-01-04 1997-07-08 Visx Incorporated Method and apparatus for temporal and spatial beam integration
US5782822A (en) 1995-10-27 1998-07-21 Ir Vision, Inc. Method and apparatus for removing corneal tissue with infrared laser radiation
US6045578A (en) * 1995-11-28 2000-04-04 Queensland University Of Technology Optical treatment method
US5742626A (en) 1996-08-14 1998-04-21 Aculight Corporation Ultraviolet solid state laser, method of using same and laser surgery apparatus
US20010041884A1 (en) * 1996-11-25 2001-11-15 Frey Rudolph W. Method for determining and correcting vision
US6271914B1 (en) 1996-11-25 2001-08-07 Autonomous Technologies Corporation Objective measurement and correction of optical systems using wavefront analysis
US5777719A (en) * 1996-12-23 1998-07-07 University Of Rochester Method and apparatus for improving vision and the resolution of retinal images
US6090102A (en) 1997-05-12 2000-07-18 Irvision, Inc. Short pulse mid-infrared laser source for surgery
GB9716793D0 (en) * 1997-08-07 1997-10-15 Vista Optics Limited Contact lens
ES2277430T3 (en) 1998-03-04 2007-07-01 Visx Incorporated LASER PRESBORAGE TREATMENT SYSTEM.
US6004313A (en) 1998-06-26 1999-12-21 Visx, Inc. Patient fixation system and method for laser eye surgery
US7281795B2 (en) * 1999-01-12 2007-10-16 Calhoun Vision, Inc. Light adjustable multifocal lenses
US6129722A (en) * 1999-03-10 2000-10-10 Ruiz; Luis Antonio Interactive corrective eye surgery system with topography and laser system interface
US6050687A (en) * 1999-06-11 2000-04-18 20/10 Perfect Vision Optische Geraete Gmbh Method and apparatus for measurement of the refractive properties of the human eye
US6610048B1 (en) * 1999-10-05 2003-08-26 Jack T. Holladay Prolate shaped corneal reshaping
US20010031959A1 (en) * 1999-12-29 2001-10-18 Rozakis George W. Method and system for treating presbyopia
US6394999B1 (en) * 2000-03-13 2002-05-28 Memphis Eye & Cataract Associates Ambulatory Surgery Center Laser eye surgery system using wavefront sensor analysis to control digital micromirror device (DMD) mirror patterns
US6547822B1 (en) * 2000-05-03 2003-04-15 Advanced Medical Optics, Inc. Opthalmic lens systems
US6609793B2 (en) 2000-05-23 2003-08-26 Pharmacia Groningen Bv Methods of obtaining ophthalmic lenses providing the eye with reduced aberrations
GR20000100291A (en) * 2000-08-24 2002-05-24 Σ. Χαριλαος Γκινης Compressible implant for
US6474814B1 (en) * 2000-09-08 2002-11-05 Florida Optical Engineering, Inc Multifocal ophthalmic lens with induced aperture
AU2002239515A1 (en) 2000-12-08 2002-06-18 Visx Incorporated Direct wavefront-based corneal ablation treatment program
SE0004829D0 (en) * 2000-12-22 2000-12-22 Pharmacia Groningen Bv Methods of obtaining ophthalmic lenses providing the eye with reduced aberrations
EP1390802A1 (en) * 2001-04-27 2004-02-25 Novartis AG Automatic lens design and manufacturing system
AU2002335863B2 (en) * 2001-10-19 2007-07-26 Bausch & Lomb Incorporated Presbyopic vision improvement
US6802605B2 (en) * 2001-12-11 2004-10-12 Bausch And Lomb, Inc. Contact lens and method for fitting and design
US7130835B2 (en) * 2002-03-28 2006-10-31 Bausch & Lomb Incorporated System and method for predictive ophthalmic correction
EP1516156B1 (en) 2002-05-30 2019-10-23 AMO Manufacturing USA, LLC Tracking torsional eye orientation and position
US7163292B2 (en) * 2002-09-06 2007-01-16 Synergeyes, Inc. Hybrid contact lens system and method
JP2006508709A (en) * 2002-09-13 2006-03-16 オキュラー サイエンシス インコーポレイテッド Apparatus and method for improving visual acuity
US7381221B2 (en) 2002-11-08 2008-06-03 Advanced Medical Optics, Inc. Multi-zonal monofocal intraocular lens for correcting optical aberrations
ITTO20021007A1 (en) * 2002-11-19 2004-05-20 Franco Bartoli EXCIMER LASER EQUIPMENT AND DRIVING METHOD
US7896916B2 (en) * 2002-11-29 2011-03-01 Amo Groningen B.V. Multifocal ophthalmic lens
EP1567907A4 (en) 2002-12-06 2009-09-02 Amo Mfg Usa Llc Presbyopia correction using patient data
US7036931B2 (en) * 2003-01-29 2006-05-02 Novartis Ag Ophthalmic lenses
GB0303193D0 (en) * 2003-02-12 2003-03-19 Guillon Michael Methods & lens
US7905917B2 (en) * 2003-03-31 2011-03-15 Bausch & Lomb Incorporated Aspheric lenses and lens family
WO2004090611A2 (en) * 2003-03-31 2004-10-21 Bausch & Lomb Incorporated Intraocular lens and method for reducing aberrations in an ocular system
US20040237971A1 (en) 2003-06-02 2004-12-02 Hema Radhakrishnan Methods and apparatuses for controlling optical aberrations to alter modulation transfer functions
DE10325841A1 (en) * 2003-06-06 2004-12-30 Acritec Gmbh intraocular lens
US7168807B2 (en) 2003-06-20 2007-01-30 Visx, Incorporated Iterative fourier reconstruction for laser surgery and other optical applications
US20050041203A1 (en) * 2003-08-20 2005-02-24 Lindacher Joseph Michael Ophthalmic lens with optimal power profile
US20050261752A1 (en) * 2004-05-18 2005-11-24 Visx, Incorporated Binocular optical treatment for presbyopia
US20050259221A1 (en) * 2004-05-20 2005-11-24 Coopervision, Inc Corneal onlays and wavefront aberration correction to enhance vision
US7387387B2 (en) * 2004-06-17 2008-06-17 Amo Manufacturing Usa, Llc Correction of presbyopia using adaptive optics and associated methods
EP1791499A4 (en) * 2004-08-13 2011-08-17 Ottawa Health Research Inst Vision enhancing ophthalmic devices and related methods and compositions
ITTO20040825A1 (en) * 2004-11-23 2005-02-23 Cogliati Alvaro ARTIFICIAL LENSES IN PARTICULAR CONTACT LENSES OR INTRA-OCULAR LENSES FOR THE CORRECTION OF THE PRESBYOPIA EVENTUALLY ASSOCIATED WITH OTHER VISUAL DEFECTS, AND THEIR MANUFACTURING METHOD
US7401922B2 (en) * 2005-04-13 2008-07-22 Synergeyes, Inc. Method and apparatus for reducing or eliminating the progression of myopia
CA2604776A1 (en) * 2005-04-14 2006-10-19 University Of Rochester System and method for treating vision refractive errors
US7413566B2 (en) * 2005-05-19 2008-08-19 Amo Manufacturing Usa, Llc Training enhanced pseudo accommodation methods, systems and devices for mitigation of presbyopia
US7261412B2 (en) * 2005-06-30 2007-08-28 Visx, Incorporated Presbyopia correction through negative high-order spherical aberration
US8182471B2 (en) 2006-03-17 2012-05-22 Amo Manufacturing Usa, Llc. Intrastromal refractive correction systems and methods
US8016420B2 (en) * 2007-05-17 2011-09-13 Amo Development Llc. System and method for illumination and fixation with ophthalmic diagnostic instruments

Also Published As

Publication number Publication date
US10213102B2 (en) 2019-02-26
US20070002274A1 (en) 2007-01-04
MX2007016344A (en) 2008-03-05
US20160256048A1 (en) 2016-09-08
US20090000628A1 (en) 2009-01-01
JP2009500072A (en) 2009-01-08
KR20080037667A (en) 2008-04-30
US7478907B2 (en) 2009-01-20
US7261412B2 (en) 2007-08-28
AU2006266300A1 (en) 2007-01-11
WO2007005261A3 (en) 2007-06-21
CA2612248C (en) 2012-09-11
US9358154B2 (en) 2016-06-07
EP1895928A4 (en) 2011-02-02
WO2007005261A2 (en) 2007-01-11
US8142499B2 (en) 2012-03-27
US20080015461A1 (en) 2008-01-17
AU2006266300B2 (en) 2011-06-02
EP1895928B1 (en) 2017-08-23
KR101274321B1 (en) 2013-06-13
JP4917599B2 (en) 2012-04-18
US20090216218A1 (en) 2009-08-27
EP1895928A2 (en) 2008-03-12

Similar Documents

Publication Publication Date Title
CA2612248A1 (en) Presbyopia correction through negative high-order spherical aberration
Schwiegerling et al. Corneal ablation patterns to correct for spherical aberration in photorefractive keratectomy
US8858541B2 (en) Methods and devices for refractive treatments of presbyopia
US20180329229A1 (en) Multifocal lens design and method for preventing and/or slowing myopia progression
JP2019211772A (en) Ophthalmic lens comprising lenslets for preventing and/or slowing myopia progression
JP2009500072A5 (en)
AU2012346864B2 (en) Lenses, systems and methods for providing custom aberration treatments and monovision to correct presbyopia
JP2007511803A5 (en)
MX2007014499A (en) Scleral lenses for custom optic evaluation and visual performance improvement.
JP2007511803A (en) Method and apparatus for changing relative field curvature and peripheral off-axis focal position
US10758413B2 (en) Femto second multi shooting for eye surgery
US20210181528A1 (en) Devices and methods for correcting high-order optical aberrations for an eye using light
Lago et al. Computational simulation of the optical performance of an extended depth of focus intraocular lens in post-LASIK eyes.
McGrath Custom ablation-fact or fiction?

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed

Effective date: 20200831