CA2600070C - Method and system for controlling a construction machine - Google Patents

Method and system for controlling a construction machine Download PDF

Info

Publication number
CA2600070C
CA2600070C CA2600070A CA2600070A CA2600070C CA 2600070 C CA2600070 C CA 2600070C CA 2600070 A CA2600070 A CA 2600070A CA 2600070 A CA2600070 A CA 2600070A CA 2600070 C CA2600070 C CA 2600070C
Authority
CA
Canada
Prior art keywords
terrain
processing apparatus
points
positions
cndot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CA2600070A
Other languages
French (fr)
Other versions
CA2600070A1 (en
Inventor
Juergen Maier
Hansjoerg Petschko
Reto Biscontin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Leica Geosystems AG
Original Assignee
Leica Geosystems AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leica Geosystems AG filed Critical Leica Geosystems AG
Publication of CA2600070A1 publication Critical patent/CA2600070A1/en
Application granted granted Critical
Publication of CA2600070C publication Critical patent/CA2600070C/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • E01C19/004Devices for guiding or controlling the machines along a predetermined path
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • E01C19/004Devices for guiding or controlling the machines along a predetermined path
    • E01C19/006Devices for guiding or controlling the machines along a predetermined path by laser or ultrasound
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C15/00Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
    • G01C15/002Active optical surveying means

Abstract

In a method according to the invention for controlling slip form pavers, it is intended to determine the positions of two reflectors arranged on the longitudinal beams of a machine frame by measuring means for position determination, in particular tacheometers, which are arranged at defined points in a reference terrain. From the position information and the measurement by means of two tilt sensors arranged on the machine frame, the positions of four points on the slip form paver or on the slip form paver screed are determined in the reference terrain. On the basis of a comparison of the determined actual positions of the four points with the required positions thereof, the slip form paver, and hence the installation height and position of the screed having a defined relationship with said slip form paver, are automatically controlled.

Description

METHOD AND SYSTEM FOR CONTROLLING
A CONSTRUCTION MACHINE

The invention relates to a method and system for controlling construction machines, and a system. The invention relates to the control of construction machines in general, in particular of slip form pavers with variable frame and broad screeds.
Slip form pavers are construction machines with a characteristic screed which serves, for example, for the installation of concrete or asphalt. The screed can also be formed with a characteristic profile, for example for the production of rails, channels or water grooves. Screeds are therefore produced for a wide variety of applications, i.e. with different screed profiles and in particular screed widths. Thus, slip form pavers dimensioned according to the generic type and having the broadest possible screeds are required, for example, for use on airports, such as, for example, for the construction of aircraft runways. The need for variable screeds for a wide variety of potential applications of slip form pavers is taken into account by machine manufacturers with the development of pavers having a variable frame which pen-nit variation of the screed width.
The control of such road finishers is generally effected by means of reference line scanning devices. A
sensor scans the required direction/required height of a reference line, such as, for example, a tensioned wire; deviations from the required direction/required height are corrected by a regulating means.

Thus, DE 101 38 563 discloses a wheel-type road finisher which automatically follows a reference line. In US 5,599,134, scanning of a reference line is effected without contact, by means of ultrasonic sensors. However, this method of controlling a machine requires setting out of the area to be processed before the use of the construction vehicle and is very time-consuming and labor-intensive.
A method developed by the Applicant Leica-Geosystems envisages mounting two masts with prisms on the crossbeams of a rigid machine frame formed from longitudinal beams and crossbeams and determining the distance and direction to the prisms by means of two tacheometers or total stations, and hence determining the position of the prisms or of the machine. These tacheometers or total stations are advantageously motor-powered and capable of automatically following the reflector.

Moreover, a two-dimensional inclination of the frame and hence the orientation of the paver are measured by means of two tilt sensors. The slip form paver is controlled via in each case a point calculated at the front and rear crossbeam - in the working direction -or via the connection of the two points in the form of a straight line.
However, this solution cannot be used in the case of pavers having variable frames and screed widths of more than 10 in. In the case of screed widths of the order of magnitude of 10 meters or more with control via two points, the method of control no longer gives the accuracy required according to the generic type and also cannot be applied in terms of construction technology to pavers having variable frames.
One desire of the present invention is therefore to eliminate the disadvantages of the prior art and to provide a method by means of which control of construction machines, in particular of slip form pavers, is permitted, in particular independently of the screed width and frame variability.

It is a further aspect of the invention to provide a system for carrying out the method according to the invention.
The method according to the invention is described below in the application to slip form pavers or to the control of slip form pavers. However, the method is by no means limited to slip form pavers but can be applied to all kinds of mobile machines, in particular vehicles and construction machines.

In a first variant for carrying out a method according to the invention, at least two reflectors and at least one tilt sensor - in general two tilt sensors - are coordinated with a slip form paver - or a construction machine - having a characteristic screed.
The slip form paver is in general a commercial construction machine having a chassis which is composed of a machine frame having longitudinal beams parallel to the working direction and crossbeams transverse to the working direction, and a plurality of undercarriages which are adjustable in height, for example having steerable crawler units.
The undercarriages can be adjusted in height and position, in particular independently of one another, for example by means of cylinders, and they keep the plane of the machine frame at a predetermined height and in a predetermined position. The undercarriages could also be adjustable transversely to the working direction, for example by means of movable sliding girders. Furthermore, the vehicle could be designed as a wheel-type paver having wheels as running gear, or as a rail vehicle.
The frame of the paver is preferably variable, for example capable of being extended laterally, in order to permit the use of screeds of different widths.
However, the method is not limited to variable frames but can of course also be applied in the case of construction machines having a rigid frame.
Many of the commercial slip form pavers are, however, now equipped with a variable frame, and the frame can be made to be variable in all possible variants - for example with telescopically extendable units. Such slip form pavers are offered, for example, by Wirtgen in Germany or Gomaco in the USA. A variable frame is composed, for example, of two strong, rigid longitudinal beams and two variable crossbeams. The crossbeams are, for example, telescopically extendable. A platform - a type of "virtual"
inner frame, for example for a control platform - can be provided on the frame which so to speak is extendable. A screed is fixed, advantageously rigidly, to the bottom of the machine frame. The screed is preferably fixed to the longitudinal beams and is connected in the middle to the so-called inner frame via a cylinder which is adjustable in height. The screed may be in the form of a smoothing screed, i.e. without a profile, but may equally have a characteristic profile, such as, for example, for track construction.
It may also be in the form of two or more parts and, when it does not consist of one part, may have, for example, screed parts connected to one another in an articulated manner in the middle of the working width. The screed or machine is preferably formed in such a way that it is adjustable in its width (working width). Thus, extendable screed means could be present, or the screed could be formed in such a way that further screed parts can be joined on or attached. Potential applications for slip form paver screeds and characteristic screed profiles associated therewith are, for example, the construction of roads and curbs, aircraft runways, tracks, etc. In particular, the various applications also set different requirements with regard to the desired screed width. Thus, a broader screed is of course desired for the construction of an aircraft runway than for the construction of a sidewalk.
Screeds having widths of up to about 16 in are commercially available. In order to be able to use one and the same vehicle for different applications, slip form pavers having the possibility for changing the screed width are now offered. This also requires in particular the above-mentioned variable machine frame.

The screed is generally fixed to the longitudinal beams of the frame.
Advantageously, the screed is also connected in its middle and in the middle of the slip form paver frame to the frame, generally via a cylinder, by means of which an initial adjustment or adjustment of the screed with regard to the sag thereof can be chosen or set.
Since the screed may be very broad - e.g. 16 in - sagging of the screed is to be expected. This sagging of the screed can be adapted to the working circumstances and conditions before the beginning of work by means of the adjustable cylinder.
If required or desired, the screed can also be adjusted to have a certain sag or rise in the middle. This step is preferably effected before the active use of the vehicle, but automatic adaptation or correction of the screed sag while the construction work is being carried out would also be conceivable. In the case of manual (or automatic) adjustment before the beginning of work, a further adjustment in the course of the work may be required.

Because of the extendable cylinders, the paver frame is adjustable in its position and height, and hence also the installation height and position of the screed fixed to the paver.
The method according to the invention envisages, in the first variant, measurement in each case of the distance, the height and the directions relative to reflectors coordinated with the slip form paver frame, preferably the longitudinal beams, and in general fixed thereon. This gives the position of the machine frame or of the screed. For this purpose, the longitudinal tilt and transverse tilt of the frame, and hence also of the screed, are determined by means of tilt sensors coordinated with the frame, in particular the longitudinal beams, in particular mounted thereon or integrated in the beams (or in certain circumstances only one tilt sensor). The tilt of the frame could also be established by another means for tilt determination, for example by polarization filters coordinated with the reflectors, in particular located upstream thereof.

Measuring instruments by means of which reflective elements on the construction machine are surveyed from a suitable position on the ground are used for determining the position of the machine frame or of the screed. Preferably, the position of two reflectors mounted on the machine is measured by means of theodolites and laser telemeters or tacheometers. For a measurement to two reflective regions, for example, two tacheometers are used, each of which measures the distance, the height and the directions relative to a reflective region. The measurement is effected from a defined position on the ground. The position of the reflectors or of the paver can be determined by means of the direction, height and distance measurement with the tacheometers to the reflective regions having a defined geometrical relationship with the slip form paver and by means of the known position of the tacheometers. In conjunction with automated target recognition and target tracking, a quasi-continuous position determination can be achieved. A
line of sight between tacheometers and reflectors is required for the measurement.
The reflectors indirectly or directly mounted on the paver frame or on the screed are preferably in the form of all-round reflectors and are connected to a reflector support -generally a mast. It is possible to use cylindrical or spherical 360 reflectors, as well as triple prisms, polished steel elements, reflecting glass elements, elements surrounded by reflector foil, or elements, in particular spheres, formed from reflective material. All-round reflectors are preferably used for the measurement, in order to permit a measurement in any position of the slip form paver.

The masts with the reflectors can be coordinated with the machine frame or with the screed and are generally mounted on the frame. Depending on the application, the height of the masts and type of reflectors may be varied. The mounting is preferably effected at the rear end - in the direction of travel of the machine - of the strong longitudinal beam of the frame, as close as possible to the undercarriages and the screed, in order to provide a system which is as sensitive as possible. This arrangement of the prisms or of the masts results in the greatest possible sensitivity of the measurement with respect to changes in the position of the machine.
A second variant for determining the position of a construction machine and hence for the control thereof is a position determination by means of global positioning systems, such as, for example, GPS, together with the orientation determination of the first variant.
However, global positioning systems do not always provide the required accuracy of the position determination and generally require a considerable effort, for example through use of a reference station, or with the acceptance of longer measuring times.
There is also the problem that coordinates determined from GPS signals do not have sufficient accuracy - especially with regard to the height of the construction machine - for most construction projects. However, with corresponding effort and/or depending on the intended use, a possible, advantageous position determination of points on the construction machine using a global positioning system - GPS - in which the antennas of the GPS receiving system are coordinated according to the arrangement of the reflectors of the construction machine is also conceivable for position determination for carrying out the method according to the invention. A signal processing unit may be positioned independently of the GPS
receiver antennas. Furthermore, a GPS reference station may advantageously be provided in the second variant.
For the position determination, the system according to the invention can, if required, be extended with components for increasing the vertical accuracy, for example with one or more laser plane generators and corresponding receivers.
The determination of the longitudinal and transverse tilt of the slip form paver or of the frame or of the screed is effected in the first and second variant preferably by means of tilt sensors on the longitudinal beams of the machine frame - in general, a tilt sensor is mounted on each of the two longitudinal beams. Depending on the application and required accuracy of measurement, one tilt sensor may also be sufficient for tilt determination. The respective tilt sensor is preferably positioned in the middle of the respective longitudinal beam, and the tilt is determined both in the longitudinal direction and in the transverse direction, i.e. a two-axis tilt sensor is used.
It is of course also possible to use other known positioning systems for position determination of - in particular two - points on the construction machine for carrying out the method according to the invention. In particular, it is also possible to use systems which also provide orientation information for the respective position, whereby it is additionally possible to replace the tilt sensors.
For example, the first and second variants can also be modified in such a way that only one position is determined with the aid of reflectors, GPS or other positioning systems and at least the vehicle axis parallel or transverse to the travel direction is determined by means of a compass or another direction indicator, and the points Al to A4 are derived therefrom.

In a first step, the method according to the invention envisages feeding of a reference terrain model to a control unit communicating with the slip form paver. The control unit is composed, for example, of a data processing and control module (e.g.
computer and controller).

A reference terrain model is to be understood as meaning a model in which a planned project - e.g. a road - is embedded in the existing terrain. The reference terrain model describes the planned required terrain. From the reference terrain model, it is possible to derive in a known manner required positions for terrain processing equipment, such as, for example, a screed. Of course, a reference terrain model can equally provide required values for, for example, a travel path and therefrom required values for vehicle positions.
In the reference terrain, measuring instruments, preferably total stations or tacheometers, are set up, with which measuring instruments defined points -coordinates in the reference terrain or in the reference terrain model - are coordinated -for example by positioning the instruments at defined coordinates (already measured points) of the reference terrain or by incorporating the instruments in the reference terrain by measurement.
In the first variant, two reflective elements are coordinated with the slip form paver, and preferably masts having reflector prisms are mounted on the frame. The reflector prisms have coordinates defined by a previously performed measurement in a local machine coordinate system. If a measurement is carried out from the measuring device or the measuring devices in the reference terrain to the prism or prisms, coordinates in the reference terrain or in the reference terrain model are assigned to the respective prisms by means of this measurement.
The measurement information of the measuring devices in the reference terrain and of the tilt sensors is communicated to the control unit - for example by radio. By means of the determination of the positions of the reflector prisms - and hence the position of the paver having a defined geometrical relationship with the prisms, or of the screed - in the reference terrain or in the reference terrain model, together with the information from the measurements by the tilt sensors, the actual positions of four points Al-A4 on the paver frame or on the screed can be calculated in the reference terrain or in the reference terrain model. The actual position of these four points Al-A4 in the reference terrain model are compared with the required positions specified in the reference terrain model for the points, and the deviation of the position of the machine or of the screed is correspondingly corrected - for example by means of the running gears which are adjustable in height. The calculation is generally performed by means of a data processing module, such as a computer, of the control unit, and the control is performed by means of a control module, such as a controller, of the control unit. For example, the data processing module calculates the deviation of the actual position from the required position and provides corresponding correction values for the cylinders to the control module. The control unit is preferably present on the construction machine and can be operated by a driver or can control the machine automatically.

On the basis of the method according to the invention, control of the machine and hence of the installation height and position of the screed is thus effected via four points on the machine frame or on the screed, the actual positions of which are determined in the first variant on the basis of the determination of the positions of the reflectors and the measurements by the tilt sensors on the frame.

In the second variant, the actual positions of the four points Al-A4 in the reference terrain are determined substantially analogously to the first variant, except that, instead of the determination of the positions of the reflectors of the first variant, a determination of the position of two GPS receiver antennas is effected. As in the first variant, the actual positions of the points Al-A4 in the reference terrain model are then calculated by means of the control unit, in particular the data processing module, and compared with the required positions of the points A 1-A4 in the reference terrain model. The machine is then controlled via the control unit, in particular the control module.
The method according to the invention and the system according to the invention are described in more detail below, purely by way of example, with reference to specific embodiments shown schematically in the drawings, further advantages of the invention also being discussed. Specifically:

Fig. I shows a system according to the invention, Fig. 2 shows a slip form paver having reflectors and tilt sensors, Fig. 3 shows, in two partial figures 3a and 3b, a tacheometer and a mast with a reflector as components of the system according to the invention, Fig. 4 shows, in two partial figures 4a and 4b, diagrams for explaining the method according to the invention for controlling the slip form paver, and Fig. 5 shows a slip form paver with GPS.

The figures are described below in relation to one another. The size ratios of the objects shown are not to be considered as being to scale. Figures 1 to 4 relate to a first variant of the invention, which uses tacheometers and reflectors for the position determination. It is understood that further variants are also described thereby, global or local positioning systems with their antennas being provided instead of the tacheometers and reflectors. In the following description, the conditions for the first embodiment are also applicable in context to the further embodiments.

Fig. I schematically shows a system according to the invention for controlling a slip form paver. A slip form paver having a screed 5 which travels over a surface 11 is shown.
It is possible to imagine that, for example, fresh concrete has been poured onto the surface 11. The slip form paver draws the screed 5 over the surface 11 for producing a level surface, for example for an aircraft runway. Since irregularities as small as the order of magnitude of mm are noticeable in level smooth surfaces, high accuracy in the installation height and position of the screed 5 is required. In order to control the slip form paver or the screed 5 with high accuracy, according to the invention two reflectors 6, 6' are mounted on the paver. The reflectors 6, 6' are formed here as all-round prisms and mounted on masts 7, 7'. Such a reflector mast 8, 8' is fixed in each case on a longitudinal beam 1, 1' of the paver frame. The reflector mast 8, 8' is arranged at the rear end - in the working direction AR of the paver - of the longitudinal beam of the frame and as far as possible at the outer edge of the beam, i.e. as close as possible to the undercarriages 4, 4'.
This results in high sensitivity of the system in that changes in the position of the paver are transmitted to the positions of the reflectors 6, 6', and the system therefore responds to very small changes in the position and height of the paver or of the screed 5.
Also mounted on the frame are two tilt sensors 9, 9', one tilt sensor 9, 9' on one longitudinal beam 1, 1' each of the frame. The sensors are fixed in the middle of the frame and measure both the longitudinal tilt and the transverse tilt of the frame or of the paver or of the screed 5.

On the ground, two tacheometers 10, 10' are set up at defined points, by means of which tacheometers the reflectors 6, 6' on the slip form paver are surveyed.
By means of one tacheometer 10, 10' each, the position of one reflector 6, 6' each on the paver is determined. For the simultaneous surveying of the two reflective regions, two tacheometers 10, 10' are used.

With the information from tacheometers 10, 10' and tilt sensors 9, 9', it is possible to calculate points Al, A2, A3, A4 on the slip form paver, which can be controlled automatically in position and orientation on the basis thereof via a comparison of the measured actual positions with the required positions of the points Al, A2, A3, A4. At the same time, the installation height and position of the screed associated with the paver are controlled thereby.

Fig. 2 shows a slip form paver having a variable frame and variable screed width.
The paver frame is composed of two strong longitudinal beams 1, 1' (beams parallel to the travel direction and working direction AR) and two crossbeams 2, 2' running transversely to the working direction AR. A sort of platform or inner frame 3 is placed above the crossbeams 2, 2'. Furthermore, the slip form paver is equipped here with a superstructure 12, which may comprise, for example, a motor, a control platform and a control unit. Of course, the vehicle can also be controlled by means of an external control unit.
The crossbeams 2, 2' are adjustable in width, for example telescopically extendable.
This permits in particular the use of a screed 5 whose width is variable.
Since different screed widths are generally required for different applications, it is expedient and economical to be able to use a single slip form paver for different tasks by virtue of the fact that the screed 5 thereof can be adjusted to different widths. Also shown are the two reflector masts 8, 8' with reflectors 6, 6' fixed to the masts 7, 7', in that region of the two longitudinal beams 1, 1' which is at the rear in the travel direction, as close as possible to the undercarriages 4, 4'. The tilt sensors 9, 9' are mounted in the middle of the longitudinal beams 1, 1'. Here, the slip form paver also has a beam 13 for a smoothing device.
Fig. 3 shows two components of the system according to the invention. Fig. 3a shows a tacheometer 10, by means of which the position of the reflector 6 is determined in the coordinate system of the tacheometer 10. The tacheometer 10 is set up at a position of defined coordinates - in the coordinate system of a reference terrain model.
By surveying a reflector 6 by means of the tacheometer 10, the coordinates of the reflector 6 in the reference terrain model or in the reference terrain described by the model are therefore determined.

Fig. 3b shows a reflector mast 8 which is used on the slip form paver or mounted thereon and can be connected indirectly or directly to the paver. The reflector mast 8 is composed of a mast 7, for example a metal rod, and a reflective element. Here, the reflector 6 is in the form of an all-round prism. It is just as possible to use spherical or cylindrical all-round reflectors or elements surrounded by reflector foil or simply reflective forms, for example spheres, or more than only one individual reflective region.
In Fig. 4, the method according to the invention is explained by means of a diagram.
Fig. 4a schematically shows a slip form paver frame in plan view. The frame is composed of two strong, rigid longitudinal beams 1, 1' and two crossbeams 2, 2'. The crossbeams 2, 2' are telescopically extendable and permit a variation in the width of the paver. The positions of the reflector masts 8, 8' and tilt sensors 9, 9' are shown on the longitudinal beams 1, 1'. It is evident that the reflector masts 8, 8' are positioned in each case at the rear end - in the working direction AR - of the two longitudinal beams 1, 1' and as close as possible to the undercarriages 4, 4'. Moreover, a tilt sensor 9, 9' is arranged on each longitudinal beam 1, 1' - preferably in the middle.

In the middle of the paver frame, a sort of "virtual" inner frame 3 is indicated by dot-dash lines. Here, this is a frame superstructure which is fixed to the frame crossbeams.
The dashed lines indicate the position of the screed 5, which is mounted under the frame. The screed 5 is fixed to the longitudinal beams 1, 1' of the machine frame and also fixed to the frame in the middle of the inner frame 3 by means of a cylinder which is not shown. The cylinder permits a height adjustment of the screed 5; in particular, it is possible thereby to counteract the sag of screed 5, which in particular plays a role in the case of wide screeds 5. The height adjustment of the screed 5 - in the middle thereof - is generally carried out before the beginning of operation of the slip form paver. For some applications, it may be necessary to set up the screed 5 not as flat screed 5 but with a sag or rise in the middle of the screed. The settings are generally readjusted during the work.
Fig. 4b shows a diagram of the screed 5 with projections of the reflector positions and tilt sensor positions 8, 8', 9, 9', and the four points Al, A2, A3, A4 calculated from the tacheometer and tilt sensor measurements. Through the measurements by means of the tacheometers 10, 10' arranged in a reference terrain to the reflectors 6, 6', the positions thereof in the reference terrain are determined. From this information, the additional measured values of the tilt sensors 9, 9' and the known geometrical relationship of the reflectors 6, 6' with the machine frame or with the screed 5, the points Al, A2, A3 and A4 can be calculated. These calculated positions of the points Al-A4 represent actual values with respect to the screed position in the coordinate system of the reference terrain. By comparison with required values (or required coordinates) of the reference terrain, adjustment values for the cylinders of the running gears 4, 4' can be derived and the slip form paver or the screed 5 can be automatically controlled in position and height.
Fig. 5 shows an embodiment for a second variant of a system for carrying out the method according to the invention. Analogously to Fig. 2, a slip form paver is shown, on the longitudinal beams (1, 1') of which, however, GPS receiver antennas (8a, 8a') are arranged instead of the reflector masts (8, 8'). The (global) position of the slip form paver is determined via satellite signals of GPS satellites (14, 14' 14") - which are shown here in their number and arrangement purely by way of clearer explanation. Signal processing units can be positioned in a known manner - for example on the machine or externally.

Claims (31)

1. A method for control in relation to direction and vertical position of a construction machine which can move in a working direction relative to a reference terrain, comprising .cndot. a machine frame having a left and right longitudinal beam substantially parallel to the working direction, .cndot. running gears which are adjustable in direction and height by means of final control elements, and .cndot. a terrain processing apparatus, in particular a screed, the terrain processing apparatus being coupled to the longitudinal beams, comprising the steps .cndot. provision of information about the required three-dimensional state of a terrain to be processed, .cndot. derivation of information about the required three-dimensional position of the terrain processing apparatus, .cndot. provision of information about the actual three-dimensional position of the terrain processing apparatus relative to the required position, .cndot. derivation of a control instruction for the construction machine by comparison of required and actual three-dimensional positions, .cndot. control of the direction and the vertical position of the construction machine according to the derived control instruction, wherein the information about the actual position is obtained on the basis of the determination of the positions of at least four points which can be coordinated with the terrain processing apparatus, - the positions of the at least four points on the terrain processing apparatus being determined by:
- determination of the longitudinal and transverse tilt of the left and/or right longitudinal beam, - determination of the position of a point on the left longitudinal beam relative to the position of a point in the reference terrain, - determination of the position of a point on the right longitudinal beam relative to the position of a point in the reference terrain, - derivation of the positions of the at least four points in the reference terrain.
2. The method as claimed in claim 1, wherein the at least four points are coordinated with the terrain processing apparatus relative to points in the reference terrain.
3. The method as claimed in claim 2, wherein the points include at least two points in the reference terrain.
4. The method as claimed in claim 1, wherein the at least four points are coordinated with the terrain processing apparatus by a corresponding number of satellite signals.
5. The method as claimed in any one of claims 1 to 4, wherein the terrain processing apparatus is directly connected to the longitudinal beams.
6. The method as claimed in any one of claims 1 to 4, wherein the terrain processing apparatus is indirectly connected to the longitudinal beams.
7. The method as claimed in claim 1, wherein the final control elements include cylinders.
8. The method as claimed in claim 1, wherein one reflector in each case is coordinated with the left and right longitudinal beam and the positions of the at least four points on the terrain processing apparatus are determined by a procedure in which - the positions of the reflectors in the reference terrain are determined, - the tilt of the left and/or right longitudinal beam is determined and - the positions of the at least four points in the reference terrain are derived therefrom.
9. The method as claimed in claim 8, wherein the positions of the reflectors are determined on the basis of a position determination of at least two positions in the reference terrain.
10. The method as claimed in claim 9, wherein the position determination of the at least two positions in the reference terrain is provided by two tacheometers.
11. The method as claimed in any one of claims 1 to 9, wherein the tilts of the longitudinal beams are determined by means of at least one tilt sensor coordinated with at least one of the longitudinal beams.
12. The method as claimed in claim 11, wherein the at least one tilt sensor includes a two-axis tilt sensor.
13. A system for control in relation to direction and vertical position of a construction machine which can move in a working direction relative to a reference terrain, comprising .cndot. a construction machine having - a machine frame which comprises a left and right longitudinal beam substantially parallel to the working direction, - running gears which are adjustable in direction and height by means of final control elements, and - a terrain processing apparatus, in particular a screed, the terrain processing apparatus being coupled to the longitudinal beams, .cndot. a position determining means for determination of the position of points coordinated with the construction machine, and .cndot. a means for providing and processing - information about the required three-dimensional state of a terrain to be processed, - information about the required three-dimensional position of the terrain processing apparatus, - information about the actual three-dimensional position of the terrain processing apparatus relative to the required position,
14 - control instructions for the construction machine through comparison of required and actual positions, wherein .cndot. coordination means are associated with the left and right longitudinal beams .cndot. a tilt sensor is coordinated with at least one of the longitudinal beams.

14. The system as claimed in claim 13, wherein the position determining means includes a global positioning system (GPS).
15. The system as claimed in claim 13, wherein the position determining means includes at least two measuring means.
16. The system as claimed in claim 15, wherein the at least two measuring means includes a tacheometer.
17. The system as claimed in any one of claims 13 to 16, wherein the coordination means includes a reflector.
18. The system as claimed in claim 17, wherein the reflector includes a prism.
19. The system as claimed in any one of claims 13 to 16, wherein the coordination means includes a GPS receiver antenna.
20. The system as claimed in any one of claims 13 to 19, wherein the tilt sensor includes a two-axis tilt sensor.
21. The system as claimed in any one of claims 13 to 20, wherein the terrain processing apparatus is directly connected to the longitudinal beams.
22. The system as claimed in any one of claims 13 to 20, wherein the terrain processing apparatus is indirectly connected to the longitudinal beams.
23. The system as claimed as claimed in claim 13, wherein the final control elements include cylinders.
24. The system as claimed in claim 13, wherein masts are coordinated with the reflectors, which masts can be fixed on the longitudinal beams.
25. The system as claimed in claim 24, wherein the reflectors are firmly connected to the masts, and wherein the connection is effected in the upper third of the masts.
26. The system as claimed in any one of claims 13 to 25, wherein the at least two measuring means for position determination comprise tacheometers.
27. The system as claimed in any one of claims 13 to 26, wherein the reflectors or the masts or the GPS receiver antennas are coordinated with those ends of the longitudinal beams which are at the rear in the working direction of the construction machine.
28. The system as claimed in any one of claims 13 to 27, wherein a GPS
reference station is coordinated with the system.
29. The system as claimed in any one of claims 13 to 28, wherein the tilt sensor coordinated with at least one longitudinal beam is arranged in the middle.
30. The system as claimed in any one of claims 13 to 27 or 29, wherein local positioning systems based on electromagnetic emission are provided for determining the positions of the points coordinated with the construction machine, the receiving antennas of said positioning systems being arranged instead of the reflectors.
31. The system as claimed in any one of claims 13 or 27 to 30, wherein at least one laser plane generator having a corresponding receiver is provided for increasing the vertical accuracy of the global or local positioning system.
CA2600070A 2005-03-04 2006-03-03 Method and system for controlling a construction machine Active CA2600070C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/071,942 US20060198700A1 (en) 2005-03-04 2005-03-04 Method and system for controlling construction machine
US11/071,942 2005-03-04
PCT/EP2006/060448 WO2006092441A1 (en) 2005-03-04 2006-03-03 Method and system for controlling a construction machine

Publications (2)

Publication Number Publication Date
CA2600070A1 CA2600070A1 (en) 2006-09-08
CA2600070C true CA2600070C (en) 2012-10-16

Family

ID=36572144

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2600070A Active CA2600070C (en) 2005-03-04 2006-03-03 Method and system for controlling a construction machine

Country Status (7)

Country Link
US (1) US20060198700A1 (en)
EP (1) EP1856329B1 (en)
JP (1) JP5055137B2 (en)
CN (1) CN100590262C (en)
AU (1) AU2006219886B2 (en)
CA (1) CA2600070C (en)
WO (1) WO2006092441A1 (en)

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8073566B2 (en) * 2007-04-05 2011-12-06 Power Curbers, Inc. Automated stringline installation system
US20090226257A1 (en) * 2008-03-10 2009-09-10 Lindley Joseph W Screed system
DE102008023743A1 (en) 2008-05-15 2009-11-19 Dynapac Gmbh Method for operating a self-propelled road milling machine
US7946787B2 (en) * 2008-06-27 2011-05-24 Caterpillar Inc. Paving system and method
US8322946B2 (en) * 2009-01-22 2012-12-04 Lindley Joseph W Automatically adjustable rolling screed
PL2256246T3 (en) * 2009-05-20 2018-11-30 Joseph Vögele AG Paving machines for applying a cover layer of a road surface
DE102009059106A1 (en) * 2009-12-18 2011-06-22 Wirtgen GmbH, 53578 Self-propelled construction machine and method for controlling a self-propelled construction machine
US8738242B2 (en) 2011-03-16 2014-05-27 Topcon Positioning Systems, Inc. Automatic blade slope control system
DE102012001289A1 (en) * 2012-01-25 2013-07-25 Wirtgen Gmbh Self-propelled construction machine and method for controlling a self-propelled construction machine
US9279679B2 (en) 2012-09-12 2016-03-08 Kabushiki Kaisha Topcon Construction machine control method and construction machine control system
US8788154B2 (en) 2012-09-12 2014-07-22 Kabushiki Kaisha Topcon Construction machine control method and construction machine control system
US8989968B2 (en) * 2012-10-12 2015-03-24 Wirtgen Gmbh Self-propelled civil engineering machine system with field rover
US8997714B2 (en) 2013-03-28 2015-04-07 Ford Global Technologies, Llc Method for operating a direct fuel injector
EP2789739A1 (en) * 2013-04-10 2014-10-15 Leica Geosystems AG Automatic track alignment control kit and method for automated track alignment
PL2813619T3 (en) * 2013-06-11 2018-10-31 Joseph Vögele AG Screed for a road finisher
JP6018549B2 (en) * 2013-07-30 2016-11-02 大成ロテック株式会社 Vibrator device and concrete pavement construction method
CN103866673B (en) * 2014-02-20 2015-11-18 天津大学 The method for real-time monitoring of high grade highway pavement paving thickness and monitoring system
US9739019B1 (en) * 2014-06-13 2017-08-22 Gomaco Corporation Bridge paving device
FR3028267B1 (en) * 2014-11-10 2016-12-23 Alstom Transp Tech IMPROVED METHOD FOR GUIDING A DEVICE FOR INSERTING ELEMENTS INTO THE GROUND FOR PRODUCING A WORK; INSERTION DEVICE AND VEHICLE THEREFOR.
DE102014018082B4 (en) * 2014-12-08 2020-03-19 Bomag Gmbh Method for controlling a construction machine, control system for a construction machine, and construction machine
US9631329B2 (en) * 2014-12-19 2017-04-25 Wirtgen Gmbh Frame distortion control
US9551115B2 (en) 2014-12-19 2017-01-24 Wirtgen Gmbh Transition on the fly
EP3106899B1 (en) * 2015-06-16 2019-09-18 Leica Geosystems AG Referenced vehicle control system
CN104975602B (en) * 2015-07-14 2016-08-24 中国葛洲坝集团第一工程有限公司 High abrupt slope concrete slip-form traction control apparatus
JP6670127B2 (en) 2016-02-24 2020-03-18 株式会社トプコン Construction machine control system
EP3236203A1 (en) * 2016-04-21 2017-10-25 MOBA - Mobile Automation AG Method and total station for controlling a construction machine
JP6682371B2 (en) 2016-06-14 2020-04-15 株式会社トプコン Construction machinery control system
US10253461B2 (en) 2016-12-07 2019-04-09 Wirtgen Gmbh Variable width automatic transition
DE102016015499A1 (en) 2016-12-23 2018-06-28 Bomag Gmbh Ground milling machine, in particular road milling machine, and method for operating a ground milling machine
US11243531B2 (en) * 2018-08-09 2022-02-08 Caterpillar Paving Products Inc. Navigation system for a machine
US11421389B2 (en) * 2018-12-28 2022-08-23 Wirtgen Gmbh Variable height mold
US11047095B2 (en) * 2018-12-28 2021-06-29 Wirtgen Gmbh Variable height offset mold
CN110541551A (en) * 2019-08-26 2019-12-06 广东博智林机器人有限公司 Slurry supplementing device of trowelling robot and trowelling robot
CN110983925A (en) * 2019-12-18 2020-04-10 河南省公路工程局集团有限公司 Automatic paving method based on laser scanning and satellite positioning
DE102019135225B4 (en) 2019-12-19 2023-07-20 Wirtgen Gmbh Method for milling off traffic areas with a milling drum, and milling machine for carrying out the method for milling off traffic areas

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3158945A (en) * 1962-03-15 1964-12-01 Gurries Mfg Co Automatic level control system for construction machines
US3619057A (en) * 1967-06-28 1971-11-09 North American Aviation Inc Geodetic laser survey system
US3618484A (en) * 1969-09-11 1971-11-09 Long George Traveling grade controller
US3637026A (en) * 1969-10-06 1972-01-25 Cmi Corp Cross slope control of mobile machinery
US4029165A (en) * 1976-02-05 1977-06-14 Miller Formless Co., Inc. Convertible construction machine
US4360293A (en) * 1980-08-18 1982-11-23 Gomaco, Inc. Canal paving machine
US4403889A (en) * 1981-06-08 1983-09-13 Gillotti John A Grade control alignment device and method
IE59553B1 (en) * 1986-10-30 1994-03-09 Inst For Ind Res & Standards Position sensing apparatus
DE8810670U1 (en) * 1988-08-24 1989-01-26 Moba-Electronic Gesellschaft Fuer Mobil-Automation Mbh, 6254 Elz, De
DE69126017T2 (en) * 1990-11-14 1997-11-06 Niigata Engineering Co Ltd Device for regulating the road surface thickness
FR2683336B1 (en) * 1991-11-06 1996-10-31 Laserdot GUIDE DEVICE SERVED ON LASER BEAM FOR A PUBLIC WORKS MACHINE.
JP3541960B2 (en) * 1993-12-24 2004-07-14 独立行政法人土木研究所 Automatic 3D position control method for construction machinery
US5938300A (en) * 1994-02-18 1999-08-17 Tenox Corp. Crawler-mounted slope traveling machine and shoe link for same
US5838277A (en) * 1994-05-20 1998-11-17 Trimble Navigation Limited GPS-based controller module
US5549412A (en) * 1995-05-24 1996-08-27 Blaw-Knox Construction Equipment Corporation Position referencing, measuring and paving method and apparatus for a profiler and paver
US5599134A (en) * 1995-09-15 1997-02-04 Cedarapids, Inc. Asphalt paver with compaction compensating system
US5935183A (en) * 1996-05-20 1999-08-10 Caterpillar Inc. Method and system for determining the relationship between a laser plane and an external coordinate system
US6287048B1 (en) * 1996-08-20 2001-09-11 Edmund D. Hollon Uniform compaction of asphalt concrete
US6113309A (en) * 1996-08-20 2000-09-05 Hollon; Edmund D. Uniform compaction of asphalt concrete
DE19647150C2 (en) * 1996-11-14 2001-02-01 Moba Mobile Automation Gmbh Device and method for controlling the installation height of a road finisher
US5941658A (en) * 1997-06-02 1999-08-24 Guntert & Zimmerman Constr. Div. Inc. Cross-slope level control for mobile machinery
US6171018B1 (en) * 1997-11-10 2001-01-09 Kabushiki Kaisha Topcon Automatic control system for construction machinery
DE19756676C1 (en) * 1997-12-19 1999-06-02 Wirtgen Gmbh Method for cutting road surfaces
GB2333862B (en) * 1998-02-02 2002-01-09 Caterpillar Paving Prod Method and apparatus for controllably avoiding an obstruction to a cold planer
US5984420A (en) * 1998-05-29 1999-11-16 Wirtgen America, Inc. Grade averaging system with floating boom and method of using the same
US6227761B1 (en) * 1998-10-27 2001-05-08 Delaware Capital Formation, Inc. Apparatus and method for three-dimensional contouring
US6330503B1 (en) * 1999-02-22 2001-12-11 Trimble Navigation Limited Global positioning system controlled staking apparatus
WO2001086078A1 (en) * 2000-05-05 2001-11-15 Laser Alignment, Inc., A Leica Geosystems Company Laser-guided construction equipment
AUPR396501A0 (en) * 2001-03-26 2001-04-26 Edgeroi Pty Ltd Ground marking apparatus
JP2002339314A (en) * 2001-05-14 2002-11-27 Topcon Corp Paving thickness controlling device of asphalt finisher and asphalt finisher and paving execution system
BE1014211A5 (en) * 2001-06-05 2003-06-03 Drion Constructie Bv Met Beper Concrete down machine and method for forming a concrete track.
DE10138563B4 (en) * 2001-08-06 2010-01-14 Joseph Voegele Ag Wheel paver and method for steering a wheel paver
US6821052B2 (en) * 2001-10-09 2004-11-23 William Harrison Zurn Modular, robotic road repair machine
EP1677125A1 (en) 2004-12-28 2006-07-05 Leica Geosystems AG Method and rotative laser for determining a positional information of at least one object

Also Published As

Publication number Publication date
WO2006092441A1 (en) 2006-09-08
CN101133217A (en) 2008-02-27
AU2006219886A1 (en) 2006-09-08
EP1856329A1 (en) 2007-11-21
JP5055137B2 (en) 2012-10-24
CA2600070A1 (en) 2006-09-08
JP2008531888A (en) 2008-08-14
US20060198700A1 (en) 2006-09-07
AU2006219886B2 (en) 2011-01-20
EP1856329B1 (en) 2013-05-29
CN100590262C (en) 2010-02-17

Similar Documents

Publication Publication Date Title
CA2600070C (en) Method and system for controlling a construction machine
JP5390100B2 (en) Method and apparatus for monitoring road paving machine
CA2693146C (en) Optical guidance system for a paving train for producing a concrete or asphalt surface layer
USRE39834E1 (en) Apparatus and method for three-dimensional contouring
US7399139B2 (en) Apparatus and method for three-dimensional contouring
US6371566B1 (en) Process and device for milling off traffic areas
CN111945524B (en) Road finishing machine and method for determining the layer thickness of a produced spreading layer
US20220290383A1 (en) Method of paving a road surface and asphalt paving system
CN110816510B (en) paving system
CN216712654U (en) Road surface finisher
JP7191736B2 (en) Asphalt finisher and screed control method
JPH08260419A (en) Paving-levelling device for civil engineering
US20220005350A1 (en) Display unit for road machine
CN115247393A (en) System and method for controlling road construction process
JPH0749646B2 (en) Pavement thickness control method for leveling machine
JPH0749642B2 (en) Pavement thickness control method for leveling machine

Legal Events

Date Code Title Description
EEER Examination request