CA2598249A1 - Treatment of hyperproliferative diseases with anthraquinones - Google Patents
Treatment of hyperproliferative diseases with anthraquinones Download PDFInfo
- Publication number
- CA2598249A1 CA2598249A1 CA002598249A CA2598249A CA2598249A1 CA 2598249 A1 CA2598249 A1 CA 2598249A1 CA 002598249 A CA002598249 A CA 002598249A CA 2598249 A CA2598249 A CA 2598249A CA 2598249 A1 CA2598249 A1 CA 2598249A1
- Authority
- CA
- Canada
- Prior art keywords
- cancer
- compound
- formula
- aq4n
- administration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000011282 treatment Methods 0.000 title claims abstract description 59
- 230000003463 hyperproliferative effect Effects 0.000 title abstract description 40
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 title description 47
- 201000010099 disease Diseases 0.000 title description 10
- 150000004056 anthraquinones Chemical class 0.000 title description 3
- 150000001875 compounds Chemical class 0.000 claims abstract description 64
- 238000000034 method Methods 0.000 claims abstract description 55
- -1 anthraquinone compounds Chemical class 0.000 claims abstract description 33
- 239000013543 active substance Substances 0.000 claims abstract description 15
- 206010028980 Neoplasm Diseases 0.000 claims description 91
- YZBAXVICWUUHGG-UHFFFAOYSA-N 2-[[4-[2-[dimethyl(oxido)azaniumyl]ethylamino]-5,8-dihydroxy-9,10-dioxoanthracen-1-yl]amino]-n,n-dimethylethanamine oxide Chemical compound O=C1C2=C(O)C=CC(O)=C2C(=O)C2=C1C(NCC[N+](C)(C)[O-])=CC=C2NCC[N+](C)([O-])C YZBAXVICWUUHGG-UHFFFAOYSA-N 0.000 claims description 63
- 201000011510 cancer Diseases 0.000 claims description 40
- 229940127089 cytotoxic agent Drugs 0.000 claims description 36
- 239000002246 antineoplastic agent Substances 0.000 claims description 35
- 239000000203 mixture Substances 0.000 claims description 32
- 239000003795 chemical substances by application Substances 0.000 claims description 23
- 150000003839 salts Chemical class 0.000 claims description 20
- 230000003439 radiotherapeutic effect Effects 0.000 claims description 17
- 125000004432 carbon atom Chemical group C* 0.000 claims description 15
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 15
- 229960004768 irinotecan Drugs 0.000 claims description 14
- UWKQSNNFCGGAFS-XIFFEERXSA-N irinotecan Chemical compound C1=C2C(CC)=C3CN(C(C4=C([C@@](C(=O)OC4)(O)CC)C=4)=O)C=4C3=NC2=CC=C1OC(=O)N(CC1)CCC1N1CCCCC1 UWKQSNNFCGGAFS-XIFFEERXSA-N 0.000 claims description 14
- 229960005277 gemcitabine Drugs 0.000 claims description 13
- 241001465754 Metazoa Species 0.000 claims description 12
- 206010035226 Plasma cell myeloma Diseases 0.000 claims description 12
- SDUQYLNIPVEERB-QPPQHZFASA-N gemcitabine Chemical compound O=C1N=C(N)C=CN1[C@H]1C(F)(F)[C@H](O)[C@@H](CO)O1 SDUQYLNIPVEERB-QPPQHZFASA-N 0.000 claims description 12
- 206010009944 Colon cancer Diseases 0.000 claims description 11
- 229910052757 nitrogen Inorganic materials 0.000 claims description 11
- 125000004433 nitrogen atom Chemical group N* 0.000 claims description 11
- 125000002947 alkylene group Chemical group 0.000 claims description 10
- 229910052799 carbon Inorganic materials 0.000 claims description 10
- 208000029742 colonic neoplasm Diseases 0.000 claims description 10
- 229960001156 mitoxantrone Drugs 0.000 claims description 10
- KKZJGLLVHKMTCM-UHFFFAOYSA-N mitoxantrone Chemical compound O=C1C2=C(O)C=CC(O)=C2C(=O)C2=C1C(NCCNCCO)=CC=C2NCCNCCO KKZJGLLVHKMTCM-UHFFFAOYSA-N 0.000 claims description 10
- AOJJSUZBOXZQNB-TZSSRYMLSA-N Doxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-TZSSRYMLSA-N 0.000 claims description 9
- 239000008194 pharmaceutical composition Substances 0.000 claims description 9
- 208000034578 Multiple myelomas Diseases 0.000 claims description 8
- 201000001441 melanoma Diseases 0.000 claims description 8
- 229940002612 prodrug Drugs 0.000 claims description 8
- 239000000651 prodrug Substances 0.000 claims description 8
- DLGOEMSEDOSKAD-UHFFFAOYSA-N Carmustine Chemical compound ClCCNC(=O)N(N=O)CCCl DLGOEMSEDOSKAD-UHFFFAOYSA-N 0.000 claims description 7
- 229930012538 Paclitaxel Natural products 0.000 claims description 7
- JXLYSJRDGCGARV-WWYNWVTFSA-N Vinblastine Natural products O=C(O[C@H]1[C@](O)(C(=O)OC)[C@@H]2N(C)c3c(cc(c(OC)c3)[C@]3(C(=O)OC)c4[nH]c5c(c4CCN4C[C@](O)(CC)C[C@H](C3)C4)cccc5)[C@@]32[C@H]2[C@@]1(CC)C=CCN2CC3)C JXLYSJRDGCGARV-WWYNWVTFSA-N 0.000 claims description 7
- 125000004423 acyloxy group Chemical group 0.000 claims description 7
- 229960005243 carmustine Drugs 0.000 claims description 7
- 229960001592 paclitaxel Drugs 0.000 claims description 7
- RCINICONZNJXQF-MZXODVADSA-N taxol Chemical compound O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-MZXODVADSA-N 0.000 claims description 7
- JXLYSJRDGCGARV-XQKSVPLYSA-N vincaleukoblastine Chemical compound C([C@@H](C[C@]1(C(=O)OC)C=2C(=CC3=C([C@]45[C@H]([C@@]([C@H](OC(C)=O)[C@]6(CC)C=CCN([C@H]56)CC4)(O)C(=O)OC)N3C)C=2)OC)C[C@@](C2)(O)CC)N2CCC2=C1NC1=CC=CC=C21 JXLYSJRDGCGARV-XQKSVPLYSA-N 0.000 claims description 7
- 208000032612 Glial tumor Diseases 0.000 claims description 6
- 206010018338 Glioma Diseases 0.000 claims description 6
- 108010078049 Interferon alpha-2 Proteins 0.000 claims description 6
- NWIBSHFKIJFRCO-WUDYKRTCSA-N Mytomycin Chemical compound C1N2C(C(C(C)=C(N)C3=O)=O)=C3[C@@H](COC(N)=O)[C@@]2(OC)[C@@H]2[C@H]1N2 NWIBSHFKIJFRCO-WUDYKRTCSA-N 0.000 claims description 6
- NKANXQFJJICGDU-QPLCGJKRSA-N Tamoxifen Chemical compound C=1C=CC=CC=1C(/CC)=C(C=1C=CC(OCCN(C)C)=CC=1)/C1=CC=CC=C1 NKANXQFJJICGDU-QPLCGJKRSA-N 0.000 claims description 6
- RJURFGZVJUQBHK-UHFFFAOYSA-N actinomycin D Natural products CC1OC(=O)C(C(C)C)N(C)C(=O)CN(C)C(=O)C2CCCN2C(=O)C(C(C)C)NC(=O)C1NC(=O)C1=C(N)C(=O)C(C)=C2OC(C(C)=CC=C3C(=O)NC4C(=O)NC(C(N5CCCC5C(=O)N(C)CC(=O)N(C)C(C(C)C)C(=O)OC4C)=O)C(C)C)=C3N=C21 RJURFGZVJUQBHK-UHFFFAOYSA-N 0.000 claims description 6
- 125000005843 halogen group Chemical group 0.000 claims description 6
- 125000000623 heterocyclic group Chemical group 0.000 claims description 6
- 125000004429 atom Chemical group 0.000 claims description 5
- 125000004990 dihydroxyalkyl group Chemical group 0.000 claims description 5
- 229960004679 doxorubicin Drugs 0.000 claims description 5
- 239000001257 hydrogen Substances 0.000 claims description 5
- 229910052739 hydrogen Inorganic materials 0.000 claims description 5
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims description 5
- 125000002768 hydroxyalkyl group Chemical group 0.000 claims description 5
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 claims description 5
- 206010030155 Oesophageal carcinoma Diseases 0.000 claims description 4
- 206010033128 Ovarian cancer Diseases 0.000 claims description 4
- 229940127093 camptothecin Drugs 0.000 claims description 4
- 229960002066 vinorelbine Drugs 0.000 claims description 4
- BMKDZUISNHGIBY-ZETCQYMHSA-N (+)-dexrazoxane Chemical compound C([C@H](C)N1CC(=O)NC(=O)C1)N1CC(=O)NC(=O)C1 BMKDZUISNHGIBY-ZETCQYMHSA-N 0.000 claims description 3
- FPVKHBSQESCIEP-UHFFFAOYSA-N (8S)-3-(2-deoxy-beta-D-erythro-pentofuranosyl)-3,6,7,8-tetrahydroimidazo[4,5-d][1,3]diazepin-8-ol Natural products C1C(O)C(CO)OC1N1C(NC=NCC2O)=C2N=C1 FPVKHBSQESCIEP-UHFFFAOYSA-N 0.000 claims description 3
- 125000004178 (C1-C4) alkyl group Chemical group 0.000 claims description 3
- FDKXTQMXEQVLRF-ZHACJKMWSA-N (E)-dacarbazine Chemical compound CN(C)\N=N\c1[nH]cnc1C(N)=O FDKXTQMXEQVLRF-ZHACJKMWSA-N 0.000 claims description 3
- HJTAZXHBEBIQQX-UHFFFAOYSA-N 1,5-bis(chloromethyl)naphthalene Chemical compound C1=CC=C2C(CCl)=CC=CC2=C1CCl HJTAZXHBEBIQQX-UHFFFAOYSA-N 0.000 claims description 3
- VSNHCAURESNICA-NJFSPNSNSA-N 1-oxidanylurea Chemical compound N[14C](=O)NO VSNHCAURESNICA-NJFSPNSNSA-N 0.000 claims description 3
- QXLQZLBNPTZMRK-UHFFFAOYSA-N 2-[(dimethylamino)methyl]-1-(2,4-dimethylphenyl)prop-2-en-1-one Chemical compound CN(C)CC(=C)C(=O)C1=CC=C(C)C=C1C QXLQZLBNPTZMRK-UHFFFAOYSA-N 0.000 claims description 3
- RTQWWZBSTRGEAV-PKHIMPSTSA-N 2-[[(2s)-2-[bis(carboxymethyl)amino]-3-[4-(methylcarbamoylamino)phenyl]propyl]-[2-[bis(carboxymethyl)amino]propyl]amino]acetic acid Chemical compound CNC(=O)NC1=CC=C(C[C@@H](CN(CC(C)N(CC(O)=O)CC(O)=O)CC(O)=O)N(CC(O)=O)CC(O)=O)C=C1 RTQWWZBSTRGEAV-PKHIMPSTSA-N 0.000 claims description 3
- AOJJSUZBOXZQNB-VTZDEGQISA-N 4'-epidoxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-VTZDEGQISA-N 0.000 claims description 3
- JVYNJRBSXBYXQB-UHFFFAOYSA-N 4-[3-(4-carboxyphenoxy)propoxy]benzoic acid;decanedioic acid Chemical compound OC(=O)CCCCCCCCC(O)=O.C1=CC(C(=O)O)=CC=C1OCCCOC1=CC=C(C(O)=O)C=C1 JVYNJRBSXBYXQB-UHFFFAOYSA-N 0.000 claims description 3
- IDPUKCWIGUEADI-UHFFFAOYSA-N 5-[bis(2-chloroethyl)amino]uracil Chemical compound ClCCN(CCCl)C1=CNC(=O)NC1=O IDPUKCWIGUEADI-UHFFFAOYSA-N 0.000 claims description 3
- WYWHKKSPHMUBEB-UHFFFAOYSA-N 6-Mercaptoguanine Natural products N1C(N)=NC(=S)C2=C1N=CN2 WYWHKKSPHMUBEB-UHFFFAOYSA-N 0.000 claims description 3
- VVIAGPKUTFNRDU-UHFFFAOYSA-N 6S-folinic acid Natural products C1NC=2NC(N)=NC(=O)C=2N(C=O)C1CNC1=CC=C(C(=O)NC(CCC(O)=O)C(O)=O)C=C1 VVIAGPKUTFNRDU-UHFFFAOYSA-N 0.000 claims description 3
- STQGQHZAVUOBTE-UHFFFAOYSA-N 7-Cyan-hept-2t-en-4,6-diinsaeure Natural products C1=2C(O)=C3C(=O)C=4C(OC)=CC=CC=4C(=O)C3=C(O)C=2CC(O)(C(C)=O)CC1OC1CC(N)C(O)C(C)O1 STQGQHZAVUOBTE-UHFFFAOYSA-N 0.000 claims description 3
- SHGAZHPCJJPHSC-ZVCIMWCZSA-N 9-cis-retinoic acid Chemical compound OC(=O)/C=C(\C)/C=C/C=C(/C)\C=C\C1=C(C)CCCC1(C)C SHGAZHPCJJPHSC-ZVCIMWCZSA-N 0.000 claims description 3
- BFYIZQONLCFLEV-DAELLWKTSA-N Aromasine Chemical compound O=C1C=C[C@]2(C)[C@H]3CC[C@](C)(C(CC4)=O)[C@@H]4[C@@H]3CC(=C)C2=C1 BFYIZQONLCFLEV-DAELLWKTSA-N 0.000 claims description 3
- 108010024976 Asparaginase Proteins 0.000 claims description 3
- 102000015790 Asparaginase Human genes 0.000 claims description 3
- 108010006654 Bleomycin Proteins 0.000 claims description 3
- 208000003174 Brain Neoplasms Diseases 0.000 claims description 3
- COVZYZSDYWQREU-UHFFFAOYSA-N Busulfan Chemical compound CS(=O)(=O)OCCCCOS(C)(=O)=O COVZYZSDYWQREU-UHFFFAOYSA-N 0.000 claims description 3
- KLWPJMFMVPTNCC-UHFFFAOYSA-N Camptothecin Natural products CCC1(O)C(=O)OCC2=C1C=C3C4Nc5ccccc5C=C4CN3C2=O KLWPJMFMVPTNCC-UHFFFAOYSA-N 0.000 claims description 3
- GAGWJHPBXLXJQN-UORFTKCHSA-N Capecitabine Chemical compound C1=C(F)C(NC(=O)OCCCCC)=NC(=O)N1[C@H]1[C@H](O)[C@H](O)[C@@H](C)O1 GAGWJHPBXLXJQN-UORFTKCHSA-N 0.000 claims description 3
- GAGWJHPBXLXJQN-UHFFFAOYSA-N Capecitabine Natural products C1=C(F)C(NC(=O)OCCCCC)=NC(=O)N1C1C(O)C(O)C(C)O1 GAGWJHPBXLXJQN-UHFFFAOYSA-N 0.000 claims description 3
- 206010008342 Cervix carcinoma Diseases 0.000 claims description 3
- JWBOIMRXGHLCPP-UHFFFAOYSA-N Chloditan Chemical compound C=1C=CC=C(Cl)C=1C(C(Cl)Cl)C1=CC=C(Cl)C=C1 JWBOIMRXGHLCPP-UHFFFAOYSA-N 0.000 claims description 3
- PTOAARAWEBMLNO-KVQBGUIXSA-N Cladribine Chemical compound C1=NC=2C(N)=NC(Cl)=NC=2N1[C@H]1C[C@H](O)[C@@H](CO)O1 PTOAARAWEBMLNO-KVQBGUIXSA-N 0.000 claims description 3
- CMSMOCZEIVJLDB-UHFFFAOYSA-N Cyclophosphamide Chemical compound ClCCN(CCCl)P1(=O)NCCCO1 CMSMOCZEIVJLDB-UHFFFAOYSA-N 0.000 claims description 3
- UHDGCWIWMRVCDJ-CCXZUQQUSA-N Cytarabine Chemical compound O=C1N=C(N)C=CN1[C@H]1[C@@H](O)[C@H](O)[C@@H](CO)O1 UHDGCWIWMRVCDJ-CCXZUQQUSA-N 0.000 claims description 3
- 108010092160 Dactinomycin Proteins 0.000 claims description 3
- 108010019673 Darbepoetin alfa Proteins 0.000 claims description 3
- HTIJFSOGRVMCQR-UHFFFAOYSA-N Epirubicin Natural products COc1cccc2C(=O)c3c(O)c4CC(O)(CC(OC5CC(N)C(=O)C(C)O5)c4c(O)c3C(=O)c12)C(=O)CO HTIJFSOGRVMCQR-UHFFFAOYSA-N 0.000 claims description 3
- 108010074604 Epoetin Alfa Proteins 0.000 claims description 3
- 208000000461 Esophageal Neoplasms Diseases 0.000 claims description 3
- 108010029961 Filgrastim Proteins 0.000 claims description 3
- GHASVSINZRGABV-UHFFFAOYSA-N Fluorouracil Chemical compound FC1=CNC(=O)NC1=O GHASVSINZRGABV-UHFFFAOYSA-N 0.000 claims description 3
- VWUXBMIQPBEWFH-WCCTWKNTSA-N Fulvestrant Chemical compound OC1=CC=C2[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3[C@H](CCCCCCCCCS(=O)CCCC(F)(F)C(F)(F)F)CC2=C1 VWUXBMIQPBEWFH-WCCTWKNTSA-N 0.000 claims description 3
- BLCLNMBMMGCOAS-URPVMXJPSA-N Goserelin Chemical compound C([C@@H](C(=O)N[C@H](COC(C)(C)C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCN=C(N)N)C(=O)N1[C@@H](CCC1)C(=O)NNC(N)=O)NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H]1NC(=O)CC1)C1=CC=C(O)C=C1 BLCLNMBMMGCOAS-URPVMXJPSA-N 0.000 claims description 3
- 108010069236 Goserelin Proteins 0.000 claims description 3
- 102100039619 Granulocyte colony-stimulating factor Human genes 0.000 claims description 3
- 102100039620 Granulocyte-macrophage colony-stimulating factor Human genes 0.000 claims description 3
- XDXDZDZNSLXDNA-TZNDIEGXSA-N Idarubicin Chemical compound C1[C@H](N)[C@H](O)[C@H](C)O[C@H]1O[C@@H]1C2=C(O)C(C(=O)C3=CC=CC=C3C3=O)=C3C(O)=C2C[C@@](O)(C(C)=O)C1 XDXDZDZNSLXDNA-TZNDIEGXSA-N 0.000 claims description 3
- XDXDZDZNSLXDNA-UHFFFAOYSA-N Idarubicin Natural products C1C(N)C(O)C(C)OC1OC1C2=C(O)C(C(=O)C3=CC=CC=C3C3=O)=C3C(O)=C2CC(O)(C(C)=O)C1 XDXDZDZNSLXDNA-UHFFFAOYSA-N 0.000 claims description 3
- 102100030694 Interleukin-11 Human genes 0.000 claims description 3
- 208000008839 Kidney Neoplasms Diseases 0.000 claims description 3
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 claims description 3
- 239000005517 L01XE01 - Imatinib Substances 0.000 claims description 3
- 239000005411 L01XE02 - Gefitinib Substances 0.000 claims description 3
- 239000005551 L01XE03 - Erlotinib Substances 0.000 claims description 3
- HLFSDGLLUJUHTE-SNVBAGLBSA-N Levamisole Chemical compound C1([C@H]2CN3CCSC3=N2)=CC=CC=C1 HLFSDGLLUJUHTE-SNVBAGLBSA-N 0.000 claims description 3
- GQYIWUVLTXOXAJ-UHFFFAOYSA-N Lomustine Chemical compound ClCCN(N=O)C(=O)NC1CCCCC1 GQYIWUVLTXOXAJ-UHFFFAOYSA-N 0.000 claims description 3
- XOGTZOOQQBDUSI-UHFFFAOYSA-M Mesna Chemical compound [Na+].[O-]S(=O)(=O)CCS XOGTZOOQQBDUSI-UHFFFAOYSA-M 0.000 claims description 3
- ZDZOTLJHXYCWBA-VCVYQWHSSA-N N-debenzoyl-N-(tert-butoxycarbonyl)-10-deacetyltaxol Chemical compound O([C@H]1[C@H]2[C@@](C([C@H](O)C3=C(C)[C@@H](OC(=O)[C@H](O)[C@@H](NC(=O)OC(C)(C)C)C=4C=CC=CC=4)C[C@]1(O)C3(C)C)=O)(C)[C@@H](O)C[C@H]1OC[C@]12OC(=O)C)C(=O)C1=CC=CC=C1 ZDZOTLJHXYCWBA-VCVYQWHSSA-N 0.000 claims description 3
- 206010061535 Ovarian neoplasm Diseases 0.000 claims description 3
- 206010038389 Renal cancer Diseases 0.000 claims description 3
- NAVMQTYZDKMPEU-UHFFFAOYSA-N Targretin Chemical compound CC1=CC(C(CCC2(C)C)(C)C)=C2C=C1C(=C)C1=CC=C(C(O)=O)C=C1 NAVMQTYZDKMPEU-UHFFFAOYSA-N 0.000 claims description 3
- BPEGJWRSRHCHSN-UHFFFAOYSA-N Temozolomide Chemical compound O=C1N(C)N=NC2=C(C(N)=O)N=CN21 BPEGJWRSRHCHSN-UHFFFAOYSA-N 0.000 claims description 3
- FOCVUCIESVLUNU-UHFFFAOYSA-N Thiotepa Chemical compound C1CN1P(N1CC1)(=S)N1CC1 FOCVUCIESVLUNU-UHFFFAOYSA-N 0.000 claims description 3
- 208000006105 Uterine Cervical Neoplasms Diseases 0.000 claims description 3
- 229960002184 abarelix Drugs 0.000 claims description 3
- 108010023617 abarelix Proteins 0.000 claims description 3
- AIWRTTMUVOZGPW-HSPKUQOVSA-N abarelix Chemical compound C([C@@H](C(=O)N[C@H](CC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCCNC(C)C)C(=O)N1[C@@H](CCC1)C(=O)N[C@H](C)C(N)=O)N(C)C(=O)[C@H](CO)NC(=O)[C@@H](CC=1C=NC=CC=1)NC(=O)[C@@H](CC=1C=CC(Cl)=CC=1)NC(=O)[C@@H](CC=1C=C2C=CC=CC2=CC=1)NC(C)=O)C1=CC=C(O)C=C1 AIWRTTMUVOZGPW-HSPKUQOVSA-N 0.000 claims description 3
- RJURFGZVJUQBHK-IIXSONLDSA-N actinomycin D Chemical compound C[C@H]1OC(=O)[C@H](C(C)C)N(C)C(=O)CN(C)C(=O)[C@@H]2CCCN2C(=O)[C@@H](C(C)C)NC(=O)[C@H]1NC(=O)C1=C(N)C(=O)C(C)=C2OC(C(C)=CC=C3C(=O)N[C@@H]4C(=O)N[C@@H](C(N5CCC[C@H]5C(=O)N(C)CC(=O)N(C)[C@@H](C(C)C)C(=O)O[C@@H]4C)=O)C(C)C)=C3N=C21 RJURFGZVJUQBHK-IIXSONLDSA-N 0.000 claims description 3
- 229960005310 aldesleukin Drugs 0.000 claims description 3
- 108700025316 aldesleukin Proteins 0.000 claims description 3
- 229960000548 alemtuzumab Drugs 0.000 claims description 3
- 229960001445 alitretinoin Drugs 0.000 claims description 3
- SHGAZHPCJJPHSC-YCNIQYBTSA-N all-trans-retinoic acid Chemical compound OC(=O)\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C SHGAZHPCJJPHSC-YCNIQYBTSA-N 0.000 claims description 3
- 229960003459 allopurinol Drugs 0.000 claims description 3
- OFCNXPDARWKPPY-UHFFFAOYSA-N allopurinol Chemical compound OC1=NC=NC2=C1C=NN2 OFCNXPDARWKPPY-UHFFFAOYSA-N 0.000 claims description 3
- 229960000473 altretamine Drugs 0.000 claims description 3
- 229960001097 amifostine Drugs 0.000 claims description 3
- JKOQGQFVAUAYPM-UHFFFAOYSA-N amifostine Chemical compound NCCCNCCSP(O)(O)=O JKOQGQFVAUAYPM-UHFFFAOYSA-N 0.000 claims description 3
- 229960002932 anastrozole Drugs 0.000 claims description 3
- YBBLVLTVTVSKRW-UHFFFAOYSA-N anastrozole Chemical compound N#CC(C)(C)C1=CC(C(C)(C#N)C)=CC(CN2N=CN=C2)=C1 YBBLVLTVTVSKRW-UHFFFAOYSA-N 0.000 claims description 3
- GOLCXWYRSKYTSP-UHFFFAOYSA-N arsenic trioxide Inorganic materials O1[As]2O[As]1O2 GOLCXWYRSKYTSP-UHFFFAOYSA-N 0.000 claims description 3
- 229960002594 arsenic trioxide Drugs 0.000 claims description 3
- 229960003272 asparaginase Drugs 0.000 claims description 3
- DCXYFEDJOCDNAF-UHFFFAOYSA-M asparaginate Chemical compound [O-]C(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-M 0.000 claims description 3
- VSRXQHXAPYXROS-UHFFFAOYSA-N azanide;cyclobutane-1,1-dicarboxylic acid;platinum(2+) Chemical compound [NH2-].[NH2-].[Pt+2].OC(=O)C1(C(O)=O)CCC1 VSRXQHXAPYXROS-UHFFFAOYSA-N 0.000 claims description 3
- 229960002938 bexarotene Drugs 0.000 claims description 3
- 229960001561 bleomycin Drugs 0.000 claims description 3
- OYVAGSVQBOHSSS-UAPAGMARSA-O bleomycin A2 Chemical compound N([C@H](C(=O)N[C@H](C)[C@@H](O)[C@H](C)C(=O)N[C@@H]([C@H](O)C)C(=O)NCCC=1SC=C(N=1)C=1SC=C(N=1)C(=O)NCCC[S+](C)C)[C@@H](O[C@H]1[C@H]([C@@H](O)[C@H](O)[C@H](CO)O1)O[C@@H]1[C@H]([C@@H](OC(N)=O)[C@H](O)[C@@H](CO)O1)O)C=1N=CNC=1)C(=O)C1=NC([C@H](CC(N)=O)NC[C@H](N)C(N)=O)=NC(N)=C1C OYVAGSVQBOHSSS-UAPAGMARSA-O 0.000 claims description 3
- GXJABQQUPOEUTA-RDJZCZTQSA-N bortezomib Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)B(O)O)NC(=O)C=1N=CC=NC=1)C1=CC=CC=C1 GXJABQQUPOEUTA-RDJZCZTQSA-N 0.000 claims description 3
- 229960001467 bortezomib Drugs 0.000 claims description 3
- 229960002092 busulfan Drugs 0.000 claims description 3
- IVFYLRMMHVYGJH-PVPPCFLZSA-N calusterone Chemical compound C1C[C@]2(C)[C@](O)(C)CC[C@H]2[C@@H]2[C@@H](C)CC3=CC(=O)CC[C@]3(C)[C@H]21 IVFYLRMMHVYGJH-PVPPCFLZSA-N 0.000 claims description 3
- 229950009823 calusterone Drugs 0.000 claims description 3
- VSJKWCGYPAHWDS-FQEVSTJZSA-N camptothecin Chemical compound C1=CC=C2C=C(CN3C4=CC5=C(C3=O)COC(=O)[C@]5(O)CC)C4=NC2=C1 VSJKWCGYPAHWDS-FQEVSTJZSA-N 0.000 claims description 3
- 229960004117 capecitabine Drugs 0.000 claims description 3
- 229960004562 carboplatin Drugs 0.000 claims description 3
- 229960000590 celecoxib Drugs 0.000 claims description 3
- RZEKVGVHFLEQIL-UHFFFAOYSA-N celecoxib Chemical compound C1=CC(C)=CC=C1C1=CC(C(F)(F)F)=NN1C1=CC=C(S(N)(=O)=O)C=C1 RZEKVGVHFLEQIL-UHFFFAOYSA-N 0.000 claims description 3
- 201000010881 cervical cancer Diseases 0.000 claims description 3
- 229960005395 cetuximab Drugs 0.000 claims description 3
- VDHAWDNDOKGFTD-MRXNPFEDSA-N cinacalcet Chemical compound N([C@H](C)C=1C2=CC=CC=C2C=CC=1)CCCC1=CC=CC(C(F)(F)F)=C1 VDHAWDNDOKGFTD-MRXNPFEDSA-N 0.000 claims description 3
- 229960003315 cinacalcet Drugs 0.000 claims description 3
- 229960004316 cisplatin Drugs 0.000 claims description 3
- DQLATGHUWYMOKM-UHFFFAOYSA-L cisplatin Chemical compound N[Pt](N)(Cl)Cl DQLATGHUWYMOKM-UHFFFAOYSA-L 0.000 claims description 3
- 229960002436 cladribine Drugs 0.000 claims description 3
- 229960004397 cyclophosphamide Drugs 0.000 claims description 3
- 229960000684 cytarabine Drugs 0.000 claims description 3
- 229960003901 dacarbazine Drugs 0.000 claims description 3
- 229960000640 dactinomycin Drugs 0.000 claims description 3
- 229960005029 darbepoetin alfa Drugs 0.000 claims description 3
- 229960000975 daunorubicin Drugs 0.000 claims description 3
- STQGQHZAVUOBTE-VGBVRHCVSA-N daunorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(C)=O)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 STQGQHZAVUOBTE-VGBVRHCVSA-N 0.000 claims description 3
- 229960002923 denileukin diftitox Drugs 0.000 claims description 3
- 108010017271 denileukin diftitox Proteins 0.000 claims description 3
- 229960000605 dexrazoxane Drugs 0.000 claims description 3
- VSJKWCGYPAHWDS-UHFFFAOYSA-N dl-camptothecin Natural products C1=CC=C2C=C(CN3C4=CC5=C(C3=O)COC(=O)C5(O)CC)C4=NC2=C1 VSJKWCGYPAHWDS-UHFFFAOYSA-N 0.000 claims description 3
- 229960003668 docetaxel Drugs 0.000 claims description 3
- 229940017825 dromostanolone Drugs 0.000 claims description 3
- NOTIQUSPUUHHEH-UXOVVSIBSA-N dromostanolone propionate Chemical compound C([C@@H]1CC2)C(=O)[C@H](C)C[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H](OC(=O)CC)[C@@]2(C)CC1 NOTIQUSPUUHHEH-UXOVVSIBSA-N 0.000 claims description 3
- 229960001904 epirubicin Drugs 0.000 claims description 3
- 229960003388 epoetin alfa Drugs 0.000 claims description 3
- AAKJLRGGTJKAMG-UHFFFAOYSA-N erlotinib Chemical compound C=12C=C(OCCOC)C(OCCOC)=CC2=NC=NC=1NC1=CC=CC(C#C)=C1 AAKJLRGGTJKAMG-UHFFFAOYSA-N 0.000 claims description 3
- 201000004101 esophageal cancer Diseases 0.000 claims description 3
- 229960001842 estramustine Drugs 0.000 claims description 3
- FRPJXPJMRWBBIH-RBRWEJTLSA-N estramustine Chemical compound ClCCN(CCCl)C(=O)OC1=CC=C2[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CCC2=C1 FRPJXPJMRWBBIH-RBRWEJTLSA-N 0.000 claims description 3
- 229960005420 etoposide Drugs 0.000 claims description 3
- VJJPUSNTGOMMGY-MRVIYFEKSA-N etoposide Chemical compound COC1=C(O)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@@H](O[C@H]3[C@@H]([C@@H](O)[C@@H]4O[C@H](C)OC[C@H]4O3)O)[C@@H]3[C@@H]2C(OC3)=O)=C1 VJJPUSNTGOMMGY-MRVIYFEKSA-N 0.000 claims description 3
- 229960000255 exemestane Drugs 0.000 claims description 3
- 229960004177 filgrastim Drugs 0.000 claims description 3
- 229960000961 floxuridine Drugs 0.000 claims description 3
- ODKNJVUHOIMIIZ-RRKCRQDMSA-N floxuridine Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(F)=C1 ODKNJVUHOIMIIZ-RRKCRQDMSA-N 0.000 claims description 3
- 229960000390 fludarabine Drugs 0.000 claims description 3
- GIUYCYHIANZCFB-FJFJXFQQSA-N fludarabine phosphate Chemical compound C1=NC=2C(N)=NC(F)=NC=2N1[C@@H]1O[C@H](COP(O)(O)=O)[C@@H](O)[C@@H]1O GIUYCYHIANZCFB-FJFJXFQQSA-N 0.000 claims description 3
- 229960002949 fluorouracil Drugs 0.000 claims description 3
- VVIAGPKUTFNRDU-ABLWVSNPSA-N folinic acid Chemical compound C1NC=2NC(N)=NC(=O)C=2N(C=O)C1CNC1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 VVIAGPKUTFNRDU-ABLWVSNPSA-N 0.000 claims description 3
- 235000008191 folinic acid Nutrition 0.000 claims description 3
- 239000011672 folinic acid Substances 0.000 claims description 3
- 229960002258 fulvestrant Drugs 0.000 claims description 3
- 229960002584 gefitinib Drugs 0.000 claims description 3
- XGALLCVXEZPNRQ-UHFFFAOYSA-N gefitinib Chemical compound C=12C=C(OCCCN3CCOCC3)C(OC)=CC2=NC=NC=1NC1=CC=C(F)C(Cl)=C1 XGALLCVXEZPNRQ-UHFFFAOYSA-N 0.000 claims description 3
- 229960003297 gemtuzumab ozogamicin Drugs 0.000 claims description 3
- 229960002913 goserelin Drugs 0.000 claims description 3
- 201000010536 head and neck cancer Diseases 0.000 claims description 3
- 208000014829 head and neck neoplasm Diseases 0.000 claims description 3
- 206010073071 hepatocellular carcinoma Diseases 0.000 claims description 3
- UUVWYPNAQBNQJQ-UHFFFAOYSA-N hexamethylmelamine Chemical compound CN(C)C1=NC(N(C)C)=NC(N(C)C)=N1 UUVWYPNAQBNQJQ-UHFFFAOYSA-N 0.000 claims description 3
- 229960001001 ibritumomab tiuxetan Drugs 0.000 claims description 3
- 229960000908 idarubicin Drugs 0.000 claims description 3
- 229960001101 ifosfamide Drugs 0.000 claims description 3
- HOMGKSMUEGBAAB-UHFFFAOYSA-N ifosfamide Chemical compound ClCCNP1(=O)OCCCN1CCCl HOMGKSMUEGBAAB-UHFFFAOYSA-N 0.000 claims description 3
- 229960002411 imatinib Drugs 0.000 claims description 3
- KTUFNOKKBVMGRW-UHFFFAOYSA-N imatinib Chemical compound C1CN(C)CCN1CC1=CC=C(C(=O)NC=2C=C(NC=3N=C(C=CN=3)C=3C=NC=CC=3)C(C)=CC=2)C=C1 KTUFNOKKBVMGRW-UHFFFAOYSA-N 0.000 claims description 3
- 229960003521 interferon alfa-2a Drugs 0.000 claims description 3
- 229960003507 interferon alfa-2b Drugs 0.000 claims description 3
- 201000010982 kidney cancer Diseases 0.000 claims description 3
- 229960003881 letrozole Drugs 0.000 claims description 3
- HPJKCIUCZWXJDR-UHFFFAOYSA-N letrozole Chemical compound C1=CC(C#N)=CC=C1C(N1N=CN=C1)C1=CC=C(C#N)C=C1 HPJKCIUCZWXJDR-UHFFFAOYSA-N 0.000 claims description 3
- 229960001691 leucovorin Drugs 0.000 claims description 3
- 229960001614 levamisole Drugs 0.000 claims description 3
- 208000014018 liver neoplasm Diseases 0.000 claims description 3
- 229960002247 lomustine Drugs 0.000 claims description 3
- 229960001786 megestrol Drugs 0.000 claims description 3
- RQZAXGRLVPAYTJ-GQFGMJRRSA-N megestrol acetate Chemical compound C1=C(C)C2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@@](C(C)=O)(OC(=O)C)[C@@]1(C)CC2 RQZAXGRLVPAYTJ-GQFGMJRRSA-N 0.000 claims description 3
- SGDBTWWWUNNDEQ-LBPRGKRZSA-N melphalan Chemical compound OC(=O)[C@@H](N)CC1=CC=C(N(CCCl)CCCl)C=C1 SGDBTWWWUNNDEQ-LBPRGKRZSA-N 0.000 claims description 3
- 229960001924 melphalan Drugs 0.000 claims description 3
- 229960000901 mepacrine Drugs 0.000 claims description 3
- GLVAUDGFNGKCSF-UHFFFAOYSA-N mercaptopurine Chemical compound S=C1NC=NC2=C1NC=N2 GLVAUDGFNGKCSF-UHFFFAOYSA-N 0.000 claims description 3
- 229960001428 mercaptopurine Drugs 0.000 claims description 3
- 229960004635 mesna Drugs 0.000 claims description 3
- 229960000485 methotrexate Drugs 0.000 claims description 3
- 229960004584 methylprednisolone Drugs 0.000 claims description 3
- CFCUWKMKBJTWLW-BKHRDMLASA-N mithramycin Chemical compound O([C@@H]1C[C@@H](O[C@H](C)[C@H]1O)OC=1C=C2C=C3C[C@H]([C@@H](C(=O)C3=C(O)C2=C(O)C=1C)O[C@@H]1O[C@H](C)[C@@H](O)[C@H](O[C@@H]2O[C@H](C)[C@H](O)[C@H](O[C@@H]3O[C@H](C)[C@@H](O)[C@@](C)(O)C3)C2)C1)[C@H](OC)C(=O)[C@@H](O)[C@@H](C)O)[C@H]1C[C@@H](O)[C@H](O)[C@@H](C)O1 CFCUWKMKBJTWLW-BKHRDMLASA-N 0.000 claims description 3
- 229960004857 mitomycin Drugs 0.000 claims description 3
- 229960000350 mitotane Drugs 0.000 claims description 3
- 229960004719 nandrolone Drugs 0.000 claims description 3
- NPAGDVCDWIYMMC-IZPLOLCNSA-N nandrolone Chemical compound O=C1CC[C@@H]2[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CCC2=C1 NPAGDVCDWIYMMC-IZPLOLCNSA-N 0.000 claims description 3
- 208000002154 non-small cell lung carcinoma Diseases 0.000 claims description 3
- 229960000435 oblimersen Drugs 0.000 claims description 3
- MIMNFCVQODTQDP-NDLVEFNKSA-N oblimersen Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](COP(S)(=O)O[C@@H]2[C@H](O[C@H](C2)N2C3=NC=NC(N)=C3N=C2)COP(O)(=S)O[C@@H]2[C@H](O[C@H](C2)N2C(N=C(N)C=C2)=O)COP(O)(=S)O[C@@H]2[C@H](O[C@H](C2)N2C(N=C(N)C=C2)=O)COP(O)(=S)O[C@@H]2[C@H](O[C@H](C2)N2C3=C(C(NC(N)=N3)=O)N=C2)COP(O)(=S)O[C@@H]2[C@H](O[C@H](C2)N2C(N=C(N)C=C2)=O)COP(O)(=S)O[C@@H]2[C@H](O[C@H](C2)N2C3=C(C(NC(N)=N3)=O)N=C2)COP(O)(=S)O[C@@H]2[C@H](O[C@H](C2)N2C(NC(=O)C(C)=C2)=O)COP(O)(=S)O[C@@H]2[C@H](O[C@H](C2)N2C3=C(C(NC(N)=N3)=O)N=C2)COP(O)(=S)O[C@@H]2[C@H](O[C@H](C2)N2C(N=C(N)C=C2)=O)COP(O)(=S)O[C@@H]2[C@H](O[C@H](C2)N2C3=C(C(NC(N)=N3)=O)N=C2)COP(O)(=S)O[C@@H]2[C@H](O[C@H](C2)N2C3=NC=NC(N)=C3N=C2)COP(O)(=S)O[C@@H]2[C@H](O[C@H](C2)N2C(N=C(N)C=C2)=O)COP(O)(=S)O[C@@H]2[C@H](O[C@H](C2)N2C(N=C(N)C=C2)=O)COP(O)(=S)O[C@@H]2[C@H](O[C@H](C2)N2C(N=C(N)C=C2)=O)COP(O)(=S)O[C@@H]2[C@H](O[C@H](C2)N2C(NC(=O)C(C)=C2)=O)COP(O)(=S)O[C@@H]2[C@H](O[C@H](C2)N2C(N=C(N)C=C2)=O)COP(O)(=S)O[C@@H]2[C@H](O[C@H](C2)N2C(NC(=O)C(C)=C2)=O)CO)[C@@H](O)C1 MIMNFCVQODTQDP-NDLVEFNKSA-N 0.000 claims description 3
- 229960001840 oprelvekin Drugs 0.000 claims description 3
- 108010046821 oprelvekin Proteins 0.000 claims description 3
- DWAFYCQODLXJNR-BNTLRKBRSA-L oxaliplatin Chemical compound O1C(=O)C(=O)O[Pt]11N[C@@H]2CCCC[C@H]2N1 DWAFYCQODLXJNR-BNTLRKBRSA-L 0.000 claims description 3
- 229960001756 oxaliplatin Drugs 0.000 claims description 3
- 229940046231 pamidronate Drugs 0.000 claims description 3
- WRUUGTRCQOWXEG-UHFFFAOYSA-N pamidronate Chemical compound NCCC(O)(P(O)(O)=O)P(O)(O)=O WRUUGTRCQOWXEG-UHFFFAOYSA-N 0.000 claims description 3
- HQQSBEDKMRHYME-UHFFFAOYSA-N pefloxacin mesylate Chemical compound [H+].CS([O-])(=O)=O.C1=C2N(CC)C=C(C(O)=O)C(=O)C2=CC(F)=C1N1CCN(C)CC1 HQQSBEDKMRHYME-UHFFFAOYSA-N 0.000 claims description 3
- 229960001218 pegademase Drugs 0.000 claims description 3
- 108010027841 pegademase bovine Proteins 0.000 claims description 3
- 229960001744 pegaspargase Drugs 0.000 claims description 3
- 108010001564 pegaspargase Proteins 0.000 claims description 3
- 229960001373 pegfilgrastim Drugs 0.000 claims description 3
- 108010044644 pegfilgrastim Proteins 0.000 claims description 3
- 229960005079 pemetrexed Drugs 0.000 claims description 3
- QOFFJEBXNKRSPX-ZDUSSCGKSA-N pemetrexed Chemical compound C1=N[C]2NC(N)=NC(=O)C2=C1CCC1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 QOFFJEBXNKRSPX-ZDUSSCGKSA-N 0.000 claims description 3
- 229960002340 pentostatin Drugs 0.000 claims description 3
- FPVKHBSQESCIEP-JQCXWYLXSA-N pentostatin Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(N=CNC[C@H]2O)=C2N=C1 FPVKHBSQESCIEP-JQCXWYLXSA-N 0.000 claims description 3
- NJBFOOCLYDNZJN-UHFFFAOYSA-N pipobroman Chemical compound BrCCC(=O)N1CCN(C(=O)CCBr)CC1 NJBFOOCLYDNZJN-UHFFFAOYSA-N 0.000 claims description 3
- 229960000952 pipobroman Drugs 0.000 claims description 3
- 229960003171 plicamycin Drugs 0.000 claims description 3
- 229950004403 polifeprosan Drugs 0.000 claims description 3
- 229960000624 procarbazine Drugs 0.000 claims description 3
- CPTBDICYNRMXFX-UHFFFAOYSA-N procarbazine Chemical compound CNNCC1=CC=C(C(=O)NC(C)C)C=C1 CPTBDICYNRMXFX-UHFFFAOYSA-N 0.000 claims description 3
- GPKJTRJOBQGKQK-UHFFFAOYSA-N quinacrine Chemical compound C1=C(OC)C=C2C(NC(C)CCCN(CC)CC)=C(C=CC(Cl)=C3)C3=NC2=C1 GPKJTRJOBQGKQK-UHFFFAOYSA-N 0.000 claims description 3
- 229960000424 rasburicase Drugs 0.000 claims description 3
- 108010084837 rasburicase Proteins 0.000 claims description 3
- 229960004641 rituximab Drugs 0.000 claims description 3
- 108010038379 sargramostim Proteins 0.000 claims description 3
- 229960002530 sargramostim Drugs 0.000 claims description 3
- MIXCUJKCXRNYFM-UHFFFAOYSA-M sodium;diiodomethanesulfonate;n-propyl-n-[2-(2,4,6-trichlorophenoxy)ethyl]imidazole-1-carboxamide Chemical compound [Na+].[O-]S(=O)(=O)C(I)I.C1=CN=CN1C(=O)N(CCC)CCOC1=C(Cl)C=C(Cl)C=C1Cl MIXCUJKCXRNYFM-UHFFFAOYSA-M 0.000 claims description 3
- 229960001052 streptozocin Drugs 0.000 claims description 3
- ZSJLQEPLLKMAKR-GKHCUFPYSA-N streptozocin Chemical compound O=NN(C)C(=O)N[C@H]1[C@@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O ZSJLQEPLLKMAKR-GKHCUFPYSA-N 0.000 claims description 3
- 239000000454 talc Substances 0.000 claims description 3
- 229910052623 talc Inorganic materials 0.000 claims description 3
- 229940033134 talc Drugs 0.000 claims description 3
- 229960001603 tamoxifen Drugs 0.000 claims description 3
- 229940120982 tarceva Drugs 0.000 claims description 3
- 229960004964 temozolomide Drugs 0.000 claims description 3
- NRUKOCRGYNPUPR-QBPJDGROSA-N teniposide Chemical compound COC1=C(O)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@@H](O[C@H]3[C@@H]([C@@H](O)[C@@H]4O[C@@H](OC[C@H]4O3)C=3SC=CC=3)O)[C@@H]3[C@@H]2C(OC3)=O)=C1 NRUKOCRGYNPUPR-QBPJDGROSA-N 0.000 claims description 3
- 229960001278 teniposide Drugs 0.000 claims description 3
- 229960005353 testolactone Drugs 0.000 claims description 3
- BPEWUONYVDABNZ-DZBHQSCQSA-N testolactone Chemical compound O=C1C=C[C@]2(C)[C@H]3CC[C@](C)(OC(=O)CC4)[C@@H]4[C@@H]3CCC2=C1 BPEWUONYVDABNZ-DZBHQSCQSA-N 0.000 claims description 3
- 229960001196 thiotepa Drugs 0.000 claims description 3
- 229960003087 tioguanine Drugs 0.000 claims description 3
- MNRILEROXIRVNJ-UHFFFAOYSA-N tioguanine Chemical compound N1C(N)=NC(=S)C2=NC=N[C]21 MNRILEROXIRVNJ-UHFFFAOYSA-N 0.000 claims description 3
- 229960000303 topotecan Drugs 0.000 claims description 3
- UCFGDBYHRUNTLO-QHCPKHFHSA-N topotecan Chemical compound C1=C(O)C(CN(C)C)=C2C=C(CN3C4=CC5=C(C3=O)COC(=O)[C@]5(O)CC)C4=NC2=C1 UCFGDBYHRUNTLO-QHCPKHFHSA-N 0.000 claims description 3
- XFCLJVABOIYOMF-QPLCGJKRSA-N toremifene Chemical compound C1=CC(OCCN(C)C)=CC=C1C(\C=1C=CC=CC=1)=C(\CCCl)C1=CC=CC=C1 XFCLJVABOIYOMF-QPLCGJKRSA-N 0.000 claims description 3
- 229960005026 toremifene Drugs 0.000 claims description 3
- 229960005267 tositumomab Drugs 0.000 claims description 3
- 229960000575 trastuzumab Drugs 0.000 claims description 3
- 229960001727 tretinoin Drugs 0.000 claims description 3
- 208000029729 tumor suppressor gene on chromosome 11 Diseases 0.000 claims description 3
- 229960001055 uracil mustard Drugs 0.000 claims description 3
- 229960000653 valrubicin Drugs 0.000 claims description 3
- ZOCKGBMQLCSHFP-KQRAQHLDSA-N valrubicin Chemical compound O([C@H]1C[C@](CC2=C(O)C=3C(=O)C4=CC=CC(OC)=C4C(=O)C=3C(O)=C21)(O)C(=O)COC(=O)CCCC)[C@H]1C[C@H](NC(=O)C(F)(F)F)[C@H](O)[C@H](C)O1 ZOCKGBMQLCSHFP-KQRAQHLDSA-N 0.000 claims description 3
- 229960003048 vinblastine Drugs 0.000 claims description 3
- OGWKCGZFUXNPDA-XQKSVPLYSA-N vincristine Chemical compound C([N@]1C[C@@H](C[C@]2(C(=O)OC)C=3C(=CC4=C([C@]56[C@H]([C@@]([C@H](OC(C)=O)[C@]7(CC)C=CCN([C@H]67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)C[C@@](C1)(O)CC)CC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-XQKSVPLYSA-N 0.000 claims description 3
- 229960004528 vincristine Drugs 0.000 claims description 3
- OGWKCGZFUXNPDA-UHFFFAOYSA-N vincristine Natural products C1C(CC)(O)CC(CC2(C(=O)OC)C=3C(=CC4=C(C56C(C(C(OC(C)=O)C7(CC)C=CCN(C67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)CN1CCC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-UHFFFAOYSA-N 0.000 claims description 3
- GBABOYUKABKIAF-GHYRFKGUSA-N vinorelbine Chemical compound C1N(CC=2C3=CC=CC=C3NC=22)CC(CC)=C[C@H]1C[C@]2(C(=O)OC)C1=CC([C@]23[C@H]([C@]([C@H](OC(C)=O)[C@]4(CC)C=CCN([C@H]34)CC2)(O)C(=O)OC)N2C)=C2C=C1OC GBABOYUKABKIAF-GHYRFKGUSA-N 0.000 claims description 3
- XRASPMIURGNCCH-UHFFFAOYSA-N zoledronic acid Chemical compound OP(=O)(O)C(P(O)(O)=O)(O)CN1C=CN=C1 XRASPMIURGNCCH-UHFFFAOYSA-N 0.000 claims description 3
- 229960004276 zoledronic acid Drugs 0.000 claims description 3
- 125000000229 (C1-C4)alkoxy group Chemical group 0.000 claims 2
- QXKHYNVANLEOEG-UHFFFAOYSA-N Methoxsalen Chemical compound C1=CC(=O)OC2=C1C=C1C=COC1=C2OC QXKHYNVANLEOEG-UHFFFAOYSA-N 0.000 claims 2
- FQISKWAFAHGMGT-SGJOWKDISA-M Methylprednisolone sodium succinate Chemical compound [Na+].C([C@@]12C)=CC(=O)C=C1[C@@H](C)C[C@@H]1[C@@H]2[C@@H](O)C[C@]2(C)[C@@](O)(C(=O)COC(=O)CCC([O-])=O)CC[C@H]21 FQISKWAFAHGMGT-SGJOWKDISA-M 0.000 claims 2
- PCWZKQSKUXXDDJ-UHFFFAOYSA-N Xanthotoxin Natural products COCc1c2OC(=O)C=Cc2cc3ccoc13 PCWZKQSKUXXDDJ-UHFFFAOYSA-N 0.000 claims 2
- JCKYGMPEJWAADB-UHFFFAOYSA-N chlorambucil Chemical compound OC(=O)CCCC1=CC=C(N(CCCl)CCCl)C=C1 JCKYGMPEJWAADB-UHFFFAOYSA-N 0.000 claims 2
- 229960004630 chlorambucil Drugs 0.000 claims 2
- 229960004469 methoxsalen Drugs 0.000 claims 2
- 229940125904 compound 1 Drugs 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 28
- PYKYMHQGRFAEBM-UHFFFAOYSA-N anthraquinone Natural products CCC(=O)c1c(O)c2C(=O)C3C(C=CC=C3O)C(=O)c2cc1CC(=O)OC PYKYMHQGRFAEBM-UHFFFAOYSA-N 0.000 abstract description 2
- 208000035475 disorder Diseases 0.000 description 37
- 210000004027 cell Anatomy 0.000 description 36
- 210000001519 tissue Anatomy 0.000 description 26
- 238000001959 radiotherapy Methods 0.000 description 23
- DBAMBJQJKDHEQX-UHFFFAOYSA-N 1,4-bis[2-(dimethylamino)ethylamino]-5,8-dihydroxyanthracene-9,10-dione Chemical compound O=C1C2=C(O)C=CC(O)=C2C(=O)C2=C1C(NCCN(C)C)=CC=C2NCCN(C)C DBAMBJQJKDHEQX-UHFFFAOYSA-N 0.000 description 17
- 238000010172 mouse model Methods 0.000 description 16
- 238000002560 therapeutic procedure Methods 0.000 description 14
- 206010021143 Hypoxia Diseases 0.000 description 13
- 206010025323 Lymphomas Diseases 0.000 description 13
- 230000004083 survival effect Effects 0.000 description 13
- 208000032852 chronic lymphocytic leukemia Diseases 0.000 description 10
- 239000000654 additive Substances 0.000 description 9
- 230000001472 cytotoxic effect Effects 0.000 description 9
- 230000005855 radiation Effects 0.000 description 9
- 230000004614 tumor growth Effects 0.000 description 9
- 108020004414 DNA Proteins 0.000 description 8
- 241000699666 Mus <mouse, genus> Species 0.000 description 8
- 231100000433 cytotoxic Toxicity 0.000 description 8
- 239000003814 drug Substances 0.000 description 8
- 230000001146 hypoxic effect Effects 0.000 description 8
- 239000002245 particle Substances 0.000 description 8
- 208000010839 B-cell chronic lymphocytic leukemia Diseases 0.000 description 7
- 201000009030 Carcinoma Diseases 0.000 description 7
- 208000031422 Lymphocytic Chronic B-Cell Leukemia Diseases 0.000 description 7
- 239000004615 ingredient Substances 0.000 description 7
- 208000008443 pancreatic carcinoma Diseases 0.000 description 7
- 238000011362 radionuclide therapy Methods 0.000 description 7
- 239000002562 thickening agent Substances 0.000 description 7
- 206010061902 Pancreatic neoplasm Diseases 0.000 description 6
- 230000000996 additive effect Effects 0.000 description 6
- 238000002725 brachytherapy Methods 0.000 description 6
- 230000030833 cell death Effects 0.000 description 6
- 229920002678 cellulose Polymers 0.000 description 6
- 210000001072 colon Anatomy 0.000 description 6
- 230000003013 cytotoxicity Effects 0.000 description 6
- 231100000135 cytotoxicity Toxicity 0.000 description 6
- 238000009826 distribution Methods 0.000 description 6
- 208000015486 malignant pancreatic neoplasm Diseases 0.000 description 6
- 201000002528 pancreatic cancer Diseases 0.000 description 6
- 238000000015 thermotherapy Methods 0.000 description 6
- 210000004881 tumor cell Anatomy 0.000 description 6
- 208000024893 Acute lymphoblastic leukemia Diseases 0.000 description 5
- 208000031261 Acute myeloid leukaemia Diseases 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 239000002775 capsule Substances 0.000 description 5
- 239000002552 dosage form Substances 0.000 description 5
- 230000001965 increasing effect Effects 0.000 description 5
- 230000005764 inhibitory process Effects 0.000 description 5
- 208000032839 leukemia Diseases 0.000 description 5
- 238000002428 photodynamic therapy Methods 0.000 description 5
- 230000002265 prevention Effects 0.000 description 5
- 230000002285 radioactive effect Effects 0.000 description 5
- 238000002673 radiosurgery Methods 0.000 description 5
- 208000014697 Acute lymphocytic leukaemia Diseases 0.000 description 4
- 206010027476 Metastases Diseases 0.000 description 4
- 208000006664 Precursor Cell Lymphoblastic Leukemia-Lymphoma Diseases 0.000 description 4
- 208000009052 Precursor T-Cell Lymphoblastic Leukemia-Lymphoma Diseases 0.000 description 4
- 208000029052 T-cell acute lymphoblastic leukemia Diseases 0.000 description 4
- 125000003545 alkoxy group Chemical group 0.000 description 4
- 125000000217 alkyl group Chemical group 0.000 description 4
- 208000035269 cancer or benign tumor Diseases 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 229940079593 drug Drugs 0.000 description 4
- 238000002710 external beam radiation therapy Methods 0.000 description 4
- 230000002977 hyperthermial effect Effects 0.000 description 4
- 210000004185 liver Anatomy 0.000 description 4
- 230000003211 malignant effect Effects 0.000 description 4
- 201000000050 myeloid neoplasm Diseases 0.000 description 4
- 230000001613 neoplastic effect Effects 0.000 description 4
- 230000001575 pathological effect Effects 0.000 description 4
- 102000004196 processed proteins & peptides Human genes 0.000 description 4
- 108090000765 processed proteins & peptides Proteins 0.000 description 4
- 108090000623 proteins and genes Proteins 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 210000000952 spleen Anatomy 0.000 description 4
- 230000008685 targeting Effects 0.000 description 4
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 4
- 208000032791 BCR-ABL1 positive chronic myelogenous leukemia Diseases 0.000 description 3
- 208000010833 Chronic myeloid leukaemia Diseases 0.000 description 3
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 3
- 108010010803 Gelatin Proteins 0.000 description 3
- 108091028043 Nucleic acid sequence Proteins 0.000 description 3
- OAICVXFJPJFONN-OUBTZVSYSA-N Phosphorus-32 Chemical compound [32P] OAICVXFJPJFONN-OUBTZVSYSA-N 0.000 description 3
- 208000017414 Precursor T-cell acute lymphoblastic leukemia Diseases 0.000 description 3
- 108010073929 Vascular Endothelial Growth Factor A Proteins 0.000 description 3
- 102000005789 Vascular Endothelial Growth Factors Human genes 0.000 description 3
- 108010019530 Vascular Endothelial Growth Factors Proteins 0.000 description 3
- 238000009825 accumulation Methods 0.000 description 3
- 210000004556 brain Anatomy 0.000 description 3
- 235000010980 cellulose Nutrition 0.000 description 3
- 238000002512 chemotherapy Methods 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- 230000034994 death Effects 0.000 description 3
- 231100000517 death Toxicity 0.000 description 3
- 238000009472 formulation Methods 0.000 description 3
- 239000000499 gel Substances 0.000 description 3
- 239000008273 gelatin Substances 0.000 description 3
- 229920000159 gelatin Polymers 0.000 description 3
- 235000019322 gelatine Nutrition 0.000 description 3
- 235000011852 gelatine desserts Nutrition 0.000 description 3
- 238000001727 in vivo Methods 0.000 description 3
- 239000006207 intravenous dosage form Substances 0.000 description 3
- 230000001678 irradiating effect Effects 0.000 description 3
- 210000003734 kidney Anatomy 0.000 description 3
- 210000002429 large intestine Anatomy 0.000 description 3
- 230000000670 limiting effect Effects 0.000 description 3
- 210000004072 lung Anatomy 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 210000000214 mouth Anatomy 0.000 description 3
- 210000000496 pancreas Anatomy 0.000 description 3
- 229940097886 phosphorus 32 Drugs 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 102000004169 proteins and genes Human genes 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 238000001356 surgical procedure Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 229940124597 therapeutic agent Drugs 0.000 description 3
- 230000001225 therapeutic effect Effects 0.000 description 3
- 230000001988 toxicity Effects 0.000 description 3
- 231100000419 toxicity Toxicity 0.000 description 3
- 125000000008 (C1-C10) alkyl group Chemical group 0.000 description 2
- GVJHHUAWPYXKBD-UHFFFAOYSA-N (±)-α-Tocopherol Chemical compound OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-UHFFFAOYSA-N 0.000 description 2
- PNDPGZBMCMUPRI-HVTJNCQCSA-N 10043-66-0 Chemical compound [131I][131I] PNDPGZBMCMUPRI-HVTJNCQCSA-N 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- 206010006187 Breast cancer Diseases 0.000 description 2
- 208000026310 Breast neoplasm Diseases 0.000 description 2
- 239000004322 Butylated hydroxytoluene Substances 0.000 description 2
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 241001529936 Murinae Species 0.000 description 2
- 241000699670 Mus sp. Species 0.000 description 2
- 206010061309 Neoplasm progression Diseases 0.000 description 2
- 206010029113 Neovascularisation Diseases 0.000 description 2
- ZTHYODDOHIVTJV-UHFFFAOYSA-N Propyl gallate Chemical compound CCCOC(=O)C1=CC(O)=C(O)C(O)=C1 ZTHYODDOHIVTJV-UHFFFAOYSA-N 0.000 description 2
- 206010060862 Prostate cancer Diseases 0.000 description 2
- 239000008156 Ringer's lactate solution Substances 0.000 description 2
- 206010039491 Sarcoma Diseases 0.000 description 2
- 208000000453 Skin Neoplasms Diseases 0.000 description 2
- 239000007983 Tris buffer Substances 0.000 description 2
- 102000007537 Type II DNA Topoisomerases Human genes 0.000 description 2
- 108010046308 Type II DNA Topoisomerases Proteins 0.000 description 2
- PNDPGZBMCMUPRI-XXSWNUTMSA-N [125I][125I] Chemical compound [125I][125I] PNDPGZBMCMUPRI-XXSWNUTMSA-N 0.000 description 2
- 230000001154 acute effect Effects 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 235000010443 alginic acid Nutrition 0.000 description 2
- 229920000615 alginic acid Polymers 0.000 description 2
- 239000004037 angiogenesis inhibitor Substances 0.000 description 2
- 239000003963 antioxidant agent Substances 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- SESFRYSPDFLNCH-UHFFFAOYSA-N benzyl benzoate Chemical compound C=1C=CC=CC=1C(=O)OCC1=CC=CC=C1 SESFRYSPDFLNCH-UHFFFAOYSA-N 0.000 description 2
- 210000004204 blood vessel Anatomy 0.000 description 2
- 230000037396 body weight Effects 0.000 description 2
- 210000000481 breast Anatomy 0.000 description 2
- 235000010354 butylated hydroxytoluene Nutrition 0.000 description 2
- 229940095259 butylated hydroxytoluene Drugs 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000021615 conjugation Effects 0.000 description 2
- 238000002784 cytotoxicity assay Methods 0.000 description 2
- 231100000263 cytotoxicity test Toxicity 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 235000019441 ethanol Nutrition 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 239000003102 growth factor Substances 0.000 description 2
- 230000007954 hypoxia Effects 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- 229940055742 indium-111 Drugs 0.000 description 2
- APFVFJFRJDLVQX-AHCXROLUSA-N indium-111 Chemical compound [111In] APFVFJFRJDLVQX-AHCXROLUSA-N 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 238000009830 intercalation Methods 0.000 description 2
- 230000002687 intercalation Effects 0.000 description 2
- 238000001990 intravenous administration Methods 0.000 description 2
- 229940044173 iodine-125 Drugs 0.000 description 2
- 239000006210 lotion Substances 0.000 description 2
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000001404 mediated effect Effects 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 239000007922 nasal spray Substances 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 210000003800 pharynx Anatomy 0.000 description 2
- 239000003504 photosensitizing agent Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920000058 polyacrylate Polymers 0.000 description 2
- 239000004584 polyacrylic acid Substances 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 229920001184 polypeptide Polymers 0.000 description 2
- 239000013641 positive control Substances 0.000 description 2
- 230000003389 potentiating effect Effects 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- WUAPFZMCVAUBPE-IGMARMGPSA-N rhenium-186 Chemical compound [186Re] WUAPFZMCVAUBPE-IGMARMGPSA-N 0.000 description 2
- KZUNJOHGWZRPMI-AKLPVKDBSA-N samarium-153 Chemical compound [153Sm] KZUNJOHGWZRPMI-AKLPVKDBSA-N 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 238000007920 subcutaneous administration Methods 0.000 description 2
- 208000024891 symptom Diseases 0.000 description 2
- 230000002195 synergetic effect Effects 0.000 description 2
- 239000003826 tablet Substances 0.000 description 2
- 230000000699 topical effect Effects 0.000 description 2
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 2
- 230000005751 tumor progression Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 1
- HIQIXEFWDLTDED-UHFFFAOYSA-N 4-hydroxy-1-piperidin-4-ylpyrrolidin-2-one Chemical compound O=C1CC(O)CN1C1CCNCC1 HIQIXEFWDLTDED-UHFFFAOYSA-N 0.000 description 1
- VHRSUDSXCMQTMA-PJHHCJLFSA-N 6alpha-methylprednisolone Chemical compound C([C@@]12C)=CC(=O)C=C1[C@@H](C)C[C@@H]1[C@@H]2[C@@H](O)C[C@]2(C)[C@@](O)(C(=O)CO)CC[C@H]21 VHRSUDSXCMQTMA-PJHHCJLFSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- LYHRBIAPWZFXBG-UHFFFAOYSA-N 7h-imidazo[4,5-e]tetrazine Chemical class N1=NNC2=NC=NC2=N1 LYHRBIAPWZFXBG-UHFFFAOYSA-N 0.000 description 1
- HBAQYPYDRFILMT-UHFFFAOYSA-N 8-[3-(1-cyclopropylpyrazol-4-yl)-1H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-methyl-3,8-diazabicyclo[3.2.1]octan-2-one Chemical class C1(CC1)N1N=CC(=C1)C1=NNC2=C1N=C(N=C2)N1C2C(N(CC1CC2)C)=O HBAQYPYDRFILMT-UHFFFAOYSA-N 0.000 description 1
- 206010005003 Bladder cancer Diseases 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- 208000017897 Carcinoma of esophagus Diseases 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 208000006332 Choriocarcinoma Diseases 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 1
- GUTLYIVDDKVIGB-OUBTZVSYSA-N Cobalt-60 Chemical compound [60Co] GUTLYIVDDKVIGB-OUBTZVSYSA-N 0.000 description 1
- 102000003915 DNA Topoisomerases Human genes 0.000 description 1
- 108090000323 DNA Topoisomerases Proteins 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- 206010012689 Diabetic retinopathy Diseases 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- LVGKNOAMLMIIKO-UHFFFAOYSA-N Elaidinsaeure-aethylester Natural products CCCCCCCCC=CCCCCCCCC(=O)OCC LVGKNOAMLMIIKO-UHFFFAOYSA-N 0.000 description 1
- 206010014733 Endometrial cancer Diseases 0.000 description 1
- 206010014759 Endometrial neoplasm Diseases 0.000 description 1
- 241000792859 Enema Species 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 206010016654 Fibrosis Diseases 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- 206010064571 Gene mutation Diseases 0.000 description 1
- 208000017604 Hodgkin disease Diseases 0.000 description 1
- 208000010747 Hodgkins lymphoma Diseases 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-N Hydrogen bromide Chemical compound Br CPELXLSAUQHCOX-UHFFFAOYSA-N 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- 208000037147 Hypercalcaemia Diseases 0.000 description 1
- 208000007766 Kaposi sarcoma Diseases 0.000 description 1
- 239000011786 L-ascorbyl-6-palmitate Substances 0.000 description 1
- QAQJMLQRFWZOBN-LAUBAEHRSA-N L-ascorbyl-6-palmitate Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](O)[C@H]1OC(=O)C(O)=C1O QAQJMLQRFWZOBN-LAUBAEHRSA-N 0.000 description 1
- JVTAAEKCZFNVCJ-UHFFFAOYSA-M Lactate Chemical compound CC(O)C([O-])=O JVTAAEKCZFNVCJ-UHFFFAOYSA-M 0.000 description 1
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 1
- 208000028018 Lymphocytic leukaemia Diseases 0.000 description 1
- 208000037196 Medullary thyroid carcinoma Diseases 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- 108060004795 Methyltransferase Proteins 0.000 description 1
- 102000029749 Microtubule Human genes 0.000 description 1
- 108091022875 Microtubule Proteins 0.000 description 1
- 208000033761 Myelogenous Chronic BCR-ABL Positive Leukemia Diseases 0.000 description 1
- 208000033776 Myeloid Acute Leukemia Diseases 0.000 description 1
- MBBZMMPHUWSWHV-BDVNFPICSA-N N-methylglucamine Chemical compound CNC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO MBBZMMPHUWSWHV-BDVNFPICSA-N 0.000 description 1
- 206010029260 Neuroblastoma Diseases 0.000 description 1
- 208000015914 Non-Hodgkin lymphomas Diseases 0.000 description 1
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 235000019483 Peanut oil Nutrition 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 208000000236 Prostatic Neoplasms Diseases 0.000 description 1
- 102000003923 Protein Kinase C Human genes 0.000 description 1
- 108090000315 Protein Kinase C Proteins 0.000 description 1
- HCWPIIXVSYCSAN-IGMARMGPSA-N Radium-226 Chemical compound [226Ra] HCWPIIXVSYCSAN-IGMARMGPSA-N 0.000 description 1
- 208000006265 Renal cell carcinoma Diseases 0.000 description 1
- 241000405965 Scomberomorus brasiliensis Species 0.000 description 1
- DWAQJAXMDSEUJJ-UHFFFAOYSA-M Sodium bisulfite Chemical compound [Na+].OS([O-])=O DWAQJAXMDSEUJJ-UHFFFAOYSA-M 0.000 description 1
- 208000021712 Soft tissue sarcoma Diseases 0.000 description 1
- 241000282887 Suidae Species 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 208000033781 Thyroid carcinoma Diseases 0.000 description 1
- 208000024770 Thyroid neoplasm Diseases 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 229930003316 Vitamin D Natural products 0.000 description 1
- QYSXJUFSXHHAJI-XFEUOLMDSA-N Vitamin D3 Natural products C1(/[C@@H]2CC[C@@H]([C@]2(CCC1)C)[C@H](C)CCCC(C)C)=C/C=C1\C[C@@H](O)CCC1=C QYSXJUFSXHHAJI-XFEUOLMDSA-N 0.000 description 1
- 229930003427 Vitamin E Natural products 0.000 description 1
- 208000033559 Waldenström macroglobulinemia Diseases 0.000 description 1
- 208000008383 Wilms tumor Diseases 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- FHNFHKCVQCLJFQ-NJFSPNSNSA-N Xenon-133 Chemical compound [133Xe] FHNFHKCVQCLJFQ-NJFSPNSNSA-N 0.000 description 1
- VWQVUPCCIRVNHF-OUBTZVSYSA-N Yttrium-90 Chemical compound [90Y] VWQVUPCCIRVNHF-OUBTZVSYSA-N 0.000 description 1
- 230000001594 aberrant effect Effects 0.000 description 1
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 208000017733 acquired polycythemia vera Diseases 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 125000005073 adamantyl group Chemical group C12(CC3CC(CC(C1)C3)C2)* 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 208000020990 adrenal cortex carcinoma Diseases 0.000 description 1
- 206010064930 age-related macular degeneration Diseases 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 239000000783 alginic acid Substances 0.000 description 1
- 229960001126 alginic acid Drugs 0.000 description 1
- 150000004781 alginic acids Chemical class 0.000 description 1
- 229920013820 alkyl cellulose Polymers 0.000 description 1
- 229940100198 alkylating agent Drugs 0.000 description 1
- 239000002168 alkylating agent Substances 0.000 description 1
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 1
- 229940121369 angiogenesis inhibitor Drugs 0.000 description 1
- 230000002491 angiogenic effect Effects 0.000 description 1
- RGHILYZRVFRRNK-UHFFFAOYSA-N anthracene-1,2-dione Chemical class C1=CC=C2C=C(C(C(=O)C=C3)=O)C3=CC2=C1 RGHILYZRVFRRNK-UHFFFAOYSA-N 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 230000000340 anti-metabolite Effects 0.000 description 1
- 230000000692 anti-sense effect Effects 0.000 description 1
- 230000000259 anti-tumor effect Effects 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 238000011394 anticancer treatment Methods 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- 229940100197 antimetabolite Drugs 0.000 description 1
- 239000002256 antimetabolite Substances 0.000 description 1
- 239000003080 antimitotic agent Substances 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- 230000006907 apoptotic process Effects 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000008135 aqueous vehicle Substances 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 235000010385 ascorbyl palmitate Nutrition 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- UHOVQNZJYSORNB-UHFFFAOYSA-N benzene Substances C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 1
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 1
- 229960002903 benzyl benzoate Drugs 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- JCXGWMGPZLAOME-RNFDNDRNSA-N bismuth-213 Chemical compound [213Bi] JCXGWMGPZLAOME-RNFDNDRNSA-N 0.000 description 1
- 201000001531 bladder carcinoma Diseases 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 210000001185 bone marrow Anatomy 0.000 description 1
- 201000008275 breast carcinoma Diseases 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 239000006172 buffering agent Substances 0.000 description 1
- 235000019282 butylated hydroxyanisole Nutrition 0.000 description 1
- BPKIGYQJPYCAOW-FFJTTWKXSA-I calcium;potassium;disodium;(2s)-2-hydroxypropanoate;dichloride;dihydroxide;hydrate Chemical compound O.[OH-].[OH-].[Na+].[Na+].[Cl-].[Cl-].[K+].[Ca+2].C[C@H](O)C([O-])=O BPKIGYQJPYCAOW-FFJTTWKXSA-I 0.000 description 1
- BMLSTPRTEKLIPM-UHFFFAOYSA-I calcium;potassium;disodium;hydrogen carbonate;dichloride;dihydroxide;hydrate Chemical compound O.[OH-].[OH-].[Na+].[Na+].[Cl-].[Cl-].[K+].[Ca+2].OC([O-])=O BMLSTPRTEKLIPM-UHFFFAOYSA-I 0.000 description 1
- HGLDOAKPQXAFKI-OUBTZVSYSA-N californium-252 Chemical compound [252Cf] HGLDOAKPQXAFKI-OUBTZVSYSA-N 0.000 description 1
- 235000013877 carbamide Nutrition 0.000 description 1
- 208000002458 carcinoid tumor Diseases 0.000 description 1
- 230000003915 cell function Effects 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 230000036978 cell physiology Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000005754 cellular signaling Effects 0.000 description 1
- 230000007541 cellular toxicity Effects 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 208000019065 cervical carcinoma Diseases 0.000 description 1
- 210000003679 cervix uteri Anatomy 0.000 description 1
- TVFDJXOCXUVLDH-RNFDNDRNSA-N cesium-137 Chemical compound [137Cs] TVFDJXOCXUVLDH-RNFDNDRNSA-N 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 239000013043 chemical agent Substances 0.000 description 1
- 230000000973 chemotherapeutic effect Effects 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 125000003016 chromanyl group Chemical group O1C(CCC2=CC=CC=C12)* 0.000 description 1
- 230000007882 cirrhosis Effects 0.000 description 1
- 208000019425 cirrhosis of liver Diseases 0.000 description 1
- 238000011281 clinical therapy Methods 0.000 description 1
- 229940075614 colloidal silicon dioxide Drugs 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000002648 combination therapy Methods 0.000 description 1
- 238000011284 combination treatment Methods 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 210000002808 connective tissue Anatomy 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 239000002285 corn oil Substances 0.000 description 1
- 235000005687 corn oil Nutrition 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 235000012343 cottonseed oil Nutrition 0.000 description 1
- 239000002385 cottonseed oil Substances 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 208000035250 cutaneous malignant susceptibility to 1 melanoma Diseases 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 230000001120 cytoprotective effect Effects 0.000 description 1
- 239000002254 cytotoxic agent Substances 0.000 description 1
- 231100000599 cytotoxic agent Toxicity 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 239000007933 dermal patch Substances 0.000 description 1
- 239000008356 dextrose and sodium chloride injection Substances 0.000 description 1
- 239000008355 dextrose injection Substances 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 239000003534 dna topoisomerase inhibitor Substances 0.000 description 1
- 239000003937 drug carrier Substances 0.000 description 1
- KBQHZAAAGSGFKK-NJFSPNSNSA-N dysprosium-165 Chemical compound [165Dy] KBQHZAAAGSGFKK-NJFSPNSNSA-N 0.000 description 1
- 230000003028 elevating effect Effects 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 201000003914 endometrial carcinoma Diseases 0.000 description 1
- 210000004696 endometrium Anatomy 0.000 description 1
- 239000007920 enema Substances 0.000 description 1
- 229940095399 enema Drugs 0.000 description 1
- 229940088598 enzyme Drugs 0.000 description 1
- 210000002919 epithelial cell Anatomy 0.000 description 1
- 210000000981 epithelium Anatomy 0.000 description 1
- 201000005619 esophageal carcinoma Diseases 0.000 description 1
- 210000003238 esophagus Anatomy 0.000 description 1
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- LVGKNOAMLMIIKO-QXMHVHEDSA-N ethyl oleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC LVGKNOAMLMIIKO-QXMHVHEDSA-N 0.000 description 1
- 229940093471 ethyl oleate Drugs 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 208000021045 exocrine pancreatic carcinoma Diseases 0.000 description 1
- 239000003889 eye drop Substances 0.000 description 1
- 230000008713 feedback mechanism Effects 0.000 description 1
- 230000005294 ferromagnetic effect Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 235000019634 flavors Nutrition 0.000 description 1
- 230000009969 flowable effect Effects 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 239000003205 fragrance Substances 0.000 description 1
- 239000012458 free base Substances 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 229960002598 fumaric acid Drugs 0.000 description 1
- 235000011087 fumaric acid Nutrition 0.000 description 1
- WIGCFUFOHFEKBI-UHFFFAOYSA-N gamma-tocopherol Natural products CC(C)CCCC(C)CCCC(C)CCCC1CCC2C(C)C(O)C(C)C(C)C2O1 WIGCFUFOHFEKBI-UHFFFAOYSA-N 0.000 description 1
- 206010017758 gastric cancer Diseases 0.000 description 1
- 208000010749 gastric carcinoma Diseases 0.000 description 1
- 239000007903 gelatin capsule Substances 0.000 description 1
- 210000004907 gland Anatomy 0.000 description 1
- PCHJSUWPFVWCPO-OUBTZVSYSA-N gold-198 Chemical compound [198Au] PCHJSUWPFVWCPO-OUBTZVSYSA-N 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 201000009277 hairy cell leukemia Diseases 0.000 description 1
- 125000001475 halogen functional group Chemical group 0.000 description 1
- 210000003128 head Anatomy 0.000 description 1
- 201000003911 head and neck carcinoma Diseases 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 239000003667 hormone antagonist Substances 0.000 description 1
- 229920013821 hydroxy alkyl cellulose Polymers 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 1
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 1
- 230000000148 hypercalcaemia Effects 0.000 description 1
- 208000030915 hypercalcemia disease Diseases 0.000 description 1
- 125000002632 imidazolidinyl group Chemical group 0.000 description 1
- 125000002636 imidazolinyl group Chemical group 0.000 description 1
- 230000002519 immonomodulatory effect Effects 0.000 description 1
- 239000000367 immunologic factor Substances 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 125000003387 indolinyl group Chemical group N1(CCC2=CC=CC=C12)* 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 150000007529 inorganic bases Chemical class 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-IGMARMGPSA-N iridium-192 Chemical compound [192Ir] GKOZUEZYRPOHIO-IGMARMGPSA-N 0.000 description 1
- 125000003384 isochromanyl group Chemical group C1(OCCC2=CC=CC=C12)* 0.000 description 1
- 125000004594 isoindolinyl group Chemical group C1(NCC2=CC=CC=C12)* 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 229940074928 isopropyl myristate Drugs 0.000 description 1
- 210000000867 larynx Anatomy 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000007937 lozenge Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 201000005202 lung cancer Diseases 0.000 description 1
- 208000020816 lung neoplasm Diseases 0.000 description 1
- OHSVLFRHMCKCQY-NJFSPNSNSA-N lutetium-177 Chemical compound [177Lu] OHSVLFRHMCKCQY-NJFSPNSNSA-N 0.000 description 1
- 210000001165 lymph node Anatomy 0.000 description 1
- 208000003747 lymphoid leukemia Diseases 0.000 description 1
- 201000000564 macroglobulinemia Diseases 0.000 description 1
- 208000002780 macular degeneration Diseases 0.000 description 1
- 235000011090 malic acid Nutrition 0.000 description 1
- 239000001630 malic acid Substances 0.000 description 1
- 229940099690 malic acid Drugs 0.000 description 1
- IWYDHOAUDWTVEP-UHFFFAOYSA-M mandelate Chemical compound [O-]C(=O)C(O)C1=CC=CC=C1 IWYDHOAUDWTVEP-UHFFFAOYSA-M 0.000 description 1
- 208000023356 medullary thyroid gland carcinoma Diseases 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 230000009401 metastasis Effects 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- 210000004688 microtubule Anatomy 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- HDZGCSFEDULWCS-UHFFFAOYSA-N monomethylhydrazine Chemical class CNN HDZGCSFEDULWCS-UHFFFAOYSA-N 0.000 description 1
- 125000002757 morpholinyl group Chemical group 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 201000005962 mycosis fungoides Diseases 0.000 description 1
- 208000025113 myeloid leukemia Diseases 0.000 description 1
- 229940097496 nasal spray Drugs 0.000 description 1
- 230000037125 natural defense Effects 0.000 description 1
- 210000003739 neck Anatomy 0.000 description 1
- 230000001338 necrotic effect Effects 0.000 description 1
- 210000005170 neoplastic cell Anatomy 0.000 description 1
- 239000002687 nonaqueous vehicle Substances 0.000 description 1
- 102000039446 nucleic acids Human genes 0.000 description 1
- 108020004707 nucleic acids Proteins 0.000 description 1
- 150000007523 nucleic acids Chemical class 0.000 description 1
- 239000002674 ointment Substances 0.000 description 1
- 238000011275 oncology therapy Methods 0.000 description 1
- 239000003605 opacifier Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000006186 oral dosage form Substances 0.000 description 1
- 210000003463 organelle Anatomy 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 150000007530 organic bases Chemical class 0.000 description 1
- 201000008968 osteosarcoma Diseases 0.000 description 1
- 210000001672 ovary Anatomy 0.000 description 1
- KDLHZDBZIXYQEI-OIOBTWANSA-N palladium-103 Chemical compound [103Pd] KDLHZDBZIXYQEI-OIOBTWANSA-N 0.000 description 1
- 208000021255 pancreatic insulinoma Diseases 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 239000006072 paste Substances 0.000 description 1
- 239000000312 peanut oil Substances 0.000 description 1
- 125000003538 pentan-3-yl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])C([H])([H])[H] 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 230000000649 photocoagulation Effects 0.000 description 1
- 230000001766 physiological effect Effects 0.000 description 1
- 210000004694 pigment cell Anatomy 0.000 description 1
- 125000003386 piperidinyl group Chemical group 0.000 description 1
- 239000011505 plaster Substances 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920000191 poly(N-vinyl pyrrolidone) Polymers 0.000 description 1
- 208000037244 polycythemia vera Diseases 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 239000002952 polymeric resin Substances 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- RWPGFSMJFRPDDP-UHFFFAOYSA-L potassium metabisulfite Chemical compound [K+].[K+].[O-]S(=O)S([O-])(=O)=O RWPGFSMJFRPDDP-UHFFFAOYSA-L 0.000 description 1
- 229940043349 potassium metabisulfite Drugs 0.000 description 1
- 235000010263 potassium metabisulphite Nutrition 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 230000002062 proliferating effect Effects 0.000 description 1
- 125000001501 propionyl group Chemical group O=C([*])C([H])([H])C([H])([H])[H] 0.000 description 1
- 235000010388 propyl gallate Nutrition 0.000 description 1
- 239000000473 propyl gallate Substances 0.000 description 1
- 229940075579 propyl gallate Drugs 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 210000002307 prostate Anatomy 0.000 description 1
- 125000004309 pyranyl group Chemical group O1C(C=CC=C1)* 0.000 description 1
- 125000003072 pyrazolidinyl group Chemical group 0.000 description 1
- 125000002755 pyrazolinyl group Chemical group 0.000 description 1
- 125000000719 pyrrolidinyl group Chemical group 0.000 description 1
- 125000004621 quinuclidinyl group Chemical group N12C(CC(CC1)CC2)* 0.000 description 1
- 238000007674 radiofrequency ablation Methods 0.000 description 1
- 230000008844 regulatory mechanism Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000020874 response to hypoxia Effects 0.000 description 1
- 201000009410 rhabdomyosarcoma Diseases 0.000 description 1
- KJTLSVCANCCWHF-BKFZFHPZSA-N ruthenium-106 Chemical compound [106Ru] KJTLSVCANCCWHF-BKFZFHPZSA-N 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 239000008159 sesame oil Substances 0.000 description 1
- 235000011803 sesame oil Nutrition 0.000 description 1
- 230000019491 signal transduction Effects 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 210000003491 skin Anatomy 0.000 description 1
- 201000000849 skin cancer Diseases 0.000 description 1
- 208000000587 small cell lung carcinoma Diseases 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 235000010413 sodium alginate Nutrition 0.000 description 1
- 235000010378 sodium ascorbate Nutrition 0.000 description 1
- PPASLZSBLFJQEF-RKJRWTFHSA-M sodium ascorbate Substances [Na+].OC[C@@H](O)[C@H]1OC(=O)C(O)=C1[O-] PPASLZSBLFJQEF-RKJRWTFHSA-M 0.000 description 1
- 229960005055 sodium ascorbate Drugs 0.000 description 1
- 229940001607 sodium bisulfite Drugs 0.000 description 1
- 239000008354 sodium chloride injection Substances 0.000 description 1
- HRZFUMHJMZEROT-UHFFFAOYSA-L sodium disulfite Chemical compound [Na+].[Na+].[O-]S(=O)S([O-])(=O)=O HRZFUMHJMZEROT-UHFFFAOYSA-L 0.000 description 1
- 235000010267 sodium hydrogen sulphite Nutrition 0.000 description 1
- 229940001584 sodium metabisulfite Drugs 0.000 description 1
- 235000010262 sodium metabisulphite Nutrition 0.000 description 1
- PPASLZSBLFJQEF-RXSVEWSESA-M sodium-L-ascorbate Chemical compound [Na+].OC[C@H](O)[C@H]1OC(=O)C(O)=C1[O-] PPASLZSBLFJQEF-RXSVEWSESA-M 0.000 description 1
- 206010041823 squamous cell carcinoma Diseases 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 201000000498 stomach carcinoma Diseases 0.000 description 1
- CIOAGBVUUVVLOB-OUBTZVSYSA-N strontium-89 Chemical compound [89Sr] CIOAGBVUUVVLOB-OUBTZVSYSA-N 0.000 description 1
- 229940006509 strontium-89 Drugs 0.000 description 1
- 229910021653 sulphate ion Inorganic materials 0.000 description 1
- 239000000829 suppository Substances 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000013268 sustained release Methods 0.000 description 1
- 239000012730 sustained-release form Substances 0.000 description 1
- 239000011885 synergistic combination Substances 0.000 description 1
- 238000007910 systemic administration Methods 0.000 description 1
- 229940095064 tartrate Drugs 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 230000002381 testicular Effects 0.000 description 1
- 210000001550 testis Anatomy 0.000 description 1
- 125000003718 tetrahydrofuranyl group Chemical group 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- 201000002510 thyroid cancer Diseases 0.000 description 1
- 208000013077 thyroid gland carcinoma Diseases 0.000 description 1
- 208000013818 thyroid gland medullary carcinoma Diseases 0.000 description 1
- 229930003799 tocopherol Natural products 0.000 description 1
- 239000011732 tocopherol Substances 0.000 description 1
- 125000002640 tocopherol group Chemical class 0.000 description 1
- 235000019149 tocopherols Nutrition 0.000 description 1
- 238000011200 topical administration Methods 0.000 description 1
- 230000005747 tumor angiogenesis Effects 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 150000003672 ureas Chemical class 0.000 description 1
- 210000003932 urinary bladder Anatomy 0.000 description 1
- 208000010570 urinary bladder carcinoma Diseases 0.000 description 1
- 210000005166 vasculature Anatomy 0.000 description 1
- 235000019166 vitamin D Nutrition 0.000 description 1
- 239000011710 vitamin D Substances 0.000 description 1
- 235000019165 vitamin E Nutrition 0.000 description 1
- 229940046009 vitamin E Drugs 0.000 description 1
- 239000011709 vitamin E Substances 0.000 description 1
- 229940046008 vitamin d Drugs 0.000 description 1
- 239000008215 water for injection Substances 0.000 description 1
- 239000008136 water-miscible vehicle Substances 0.000 description 1
- 229940106670 xenon-133 Drugs 0.000 description 1
- GVJHHUAWPYXKBD-IEOSBIPESA-N α-tocopherol Chemical compound OC1=C(C)C(C)=C2O[C@@](CCC[C@H](C)CCC[C@H](C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-IEOSBIPESA-N 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/12—Ketones
- A61K31/122—Ketones having the oxygen directly attached to a ring, e.g. quinones, vitamin K1, anthralin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
Landscapes
- Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Organic Chemistry (AREA)
- Epidemiology (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
The invention relates to anthraquinone compounds having activity for treating hyperproliferative disorders. Further, the invention relates to methods of using the compounds, alone or in combination with one or more other active agents or treatments, to treat hyperproliferative disorders.
Description
TREATMENT OF HYPERPROLIFERATNE DISEASES WITH
ANTHRAQUINONES
BACKGROUND OF THE INVENTION
Field of the Invention [0001] The present invention relates to compounds having activity for treating hyperproliferative disorders. Further, the invention relates to methods of using the compounds, alone or in combination with one or more other active agents or treatments, to treat hyperproliferative disorders.
Related Art [0002] One in every four deaths in the United States is due to cancer, and cancer is the second leading cause of death. U.S. Cancer Statistics Working Group; United States Cancer Statistics: 1999-2001 Incidence, Atlanta (GA):
Department of Health and Human Services, Centers for Disease Control and Prevention, and National Cancer Institute (2004). The National Cancer Institute reports that almost 10 million Americans have a history of invasive cancer, while the American Cancer Society estimates that in the year 2004, over 1.3 million Americans will receive a diagnosis of invasive cancer with over a half million cases resulting in death. American Cancer Society, Cancer Facts & Figures 2004. These statistics exclude the 1 million cases of basal and squamous cell skin cancers that are expected to be diagnosed in the United States.
ANTHRAQUINONES
BACKGROUND OF THE INVENTION
Field of the Invention [0001] The present invention relates to compounds having activity for treating hyperproliferative disorders. Further, the invention relates to methods of using the compounds, alone or in combination with one or more other active agents or treatments, to treat hyperproliferative disorders.
Related Art [0002] One in every four deaths in the United States is due to cancer, and cancer is the second leading cause of death. U.S. Cancer Statistics Working Group; United States Cancer Statistics: 1999-2001 Incidence, Atlanta (GA):
Department of Health and Human Services, Centers for Disease Control and Prevention, and National Cancer Institute (2004). The National Cancer Institute reports that almost 10 million Americans have a history of invasive cancer, while the American Cancer Society estimates that in the year 2004, over 1.3 million Americans will receive a diagnosis of invasive cancer with over a half million cases resulting in death. American Cancer Society, Cancer Facts & Figures 2004. These statistics exclude the 1 million cases of basal and squamous cell skin cancers that are expected to be diagnosed in the United States.
[0003] Cancers are classified based on the organ and cell tissue from which the cancer originates, including: (i) carcinomas (most common kind of cancer which originates in epithelial tissues, the layers of cells covering the body's surface or lining inte.rnal organs and various glands); (ii) leukemias (origination in the blood-forming tissues, including bone marrow, lymph nodes and the spleen); (iii) lymphomas (originates in the cells of the lyi-nph system); (iv) melanomas (originates in the pigment cells located among the epithelial cells of the skin); and (v) sarcomas (originates in the connective tissues of the body, such as bones, muscles and blood vessels). (See Molecular Biology of the Cell: Third Edition, "Cancer," Chapter 24, pp.1255-1294, B.
Alberts et al., (eds.), Garland Publishing, Tnc., New York (1994); and Stedman's Pocket Medical Dictionary; Williams and Wilkins, Baltimore (1987)). Within these broad cancer classifications, there are over one hundred cancer subclassifications, such as breast, lung, pancreatic, colon, and prostate cancer, to name a few.
Alberts et al., (eds.), Garland Publishing, Tnc., New York (1994); and Stedman's Pocket Medical Dictionary; Williams and Wilkins, Baltimore (1987)). Within these broad cancer classifications, there are over one hundred cancer subclassifications, such as breast, lung, pancreatic, colon, and prostate cancer, to name a few.
[0004] Cancer cells develop as a result of damage to a cell's DNA (i.e., altered DNA sequence or altered expression pattern) from exposure to various chemical agents, radiation, viruses, or wheii some not-yet-fully-understood internal, cellular signaling event occurs. Most of the time when a cell's DNA
becomes damaged, the cell either dies or is able to repair the DNA. However, for cancer cells, the damaged DNA is not repaired and the cell continues to divide, exhibiting modified cell physiology and function.
[00051 Neoplasms, or tumors, are masses of cells that result from an aberrant, accelerated rate of growth (i.e., hyperproliferative cell growth). As long as the tumor cells remain confined to a single mass, the tumor is considered to be benign. However, a cancerous tumor has the ability to invade other tissues and is termed malignant. In general, cancer cells are -defaned by two heritable properties: the cells and their progeny 1) reproduce in defiance of normal restraints, and 2) invade and colonize the territories of other cells.
[0006] Cancerous tumors are comprised of a highly complex vasculature and differentiated tissue. A large majority of cancerous tumors have hypoxic components, which are relatively resistant to standard anti-cancer treatment, including radiotherapy and cheinotherapy. Brown, Cancer Res. 59:5863 (1999); and Kunz, M. et al., Mol. Cancer 2:1 (2003). Thomlinson and Gray presented the first anatomical model of a human tumor that describes a 100 to 150 m thick hypoxic layer of tissue located between the blood vessels and necrotic tumor tissues.
[0007] Research has shown that the hypoxic tissues within a nuinber of cancerous tumors promote the progression of the cancer by an array of complex mechanisms. See, Brown., supra, and Kunz et aL, supra. Among these are activation of certain signal transduction pathways and gene regulatory mechanisms, induction of selection processes for gene mutations, tumor cell apoptosis and tumor angiogenesis. Most of these mechanisms contribute to tumor progression. Therefore, tissue hypoxia has been regarded as a central factor for tumor aggressiveness and metastasis. Therapies that target hypoxic tissues within a tumor would certainly provide improved treatments to patients suffering from tumor-related cancers and/or disorders.
(0008) In addition to cancer, there exist a number of hyperproliferative diseases and/or disorders that are associated with the onset of hypoxia in a given tissue. For example, Shweiki et al. explain that inadequate oxygen levels often lead to neovascularization in order to compensate for the needs of the hypoxic tissue. Neovascularization is mediated by expression of certain growth factors, such as vascular endothelial growth factor (VEGF). Shweiki et al., Nature 359:843 (1992). However, when certain tissues or growth factors are either directly or indirectly upregulated in response to hypoxia without sufficient feedback mechanisms for controlling tissue expression, various diseases and/or disorders may ensue (i.e., by hypoxia-aggravated hyperproliferation). By way of example, hypoxia-aggravated hyperproliferative diseases and/or disorders having over-expressed levels of VEGF include ocular angiogenic diseases, such as age-related macular degeneration and diabetic retinopathy, as well as cirrhosis of the liver. See Frank, Ophtlaalsfaic Res. 29:341 (1997); Ishibashi et al., Graefe's Archive Clin.
Exp. Ophthamol. 235:159 (1997); Corpechot et al., Hepatology 35:1010 (2002).
(0009] U.S. Patent No. 5,132,327 describes a group of anthraquinone prodrug compounds having the following structure:
R~ R, in which RI, R2, R3 and R4 are each separately selected from the group consisting of hydrogen, X, NH-A-NHR. and NH-A-N(O)R'R" wherein X is hydroxy, halogeno, amino, C1_4 alkoxy or C2_$ alkanoyloxy, A is a C2_4 alkylene group with a chain length between NH and NHR or N(O)RR" of at least 2 carbon atoms and R, R' and R" are each separately selected from the group consisting of C1_4 alkyl groups and C2_4 hydroxyalkyl and C2_4 dihydroxyalkyl groups in which the carbon atom attached to the nitrogen atom does not carry a hydroxy group and no carbon atom is substituted by two hydroxy groups, or R' and R" together are a C2_6 alkylene group which with the nitrogen atom to which R' and R" are attached forms a heterocyclic group having 3 to 7 atoms in the ring, but with the proviso that at least one of Rl to R4 is a group NH-A-N(O)R'R", the compound optionally being in the form of a physiologically acceptable salt. These compounds are described as being useful in the treatment of cancer.
(0010] Among the compounds disclosed in U.S. Patent No. 5,132,327 is the compound AQ4N (1,4-bis {[2-(dimethylamino)ethyl]amino}-5,8-dihydroxyanthracene-9,10-dione bis-N-oxide.
becomes damaged, the cell either dies or is able to repair the DNA. However, for cancer cells, the damaged DNA is not repaired and the cell continues to divide, exhibiting modified cell physiology and function.
[00051 Neoplasms, or tumors, are masses of cells that result from an aberrant, accelerated rate of growth (i.e., hyperproliferative cell growth). As long as the tumor cells remain confined to a single mass, the tumor is considered to be benign. However, a cancerous tumor has the ability to invade other tissues and is termed malignant. In general, cancer cells are -defaned by two heritable properties: the cells and their progeny 1) reproduce in defiance of normal restraints, and 2) invade and colonize the territories of other cells.
[0006] Cancerous tumors are comprised of a highly complex vasculature and differentiated tissue. A large majority of cancerous tumors have hypoxic components, which are relatively resistant to standard anti-cancer treatment, including radiotherapy and cheinotherapy. Brown, Cancer Res. 59:5863 (1999); and Kunz, M. et al., Mol. Cancer 2:1 (2003). Thomlinson and Gray presented the first anatomical model of a human tumor that describes a 100 to 150 m thick hypoxic layer of tissue located between the blood vessels and necrotic tumor tissues.
[0007] Research has shown that the hypoxic tissues within a nuinber of cancerous tumors promote the progression of the cancer by an array of complex mechanisms. See, Brown., supra, and Kunz et aL, supra. Among these are activation of certain signal transduction pathways and gene regulatory mechanisms, induction of selection processes for gene mutations, tumor cell apoptosis and tumor angiogenesis. Most of these mechanisms contribute to tumor progression. Therefore, tissue hypoxia has been regarded as a central factor for tumor aggressiveness and metastasis. Therapies that target hypoxic tissues within a tumor would certainly provide improved treatments to patients suffering from tumor-related cancers and/or disorders.
(0008) In addition to cancer, there exist a number of hyperproliferative diseases and/or disorders that are associated with the onset of hypoxia in a given tissue. For example, Shweiki et al. explain that inadequate oxygen levels often lead to neovascularization in order to compensate for the needs of the hypoxic tissue. Neovascularization is mediated by expression of certain growth factors, such as vascular endothelial growth factor (VEGF). Shweiki et al., Nature 359:843 (1992). However, when certain tissues or growth factors are either directly or indirectly upregulated in response to hypoxia without sufficient feedback mechanisms for controlling tissue expression, various diseases and/or disorders may ensue (i.e., by hypoxia-aggravated hyperproliferation). By way of example, hypoxia-aggravated hyperproliferative diseases and/or disorders having over-expressed levels of VEGF include ocular angiogenic diseases, such as age-related macular degeneration and diabetic retinopathy, as well as cirrhosis of the liver. See Frank, Ophtlaalsfaic Res. 29:341 (1997); Ishibashi et al., Graefe's Archive Clin.
Exp. Ophthamol. 235:159 (1997); Corpechot et al., Hepatology 35:1010 (2002).
(0009] U.S. Patent No. 5,132,327 describes a group of anthraquinone prodrug compounds having the following structure:
R~ R, in which RI, R2, R3 and R4 are each separately selected from the group consisting of hydrogen, X, NH-A-NHR. and NH-A-N(O)R'R" wherein X is hydroxy, halogeno, amino, C1_4 alkoxy or C2_$ alkanoyloxy, A is a C2_4 alkylene group with a chain length between NH and NHR or N(O)RR" of at least 2 carbon atoms and R, R' and R" are each separately selected from the group consisting of C1_4 alkyl groups and C2_4 hydroxyalkyl and C2_4 dihydroxyalkyl groups in which the carbon atom attached to the nitrogen atom does not carry a hydroxy group and no carbon atom is substituted by two hydroxy groups, or R' and R" together are a C2_6 alkylene group which with the nitrogen atom to which R' and R" are attached forms a heterocyclic group having 3 to 7 atoms in the ring, but with the proviso that at least one of Rl to R4 is a group NH-A-N(O)R'R", the compound optionally being in the form of a physiologically acceptable salt. These compounds are described as being useful in the treatment of cancer.
(0010] Among the compounds disclosed in U.S. Patent No. 5,132,327 is the compound AQ4N (1,4-bis {[2-(dimethylamino)ethyl]amino}-5,8-dihydroxyanthracene-9,10-dione bis-N-oxide.
O
N
OH O NH
I 1~
OH O NH
iI \
O
[0011] AQ4N has been shown to have potent anti-hyperproliferative activity and to enhance the antitumor effects of radiation and conventional chemotherapeutic agents. Patterson, Drug Metab. Rev. 34:581 (2002). For many tumor cells, AQ4N is not intrinsically cytotoxic; in hypoxic tumors it is converted to the cytotoxic compound AQ4 (1,4-bis{[2-(dimethylamino)ethyl]amino]-5,8-dihydroxyanthracene-9,10-dione). Among the activities associated with AQ4 are intercalation into DNA and inhibition of topoisomerase II activity.
BRIEF SUMMARY OF THE INVENTION
[0012] The present invention is related to compositions and methods for treating hyperproliferative disorders, such as cancer. One aspect of the invention is drawn to methods of treating, ameliorating, or preventing hyperproliferative disease in a subject comprising administering to said subject a therapeutically effective amount of a compound having Fonmula I:
N
OH O NH
I 1~
OH O NH
iI \
O
[0011] AQ4N has been shown to have potent anti-hyperproliferative activity and to enhance the antitumor effects of radiation and conventional chemotherapeutic agents. Patterson, Drug Metab. Rev. 34:581 (2002). For many tumor cells, AQ4N is not intrinsically cytotoxic; in hypoxic tumors it is converted to the cytotoxic compound AQ4 (1,4-bis{[2-(dimethylamino)ethyl]amino]-5,8-dihydroxyanthracene-9,10-dione). Among the activities associated with AQ4 are intercalation into DNA and inhibition of topoisomerase II activity.
BRIEF SUMMARY OF THE INVENTION
[0012] The present invention is related to compositions and methods for treating hyperproliferative disorders, such as cancer. One aspect of the invention is drawn to methods of treating, ameliorating, or preventing hyperproliferative disease in a subject comprising administering to said subject a therapeutically effective amount of a compound having Fonmula I:
O
R4 R, : ~ - ;
O
or a pharmaceutically acceptable salt or prodrug thereof, wherein:
RI, R2, R3 and R4 are independently hydrogen, hydroxy, halo, amino, CI_4 alkoxy, C2_8 alkanoyloxy, NH-A-NHR, or NH-A-N(O)R'R";
A is a C2_4 alkylene group with a chain length between NH and NHR or N(O)R'R" of at least 2 carbon atoms; and R, R' and R" are independently C1_4 alkyl, C2_4 hydroxyalkyl, or C2_4 dihydroxyalkyl in which the carbon atom attached to the nitrogen atom does not cany a hydroxy group and no carbon atom is substituted by two hydroxy groups; or R' and R" together are a C2_6 alkylene group which with the nitrogen atom to which R' and R" are attached forms a heterocyclic group having 3 to 7 atoms in the ring;
with the proviso that at least one of Rl to R4 is NH-A-N(O)R'R".
[0013] In one embodiment of the invention, the compound of Formula I is AQ4N.
- T-O
N
OH O NH
OH O NH
[0014] An additional aspect of the present invention is a method for treating, ameliorating, or preventing hyperproliferative disorders in an animal comprising administering to the animal a therapeutically effective amount of a compound having Formula I in combination with one or more active agents or treatments, for example, chemotherapeutic agents or radiotherapeutic agents/treatments.
[0015] In preferred embodiments of the invention, the one or more chemotherapeutic agents can be any chemotherapeutic ageiit which is used, has been used, or is known to be useful for the treatment of hyperproliferative disorders.
[0016] In preferred embodiments of the invention, the one or more radiotherapeutic agents or treatments can be external-beam radiation therapy, brachytherapy, thermotherapy, radiosurgery, charged-particle radiotherapy, neutron radiotherapy, photodynamic therapy, or radionuclide therapy.
[00171 In one embodiment of the invention, tlie compound having Formula I
can be administered prior to, during, and/or beyond administration of the one or more chemotherapeutic agents or radiotherapeutic agents or treatments. In another embodiment of the invention, the method of administering a compound having Formula I in combination with one or more chemotherapeutic agents or radiotherapeutic agents or treatments is repeated more than once.
[0018] The combination of a compound having Formula I and one or more chemotherapeutic agents or radiotherapeutic agents or treatments of the present invention will have additive potency or an additive therapeutic effect.
The invention also encompasses synergistic combinations where the therapeutic efficacy is greater than additive. Preferably, such combinations will reduce or avoid unwanted or adverse effects. In certain embodiments, the combination therapies encompassed by the invention will provide an improved overall therapy relative to administration of a compound having Formula I or any chemotherapeutic agent or radiotherapeutic agent or treatment alone. In certain embodiments, doses of existing or experimental chemotherapeutic agents or radiotherapeutic agents or treatments will be reduced or administered less frequently wliich will increase patient compliance, thereby improving therapy and reducing unwanted or adverse effects.
[0019] Further, the methods of the invention will be useful not only with previously untreated patients but also will be useful in the treatment of patients partially or completely refractory to current standard and/or experimental cancer therapies, including but not limited to radiotlierapies, chemotherapies, and/or surgery. In a preferred embodiment, the invention will provide tl-ierapeutic methods for the treatment or amelioration of hyperproliferative disorders that have been shown to be or may be refractory or non-responsive to other therapies.
[0020] While not wishing to be bound by any theory, it is believed that some of the N-oxide compounds of the invention will function as prodrugs with greatly diminished cytotoxicity. It is believed that these N-oxide compounds will be activated under hypoxic conditions within the target tissues (i.e., reduced at the nitrogen atom), followed by intercalation between the base pairs in the host cell DNA. Other N-oxide compound of the invention may have intrinsic cytotoxic activity. It is contemplated that the targets of the _g_ compounds for facilitating cell toxicity include DNA, helicases, microtubules, protein kinase C, and topoisomerase I and II. Since a number of pathological tissues have significant hypoxic components which promote hyperproliferation, it is believed that this portion of tissue will be preferentially targeted.
BRIEF DESCRIPTION OF THE DR.AWINGS/FIGURES
[0021] Figure 1 shows the effect of different doses of AQ4N on a P388 chronic lymphocytic leukemia mouse model.
[0022] Figure 2 shows a comparison of the effect of AQ4N, mitoxantrone, and carmustine on a P388 chronic lymphocytic leukemia mouse model.
[0023] Figure 3 shows the effect of different doses of AQ4N on a P388 chronic lymphocytic leukemia mouse model in terms of survival time.
[0024] Figure 4 shows the reproducibility of the effect of different doses of AQ4N on a P388 chronic lymphocytic leukemia mouse model.
[0025] Figure 5 shows the effect of different doses of AQ4N on a L1210 acute Iymphocytic leukemia mouse model.
[0026] Figure 6 shows a comparison of the effect of AQ4N, mitoxantrone, and carmustine on a L1210 acute lymphocytic leukemia mouse model.
[0027] Figure 7 shows the effect of different doses of AQ4N on a L1210 acute lymphocytic leukemia mouse model in terms of survival time.
[0028] Figure 8 shows the reproducibility of the effect of different doses of AQ4N on a L1210 acute lymphocytic leukemia mouse model.
[0029] Figure 9 shows the effect of different doses of AQ4N on a Namalwa liuman lymphoma mouse model.
[0030] Figure 10 shows the effect of different doses of AQ4N on a BXPC-3 pancreatic cancer mouse model.
[0031] Figure 11 shows the effect of different doses of AQ4N on a BXPC-3 pancreatic cancer mouse model.
[0032] Figure 12 shows the effect of different doses of AQ4N alone and in combination with gemcitabine on a BXPC-3 pancreatic cancer mouse model.
[0033] Figure 13 shows the effect of different doses of AQ4N on a HT-29 colon cancer mouse model.
[0034] Figure 14 shows the effect of different doses of AQ4N on a HT-29 colon cancer mouse model.
[0035] Figure 15 shows the effect of different doses of AQ4N alone and in combination with irinotecan on a HT-29 colon cancer mouse model.
[0036] Figure 16 shows the effect of different doses of AQ4N alone and in combination with irinotecan on a HT-29 colon cancer mouse model.
[0037] Figure 17 shows the distribution of radiolabeled AQ4N after administration to a mouse.
[0038] Figure 18 shows the distribution of radiolabeled AQ4N after administration to a mouse.
DETAILED DESCRIPTION OF THE INVENTION
[0039] One aspect of the invention is drawn to methods of treating, aineliorating, or preventing hyperproliferative disease in a subject comprising administering to said subject a therapeutically effective amount of a compound having Formula I:
R4 R, I I
/\ J\
or a phaimaceutically acceptable salt or prodrug tllereof, wherein:
Ri, R2, R3 and R4 are independently hydrogen, hydroxy, halo, amino, C1_4 alkoxy, Cz_$ alkanoyloxy, NH-A-NHR, or NH-A-N(O)R'R";
A is a C2_4 alkylene group with a chain length between NH and NHR or N(O)R'R" of at least 2 carbon atoms; and R, R' and R" are independently C1_4 alkyl, C2_4 hydroxyalkyl, or C2_4 dihydroxyalkyl in which the carbon atom attached to the nitrogen atom does not carry a hydroxy group and no carbon atom is substituted by two hydroxy groups; or R' and R" together are a C2_6 alkylene group which with the nitrogen atom to which R' and R" are attached forms a heterocyclic group having 3 to 7 atoms in the ring;
with the proviso that at least one of Rl to R4 is NH-A-N(O)R'R".
[0040] Useful alkyl groups include straight-chained or branched Ci_lp alkyl groups, especially methyl, ethyl, propyl, isopropyl, t-butyl, sec-butyl, 3-pentyl, adamantyl, norbomyl, and 3-hexyl groups.
[0041] Useful halo or halogen groups include fluorine, chlorine, bromine and iodine.
[0042] Useful alkoxy groups include oxygen substituted by one of the C1_10 alkyl groups mentioned above, especially methoxy and ethoxy.
[00431 Useful alkanoyloxy groups include acyloxy substituted by one of the C1_10 alkyl groups mentioned above, especially acetyl and propionyl.
[0044] Useful heterocyclic groups include tetrahydrofuranyl, pyranyl, piperidinyl, piperizinyl, pyrrolidinyl, imidazolidinyl, imidazolinyl, indolinyl, isoindolinyl, quinuclidinyl, morpholinyl, isochromanyl, chromanyl, pyrazolidinyl, pyrazolinyl, tetronoyl and tetramoyl groups.
[0045] According to another aspect of the invention, a therapeutically effective amount of a compound having Formula I, or a pharmaceutically acceptable salt thereof, and at least one other active agent is provided in the form of a pharmaceutical composition having at least one pharmaceutically acceptable carrier. In certain instances, the at least one other active agent is a chemotherapeutic agent (including an active vitamin D compound).
Compounds having Formula I may be formulated in a single formulation with the other active agent(s), or formulated independently.
[0046j According to one aspect of the invention, methods for treating, ameliorating, or preventing hyperproliferative disorders are provided, wherein a therapeutically effective amount of a compound having Formula I, or a pharmaceutically.acceptable salt thereof, is administered to an animal in need thereof. In certain aspects of the invention, the hyperproliferative disorder is cancer. In one embodiment, the cancer is a solid tumor. In another embodiment, the cancer is selected from the group consisting of colon cancer, brain cancer, glioma, multiple myeloma, head and neck cancer (except for esophageal cancer), hepatocellular cancer, melanoma, ovarian cancer, cervical cancer, renal cancer, and non-small cell lung cancer.
[0047] A further aspect of the invention relates to methods for treating, ameliorating, or preventing a hyperproliferative disorder comprising administering a therapeutically effective amount of a compound having Formula I, or a pharmaceutically acceptable salt thereof, in combination with at least one other active agent or treatment to a patient in need thereof. In certain embodiments, combinations of a coinpound having Formula I with a chemotherapeutic agent are administered. In one embodiment, the chemotherapeutic agent is selected from gemcitabine and irinotecan.
[0048] Hyperproliferative disorders which can be treated with the compounds having Formula I include any hypoxia-aggravated hyperproliferative disease and/or disorder, such as any number of cancers. Generally, such cancers include, without limitation, cancers of the bladder, brain, breast, cervix, colon, endometrium, esophagus, head and neck, kidney, larynx, liver, lung, oral cavity, ovaries, pancreas, prostate, skin, stomach, and testis. Certain of these cancers may be more specifically referred to as acute and chronic lymphocytic leukemia, acute granulocytic leukemia, adrenal cortex carcinoma, bladder carcinoma, breast carcinoma, cervical carcinoma, cervical liyperplasia, choriocarcinoma, chronic granulocytic leukemia, chronic lymphocytic leukemia, colon carcinoma, endometrial carcinoma, esophageal carcinoma, essential tlu-ombocytosis, genitourinary carcinoma, hairy cell leukemia, head and neck carcinoma, Hodgkin's disease, Kaposi's sarcoma, lung carcinoma, lymphoma, malignant carcinoid carcinoma, malignant hypercalcemia, malignant melanoma, malignant pancreatic insulinoma, medullary thyroid carcinoma, melanoma, multiple myeloma, mycosis fungoides, myeloid and lymphocytic leukemia, neuroblastoma, non-Hodgkin's lymphoma, osteogenic sarcoma, ovarian carcinoma, pancreatic carcinoma, polycythemia vera, primary brain carcinoma, primary macroglobulinemia, prostatic carcinoma, renal cell carcinoma, rhabdomyosarcoma, skin cancer, small-cell lung carcinoma, soft-tissue sarcoma, squamous cell carcinoma, stomach carcinoma, testicular carcinoma, thyroid carcinoma, and Wilms' tumor. I1i one embodiment, the cancer is a solid tumor. In another embodiment, the cancer is selected from the group consisting of colon cancer, brain cancer, glioma, multiple myeloma, head and neck cancer (except for esophageal cancer), hepatocellular cancer, melanoma, ovarian cancer, cervical cancer, renal cancer, and non-small cell lung cancer.
[0049) Animals which may be treated according to the present invention include all animals which may benefit from administration of compounds having Formula I. Such animals include humans, pets such as dogs and cats, and veterinary animals such as cows, pigs, sheep, goats and the like.
[00501 The term "pharmaceutical composition" as used herein, is to be understood as defining compositions of which the individual components or ingredients are themselves pharmaceutically acceptable, e.g., where oral administration is foreseen, acceptable for oral use; where topical administration is foreseen, topically acceptable; and where intravenous administration is foreseen, intravenously acceptable.
[0051] As used herein, the term "therapeutically effective amount" refers to that am.ount of the therapeutic agent sufficient to result in ainelioration of one or more symptoms of a disorder, or prevent advancement of a disorder, or cause regression of the disorder. For example, with respect to the treatment of cancer, a therapeutically effective amount preferably refers to the amount of a therapeutic agent that decreases the rate of tumor growth, decreases tumor mass, decreases the number of metastases, increases time to tumor progression, or increases survival time by at least 5%, preferably at least 10%, at least 15%, at least 20%, at least 25%, at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, or at least 100%.
[0052] The terms "prevent," "preventing," and "prevention," as used herein, refer to a decrease in the occurrence of pathological cells (e.g., hyperproliferative or neoplastic cells) in an animal. The prevention may be complete, e.g., the total absence of pathological cells in a subject. The prevention may also be partial, such that the occurrence of pathological cells in a subject is less than that which would have occurred without the present invention.
[0053] Compounds having Formula I can be provided as pharmaceutically acceptable salts. Examples of pharmaceutically acceptable salts (i.e., addition salts) include inorganic and organic acid addition salts such as hydrochloride, hydrobromide, phosphate, sulphate, citrate, lactate, tartrate, maleate, fumarate, mandelate, benzoate and oxalate; and inorganic and organic base addition salts with bases such as sodium hydroxy, Tris(hydroxymethyl)aminoiiiethane (TRIS, tromethane) and N-methyl-glucamine. Although the salts typically have similar physiological properties compared to the free base, certain acid addition salts may demonstrate preferred physicochemical properties, e.g., enhanced solubility, improved stability. One particular pharmaceutically acceptable salt is the maleate, such as the dimaleate.
[0054] Certain of the compounds of the present invention may exist as stereoisomers including optical isomers. The invention includes all stereoisomers and both the racemic mixtures of such stereoisomers as well as the individual enantiomers that may be separated according to methods that are well lcnown to those of ordinary skill in the art.
[0055] In certain embodiments of the invention, compounds having Formula I
are administered in combination with one or more other active agents (e.g., chemotherapeutic agents) or treatments. By way of non-limiting example, a patient may be treated for a hyperproliferative disorder, such as cancer, by the administration of a therapeutically effective amount of a compound having Formula I in combination with radiotherapy agent/treatment or the administration of a chemotherapeutic agent.
[00561 "In combination" refers to the use of more than one treatment. The use of the term "in combination" does not restrict the order in which treatments are administered to a subject being treated for a hyperproliferative disorder. A
first treatment can be administered prior to, concurrently with, after, or within any cycling regimen involving the administration of a second treatment to a subject with a hyperproliferative disorder. For example, the first treatment can be administered 5 minutes, 15 minutes, 30 minutes, 45 minutes, 1 hour, 2 hours, 4 hours, 6 hours, 12 hours, 24 hours, 48 hours, 72 hours, 96 hours, I
week, 2 weeks, 3 weeks, 4 weeks, 5 weeks, 6 weeks, 8 weeks, or 12 weeks before a treatment; or the first treatment can be administered 5 minutes, 15 minutes, 30 minutes, 45 minutes, 1 hour, 2 hours, 4 hours, 6 hours, 12 hours, 24 hours, 48 hours, 72 hours, 96 hours, 1 week, 2 weeks, 3 weeks, 4 weeks, 5 weeks, 6 weeks, 8 weeks, or 12 weeks after a second treatment. Such treatments include, for example, the administration of compounds having Formula I in combination with one or more chemotherapeutic agents or radiotherapeutic agents/treatments.
[0057] The term "chemotherapeutic agent," as used herein, is intended to refer to any chemotherapeutic agent known to those of skill in the art to be effective for the treatment, prevention or ainelioration of hyperproliferative disorders such as cancer. Chemotherapeutic agents include, but are not limited to, small molecules, synthetic drugs, peptides, polypeptides, proteins, nucleic acids (e.g., DNA and RNA polynucleotides including, but not limited to, antisense nucleotide sequences, triple helices and nucleotide sequences encoding biologically active proteins, polypeptides or peptides), antibodies, synthetic or natural inorganic molecules, mimetic agents, and synthetic or natural organic molecules. Any agent which is known to be useful, or which has been used or is currently being used for the treatment or amelioration of a hyperproliferative disorder can be used in combination with a compound having Formula 1. See, e.g., Hardman et al., eds., 2002, Goodman & Gihnan's The Pharmacological Basis Of Therapeutics 10th Ed, Mc-Graw-Hill, New York, N~.' for information regarding therapeutic agents which have been or are currently being used for the treatment or amelioration of a hyperproliferative disorder.
[0058] Particular chemotherapeutic agents useful in the methods and compositions of the invention include alkylating agents, antimetabolites, anti-mitotic agents, epipodophyllotoxins, antibiotics, hormones and hormone antagonists, enzymes, platinum coordination complexes, anthracenediones, substituted ureas, methylhydrazine derivatives, imidazotetrazine derivatives, cytoprotective agents, DNA topoisomerase inhibitors, biological response modifiers, retinoids, therapeutic antibodies, differentiating agents, immunomodulatory agents, angiogenesis inhibitors and anti-angiogenic agents.
[0059) Certain chemotherapeutic agents include, but are not limited to, abarelix, aldesleukin, alemtuzumab, alitretinoin, allopurinol, altretamine, amifostine, anastrozole, arsenic trioxide, asparaginase, BCG live, bevaceizumab, bexarotene, bleomycin, bortezomib, busulfan, calusterone, camptothecin, capecitabine, carboplatin, carmustine, celecoxib, cetuximab, chiorambucil, cinacalcet, cisplatin, cladribine, cyclophosphamide, cytarabine, dacarbazine, dactinomycin, darbepoetin alfa, daunorubicin, denileukin diftitox, dexrazoxane, docetaxel, doxorubicin, dromostanolone, Elliott's B solution, epirubicin, epoetin alfa, estramustine, etoposide, exemestane, filgrastim, floxuridine, fludarabine, fluorouracil, fulvestrant, gemcitabine, gemtuzumab ozogamicin, gefitinib, goserelin, hydroxyurea, ibritumomab tiuxetan, idarubicin, ifosfamide, imatinib, interferon alfa-2a, interferon alfa-2b, irinotecan, letrozole, leucovorin, levamisole, lomustine, meclorethamine, megestrol, melphalan, mercaptopurine, mesna, methotrexate, niethoxsalen, methylprednisolone, mitomycin C, mitotane, mitoxantrone, nandrolone, nofetumomab, oblimersen, oprelvekin, oxaliplatin, paclitaxel, pamidronate, pegademase, pegaspargase, pegfilgrastim, pemetrexed, pentostatin, pipobroman, plicamycin, polifeprosan, porfimer, procarbazine, quinacrine, rasburicase, rituximab, sargramostim, streptozocin, talc, tamoxifen, tarceva, temozolomide, teniposide, testolactone, thioguanine, thiotepa, topotecan, toremifene, tositumomab, trastuzumab, tretinoin, uracil mustard, valrubicin, vinblastine, vincristine, vinorelbine, and zoledronate. In certain embodiments, chemotherapeutic agents are selected from gemcitabine and irinotecan.
[0060] Chemotherapeutic agents may be administered at doses that are recognized by those of skill in the art to be effective for the treatment of the hyperproliferative disorder. In certain embodiments, chemotherapeutic agents may be administered at doses lower than those used in the art due to the additive or synergistic effect of the compounds having Formula I.
[00611 The term "radiotherapeutic agent," as used herein, is intended to refer to any radiotherapeutic agent known to one of skill in the art to be effective to treat or ameliorate a hyperproliferative disorder, without limitation. For instance, the radiotherapeutic agent can be an agent such as those administered in brachytherapy or radionuclide therapy.
[0062] Brachytherapy can be administered according to any schedule, dose, or method known to one of skill in the art to be effective in the treatment or amelioration of a hyperproliferative disorder, without limitation. In general, brachytherapy comprises insertion of radioactive sources into the body of a subject to be treated for cancer, such as inside the tumor itself, such that the tumor is maximally exposed to the radioactive source, and minimizing the exposure of healthy tissue. Representative radioisotopes that can be administered in brachytherapy include, but are not limited to, phosphorus 32, cobalt 60, palladium 103, ruthenium 106, iodine 125, cesium 137, iridium 192, xenon 133, radium 226, californium 252, or gold 198. Methods of administering and apparatuses and compositions useful for brachytherapy are described in Mazeron et al., Serra. Rad. Onc. 12:95-108 (2002) and U.S. Patent Nos. 6,319,189, 6,179,766, 6,168,777, 6,149,889, and 5,611,767.
[0063] Radionuclide therapy can be administered according to any schedule, dose, or method known to one of skill in the art to be effective in the treatment or amelioration of a hyperproliferative disorder, without limitation. In general, radionuclide therapy comprises systemic administration of a radioisotope that preferentially accumulates in or binds to the surface of cancerous cells. The preferential accumulation of the radionuclide can -be mediated by a number of mechanisms, including, but not limited to, incorporation of the radionuclide into rapidly proliferating cells, specific accumulation of the radionuclide by the cancerous tissue without special targeting, or conjugation of the radionuclide to a biomolecule specific for a neoplasm.
[0064] Representative radioisotopes that can be administered in radionuclide therapy include, but are not limited to, phosphorus 32, yttrium 90, dysprosium 165, indium 111, strontium 89, samarium 153, rhenium 186, iodine 131, iodine 125, lutetium 177, and bismuth 213. While all of these radioisotopes may be linked to a biomolecule providing specificity of targeting, iodine 131, indium 111, phosphorus 32, samarium 153, and rhenium 186 may be administered systemically without such conjugation. One of skill in the art may select a specific biomolecule for use in targeting a particular neoplasm for radionuclide therapy based upon the cell-surface molecules present on that neoplasm. Examples of biomolecules providing specificity for particular cell are reviewed in an article by Thomas, Cancer Biother. Radiopharrra. 17:71-82 (2002), which is incorporated herein by reference in its entirety.
Furthermore, methods of administering and compositions useful for radionuclide therapy may be found in U.S. Patent Nos. 6,426,400, 6,358,194, 5,766,571.
[0065] The term "radiotherapeutic treatment," as used herein, is intended to refer to any radiotherapeutic treatment known to one of skill in the art to be effective to treat or ameliorate a hyperproliferative disorder, without limitation. For instance, the radiotherapeutic treatment can be external-beam radiation therapy, thermotherapy, radiosurgery, charged-particle radiotherapy, neutron radiotherapy, or photodynamic therapy.
[0066] Extenlal-beam radiation therapy can be administered according to any schedule, dose, or method known to one of skill in the art to be effective in the treatment or amelioration of a hyperproliferative disorder, without limitation.
In general, external-beam radiation therapy comprises irradiating a defined volume within a subject with a high energy beam, thereby causing cell death within that volume. The irradiated volume preferably contains the entire cancer to be treated, and preferably contains as little healthy tissue as possible.
Methods of administering and apparatuses and compositions useful for external-beam radiation therapy can be found in U.S. Patent Nos. 6,449,336, 6,398,710, 6,393,096, 6,335,961, 6,307,914, 6,256,591, 6,245,005, 6,038,283, 6,001,054, 5,802,136, 5,596,619, and 5,528,652.
[0067] Thermotherapy can be administered according to any schedule, dose, or method known to one of skill in the art to be effective in the treatment or amelioration of a hyperproliferative disorder, without limitation. In certain exnbodiments, the thermotherapy can be cryoablation therapy. In other embodiments, the thermotherapy can be hyperthermic therapy. In still other embodiments, the thermotherapy can be a therapy that elevates the temperature of the tumor higher than in hyperthermic therapy.
[00681 Cryoablation therapy involves freezing of a neoplastic mass, leading to deposition of intra- and extra-cellular. ice crystals; disruption of cellular membranes, proteins, and organelles; and induction of a hyperosmotic environment, thereby causing cell death. Methods for and apparatuses useful in cryoablation therapy are described in Murphy et al., Sefn. Urol. Oncol.
19:133-140 (2001) and U.S. Patent Nos. 6,383,181, 6,383,180, 5,993,444, 5,654,279, 5,437,673, and 5,147,355.
[0069] Hyperthermic therapy typically involves elevating the temperature of a neoplastic mass to a range from about 42 C to about 44 C. The temperature of the cancer may be further elevated above this range; however, such temperatures can increase injury to surrounding healthy tissue while not causing increased cell death within the tumor to be treated. The tumor may be heated in hyperthermic therapy by any means Icnown to one of skill in the art without limitation. For example, and not by way of limitation, the tumor may be heated by microwaves, high intensity focused ultrasound, ferromagnetic thermoseeds, localized current fields, infrared radiation, wet or dry radiofrequency ablation, laser photocoagulation, laser interstitial thermic therapy, and electrocautery. Microwaves and radiowaves can be generated by waveguide applicators, horn, spiral, current sheet, and compact applicators.
[0070] Other methods, apparatuses and compositions for raising the temperature of a tumor are reviewed in an article by Wust et al., Lancet Oncol.
3:487-97 (2002), and described in U.S. Patent Nos. 6,470,217, 6,379,347, 6,165,440, 6,163,726, 6,099,554, 6,009,351, 5,776,175, 5,707,401, 5,658,234, 5,620,479, 5,549,639, and 5,523,058.
[00711 Radiosurgery can be admiizistered according to any schedule, dose, or method known to one of skill in the art to be effective in the treatment or amelioration of a hyperproliferative disorder, without limitation. In general, radiosurgery comprises exposing a defined volume within a subject to a manually directed radioactive source, thereby causing cell death within that volume. The irradiated volume preferably contains the entire cancer to be treated, and preferably contains as little healthy tissue as possible.
Typically, the tissue to be treated is first exposed using conventional surgical techniques, then the radioactive source is manually directed to that area by a surgeon.
Alternatively, the radioactive source can be placed near the tissue to be irradiated using, for example, a laparoscope. Methods and apparatuses useful for radiosurgery are further described in Valentini et al., Eur. J. Surg.
Oncol.
28:180-185 (2002) and in U.S. Patent Nos. 6,421,416, 6,248,056, and 5,547,454.
[0072] Charged-particle radiotherapy can be administered according to any schedule, dose, or method known to one of skill in the art to be effective in the treatment or amelioration of a hyperproliferative disorder, without limitation.
In certain embodiments, the charged-particle radiotherapy can be proton beam radiotherapy. In other embodiments, the charged-particle radiotherapy can be helium ion radiotherapy. In general, charged-particle radiotherapy comprises irradiating a defined volume within a subject with a charged-particle beam, thereby causing cellular death within that volume. The irradiated volume preferably contains the entire cancer to be treated, and preferably contains as little healthy tissue as possible. A method for administering charged-particle radiotherapy is described in U.S. Patent No. 5,668,371.
[0073] Neutron radiotherapy can be administered according to any schedule, dose, or method known to one of skill in the art to be effective in the treatment or amelioration of a hyperproliferative disorder, without limitation. In certain embodiments, the neutron radiotherapy can be a neutron capture therapy. In such embodiments, a compound that emits radiation when bombarded with neutrons and preferentially accumulates in a neoplastic mass is administered to a subject. Subsequently, the tumor is irradiated with a low energy neutron beam, activating the compound and causing it to emit decay products that kill the cancerous cells. The compound to be activated can be caused to preferentially accumulate in the target tissue according to any of the methods useful for targeting of radionuclides, as described above, or in the methods described in Laramore, Sennin. Oncol. 24:672-685 (1997) and in U.S. Patents Nos. 6,400,796, 5,877,165, 5,872,107, and 5,653,957.
[00741 In other embodiments, the neutron radiotherapy can be a fast neutron radiotherapy. In general, fast neutron radiotherapy comprises irradiating a defined volume within a subject with a neutron beam, thereby causing cellular death within that volume.
[0075] Photodynamic therapy can be administered according to any schedule, dose, or method known to one of skill in the art to be effective in the treatment or amelioration of cancer, without limitation. In general, photodynamic therapy comprises administering a photosensitizing agent that preferentially accumulates in a neoplastic mass and sensitizes the neoplasm to light, then exposing the tumor to light of an appropriate wavelength. Upon such exposure, the photosensitizing agent catalyzes the production of a cytotoxic agent, such as, e.g., singlet oxygen, which kills the cancerous cells. Methods of administering and apparatuses and compositions useful for photodynamic therapy are disclosed in Hopper, Lancet Oncol. 1:212-219 (2000) and U.S.
Patent Nos. 6,283,957, 6,071,908, 6,011,563, 5,855,595, 5,716,595, and 5,707,401.
[0076] Radiotherapy can be administered to destroy hyperproliferative cells before or after surgery, before or after chemotherapy, and sometimes during chemotherapy. Radiotherapy may also be administered for palliative reasons to relieve symptoms of a hyperproliferative disorder, for example, to lessen pain. Among the types of tumors that can be treated using radiotherapy are localized tumors that cannot be excised completely and metastases and tuinors whose complete excision would cause unacceptable functional or cosmetic defects or be associated with unacceptable surgical risks.
[0077] It will be appreciated that both the particular radiation dose to be utilized in treating a hyperproliferative disorder and the method of administration will depend on a variety of factors. Thus, the dosages of radiation that can be used according to the methods of the present invention are determined by the particular requirements of each situation. The dosage will depend on such factors as the size of the tumor, the location of the tumor, the age and sex of the patient, the frequency of the dosage, the presence of other tumors, possible metastases and the like. Those skilled in the art of radiotherapy can readily ascertain the dosage and the method of administration for any particular tumor by reference to Hall, E. J., Radiobiology for the Radiologist, 5th edition, Lippincott Williams & Wilkins Publishers, Philadelphia, PA, 2000; Gunderson, L. L. and Tepper J. E., eds., Clinical Radiation Oncology, Churchill Livingstone, London, England, 2000; and Grosch, D. S., Biological Effects of Radiation, 2nd edition, Academic Press, San Francisco, CA, 1980. In certain embodiments, radiotherapeutic agents and treatments may be administered at doses lower than those known in the art due to the additive or synergistic effect of the compound having Formula I.
[0078] Compositions in accordance with the present invention may be employed for administration in any appropriate manner, e.g., oral or buccal administration, e.g., in unit dosage form, for example in the form of a tablet, in a solution, in hard or soft encapsulated form including gelatin encapsulated form, sachet, or lozenge. Compositions may also be administered parenterally or topically, e.g., for application to the skin, for example in the form of a cream, paste, lotion, gel, ointment, poultice, cataplasm, plaster, dermal patch or the like, or for ophthalmic application, for example in the form of an eye-drop, -lotion or -gel formulation. Readily flowable forms, for example solutions, emulsions and suspensions, may also be employed e.g., for intralesional injection, or may be administered rectally, e.g., as an enema or suppository, or intranasal administration, e.g., as a nasal spray or aerosol.
Microcrystalline powders may be formulated for inhalation, e.g., delivery to the nose, sinus, throat or lungs. Transdermal compositions/devices and pessaries may also be employed for delivery of the compounds of the invention. The compositions may additionally contain agents that.enhance the delivery of the compounds having Formula I (or other active agents), e.g., liposomes, polymers or co-polymers (e.g., branched chain polymers). Preferred dosage forms of the present invention include oral dosage forms and intravenous dosage forms.
[0079] Intravenous forms include, but are not limited to, bolus and drip injections. In preferred embodiments, the intravenous dosage forms are sterile or capable of being sterilized prior to administration to a subject since they typically bypass the subject's natural defenses against contaminants.
Examples of intravenous dosage forms include, but are not limited to, Water for Injection USP; aqueous vehicles including, but not limited to, Sodium Chloride Injection, Ringer's Injection, Dextrose Injection, Dextrose and Sodium Chloride Injection, and Lactated Ringer's Injection; water-miscible vehicles including, but not limited to, ethyl alcohol, polyethylene glycol and polypropylene glycol; and non-aqueous vehicles including, but not limited to, corn oil, cottonseed oil, peanut oil, sesame oil, ethyl oleate, isopropyl myristate and benzyl benzoate.
[0080] The pharmaceutical compositions of the present invention may further comprise one or more additives. Additives that are well known in the art include, e.g., detackifiers, anti-foaming agents, buffering agents, antioxidants (e.g., ascorbic acid, ascorbyl palmitate, sodium ascorbate, butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), propyl gallate, malic acid, fumaric acid, potassium metabisulfite, sodium bisulfite, sodium metabisulfite, and tocopherols, e.g., a-tocopherol (vitamin E)), preservatives, chelating agents, viscomodulators, tonicifiers, flavorants, colorants, odorants, opacifiers, suspending agents, binders, fillers, plasticizers, lubricants, and mixtures thereof. The amounts of such additives can be readily determined by one skilled in the art, according to the particular properties desired, and can be formulated such that compounds having Formula I are stable, e.g., not reduced by antioxidant additives.
(0081] The additive may also comprise a thickening agent. Suitable thickening agents may be of those known and employed in the art, including, e.g., pharmaceutically acceptable polymeric materials and inorganic thickening agents. Exemplary thickening agents for use in the present pharmaceutical compositions include polyacrylate and polyacrylate co-polymer resins, for example poly-acrylic acid and poly-acrylic acid/methacrylic acid resins;
celluloses and cellulose derivatives including: alkyl celluloses, e.g., methyl-, ethyl- and propyl-celluloses; hydroxyalkyl-celluloses, e.g., hydroxypropyl-celluloses and hydroxypropylalkyl-celluloses such as hydroxypropyl-methyl-celluloses; acylated celluloses, e.g., cellulose-acetates, cellulose-acetatephthallates, cellulose-acetatesuccinates and hydroxypropyhnethyl-cellulose phthallates; and salts thereof such as sodium-carboxymethyl-ceiluloses; polyvinylpyrrolidones, including for example poly-N-vinylpyrrolidones and vinylpyrrolidone co-polymers such as vinylpyrrolidone-vinylacetate co-polymers; polyvinyl resins, e.g., including polyvinylacetates and alcohols, as well as other polymeric materials including gum traganth, gum arabicum, alginates, e.g., alginic acid, and salts thereof, e.g., sodium alginates; and inorganic thickening agents such as atapulgite, bentonite and silicates including hydrophilic silicon dioxide products, e.g., alkylated (for exa.inple methylated) silica gels, in particular colloidal silicon dioxide products.
[00821 Such thickening agents as described above may be included, e.g., to provide a sustained release effect. However, where oral administration is intended, the use of thickening agents may not be required. Use of thickening ageiits is, on the other hand, indicated, e.g., where topical application is foreseen.
[00831 In one embodiment of the invention, compounds having Formula I are formulated as described in WO 03/076387. In particular, the compounds are formulated such that upon dissolution in aqueous solution the pH of the solution is in the range of 5 to 9.
(0084] Although the dosage of the compound having Formula I will vary according to the activity and/or toxicity of the particular compound, the condition being treated, and the physical form of the phannaceutical composition being employed for administration, it may be stated by way of guidance that a dosage selected in the range from 0.1 to 20 mg/kg of body weight per day will often be suitable, although higher dosages, such as 0.1 to 50 mg/kg of body weight per day may be useful. Those of ordinary skill in the art are familiar with methods for determining the appropriate dosage. Methods for assessing the toxicity, activity and/or selectivity of the compounds having Formula I may be carried out as described in Lee et al., supra, and PCT
Published International Application WO 92/15300, supra, and may be useful for approximating and/or determining dose ranges for compounds having Formula I.
[0085] In certain instances, the dosage of the compounds having Formula I
will be lower, e.g., when used in combination with at least a second hyperproliferative disorder treatment, and may vary according to the activity and/or toxicity of the particular compound, the condition being treated, and the physical form of the pharmaceutical composition being employed for administration.
[0086] When the composition of the present invention is formulated in unit dosage form, the compound having Formula I will preferably be present in an amount of between 0.01 and 2000 mg per unit dose. More preferably, the amount of compound having Formula I per unit dose will be about 0.01, 0.05, 0.1, 0.5, 1, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1050, 1100, 1150, 1200, 1250, 1300, 1350, 1400, 1450, 1500, 1550, 1600, 1650, 1700, 1750, 1800, 1850, 1900, 1950, or 2000 mg or any amount therein.
[0087] When the unit dosage form of the composition is a capsule, the total quantity of ingredients present in the capsule is preferably about 10-1000 [tL.
More preferably, the total quantity of ingredients present in the capsule is about '100-300 gL. In another embodiment, the total quantity of ingredients present in the capsule is preferably about 10-1500 mg, preferably about 100-1000 mg.
[0088] The relative proportion of ingredients in the compositions of the invention will, of course, vary considerably depending on the particular type of composition concerned. The relative proportions will also vary depending on the particular function of ingredients in the composition. The relative proportions will also vary depending on the particular ingredients employed and the desired physical characteristics of the product composition, e.g., in the case of a composition for topical use, whether this is to be a free flowing liquid or a paste. Determination of workable proportions in any particular instance will generally be within the capability of a person of ordinary skill in the art.
All indicated proportions and relative weight ranges described below are accordingly to be understood as being indicative individually inventive teachings only and not as not limiting the invention in its broadest aspect.
[0089] The amount of compound having Formula I in compositions of the invention will of course vary, e.g., depending on the intended route of administration and to what extent other components are present. In general, however, the compound having Formula I will suitably be present in an amount of from about 0.005% to 20% by weight based upon the total weight of the composition. In certain embodiments, the compound having Form.ula I
is present in an amount of from about 0.01% to 15% by weight based upon the total weight of the composition.
[0090] In addition to the foregoing, the present invention also provides a process for the production of a pharmaceutical composition as hereinbefore defined, which process comprises bringing the individual components thereof into intimate admixture and, when required, compounding the obtained composition in unit dosage form, for example filling said composition into tablets, gelatin, e.g., soft or hard gelatin, capsules, or non-gelatin capsules.
[0091] Compounds having Formula I can be prepared by methods well known in the art and as disclosed in U.S. Patent No. 5,132,327.
[0092) The following examples are illustrative, but not limiting, of the method and compositions of the present invention. Other suitable modifications and adaptations of the variety of conditions and parameters normally encountered in clinical therapy and which are obvious to those skilled in the art are within the spirit and scope of the invention.
CYTOTOXICITY OF AQ4 AND AQ4N IN LYMPHOMA, LEUKEMIA, AND MULTIPLE MYELOMA
[0093] The cytotoxicity of AQ4 and AQ4N on different lymphoma, leukemia, and multiple myeloma cell lines was tested in vitro under normoxic conditions. Standard cytotoxicity assays using MTS dye were run to determine the IC50 for each compound. Cells were exposed to the compounds for 24 hours and cells were stained 24-72 hours post-drug exposure. Positive controls utilized chemotherapeutic agents at doses shown in the art to be effective. As shown in Table 1, the results indicate that AQ4 is cytotoxic to many of the cell lines, with IC50 values in the nanomolar to sub-nanomolar range. AQ4N was less active or inactive compared to AQ4, but the tests were done under normoxic conditions, so it is expected that there is little conversion of AQ4N to AQ4 under these conditions. In most instances, AQ4 was at least as cytotoxic as the standard chemotherapeutic agent.
Table 1. Cell cytotoxicity in lymphoma, leukemia, and multiple myeloma Tumor Line Type AQ4 AQ4N Standard (IC50) (IC50) Burkitt 0.5 nM
Daudi 4.6 nM NA
Lymphoma Dox Burkitt 0.9 nM
Raji 200 nM NA
Lymphoma Dox Burkitt 1.8 nM
Ramos 8.0 nM NA
Lymphoma Dox Burkitt 7.4 nM
Namalwa 0.2 nM 400 nM
Lymphoma Dox ALL 7.5 nM
MOLT-4 2 nM 700 nM
(human) Dox AML 100 nM
HL-60 10 nM NA
(human) Dox AML 600 nM
KG1 a 50 nM 43 M
(human) Dox CML 400 nM 1000 n1VI 200 nM
(human) Dox P388 CLL 10 nM 31.5 M 100 nM
(mouse) Dox ALL 50 nM
L1210 1.2 nM 600 nM
(mouse) Dox 10nM
CCRF-CEM T-ALL 620 nM 237.5 M
VLB
CCRF-CEM/VLB T-ALL 340 nM 310 M 1041 M
VLB
L5178Y Mouse 30 nM 300 nM 50 nM
Lymphoma Dox RPMI8226 Multiple 200 nM NA 100 nM
Myeloma Dox RPMI8226/Dox Multiple 1100nM NA 54.7 M
Myeloma Dox Multiple ARH177 200 nM NA --Myeloma ALL - acute lymphocytic leukemia; AML - acute myelogenous leukemia;
CML - chronic myelogenous leukemia; CLL - chronic lymphocytic leukemia;
T-ALL - T cell acute lymphocytic leukemia; Dox - doxorubicin; VLB -vinorelbine; NA - not active (IC50 > 100 M) MYELOMA IN VIVO
[0094] The cytotoxic effects of AQ4N on lymphoma and multiple myeloma were tested in vivo using a tumor model. Tumor cells were implanted intraperitoneally in mice and various treatment schedules for AQ4N were tested. Animals were monitored for survival time. Standard doses of other chemotherapeutic agents were used as controls.
[00951 Using a P388 murine CLL model, the administration of AQ4N was shown to increase survival time (FIG. 1). Survival was shown to correlate with increased initial expose to AQ4N, as administration of 60 mg/kg qdx3 promoted survival to a greater extent than administration of 180 mg/kg on Day 1 or 60 mg/kg qodx3, which in turn were more effective than 60 mg/kg q4dx4 (FIG. 1). AQ4N was also shown to be more effective in promoting survival than mitoxantrone (FIG. 2). When the data is analyzed in terms of sui-vival time, AQ4N was shown to be at least as effective as mitoxantrone (FIG. 3) and to provide reproducible results (FIG. 4).
[00961 Using a L1210 murine ALL model, the administration of AQ4N was shown to increase survival time (FIG. 5). Again, survival was shown to correlate with increased initial expose to AQ4N, as administration of 90 mg/kg qdx2 promoted survival to a greater extent than administration of 45 mg/kg qdx3, which in turn were more effective than 45 mg/kg q4dx3 or 30 mg/kg on either schedule (FIG. 5). AQ4N at 90 mg/kg qdx2 was also shown to be about as effective in promoting survival as mitoxantrone or . carmustine (FIG. 6).
When the data is analyzed in terms of survival time, AQ4N was shown to be at least as effective as mitoxantrone and more effective than carmustine (FIG. 7) and to provide reproducible results (FIG. 8).
[0097] Using a Namalwa human lymphoma model, the administration of AQ4N was shown to inhibit tumor growth (FIG. 9). AQ4N at 60 mg/kg q3dx2 was also shown to be about as effective in inhibiting tumor growth as mitoxantrone (FIG. 9).
[0098] The cytotoxicity of AQ4 and AQ4N on different solid tumor cell lines was tested in vitro under normoxic conditions. Standard cytotoxicity assays using MTS dye were run to determine the IC50 for each compound. Cells were exposed to the compounds for 24 hours and cells were stained 24-72 hours post-drug exposure. Positive controls utilized chemotherapeutic agents at doses shown in the art to be effective. As shown in Table 2, the results indicate that AQ4 is cytotoxic to many of the cell lines, with IC50 values in the nanomolar to sub-nanomolar range. AQ4N was less active or inactive compared to AQ4, but the tests were done under normoxic conditions, so it is expected that there is little conversion of AQ4N to AQ4 under these conditions. In many instances, AQ4 was at least as cytotoxic as the standard chemotherapeutic agent.
Tab1e.2. Cell cytotoxicity in solid tumors Tumor Line Type AQ4 AQ4N Standard (IC50) (IC50) 59.5nM
BXPC-3 Pancreatic 1.6 M 3.6 M
Gem 23nM
MiaPaCa Pancreatic 1.6 gM NA
Gem Panc-1 Pancreatic 0.4 M NA 1.7 M
Gem 65.1nM
HT-29 Colon 0.7 M 101.5 M
48.4nM
HCT116 Colon 3.9 M NA
0.6 nM
LoVo Colon 0.21 M 49.9 M
2.6 nM
LS174T Colon 0.95 M 14.4 M
U87MG Glioma 0.9 M NA 0.4 M
Dox U118MG Glioma 1.3 M NA 0.03 M
Dox U251 Glioma 0.6 M NA 0.03 M
DOx , Pharynx Squamous 6.5 M
FaDu 0.3 M 64.7 M
Cell Carcinoma Taxol KB Mouth Esophageal 0.6 M 13.4 M 2.0 M
Taxol KB-3 Mouth Esophageal 3.3 M NA 19.1 M
(radiation-resistant) Taxol Hep3B2.1-7 Hepatocellular 0.8 M NA 13.7 M
Taxol Melanoma A375-SM 3.30 {tM NA None (mouse) Melanoma B 16-F 10 (human) 0.02 M NA None Gem - gemcitabine; SN38 - 7-ethyl-l0-hydro-camptothecin; Dox doxorubicin; NA - not active (IC50 > 100 M) [00991 The cytotoxic effects of AQ4N on solid tumors were tested in vivo using a mouse tumor model. Tumor cells were implanted subcutaneously in mice and allowed to grow until about 50-100 mm3 in size (10-17 days).
Various treatment schedules for AQ4N were tested and animals were monitored for tumor volume. Standard doses of other chemotherapeutic agents were used as controls.
[00100] Using a BXPC-3 pancreatic cancer model, the administration of increasing doses of AQ4N was shown to inhibit tumor growth, with 90 mg/kg q3dx4 being approximately as effective as gemcitabine (FIG. 10). In a further refmement of dosing schedules, administration of AQ4N as 60 mg/kg q3dx6 and 90 mg/kg q3dx6 was shown to provide enhanced results that were statistically significant (p < 0.0002) compared to the untreated control and had potency comparable to gemcitabine (FIG. 11). When AQ4N and gemcitabine administration was combined, the combination was shown to be slightly better than administration of AQ4N or gemcitabine alone (FIG. 12).
[00101] Using a HT-29 colon cancer model, the administration of increasing doses of AQ4N was shown to inhibit tumor growth, with 60 mg/kg qodx6 having a significant (p = 0.021) effect on tumor growth inhibition compared to untreated controls and having significantly (p = 0.048) more tumor growth inhibition than two doses of irinotecan (FIG. 13). In a further refinement of dosing schedules, adininistration of AQ4N as 60 mg/lcg qodx6 was not signif cantly (p = 0.074) more potent than three doses of irinotecan (FIG. 14) When AQ4N and irinotecan administration was combined, the combination caused greater tumor growth inhibition than administration of AQ4N or irinotecan alone (FIG. 15). Further testing of the combination treatment showed that a combination of AQ4N 90 mg/kg on days 2, 8, 16, and 23 with irinotecan 40 mg/kg on days 1, 8, and 15 provided the most effective results with significant (p = 0.045) tumor growth inhibition compared to either agent alone (FIG. 16).
[001021 In order to determine the distribution of AQ4N after administration to a subject, AQ4N labeled with 14C on both a benzene ring and a methyl group was administered to a mouse having a subcutaneous BXPC-3 pancreatic cancer tumor (20 mg/kg; 120 [tCi/kg) and the distribution of radioactivity monitored. The results (shown in Table 3) indicate that AQ4N radioactivity accumulates disproportionately in the liver, spleen, large intestine, kidney, and pancreas. The time course of radioactivity distribution indicates the accumulation of AQ4N in the large intestine, suggesting enhanced usefulness for the treatment of colon cancer (FIG. 17). The long half-life of radiolabeled AQ4N, particularly in the spleen, suggests that AQ4N may be effective even with less frequent dosing (FIG. 18).
Table 3. Distribution of labeled AQ4N
Exposure ( g/mL (or g)=hr) Tissue C-Benzene 14C-Methyl Plasma 14.1 14.0 Subcutaneous Tumor 142.0 79.0 Spleen 1592.0 986.0 Large Intestine 652.8 813.0 Liver 2089.0 530.0 Kidney 632.5 249.0 Brain 82.8 68.0 Pancreas 268.9 133.0 [00103] Having now fully described this invention, it will be understood by those of ordinary skill in the art that the same can be performed within a wide and equivalent range of conditions, formulations and other parameters without affecting the scope of the invention or any embodiment thereof. All patents, patent applications and publications cited herein are fully incorporated by reference herein in their entirety.
R4 R, : ~ - ;
O
or a pharmaceutically acceptable salt or prodrug thereof, wherein:
RI, R2, R3 and R4 are independently hydrogen, hydroxy, halo, amino, CI_4 alkoxy, C2_8 alkanoyloxy, NH-A-NHR, or NH-A-N(O)R'R";
A is a C2_4 alkylene group with a chain length between NH and NHR or N(O)R'R" of at least 2 carbon atoms; and R, R' and R" are independently C1_4 alkyl, C2_4 hydroxyalkyl, or C2_4 dihydroxyalkyl in which the carbon atom attached to the nitrogen atom does not cany a hydroxy group and no carbon atom is substituted by two hydroxy groups; or R' and R" together are a C2_6 alkylene group which with the nitrogen atom to which R' and R" are attached forms a heterocyclic group having 3 to 7 atoms in the ring;
with the proviso that at least one of Rl to R4 is NH-A-N(O)R'R".
[0013] In one embodiment of the invention, the compound of Formula I is AQ4N.
- T-O
N
OH O NH
OH O NH
[0014] An additional aspect of the present invention is a method for treating, ameliorating, or preventing hyperproliferative disorders in an animal comprising administering to the animal a therapeutically effective amount of a compound having Formula I in combination with one or more active agents or treatments, for example, chemotherapeutic agents or radiotherapeutic agents/treatments.
[0015] In preferred embodiments of the invention, the one or more chemotherapeutic agents can be any chemotherapeutic ageiit which is used, has been used, or is known to be useful for the treatment of hyperproliferative disorders.
[0016] In preferred embodiments of the invention, the one or more radiotherapeutic agents or treatments can be external-beam radiation therapy, brachytherapy, thermotherapy, radiosurgery, charged-particle radiotherapy, neutron radiotherapy, photodynamic therapy, or radionuclide therapy.
[00171 In one embodiment of the invention, tlie compound having Formula I
can be administered prior to, during, and/or beyond administration of the one or more chemotherapeutic agents or radiotherapeutic agents or treatments. In another embodiment of the invention, the method of administering a compound having Formula I in combination with one or more chemotherapeutic agents or radiotherapeutic agents or treatments is repeated more than once.
[0018] The combination of a compound having Formula I and one or more chemotherapeutic agents or radiotherapeutic agents or treatments of the present invention will have additive potency or an additive therapeutic effect.
The invention also encompasses synergistic combinations where the therapeutic efficacy is greater than additive. Preferably, such combinations will reduce or avoid unwanted or adverse effects. In certain embodiments, the combination therapies encompassed by the invention will provide an improved overall therapy relative to administration of a compound having Formula I or any chemotherapeutic agent or radiotherapeutic agent or treatment alone. In certain embodiments, doses of existing or experimental chemotherapeutic agents or radiotherapeutic agents or treatments will be reduced or administered less frequently wliich will increase patient compliance, thereby improving therapy and reducing unwanted or adverse effects.
[0019] Further, the methods of the invention will be useful not only with previously untreated patients but also will be useful in the treatment of patients partially or completely refractory to current standard and/or experimental cancer therapies, including but not limited to radiotlierapies, chemotherapies, and/or surgery. In a preferred embodiment, the invention will provide tl-ierapeutic methods for the treatment or amelioration of hyperproliferative disorders that have been shown to be or may be refractory or non-responsive to other therapies.
[0020] While not wishing to be bound by any theory, it is believed that some of the N-oxide compounds of the invention will function as prodrugs with greatly diminished cytotoxicity. It is believed that these N-oxide compounds will be activated under hypoxic conditions within the target tissues (i.e., reduced at the nitrogen atom), followed by intercalation between the base pairs in the host cell DNA. Other N-oxide compound of the invention may have intrinsic cytotoxic activity. It is contemplated that the targets of the _g_ compounds for facilitating cell toxicity include DNA, helicases, microtubules, protein kinase C, and topoisomerase I and II. Since a number of pathological tissues have significant hypoxic components which promote hyperproliferation, it is believed that this portion of tissue will be preferentially targeted.
BRIEF DESCRIPTION OF THE DR.AWINGS/FIGURES
[0021] Figure 1 shows the effect of different doses of AQ4N on a P388 chronic lymphocytic leukemia mouse model.
[0022] Figure 2 shows a comparison of the effect of AQ4N, mitoxantrone, and carmustine on a P388 chronic lymphocytic leukemia mouse model.
[0023] Figure 3 shows the effect of different doses of AQ4N on a P388 chronic lymphocytic leukemia mouse model in terms of survival time.
[0024] Figure 4 shows the reproducibility of the effect of different doses of AQ4N on a P388 chronic lymphocytic leukemia mouse model.
[0025] Figure 5 shows the effect of different doses of AQ4N on a L1210 acute Iymphocytic leukemia mouse model.
[0026] Figure 6 shows a comparison of the effect of AQ4N, mitoxantrone, and carmustine on a L1210 acute lymphocytic leukemia mouse model.
[0027] Figure 7 shows the effect of different doses of AQ4N on a L1210 acute lymphocytic leukemia mouse model in terms of survival time.
[0028] Figure 8 shows the reproducibility of the effect of different doses of AQ4N on a L1210 acute lymphocytic leukemia mouse model.
[0029] Figure 9 shows the effect of different doses of AQ4N on a Namalwa liuman lymphoma mouse model.
[0030] Figure 10 shows the effect of different doses of AQ4N on a BXPC-3 pancreatic cancer mouse model.
[0031] Figure 11 shows the effect of different doses of AQ4N on a BXPC-3 pancreatic cancer mouse model.
[0032] Figure 12 shows the effect of different doses of AQ4N alone and in combination with gemcitabine on a BXPC-3 pancreatic cancer mouse model.
[0033] Figure 13 shows the effect of different doses of AQ4N on a HT-29 colon cancer mouse model.
[0034] Figure 14 shows the effect of different doses of AQ4N on a HT-29 colon cancer mouse model.
[0035] Figure 15 shows the effect of different doses of AQ4N alone and in combination with irinotecan on a HT-29 colon cancer mouse model.
[0036] Figure 16 shows the effect of different doses of AQ4N alone and in combination with irinotecan on a HT-29 colon cancer mouse model.
[0037] Figure 17 shows the distribution of radiolabeled AQ4N after administration to a mouse.
[0038] Figure 18 shows the distribution of radiolabeled AQ4N after administration to a mouse.
DETAILED DESCRIPTION OF THE INVENTION
[0039] One aspect of the invention is drawn to methods of treating, aineliorating, or preventing hyperproliferative disease in a subject comprising administering to said subject a therapeutically effective amount of a compound having Formula I:
R4 R, I I
/\ J\
or a phaimaceutically acceptable salt or prodrug tllereof, wherein:
Ri, R2, R3 and R4 are independently hydrogen, hydroxy, halo, amino, C1_4 alkoxy, Cz_$ alkanoyloxy, NH-A-NHR, or NH-A-N(O)R'R";
A is a C2_4 alkylene group with a chain length between NH and NHR or N(O)R'R" of at least 2 carbon atoms; and R, R' and R" are independently C1_4 alkyl, C2_4 hydroxyalkyl, or C2_4 dihydroxyalkyl in which the carbon atom attached to the nitrogen atom does not carry a hydroxy group and no carbon atom is substituted by two hydroxy groups; or R' and R" together are a C2_6 alkylene group which with the nitrogen atom to which R' and R" are attached forms a heterocyclic group having 3 to 7 atoms in the ring;
with the proviso that at least one of Rl to R4 is NH-A-N(O)R'R".
[0040] Useful alkyl groups include straight-chained or branched Ci_lp alkyl groups, especially methyl, ethyl, propyl, isopropyl, t-butyl, sec-butyl, 3-pentyl, adamantyl, norbomyl, and 3-hexyl groups.
[0041] Useful halo or halogen groups include fluorine, chlorine, bromine and iodine.
[0042] Useful alkoxy groups include oxygen substituted by one of the C1_10 alkyl groups mentioned above, especially methoxy and ethoxy.
[00431 Useful alkanoyloxy groups include acyloxy substituted by one of the C1_10 alkyl groups mentioned above, especially acetyl and propionyl.
[0044] Useful heterocyclic groups include tetrahydrofuranyl, pyranyl, piperidinyl, piperizinyl, pyrrolidinyl, imidazolidinyl, imidazolinyl, indolinyl, isoindolinyl, quinuclidinyl, morpholinyl, isochromanyl, chromanyl, pyrazolidinyl, pyrazolinyl, tetronoyl and tetramoyl groups.
[0045] According to another aspect of the invention, a therapeutically effective amount of a compound having Formula I, or a pharmaceutically acceptable salt thereof, and at least one other active agent is provided in the form of a pharmaceutical composition having at least one pharmaceutically acceptable carrier. In certain instances, the at least one other active agent is a chemotherapeutic agent (including an active vitamin D compound).
Compounds having Formula I may be formulated in a single formulation with the other active agent(s), or formulated independently.
[0046j According to one aspect of the invention, methods for treating, ameliorating, or preventing hyperproliferative disorders are provided, wherein a therapeutically effective amount of a compound having Formula I, or a pharmaceutically.acceptable salt thereof, is administered to an animal in need thereof. In certain aspects of the invention, the hyperproliferative disorder is cancer. In one embodiment, the cancer is a solid tumor. In another embodiment, the cancer is selected from the group consisting of colon cancer, brain cancer, glioma, multiple myeloma, head and neck cancer (except for esophageal cancer), hepatocellular cancer, melanoma, ovarian cancer, cervical cancer, renal cancer, and non-small cell lung cancer.
[0047] A further aspect of the invention relates to methods for treating, ameliorating, or preventing a hyperproliferative disorder comprising administering a therapeutically effective amount of a compound having Formula I, or a pharmaceutically acceptable salt thereof, in combination with at least one other active agent or treatment to a patient in need thereof. In certain embodiments, combinations of a coinpound having Formula I with a chemotherapeutic agent are administered. In one embodiment, the chemotherapeutic agent is selected from gemcitabine and irinotecan.
[0048] Hyperproliferative disorders which can be treated with the compounds having Formula I include any hypoxia-aggravated hyperproliferative disease and/or disorder, such as any number of cancers. Generally, such cancers include, without limitation, cancers of the bladder, brain, breast, cervix, colon, endometrium, esophagus, head and neck, kidney, larynx, liver, lung, oral cavity, ovaries, pancreas, prostate, skin, stomach, and testis. Certain of these cancers may be more specifically referred to as acute and chronic lymphocytic leukemia, acute granulocytic leukemia, adrenal cortex carcinoma, bladder carcinoma, breast carcinoma, cervical carcinoma, cervical liyperplasia, choriocarcinoma, chronic granulocytic leukemia, chronic lymphocytic leukemia, colon carcinoma, endometrial carcinoma, esophageal carcinoma, essential tlu-ombocytosis, genitourinary carcinoma, hairy cell leukemia, head and neck carcinoma, Hodgkin's disease, Kaposi's sarcoma, lung carcinoma, lymphoma, malignant carcinoid carcinoma, malignant hypercalcemia, malignant melanoma, malignant pancreatic insulinoma, medullary thyroid carcinoma, melanoma, multiple myeloma, mycosis fungoides, myeloid and lymphocytic leukemia, neuroblastoma, non-Hodgkin's lymphoma, osteogenic sarcoma, ovarian carcinoma, pancreatic carcinoma, polycythemia vera, primary brain carcinoma, primary macroglobulinemia, prostatic carcinoma, renal cell carcinoma, rhabdomyosarcoma, skin cancer, small-cell lung carcinoma, soft-tissue sarcoma, squamous cell carcinoma, stomach carcinoma, testicular carcinoma, thyroid carcinoma, and Wilms' tumor. I1i one embodiment, the cancer is a solid tumor. In another embodiment, the cancer is selected from the group consisting of colon cancer, brain cancer, glioma, multiple myeloma, head and neck cancer (except for esophageal cancer), hepatocellular cancer, melanoma, ovarian cancer, cervical cancer, renal cancer, and non-small cell lung cancer.
[0049) Animals which may be treated according to the present invention include all animals which may benefit from administration of compounds having Formula I. Such animals include humans, pets such as dogs and cats, and veterinary animals such as cows, pigs, sheep, goats and the like.
[00501 The term "pharmaceutical composition" as used herein, is to be understood as defining compositions of which the individual components or ingredients are themselves pharmaceutically acceptable, e.g., where oral administration is foreseen, acceptable for oral use; where topical administration is foreseen, topically acceptable; and where intravenous administration is foreseen, intravenously acceptable.
[0051] As used herein, the term "therapeutically effective amount" refers to that am.ount of the therapeutic agent sufficient to result in ainelioration of one or more symptoms of a disorder, or prevent advancement of a disorder, or cause regression of the disorder. For example, with respect to the treatment of cancer, a therapeutically effective amount preferably refers to the amount of a therapeutic agent that decreases the rate of tumor growth, decreases tumor mass, decreases the number of metastases, increases time to tumor progression, or increases survival time by at least 5%, preferably at least 10%, at least 15%, at least 20%, at least 25%, at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, or at least 100%.
[0052] The terms "prevent," "preventing," and "prevention," as used herein, refer to a decrease in the occurrence of pathological cells (e.g., hyperproliferative or neoplastic cells) in an animal. The prevention may be complete, e.g., the total absence of pathological cells in a subject. The prevention may also be partial, such that the occurrence of pathological cells in a subject is less than that which would have occurred without the present invention.
[0053] Compounds having Formula I can be provided as pharmaceutically acceptable salts. Examples of pharmaceutically acceptable salts (i.e., addition salts) include inorganic and organic acid addition salts such as hydrochloride, hydrobromide, phosphate, sulphate, citrate, lactate, tartrate, maleate, fumarate, mandelate, benzoate and oxalate; and inorganic and organic base addition salts with bases such as sodium hydroxy, Tris(hydroxymethyl)aminoiiiethane (TRIS, tromethane) and N-methyl-glucamine. Although the salts typically have similar physiological properties compared to the free base, certain acid addition salts may demonstrate preferred physicochemical properties, e.g., enhanced solubility, improved stability. One particular pharmaceutically acceptable salt is the maleate, such as the dimaleate.
[0054] Certain of the compounds of the present invention may exist as stereoisomers including optical isomers. The invention includes all stereoisomers and both the racemic mixtures of such stereoisomers as well as the individual enantiomers that may be separated according to methods that are well lcnown to those of ordinary skill in the art.
[0055] In certain embodiments of the invention, compounds having Formula I
are administered in combination with one or more other active agents (e.g., chemotherapeutic agents) or treatments. By way of non-limiting example, a patient may be treated for a hyperproliferative disorder, such as cancer, by the administration of a therapeutically effective amount of a compound having Formula I in combination with radiotherapy agent/treatment or the administration of a chemotherapeutic agent.
[00561 "In combination" refers to the use of more than one treatment. The use of the term "in combination" does not restrict the order in which treatments are administered to a subject being treated for a hyperproliferative disorder. A
first treatment can be administered prior to, concurrently with, after, or within any cycling regimen involving the administration of a second treatment to a subject with a hyperproliferative disorder. For example, the first treatment can be administered 5 minutes, 15 minutes, 30 minutes, 45 minutes, 1 hour, 2 hours, 4 hours, 6 hours, 12 hours, 24 hours, 48 hours, 72 hours, 96 hours, I
week, 2 weeks, 3 weeks, 4 weeks, 5 weeks, 6 weeks, 8 weeks, or 12 weeks before a treatment; or the first treatment can be administered 5 minutes, 15 minutes, 30 minutes, 45 minutes, 1 hour, 2 hours, 4 hours, 6 hours, 12 hours, 24 hours, 48 hours, 72 hours, 96 hours, 1 week, 2 weeks, 3 weeks, 4 weeks, 5 weeks, 6 weeks, 8 weeks, or 12 weeks after a second treatment. Such treatments include, for example, the administration of compounds having Formula I in combination with one or more chemotherapeutic agents or radiotherapeutic agents/treatments.
[0057] The term "chemotherapeutic agent," as used herein, is intended to refer to any chemotherapeutic agent known to those of skill in the art to be effective for the treatment, prevention or ainelioration of hyperproliferative disorders such as cancer. Chemotherapeutic agents include, but are not limited to, small molecules, synthetic drugs, peptides, polypeptides, proteins, nucleic acids (e.g., DNA and RNA polynucleotides including, but not limited to, antisense nucleotide sequences, triple helices and nucleotide sequences encoding biologically active proteins, polypeptides or peptides), antibodies, synthetic or natural inorganic molecules, mimetic agents, and synthetic or natural organic molecules. Any agent which is known to be useful, or which has been used or is currently being used for the treatment or amelioration of a hyperproliferative disorder can be used in combination with a compound having Formula 1. See, e.g., Hardman et al., eds., 2002, Goodman & Gihnan's The Pharmacological Basis Of Therapeutics 10th Ed, Mc-Graw-Hill, New York, N~.' for information regarding therapeutic agents which have been or are currently being used for the treatment or amelioration of a hyperproliferative disorder.
[0058] Particular chemotherapeutic agents useful in the methods and compositions of the invention include alkylating agents, antimetabolites, anti-mitotic agents, epipodophyllotoxins, antibiotics, hormones and hormone antagonists, enzymes, platinum coordination complexes, anthracenediones, substituted ureas, methylhydrazine derivatives, imidazotetrazine derivatives, cytoprotective agents, DNA topoisomerase inhibitors, biological response modifiers, retinoids, therapeutic antibodies, differentiating agents, immunomodulatory agents, angiogenesis inhibitors and anti-angiogenic agents.
[0059) Certain chemotherapeutic agents include, but are not limited to, abarelix, aldesleukin, alemtuzumab, alitretinoin, allopurinol, altretamine, amifostine, anastrozole, arsenic trioxide, asparaginase, BCG live, bevaceizumab, bexarotene, bleomycin, bortezomib, busulfan, calusterone, camptothecin, capecitabine, carboplatin, carmustine, celecoxib, cetuximab, chiorambucil, cinacalcet, cisplatin, cladribine, cyclophosphamide, cytarabine, dacarbazine, dactinomycin, darbepoetin alfa, daunorubicin, denileukin diftitox, dexrazoxane, docetaxel, doxorubicin, dromostanolone, Elliott's B solution, epirubicin, epoetin alfa, estramustine, etoposide, exemestane, filgrastim, floxuridine, fludarabine, fluorouracil, fulvestrant, gemcitabine, gemtuzumab ozogamicin, gefitinib, goserelin, hydroxyurea, ibritumomab tiuxetan, idarubicin, ifosfamide, imatinib, interferon alfa-2a, interferon alfa-2b, irinotecan, letrozole, leucovorin, levamisole, lomustine, meclorethamine, megestrol, melphalan, mercaptopurine, mesna, methotrexate, niethoxsalen, methylprednisolone, mitomycin C, mitotane, mitoxantrone, nandrolone, nofetumomab, oblimersen, oprelvekin, oxaliplatin, paclitaxel, pamidronate, pegademase, pegaspargase, pegfilgrastim, pemetrexed, pentostatin, pipobroman, plicamycin, polifeprosan, porfimer, procarbazine, quinacrine, rasburicase, rituximab, sargramostim, streptozocin, talc, tamoxifen, tarceva, temozolomide, teniposide, testolactone, thioguanine, thiotepa, topotecan, toremifene, tositumomab, trastuzumab, tretinoin, uracil mustard, valrubicin, vinblastine, vincristine, vinorelbine, and zoledronate. In certain embodiments, chemotherapeutic agents are selected from gemcitabine and irinotecan.
[0060] Chemotherapeutic agents may be administered at doses that are recognized by those of skill in the art to be effective for the treatment of the hyperproliferative disorder. In certain embodiments, chemotherapeutic agents may be administered at doses lower than those used in the art due to the additive or synergistic effect of the compounds having Formula I.
[00611 The term "radiotherapeutic agent," as used herein, is intended to refer to any radiotherapeutic agent known to one of skill in the art to be effective to treat or ameliorate a hyperproliferative disorder, without limitation. For instance, the radiotherapeutic agent can be an agent such as those administered in brachytherapy or radionuclide therapy.
[0062] Brachytherapy can be administered according to any schedule, dose, or method known to one of skill in the art to be effective in the treatment or amelioration of a hyperproliferative disorder, without limitation. In general, brachytherapy comprises insertion of radioactive sources into the body of a subject to be treated for cancer, such as inside the tumor itself, such that the tumor is maximally exposed to the radioactive source, and minimizing the exposure of healthy tissue. Representative radioisotopes that can be administered in brachytherapy include, but are not limited to, phosphorus 32, cobalt 60, palladium 103, ruthenium 106, iodine 125, cesium 137, iridium 192, xenon 133, radium 226, californium 252, or gold 198. Methods of administering and apparatuses and compositions useful for brachytherapy are described in Mazeron et al., Serra. Rad. Onc. 12:95-108 (2002) and U.S. Patent Nos. 6,319,189, 6,179,766, 6,168,777, 6,149,889, and 5,611,767.
[0063] Radionuclide therapy can be administered according to any schedule, dose, or method known to one of skill in the art to be effective in the treatment or amelioration of a hyperproliferative disorder, without limitation. In general, radionuclide therapy comprises systemic administration of a radioisotope that preferentially accumulates in or binds to the surface of cancerous cells. The preferential accumulation of the radionuclide can -be mediated by a number of mechanisms, including, but not limited to, incorporation of the radionuclide into rapidly proliferating cells, specific accumulation of the radionuclide by the cancerous tissue without special targeting, or conjugation of the radionuclide to a biomolecule specific for a neoplasm.
[0064] Representative radioisotopes that can be administered in radionuclide therapy include, but are not limited to, phosphorus 32, yttrium 90, dysprosium 165, indium 111, strontium 89, samarium 153, rhenium 186, iodine 131, iodine 125, lutetium 177, and bismuth 213. While all of these radioisotopes may be linked to a biomolecule providing specificity of targeting, iodine 131, indium 111, phosphorus 32, samarium 153, and rhenium 186 may be administered systemically without such conjugation. One of skill in the art may select a specific biomolecule for use in targeting a particular neoplasm for radionuclide therapy based upon the cell-surface molecules present on that neoplasm. Examples of biomolecules providing specificity for particular cell are reviewed in an article by Thomas, Cancer Biother. Radiopharrra. 17:71-82 (2002), which is incorporated herein by reference in its entirety.
Furthermore, methods of administering and compositions useful for radionuclide therapy may be found in U.S. Patent Nos. 6,426,400, 6,358,194, 5,766,571.
[0065] The term "radiotherapeutic treatment," as used herein, is intended to refer to any radiotherapeutic treatment known to one of skill in the art to be effective to treat or ameliorate a hyperproliferative disorder, without limitation. For instance, the radiotherapeutic treatment can be external-beam radiation therapy, thermotherapy, radiosurgery, charged-particle radiotherapy, neutron radiotherapy, or photodynamic therapy.
[0066] Extenlal-beam radiation therapy can be administered according to any schedule, dose, or method known to one of skill in the art to be effective in the treatment or amelioration of a hyperproliferative disorder, without limitation.
In general, external-beam radiation therapy comprises irradiating a defined volume within a subject with a high energy beam, thereby causing cell death within that volume. The irradiated volume preferably contains the entire cancer to be treated, and preferably contains as little healthy tissue as possible.
Methods of administering and apparatuses and compositions useful for external-beam radiation therapy can be found in U.S. Patent Nos. 6,449,336, 6,398,710, 6,393,096, 6,335,961, 6,307,914, 6,256,591, 6,245,005, 6,038,283, 6,001,054, 5,802,136, 5,596,619, and 5,528,652.
[0067] Thermotherapy can be administered according to any schedule, dose, or method known to one of skill in the art to be effective in the treatment or amelioration of a hyperproliferative disorder, without limitation. In certain exnbodiments, the thermotherapy can be cryoablation therapy. In other embodiments, the thermotherapy can be hyperthermic therapy. In still other embodiments, the thermotherapy can be a therapy that elevates the temperature of the tumor higher than in hyperthermic therapy.
[00681 Cryoablation therapy involves freezing of a neoplastic mass, leading to deposition of intra- and extra-cellular. ice crystals; disruption of cellular membranes, proteins, and organelles; and induction of a hyperosmotic environment, thereby causing cell death. Methods for and apparatuses useful in cryoablation therapy are described in Murphy et al., Sefn. Urol. Oncol.
19:133-140 (2001) and U.S. Patent Nos. 6,383,181, 6,383,180, 5,993,444, 5,654,279, 5,437,673, and 5,147,355.
[0069] Hyperthermic therapy typically involves elevating the temperature of a neoplastic mass to a range from about 42 C to about 44 C. The temperature of the cancer may be further elevated above this range; however, such temperatures can increase injury to surrounding healthy tissue while not causing increased cell death within the tumor to be treated. The tumor may be heated in hyperthermic therapy by any means Icnown to one of skill in the art without limitation. For example, and not by way of limitation, the tumor may be heated by microwaves, high intensity focused ultrasound, ferromagnetic thermoseeds, localized current fields, infrared radiation, wet or dry radiofrequency ablation, laser photocoagulation, laser interstitial thermic therapy, and electrocautery. Microwaves and radiowaves can be generated by waveguide applicators, horn, spiral, current sheet, and compact applicators.
[0070] Other methods, apparatuses and compositions for raising the temperature of a tumor are reviewed in an article by Wust et al., Lancet Oncol.
3:487-97 (2002), and described in U.S. Patent Nos. 6,470,217, 6,379,347, 6,165,440, 6,163,726, 6,099,554, 6,009,351, 5,776,175, 5,707,401, 5,658,234, 5,620,479, 5,549,639, and 5,523,058.
[00711 Radiosurgery can be admiizistered according to any schedule, dose, or method known to one of skill in the art to be effective in the treatment or amelioration of a hyperproliferative disorder, without limitation. In general, radiosurgery comprises exposing a defined volume within a subject to a manually directed radioactive source, thereby causing cell death within that volume. The irradiated volume preferably contains the entire cancer to be treated, and preferably contains as little healthy tissue as possible.
Typically, the tissue to be treated is first exposed using conventional surgical techniques, then the radioactive source is manually directed to that area by a surgeon.
Alternatively, the radioactive source can be placed near the tissue to be irradiated using, for example, a laparoscope. Methods and apparatuses useful for radiosurgery are further described in Valentini et al., Eur. J. Surg.
Oncol.
28:180-185 (2002) and in U.S. Patent Nos. 6,421,416, 6,248,056, and 5,547,454.
[0072] Charged-particle radiotherapy can be administered according to any schedule, dose, or method known to one of skill in the art to be effective in the treatment or amelioration of a hyperproliferative disorder, without limitation.
In certain embodiments, the charged-particle radiotherapy can be proton beam radiotherapy. In other embodiments, the charged-particle radiotherapy can be helium ion radiotherapy. In general, charged-particle radiotherapy comprises irradiating a defined volume within a subject with a charged-particle beam, thereby causing cellular death within that volume. The irradiated volume preferably contains the entire cancer to be treated, and preferably contains as little healthy tissue as possible. A method for administering charged-particle radiotherapy is described in U.S. Patent No. 5,668,371.
[0073] Neutron radiotherapy can be administered according to any schedule, dose, or method known to one of skill in the art to be effective in the treatment or amelioration of a hyperproliferative disorder, without limitation. In certain embodiments, the neutron radiotherapy can be a neutron capture therapy. In such embodiments, a compound that emits radiation when bombarded with neutrons and preferentially accumulates in a neoplastic mass is administered to a subject. Subsequently, the tumor is irradiated with a low energy neutron beam, activating the compound and causing it to emit decay products that kill the cancerous cells. The compound to be activated can be caused to preferentially accumulate in the target tissue according to any of the methods useful for targeting of radionuclides, as described above, or in the methods described in Laramore, Sennin. Oncol. 24:672-685 (1997) and in U.S. Patents Nos. 6,400,796, 5,877,165, 5,872,107, and 5,653,957.
[00741 In other embodiments, the neutron radiotherapy can be a fast neutron radiotherapy. In general, fast neutron radiotherapy comprises irradiating a defined volume within a subject with a neutron beam, thereby causing cellular death within that volume.
[0075] Photodynamic therapy can be administered according to any schedule, dose, or method known to one of skill in the art to be effective in the treatment or amelioration of cancer, without limitation. In general, photodynamic therapy comprises administering a photosensitizing agent that preferentially accumulates in a neoplastic mass and sensitizes the neoplasm to light, then exposing the tumor to light of an appropriate wavelength. Upon such exposure, the photosensitizing agent catalyzes the production of a cytotoxic agent, such as, e.g., singlet oxygen, which kills the cancerous cells. Methods of administering and apparatuses and compositions useful for photodynamic therapy are disclosed in Hopper, Lancet Oncol. 1:212-219 (2000) and U.S.
Patent Nos. 6,283,957, 6,071,908, 6,011,563, 5,855,595, 5,716,595, and 5,707,401.
[0076] Radiotherapy can be administered to destroy hyperproliferative cells before or after surgery, before or after chemotherapy, and sometimes during chemotherapy. Radiotherapy may also be administered for palliative reasons to relieve symptoms of a hyperproliferative disorder, for example, to lessen pain. Among the types of tumors that can be treated using radiotherapy are localized tumors that cannot be excised completely and metastases and tuinors whose complete excision would cause unacceptable functional or cosmetic defects or be associated with unacceptable surgical risks.
[0077] It will be appreciated that both the particular radiation dose to be utilized in treating a hyperproliferative disorder and the method of administration will depend on a variety of factors. Thus, the dosages of radiation that can be used according to the methods of the present invention are determined by the particular requirements of each situation. The dosage will depend on such factors as the size of the tumor, the location of the tumor, the age and sex of the patient, the frequency of the dosage, the presence of other tumors, possible metastases and the like. Those skilled in the art of radiotherapy can readily ascertain the dosage and the method of administration for any particular tumor by reference to Hall, E. J., Radiobiology for the Radiologist, 5th edition, Lippincott Williams & Wilkins Publishers, Philadelphia, PA, 2000; Gunderson, L. L. and Tepper J. E., eds., Clinical Radiation Oncology, Churchill Livingstone, London, England, 2000; and Grosch, D. S., Biological Effects of Radiation, 2nd edition, Academic Press, San Francisco, CA, 1980. In certain embodiments, radiotherapeutic agents and treatments may be administered at doses lower than those known in the art due to the additive or synergistic effect of the compound having Formula I.
[0078] Compositions in accordance with the present invention may be employed for administration in any appropriate manner, e.g., oral or buccal administration, e.g., in unit dosage form, for example in the form of a tablet, in a solution, in hard or soft encapsulated form including gelatin encapsulated form, sachet, or lozenge. Compositions may also be administered parenterally or topically, e.g., for application to the skin, for example in the form of a cream, paste, lotion, gel, ointment, poultice, cataplasm, plaster, dermal patch or the like, or for ophthalmic application, for example in the form of an eye-drop, -lotion or -gel formulation. Readily flowable forms, for example solutions, emulsions and suspensions, may also be employed e.g., for intralesional injection, or may be administered rectally, e.g., as an enema or suppository, or intranasal administration, e.g., as a nasal spray or aerosol.
Microcrystalline powders may be formulated for inhalation, e.g., delivery to the nose, sinus, throat or lungs. Transdermal compositions/devices and pessaries may also be employed for delivery of the compounds of the invention. The compositions may additionally contain agents that.enhance the delivery of the compounds having Formula I (or other active agents), e.g., liposomes, polymers or co-polymers (e.g., branched chain polymers). Preferred dosage forms of the present invention include oral dosage forms and intravenous dosage forms.
[0079] Intravenous forms include, but are not limited to, bolus and drip injections. In preferred embodiments, the intravenous dosage forms are sterile or capable of being sterilized prior to administration to a subject since they typically bypass the subject's natural defenses against contaminants.
Examples of intravenous dosage forms include, but are not limited to, Water for Injection USP; aqueous vehicles including, but not limited to, Sodium Chloride Injection, Ringer's Injection, Dextrose Injection, Dextrose and Sodium Chloride Injection, and Lactated Ringer's Injection; water-miscible vehicles including, but not limited to, ethyl alcohol, polyethylene glycol and polypropylene glycol; and non-aqueous vehicles including, but not limited to, corn oil, cottonseed oil, peanut oil, sesame oil, ethyl oleate, isopropyl myristate and benzyl benzoate.
[0080] The pharmaceutical compositions of the present invention may further comprise one or more additives. Additives that are well known in the art include, e.g., detackifiers, anti-foaming agents, buffering agents, antioxidants (e.g., ascorbic acid, ascorbyl palmitate, sodium ascorbate, butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), propyl gallate, malic acid, fumaric acid, potassium metabisulfite, sodium bisulfite, sodium metabisulfite, and tocopherols, e.g., a-tocopherol (vitamin E)), preservatives, chelating agents, viscomodulators, tonicifiers, flavorants, colorants, odorants, opacifiers, suspending agents, binders, fillers, plasticizers, lubricants, and mixtures thereof. The amounts of such additives can be readily determined by one skilled in the art, according to the particular properties desired, and can be formulated such that compounds having Formula I are stable, e.g., not reduced by antioxidant additives.
(0081] The additive may also comprise a thickening agent. Suitable thickening agents may be of those known and employed in the art, including, e.g., pharmaceutically acceptable polymeric materials and inorganic thickening agents. Exemplary thickening agents for use in the present pharmaceutical compositions include polyacrylate and polyacrylate co-polymer resins, for example poly-acrylic acid and poly-acrylic acid/methacrylic acid resins;
celluloses and cellulose derivatives including: alkyl celluloses, e.g., methyl-, ethyl- and propyl-celluloses; hydroxyalkyl-celluloses, e.g., hydroxypropyl-celluloses and hydroxypropylalkyl-celluloses such as hydroxypropyl-methyl-celluloses; acylated celluloses, e.g., cellulose-acetates, cellulose-acetatephthallates, cellulose-acetatesuccinates and hydroxypropyhnethyl-cellulose phthallates; and salts thereof such as sodium-carboxymethyl-ceiluloses; polyvinylpyrrolidones, including for example poly-N-vinylpyrrolidones and vinylpyrrolidone co-polymers such as vinylpyrrolidone-vinylacetate co-polymers; polyvinyl resins, e.g., including polyvinylacetates and alcohols, as well as other polymeric materials including gum traganth, gum arabicum, alginates, e.g., alginic acid, and salts thereof, e.g., sodium alginates; and inorganic thickening agents such as atapulgite, bentonite and silicates including hydrophilic silicon dioxide products, e.g., alkylated (for exa.inple methylated) silica gels, in particular colloidal silicon dioxide products.
[00821 Such thickening agents as described above may be included, e.g., to provide a sustained release effect. However, where oral administration is intended, the use of thickening agents may not be required. Use of thickening ageiits is, on the other hand, indicated, e.g., where topical application is foreseen.
[00831 In one embodiment of the invention, compounds having Formula I are formulated as described in WO 03/076387. In particular, the compounds are formulated such that upon dissolution in aqueous solution the pH of the solution is in the range of 5 to 9.
(0084] Although the dosage of the compound having Formula I will vary according to the activity and/or toxicity of the particular compound, the condition being treated, and the physical form of the phannaceutical composition being employed for administration, it may be stated by way of guidance that a dosage selected in the range from 0.1 to 20 mg/kg of body weight per day will often be suitable, although higher dosages, such as 0.1 to 50 mg/kg of body weight per day may be useful. Those of ordinary skill in the art are familiar with methods for determining the appropriate dosage. Methods for assessing the toxicity, activity and/or selectivity of the compounds having Formula I may be carried out as described in Lee et al., supra, and PCT
Published International Application WO 92/15300, supra, and may be useful for approximating and/or determining dose ranges for compounds having Formula I.
[0085] In certain instances, the dosage of the compounds having Formula I
will be lower, e.g., when used in combination with at least a second hyperproliferative disorder treatment, and may vary according to the activity and/or toxicity of the particular compound, the condition being treated, and the physical form of the pharmaceutical composition being employed for administration.
[0086] When the composition of the present invention is formulated in unit dosage form, the compound having Formula I will preferably be present in an amount of between 0.01 and 2000 mg per unit dose. More preferably, the amount of compound having Formula I per unit dose will be about 0.01, 0.05, 0.1, 0.5, 1, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1050, 1100, 1150, 1200, 1250, 1300, 1350, 1400, 1450, 1500, 1550, 1600, 1650, 1700, 1750, 1800, 1850, 1900, 1950, or 2000 mg or any amount therein.
[0087] When the unit dosage form of the composition is a capsule, the total quantity of ingredients present in the capsule is preferably about 10-1000 [tL.
More preferably, the total quantity of ingredients present in the capsule is about '100-300 gL. In another embodiment, the total quantity of ingredients present in the capsule is preferably about 10-1500 mg, preferably about 100-1000 mg.
[0088] The relative proportion of ingredients in the compositions of the invention will, of course, vary considerably depending on the particular type of composition concerned. The relative proportions will also vary depending on the particular function of ingredients in the composition. The relative proportions will also vary depending on the particular ingredients employed and the desired physical characteristics of the product composition, e.g., in the case of a composition for topical use, whether this is to be a free flowing liquid or a paste. Determination of workable proportions in any particular instance will generally be within the capability of a person of ordinary skill in the art.
All indicated proportions and relative weight ranges described below are accordingly to be understood as being indicative individually inventive teachings only and not as not limiting the invention in its broadest aspect.
[0089] The amount of compound having Formula I in compositions of the invention will of course vary, e.g., depending on the intended route of administration and to what extent other components are present. In general, however, the compound having Formula I will suitably be present in an amount of from about 0.005% to 20% by weight based upon the total weight of the composition. In certain embodiments, the compound having Form.ula I
is present in an amount of from about 0.01% to 15% by weight based upon the total weight of the composition.
[0090] In addition to the foregoing, the present invention also provides a process for the production of a pharmaceutical composition as hereinbefore defined, which process comprises bringing the individual components thereof into intimate admixture and, when required, compounding the obtained composition in unit dosage form, for example filling said composition into tablets, gelatin, e.g., soft or hard gelatin, capsules, or non-gelatin capsules.
[0091] Compounds having Formula I can be prepared by methods well known in the art and as disclosed in U.S. Patent No. 5,132,327.
[0092) The following examples are illustrative, but not limiting, of the method and compositions of the present invention. Other suitable modifications and adaptations of the variety of conditions and parameters normally encountered in clinical therapy and which are obvious to those skilled in the art are within the spirit and scope of the invention.
CYTOTOXICITY OF AQ4 AND AQ4N IN LYMPHOMA, LEUKEMIA, AND MULTIPLE MYELOMA
[0093] The cytotoxicity of AQ4 and AQ4N on different lymphoma, leukemia, and multiple myeloma cell lines was tested in vitro under normoxic conditions. Standard cytotoxicity assays using MTS dye were run to determine the IC50 for each compound. Cells were exposed to the compounds for 24 hours and cells were stained 24-72 hours post-drug exposure. Positive controls utilized chemotherapeutic agents at doses shown in the art to be effective. As shown in Table 1, the results indicate that AQ4 is cytotoxic to many of the cell lines, with IC50 values in the nanomolar to sub-nanomolar range. AQ4N was less active or inactive compared to AQ4, but the tests were done under normoxic conditions, so it is expected that there is little conversion of AQ4N to AQ4 under these conditions. In most instances, AQ4 was at least as cytotoxic as the standard chemotherapeutic agent.
Table 1. Cell cytotoxicity in lymphoma, leukemia, and multiple myeloma Tumor Line Type AQ4 AQ4N Standard (IC50) (IC50) Burkitt 0.5 nM
Daudi 4.6 nM NA
Lymphoma Dox Burkitt 0.9 nM
Raji 200 nM NA
Lymphoma Dox Burkitt 1.8 nM
Ramos 8.0 nM NA
Lymphoma Dox Burkitt 7.4 nM
Namalwa 0.2 nM 400 nM
Lymphoma Dox ALL 7.5 nM
MOLT-4 2 nM 700 nM
(human) Dox AML 100 nM
HL-60 10 nM NA
(human) Dox AML 600 nM
KG1 a 50 nM 43 M
(human) Dox CML 400 nM 1000 n1VI 200 nM
(human) Dox P388 CLL 10 nM 31.5 M 100 nM
(mouse) Dox ALL 50 nM
L1210 1.2 nM 600 nM
(mouse) Dox 10nM
CCRF-CEM T-ALL 620 nM 237.5 M
VLB
CCRF-CEM/VLB T-ALL 340 nM 310 M 1041 M
VLB
L5178Y Mouse 30 nM 300 nM 50 nM
Lymphoma Dox RPMI8226 Multiple 200 nM NA 100 nM
Myeloma Dox RPMI8226/Dox Multiple 1100nM NA 54.7 M
Myeloma Dox Multiple ARH177 200 nM NA --Myeloma ALL - acute lymphocytic leukemia; AML - acute myelogenous leukemia;
CML - chronic myelogenous leukemia; CLL - chronic lymphocytic leukemia;
T-ALL - T cell acute lymphocytic leukemia; Dox - doxorubicin; VLB -vinorelbine; NA - not active (IC50 > 100 M) MYELOMA IN VIVO
[0094] The cytotoxic effects of AQ4N on lymphoma and multiple myeloma were tested in vivo using a tumor model. Tumor cells were implanted intraperitoneally in mice and various treatment schedules for AQ4N were tested. Animals were monitored for survival time. Standard doses of other chemotherapeutic agents were used as controls.
[00951 Using a P388 murine CLL model, the administration of AQ4N was shown to increase survival time (FIG. 1). Survival was shown to correlate with increased initial expose to AQ4N, as administration of 60 mg/kg qdx3 promoted survival to a greater extent than administration of 180 mg/kg on Day 1 or 60 mg/kg qodx3, which in turn were more effective than 60 mg/kg q4dx4 (FIG. 1). AQ4N was also shown to be more effective in promoting survival than mitoxantrone (FIG. 2). When the data is analyzed in terms of sui-vival time, AQ4N was shown to be at least as effective as mitoxantrone (FIG. 3) and to provide reproducible results (FIG. 4).
[00961 Using a L1210 murine ALL model, the administration of AQ4N was shown to increase survival time (FIG. 5). Again, survival was shown to correlate with increased initial expose to AQ4N, as administration of 90 mg/kg qdx2 promoted survival to a greater extent than administration of 45 mg/kg qdx3, which in turn were more effective than 45 mg/kg q4dx3 or 30 mg/kg on either schedule (FIG. 5). AQ4N at 90 mg/kg qdx2 was also shown to be about as effective in promoting survival as mitoxantrone or . carmustine (FIG. 6).
When the data is analyzed in terms of survival time, AQ4N was shown to be at least as effective as mitoxantrone and more effective than carmustine (FIG. 7) and to provide reproducible results (FIG. 8).
[0097] Using a Namalwa human lymphoma model, the administration of AQ4N was shown to inhibit tumor growth (FIG. 9). AQ4N at 60 mg/kg q3dx2 was also shown to be about as effective in inhibiting tumor growth as mitoxantrone (FIG. 9).
[0098] The cytotoxicity of AQ4 and AQ4N on different solid tumor cell lines was tested in vitro under normoxic conditions. Standard cytotoxicity assays using MTS dye were run to determine the IC50 for each compound. Cells were exposed to the compounds for 24 hours and cells were stained 24-72 hours post-drug exposure. Positive controls utilized chemotherapeutic agents at doses shown in the art to be effective. As shown in Table 2, the results indicate that AQ4 is cytotoxic to many of the cell lines, with IC50 values in the nanomolar to sub-nanomolar range. AQ4N was less active or inactive compared to AQ4, but the tests were done under normoxic conditions, so it is expected that there is little conversion of AQ4N to AQ4 under these conditions. In many instances, AQ4 was at least as cytotoxic as the standard chemotherapeutic agent.
Tab1e.2. Cell cytotoxicity in solid tumors Tumor Line Type AQ4 AQ4N Standard (IC50) (IC50) 59.5nM
BXPC-3 Pancreatic 1.6 M 3.6 M
Gem 23nM
MiaPaCa Pancreatic 1.6 gM NA
Gem Panc-1 Pancreatic 0.4 M NA 1.7 M
Gem 65.1nM
HT-29 Colon 0.7 M 101.5 M
48.4nM
HCT116 Colon 3.9 M NA
0.6 nM
LoVo Colon 0.21 M 49.9 M
2.6 nM
LS174T Colon 0.95 M 14.4 M
U87MG Glioma 0.9 M NA 0.4 M
Dox U118MG Glioma 1.3 M NA 0.03 M
Dox U251 Glioma 0.6 M NA 0.03 M
DOx , Pharynx Squamous 6.5 M
FaDu 0.3 M 64.7 M
Cell Carcinoma Taxol KB Mouth Esophageal 0.6 M 13.4 M 2.0 M
Taxol KB-3 Mouth Esophageal 3.3 M NA 19.1 M
(radiation-resistant) Taxol Hep3B2.1-7 Hepatocellular 0.8 M NA 13.7 M
Taxol Melanoma A375-SM 3.30 {tM NA None (mouse) Melanoma B 16-F 10 (human) 0.02 M NA None Gem - gemcitabine; SN38 - 7-ethyl-l0-hydro-camptothecin; Dox doxorubicin; NA - not active (IC50 > 100 M) [00991 The cytotoxic effects of AQ4N on solid tumors were tested in vivo using a mouse tumor model. Tumor cells were implanted subcutaneously in mice and allowed to grow until about 50-100 mm3 in size (10-17 days).
Various treatment schedules for AQ4N were tested and animals were monitored for tumor volume. Standard doses of other chemotherapeutic agents were used as controls.
[00100] Using a BXPC-3 pancreatic cancer model, the administration of increasing doses of AQ4N was shown to inhibit tumor growth, with 90 mg/kg q3dx4 being approximately as effective as gemcitabine (FIG. 10). In a further refmement of dosing schedules, administration of AQ4N as 60 mg/kg q3dx6 and 90 mg/kg q3dx6 was shown to provide enhanced results that were statistically significant (p < 0.0002) compared to the untreated control and had potency comparable to gemcitabine (FIG. 11). When AQ4N and gemcitabine administration was combined, the combination was shown to be slightly better than administration of AQ4N or gemcitabine alone (FIG. 12).
[00101] Using a HT-29 colon cancer model, the administration of increasing doses of AQ4N was shown to inhibit tumor growth, with 60 mg/kg qodx6 having a significant (p = 0.021) effect on tumor growth inhibition compared to untreated controls and having significantly (p = 0.048) more tumor growth inhibition than two doses of irinotecan (FIG. 13). In a further refinement of dosing schedules, adininistration of AQ4N as 60 mg/lcg qodx6 was not signif cantly (p = 0.074) more potent than three doses of irinotecan (FIG. 14) When AQ4N and irinotecan administration was combined, the combination caused greater tumor growth inhibition than administration of AQ4N or irinotecan alone (FIG. 15). Further testing of the combination treatment showed that a combination of AQ4N 90 mg/kg on days 2, 8, 16, and 23 with irinotecan 40 mg/kg on days 1, 8, and 15 provided the most effective results with significant (p = 0.045) tumor growth inhibition compared to either agent alone (FIG. 16).
[001021 In order to determine the distribution of AQ4N after administration to a subject, AQ4N labeled with 14C on both a benzene ring and a methyl group was administered to a mouse having a subcutaneous BXPC-3 pancreatic cancer tumor (20 mg/kg; 120 [tCi/kg) and the distribution of radioactivity monitored. The results (shown in Table 3) indicate that AQ4N radioactivity accumulates disproportionately in the liver, spleen, large intestine, kidney, and pancreas. The time course of radioactivity distribution indicates the accumulation of AQ4N in the large intestine, suggesting enhanced usefulness for the treatment of colon cancer (FIG. 17). The long half-life of radiolabeled AQ4N, particularly in the spleen, suggests that AQ4N may be effective even with less frequent dosing (FIG. 18).
Table 3. Distribution of labeled AQ4N
Exposure ( g/mL (or g)=hr) Tissue C-Benzene 14C-Methyl Plasma 14.1 14.0 Subcutaneous Tumor 142.0 79.0 Spleen 1592.0 986.0 Large Intestine 652.8 813.0 Liver 2089.0 530.0 Kidney 632.5 249.0 Brain 82.8 68.0 Pancreas 268.9 133.0 [00103] Having now fully described this invention, it will be understood by those of ordinary skill in the art that the same can be performed within a wide and equivalent range of conditions, formulations and other parameters without affecting the scope of the invention or any embodiment thereof. All patents, patent applications and publications cited herein are fully incorporated by reference herein in their entirety.
Claims (17)
1. A method of treating, ameliorating, or preventing cancer comprising administering to a animal in need thereof a therapeutically effective amount of a compound of Formula I:
or a pharmaceutically acceptable salt or prodrug thereof, wherein:
R1, R2, R3 and R4 are independently hydrogen, hydroxy, halo, amino, C1-4 alkoxy, C2-8 alkanoyloxy, NH-A-NHR, or NH-A-N(O)R'R";
A is a C2-4 alkylene group with a chain length between NH and NHR or N(O)R'R" of at least 2 carbon atoms; and R, R' and R" are independently C1-4 alkyl, C2-4 hydroxyalkyl, or C2-4 dihydroxyalkyl in which the carbon atom attached to the nitrogen atom does not carry a hydroxy group and no carbon atom is substituted by two hydroxy groups; or R' and R" together are a C2-6 alkylene group which with the nitrogen atom to which R' and R" are attached forms a heterocyclic group having 3 to 7 atoms in the ring;
with the proviso that at least one of R1 to R4 is NH-A-N(O)R'R".
or a pharmaceutically acceptable salt or prodrug thereof, wherein:
R1, R2, R3 and R4 are independently hydrogen, hydroxy, halo, amino, C1-4 alkoxy, C2-8 alkanoyloxy, NH-A-NHR, or NH-A-N(O)R'R";
A is a C2-4 alkylene group with a chain length between NH and NHR or N(O)R'R" of at least 2 carbon atoms; and R, R' and R" are independently C1-4 alkyl, C2-4 hydroxyalkyl, or C2-4 dihydroxyalkyl in which the carbon atom attached to the nitrogen atom does not carry a hydroxy group and no carbon atom is substituted by two hydroxy groups; or R' and R" together are a C2-6 alkylene group which with the nitrogen atom to which R' and R" are attached forms a heterocyclic group having 3 to 7 atoms in the ring;
with the proviso that at least one of R1 to R4 is NH-A-N(O)R'R".
2. The method of claim 1, wherein said compound of Formula I is AQ4N:
or a pharmaceutically acceptable salt or prodrug thereof.
or a pharmaceutically acceptable salt or prodrug thereof.
3. The method of claim 1, wherein the cancer is colon cancer, brain cancer, glioma, multiple myeloma, head and neck cancer (except for esophageal cancer), hepatocellular cancer, melanoma, ovarian cancer, cervical cancer, renal cancer, and non-small cell lung cancer.
4. The method of claim 1, further comprising administering one or more other active agents or treatments to the animal.
5. The method of claim 4, wherein said one or more other active agents or treatments are independently selected from the group consisting of a chemotherapeutic agent and a radiotherapeutic agent/treatment.
6. The method of claim 5, wherein both one or more chemotherapeutic agents and one or more radiotherapeutic agents/treatments are administered.
7. The method of claim 5, wherein the chemotherapeutic agent is selected from the group consisting of abarelix, aldesleukin, alemtuzumab, alitretinoin, allopurinol, altretamine, amifostine, anastrozole, arsenic trioxide, asparaginase, BCG live, bevaceizumab, bexarotene, bleomycin, bortezomib, busulfan, calusterone, camptothecin, capecitabine, carboplatin, carmustine, celecoxib, cetuximab, chlorambucil, cinacalcet, cisplatin, cladribine, cyclophosphamide, cytarabine, dacarbazine, dactinomycin, darbepoetin alfa, daunorubicin, denileukin diftitox, dexrazoxane, docetaxel, doxorubicin, dromostanolone, Elliott's B solution, epirubicin, epoetin alfa, estramustine, etoposide, exemestane, filgrastim, floxuridine, fludarabine, fluorouracil, fulvestrant, gemcitabine, gemtuzumab ozogamicin, gefitinib, goserelin, hydroxyurea, ibritumomab tiuxetan, idarubicin, ifosfamide, imatinib, interferon alfa-2a, interferon alfa-2b, irinotecan, letrozole, leucovorin, levamisole, lomustine, meclorethamine, megestrol, melphalan, mercaptopurine, mesna, methotrexate, methoxsalen, methylprednisolone, mitomycin C, mitotane, mitoxantrone, nandrolone, nofetumomab, oblimersen, oprelvekin, oxaliplatin, paclitaxel, pamidronate, pegademase, pegaspargase, pegfilgrastim, pemetrexed, pentostatin, pipobroman, plicamycin, polifeprosan, porfimer, procarbazine, quinacrine, rasburicase, rituximab, sargramostim, streptozocin, talc, tamoxifen, tarceva, temozolomide, teniposide, testolactone, thioguanine, thiotepa, topotecan, toremifene, tositumomab, trastuzumab, tretinoin, uracil mustard, valrubicin, vinblastine, vincristine, vinorelbine, and zoledronate.
8. The method of claim 5, wherein said chemotherapeutic agent is gemcitabine or irinotecan.
9. The method of claim 4, wherein said compound having Formula I is administered prior to the administration of said active agents or treatments.
10. The method of claim 4, wherein said compound having Formula I is administered concurrently with the administration of said active agents or treatments.
11. The method of claim 10, wherein the administration of said compound having Formula I is continued beyond the administration of said active agents or treatments.
12. The method of claim 4, wherein said compound having Formula I is administered after the administration of said active agents or treatments.
13. The method of claim 4, wherein the method is repeated at least once.
14. A pharmaceutical composition comprising a compound of Formula I:
or a pharmaceutically acceptable salt or prodrug thereof, wherein:
R1, R2, R3 and R4 are independently hydrogen, hydroxy, halo, amino, C1-4 alkoxy, C2-8 alkanoyloxy, NH-A-NHR, or NH-A-N(O)R'R";
A is a C2-4 alkylene group with a chain length between NH and NHR or N(O)R'R" of at least 2 carbon atoms; and R, R' and R" are independently C1-4 alkyl, C2-4 hydroxyalkyl, or C2-4 dihydroxyalkyl in which the carbon atom attached to the nitrogen atom does not carry a hydroxy group and no carbon atom is substituted by two hydroxy groups; or R' and R" together are a C2-6 alkylene group which with the nitrogen atom to which R' and R" are attached forms a heterocyclic group having 3 to 7 atoms in the ring;
with the proviso that at least one of R1 to R4 is NH-A-N(O)R'R";
and one or more other chemotherapeutic agents.
or a pharmaceutically acceptable salt or prodrug thereof, wherein:
R1, R2, R3 and R4 are independently hydrogen, hydroxy, halo, amino, C1-4 alkoxy, C2-8 alkanoyloxy, NH-A-NHR, or NH-A-N(O)R'R";
A is a C2-4 alkylene group with a chain length between NH and NHR or N(O)R'R" of at least 2 carbon atoms; and R, R' and R" are independently C1-4 alkyl, C2-4 hydroxyalkyl, or C2-4 dihydroxyalkyl in which the carbon atom attached to the nitrogen atom does not carry a hydroxy group and no carbon atom is substituted by two hydroxy groups; or R' and R" together are a C2-6 alkylene group which with the nitrogen atom to which R' and R" are attached forms a heterocyclic group having 3 to 7 atoms in the ring;
with the proviso that at least one of R1 to R4 is NH-A-N(O)R'R";
and one or more other chemotherapeutic agents.
15. The pharmaceutical composition of claim 14, wherein said compound of Formula I is AQ4N (compound 1):
or a pharmaceutically acceptable salt or prodrug thereof.
or a pharmaceutically acceptable salt or prodrug thereof.
16. The pharmaceutical composition of claim 14, wherein said chemotherapeutic agent is selected from the group consisting of abarelix, aldesleukin, alemtuzumab, alitretinoin, allopurinol, altretamine, amifostine, anastrozole, arsenic trioxide, asparaginase, BCG live, bevaceizumab, bexarotene, bleomycin, bortezomib, busulfan, calusterone, camptothecin, capecitabine, carboplatin, carmustine, celecoxib, cetuximab, chlorambucil, cinacalcet, cisplatin, cladribine, cyclophosphamide, cytarabine, dacarbazine, dactinomycin, darbepoetin alfa, daunorubicin, denileukin diftitox, dexrazoxane, docetaxel, doxorubicin, dromostanolone, Elliott's B solution, epirubicin, epoetin alfa, estramustine, etoposide, exemestane, filgrastim, floxuridine, fludarabine, fluorouracil, fulvestrant, gemcitabine, gemtuzumab ozogamicin, gefitinib, goserelin, hydroxyurea, ibritumomab tiuxetan, idarubicin, ifosfamide, imatinib, interferon alfa-2a, interferon alfa-2b, irinotecan, letrozole, leucovorin, levamisole, lomustine, meclorethamine, megestrol, melphalan, mercaptopurine, mesna, methotrexate, methoxsalen, methylprednisolone, mitomycin C, mitotane, mitoxantrone, nandrolone, nofetumomab, oblimersen, oprelvekin, oxaliplatin, paclitaxel, pamidronate, pegademase, pegaspargase, pegfilgrastim, pemetrexed, pentostatin, pipobroman, plicamycin, polifeprosan, porfimer, procarbazine, quinacrine, rasburicase, rituximab, sargramostim, streptozocin, talc, tamoxifen, tarceva, temozolomide, teniposide, testolactone, thioguanine, thiotepa, topotecan, toremifene, tositumomab, trastuzumab, tretinoin, uracil mustard, valrubicin, vinblastine, vincristine, vinorelbine, and zoledronate.
17. The composition of claim 14, wherein said chemotherapeutic agent is gemcitabine or irinotecan.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US65837105P | 2005-03-04 | 2005-03-04 | |
US60/658,371 | 2005-03-04 | ||
PCT/US2006/007452 WO2006096458A2 (en) | 2005-03-04 | 2006-03-03 | Treatment of hyperproliferative diseases with anthraquinones |
Publications (1)
Publication Number | Publication Date |
---|---|
CA2598249A1 true CA2598249A1 (en) | 2006-09-14 |
Family
ID=36953858
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA002598249A Abandoned CA2598249A1 (en) | 2005-03-04 | 2006-03-03 | Treatment of hyperproliferative diseases with anthraquinones |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP1853243A2 (en) |
JP (1) | JP2008531720A (en) |
CN (1) | CN101193644A (en) |
AU (1) | AU2006220886A1 (en) |
CA (1) | CA2598249A1 (en) |
WO (1) | WO2006096458A2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2010087425A1 (en) * | 2009-01-30 | 2012-08-02 | 国立大学法人京都大学 | Prostate cancer progression inhibitor and progression inhibition method |
GB201214169D0 (en) | 2012-08-08 | 2012-09-19 | Biostatus Ltd | New compounds and uses thereof |
CN107184563A (en) * | 2017-05-31 | 2017-09-22 | 潘小平 | Micro-capsule, the preparation method and use of Physcion and its derivative |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6019790A (en) * | 1983-07-14 | 1985-01-31 | Yakult Honsha Co Ltd | Novel camptothecin derivative |
GB8923075D0 (en) * | 1989-10-13 | 1989-11-29 | Patterson Laurence H | Anti-cancer compounds |
-
2006
- 2006-03-03 JP JP2007558228A patent/JP2008531720A/en active Pending
- 2006-03-03 EP EP06736721A patent/EP1853243A2/en not_active Withdrawn
- 2006-03-03 CA CA002598249A patent/CA2598249A1/en not_active Abandoned
- 2006-03-03 AU AU2006220886A patent/AU2006220886A1/en not_active Abandoned
- 2006-03-03 WO PCT/US2006/007452 patent/WO2006096458A2/en active Application Filing
- 2006-03-03 CN CNA2006800065847A patent/CN101193644A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
JP2008531720A (en) | 2008-08-14 |
WO2006096458A3 (en) | 2007-12-13 |
EP1853243A2 (en) | 2007-11-14 |
AU2006220886A1 (en) | 2006-09-14 |
CN101193644A (en) | 2008-06-04 |
WO2006096458A2 (en) | 2006-09-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20070117784A1 (en) | Treatment of hyperproliferative diseases with anthraquinones | |
CN101421282B (en) | Treatment of hyperproliferative diseases with vinca alkaloidn-oxide and analogs | |
US11826430B2 (en) | Anti-cancer nuclear hormone receptor-targeting compounds | |
US11952349B2 (en) | Anti-cancer nuclear hormone receptor-targeting compounds | |
EP2935215B1 (en) | Radiosensitizer compounds for use in combination with radiation | |
WO2007095389A2 (en) | Treatment of hyperproliferative diseases with camptothecine n-oxide and analogs | |
US20210221805A1 (en) | Sigma-2 receptor ligand drug conjugates as antitumor compounds, methods of synthesis and uses thereof | |
US20080305082A1 (en) | 1,4-Bis-N-Oxide-5,8- Dihydroxyanthracenedione Compounds and the Use Thereof | |
CA2598249A1 (en) | Treatment of hyperproliferative diseases with anthraquinones | |
US20050222190A1 (en) | 1,4-bis-N-oxide azaanthracenediones and the use thereof | |
TW202108570A (en) | Anti-cancer nuclear hormone receptor-targeting compounds |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FZDE | Dead |