CA2594153A1 - Use of polyethylene glycol esters of fatty acids as lubricants for plastics - Google Patents

Use of polyethylene glycol esters of fatty acids as lubricants for plastics Download PDF

Info

Publication number
CA2594153A1
CA2594153A1 CA002594153A CA2594153A CA2594153A1 CA 2594153 A1 CA2594153 A1 CA 2594153A1 CA 002594153 A CA002594153 A CA 002594153A CA 2594153 A CA2594153 A CA 2594153A CA 2594153 A1 CA2594153 A1 CA 2594153A1
Authority
CA
Canada
Prior art keywords
lubricants
acid
fatty acids
esters
fatty
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CA002594153A
Other languages
French (fr)
Other versions
CA2594153C (en
Inventor
Ernst-Udo Brand
Peter Daute
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Emery Oleochemicals GmbH
Original Assignee
Cognis Oleochemicals GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cognis Oleochemicals GmbH filed Critical Cognis Oleochemicals GmbH
Publication of CA2594153A1 publication Critical patent/CA2594153A1/en
Application granted granted Critical
Publication of CA2594153C publication Critical patent/CA2594153C/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/101Esters; Ether-esters of monocarboxylic acids
    • C08K5/103Esters; Ether-esters of monocarboxylic acids with polyalcohols

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Lubricants (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

The invention relates to the use of polyethylene glycol esters of fatty acids corresponding to the following formula:
R1-CO-O-(CH2-CH2-O)n-OC-R2 (I) in which R1 and R2 independently of one another represent alkyl groups containing 7 to 23 carbon atoms, which may be saturated or unsaturated, linear or branched, and n is a number of 2 to 50, as lubricants in the processing of thermoplastics.

Description

Use of Polyethylene Glycol Esters of Fatty Acids as Lubricants for Plastics Field of the Invention This invention relates to the use of polyethylene glycol esters of fatty acids as lubricants for plastics.

Prior Art In the processing of thermoplastics, lubricants are added as processing aids. On the one hand, the lubricants are capable of reducing the internal friction between plastic particles which makes the plastics easier to melt and promotes the formation of a homogeneous, flowable melt. Lubricants acting in this way are also commonly referred to as internal lubricants. On the other hand, lubricants used in the processing of plastics are capable of reducing the adhesion of the plastic melt to hot surfaces of machine parts or to the walls of the molds. It is assumed that the lubricants, which, after their incorporation in the plastic, migrate from the plastic to the surface on account of their limited compatibility, reduce adhesion. Lubricants acting in this way are also known as external lubricants or as "mold release agents".
In principle, the use of the lubricants also has a considerable bearing on the morphology, homogeneity and surface qualities of the plastic products.
Whether an additive acts as internal or external lubricant depends on many factors, more particularly on its structure and on the nature of the plastic. In many cases, internal and external lubricating effects may even be developed alongside one another. Initial observations on lubricants in PVC and their effect as internal and external lubricants can be found in the overview in Gachter/Muller, Kunststoffadditive (2"d Edition, pp. 320-327).
Known lubricants for plastics include, for example, fatty acids, fatty I

alcohols, fatty acid esters, fatty acid complex esters, wax esters, dicarboxylic acid esters, amide waxes, metal soaps, montan waxes, hydrocarbon waxes or oxidized hydrocarbons.
Polyethylene glycol monoesters are used as antistatic and antifogging agents in thermoplastics (cf. Antistatic PVC Materials, Sheverdyaev, O.N. USSR, Plasticheskie Massy (1985), (4), 21-2; ISSN:
0554-2901; in Russian; reported in CAPLUS: 1985:423262).

Description of the Invention The problem addressed by the present invention was to provide lubricants, more especially internal lubricants, which could be used in the processing of thermoplastics.
It has surprisingly been found that polyethylene glycol esters of fatty acids can be used in excellent fashion as lubricants and preferably as internal lubricants in the processing of thermoplastics. The compounds are highly compatible with the polymers and lead during processing to an improvement in the plasticization of the polymer. Another advantage lies in the low inherent volatility of the polyethylene glycol esters of fatty acids.
The lubricants to be used in accordance with the invention are characterized by the following formula:

R1-CO-O-(CH2-CH2-O)n-OC-R2 (I) in which R' and R2 independently of one another represent alkyl groups containing 7 to 23 carbon atoms, which may be saturated or unsaturated, linear or branched, and n is a number of 2 to 50.
Accordingly, the present invention relates to the use of polyethylene glycol esters of fatty acids corresponding to the following formula:

R'-CO-O-(CH2-CH2-O)n-OC-R2 (I) in which R' and R2 independently of one another represent alkyl groups containing 7 to 23 carbon atoms, which may be saturated or unsaturated, linear or branched, and n is a number of 2 to 50, as lubricants in the processing of thermoplastics. In a preferred embodiment, n has a value of 2 to 4.
The term "lubricant" in the context of the present invention denotes lubricants in the broader sense, i.e. external and/or internal lubricants. If a narrower meaning is intended, it is explicitly indicated (i.e. the expression "internal lubricant" is expressly used).
The compounds (I) to be used in accordance with the invention are preferably used in quantities of 0.05 to 5.0 parts by weight, based on the thermoplastic. The range from 0.1 to 2.0 parts by weight is particularly preferred.
Suitable C$_24 fatty acids are both native and synthetic or branched and saturated or unsaturated compounds. The fatty acids may be used in the form of mixtures. Examples of suitable fatty acids are lauric acid, isotridecanoic acid, myristic acid, palmitic acid, palmitoleic acid, stearic acid, isostearic acid, oleic acid, elaidic acid, petroselic acid, linoleic acid, linolenic acid, elaeostearic acid, arachic acid, gadoleic acid, behenic acid and erucic acid. Fatty acids containing hydroxyl or keto groups, such as 12-hydroxystearic acid, are also suitable.
Fatty acids such as these can be obtained from naturally occurring fats and oils, for example by lipolysis at elevated temperature and pressure and subsequent separation of the fatty acid mixtures obtained, optionally followed by hydrogenation of the double bonds present. Technical fatty acids are preferably used. Technical fatty acids are generally mixtures of different fatty acids of a certain chain length range with one fatty acid as the main constituent. C12_1$ fatty acids individually or in admixture are preferably used.
Basically, there are no restrictions with regard to the thermoplastics.
Thermoplastics selected from the group consisting of polycarbonates, polyamides, polyesters, polystyrenes and polyvinyl chloride and copolymers thereof are preferred. These thermoplastics may be stabilized, pigmented, filled with fillers or modified.
In a preferred embodiment, the compounds (I) are used as internal lubricants. All that has been said in the foregoing in regard to the use of the compounds (I) as lubricants also applies to their use as internal lubricants.
The compounds (I) to be used in accordance with the invention -where they are used as lubricants or as internal lubricants - may be used as such or in combination with other typical lubricants different from the compounds (I) or other additives for plastics.
Other typical lubricants are C12_24 fatty acids, C12_24 fatty alcohols, esters of C12_24 fatty acids and C12_24 fatty alcohols (so-called wax esters), esters of C12_24 fatty acids and polyhydric alcohols containing 4 to 6 hydroxyl groups (so-called polyol esters), dicarboxylic acid esters of dicarboxylic acids and C12_24 fatty alcohols and complex esters of dicarboxylic acids, polyols and monocarboxylic acids. The standard lubricants mentioned may be used both individually and in admixture with one another.
The following observations apply to the optional other lubricants different from the compounds of formula (I):

= Suitable C12_24 fatty acids are both native and synthetic, linear saturated compounds. If fatty acid mixtures are used, they may contain unsaturated fatty acids. Examples of suitable fatty acids are lauric, tridecanoic, myristic, pentadecanoic, palmitic, margaric, stearic, behenic and lignoceric acid. Fatty acids containing hydroxyl groups, such as 12-hydroxystearic acid, are also suitable. Fatty acids such as these can be obtained from naturally occurring fats and oils, for example through lipolysis at elevated temperature and pressure and subsequent separation of the fatty acid mixtures obtained, optionally followed by hydrogenation of the double bonds present. Technical fatty acids are preferably used here. They are generally mixtures of different fatty acids of a certain chain length range with one fatty acid as the main constituent. C12.18 fatty acids individually or in admixture are preferably used.
= The C12_24 fatty alcohols are mostly linear saturated representatives which may be obtained inter alia from naturally occurring fats and oils by transesterification with methanol, subsequent catalytic hydrogenation of the methyl esters obtained and fractional distillation.
Examples of such fatty alcohols are lauryl, myristyl, cetyl, stearyl and behenyl alcohol. These compounds may be used individually and in admixture with one another. Technical fatty alcohols are preferably used. They are normally mixtures of different fatty alcohols of a limited chain length range in which one particular fatty alcohol is present as the main constituent. Technical C12_1$ fatty alcohol mixtures are preferred.

= Other suitable additional lubricants are wax esters, i.e. esters of C12-24 fatty acids and C12_24 fatty alcohols which preferably correspond to formula (II):

R3CO-OR4 (I I) in which R3CO is a saturated and/or unsaturated acyl group containing 12 to 24 and preferably 12 to 18 carbon atoms and R2 is an alkyl and/or alkenyl group containing 12 to 24 and preferably 12 to 18 carbon atoms. Typical examples are esters of lauric acid, isotridecanoic acid, myristic acid, palmitic acid, paimitoleic acid, stearic acid, isostearic acid, oleic acid, elaidic acid, petroselic acid, linoleic acid, linolenic acid, elaeostearic acid, arachic acid, gadoleic acid, behenic acid and erucic acid and technical mixtures thereof with lauryl alcohol, isotridecyl alcohol, myristyl alcohol, cetyl alcohol, palmitoleyl alcohol, stearyl alcohol, isostearyl alcohol, oleyl alcohol, elaidyl alcohol, petroselinyl alcohol, linoyl alcohol, linolenyl alcohol, elaeostearyl alcohol, arachyl alcohol, gadoleyl alcohol, behenyl alcohol, erucyl alcohol and brassidyl alcohol and technical mixtures thereof. Preferred wax esters are stearyl palmitate, stearyl stearate, stearyl isostearate, stearyl oleate, stearyl behenate, stearyl erucate, isostearyl palmitate, isostearyl stearate, isostearyl isostearate, isostearyl oleate, isostearyl behenate, isostearyl erucate, oleyl paimitate, oleyl stearate, oleyl isostearate, oleyl oleate, oleyl behenate, oleyl erucate, behenyl paimitate, behenyl stearate, behenyl isostearate, behenyl oleate, behenyl behenate, behenyl oleate and mixtures thereof. Stearyl stearate is particularly preferred as the wax ester. It is important in this regard to bear in mind that stearyl stearate is normally produced from technical starting materials which in turn are mixtures so that the ester is also a mixture.
The esters mentioned may be obtained by known methods of organic synthesis, for example by heating stoichiometric quantities of fatty acid and fatty alcohol to 180-250 C, optionally in the presence of a suitable esterification catalyst, such as tin grindings, and in an inert gas atmosphere, and distilling off the water of reaction.
= Suitable additional lubricants are polyol fatty acid esters, i.e. esters of C12_24 fatty acids and polyols containing 4 to 6 hydroxyl groups. The alcohol component may be selected, above all, from aliphatic polyols containing 4 to 12 carbon atoms, for example erythritol, pentaerythritol, dipentaerythritol, ditrimethylol propane, diglycerol, triglycerol, tetraglycerol, mannitol and sorbitol. These polyol esters may be full esters in which all the hydroxyl groups of the polyol are esterified with fatty acid. However, polyol partial esters containing one or more free hydroxyl groups in the molecule are also suitable. These polyol fatty acid esters may also be obtained by known methods of organic synthesis by esterification of the polyols with stoichiometric or sub-stoichiometric quantities of free fatty acids. Examples of such polyol fatty acid esters are the stearic acid and stearic acid/palmitic acid full esters of erythritol, pentaerythritol and diglycerol, the dilaurates of dipentaerythritol, ditrimethylolpropane, triglycerol, mannitol and sorbitol, the distearates of erythritol, pentaerythritol, dipentaerythritol and tetraglycerol and the so-called sesquiesters of pentaerythritol, dipentaerythritol, mannitol and sorbitol in whose production 1.5 mol fatty acid, more particularly palmitic and/or stearic acid, is used to 1 mol polyol. The polyol fatty acid esters mentioned are generally mixtures simply because of the particular starting materials used.

= Other suitable additional lubricants are complex esters which are also known per se from the prior art. In principle, the complex esters are produced from dicarboxylic acids, polyols and monocarboxylic acids.
The following dicarboxylic acids may be used for the production of the complex esters: oxalic, malonic, succinic, glutaric, adipic, pimelic, suberic, azelaic, sebacic, nonanedicarboxylic, undecanedicarboxylic, eicosanedicarboxylic, maleic, fumaric, citraconic, mesaconic, itaconic, cyclopropanedicarboxylic, cyclobutanedicarboxylic, cyclopentane-dicarboxylic, camphor, hexahydrophthalic, phthalic, terephthalic, isophthalic, naphthalic and diphenyl-o,o'-dicarboxylic acid. The following compounds are generally used as aliphatic polyols containing 2 to 6 hydroxyl groups: ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,4-butanediol, 2,3-butanediol, 1,5-pentanediol, 1,6-hexanediol, glycerol, trimethylolpropane, erythritol, pentaerythritol, dipentaerythritol, xylitol, mannitol and sorbitol. Suitable monocarboxylic acids are linear or branched, synthetic or native acids, for example lauric, myristic, paimitic, margaric, stearic, arachic, behenic, lignoceric, cerotic acid, montanic acid, oleic, elaidic, erucic, linoleic, linolenic and isostearic acid and mixtures of these acids, particularly those obtainable from natural fats and oils. Preferred complex esters are produced from aliphatic dicarboxylic acids containing 4 to 8 carbon atoms, polyols containing 3 or 4 hydroxyl groups and aliphatic monocarboxylic acids containing 14 to 22 carbon atoms. Excellent results are obtained with complex esters of adipic acid, pentaerythritol and monocarboxylic acids containing 14 to 22 carbon atoms.

= According to the invention, other suitable additional lubricants are dicarboxylic acid esters of fatty alcohols containing 12 to 24 carbon atoms. Suitable dicarboxylic acids have already been mentioned by way of example in connection with the complex esters. Suitable fatty acids are the fatty acids already discussed above. Phthalic acid esters, more especially distearyl phthalate, are particularly preferred.
= Other additional lubricants, which may be used individually or in combination, are hydrocarbon waxes melting at temperatures in the range from 70 to 130 C, oxidized polyethylene waxes, a-olefins, ethylenediamine distearate, montanic acid esters of diols, for example ethanediol, 1,3-butanediol and glycerol, mixtures of such montanic acid esters with unesterified montanic acids and metal soaps, more particularly salts of organic monocarboxylic acids with metals of the second main and/or secondary group of the periodic system, such as calcium soaps and zinc soaps.
Accordingly, the present invention also relates to the use of lubricant combinations for thermoplastics containing (a) one or more fatty acid polyethylene glycol esters (I) and (b) one or more additional lubricants (not covered by formula (I)), with the proviso that components (a) and (b) are used in a ratio by weight of 10:90 to 90:10 and preferably in a ratio by weight of 20:80 to 80:20.
The expression "lubricant combinations" applies both to lubricants and to internal lubricants.
In practice, the lubricant mixtures according to the invention are applied by addition to the thermoplastics to be processed in quantities of 0.05 to 5 and more particularly 0.1 to 2 parts by weight to 100 parts by weight of thermoplastic. The lubricant mixtures are preferably added to the melt formed during production of the thermoplastic or are applied to the plastic granules or powder at elevated temperatures.
The thermoplastics may optionally contain additional additives.
Examples of suitable additives are antistatic agents, antifogging agents, antioxidants, UV stabilizers, coupling agents, calendering aids, parting agents, lubricants, plasticizers, perfumes, flame retardants, fillers and agents for increasing heat stability (heat stabilizers).
The thermoplastics may readily be further processed by standard methods, for example by extrusion, pressing, rolling, calendering, sintering, spinning, blow moulding, foaming, injection moulding or processing by the plastisol method.

Examples 1. Production of the lubricants according to the invention Example 1 237 g diethylene glycol (Fluka), 1151 g technical stearic acid (Cognis) and 0.7 g tin(II) oxalate (Goldschmidt) were heated under nitrogen. The esterification reaction began at ca. 170 C with the formation of water. After 3 hours, removal of the water of reaction was continued by application of vacuum, the vacuum being lowered to ca. 15 mbar over a period of 4 hours. The final temperature was 200 C.
The reaction was terminated at an acid value (AV) of <6. The reaction mixture was cooled to 90 C and filtered. Yield 1296 g, AV = 1.6, SV (saponification value) = 184.

Example 2 PEG-600 distearate was produced from 167 g PEG 600 (Fluka) and 147 g technical stearic acid (Cognis) in the same way as in Example 1.
Yield 298 g, AV = 5.9, SV = 102.

2. Production of dry blends Using a Henschel mixer, a dry blend was produced from PVC
powder and various additives (quantity of material = 3 kg, heating temperature = 120 C, subsequent cooling). The compositions are set out in the following Table (the numbers in the Table represent parts by weight).
Example C1 C2 C3 E3 E4 PVC Evipol SH 6520 (Ineos) 100 100 100 100 100 Pb sulfate, tribasic 2 2 2 2 2 Lead stearate (28% Pb) 0.5 0.5 0.5 0.5 0.5 Calcium stearate 0.5 0.5 0.5 0.5 0.5 Hydrogenated castor oil - 1.0 - - -Distearyl phthalate - - 1.0 - -Lubricant of Example 1 - - 1.0 -Lubricant of Example 2 - - - 1.0 In this Table, Cl to C3 are comparison Examples. In Cl, no lubricant was added. In C2, hydrogenated castor oil was used; it is the most important internal lubricant for PVC bottles (cf. Plastics Additives Handbook, 5th Edition, Hanser Verlag, p. 537). In C3, distearyl phthalate - an internal lubricant for profile extrusion - was used. E4 and E5 represent formulations according to the invention.

3. Production of ribbons The above-mentioned dry blends were extruded to ribbons in a Weber twin-screw extruder (extrusion parameters: screw speed = 15 r.p.m.: temperature = 190 C). The power consumed by the extruder, the machine load (in %), was evaluated as a measure of plasticization. Early plasticization leads to an increase in the machine load. The melt pressure (bar) before the die was used as a measure of lubricant performance. A
low melt pressure signifies a good lubricating effect.

Example Machine load (%) Melt pressure (bar) C 1 48.7 347 C2 56.6 354 C3 46.0 324 E4 51.1 344 E5 57.8 336 Examples E4 and E5 according to the invention led to earlier plasticization (increase in machine load) at a relatively low melt pressure than Comparison Example Cl. Comparison Examples C2 and C3 lead either to better plasticization for an increase in melt pressure or impair plasticization.

Claims (6)

1. Use of polyethylene glycol esters of fatty acids corresponding to the following formula:

R1-CO-O-(CH2-CH2-O)n-OC-R2 (I) in which R1 and R2 independently of one another represent alkyl groups containing 7 to 23 carbon atoms, which may be saturated or unsaturated, linear or branched, and n is a number of 2 to 50, as lubricants in the processing of thermoplastics.
2. Use claimed in claim 1, wherein n is a number of 2 to 4.
3. Use claimed in claim 1, wherein R1 and R2 independently of one another are saturated alkyl groups containing 7 to 23 carbon atoms.
4. Use claimed in any of claims 1 to 3, wherein the lubricants are used as internal lubricants.
5. Use of lubricant combinations for thermoplastics containing (a) one or more fatty acid polyethylene glycol esters (I) and (b) one or more additional lubricants (not covered by formula (I)), with the proviso that components (a) and (b) are used in a ratio by weight of 10:90 to 90:10 and preferably 20:80 to 80:20.
6. Use claimed in claim 5, the lubricant combinations being used as internal lubricants.
CA2594153A 2006-07-20 2007-07-20 Use of polyethylene glycol esters of fatty acids as lubricants for plastics Expired - Fee Related CA2594153C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP06015123A EP1881025B1 (en) 2006-07-20 2006-07-20 Use of esters of polyethylenglycol and fatty acids as lubricants for thermoplastic materials
EP06015123.0 2006-07-20

Publications (2)

Publication Number Publication Date
CA2594153A1 true CA2594153A1 (en) 2008-01-20
CA2594153C CA2594153C (en) 2014-10-28

Family

ID=37018617

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2594153A Expired - Fee Related CA2594153C (en) 2006-07-20 2007-07-20 Use of polyethylene glycol esters of fatty acids as lubricants for plastics

Country Status (5)

Country Link
US (1) US20080051303A1 (en)
EP (1) EP1881025B1 (en)
AT (1) ATE458024T1 (en)
CA (1) CA2594153C (en)
DE (1) DE502006006177D1 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007027371A1 (en) * 2007-06-11 2008-12-18 Cognis Oleochemicals Gmbh A process for preparing a compound having at least one ester group
DE102007043753A1 (en) * 2007-09-13 2009-03-19 Cognis Oleochemicals Gmbh A thermoplastic composition comprising a mold release agent based on an ester of di- or polyglycerols and at least one carboxylic acid
EP2215200A2 (en) * 2007-11-20 2010-08-11 Emery Oleochemicals GmbH Method for producing an organic composition containing an n-nonyl ether
WO2009065903A2 (en) * 2007-11-20 2009-05-28 Cognis Oleochemicals Gmbh Method for the production of an organic composition containing an n-nonyl ester
DE102008026263A1 (en) * 2008-06-02 2009-12-03 Emery Oleochemicals Gmbh Anti-fogging agent based on polyglycerol and native oils
WO2010020998A2 (en) * 2008-07-30 2010-02-25 Indian Oil Corporation Limited A catalyst composition for transesterification of organically/naturally derived oils and fats to produce alkyl esters and process for preparing the same
DE102008044706A1 (en) * 2008-08-28 2010-03-04 Emery Oleochemicals Gmbh Viscosity reducer for polyether polyols
DE102008059744A1 (en) * 2008-12-01 2010-06-02 Emery Oleochemicals Gmbh Lubricant for thermoplastic polymers
US8911871B2 (en) * 2010-12-13 2014-12-16 Xerox Corporation Fuser member
US8623992B2 (en) * 2011-04-12 2014-01-07 Xerox Corporation Polyalkylene glycol ester intermediate transfer members
CN103420830B (en) * 2012-05-25 2016-04-20 丰益(上海)生物技术研发中心有限公司 The method for selective production of erythritol lipid acid one ester and diester
DE102012212018A1 (en) 2012-07-10 2014-01-16 Robert Bosch Gmbh Binder system for powder injection molding compound
CN106661766B (en) 2014-07-08 2019-09-06 埃默里油脂化学有限公司 For the charging that can be sintered in 3D printing equipment
US9732301B2 (en) * 2014-11-05 2017-08-15 Infineum International Limited Power transmitting fluids with improved materials compatibility
US11945940B2 (en) * 2018-04-23 2024-04-02 Byk-Chemie Gmbh Filled polyvinyl chloride composition
US11104859B2 (en) * 2019-08-12 2021-08-31 The United States Of America, As Represented By The Secretary Of Agriculture Polyethylene diester viscosity modifiers

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3355413A (en) * 1966-10-14 1967-11-28 Eastman Kodak Co Polyester fibers resistant to resoiling during laundering
US4085187A (en) * 1975-03-27 1978-04-18 Revere Copper And Brass, Inc. Process for compression rolling of polymeric films
GB1489717A (en) * 1975-05-07 1977-10-26 Sapchim Fournier Cimag Sa Synthetic plastics materials containing lubricating agent
US4180492A (en) * 1975-05-07 1979-12-25 Fevrier-Decoisy-Champion Thiodiglycol dibehenate and method of use
FR2310377A1 (en) * 1975-05-07 1976-12-03 Sapchim Fournier Cimag Sa NEW LUBRICANTS FOR THERMOPLASTIC MATERIALS
WO2001048084A1 (en) * 1999-12-27 2001-07-05 Asahi Kasei Kabushiki Kaisha Polyoxymethylene resin composition
DE10245623A1 (en) * 2002-09-30 2004-04-08 Clariant Gmbh Esters and partial esters from polyhydric alcohols
DE102004009895B3 (en) * 2004-02-26 2005-07-21 Cognis Deutschland Gmbh & Co. Kg Lubricant mixture for thermoplastics contains natural fats, oils and other conventional lubricants for thermoplastics, in specific weight ratios

Also Published As

Publication number Publication date
ATE458024T1 (en) 2010-03-15
CA2594153C (en) 2014-10-28
US20080051303A1 (en) 2008-02-28
EP1881025B1 (en) 2010-02-17
DE502006006177D1 (en) 2010-04-01
EP1881025A1 (en) 2008-01-23

Similar Documents

Publication Publication Date Title
CA2594153C (en) Use of polyethylene glycol esters of fatty acids as lubricants for plastics
US8168571B2 (en) Lubricant combinations
JP5833463B2 (en) Polylactic acid resin composition
EP0122759B1 (en) Polycarbonate compositions and use thereof
TWI534197B (en) Polybutylene terephthalate resin compositions and pellets thereof
EP2810982A1 (en) Dialkyl esters of 1,4&#39; cyclohexane di-carboxylic acid and their use as plasticisers
KR20050107419A (en) Ester blends based on branched alcohols and/or branched acids and their use as polymer additives
US5011629A (en) Hydroxystearic polyesters of guerbet alcohols as polycarbonate lubricants
TWI614303B (en) Polylactic acid resin composition
US8063125B2 (en) Fast-gelling plasticizer preparations
JP7121451B2 (en) Polybutylene terephthalate resin pellets with improved weighability
JP5789349B1 (en) Polybutylene terephthalate resin composition
US4857216A (en) Lubricant system for the processing of polyvinyl chloride
JP2020033501A (en) Measuring property improving polybutylene terephthalate resin pellet
JP2020533448A (en) Plasticizer composition and resin composition containing it
WO2016081683A2 (en) Ketal ester compounds and uses thereof
JP2012510548A (en) Lubricant for thermoplastic polymer
WO2013156760A1 (en) An additive
JPH01311151A (en) Stabilizer compound for polyvinyl chloride molding material, polyvinyl chloride molding material and its production
WO2021140557A1 (en) Polybutylene terephthalate resin pellet having improved meterability
US5602208A (en) Aminoalkanolamide esters as processing aids for thermoplastics
US5621033A (en) Polyvinylchloride processing and compositions using a polyol reacted with a monocarboxylic acid and a dicarboxylic acid
JP3577410B2 (en) Polyacetal resin composition
JP3712469B2 (en) Polyacetal resin composition
JP7448393B2 (en) Lubricants for chlorinated vinyl chloride resin compositions

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed

Effective date: 20220301

MKLA Lapsed

Effective date: 20200831