CA2592525C - Warranty claim report generating system for aircraft - Google Patents

Warranty claim report generating system for aircraft Download PDF

Info

Publication number
CA2592525C
CA2592525C CA2592525A CA2592525A CA2592525C CA 2592525 C CA2592525 C CA 2592525C CA 2592525 A CA2592525 A CA 2592525A CA 2592525 A CA2592525 A CA 2592525A CA 2592525 C CA2592525 C CA 2592525C
Authority
CA
Canada
Prior art keywords
warranty
data
maintenance
covered
aircraft engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CA2592525A
Other languages
French (fr)
Other versions
CA2592525A1 (en
Inventor
Phuc Luong Nguyen
Peter H. Graham
R. Ian Mccormick
Avrum Goldman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pratt and Whitney Canada Corp
Original Assignee
Pratt and Whitney Canada Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US08/893,672 external-priority patent/US6003808A/en
Application filed by Pratt and Whitney Canada Corp filed Critical Pratt and Whitney Canada Corp
Publication of CA2592525A1 publication Critical patent/CA2592525A1/en
Application granted granted Critical
Publication of CA2592525C publication Critical patent/CA2592525C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

A system having a warranty claim report generator for processing aircraft maintenance action log data is disclosed. The generator has a warranty action discriminator for reading the action log data and outputting data representing possible warranty covered actions, and a warranty action validator receiving the possible warranty covered actions data and engine performance data for outputting data representing warranty claim actions. The warranty claim actions data are processed to produce warranty claim report output data.

Description

WARRANTY CLAIM REPORT GENERATING SYSTEM FOR AIRCRAFT
TECHNICAL FIELD
The present disclosure relates to an automatic warranty report generating system for aircraft.
BACKGROUND
In the aircraft industry, onboard engine performance monitoring equipment is used to record engine and aircraft performance data and to detect defects or the need for routine engine maintenance. The onboard systems are used to generate "fault codes" representing symptoms of engine and/or performance problems. Ground maintenance personnel use the fault codes to direct maintenance efforts using maintenance manuals that provide suggestions for appropriate actions or responses to each fault code. The maintenance log is updated by ground personnel after carrying out the appropriate actions. If a part is replaced, and the part is under warranty, a form is filled out to request compensation from the engine manufacturer for the part and possibly the cost of the labor. The warranty claim is processed by the manufacturer of the engine. Data on the history of the engine repair as well as hours logged are consulted to assess the claim.
The prior art maintenance control systems are awkward and inefficient to use, in that the fault codes, maintenance manuals and warranty claim application systems are not integrated, and the maintenance personnel is responsible for transferring information between the various systems. The warranty claim validation process, ak 02592525 2016-05-18 as known in the art, is also hampered by an overburden of unacceptable or improperly substantiated claims, and by a lack of the engine performance data in the warranty claim application to be able to assess properly the claim.
SUMMARY
According to one aspect of the disclosure, there is provided an aircraft maintenance control system comprising: a data store of engine performance data including engine fault code data, said engine performance data being obtained from an aircraft onboard engine performance monitoring and recording system; a maintenance and repair information display system for displaying maintenance information in response to fault codes;
and a maintenance action controller connected to said data store for causing said information display system to display maintenance information for all fault codes in said fault code data and for producing an output signal indicative of completion of displaying said maintenance information for all said fault codes in said fault code data, whereby said display system is controlled to display said maintenance information for all fault codes obtained from said aircraft.
According to yet another aspect of the disclosure there is provided an aircraft maintenance control system comprising: a data store of engine performance data including engine fault code data, said engine performance data being obtained from an aircraft onboard engine performance monitoring and recording system; a display system for displaying fault codes from said fault code data; user action confirmation means for recording, in a maintenance action log, an action taken by a user in response to said fault codes; and control means for prompting said user to enter an action taken for all said fault
2 CD, 02592525 2016-05-18 codes and for generating an output signal indicative of completion of recordal of said action for all said fault codes, whereby said display system is controlled to display said maintenance information for all fault codes obtained from said aircraft.
It is yet a further object of the present disclosure to provide a maintenance control system for use with aircraft engines which automatically generates a warranty claim application based on data available from maintenance records.
BRIEF DESCRIPTION OF THE DRAWINGS
The invention will be better understood by way of the following detailed description of a preferred embodiment with reference to the appended drawings, in which:
Figure 1 is a schematic block diagram of the maintenance control system for use with aircraft engines according to the preferred embodiment including user maintenance action confirmation and automatic control of fault code diagnostic and response;
Figure 2 is a schematic block diagram of the maintenance control system for use with aircraft engines according to the preferred embodiment including automatic warranty claim application generation; and Figure 3 is a flow chart of the maintenance manual fault code analysis and display method according to the preferred embodiment.
DETAILED DESCRIPTION
It is an object of the present disclosure to provide a maintenance control system for use with aircraft engines which provides engine maintenance information automatically from fault code data received from an onboard engine performance monitoring computer. According to another 2a object of the disclosure, the maintenance information may be provided by a multi-media repair guide electronically linked to the control system. The multi-media repair guide system may comprise the actual engine or aircraft maintenance electronic manual (on CD-ROM or the like) to avoid duplication and the need for synchronization of the same information in this integrated scheme. The maintenance CD-ROM guide can be of multi-media type that includes text, graphics, audio video clips and should provide hot-links to different related sections to allow direct access to the needed information.
It is a further object of the present disclosure to provide a maintenance control system for use with aircraft engines which automatically ensures that all fault codes are responded to, i.e. that maintenance personnel carry out the appropriate maintenance actions in response to each and every fault code, with a view to improve quality assurance of maintenance.
It is another object of the present disclosure to provide a maintenance control system for use with aircraft engines which automatically records maintenance actions of maintenance personnel for the purposes of validating and/or generating warranty claim applications.
As illustrated in Figure 1, the maintenance control system has a fault code store 10 and an engine operation data store 12. The data stores 10 and 12 are obtained from onboard recorders as is known in the art.
The fault code store 10 contains all of the fault codes accumulated since the last maintenance servicing of the aircraft engine. The engine operation data 2 contains recorded values from the operation of the engine and aircraft as recorded by the onboard data recorder since the last servicing of the engine, and the engine
3 operation data may also contain historical data concerning past engine use and maintenance.
At the onset of maintenance using the ground-based system according to the invention, data from the aircraft data recorder 11 is compiled into a standard format data file by a transfer module 19 for use with the present invention. The use of the standard file format allows different engine/aircraft models to be handled in the same system. The conversion is done by the download utility that can be engine specific as well as by the recorder itself. The fault code store 10 and the engine operation data 12 may be integrated into the same data store as part of the same database. The exact inventory of all parts to be tracked in an engine is stored in the database. The database is also managed to reflect changes made in the parts installed in the engine so that monitoring of such tracked parts can be carried out even if parts are switched between engines. The database configuration will allow the calculation of the operational data (hours, cycles) of the related parts and components from the aircraft/engine data. The modules in the system are linked with the database via ODBC (Open DataBase Connectivity) so that different types of databases can be used without modifying the software.
The maintenance action controller 15 reads the fault codes from the fault code store 10. The maintenance action controller 15 may review all fault codes in order to determine the most efficient order in which the fault codes are to be handled. Additionally, the maintenance action controller 15 may allow the user to view a list of the fault codes and select the fault codes to be acted on in a sequence or priority determined by the user. The maintenance action controller 15 ensures that each and every fault code is acted on or dispositioned.
- 4 = CA 02592525 2007-07-19 The controller 15 in the preferred embodiment reads the data stored in the engine operation data store 12 to determine if additional fault codes representing routine checks and inspections or replacements should be created. Such fault codes are, in a way, maintenance flags generated by the ground system and by not the onboard systems. Such fault codes can be added to the store of fault codes 10 by controller 15.
For each fault code to be acted on, the maintenance action controller 15 outputs a fault code value to the fault diagnostic module 17. The diagnostic module 17 obtains the appropriate diagnostic and response information from a repair maintenance manual store 14 for the particular engine, and outputs information concerning the diagnosis of the fault and the appropriate response in a fault response help display 16. In the preferred embodiment, .the repair maintenance manual store 14 and the fault response help display 16 are integrated into the same device, namely the repair maintenance manual is provided on a CD-ROM in HTML/SGML format, and the display 16 is provided by an HTML/SGML browser program running on a general purpose personal computer. Of course, other forms of electronic media and browsable file format may be suitable. The use of HTML allows the maintenance/repair manual to be accessed via the Intranet or Internet environment, if the access speed is adequate.
The fault diagnostic module 17 may initiate the execution of the CD-ROM browser by giving it a parameter for the specified page address for the fault code. This may be done by appending the appropriate prefix and suffix code to the actual fault code or the fault code may be translated using a table into a help page address for the HTML format repair manual 14 and the CD-ROM browser must allow passing of the CD-ROM index (anchor name) as an argument in the calling procedure. The prefix and suffix
- 5 -conventions and the browser names/locations can be different from one engine model to another. They will be defined in a setup option of the Fault Diagnostic Module (FMD). For the same engine model the prefix and suffix can be different from one range of fault codes to another range. The use of conventions and setup options allow adding new fault code diagnostics in the repair manual without changing the FMD software itself. It also allows the FMD to handle different engine/aircraft models in the same system.
A particular fault code may require selection of one out of a number of possible responses. The user therefore has a certain number of options in browsing the repair manual help text in order to locate the appropriate response description for the fault code. For example, the user may be requested to obtain further data, measure a particular parameter or test a particular component on the engine in order to confirm whether a particular action is appropriate. In the preferred embodiment, each action undertaken by the user is confirmed to the maintenance action controller 15, and the user inputs confirmation of his action using interface 18. The fault diagnostic module 17 reports back to the maintenance action controller 15 that the fault code has been addressed along with data on all of the users confirmed actions in response to the fault code.
After carrying out the diagnostic instructions related to a fault code or a combination of fault codes, the user returns to controller 15 and confirms that the fault code has been acted upon by selecting the "DONE" button on the GUI. The controller will request the user to log the maintenance actions. A
tailored list of standard maintenance actions (tasks) in response to the particular fault code is used to facilitate the logging. The user, however, can enter his own action if it is not on the
- 6 -list. If the maintenance action involves removing/replacing a part, the controller will request for additional information:
= reason for removal (also can be selected from a standard list for the particular fault code);
= event that triggered the removal (such as in-flight shut down (I.F.S.D.) induced or scheduled event);
= disposition of the part, such as discard, retained pending warranty disposition, modified, inventory, or repair If it is sent to a repair shop, the shipping destination is also requested.
The controller will then generate a removal record that also contains the operational data (cycles/hours flown) related to the part and the engine. This record will be stored in the database for further use in the tracking and warranty process. It may optionally be printed out on a form or traveler to physically accompany the part.
Controller 15 ensures that all fault codes are responded to before confirming that the ground-based maintenance is complete.
When all of the fault codes have been responded to, the maintenance of the engine is complete. The maintenance action controller 15 outputs engine use and maintenance data to a maintenance action log 20. The Maintenance Action Log compiles relevant data, including the date stamp, task number and/or description, hours spent, reason for the action and/or fault code(s), operational data of the engine when the action is done.
The maintenance action log 20 provides a complete picture of the status of the maintenance of the engine including what actions maintenance personnel undertook in response to the fault codes generated by the onboard engine monitoring systems.
With reference to Figure 2, the automatic warranty claim report generator will be described. A
- 7 -warranty action discriminator 22 reads the list of all maintenance actions from the maintenance action log 20 or responds to a user selection from the list. The discriminator 22 checks each action against a list of actions potentially covered by the engine's warranty policy contained in a data store 24 to compile a list of warranty actions to be validated. For each engine model, a list of warranty parts/services are defined in the database. A warranty action may be an engine part which is replaced under warranty, or the warranty action may be a service action not involving the replacement of a part.
A validator 26 analyses each of the warranty actions to determine whether the warranty action is properly covered by the terms of the warranty policy or contract for the particular engine. The validator 26 determines what conditions must be met for a warranty action to be covered by the warranty from an warranty conditions data store 28. The "Warranty Condition" data store will contain at least the information on maximum allowable operational hours/cycles and maximum allowable age of the part. For each of the conditions which needs to be met, the validator 26 reads the necessary data from the maintenance action log 20. The validator 26 also looks at the status of related fault codes to see if all were properly acted upon. If the .validator determines that the maintenance action is covered by the warranty, then the validator 26 outputs the maintenance action as a valid warranty action to a warranty claim report generator 30. If additional information is needed, the validator will ask the user for input. For those maintenance actions that are unacceptable to the validator, the user still has the option to override the validator and include such actions in the claim. A
remark will be tagged for further evaluation by the warranty administrators. The printed form of the
- 8 -warranty claim preferably resembles a standard "Request for Service Allowance" form.
The warranty claim report generator 30 compiles all of the valid warranty actions to produce a single warranty claim and then to generate a warranty claim application report. The application report may be output as a hard copy to printer 32, and it may be transmitted by telecommunication means such as modem 34 directly to the aircraft engine manufacture or servicing agent for the purposes of processing the warranty claim. From the date stamp and fault codes, data including performance data logged at the time of the fault can be reviewed for any indication of activity outside warranty conditions, and the agent can assess the validity of the claim. A
hard copy report may be sent by telecopier or other electronic means for immediate processing. The report may include an identification which allows the claim processor to know that the claim has been automatically validated by the validator 26.
- 9 -

Claims (4)

CLAIMS:
1. A ground based system for automatically generating a warranty claim report for an aircraft engine based on use data and maintenance data of the aircraft engine, the system comprising:
a maintenance log containing the aircraft engine use data and the aircraft engine maintenance data representing a maintenance status of the aircraft engine;
a warranty policy data store containing warranty policy data representing maintenance actions possibly covered by a warranty policy of the aircraft engine;
a warranty conditions data store containing warranty conditions data representing conditions to be met for the possibly covered maintenance actions to be covered by the warranty policy;
warranty action discriminator means for reading said aircraft engine maintenance data and said warranty policy data, and outputting data representing possibly covered maintenance actions to be validated;
warranty action validator means for reading said data representing possibly covered maintenance actions to be validated, said engine use data and said warranty conditions data, determining whether the possibly covered maintenance actions to be validated are covered by the warranty based on the aircraft engine use data and the warranty conditions data, and outputting data representing validated warranty covered maintenance actions; and warranty claim report generator means for processing said data representing the validated warranty covered maintenance actions and producing warranty claim report output data.
2. The system as claimed in claim 1, wherein said validator means comprises user selection means for allowing a user to add to said validated warranty covered maintenance actions data at least some of said possibly covered maintenance actions rejected by said validator means for not meeting predetermined warranty conditions, whereby the user may override said validator means for any of the possibly covered maintenance actions.
3. The system as claimed in claim 1, further comprising a modem for transmitting said claim report output data to a claim validation center.
4. The system as claimed in claim 1, wherein the validator means is configured to verify whether fault codes associated with the aircraft engine have been acted upon.
CA2592525A 1997-07-11 1998-04-30 Warranty claim report generating system for aircraft Expired - Lifetime CA2592525C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US08/893,672 US6003808A (en) 1997-07-11 1997-07-11 Maintenance and warranty control system for aircraft
US08/893,672 1997-07-11
CA002236429A CA2236429C (en) 1997-07-11 1998-04-30 Maintenance and warranty control system for aircraft

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CA002236429A Division CA2236429C (en) 1997-07-11 1998-04-30 Maintenance and warranty control system for aircraft

Publications (2)

Publication Number Publication Date
CA2592525A1 CA2592525A1 (en) 1999-01-11
CA2592525C true CA2592525C (en) 2017-12-05

Family

ID=38469089

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2592525A Expired - Lifetime CA2592525C (en) 1997-07-11 1998-04-30 Warranty claim report generating system for aircraft

Country Status (1)

Country Link
CA (1) CA2592525C (en)

Also Published As

Publication number Publication date
CA2592525A1 (en) 1999-01-11

Similar Documents

Publication Publication Date Title
US6003808A (en) Maintenance and warranty control system for aircraft
CA2400366C (en) Method and system for identifying repeatedly malfunctioning equipment
US6370455B1 (en) Method and apparatus for networked wheel alignment communications and service
US7266515B2 (en) Method and system for graphically identifying replacement parts for generally complex equipment
US6950829B2 (en) Method for database storing, accessing personnel to service selected assemblies of selected equipment
US6263322B1 (en) Integrated automotive service system and method
US6434455B1 (en) Vehicle component diagnostic and update system
US7171372B2 (en) Computerized method and system for guiding service personnel to select a preferred work site for servicing transportation equipment
US20050187838A1 (en) Method and system for managing supply of replacement parts of a piece of equipment
AU2001253748A1 (en) Method for training service personnel to service selected equipment
MXPA02004203A (en) Diagnosis and repair system and method.
JP2004145715A (en) Maintenance system and maintenance method for computer
CA2592525C (en) Warranty claim report generating system for aircraft
US7092989B2 (en) Internet-based lubricant evaluation and reporting system
JP3867868B2 (en) Fault integrated management device
CN114003271A (en) Software query information management system and software query information management method
AU2006238758B2 (en) Method and system for graphically identifying replacement parts for generally complex equipment
CA2411983A1 (en) Method and system for managing supply of replacement parts of a piece ofequipment
Del Bianco Importance of Fleet Monitoring To Up Grade the Reliability of Engines in Field
JP2002530753A (en) Returned material management method and system

Legal Events

Date Code Title Description
EEER Examination request
MKEX Expiry

Effective date: 20180430