CA2588211A1 - Fuel cell system having unreacted gas discharge pipeline - Google Patents

Fuel cell system having unreacted gas discharge pipeline Download PDF

Info

Publication number
CA2588211A1
CA2588211A1 CA002588211A CA2588211A CA2588211A1 CA 2588211 A1 CA2588211 A1 CA 2588211A1 CA 002588211 A CA002588211 A CA 002588211A CA 2588211 A CA2588211 A CA 2588211A CA 2588211 A1 CA2588211 A1 CA 2588211A1
Authority
CA
Canada
Prior art keywords
hydrogen
oxygen
fuel cell
unreacted
humidifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002588211A
Other languages
French (fr)
Inventor
Jefferson Y.S. Yang
Feng-Hsiang Hsiao
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asia Pacific Fuel Cell Technologies Ltd
Original Assignee
Asia Pacific Fuel Cell Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asia Pacific Fuel Cell Technologies Ltd filed Critical Asia Pacific Fuel Cell Technologies Ltd
Priority to CA002588211A priority Critical patent/CA2588211A1/en
Publication of CA2588211A1 publication Critical patent/CA2588211A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04126Humidifying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04291Arrangements for managing water in solid electrolyte fuel cell systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

A fuel cell system includes a fuel cell stack and a humidifier. The humidifier includes an unreacted gas inlet port connected to an end of an unreacted hydrogen discharge pipeline, which is connected at the other end to a hydrogen outlet port of the fuel cell stack, such that the unreacted hydrogen discharged from the fuel cell stack via the hydrogen outlet port is led by the unreacted hydrogen discharge pipeline into the humidifier. The humidifier regulates the relative humidity and concentration of the unreacted hydrogen led thereinto, and the humidified unreacted hydrogen is then discharged from the humidifier.

Description

FUEL CELL SYSTEM HAVING UNREACTED GAS DISCHARGE
PIPELINE
FIELD OF THE iNVENTYON

[0001] The present invention rclates to a technique for treating unreacted gas discharged from a fuel cell stack, and more particularly to a fuel cell system having unreacted gas discharge pipeline associated with a humidifier.

BACKGROUND OF THE INVENTION
[0002] A fuel cell is a power-generating unit that genera.tes electrical energy through electrochernical reaction of hydrogen-containing fuel and air.
Since the fuel cell has the advantages of low pollution, high efficiency, and high energy density, it has been positively researched, developed, and promoted in many countries. Among others, the proton exchange membrane fuel cell (1''EMFC) is the most industrially valuable product due to its low operating temperature, quick activation, and high energy density.

100031 In the fuel cell, hydrogen ions move from the anode to the cathode to complete the electrochemical reaction. The performance of a fuel cell has close relation to different operating conditions, such as temperature, humidity, hydrogen flow, air #low, etc. Regarding the humidity, it is necessary to keep a high molecular proton exchange membrane in the fuel cell at proper operating humidity for the fuel cell to achieve high performance. Meanwhile, the fuel cell must also be maintained at a proper operating temperature.

[0004J To maintain the fuel cell at proper operating humidity and temperature, one of the currently adopted ways is to provide the reactant gas supply pipelines of the fuel cell with a humidifier associated with a cooling I

water system. With this arrangement, cooling water is supplied from the cooling water system to cool the fuel cell and then discharged from the fuel cell. The discharged cooling water has a high tetnperatu.re about 60 to 70 C, and is led to the humidifier to increase the relative humidity and temperature of the reactant gas passed through the humidifier before the reactant gas is supplied to the fuel cell. For example, fresh air or oxygen is sent by an air blower to the humidifier before being led to the fuel cell via an oxygen inlet port thereof, so that the air flown into the fuel cell has a proper relative humidity.

[00051 While the technique of providing a humidifier to regulate the humidity of the reactant gas for the fuel cell has become matured, there is not any technical teachftig or suggestion on using a humidifier to treat the unreacted gas discharged f'ror.n the fuel cell.

[0006] Another important issue about the fuel cell is the unreacted hydrogen. discharged from the fuel cell. Unlike the unreactcd oxygen that can be directly discharged into amloient air, the unreacted hydrogen is highly dangerous and subject to self-combustion and explosion when a local concentration of the discharged unrea;;ted hydrogen exceeds 4%. Therefore proper measures must be taken to treat the unreacted hydrogen discharged from the fuel cell. In a currently adopted way, the unreacted hydrogen is led back to the fuel cell and recycled. However, the recycled hydrogen as reactant gas has reduced purity to possibly cause the poisoning problem. One way to solve the above put-ity and poisoning problems is to recycle only part of the discharged unreacted hydrogen. The remaining part of the discharged unreacted hydrogeti is led to a catalytic converter and treated before being discharged into ambient air. However, the catalytic converter requires additional and quite high cost.

SUMMARY OF THE INVENTION

[0007} A primary object of the present invention is to provide a fuel cell system having unreacted gas discharge pipeline associated with humidifier, so that unreacted hydrogen discharged from a:i'uel cell stack is humidified at a humidifier and the humidified unreacted hydrogen can be safely discharged into ambient air without causing potential danger.

[0008] Another object of the present invention is to provide a fuel cell system having an unreacted hydrogen discharge pipeline that replaces the catalytic converter used in con'1entional fuel cell stack for treating unreacted gas, so that the cost for treating the unreacted gas discharged from the fuel cell stack can be reduced.

[0009] To fulfill the above objects, the present invention provides a fuel cell system having unreacted gas discharge pipeline associated with humidifier.
The fuel cell system comrpises a fuel cell stack and a humidifier. The humidifier includes an unreacted gas inlet porC connected to an end of an unreacted hydrogen discharge pipeline, which is connected at the other end to a hydrogen outlet port of the fuel cell stack, such that the unreacted bydrogen discharged from the fuel cell stack via the hydrogen outlet port is led by the unreacted hydrogen discharge pipeline into the hwnidi#ier. The humidifier regulates relative humidity and concentration of the unreacted hydrogen led thereinto, and the humidified uiireacted hydrogen is then discharged from the humidifier.

[00] 0] With the arrangements of the present invention, reactant gas is regulated at the hurnidifier to increase the relative humidity and temperature thereof before being supplied to the fuel cell stack, so that the fuel cell stack can be maintained at proper operating humidity and temperature. Moreover,
3 a part of the unreacted hydrogen may be led back to the fuel cell stack and recycled while the other part of the tmreacted hydrogen is led to the hunaidifier to be humidified and diluted for safely discharging into ambient air.
Therefore, the present invention enables reduced cost for treating unreacted gas discharged from the fuel cell stack.

B1tIEF DESCRIPTION OF THE DRAWINGS

[0011] The structure and the technical means adopted by the present invention to achieve the above and other objects can be best understood by referring to the following detailed description of the preferred embodiments and the accompanying drawings, wherein:

[0012] Fig. 1 is a block diagram of a fuel cell system having unreacted gas discharge pipeline associated with humidifier according to a first embodiment of the present invention;

[0013] Fig. 2 is a block diagraln of a fuel cell system having unreacted gas discharge pipeline associatccy with humidifier according to a second embodiment of the present invention; and [0014] Fig. 3 is a block diagram of a fuQl cell system having unreacted gas discharge pipeline associated with humidifier according to a third embodiment of the present invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
[0015] Please refer to Fig. I that is a block diagram of a fuel cell system having unreacted gas discharge pipeline associated with humidifier 100 according to a first embodiment of the present invention. As shown, the fuel
4 cell system 100 includes a fuel cell stack 1, a hydrogen source 2, an oxygen source 3, an unreacted hydrogen discharge pipeline 4, and a humidifier S.
100161 The fuel cell stack 1 includes a hydrogen inlet port 11. A
hydrogen supplying pipeline 21 is extended between and connected to the hydrogen source 2 and the hydrogen inlet port 11, so that hydrogen supplied from the hydrogen source 2 is led into the fuel cell stack 1. via the hydrogen supplying pipeline 21 and the hydrogen inlet port 11. The fuel cell stack 1 further includes a hydrogen outlet port 12, via wbich unreacted hydrogen in discharged .f.rom the fuel cell stack 1; an oxygen inlet port 13, via which oxygen is fed into the fuel cell stack 1; and an oxygen outlet port 14, via which unreacted oxygen is discharged from the fuel cell stack 1.

[0017] The unreacted hydrogen discharge pipeline 4 is conneeted at an end to the hydrogen outlet port 12 for leading the unreacted hydrogen discharged from the fuel cell stack 1 to the humidifier 5. A pressurizing unit 41, a gas mixing device 42, and an unreacted hydrogen discharge control unit 43 are connected to the unreacted hydrogen discharge pipeline 4. The pressurizing unit 41 applies appropriate pressure to the unreacted hydrogen to thereby increase a flow rate of the unreacted hydrogen. The unreacted hydrogen and unreacted oxygen discharged from the fuel cell stack 1 are led to the gas mixing device 42 to mix with each other thercin. The unreacted hydrogen discharge control unit 43 controls the volume of unreacted hydrogen to be led into the gas mixing device 42.

[001$] The huniidifier 5 includes an unreacted gas inlet port 51, to which the other end of the unreacted hydrogen discharge pipeline 4 is connected, so that the unreacted hydrogen discharged from the fuel cell stack I is finally led to the humidifier 5; a humidified unreacted gas outlet port 52; an oxygen source inlet port 53 connected to the oxygen source 3 via an oxygen supply pipe 31, so that oxygen supplied from the oxygen source 3 is led by the oxygen supply pipe 31 into the humidifier 5 via the oxygen source inlet port 53 for humidity regulation; and a humidified oxygen outlet port 54 connected to the oxygen inlet port 13 of the fuel cell stack 1 via an oxygen supplying pipeline 32, so that oxygen having been humidified in the humidifier 5 is fed into the fuel cell stack 1 via the oxygen supplying pipelinc 32 and the oxygen inlet port 13.

[0019] The fuel cell system 100 further includes an unreacted oxygen discharge pipeline 33 extended between and connected to the oxygen outlet port 14 of the fuel cell stack 1 and the gas mixing device 42 on the unreacted hydrogen discharge pipeline 4, so that unreacted oxygen discharged via the oxygen outlet port 14 is mixed with the discharged unreacted hydrogen in the gas mixing device 42. The oxygen/hydrogen gas mixture is then led into the humidifier 5 via the 'unreacted gas inlet port 51.

[0020J The oxygen supplied from the oxygen source 3 is relatively dry.
The relatively dry oxygen from the oxygen source 3 is led into the humidifier
5 via the oxygen supply pipe 31 and regulated to become relatively humid.
The relatively humid oxygen is then led from the humidifier 5 to the fuel cell stack 1 via the oxygen supplying pipeline 32.

[00211 The humidifier 5 also regulates the humidity of the unreacted oxygen/hydrogen gas mixture led thereto from the gas rnixing device 42.
The humidified oxygen/hydrogen gas mixture is then discharged via the humidified urireacted gas outlet port 52, [0022] By mixing the unreactecl hydrogen with the unreacted oxygen in the gas mixing device 42, the potentially dangerous unreacted hydrogen may have a reduced concentration. And, by humidifying the oxygen/hydrogen gas
6 mixture in the humidifier 5, the concentration of the unreacted hydrogen is further reduced even to less than 1% in some practical applications of the present invention, and the relative humidity of the unreacted hydrogen is also increased to reduce the potential taazard of hydrogen, allowing the unreacted hydrogen to be safely discharged into aznYaient air.

[00231 Fig. 2 is a block diagrarn of a fuel cell system having unreaeted gas discharge pipeline associated vrith httmidifier 200 according to a second embodiment of the present invention. As can be seen from Fig. 2, the fuel cell system 200 in the second embodiment is generally structurally similar to the first embodiment, except for an ul-reacted hydrogen recycling pipeline 44 extended between and connected to the unreacted hydrogen discharge pipeline 4 and the hydrogen supplying pipeline 21.

[00241 W"ith the unreacted hydrogen recycling pipeline 44, a part of the unreacted hydrogen discharged from the fuel cell stack 1 is led back to the fuel cell stack I via the hydrogen supplying pipeline 21 and recycled. The remaining part of the discharged unreacted hydrogen is still led to the gas mixing device 42 for mixing with the unreacted oxygen before being led to the humidifier 5 and discharged into anibient air.

[00251 Please refer to Fig. 3 that is a block diagram of -a fuel cell system having unreacted gas discharge pipeline associated with humidifier 300 according to a third embodiment of the present invention. As can be seen from Fig. 3, the fuel cell system 300 in the third embodiment is generally structurally similar to the fuel ce;ll system 200 in the second embodiment, except for a water cooliug system 6.

[0026] The water cooling system 6 includes a cooling water unit 61 and a water pressurizing unit 64. Tne cooling water unit 61 is connected to the fuel
7 cell stack 1 via a cooling water supplying pipeline 62, so as to supply low temperature cooling water to the fuel cell stack 1 to lower the high temperature produced by the reaction in the fuel cell stack 1 and thereby maintains the fuel cell stack 1 in a normal operatirng state. The low temperature cooling water having been used to cool and then discharged from the fuel cell stack 1 has a high temperature. The high ternperature cooling water is led to the humidifier 5 to serve as a high temperature water source thereof, so as to increase the humidity and tetxtpera.w.re of the oxygen supplied from the oxygen source 3 to the humidifier 5, and the humidity of the oxygen/hydrogen gas mixture led from the gas mixing device 42 to the humidifier 5. The high temperature cooling water flowing tl7rough the humidifier 5 is then led via a cooling water recycling pipeline 63 to the cooling water unit 61 and be cooled thereat. The water pressurizisig uYlit 64 applies pressure to the cooling water in the water cooling system f, so as to increase the flow rate of the cooling water.

[0027] In the above illustrated embodiments, the unreacted oxygen discharge pipeline 33 is simply provided to lead the unreacted oxygen to the gas mixing device 42 for mixing with the unreacted hydrogen and thereby reduces the concentration of the unr-eacted hydrogen. In practieal application of the present irivention, the uilreacted oxygen may be directly discharged from the fuel cell stack I via the oxygen outlet port 14 into the ambient air, while the oxygen for mixing with the unreacted hydrogen in the gas mixing device 42 may be supplied directly from the ag-nbient air by, for example, providing an additional air inlet port on the gas tdlixing device 42.

[0028] The hydrogen source '1 and the oxygen source 3 are simply provided to supply reactant gases for the fuel cell stack 1; wherein the hydrogen source 2 may be a hy=irogen storage alloy or a hydrogen tank, and the oxygen source 3 may be an oxygen tank or an air blower. However, the
8 hydrogen and oxygen sources 2, 3 may also be any other known types of gas sources.

[0029] The gas mixing device: 42 is simply provided for mixing the unreacted hydrogen and oxygen. In practical application of the present invention, the gas mixing device 42 may be a gas mixing chamber, or a three-way union.

[0030] The unreacted hydrogen discharge control unit 43 is also provided simply for controlling the flow of the discharged unreacted hydrogen.
Therefore, the unreacted hydrogen Eiischarge control unit 43 may be a throttle valve, an electromagnetic valve, or any other known types of controlling units, so long as these valves and units provide equivalent function and effect.

[0031] In the illustrated embodiments of the present invention, the oxygen source and the hydrogen source are provided mainly to supply oxygen and hydrogen needed by the fuel cell stack. Any other known types of oxygen and hydrogen sources providing ecluivalent function and effect may also be employed in the present invention. For example, the oxygen source may be ambient air and a cooperative blower, or a high-pressure oxygen cylinder or tank; and the hydrogen source may be a high-pressure hydrogen cylinder or tank, or a hydrogen storage alloy.

100321 While the present invention has been described with reference to the specific embodiments, the description is illustrative of the invention and is not to be construed as limiting the invention. Therefore, various modifications to the present invention can be made to the preferred embodiments by those skilled in the art without departing from the true spirit and scope of the invention as defined by the appended claims.
9

Claims (22)

What is claimed is:
1. A fuel cell system, comprising:
a fuel cell stack including:

a hydrogen inlet port connected to a hydrogen source via a hydrogen supplying pipeline, so that hydrogen is supplied from the hydrogen source to the fuel cell stack via the hydrogen supplying pipeline and the hydrogen inlet port;

a hydrogen outlet port, via which the unreacted hydrogen is discharged from the fuel cell stack;

an oxygen inlet port, via which oxygen is fed into the fuel cell stack;
and an unreacted hydrogen discharge pipeline connected at an end to the hydrogen outlet port for leading out the unreacted hydrogen discharged from the fuel cell stack via the hydrogen outlet port; and a humidifier including:

an unreacted gas inlet port connected to the other end of the unreacted hydrogen discharge pipeline for leading the discharged unreacted hydrogen into the humidifier;

a humidified unreacted gas outlet port;

an oxygen source inlet port connected to an oxygen source via an oxygen supply pipe, so that oxygen is supplied from the oxygen source via the oxygen supply pipe and the oxygen source inlet port into the humidifier for humidity regulation; and a humidified oxygen outlet port connected to the oxygen inlet port of the fuel cell stack via an oxygen supplying pipeline, so that oxygen having been humidified in the humidifier is sent out of the humidifier via the humidified oxygen outlet port and led by the oxygen supplying pipeline into the fuel cell stack via the oxygen inlet port;

whereby the humidifier not only regulates a humidity of the oxygen supplied from the oxygen source, but also mixes the unreacted hydrogen with part of the oxygen supplied from the oxygen source and regulates a humidify of the oxygen/hydrogen gas mixture; and the humidified oxygen/hydogen gas mixture is discharged from the humidifier via the humidified unreacted gas outlet port.
2. The fuel cell system as claimed in claim 1, wherein the unreacted oxygen is discharged into ambient air via the oxygen outlet port.
3. The fuel cell system as claimed in claim 1, further comprising an unreacted oxygen discharge pipeline extended between and connected to the oxygen outlet port of the fuel cell stack and the unreacted gas inlet port of the humidifier for leading the unreacted oxygen to the humidifier.
4. The fuel cell system as claimed in claim 3, further comprising a gas mixing device connected to the unreacted hydrogen discharge pipeline, the unreacted oxygen discharge pipeline, and the unreacted gas inlet port of the humidifier, so that the unreacted hydrogen and the unreacted oxygen discharged from the fuel cell stack are mixed in the gas mixing device before being led to the humidifier.
5. The fuel cell system as claimed in claim 1, wherein the humidified oxygen/hydrogen gas mixture is discharged directly into ambient air.
6. The fuel cell system as claimed in claim 1, wherein the unreacted hydrogen discharge pipeline has a pressuring unit connected thereto for applying pressure to the unreacted hydrogen in the unreacted hydrogen discharge pipeline.
7. The fuel cell system as claimed in claim 1, wherein the hydrogen source is selected from the group consisting of hydrogen storage alloys and a hydrogen tank.
8. The fuel cell system as claimed in claim 1, wherein the oxygen source is selected from the group consisting of an oxygen tank and an air blower.
9. The fuel cell system as claimed in claim 1, wherein the unreacted hydrogen discharge pipeline is connected to the hydrogen supplying pipeline via an unreacted hydrogen recycling pipe, via which a part of the unreacted hydrogen discharged via the hydrogen outlet port is led to the fuel cell stack and recycled.
10. The fuel cell system as claimed in claim 1, further comprising a water cooling system; the water cooling system including a cooling water unit for supplying low temperature cooling water into the fuel cell stack to cool the same; and cooling water having been used to cool and then discharged from the fuel cell stack having; a high temperature and being led to the humidifier to serve as a hot water source for increasing humidity and temperature of the oxygen supplied from the oxygen source to the humidifier.
11. The fuel cell system as claimed in claim 10, wherein the high temperature cooling water led to the humidifier is further led via a cooling water recycling pipeline back to the cooling water unit to be cooled in the cooling water unit.
12. A fuel cell system, comprising:

a wind tunnel test section constructed by a plurality of walls allowing an air flow to pass in a direction from an air inlet to an air outlet of the wind tunnel at a moving speed;

a fuel cell stack including:

a hydrogen inlet port connected to a hydrogen source via a hydrogen supplying pipeline, so that hydrogen is supplied from the hydrogen source to the fuel cell stack via the hydrogen supplying pipeline and the hydrogen inlet port;

a hydrogen outlet port, via which the unreacted hydrogen is discharged from the fuel cell stack;

an oxygen inlet port connected to an oxygen source via an oxygen supplying pipeline, so that oxygen is fed from the oxygen source via the oxygen supplying pipeline and the oxygen inlet port into the fuel cell stack;

an oxygen outlet port, via which unreacted oxygen is discharged from the fuel cell stack; and an unreacted hydrogen discharge pipeline connected at an end to the hydrogen outlet port for leading out the unreacted hydrogen discharged from the fuel cell stack via the hydrogen outlet port; and a humidifier including:

an unreacted gas inlet port connected to the other end of the unreacted hydrogen discharge pipeline for leading the discharged unreacted hydrogen into the humidifier; and a humidified unreacted gas outlet port;

whereby the humidifier regulates humidity and concentration of the unreacted hydrogen led thereinto, and the humidified unreacted hydrogen is discharged from the humidifier via the humidified unreacted gas outlet port.
13. The fuel cell system as claimed in claim 12, wherein the unreacted oxygen is discharged into ambient air via the oxygen outlet port.
14. The fuel cell system as claimed in claim 12, further comprising an unreacted oxygen discharge pipeline extended between and connected to the oxygen outlet port of the fuel cell stack and the unreacted gas inlet port of the humidifier for leading the unreacted oxygen to the humidifier,
15. The fuel cell system as claimed in claim 14, further comprising a gas mixing device connected to the unreacted hydrogen discharge pipeline, the unreacted oxygen discharge pipeline, and the unreacted gas inlet port of the humidifier, so that the unreacted hydrogen and oxygen discharged from the fuel cell stack are mixed in the gas mixing device before being led to the humidifier.
16. The fuel cell system as claimed in claim 12, wherein the unreacted hydrogen having been, humidified at the humidifier is directly discharged from the humidifier into ambient air,
17. The fuel cell system as claimed in claim 12, wherein the unreacted hydrogen discharge pipeline has a pressuring unit connected thereto for applying pressure to the unreacted hydrogen in the unreacted hydrogen discharge pipeline.
18. The fuel cell system as claimed in claim 12, wherein the hydrogen source is selected from the group consisting of hydrogen storage alloys and a hydrogen tank.
19. The fuel cell system as claimed in claim 12, wherein the oxygen source is selected from the group consisting of an oxygen tank and an air blower.
20. The fuel cell system as claimed in claim 12, wherein the unreacted hydrogen discharge pipeline is connected to the hydrogen supplying pipeline via an unreacted hydrogen recycling pipe, via which a part of the unreacted hydrogen discharged via the hydrogen outlet port is led back to the fuel cell stack and recycled.
21. The fuel cell system as claimed in claim 12, further comprising a water cooling system; the water cooling system including a cooling water unit for supplying low temperature cooling water into the fuel cell stack to cool the same; and the cooling water having been used to cool and then discharged from the fuel cell stack having a high temperature and being led to the humidifier to serve as a hot water source for increasing humidity and temperature of the oxygen supplied from the oxygen source to the humidifier.
22. The fuel cell system as claimed in claim 21, wherein the high temperature cooling water led into the humidifier is further led via a cooling water recycling pipeline back to the cooling water unit to be cooled in the cooling water unit.
CA002588211A 2007-05-03 2007-05-03 Fuel cell system having unreacted gas discharge pipeline Abandoned CA2588211A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA002588211A CA2588211A1 (en) 2007-05-03 2007-05-03 Fuel cell system having unreacted gas discharge pipeline

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CA002588211A CA2588211A1 (en) 2007-05-03 2007-05-03 Fuel cell system having unreacted gas discharge pipeline

Publications (1)

Publication Number Publication Date
CA2588211A1 true CA2588211A1 (en) 2008-11-03

Family

ID=39941644

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002588211A Abandoned CA2588211A1 (en) 2007-05-03 2007-05-03 Fuel cell system having unreacted gas discharge pipeline

Country Status (1)

Country Link
CA (1) CA2588211A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107749487A (en) * 2017-10-21 2018-03-02 武汉船用电力推进装置研究所(中国船舶重工集团公司第七二研究所) Tail gas for hydrogen fuel cell disappears hydrogen system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107749487A (en) * 2017-10-21 2018-03-02 武汉船用电力推进装置研究所(中国船舶重工集团公司第七二研究所) Tail gas for hydrogen fuel cell disappears hydrogen system

Similar Documents

Publication Publication Date Title
EP2019444A2 (en) Fuel release management for fuel cell systems
GB2412784B (en) Fuel cell oxygen removal and pre-conditioning system
US7998633B2 (en) Fuel cell system
US8841038B2 (en) Fuel cell system having unreacted gas discharge pipeline
US7910255B2 (en) Charge air humidification for fuel cells
JP3593984B2 (en) Fuel cell system
EP1860717A2 (en) Fuel cell system having unreacted gas discharge pipeline
US10164279B2 (en) Device for decreasing hydrogen concentration of fuel cell system
EP1860720A1 (en) Fuel cell system with unreacted anode gas treatment and discharge facilities
KR20120026809A (en) Fuel cell system
CA2588211A1 (en) Fuel cell system having unreacted gas discharge pipeline
US20070259245A1 (en) Fuel cell system with unreacted anode gas treatment and discharge facilities
KR101128923B1 (en) Fuel cell system with a recirculation strand
US20230039588A1 (en) Electric power generation system based on pressurized fuel cell power system with air cooling and recirculation and method for electric power generation by the system
CN112038667B (en) Gas circulation humidifying method and device for hydrogen-oxygen fuel cell test
US20130252117A1 (en) Apparatus and method for humidified fluid stream delivery to fuel cell stack
KR20120111168A (en) Fuel cell system and ship having the same
KR101114389B1 (en) Humidification system for fuel cell
JP2005276764A (en) Fuel cell system
CN102089915A (en) Method and arrangement to reduce the consumption of safety gas in a fuel cell system
WO2008110258A1 (en) Shutting down a fuel cell system
JP4196819B2 (en) Humidifier for polymer electrolyte fuel cell
JP2007227253A (en) Humidification device and fuel cell system
CN116072931A (en) Humidity control method for fuel cell system
EP2017915A1 (en) Self-humidifying PEM-fuel-cell-based back-up electric generator

Legal Events

Date Code Title Description
FZDE Dead