CA2566656A1 - Polymeric dispersant viscosity modifier composition - Google Patents

Polymeric dispersant viscosity modifier composition Download PDF

Info

Publication number
CA2566656A1
CA2566656A1 CA002566656A CA2566656A CA2566656A1 CA 2566656 A1 CA2566656 A1 CA 2566656A1 CA 002566656 A CA002566656 A CA 002566656A CA 2566656 A CA2566656 A CA 2566656A CA 2566656 A1 CA2566656 A1 CA 2566656A1
Authority
CA
Canada
Prior art keywords
composition
mixtures
viscosity modifier
polymeric dispersant
dispersant viscosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002566656A
Other languages
French (fr)
Inventor
Bryan A. Grisso
James N. Vinci
Barton J. Schober
Daniel C. Visger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lubrizol Corp
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CA2566656A1 publication Critical patent/CA2566656A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M161/00Lubricating compositions characterised by the additive being a mixture of a macromolecular compound and a non-macromolecular compound, each of these compounds being essential
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/028Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms
    • C10M2205/0285Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/08Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type
    • C10M2209/084Acrylate; Methacrylate
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/04Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/086Imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/02Macromolecular compounds obtained from nitrogen containing monomers by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2217/024Macromolecular compounds obtained from nitrogen containing monomers by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to an amido or imido group
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/02Macromolecular compounds obtained from nitrogen containing monomers by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2217/028Macromolecular compounds obtained from nitrogen containing monomers by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a nitrogen-containing hetero ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/02Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds
    • C10M2219/022Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds of hydrocarbons, e.g. olefines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/043Ammonium or amine salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/047Thioderivatives not containing metallic elements
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/049Phosphite
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/02Pour-point; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/10Inhibition of oxidation, e.g. anti-oxidants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/02Bearings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2060/00Chemical after-treatment of the constituents of the lubricating composition
    • C10N2060/14Chemical after-treatment of the constituents of the lubricating composition by boron or a compound containing boron

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)

Abstract

The present invention provides a composition containing: (a) an oil of lubricating viscosity; (b) an amine salt of a phosphorus compound; (c) a compound selected from the group consisting of:1) a polymeric dispersant viscosity modifier wherein the polymeric dispersant viscosity modifier excludes copolymers derived from (a) a nitrogen containing monomer; and (b) methacrylic acid esters containing from about 9 to about 25 carbon atoms in the ester group; 2) a polymeric dispersant viscosity modifier, a borated dispersant; and a sulphurised olefin; and 3) mixtures thereof. The invention further provides a process for preparing the composition and a method for improving oxidation cleanliness of surface.

Description

TITLE
POLYMERIC DISPERSANT VISCOSITY MODIFIER COMPOSITION

FIELD OF INVENTION
The present invention relates to a composition containing a polymeric dispersant viscosity modifier; and an amine salt of a phosphorus compound.
The invention further provides a process for making the composition and a method for lubricating a gear or bearing surface with the composition.

BACKGROUND OF THE INVENTION
Oxidation of an oil of lubricating viscosity, especially an organic petroleum fluid, occurs in the presence of oxygen which leads to increased viscosity and sludge and/or deposit formation. Sludge and/or deposit formation is produced by a number of different mechanisms such as degradation of oil and decomposition products of lubricant additives. Using known lubricant additives containing an amine salt of a phosphorus compound such as many antiwear agents and friction modifiers are believed to contribute to the formation of sludge and/or deposit formation. The presence of sludge and other deposits interferes with seal performance leading to leakage and ultimately equipment failure for gears or bearings.
Polymeric dispersant viscosity modifier are added to lubricating compositions to impart resistance to rust, improved cleanliness, improved viscosity modifying properties and decreased sludge accumulation. The polymeric dispersant viscosity modifier is generally a nitrogen containing poly(meth)acrylate, a nitrogen containing polyolefin or a nitrogen containing esterifled styrene-maleic anhydride interpolymer.
US Patent number 6,124,249 (Seebauer et al.) discloses a dispersant viscosity improving copolymer derived from (a) a nitrogen containing monomer; and (b) methacrylic acid esters containing from about 9 to about 25 carbon atoms in the ester group.

US Patent Number 6,586,375 (Gahagan et al.) discloses a lubricant composition containing a nitrogen containing polyacrylate salted with a phosphorus acid ester. The lubricant composition provides improved dispersant, viscosity improver and antiwear properties.
It is desirable to have a composition capable of decreasing sludge accumulation. The present invention provides a composition capable of decreasing sludge accumulation.
It is desirable to have a composition with deposit control. The present invention provides a composition with deposit control.

SUMMARY OF THE INVENTION
The present invention is a composition comprising:
(a) an oil of lubricating viscosity;

(b) an amine salt of a phosphorus compound; and (c) a compound selected from the group consisting of:

1) a polymeric dispersant viscosity modifier wherein the polymeric dispersant viscosity modifier excludes copolymers derived from (a) a nitrogen containing monomer; and (b) methacrylic acid esters containing from about 9 to about 25 carbon atoms in the ester group;
2) a polymeric dispersant viscosity modifier, a borated dispersant;
and a sulphurised olefin; and 3) mixtures thereof.
The invention further provides a method comprising lubricating a surface while. imparting deposit control, the method employing a composition comprising:

(a) an oil of lubricating viscosity;

(b) an amine salt of a phosphorus compound; and (c) a compound selected from the group consisting of:
1) a polymeric dispersant viscosity modifier wherein the polymeric dispersant viscosity modifier excludes copolymers derived from (a) a nitrogen containing monomer; and (b) methacrylic acid esters containing from about 9 to about 25 carbon atoms in the ester group;

2) a polymeric dispersant viscosity modifier, a borated dispersant;
and a sulphurised olefin; and 3) mixtures thereof, wherein the surface is a gear, a bearing or mixtures thereof.

The invention further provides a process for the preparation of a composition comprising mixing:

(a) an oil of lubricating viscosity;

(b) an amine salt of a phosphorus compound; and (c) a compound selected from the group consisting of:

1) a polymeric dispersant viscosity modifier wherein the polymeric dispersant viscosity modifier excludes copolymers derived from (a) a nitrogen containing monomer; and (b) methacrylic acid esters containing from about 9 to about 25 carbon atoms in the ester group;

2) a polymeric dispersant viscosity modifier, a borated dispersant;
and a sulphurised olefin; and 3) mixtures thereof.
The use of the composition of the invention is capable of imparting one or more performance characteristics including deposit control, reduced carbon varnish, decreased wear, low temperature viscometrics, high temperature viscometrics or mixtures thereof.

DETAILED DESCRIPTION OF THE INVENTION
A composition comprising:
(a) an oil of lubricating viscosity;

(b) an amine salt of a phosphorus compound; and (c) a compound selected from the group consisting of:

1) a polymeric dispersant viscosity modifier wherein the polymeric dispersant viscosity modifier excludes copolymers derived from (a) a nitrogen containing monomer; and (b) methacrylic acid esters containing from about 9 to about 25 carbon atoms in the ester group;

2) a polymeric dispersant viscosity modifier, a borated dispersant;
and a sulphurised olefin; and 3) mixtures thereof.
In one embodiment the invention provides a composition comprising:.
(a) an oil of lubricating viscosity;

(b) an amine salt of a phosphorus compound; and (c) a polymeric dispersant viscosity modifier, wherein the polymeric dispersant viscosity modifier excludes copolymers derived from (a) a nitrogen containing monomer; (b) methacrylic acid esters containing from about 9 to about 25 carbon atoms in the ester group.
In one embodiment the invention further provides a composition comprising:
(a) an oil of lubricating viscosity;

(b) an amine salt of a phosphorus compound;
(c) a polymeric dispersant viscosity modifier;
(d) a borated dispersant; and (e) a sulphurised olefin.

Oil of Lubricating ViscositX
The lubricating oil composition includes natural or synthetic oils of lubricating viscosity, oil derived from hydrocracking, hydrogenation, hydrofinishing, unrefined, refined and re-refined oils or mixtures thereof.
Natural oils include animal oils, vegetable oils, mineral oils or mixtures thereof. Synthetic oils include a hydrocarbon oil, a silicon-based oil, a liquid esters of phosphorus-containing acid. Synthetic oils may be produced by Fischer-Tropsch reactions and typically may be hydroisomerised Fischer-Tropsch hydrocarbons or waxes Oils of lubricating viscosity may also be defined as specified in the American Petroleum Institute (API) Base Oil Interchangeability Guidelines. In one embodiment the oil of lubricating viscosity comprises an API Group I, II, III, IV, V, VI or mixtures thereof, and in one embodiment API Group I, II, III
or mixtures thereof. If the oil of lubricating viscosity is an API Group II, III, IV, V or VI oil there may be up to about 40 wt % and in another embodiment up to a maximum of about 5 wt % of the lubricating oil an API Group I oil.
The oil of lubricating viscosity is present at up to about 99.9 wt % of the composition, in another embodiment up to about 98.9 wt % of the composition, in another embodiment up to about 96.8 wt % of the composition and in yet another embodiment up to about 94.8 wt % of the composition. In one embodiment of the invention the oil of lubricating viscosity is present from about 30 wt % to about 99.9 wt % of the composition, in another embodiment about 45 wt % to about 94.8 wt % and in another embodiment about 60 wt % to about 90 wt % of the composition.
In one embodiment the invention is in the form of a concentrate (which can be combined with additional oil to form, in whole or in part, a finished lubricant), the ratio of each of the above-mentioned polymeric dispersant viscosity modifier and an amine salt of a phosphorus compound, as well as other components, to diluent oil in the range from about 80:20 to about 10:90 by weight.
Amine Salt of Phosphorus Compound The invention further includes an amine salt of a phosphorus compound.
The amine salt of a phosphorus compound includes an extreme pressure agent, a wear preventing agent, a friction modifier or mixtures thereof. In one embodiment of the invention the amine salt of a phosphorus compound further comprises a sulphur atom in the molecule. In one embodiment of the invention the amine salt of a phosphorus compound is ashless i.e. metal-free.
The amine includes a primary amine, a secondary amine, a tertiary amine or mixtures thereof. The amine includes those with at least one hydrocarbyl group, in another embodiment about two hydrocarbyl groups and in another embodiment about three hydrocarbyl groups. The hydrocarbyl group contains a number of carbon atoms including those in the range from about 2 to about 30, in another embodiment about 8 to about 26, in another embodiment about 10 to about 20, and in yet another embodiment about 13 to about 19.
Primary amines include ethylamine, propylamine, butylamine, 2-ethylhexylamine, octylamine and dodecylamine. Also suitable primary fatty amines which include n-octylamine, n-decylamine, n-dodecylamine, n-tetradecylamine, n-hexadecylamine, n-octadecylamine an.d oleyamine. Other useful fatty amines include commercially available fatty amines such as "Armeen " amines (products available from Akzo Chemicals, Chicago, Illinois), such as Armeen C, Armeen 0, Armeen OL, Armeen T, Armeen HT, Armeen S and Armeen SD, wherein the letter designation relates to the fatty group, such as coco, oleyl, tallow, or stearyl groups.
Examples of suitable secondary amines include dimethylamine, diethylamine, dipropylamine, dibutylamine, diamylamine, dihexylamine, diheptylamine, methylethylamine, ethylbutylamine and ethylamylamine. The secondary amines may be cyclic amines such as piperidine, piperazine and morpholine.
.The amine may also be a tertiary-aliphatic primary amine. The aliphatic group includes an alkyl group containing a number of carbon atoms from 2 to 30, in another embodiment 6 to 26 and in another embodiment 8 to 24. The tertiary alkyl amines include a monoamine such as tert-butylamine, terthexylamine, 1-methyl-1 -amino-cyclohexane, tert-octylamine, tert-decylamine, tertdodecylamine, tert-tetradecylamine, tert-hexadecylamine, tert-octadecylamine, terttetracosanylamine, or tert-octacosanylamine.
The amine salt of a phosphorus compound also includes phosphoric acid esters or salt thereof; dialkyldithiophosphoric acid esters or salt thereof;
phosphites; and phosphorus-containing carboxylic esters, ethers, and amides or mixtures thereof.
Mixtures of amines may also be used in the invention. In one embodiment a useful mixture of amines is "Primene 81R" and "Primene JMT." Primene 81R and Primene JMT (both produced and sold by Rohm &
Haas) are mixtures of C11 to C14 tertiary alkyl primary amines and C18 to C22 tertiary alkyl primary amines respectively.
In one embodiment of the invention the amine salt of a phosphorus compound is a friction modifier. Examples of a suitable friction modifier include amine salts of alkylphosphoric acids other than the wear preventing agent.
The amine salt of a phosphorus compound is present in one embodiment in range from about 0 wt % to about 30 wt % of the composition, in another embodiment from about 0.001 wt % to 30 wt % of the composition, in another embodiment from about 0.1 wt % to about 20 wt % of the composition, in another embodiment from about 0.5 wt % to about 15 wt % of the composition and in another embodiment from about 1 wt % to about 10 wt % of the composition.
Polymeric Dispersant Viscosity Modifier As used hereinafter the term "(meth)acrylate" is used to refer to a methacrylate and a acrylate; and "(meth)acrylamide" is used to refer to a acrylamide and a methacrylamide..
The polymeric dispersant viscosity modifier includes a (co)polymer with a nitrogen containing monomer, a nitrogen containing compound capable of reacting with a functionalised polymer backbone or mixtures thereof. The polymeric dispersant viscosity modifier includes those derived from at least one polymer including a poly(meth)acrylate copolymer, a functionalised polyolefin, an esterified polymer derived from: (i) a vinyl aromatic monomer; and (ii) an unsaturated carboxylic acid or derivatives thereof; or mixtures thereof.
The nitrogen containing monomer includes a vinyl substituted nitrogen heterocyclic monomer, a dialkylaminoalkyl (meth)acrylate monomer, a dialkylaminoalkyl (meth)acrylamide monomer, a tertiary-(meth)acrylamide monomer and mixtures thereof. The alkyl contains 1 to about 8, or from 1 to about 3 carbon atoms.
Useful nitrogen containing monomers include vinyl pyridine, N-vinyl imidazole, N-vinyl pyrrolidinone, and N-vinyl caprolactam, dimethylaminoethyl acrylate, dimethylaminoethyl methacrylate, dimethylaminobutylacrylamide dimethylamine propyl methacrylate, dimethylaminopropylacrylamide, dimethylaminopropylmethacrylamide, dimethylaminoethylacrylamide, tertiary butyl acrylamide or mixtures thereof.
The nitrogen containing compound includes an amine such as a monoamine, a polyamine or mixtures thereof. The amine includes primary functionality, secondary functionality or mixtures thereof. The amine includes cyclic, linear or branched and examples include an alkylenemonoamine, a heterocyclic monoamine, an alkylenepolyamine, a heterocyclic polyamine or mixtures thereof. In one embodiment the amine contains not more than one primary or secondary amino group, for example N,N-dimethylaminopropylamine.
In one embodiment the. amine may be a hydroxy-substituted hydrocarbyl amine such as a hydroxyalkyl amine. Examples of a suitable hydroxy-substituted hydrocarbyl amine include aminoethyl ethanolamine, aminopropyl ethanolamine, aminobutyl ethanolamine or mixtures thereof.
In one embodiment the amine includes compounds that are represented by the formula:

(D-(R,) y N- -", R ~) wherein w is the number of R3 atoms, including ranges from about 4 to about 16 atoms, in another embodiment about 5 to about 12 atoms, and in another embodiment 5 to about 8 atoms;
y is the number of carbon atoms associated with R2, including ranges from 1 to about 8, in another embodiment 1 to about 6, and in another embodiment about 2 to about 5 carbon atoms;
Rl is independently an atom including carbon, oxygeii, nitrogen, phosphorus or mixtures thereof;
R2 is an alkyl or an alkenyl group with containing y carbon atoms, especially useful examples of R 2 include ethyl, propyl or mixtures thereof;
and R3 and R4 are independently hydrogen or a hydrocarbyl group, in another embodiment at least one is hydrogen, and in another embodiment both are hydrogen.
When R3 or R4 is a hydrocarbyl group, the number of carbon atoms present is in the range from 1 to about 8, in another embodiment in the range from 1 to about 5 and in another embodiment in the range from 1 to about 3.
Examples of a hydrocarbyl group include methyl, ethyl, propyl, butyl, pentyl or mixtures thereof.
Formula (I) represents a compound that includes a mononuclear cyclic structure, a polynuclear cyclic structure or mixtures thereof. When formula (I) represents a mononuclear structure, w in one embodiment ranges from about 5 to about 8 and in another embodiment about 6 to about 7. When formula (I) represents a polynuclear cyclic structure w in one embodiment ranges from about 8 to about 16 and in another embodiment about 10 to about 12. The cyclic ring includes aromatic, non-aromatic or mixtures thereof, although a non-aromatic ring is especially useful.
Suitable cyclic amines include 4-aminodiphenylamine, 4-(3-aminopropyl) morpholine, 4-(2-aminoethyl) morpholine or mixtures thereof. In one embodiment the cyclic amine is 4-(3-aminopropyl) morpholine or mixtures thereof.
The polymeric dispersant viscosity modifier is also derived from at least one polymer including a poly(meth)acrylate, a functionalised polyolefin, an esterified polymer derived from: (i) a vinyl aromatic monomer; and (ii) an unsaturated carboxylic acid or derivatives thereof; or mixtures thereof. In one embodiment the poly(meth)acrylate further contains a nitrogen containing monomer.
The poly(meth)acrylate polymeric dispersant viscosity modifier includes a copolymer derived from a (meth)acrylate monomer containing an alkyl group with 1 to 30 carbon atoms, in another embodiment 1 to 26 carbon atoms and in another embodiment 1 to 20 carbon atoms. The alkyl group includes mixtures derived from an alcohol containing 1 to about 4 carbon atoms, about 8 to about 10 carbon atoms, about 12 to about 14 carbon atoms, about 12 to about 15 carbon atoms, about 16 to about 18 carbon atoms or about 16 to about 20 carbon atoms. Examples of commercially available alcohol mixtures include the following products sold under the brand names of DobanolTM 25, NeodolTM
25, LialTM 125, and AlchemTM 125. In one embodiment the alcohol is a single alcohol i.e. not a mixture.
The (meth)acrylate monomer includes those derived from natural or synthetic sources. When derived by synthetic sources the (meth)acrylate monomer may be prepared using known direct esterification and/or transesterification processes.
In one embodiment the poly(meth)acrylate polymeric dispersant viscosity modifier is derived from a methyl (meth)acrylate monomer and at least one other (meth)acrylate monomer including an alkyl group with about 8 to about 20 carbon atoms, in another embodiment about 10 to about 18 carbon atoms and in another embodiment about 12 to about 15 carbon atoms. The methyl (meth)acrylate monomer is in the range from about 1 wt % or more of the poly(meth)acrylate, in another embodiment in the range from about 8 wt %
or more of the poly(meth)acrylate and in another embodiment in the range from about 10 wt % or more of the poly(meth)acrylate. Upper limits on the amount of methyl (meth)acrylate include about 40 wt % of the poly(meth)acrylate, in another embodiment about 30 wt % of the poly(meth)acrylate and in another embodiment about 20 wt % of the poly(meth)acrylate.

In one embodiment the composition containing the polymeric dispersant viscosity modifier excludes copolymers derived from (a) a nitrogen containing monomer; and (b) methacrylic acid esters containing from about 9 to about 25 carbon atoms in the ester group. In another embodiment the composition containing the polymeric dispersant viscosity modifier further excludes a salt of a phosphorus acid ester and a nitrogen containing polyacrylate.
As described hereinafter the molecular weight of the polymeric dispersant viscosity modifier has been determined using known methods, such as GPC analysis using a polystyrene standard.
The poly(meth)acrylate has a molecular weight (Mw,) including from about 5000 to about 350,000, in another embodiment about 10,000 to about 150,000, in another embodiment about 15,000 to about 120,000, in another embodiment about 10,000 to about 50,000 and in yet another embodiment about 15,000 to about 35,000.
The polymeric dispersant viscosity modifier derived from a functionalised polyolefin and/or an esterified polymer contain an unsaturated carboxylic acid or derivatives thereof. The carboxylic acid or derivatives thereof includes a mono- acid, a di-acid or mixtures thereof. Optionally the unsaturated carboxylic acid or derivatives thereof is further substituted with a hydrocarbyl group. The hydrocarbyl group includes substituted, unsubstituted, branched, unbranched or mixtures thereof, although, unsubstituted is especially useful.
The unsaturated carboxylic acid anhydride or derivatives thereof may be wholly esterified, partially esterified or mixtures thereof. When partially esterified other derivatives include acids, salts or mixtures thereof.
Suitable salts include alkali metals, alkaline earth metals or mixtures thereof. The salts include lithium, sodium, potassium, magnesium, calcium or mixtures thereof.
The unsaturated carboxylic acid or derivatives thereof includes an acrylic acid, a methyl acrylate, a methacrylic acid, a maleic acid or anhydride, a fumaric acid, an itaconic acid or anhydride or mixtures thereof.
Suitable examples of the unsaturated dicarboxylic acid anhydride or derivatives include itaconic anhydride, maleic anhydride, methyl maleic anhydride, ethyl maleic anhydride, dimethyl maleic anhydride or mixtures thereof. The unsaturated carboxylic acid anhydride or derivatives thereof functionality may be used alone or in combination.
In one embodiment the polymeric dispersant viscosity modifier is a functionalised polyolefin. In one embodiment the functionalised polyolefin further contains a nitrogen derived from a nitrogen containing compound capable of reacting with a functionalised polymer backbone.
In one embodiment the functionalised polyolefin is derived from an ethylene monomer and at least one other comonomer derived from an alpha-olefin having the formula H2C=CHR5, wherein R5 is a hydrocarbyl group, especially an alkyl radical containing 1 to about 18 carbon atoms, in another embodiment 1 to about 10 carbon atoms, in another embodiment 1 to about 6 carbon atoms and in yet another embodiment 1 to about 3 carbon atoms. The hydrocarbyl group includes an alkyl radical that has a straight chain, a branched chain or mixtures thereof. Examples of a comonomer include propylene, 1-butene, 1-hexene, 1-octene, 4-methyl-l-pentene, 1-decene or mixtures thereof.
In one embodiment the comonomer includes 1-butene, propylene or mixtures thereof. Examples of the olefin copolymers include ethylene-propylene copolymers, ethylene-l-butene copolymers or mixtures thereof.
In another embodiment the alpha-olefin includes a comonomer with about 6 to about 40 carbon atoms, in another embodiment about 10 to about 34 carbon atoms, and in another embodiment about 14 to about 22 carbon atoms.
Examples of an alpha-olefin include 1-decene 1-undecene, 1-dodecene, 1-tridecene, 1-butadecene, 1-pentadecene, 1-hexadecene, 1-heptadecene 1-octadecene, 1-nonadecene, 1-eicosene, 1-doeicosene, 2-tetracosene, 3-methyl-1-henicosene, 4-ethyl-2-tetracosene or mixtures thereof. Useful examples of an alpha-olefin include 1-pentadecene, 1-hexadecene, 1-heptadecene 1-octadecene, 1-nonadecene or mixtures thereof. The alpha-olefin is often commercially available as mixtures especially as C16-C18.
In one embodiment the polymeric dispersant viscosity modifier is derived from functionalised polyolefin, functionalised with an unsaturated carboxylic acid anhydride or derivatives thereof (described above). The functionalised polyolefin has a molecular weight (M,) in the range including from about 600 to about 300,000, in another embodiment about 600 to about 100,000, in another embodiment about 1000 to about 50,000 and in another embodiment about 2000 to about 20,000.
The unsaturated carboxylic acid anhydride or derivatives thereof may be incorporated into olefin polymer backbone and/or grafted on to the backbone.
In one embodiment the unsaturated carboxylic acid anhydride or derivatives thereof is grafted on to the backbone. In one embodiment the unsaturated carboxylic acid anhydride or derivatives thereof is incorporated into olefin polymer backbone.
In one embodiment the polymeric dispersant viscosity modifier is an esterified polymer derived from monomers comprising: (i) a vinyl aromatic monomer; and (ii) an unsaturated carboxylic acid or derivatives thereof. The polymer prior to esterification is generally referred to as an interpolymer.
In one embodiment the esterified polymer is substantially free of to free of a (meth)acrylate ester. In one embodiment the interpolymer is a styrene-maleic anhydride copolymer. In one embodiment the esterified polymer contains a nitrogen derived from a nitrogen containing compound capable of reacting with a functionalised polymer backbone to form an amidated polymer.
The molecular weight of the interpolymer may also be expressed in terms of the "reduced specific viscosity" of the polymer which is recognized means of expressing the molecular size of a polymeric substance. As used herein, the reduced specific viscosity (abbreviated as RSV) is the value obtained in accordance with the formula RSV = (Relative Viscosity -1)/Concentration, wherein the relative viscosity is determined by measuring, by means of a dilution viscometer, the viscosity of a solution of about lg of the polymer in about 10 cm3 of acetone and the viscosity of acetone at about 30 C.
For purpose of computation by the above formula, the concentration is adjusted to about 0.4g of the interpolymer per 10 cm3 of acetone. A more detailed discussion of the reduced specific viscosity, also known as the specific viscosity, as well as its relationship to the average molecular weight of an interpolymer, appears in Paul J. Flory, Principles of Polymer Chemistry, (1953 Edition) pages 308 et seq. The interpolymer polymer of the invention has a RSV from about 0.05 to about 2 in one embodiment about 0.06 to about 1 and in another embodiment about 0.06 to about 0.8. In one embodiment the RSV is about 0.69. In another embodiment the RSV is about 0.12. In one embodiment the Mw of the interpolymer is about 10,000 to about 300,000.
Examples of a vinyl aromatic monomer include styrene (often referred to as ethenylbenzene), substituted styrene or mixtures thereof. Substituted styrene monomers include functional groups such as a hydrocarbyl group, halo-, amino-, alkoxy-, carboxy-, hydroxy-, sulphonyl- or mixtures thereof.
The functional groups include those located at the ortho, meta or para positions relative to the vinyl group on the aromatic monomer, the functional groups are located at the ortho or para position being especially useful. In one embodiment the functional groups are located at the para position. Halo-, functional groups include chlorine, bromine, iodine or mixtures thereof. In one embodiment the halo functional group is chlorine or mixtures thereof. Alkoxy functional groups may contain 1 to about 10 carbon atoms, in another embodiment 1 to about 8 carbon atoms, in another embodiment 1 to about 6 carbon atoms and in yet another embodiment 1 to about 4 carbon atoms.
Alkoxy functional groups containing 1 to about 4 carbon atoms is referred to as lower alkoxy styrene.
The hydrocarbyl group includes ranges from 1 to about 30 carbon atoms, in another embodiment 1 to about 20 carbon atoms, in another embodiment 1 to about 15 carbon atoms and in yet another embodiment 1 to about 10 carbon atoms. Examples of a suitable hydrocarbyl group on styrene monomers include alpha-methylstyrene, para-methylstyrene (often referred to as vinyl toluene), para-tert-butylstyrene, alpha-ethylstyrene, para-lower alkoxy styrene or mixtures thereof.
The polymeric dispersant viscosity modifier is known in the art and commercially available from a number of corporations, including The Lubrizol Corporation, Degussa AG and Rohmax GmbH.
The polymeric dispersant viscosity modifier is present in the range from about 0.001 wt % to about 60 wt % of the composition, in another embodiment about 1 wt % to about 50 wt % of the composition, in another embodiment about 2 wt % to about 40 wt % of the composition and in another embodiment about 5 wt % to about 35 wt % of the composition.
Other Performance Additive The composition of the invention optionally includes at least one other performance additive. The other performance additive includes a metal deactivator, a detergent, a dispersant, an extreme pressure agent, an antiwear agent, an antioxidant, a corrosion inhibitor, a foam inhibitor, a demulsifiers, a pour point depressant, a seal swelling agent or mixtures thereof.
The total combined amount of the other performance additive present on an oil free basis is present in the range from about 0 wt % to about 25 wt %, in another embodiment about 0.01 wt % to about 20 wt %, in another embodiment about 0.1 wt % to about 15 wt % and in yet another embodiment about 0.5 wt % to about 10 wt % of the composition. Although one or more of the other performance additives may be present, it is common for the other performance additives to be present in different amounts relative to each other.
Antiwear Agent Optionally, the composition includes an antiwear agent. The antiwear agent may also act as an extreme pressure agent for example a sulphurised olefin. The antiwear agent may be used alone or in combination. In one embodiment the antiwear agent includes a thiocarbamate-containing compound such as thiocarbamate esters, thiocarbamate amides, thiocarbamic ethers, alkylene-coupled thiocarbamates, or bis(S-alkyldithiocarbamyl) disulphides. In one embodiment the thiocarbamate-containing compound is present. In one embodiment the thiocarbamate-containing compound is not present.
The dithiocarbamate containing compounds may be prepared by reacting a dithiocarbamate acid or salt with an unsaturated compound. The dithiocarbamates containing compounds may also be prepared by simultaneously reacting an amine, carbon disulphide and an unsaturated compound. Generally, the reaction occurs at a temperature from 25'C to 125'C.
US Patents 4,758,362 and 4,997,969 describe dithiocarbamate compounds and methods of making them.

In one embodiment the antiwear agent includes a fatty amine. Useful fatty amine compounds include those commercially available as "Armeen"
(RTM) amines (products available from Akzo Chemicals, Chicago, Illinois), such as Akzo's, Armeen C, Armeen 0, Armeen OL, Armeen T, Armeen HT, Armeen S and Armeen SD, wherein the letter designation relates to the fatty group, such as coco, oleyl, tallow, or stearyl groups. In one embodiment the fatty amine is present. In one embodiment the fatty amine is not present.
In one embodiment the antiwear agent includes a sulphurised olefin.
Examples of the sulphurised olefin include an olefin derived from propylene, isobutylene, pentene, an organic sulphide and/or polysulphide including benzyldisulphide; bis-(chlorobenzyl) disulphide; dibutyl, tetrasulphide; di-tertiary butyl polysulphide; and sulphurised methyl ester of oleic acid, a sulphurised alkylphenol, a sulphurised dipentene, a sulphuris'ed terpene, a sulphurised Diels-Alder adduct, an alkyl sulphenyl N'N-dialkyl dithiocarbamates; or mixtures thereof. In one embodiment the sulphurised olefin includes an olefin derived from propylene, isobutylene, pentene or mixtures thereof. In one embodiment the sulphurised olefin is present. In one - embodiment the sulphurised olefin is not present.
In one embodiment the antiwear agent includes a phosphosulphurised ' hydrocarbon. Examples include a dithiophosphate, the reaction product of phosphorus sulphide with turpentine and/or methyl oleate; a phosphorus ester including a dihydrocarbon and/or a trihydrocarbon phosphite, e.g., dibutyl phosphite, diheptyl phosphite, dicyclohexyl phosphite, pentylphenyl phosphite;
dipentylphenyl phosphite, tridecyl phosphite, distearyl phosphite and polypropylene substituted phenol phosphite; or mixtures thereof.
In one embodiment the antiwear agent includes phosphorus antiwear compounds similar to the amine salt of a phosphorus compound described above, except the amine salt has been replaced partially or wholly by a valence of a metal to form a metal salt. The valence of metal includes an alkali metal, alkaline earth metal, a transition metal or mixtures thereof. Examples of a metal include sodium, potassium, lithium, calcium, magnesium, barium, zinc or mixtures thereof.

In one embodiment the antiwear agent includes a metal hydrocarbyl dithiophosphate. Examples of a metal hydrocarbyl dithiophosphate include zinc dihydrocarbyl dithiophosphates (often referred to as ZDDP, ZDP or ZDTP). Examples of suitable zinc hydrocarbyl dithiophosphates compounds may include the reaction product(s) of heptyl or octyl or nonyl dithiophosphoric acids with ethylene diamine, morpholine or mixtures thereof.
The antiwear agent is present in ranges including from about 0 wt % to about 30 wt % of the composition, in another embodiment about 0.001 wt % to 30 wt % of the composition, in another embodiment from about 0.05 wt % to about 20 wt % of the composition, in another embodiment from about 1 wt % to about 15 wt % of the composition and in another embodiment from about 0.5 wt % to about 10 wt % of the composition.
Dispersant In one embodiment of the invention the composition further includes a dispersant. The dispersant may be used alone or in combination with other dispersant additives. The dispersant includes those derived from a N-substituted long chain alkenyl succinimide.
The N-substituted long chain alkenyl succinimide has a variety of chemical structures and includes a mono-succinimide and/or a di-succinimide.
The long chain alkenyl group includes those with a number average molecular weight of about 350 to about 10,000, in another embodiment about 400 to about 7000, in another embodiment about 500 to about 5000 and in yet another embodiment about 500 to about 4000. In one embodiment the long chain alkenyl group is a polyisobutylene group, which has a number average molecular weight from 800 to 1600 and in another embodiment from about 1600 to about 3000. The succinimide includes those prepared by the condensation of a hydrocarbyl-substituted acylating agent (e.g., hydrocarbyl-substituted succinic anhydride) with a polyamine or an amino alcohol, a polyalkylene polyamine or poly(ethyleneainine) such as triethylene tetramine, tetraethylene pentamine, pentaethylene hexamine, still bottoms (often described as HPAXTM) or mixtures thereof. In one embodiment the polyamine is still bottoms.

The N-substituted long chain alkenyl succinimide dispersant additives and their preparation are disclosed, for instance, in US Patent Numbers 3,361,673, 3,401,118 and 4,234,435.
Another class of dispersant includes Mannich bases, which are the reaction products of alkyl phenols in which the alkyl group includes at least about 30 carbon atoms with aldehydes (especially formaldehyde) and amines (especially polyalkylene polyamines) and are described in more detail in U.S.
Patent 3,634,515.
Another class of ashless dispersant is high molecular weight esters.
These materials are similar to the above-described succinimides except that they may be seen as having been prepared by reaction of a hydrocarbyl acylating agent and a polyhydric aliphatic alcohol such as glycerol, pentaerythritol, or sorbitol. Such materials are described in more detail in U.S.
Patent 3,381,022.
The dispersant may also be post-treated by reaction with any of a variety of agents. Among these are urea, thiourea, dimercaptothiadiazoles, carbon disulfide, aldehydes, ketones, carboxylic acids, hydrocarbon-substituted succinic anhydrides, nitriles, epoxides, boron compounds, and phosphorus compounds. References detailing such treatment are listed in U.S. Patent 4,654,403. In one embodiment the dispersant is borated dispersant especially a borated N-substituted long chain alkenyl succinimide or mixtures thereof. In one embodiment of the invention the borated dispersant is not present.
The dispersant is present in a ranges from about 0 wt % to about 25 wt % of the composition, in another embodiment about 0.01 wt % to about 15 wt % of the composition, in another embodiment about 0.1 wt % to about 8 wt %
of the composition and in yet another embodiment about 0.5 wt % to about 4 wt % of the composition.
Detergent The composition may further include a detergent. Detergent compounds are known and include neutral or overbased, Newtonian or non-Newtonian, basic salts of alkali, alkaline earth and transition metals with one or more of a phenate, a sulphurised phenate, a sulphonate, a carboxylic acid, a phosphorus acid, a mono- and/or a di- thiophosphoric acid, a saligenin, a salixarate, an alkylsalicylate or mixtures thereof. Commonly used metals include sodium, potassium, calcium, magnesium lithium or mixtures thereof. Most commonly used metals include sodium, magnesium and calcium. In one embodiment of the invention the detergent include a phenate, a sulphurised phenate or mixtures thereof. In one embodiment of the invention the detergent is a sulphurised phenate.
Antioxidant The composition of the invention may further include an antioxidant.
The antioxidant compounds are known and include a molybdenum dithiocarbamate, a sulphurised olefin, a hindered phenol, a diphenylamine or mixtures thereof. The antioxidant can be used alone or in combination. In one embodiment the antioxidants includes a hindered phenol, a diphenylamine or mixtures thereof.
The diphenylamine antioxidant includes those with a mono- or a di-alkylated phenyl ring. Examples of suitable diphenylamine antioxidant include bis-nonylated diphenylamine, nonyl diphenylamine, octyl diphenylamine, bis-octylated diphenylamine, bis-decylated diphenylamine, decyl diphenylamine or mixtures thereof.
The hindered phenol antioxidant includes a secondary butyl and/or a tertiary butyl group as a sterically hindering group. The phenol group optionally further includes a substituted hydrocarbyl group and/or a bridging group linking to a second aromatic group. Examples of suitable hindered phenol antioxidant include 2,6-di-tert-butylphenol, 4-methyl-2,6-di-tert-butylphenol, 4-ethyl-2,6-di-tert-butylphenol, 4-propyl-2,6-di-tert-butylphenol, 4-butyl-2, 6-di-tert-butylphenol 2, 6-di-tert-butylphenol, 4-pentyl-2, 6-di-tert-butylphenol, 4-hexyl-2, 6-di-tert-butylphenol, 4-heptyl-2, 6-di-tert-butylphenol, 4-(2-ethylhexyl)-2,6-di-tert-butylphenol, 4-octyl-2,6-di-tert-butylphenol, 4-nonyl-2,6-di-tert-butylphenol, 4-decyl-2,6-di-tert-butylphenol, 4-undecyl-2,6-di-tert-butylphenol, 4-dodecyl-2,6-di-tert-butylphenol, 4-tridecyl-2,6-di-tert-butylphenol, 4-tetradecyl-2,6-di-tert-butylphenol or mixtures thereof. In one embodiment the hindered phenol antioxidant is an ester, for example, Irganox L-135 a commercially available product from Ciba Specialty Chemicals.
Suitable examples of molybdenum dithiocarboamate include commercial materials sold under the trade names such as Vanlube 822TM and MolyvanTM A
from R. T. Vanderbilt Co., Ltd., and Adeka Sakura-LubeTM S-100 and S-165 and S-600 from Asahi Denka Kogyo K. K.
The other performance additive compounds such as a metal deactivator include a benzotriazole; a 1,2,4-triazole, a thiadiazole; a corrosion inhibitor include octylamine octanoate, condensation products of dodecenyl succinic acid or anhydride and a fatty acid such as oleic acid with a polyamine; a foam inhibitor include a copolymer of (a) ethyl acrylate; (b) 2-ethylhexylacrylate and (c) optionally vinyl acetate; a demulsifier include trialkyl phosphates, polyethylene glycols, polyethylene oxides, polypropylene oxides and (ethylene oxide-propylene oxide) polymers; a pour point depressant include polyacrylamides or polymers other than component (b) of the invention such as esters of maleic anhydride-styrene, poly(meth)acrylates, polyacrylates; and a seal swell agent include Exxon Necton-37TM (FN 1380) and Exxon Mineral Seal Oil (FN 3200); may also be used in the composition of the invention.
The invention further provides a method comprising lubricating a surface while imparting deposit control, the method employing a composition comprising:

(a) an oil of lubricating viscosity;

(b) an amine salt of a phosphorus compound; and (c) a compound selected from the group consisting of:

1) a polymeric dispersant viscosity modifier wherein the polymeric dispersant viscosity modifier excludes copolymers derived from (a) a nitrogen containing monomer; and (b) methacrylic acid esters containing from about 9 to about 25 carbon atoms in the ester group;

2) a polymeric dispersant viscosity modifier, a borated dispersant;
and a sulphurised olefin; and 3) mixtures thereof, wherein the surface is a gear, a bearing or mixtures thereof.

The surface is usually metallic and in one embodiment ferrous. In one embodiment of the method, the wear preventing agent is present. Deposit control includes sludge and other deposits. In one embodiment deposit control is reduced sludge accumulation.
Process The invention further provides a process for the preparation of a conlposition comprising mixing:

(a) an oil of lubricating viscosity;

(b) an amine salt of a phosphorus compound; and (c) a compound selected from the group consisting of:

1) a polymeric dispersant viscosity modifier wherein the polymeric dispersant viscosity modifier excludes copolymers derived from (a) a nitrogen containing monomer; and (b) methacrylic acid esters containing from about 9 to about 25 carbon atoms in the ester group; -2) a polymeric dispersant viscosity modifier, a borated dispersant;
and a sulphurised olefin; and 3) mixtures thereof.
Components (a)-(c) are mixed sequentially and/or separately to form the composition of the invention. The mixing conditions include a temperature in the range from about 15 C to about 130 C, in another embodiment about 20 C
to about 120 C and in another embodiment about 25 C to about 110 C; and for a period of time in the range about 30 seconds to about 48 hours, in another embodiment about 2 minutes to about 24 hours, in another embodiment about 5 minutes to about 16 hours and in yet another embodiment about 10 minutes to about 5 hours; and at pressures in the range about 86 kPa to about 266 kPa (about 650 mm Hg to about 2000 mm Hg), in another embodiment about 91 kPa to about 200 kPa (about 690 mm Hg to about 1500 mm Hg), and in another embodiment about 95 kPa to about 133 kPa (about 715 mm Hg to about 1000 mm Hg).
The process optionally includes mixing other optional performance additives as described above. In one embodiment the process provides a process for the preparation of a concentrate. The optional performance additives may be added sequentially, separately or as a concentrate.

Industrial Application The composition of the present invention is useful for a gear or bearing lubricant. The use of the composition described above is capable of imparting one or more performance characteristics including deposit control, reduced carbon varnish, decreased wear, low temperature viscometrics, high temperature viscometrics or mixtures thereof. In one embodiment the composition of the invention is capable of improving one or more of the performance characteristics listed above.
The following examples provide an illustration of the invention. These examples are non exhaustive and are not intended to limit the scope of the invention.

EXAMPLES
Preparative Example 1: Polyrnethacrylate Dispersant Viscosity Modifier (DVM) A container is charged with about 120.1 parts methyl methacrylate, about 722.4 parts C12-C15 alkylmethacrylate, about 6 parts n-dodecylmercaptan, 6 parts t-butylperoctoate (Akzo Trigonox-21) and about 242.0 parts of Total 85N oil, followed by stirring for about 0.25 hours. A reactor equipped with a stirrer, thermocouple reaching into the charged reaction mixture, N2 inlet atop an addition funnel attached to a subsurface tube, and water condenser is charged with about 1/3 of the monomer-initiator solution and about 15.4 parts dimethylaminopropylmethacrylamide. The remainder of the monomer-initiator mixture is placed in the addition funnel. With N2 addition at about 0.3 litres per hour and stirring, the mixture is heated to about 110 C. over about 0.3 hour, heating is stopped and an exotherm to about 143 C over about 0.1 hours is observed. The temperature begins to drop and dropwise addition of the remaining solution is begun. Addition time is about 90 minutes; about 0.4 hours after the peak exothermic temperature, the temperature is about 110 C. The temperature during addition is maintained at about 110 C. The reaction is held at about 110 C for one hour about 1.5 parts of t-butylperoctoate and about 3.5 parts of Total 85N oil is charged to the reaction, the reaction is held at about 110 C for one hour. Another about 1.5 parts of t-butylperoctoate and about 3.5 parts of Tota185N oil is charged and the reaction is held at about 110 C for two hours. The resulting product has M, = 68,800 and polydispersity (M, /Mõ)=1.90.
Preparative Example 2: Polymethacrylate (PMA) with no DVM Properties Prepared in same process as Preparative Example of PMA DVM except Dimethylaminopropylmethacrylamide is not added.
Preparative Example 3: Esterified Maleic Anhydride Styrene Interpolymer DVM
A Polymeric Dispersant Viscosity Modifier derived from a maleic anhydride-styrene interpolymer is prepared in a reactor charged with about 2498.7 parts of about 11.6% solids in toluene slurry of a maleic anhydride/styrene (1:1 mole ratio) copolymer having a RSV=0.08, and about 500.3 parts Alfol 1218 (a mixture of predominantly straight chain primary alcohols having from 12 to 18 carbon atoms). The materials are heated to about 120 C with N2 blowing while removing toluene. A mixture of about 15.8 parts methane sulphonic acid and about 82.8 parts Alfol 810 (a mixture of predominantly straight chain primary alcohols having from 8 to 10 carbon atoms), is added over about 0.5 hour, heating is begun while removing water and excess toluene, stabilising at about 135'C. The reaction is continued for about 18 hours, removing water as toluene-water azeotrope. An aliquot has total acid number =6.1 and strong acid number =3.7, net =2.4, about 98%
esterified. The temperature is raised to about 150'C. The strong acid is neutralized with about 5.6 parts 50% aqueous NaOH added dropwise and held for about 0.5 hour. Then about 3.0 parts aminopropylmorpholine are added over about 0.2 hour followed by heating for 1 hour. An alkylated diphenylamine is added (3.0 parts) and the materials are stripped to 1500C and at about 2.5 kPa (equivalent to about 20 mm Hg pressure). A light mineral oil (SO-44) (218 parts) is added and after mixing, the oil solution is filtered to yield 870 parts (80.0 % of theory) of product.

Preparative Example 4: Esterified Maleic Anhydride Styrene with no DVM
Properties Prepared in same process as Preparative Example of esterified Maleic anhydride Styrene DVM except aminopropylmorpholine is not added.
Examples 1-2 and Reference Examples 1-2 Example 1(Ex 1) was prepared by mixing in about 78.5 wt % of EMERY 3008 PAO oil of lubricating viscosity about 14.5 wt % of a dispersant polymethacrylate of Preparative Example 1 and about 6.4 wt % of a mixture of a sulphurised isobutylene and an alkylamine salt of a phosphoric acid (Primene 81R). Example 2 (Ex 2) is prepared the same way as, Example 1 except about 1.6 wt % of a, borated dispersant is added. Reference Examples 1 and 2 (Ref 1 and Ref 2) were prepared the same way as Example 1 and 2 respectively, except the dispersant polymethacrylate is replaced with a non-dispersant polymethacrylate.

Examples 3-4 and Reference Examples 3-4 Examples 3 (Ex 3) and 4 (Ex 4) were prepared by the process of ' Examples 1 and 2. The only exception is the dispersant polymethacrylate is replaced by 11 wt % of dispersant polyolefin (PA- 1160, commercially available from DSM) and EMERY 3008 PAO oil of lubricating viscosity is present at about 82 wt %. Reference Examples 3 (Ref 3) and 4 (Ref 4) were prepared by the same process as Examples 3 and 4 except, the PA-1160 was replaced by about 7.5 wt % of polyolefid(Lucant HC-2000 commercially available from Mitsui Chemicals America, Inc.).
Examples 5-6 and Reference Examples 5-6 Examples 5 (Ex 5) and 6 (Ex 6) were prepared by were prepared by the process of Examples 1 and 2. The only exception is the dispersant polymethacrylate is replaced by about 22 wt % of a dispersant esterified styrene-maleic anhydride interpolymer and the EMERY 3008 PAO oil of lubricating viscosity at about 71 wt %. Reference Examples 5 (Ref 5) and 6 (Ref 6) were prepared by the same process as Examples 5 and 6 except, the dispersant esterified styrene-maleic anhydride interpolymer is replaced by a non-dispersant esterified styrene-maleic anhydride interpolymer.

Test 1: Oxidation Stability Test The Oxidation Stability test was carried out based on a modified Coordinating European Council (CEC) test method CEC-L-48-A-00. The modified test conditions used were a test tube is filled with about 90 g sainple and heated to about 160 C for a period of about 72 hours with an air flow of about 83cc miri 1. The test procedure measures a tube rating, % viscosity increase (at 40'C and 100*C) and spot rating. A lighter tube rating indicates decreased deposit formation on the tube. Higher spot ratings indicate reduced amounts of particulate matter being produced. The results obtained were:

Example Tube Rating Spot Rating Ex 1 Medium 61.9 Ref 1 Heavy 49.4 Ex 2 Light to Medium 100 Ref 2 Heavy 26.4 Ex 3 Medium 43.7 Ref 3 Heavy 69.5 Ex 4 Light to Medium 100 Ref 4 Heavy 31.3 Ex 5 Heavy 30.3 Ref 5 Heavy 27.3 Ex 6 Medium 54.7 Ref 6 Medium 37.7 The analysis of the experimental data obtained for the following combinations of reference examples and invention examples Ex 1 with Ref 1; Ex 2 with Ref 2; Ex 3 with Ref 3; Ex 4 with Ref 4; Ex 5 with Ref 5; and Ex 6 with Ref 6 shows that the composition of the invention produces decreased amounts of deposit formation over the corresponding reference example.
In summary the composition of the invention is capable of imparting one or more performance characteristics including deposit control, reduced carbon varnish, decreased wear, low temperature viscometrics, high temperature viscometrics or mixtures thereof.
While the invention has been explained, it is to be understood that various modifications thereof will become apparent to those skilled in the art upon reading the specification. Therefore, it is to be understood that the invention disclosed herein is intended to cover such modifications as fall within the scope of the appended claims.

Claims (10)

1. A composition comprising:
(a) an oil of lubricating viscosity;

(b) an amine salt of a phosphorus compound; and (c) a compound selected from the group consisting of:

1) a polymeric dispersant viscosity modifier wherein the polymeric dispersant viscosity modifier excludes copolymers derived from (a) a nitrogen containing monomer; and (b) methacrylic acid esters containing from about 9 to about 25 carbon atoms in the ester group;
2) a polymeric dispersant viscosity modifier, a borated dispersant; and a sulphurised olefin; and
3) mixtures thereof.

2. The composition of claim 1, wherein the amine salt of a phosphorus compound is an extreme pressure agent, a wear preventing agent, a friction modifier or mixtures thereof.

3. The composition of claim 1, wherein the amine salt of a phosphorus compound is selected from the group consisting of a sulphur atom in the molecule, and contains a hydrocarbyl group on the amine with about 8 to about 26 carbon atoms and mixtures thereof.
4. The composition of claim 1, wherein the polymeric dispersant viscosity modifier is derived from at least one polymer selected from the group consisting of a poly(meth)acrylate, a functionalised polyolefin, an interpolymer derived from: (i) a vinyl aromatic monomer; (ii) an unsaturated carboxylic acid or derivatives thereof; and mixtures thereof.
5. The composition of claim 1, wherein the polymeric dispersant viscosity modifier is an interpolymer derived from a styrene-maleic anhydride copolymer.
6. The composition of claim 1, wherein the borated dispersant is a N-substituted long chain alkenyl succinimide and wherein the sulphurised olefin includes an olefin derived from propylene, isobutylene, pentene or mixtures thereof.
7. The composition of claim 1, wherein:
(a) the oil of lubricating viscosity is present at up to about 99.9 wt %
of the composition;

(b) the amine salt of a phosphorus compound is present at about 0.001 wt % to 30 wt % of the composition;

(c) the polymeric dispersant viscosity modifier is present at about 0.001 wt % to about 60 wt % of the composition;

(d) the borated dispersant is present at 0.01 wt % to about 15 wt % of the composition; and (e) the sulphurised olefin is present at about 0.001 wt % to 30 wt %
of the composition.
8. A method comprising lubricating a surface while imparting deposit control, the method employing a composition comprising:

(a) an oil of lubricating viscosity;

(b) an amine salt of a phosphorus compound; and (c) a compound selected from the group consisting of:

1) a polymeric dispersant viscosity modifier wherein the polymeric dispersant viscosity modifier excludes copolymers derived from (a) a nitrogen containing monomer; and (b) methacrylic acid esters containing from about 9 to about 25 carbon atoms in the ester group;

2) a polymeric dispersant viscosity modifier, a borated dispersant; and a sulphurised olefin; and 3) mixtures thereof, wherein the surface is a gear, a bearing or mixtures thereof.
9. A process for the preparation of a composition comprising mixing:
(a) an oil of lubricating viscosity;

(b) an amine salt of a phosphorus compound; and (c) a compound selected from the group consisting of:

1) a polymeric dispersant viscosity modifier wherein the polymeric dispersant viscosity modifier excludes copolymers derived from (a) a nitrogen containing monomer; and (b) methacrylic acid esters containing from about 9 to about 25 carbon atoms in the ester group;

2) a polymeric dispersant viscosity modifier, a borated dispersant; and a sulphurised olefin; and 3) mixtures thereof.
10. The use of the composition of claim 1 for imparting one or more performance characteristics including deposit control, reduced carbon varnish, decreased wear, low temperature viscometrics, high temperature viscometrics or mixtures thereof.
CA002566656A 2004-05-18 2005-05-12 Polymeric dispersant viscosity modifier composition Abandoned CA2566656A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/848,175 2004-05-18
US10/848,175 US20050261142A1 (en) 2004-05-18 2004-05-18 Polymeric dispersant viscosity modifier composition
PCT/US2005/016653 WO2005116174A1 (en) 2004-05-18 2005-05-12 Polymeric dispersant viscosity modifier composition

Publications (1)

Publication Number Publication Date
CA2566656A1 true CA2566656A1 (en) 2005-12-08

Family

ID=34969555

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002566656A Abandoned CA2566656A1 (en) 2004-05-18 2005-05-12 Polymeric dispersant viscosity modifier composition

Country Status (6)

Country Link
US (1) US20050261142A1 (en)
EP (1) EP1749078A1 (en)
JP (1) JP2007538141A (en)
AU (1) AU2005248342A1 (en)
CA (1) CA2566656A1 (en)
WO (1) WO2005116174A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100099588A1 (en) 2007-01-30 2010-04-22 The Lubrizol Corporation Dispersant Combination for Improved Transmission Fluids
WO2008147701A1 (en) * 2007-05-24 2008-12-04 The Lubrizol Corporation Method of lubricating-an aluminium silicate composite surface with a lubricant comprising ashless, sulphur, phosphorus free antiwear agent
JP5408639B2 (en) * 2007-05-25 2014-02-05 大同化学工業株式会社 Working fluid composition for hydrous slicing
BRPI1011745A2 (en) 2009-06-26 2016-03-22 Lubrizol Corp motor oil formulations for biodiesel fuels.
JP2015512468A (en) * 2012-04-04 2015-04-27 ザ ルブリゾル コーポレイションThe Lubrizol Corporation Bearing lubricant for grinding equipment
CN109537358B (en) * 2018-11-07 2022-07-26 上海东升新材料有限公司 Polymerization dispersant and environment-friendly surface sizing agent prepared by adopting same

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4519929A (en) * 1982-02-19 1985-05-28 Edwin Cooper, Inc. Lubricating oil composition containing N-allyl amide graft copolymers
US5037569A (en) * 1987-05-22 1991-08-06 The Lubrizol Corporation Anti-oxidant products
US5652201A (en) * 1991-05-29 1997-07-29 Ethyl Petroleum Additives Inc. Lubricating oil compositions and concentrates and the use thereof
US6002051A (en) * 1992-10-16 1999-12-14 The Lubrizol Corporation Tertiary alkyl alkylphenols and organic compositions containing same
IL107927A0 (en) * 1992-12-17 1994-04-12 Exxon Chemical Patents Inc Oil soluble ethylene/1-butene copolymers and lubricating oils containing the same
JP2840526B2 (en) * 1993-06-24 1998-12-24 出光興産株式会社 Lubricating oil composition
JP2787417B2 (en) * 1994-06-02 1998-08-20 三洋化成工業株式会社 Lubricating oil composition
BR9504838A (en) * 1994-11-15 1997-10-07 Lubrizol Corp Polyol ester lubricating oil composition
JP4354014B2 (en) * 1995-10-05 2009-10-28 出光興産株式会社 Lubricating oil composition for continuously variable transmission
US5843874A (en) * 1996-06-12 1998-12-01 Ethyl Corporation Clean performing gear oils
US5807815A (en) * 1997-07-03 1998-09-15 Exxon Research And Engineering Company Automatic transmission fluid having low Brookfield viscosity and high shear stability
JP4338807B2 (en) * 1998-02-18 2009-10-07 ザ ルブリゾル コーポレイション Viscosity improver for lubricating oil compositions
US6124249A (en) * 1998-12-22 2000-09-26 The Lubrizol Corporation Viscosity improvers for lubricating oil compositions
JPH11323371A (en) * 1998-05-21 1999-11-26 Cosmo Sogo Kenkyusho Kk Gear oil composition
JP4038306B2 (en) * 1999-06-15 2008-01-23 東燃ゼネラル石油株式会社 Lubricating oil composition for continuously variable transmission
JP4436533B2 (en) * 2000-04-27 2010-03-24 新日本石油株式会社 Lubricating oil composition
US6586375B1 (en) * 2002-04-15 2003-07-01 The Lubrizol Corporation Phosphorus salts of nitrogen containing copolymers and lubricants containing the same

Also Published As

Publication number Publication date
JP2007538141A (en) 2007-12-27
AU2005248342A1 (en) 2005-12-08
US20050261142A1 (en) 2005-11-24
WO2005116174A1 (en) 2005-12-08
EP1749078A1 (en) 2007-02-07

Similar Documents

Publication Publication Date Title
US8343900B2 (en) Polymers and methods of controlling viscosity
JP5879378B2 (en) Novel copolymer and its lubricating composition
US8293689B2 (en) Lubricating composition containing a polymer and antiwear agents
JP2015507073A (en) Lubricating composition comprising an esterified copolymer and a small amount of a dispersant suitable for power transmission applications
CA2566656A1 (en) Polymeric dispersant viscosity modifier composition
AU2011349666B2 (en) Functionalized copolymers and lubricating compositions thereof
WO2012162207A1 (en) Lubricating composition comprising poly (isobutylene) /poly (vinyl aromatic) block copolymer
EP3458554B1 (en) Hydraulic fluid composition

Legal Events

Date Code Title Description
FZDE Discontinued