CA2565899C - Modular refrigeration system for refrigeration appliance - Google Patents

Modular refrigeration system for refrigeration appliance Download PDF

Info

Publication number
CA2565899C
CA2565899C CA2565899A CA2565899A CA2565899C CA 2565899 C CA2565899 C CA 2565899C CA 2565899 A CA2565899 A CA 2565899A CA 2565899 A CA2565899 A CA 2565899A CA 2565899 C CA2565899 C CA 2565899C
Authority
CA
Canada
Prior art keywords
base plate
evaporator
drain pan
refrigeration system
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA2565899A
Other languages
French (fr)
Other versions
CA2565899A1 (en
Inventor
Robert L. Morse
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tecumseh Products Co
Original Assignee
Tecumseh Products Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/167,919 external-priority patent/US6701739B2/en
Application filed by Tecumseh Products Co filed Critical Tecumseh Products Co
Priority to CA2650643A priority Critical patent/CA2650643C/en
Publication of CA2565899A1 publication Critical patent/CA2565899A1/en
Application granted granted Critical
Publication of CA2565899C publication Critical patent/CA2565899C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Removal Of Water From Condensation And Defrosting (AREA)
  • Control Of Vending Devices And Auxiliary Devices For Vending Devices (AREA)

Abstract

A modular refrigeration system having an evaporator, a condenser, and a compressor fluidly connected by a plurality of conduits comprises a one-piece base plate. The evaporator, condenser, and compressor are mounted to the base plate. A drain pan is integrally formed in the base plate. The drain pan is located beneath the compressor. A drain basin is integrally formed in the base plate located beneath the evaporator. The basin and the drain pan are fluidly connected such that condensate collects in the drain pan.

Description

MODULAR REFRIGERATION SYSTEM FOR
REFRIGERATION APPLIANCE
BACKGROUND OF THE INVENTION
The present invention relates to refrigeration appliances and more particularly to those having a modular refrigeration system.
Conventionally, refrigeration appliances are provided with a refrigeration system to cool the interior thereof. One such refrigeration appliance may include, e.g., a vending machine, refrigerator or freezer case, or the like. The refrigeration system typically includes a compressor, evaporator, condenser, and expansion device fluidly connected by a plurality of conduits. The system also includes control electronics for operation of the system.
Some refrigeration appliances include a refrigeration system having the components thereof individually mounted within the appliance. In the case of failure of one of the components, the malfunctioning component must be replaced. In order to repair the system, the refrigerant charge in the failed component and the conduits interconnecting the component to the system must be removed. The component is replaced and the system is then recharged with refrigerant.
A problem with this type of system is that if the component is replaced on site, the repair could be time consuming and messy, and require a substantial amount of equipment to be brought to the job site to effect the repair. If the entire refrigeration appliance is taken off site to be repaired, the time necessary to complete the repair and return the appliance may be substantial. The cost of the repair and travel time is also significant.
In other types of refrigeration appliances, several of the refrigeration system components may be mounted to a base which is removably mounted in the lower end of the appliance. The base of the refrigeration system may be provided with a condensate pan located beneath the condenser in which condensate produced during operation of the refrigeration system collects. The condensate is then caused to evaporate by directing air over the pan. Additionally, the discharge conduit from the compressor may be located at least partially in the pan to assist with the evaporation process. One particular base plate of the prior art is formed from several layers of material.
A problem with this type of refrigeration system is that with the condensate pan being located beneath the condenser, the evaporation of the condensate takes more time as the condenser fan is not directly blowing warm air over the pan. Further, with the base being formed of several layers the assembly time and thus the cost of the system is increased.

It is desired to provide a modular refrigeration system which is a removable and replaceable unit providing faster boil off of collected condensate and an improved base plate for the unit.
SUMMARY OF THE INVENTION
The present invention relates to an integrated, modular refrigeration system having a compressor, evaporator, condenser, expansion device, conduits, and control electronics assembled onto a base which is installed into a refrigeration appliance, such as, e.g., a vending machine. In the event of component failure, the refrigeration system unit may be removed and a new one used to replace the unit. The failed component in the removed system is then later replaced to refurbish the system for use in another refrigeration appliance.
The refrigeration system is slid into and out of the appliance as a unit, with the only installation steps including connecting the electrical power and control connections.
The present invention includes a one-piece molded base plate to which all of the refrigeration system components are mounted. The base plate includes integrally formed bosses and studs for mounting the compressor to the plate. The compressor includes mounting feet which rest upon the bosses, positioning the compressor above the condensate pan formed beneath the compressor. The mounting feet include apertures through which the mounting studs extend. A push on nut is placed on the stud to secure the compressor to the base plate. The other components may be mounted to the base plate using fasteners such as screws, or the like.
The evaporator is mounted to a one-piece evaporator mount secured to the base plate. The evaporator core is attached to the evaporator mount which includes an integral drain where condensate collects and delivers it to a common point such as a drain basin formed in the base plate. The condensate from the evaporator mount collects in the drain basin integrally formed in the base plate and is directed to the drain pan located beneath the compressor by a trough also formed in the base plate.
'The discharge tube from the compressor is located within the drain pan to assist in the rapid boil off of water collected therein. Air heated by and drawn through the condenser is blown across the surface of the condensate to further assist in evaporation ~rom the drain pan. An integral evaporator fan motor mount is provided in the base plate as well as integral airflow holes through which air enters and exits the chamber defined by an evaporator cover.
The evaporator cover encloses the evaporator core. The cover is insulated, being provided with a smooth plastic inner liner in direct contact with the refrigerated air. The liner has large radii so as not to disrupt the flow of air along the inner surface of the cover. A
molded foam outer liner having a variable thickness is located over the smooth plastic inner liner. Projections are molded into the base plate which fit into the inner perimeter corners of the interior liner at the open end of the cover to maintain the position of the cover on the base plate. A groove is provided in the outer surfaces of the top and the sides in which a large rubber band is provided. The end of the rubber band is stretched over the cover and is looped around hooks formed in the base plate to retain the position of the evaporator cover.
The present invention also provides a modular refrigeration system having an evaporator, a condenser, and a compressor fluidly connected by a plurality of conduits. The modular refrigeration system includes a one-piece base plate having the evaporator, condenser, and compressor mounted thereto. A drain pan is integrally formed in the base plate located beneath the compressor. A drain basin is integrally formed in the base plate located beneath the evaporator. The basin and the drain pan are fluidly connected such that condensate collects in the drain pan.
The present invention further provides a modular refrigeration system having an evaporator, a condenser, and a compressor fluidly connected by a plurality of conduits. The modular refrigeration system includes a one-piece base plate having the evaporator, condenser, and compressor mounted thereto. A drain pan is integrally formed in the base plate located beneath the compressor in which condensate collects. The condenser further includes a fan which directs air over the drain pan to evaporate the condensate. A fan mount is integrally formed in the base plate located beneath the evaporator. At least one airflow passageway is located in the base plate. A cover is mounted to the base plate encasing the evaporator with the fan mount and the air#low passageway being located beneath the cover.
The present invention provides a modular refrigeration system having an evaporator, a condenser, and a compressor fluidly connected by a plurality of conduits. The modular refrigeration system includes a one-piece base plate to which the evaporator, condenser, and compressor are mounted. At least one projection is integrally formed with the base plate and engages a cover mounted to the base plate to encase the evaporator. A groove is formed in cover. A hook is located on each of opposite sides of the base plate. An elastic fastener is received in the groove and engages each of the hooks to secure the cover to the base plate.
The present invention also provides a method of attaching a cover for an evaporator to a base plate of a modular refrigeration system including engaging the cover with projections extending from the base plate; engaging a first hook formed on a first side of the base plate with an elastic fastener; locating the elastic fastener in a groove formed in the cover; and engaging a second hook formed on a second, opposite side of the base plate with the elastic fastener, whereby the cover is secured to the base plate.
One advantage of the present invention is that the modular unit facilitates quick and easy repair of the refrigeration appliances and simplifies assembly of the appliance at the OEM.
An additional advantage of the present invention is the integrally formed base plate which is easily constructed and cost effective.
A further advantage of the present invention is the method of mounting the evaporator cover to the base plate. The projections in the base plate allow for alignment of the cover over the evaporator with the elastic fastener being quickly and easily removable and replaceable in the case of system refurbishment and repair.
BRIEF DESCRIPTION OF THE DRAWINGS
The above mentioned and other features and objects of this invention, and the manner of attaining them, will become more apparent and the invention itself will be better understood by reference to the following description of an embodiment of the invention taken in conjunction with the accompanying drawings, wherein:
Figure 1 is a perspective view of a refrigeration apparatus having a modular refrigeration system in accordance with the present invention;
Figure 1A is a sectional view of the refrigeration apparatus of Figure 1 taken along line I A-I A;
Figure 2 is a perspective view of the modular refrigeration system of the press nt invention;
Figure 3 is a perspective view of the modular refrigeration system of Figure 2, with the evaporator cover removed;
Figure 4 is a perspective view of a base plate of the modular refrigeration system of the present invention;
Figure S is a top plan view of the base plate of Figure 4;
Figure 6 is a side elevational view of the base plate of Figure 4;

Figure 7 is a sectional view of a compressor mounting area in the base plate of Figure 6 taken along line 7-7;
Figure 8 is a perspective view of an evaporator mount of the modular refrigeration system of the present invention;
Figure 9 is an end view of the evaporator mount of Figure 8;
Figure 10 is a side elevational view of the evaporator mount of Figure 8;
Figure 11 is to view of the evaporator mount of Figure 8;
Figure 1 Z is a perspective view of an evaporator cover of the modular refrigeration system of the present invention;
Figure 13 is a bottom plan view of the evaporator cover of Figure 12;
Figure 14 is a sectional view of the evaporator cover of Figure I3 taken along line I4-14; and Figure 15 is a sectional view of the evaporator cover of Figure 14 taken along line 15-1 S.
Corresponding reference characters indicate corresponding parts throughout the several views. Although the drawings represent an embodiment of the present invention, the drawings are not necessarily to scale and certain features may be exaggerated in order to better illustrate and explain the present invention.
DETAILED DESCRIPTION OF THE INVENTION
Refernng to Figures 1 and 1A, refrigeration appliance 20 may be, e.g., a vending machine, refrigerator or freezer case, or the like. Refrigeration appliance 20 is provided with modular refrigeration system 22 which is an integrated, packaged unit mounted in upper compartment 24 of appliance 22. Upper compartment 24 is defined by cover 25 which has three sides. The top and rear of cover 25 are open so that modular refrigeration system 22 may be slidably installed and removed as necessary. Cover 25 is provided with front vent panel 26 having louvers 28 therein through which air may enter and exit the compartment.
Modular refrigeration system 22 is mounted to the upper end of compartment 30 located below compartment 24. Lower compartment 30 is the cooled or refrigerated portion of appliance 20.
Refernng to Figures 2 and 3, modular refrigeration system 22 is a unit having base plate 32 onto which condenser assembly 34 including condenser fan 35, evaporator 36, compressor 38, expansion device 39, fan 40, and electrical control box 42 are mounted.
Cover 44 is secured to base plate 32 to encase evaporator 36 and fan 40.
Conduits 46 fluidly connect the refrigeration system components. With the components interconnected by conduits 46, system 22 is initially charged with refrigerant prior to being shipped to the OEM
which facilitates quick and easy assembly of refrigeration appliance 20.
Refrigeration system 22 may be slidably removed from and replaced in appliance 20 as a unit. For example, in the case of component failure, the failed refrigeration system unit 22 is removed from appliance 20 and a second refrigeration system unit 22 is installed.
The installation of a working unit 22 is quick and easy with only an electrical connection to a power source and any control connections needing to be made. The removed unit 22 is refurbished by removing and replacing the failed component off site. The refurbished system is then recharged with refrigerant and used to replace another unit 22 if necessary.
Refernng to Figures 4, 5, 6, and 7, refrigeration system 22 includes one piece, integrally formed base plate 32. Base plate 32 is formed by any suitable method including injection molding, pressure molding, casting, or the like and is constructed from a material such as plastic, reinforced plastic, or lightweight metals such as aluminum.
As illustrated in Figures 2, 3, 4, and 5, condenser 34 assembly and electrical control box 42 are mounted to base plate 32, adjacent compressor 38, by any suitable type of fasteners 48 such as screws. Fasteners 48 are received in apertures formed mounting feet 50 of condenser assembly 34 and electrical control box 42 and engage apertures 52 formed in plate 32 to secure the components thereto.
Base plate 32 is provided with integral compressor mount 54 for mounting compressor 38 thereto. Referring to Figures 4, 5, 6, and 7, compressor mount 54 is formed with four bosses 56 having integral studs 58 extending upwardly therefrom and integrally formed therewith. Bosses 56 are positioned to align with mounting feet 60 (Figure 2) integrally formed with the compressor housing such that studs 58 are received in apertures located in feet 60. As shown in Figure 2, one fastener 62 is secured to the end of each stud 58 to secure compressor 38 into position on base plate 32. Fasteners 62 may be any suitable type of nut such as, e.g., a pal nut or push nut.
Compressor mount 54 is located in condensate drain pan 64 integrally formed in base plate 32 directly beneath compressor 38. Bosses 56 extend upwardly from lower surface 66 of drain pan 64 a predetermined distance. Mounting feet 60 of compressor 38 engage the upper surface of bosses 56 to locate compressor 38 above the maximum condensate level in drain pan 64. Condensate drain pan 64 is in fluid communication with drain basin 68 located beneath evaporator 36 by channel or trough 70. Drain basin 68 and trough 70 are integrally formed in base plate 32.
Referring to Figures 3, 8, 9, 10, and 1 l, evaporator 36 is mounted to base plate 32 via evaporator mount 72. Evaporator mount 72 is constructed from any suitable material able to support evaporator 36 by a method such as molding or casting, for example.
Evaporator mount 72 includes substantially horizontal support platform 74 having substantially vertical legs 76. Located at the bottom of legs 76 are mounting feet 78 which extend substantially perpendicularly from legs 76. Mounting feet 78 are received in recesses 80 Figure 4) integrally formed in base plate 32 having apertures 82 located therein.
Apertures 84 formed in mounting feet 78 align with apertures 82 to receive fasteners 86 (Figure 3) to secure evaporator mount 72 to base plate 32. Located about the periphery of support platform 74 is lip 88 which defines drip pan 90 for condensate produced by evaporator 36.
Extending upwardly from support platform 74 near the rear corners thereof are braces 92.
Braces 92 are provided with apertures 94 which align with apertures in evaporator 36.
Fasteners 96 are received by apertures 94 and those in evaporator 36 to secure evaporator 36 to mount 72.
Referring to Figure 10, drip pan 90 is defined by upper surface 98 of support platform 74 and lip 88. Integrally formed in support platform 74 is channel 100. Upper surface 98 of support platform 74 is downwardly inclined toward channel 100 to direct evaporator condensate produced during operation of refrigeration system 22 toward the channel. From channel 100, the condensate enters funnel shaped drain 102 and travels along passageway 104 to collect in drain basin 68 (Figure 4).
As shown in Figures 3, 4, and 5, fan mount 106 is integrally formed in base plate 32 to mount fan 40 beneath evaporator 36. Located adjacent fan mount 106 are airflow passageways 108 formed in base plate 32. Air enters and exits chamber 110 defined by evaporator cover 44 through airflow passageways 108 where it is cooled by evaporator 36.
The cooled air then refrigerates appliance 20.
The airflow path through refrigeration apparatus 20 is illustrated in Figure 1A.
The temperature of the air within compartment 30 of apparatus 20 increases as heat from the objects being cooled, located in compartment 30, is transferred to the air.
The objects in compartment 30 are thus cooled. The warmed air exits compartment 30 in the direction of arrows 144 through first warm air chamber 152 located in top wall 148 ofcomparlment 30.
The warmed air in chamber 152 passes through airflow passageways 108 formed in base plate 32 to enter chamber 110 defined by evaporator cover 44. The warmed air flows in the direction of arrows 144 through evaporator 36. As the warm air flows over coils 142 of evaporator 36, heat is transferred from the air to the refrigerant through the coils, thus reducing the temperature of the air. The cooled air flows from evaporator 36 in the direction of arrows 156 and by the force of fan 40 through aperture 1 ~8 in base 32 over which fan 40 is mounted. The cooled air enters second chamber 154 formed in top wall 148 being separated from warm air chamber 152 by baffle I 50. The cooled air then passes into duct i62 defined by side wall 164 of compartment 30 and louvered wall 166. The cooled air flows along duct 162, exiting into the interior of compartment 30 through a plurality of spaced openings 168 formed in louvered wall 166.
Referring to Figures 12, 13, 14, and 15, cover 44 is constructed from a first layer I 12 and a second layer 114. First layer 112 is in direct contact with refrigerated air circulating in chamber 110 defined by cover 44. Layer 112 is formed from any suitable material including plastic by a method such as injection molding. Inner surface 116 of first layer 112 is smooth to prevent turbulence in the circulating refrigerated air as it comes into contact therewith. Secured to outer surface I 18 of first layer I 12 is second layer I 14.
Second layer 114 is molded from an insulative foam material and may have a variable thickness. In order to fit the entire refrigeration system 22 onto base plate 32, the thickness of insulating layer 114 can be varied in certain areas. As illustrated in Figures 12 and 15, first and second layers 112 and 114 are provided with large radii 120. Radii 120 direct the airflow in chamber 110 smoothly through evaporator 36, thus improving the system efficiency.
Opening 121 is provided in one side of cover 44 through which conduit 46 and expansion device 39 passes to connect with evaporator 36.
As illustrated in Figures 12, 13, and 1 S, cover 44 is provided with mounting means including longitudinal groove 122 formed in the outer surface of insulative layer 114 and projections 124 molded into base plate 32 (Figure 4). Projections 124 engage first layer 112 of cover 44 and are provided for properly locating cover 44 on base plate 32 over evaporator 36 and airflow passageway 108. Cover 44 is secured against gasket 125 located between base plate 32 and cover 44 by elastic fastener 126 (Figure 2) received in groove 122.
Elongated elastic fastener 126 may be a rubber band or any other suitable elastic member which retains cover 44 against base plate 32 by means of its self tensioning, elastic properties. Fastener 126 is secured to hooks 128 integrally formed on respective opposite sides 130 and 132 of base plate 32 (Figures 2, 4, and 5). Hooks 128 are located in recesses 131 in sides 130 and 132 so as not to extend past the width of base plate 32.
Groove 122 in ends 134 and 136 of cover 44 align with recesses I31. Fastener 126 is then looped over respective hooks 128 to secure cover 44 onto base plate 32.
The general operation of refrigeration system 22 includes first supplying power to operate the motor of compressor 38, condenser fan 35, and fan 40. The refrigerant gas in the system enters compressor 38 where it is compressed, pressurizing the gas and thus increasing the temperature. The heated refrigerant gas travels through compressor discharge conduit 138 (Figure 2) and enters heat exchanger coils 140 of condenser assembly 34 where the gas is condensed to a liquid state. A portion of discharge conduit 138 is located in drain pan 64 where the heat of the refrigerant gas within the conduit assists with the rapid boil off of condensate collected in drain pan 64. The heat of the gas entering condenser coils 140 is conducted to the ambient air as condenser fan 35 blows air across coils 140.
The heated air then travels over condensate drain pan 64 to further help with the evaporation process of condensate in pan 64. From the condenser, the liquid refrigerant flows through expansion device 39 which reduces the pressure of the refrigerant as it enters evaporator 36. The refrigerant is boiling as it flows through heat exchanger coils 142 of evaporator 36 causing it to evaporate. Air is blown across coils 142 by fan 40 and the heat from the air is transferred to coils 142, thus reducing the temperature of the air as it is forced over evaporator 36. The cool air then creates the refrigerated environment of appliance 20.
While this invention has been described as having an exemplary design, the present invention may be further modified within the spirit and scope of this disclosure. This application is therefore intended to cover any variations, uses, or adaptations of the invention using its general principles. Further, this application is intended to cover such departures from the present disclosure as come within known or customary practice in the art to which this invention pertains.

Claims (8)

1. A modular refrigeration system having an evaporator, a condenser, and a compressor fluidly connected by a plurality of conduits, the modular refrigeration system, comprising:

a one-piece base plate, the evaporator, condenser, and compressor mounted to said base plate;
a drain pan integrally formed in said base plate, said drain pan located beneath the compressor; and a drain basin integrally formed in said base plate located beneath the evaporator, said basin and said drain pan fluidly connected such that condensate collects in said drain pan, wherein the condenser further includes a fan, whereby heated air directed over said drain pan by said fan promotes evaporation of condensate in said drain pan.
2. The refrigeration system of claim 1, further comprising a channel integrally formed in said base plate, said channel fluidly connecting said basin and said drain pan.
3. The refrigeration system of claim 1, wherein the compressor further includes a discharge tube, at least a portion of said discharge tube located in said drain pan, whereby heat from the discharge tube promotes evaporation of condensate in said drain pan.
4. A modular refrigeration system having an evaporator, a condenser, and a compressor fluidly connected by a plurality of conduits, the modular refrigeration system, comprising:
a one-piece base plate, the evaporator, condenser, and compressor mounted to said base plate;

a drain pan integrally formed in said base plate, said drain pan located beneath the compressor, condensate collecting in said drain pan, the condenser further including a fan, whereby said fan directs air over said drain pan to thereby cause evaporation of condensate in the drain pan;
a fan mount integrally formed in said base plate, said fan mount located beneath the evaporator;
at least one airflow passageway located in said base plate; and a cover mounted to said base plate encasing the evaporator, said fan mount and said airflow passageway located beneath said cover.
5. The refrigeration system of claim 5, further comprising a drain basin integrally formed in said base plate, said drain basin located beneath the evaporator and said cover.
6. The refrigeration system of claim 6, wherein said drain basin is fluidly connected to said drain pan, condensate from the evaporator collected in said drain basin and directed to said drain pan.
7. The refrigeration system of claim 5, wherein the compressor further includes a discharge tube, at least a portion of said discharge tube located in said drain pan, whereby heat from the discharge tube promotes evaporation of condensate in said drain pan.
8. The refrigeration system of claim 5, further comprising a chamber defined by said cover, air flowing into said chamber via a first said airflow passageway and out of said chamber via a second said airflow passageway.
CA2565899A 2002-06-12 2003-06-11 Modular refrigeration system for refrigeration appliance Expired - Fee Related CA2565899C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA2650643A CA2650643C (en) 2002-06-12 2003-06-11 Modular refrigeration system for refrigeration appliance

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/167,919 2002-06-12
US10/167,919 US6701739B2 (en) 2002-06-12 2002-06-12 Modular refrigeration system for refrigeration appliance
CA002431739A CA2431739C (en) 2002-06-12 2003-06-11 Modular refrigeration system for refrigeration appliance

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CA002431739A Division CA2431739C (en) 2002-06-12 2003-06-11 Modular refrigeration system for refrigeration appliance

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CA2650643A Division CA2650643C (en) 2002-06-12 2003-06-11 Modular refrigeration system for refrigeration appliance

Publications (2)

Publication Number Publication Date
CA2565899A1 CA2565899A1 (en) 2003-12-12
CA2565899C true CA2565899C (en) 2011-06-14

Family

ID=37592091

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2565899A Expired - Fee Related CA2565899C (en) 2002-06-12 2003-06-11 Modular refrigeration system for refrigeration appliance

Country Status (1)

Country Link
CA (1) CA2565899C (en)

Also Published As

Publication number Publication date
CA2565899A1 (en) 2003-12-12

Similar Documents

Publication Publication Date Title
US6701739B2 (en) Modular refrigeration system for refrigeration appliance
US6070424A (en) Modular refrigeration unit
CA2549082C (en) Refrigeration unit
US10612858B2 (en) Evaporator
JP2011504718A (en) Cooling member
CN106196334B (en) The outdoor unit of air regulator
CN105864918A (en) Heat radiation unit and outdoor unit of air conditioner having the same
KR20100046386A (en) Outdoor unit of air conditioner
US11306960B2 (en) Refrigerator having detachable cooling module
US20060196208A1 (en) Modular refrigeration unit
CA2565899C (en) Modular refrigeration system for refrigeration appliance
CN212618660U (en) Detachable and washable air conditioner indoor unit
EP0623792B1 (en) Finned evaporator for a domestic refrigerator or freezer with forced air circulation
US20210003328A1 (en) Modular refrigeration system
KR970001293B1 (en) Separable refrigerator
JP2014178113A (en) Heat source apparatus
CN114206079A (en) Radiator mounting structure and window type air conditioner
CN105890243A (en) Integrated refrigerating unit
KR100308382B1 (en) Air conditioner outdoor unit
CN111964185A (en) Refrigeration cycle apparatus
CN220140044U (en) High-efficient heat dissipation automatically controlled cabinet
KR980010168A (en) Mobile air conditioner
CN216930639U (en) Radiator mounting structure and window type air conditioner
JPH10339473A (en) Air conditioner
KR0115184Y1 (en) Condenser of a refrigerator

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed

Effective date: 20130611