US20210003328A1 - Modular refrigeration system - Google Patents

Modular refrigeration system Download PDF

Info

Publication number
US20210003328A1
US20210003328A1 US17/027,934 US202017027934A US2021003328A1 US 20210003328 A1 US20210003328 A1 US 20210003328A1 US 202017027934 A US202017027934 A US 202017027934A US 2021003328 A1 US2021003328 A1 US 2021003328A1
Authority
US
United States
Prior art keywords
assembly
cabinet
evaporator
refrigeration
modular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US17/027,934
Inventor
Flavian Iovanel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Everidge Inc
Original Assignee
Everidge Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Everidge Inc filed Critical Everidge Inc
Priority to US17/027,934 priority Critical patent/US20210003328A1/en
Publication of US20210003328A1 publication Critical patent/US20210003328A1/en
Assigned to Everidge, Inc. reassignment Everidge, Inc. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: IOVANEL, FLAVIAN
Abandoned legal-status Critical Current

Links

Images

Classifications

    • F25B41/003
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B45/00Arrangements for charging or discharging refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/21Modules for refrigeration systems

Definitions

  • the present invention related generally to a refrigeration system having modular components for ease of servicing and installation. More particularly, the refrigeration system may be environmentally friendly and efficient.
  • Refrigeration appliances are generally provided with a refrigeration system to cool the interior of the refrigerator enclosure.
  • Refrigeration systems may include a compressor, evaporator, condenser, and expansion device connected by a plurality of conduits.
  • the system also includes control electronics for operation of the system.
  • Some refrigeration appliances include a refrigeration system having the components thereof individually mounted within the appliance. In the case of failure of one of the components, the malfunctioning component must be replaced. In order to repair the system, the refrigerant charge in the failed component and the conduits interconnecting the component to the system must be removed. The component is replaced via a welding process, and the system is then recharged with refrigerant then leak checked.
  • a problem with this type of system is that if the component is replaced on site, the repair could be time consuming and messy, and require a substantial amount of equipment to be brought to the job site to effect the repair. If the entire refrigeration appliance is taken off-site to be repaired, the time necessary to complete the repair and return the appliance may be substantial. The cost of the repair and travel time may also significant.
  • a refrigeration system includes a housing; a cabinet arranged within the housing and including an opening configured to operate as a cooling or freezing space; a modular refrigeration assembly including a condenser assembly, a compressor, and an evaporator, the modular refrigeration assembly being configured to arrange the evaporator within the cabinet and arrange the condenser assembly and compressor within the housing and external to the cabinet; and one or more conduits arranged between the condenser assembly, the compressor, and the evaporator forming a closed loop system configured to contain refrigerant.
  • Example 2 further to the refrigeration system of Example 1, the one or more conduits are configured to contain the refrigerant and facilitate temperature control within the modular refrigeration assembly free of a refrigerant reservoir.
  • Example 3 further to the refrigeration system of Example 1, the one or more conduits are configured to contain the refrigerant.
  • Example 4 further to the refrigeration system of Example 3, the one or more conduits are configured to maintain the refrigerant within the system without direct contact with any ignition source.
  • Example 5 further to the refrigeration system of Example 4, the refrigerant is R290 propane.
  • Example 6 further to the refrigeration system of Example 1, the modular refrigeration assembly is configured to remove from the cabinet and the housing for service and replacement of one or more parts of the modular refrigeration assembly.
  • the modular refrigeration assembly includes modular connections configured to connect to power and control connections.
  • Example 8 further to the refrigeration system of Example 1, the modular refrigeration assembly is configured to insulate and seal the evaporator within the cabinet.
  • Example 9 further to the refrigeration system of Example 1, the condenser assembly and the compressor are arranged on a base plate that includes a substantially linear surface.
  • Example 10 further to the refrigeration system of Example 1, the evaporator is arranged laterally adjacent the opening in the cabinet, and the evaporator is configured to intake hot air from the opening, cool and return the air in a first direction, and the cabinet is configured to direct the cooled air in a second direction and a third direction perpendicular to the first direction evaporator back toward the opening.
  • refrigeration system includes a housing; a cabinet arranged within the housing and including an opening configured to operate as a cooling or freezing space, and a wherein the evaporator is arranged laterally adjacent the opening in the cabinet, a diverter configured to facilitate air circulation relative to the opening; a modular refrigeration assembly including a condenser assembly, a compressor, and an evaporator, the modular refrigeration assembly being configured to removably insert the evaporator within the cabinet to intake hot air from the opening, cool and return the air in a first direction, and direct the cooled air toward the diverter to circulate the cooled air in a second direction and a third direction perpendicular to the first direction evaporator back toward the opening; and one or more conduits arranged between the condenser assembly, the compressor, and the evaporator forming a closed loop system configured to contain refrigerant.
  • Example 12 further to the refrigeration system of Example 11, the modular refrigeration assembly is configured to arrange the condenser assembly and compressor within the housing and external to the cabinet and seal the evaporator within the cabinet.
  • Example 13 further to the refrigeration system of Example 12, the modular refrigeration assembly is configured to the condenser assembly and compressor external to the cabinet and above the opening within the cabinet.
  • Example 14 further to the refrigeration system of Example 12, the opening is configured to house one or more food racks.
  • Example 15 further to the refrigeration system of Example 11, the modular refrigeration assembly is configured to arrange the evaporator directly adjacent the opening.
  • Example 16 further to the refrigeration system of Example 11, the housing includes a controller configured to interface with the modular refrigeration assembly and facilitate multiple levels of cooling cycles.
  • Example 17 a method of servicing a refrigeration system that includes a housing, and a cabinet arranged within the housing having an opening configured to operate as a cooling or freezing space, and a modular refrigeration assembly having a condenser assembly, a compressor, and an evaporator, the method includes: removing the panels of the housing to reveal the condenser assembly and the compressor of the modular refrigeration assembly; disconnecting the modular refrigeration assembly from the cabinet; removing the modular refrigeration assembly to lift the evaporator from within the cabinet; and repairing or replacing one or more parts of the modular refrigeration assembly.
  • Example 18 the method of Example 17, the modular refrigeration assembly includes a base configured to hold the condenser assembly, the compressor, and the evaporator in place.
  • Example 19 the method of Example 17, the method also includes placing the modular refrigeration assembly within the housing and the cabinet after repairing or replacing the one or more parts of the modular refrigeration assembly
  • Example 20 the method of Example 18, the method also includes sealing the evaporator within the cabinet after placing the modular refrigeration assembly within the cabinet.
  • FIG. 1 illustrates a perspective view of a modular refrigeration assembly of the present invention
  • FIG. 2 illustrates a right side view of FIG. 1 ;
  • FIG. 3 illustrates a front view of FIG. 1 ;
  • FIG. 4 illustrates the refrigeration enclosure adaptable to accept the refrigeration assembly of FIG. 1 ;
  • FIG. 5 illustrates a top view of the modular refrigeration assembly of FIG. 1 integrated into the refrigeration enclosure of FIG. 4 ;
  • FIG. 6 illustrates a front perspective view of the refrigeration enclosure of FIG. 4 with the modular refrigeration assembly of FIG. 1 installed therein;
  • FIG. 7 illustrates the refrigeration system of FIG. 6 showing in exploded view the enclosure panels for the assembly, the enclosure panels including the electronics board with the quick connect/disconnect feature;
  • FIG. 8 illustrates a perspective view of the modular refrigeration assembly of FIG. 1 while being semi-engaged in opening of refrigeration enclosure
  • FIG. 9 illustrates a front perspective view of an integrated refrigeration system showing the food racks within the refrigeration enclosure
  • FIG. 10 illustrates a front view of FIG. 9 ;
  • FIG. 11 illustrates a sectional view of FIG. 10 showing the interior placement of the food racks forward of the evaporator;
  • FIG. 12 illustrates the sectional view of FIG. 11 and further illustrates the evaporator semi-engaged in opening of refrigeration enclosure;
  • FIG. 13 illustrates a sectional view of FIG. 10 showing the evaporator and direction of airflow
  • FIG. 14 illustrates the airflow direction of the refrigeration system of FIG. 6 ;
  • FIG. 15 illustrates an alternative embodiment of the modular refrigeration assembly of FIG. 1 .
  • the refrigeration system may include refrigeration assembly.
  • the refrigeration assembly may secure or include all aspects directed toward the functionality or operability of cooling air. More specifically, the refrigeration assembly may include a condenser assembly, a compressor, and an evaporator (as well as conduits and electrical components arranged between these aspects). The refrigeration assembly securing each of these aspects may facilitate efficient serviceability as explained in further detail below.
  • the refrigeration assembly in certain instances, is an environmentally friendly and efficient unit.
  • the refrigeration assembly may be configured to use a refrigerant that is recognized as being highly efficient.
  • the refrigerant may safely contain the refrigerant within the system while maintaining enhanced serviceability.
  • FIG. 1 illustrates a perspective view of a modular refrigeration assembly 15 of the present invention.
  • the modular refrigeration assembly 15 may include a condenser assembly 32 , a compressor 30 , and an evaporator 35 .
  • the modular refrigeration assembly 15 may secure each of the condenser assembly 32 , the compressor 30 , and the evaporator 35 together as one modular unit.
  • the condenser assembly 32 and the compressor 30 are arranged substantially in a first plane and the evaporator 35 is arranged in a second plane that is substantially perpendicular to the first plane.
  • the evaporator 35 is also vertically offset from the condenser assembly 32 and the compressor 30 .
  • this arrangement of the condenser assembly 32 , the compressor 30 , and the evaporator 35 facilitates placement of the evaporator 35 within a cabinet (e.g., where food may be placed for cooling of freezing) while also arranging the condenser assembly 32 and the compressor 30 external to the cabinet.
  • the modular refrigeration assembly 15 may include a base plate 38 to which the condenser assembly 32 , the compressor 30 , and the evaporator 35 are releasably secured.
  • the base plate 38 may include a top surface 38 A and a bottom surface 38 B. As shown, the condenser assembly 32 and the compressor 30 are secured on the top surface 38 A of the base plate 38 and the evaporator 35 is secured on the bottom surface 38 B of the base plate 38 .
  • the modular refrigeration assembly 15 may also include conduits 40 that connect the refrigeration system components (e.g., the condenser assembly 32 , the compressor 30 , and the evaporator 35 ). Further, the base plate 38 may include a handle 41 for ease of lifting the assembly 15 in and out of a refrigeration enclosure (shown in FIG. 4 ). In certain instances, the modular refrigeration assembly 15 is a blast chiller/blast freezer. The arrangement of the system components are advantageously arranged when the modular refrigeration assembly 15 is a blast chiller/blast freezer to allow for a highly efficient and environmentally friendly system 15 as described in further detail below.
  • FIG. 2 illustrates a right side view of FIG. 1 , and shows the condenser assembly 32 and the compressor 30 being arranged substantially in the same plane and the evaporator 35 being arranged vertically offset from the condenser assembly 32 and the compressor 30 .
  • the base plate 38 may also include a sealing interface 45 attached to the bottom surface 38 B and/or the top surface 35 A.
  • the sealing interface 45 e.g., insulative foam
  • the sealing interface 45 may seal the evaporator 35 within a refrigeration enclosure (shown in FIG. 4 ) and seal out the condenser assembly 32 and the compressor 30 .
  • the sealing interface 45 includes a lip extension 45 A including a bottom surface 45 A and a side surface 45 A 2 .
  • the sealing interface 45 may be aligned and fixedly attached along the base plate 38 .
  • FIG. 4 illustrates the refrigeration enclosure adaptable to accept the modular refrigeration assembly 15 .
  • the modular refrigeration assembly 15 is a blast chiller/blast freezer.
  • the arrangement of the system components are advantageously arranged when the modular refrigeration assembly 15 is a blast chiller/blast freezer to allow for a highly efficient and environmentally friendly system 15 as described in further detail below.
  • the refrigeration enclosure may be a cabinet 20 that is arranged within a housing (e.g., shown in FIG. 6 ) that includes an opening configured to operate as a cooling or freezing space.
  • the cabinet 20 includes a left 20 A right 20 B, front 20 C, rear 20 D, top 20 E and bottom 20 F walls defining an interior refrigeration space (an opening), where front wall 20 C provides front door access to the interior of cabinet 20 .
  • Top wall 20 E includes an opening 25 having a peripheral edge 25 A and a side surface 25 B that extends down to a stepped extension 25 C.
  • Stepped extension 25 C may include a gasket (which may be magnetic) seated on the surface thereof.
  • the opening 25 is dimensioned to accept the evaporator 35 and sealing interface 45 therein.
  • the evaporator 35 may project downward into the interior refrigeration space of cabinet 20 up to a point where base plate 38 bottom surface 38 B rests on top surface 20 E of cabinet 20 .
  • sealing interface 45 bottom surface 45 A engages stepped extension 25 C of opening 25 and side surface 25 B of opening 25 rests flush with side surface 45 A 2 of sealing interface 45 .
  • FIG. 5 illustrates a top view of the modular refrigeration assembly 15 integrated into the cabinet 20 shown in FIG. 4 .
  • the modular refrigeration assembly 15 may be placed (with portions extending within) the cabinet 20 .
  • the evaporator 35 for example, is arranged within the cabinet 20 when the modular refrigeration assembly 15 and the cabinet 20 are arranged together.
  • the base plate 38 may be formed by injection molding, pressure molding, casting, or the like and is constructed from a material such as plastic, reinforced plastic, or lightweight metals such as aluminum. Ay be As shown in FIG. 5 , the base plate 38 substantially L shaped including a forward section 38 C and a rear section 38 D, where the condenser assembly 32 is located in forward section 38 C, and sits forward of the compressor 30 located in rear section 38 D.
  • the evaporator 35 projects downward from bottom surface 38 B ( FIG. 2 ) and is positioned beneath compressor 30 .
  • Conduits 40 fluidly connect the refrigeration system components. With the components interconnected by conduits 40 , the assembly 15 is initially charged with refrigerant prior to being shipped to the which facilitates quick and easy assembly of refrigeration appliance 10 .
  • the base plate 38 may include a handle 41 for ease of lifting the assembly 15 in and out of a refrigeration cabinet 20 .
  • the condenser assembly 32 may be mounted to forward section 38 C of base plate 32 by any suitable fasteners such as screws and the like and the compressor 30 may be mounted to a rearward section 38 D of the base plate 32 .
  • the conduits 40 may contain the refrigerant in a closed-loop system with the condenser assembly 32 , the compressor 30 , and the evaporator 35 .
  • the refrigerant may be a highly efficient and environmentally friendly component (e.g., propane).
  • propane e.g., propane
  • the refrigerant loaded in to the closed-loop system is approximately 100 grams to 200 grams.
  • the closed-loop system is without a reservoir and contains the refrigerant within the loop formed by the conduits 40 and the condenser assembly 32 , the compressor 30 , and the evaporator 35 .
  • the assembly 15 is configured to be removed and installed seamlessly into the opening 25 (shown in FIG. 4 ) of the cabinet 20 .
  • Various connection apertures 39 are provided in the base plate 38 that are in alignment with apertures 39 of top surface 20 E which can be engaged by any suitable type of fasteners or methods known in the art, such as screws to secure assembly 15 to refrigeration cabinet 20 .
  • connection plugs 70 may be disconnected from the assembly 15 and from portions of the housing as shown in FIG. 6 .
  • FIG. 6 illustrates a front perspective view of the refrigeration enclosure of FIG. 4 with the modular refrigeration assembly of FIG. 1 installed therein.
  • the refrigeration enclosure (or housing 50 ) may include multiple removable panels that facilitate installation of the assembly 15 .
  • FIG. 7 illustrates the refrigeration system of FIG. 6 showing in exploded view the enclosure panels 50 A-E for the assembly of the housing.
  • the housing 50 includes an electronics board with the quick connect/disconnect feature.
  • the modular refrigeration assembly 15 is a blast chiller/blast freezer.
  • the arrangement of the system components are advantageously arranged when the modular refrigeration assembly 15 is a blast chiller/blast freezer to allow for a highly efficient and environmentally friendly system 15 as described in further detail below.
  • the assembly 15 is installed in the cabinet.
  • the removable panels 50 A, 50 B, 50 C, 50 D and 50 E form a housing 50 over the assembly 15 .
  • the panels 50 A, 50 B, 50 C, 50 D and 50 E may be secured together to form the housing 50 or the panels 50 A, 50 B, 50 C, 50 D and 50 E may be individual removable to reveal the assembly 15 .
  • at least two panels include vents 50 F (or louvers) for ventilation of heat generated by the assembly 15 .
  • the housing 50 also includes an operator interface and controller 60 having a microprocessor based programmable computer for controlling the operation of assembly 15 components.
  • the operator interface and controller 60 may be integrated into or mounted on a removable panel by any suitable type of fasteners. Upon removal of assembly 15 from refrigeration cabinet 20 cover 50 panels are removed and controller 60 is disconnected via connection plugs 70 .
  • the controller 60 may be configured to interface with the modular refrigeration assembly 15 and facilitate multiple levels of cooling cycles.
  • one or more of the panels 50 A, 50 B, 50 C, 50 D and 50 E of the housing 50 may be removed to reveal the condenser assembly 32 and the compressor 30 of the modular refrigeration assembly.
  • the modular refrigeration assembly 15 may be disconnected the cabinet 20 (e.g., by uncoupling, unscrewing, or detaching the base plate 38 from the top 20 E of the cabinet 20 ).
  • the connection plugs 70 between the controller 60 and the assembly 15 may be disconnected.
  • the conduits 40 that connect the assembly 15 may be disconnected.
  • the modular refrigeration assembly 15 may be removed from the cabinet 20 , which includes lifting the evaporator 35 from within the cabinet 20 .
  • the assembly 15 may be completely separated and removed from the cabinet 20 to easily and accessible service the assembly 15 .
  • the assembly 15 is modular in that the parts can be removed from the assembly 15 and quickly repaired or replaced. This ensures the safety of technicians, as well as minimizing the downtime of your blast chiller in the event a repair is needed.
  • one or more of the parts e.g., condenser assembly 32 , compressor 30 , and evaporator 35 , conduits 40 , refrigerant contained within the conduits 40
  • the parts e.g., condenser assembly 32 , compressor 30 , and evaporator 35 , conduits 40 , refrigerant contained within the conduits 40 .
  • connection plugs 70 and in some instances the conduits 40 , which enable modular quick disconnection of the parts of the assembly 15 and reinstallation of the new or repaired part.
  • the assembly 15 may be placed back the housing 50 and the cabinet 20 .
  • the evaporator 35 may be sealed within the cabinet after placing the modular refrigeration assembly 15 within the cabinet 20 .
  • the modular refrigeration assembly 15 may be removed from the cabinet 20 , and a new component may be replaced on the assembly 15 .
  • a new assembly 15 entirely may be installed within the cabinet 20 .
  • the assembly 15 new or with a component replaced or repaired, is slid into and out of the cabinet as a unit, with the only installation steps including bolting the assembly 15 in place and connecting the connection plugs 70 .
  • FIG. 7 shows one or more of the panels 50 A-E being removed to expose portions of the assembly 15 .
  • FIG. 8 shows the modular refrigeration assembly 15 as partially removed from the cabinet 20 . As shown in FIG. 8 , the entire modular refrigeration assembly 15 is removed as one unit. The system is shown and discussed in additional detail with reference to FIG. 9-14 .
  • FIG. 9 illustrates a front perspective view of an integrated refrigeration system showing the food racks 75 within the refrigeration enclosure (or cabinet 20 ) and FIG. 10 illustrates a front view of FIG. 9 .
  • the cabinet 20 may include a front wall 20 C that opens to expose the refrigeration enclosure or opening 25 .
  • Food racks 75 or other objects to be refrigerated or frozen may be arranged within the cabinet 20 .
  • the cabinet 20 may include a drain pan 21 that would allow moisture through drainage holes (not shown) to enter the pan, and exit the pan via a drain connection to an outside location (not shown).
  • FIG. 11 illustrates a sectional view of FIG. 10 showing the interior placement of the food racks forward of the evaporator 35 .
  • the modular refrigeration assembly 15 may include the condenser assembly 32 , the compressor 30 , and the evaporator 35 .
  • Each of the condenser assembly 32 , the compressor 30 , and the evaporator 35 may be arranged together on a base plate 38 and can be removed and replaced on the cabinet 20 as an entire assembly 15 .
  • the modular refrigeration assembly 15 is configured to arrange the evaporator 35 within the cabinet 20 and arrange the condenser assembly 32 and compressor 30 within a housing 50 and external to the cabinet 20 .
  • One or more conduits 40 are arranged between and connect the condenser assembly 32 , the compressor 30 , and the evaporator 40 forming a closed loop system configured to contain refrigerant.
  • the closed loop system formed by the conduits 40 and the condenser assembly 32 , the compressor 30 , and the evaporator 40 holds the refrigerant the assembly 15 requires without a reservoir.
  • the one or more conduits 40 are configured to contain the refrigerant and facilitate temperature control within the modular refrigeration 15 assembly free of a refrigerant reservoir. In certain instances, the conduits 40 are also configured to maintain the refrigerant within the system without direct contact with any ignition source.
  • the refrigerant may be R290 propane.
  • Prior refrigeration systems or blast chillers use refrigerants with high global warming potentials.
  • the assembly 15 may use R290 propane refrigerant, which is non-toxic with a low global warming potential (e.g., GWP rating of 3 and no Ozone Depleting Properties (ODP)).
  • ODP Ozone Depleting Properties
  • the Environmental Protection Agency (EPA) has named R290 as its preferred hydrocarbon alternative.
  • the assembly 15 fully contains and seals the R290 propane within the closed loop system of the conduits 40 and the condenser assembly 32 , the compressor 30 , and the evaporator 40 . As a result, there risk of leaking is minimized and there is no direct contact with any ignition source. It has been shown that the assembly 15 , using R290 propane, has a substantially similar fire risk as compared to a similar appliance using a different refrigerant.
  • the assembly 15 is also highly serviceable.
  • the modular refrigeration assembly 15 is configured to remove from the cabinet 20 and the housing 50 for service and replacement of one or more parts of the modular refrigeration assembly 15 (as shown in FIG. 12 ).
  • the conduits 40 and electrical/control components include snap-fit connections that allow disconnection and disconnection of the condenser assembly 32 , the compressor 30 , and the evaporator 40 from the assembly 15 .
  • the connections are modular connections configured to connect to power and control connections.
  • the modular refrigeration assembly 15 is configured to insulate and seal the evaporator 35 within the cabinet 20 .
  • the base plate 38 may also include a sealing interface 45 attached to the bottom surface.
  • the sealing interface 45 e.g., insulative foam
  • the condenser assembly 32 and the compressor 30 are arranged on the base plate 38 that includes a substantially linear surface.
  • the evaporator 35 being arranged within the cabinet 20 facilitates direct and efficient cooling of interior items within the cabinet 20 (e.g., refrigeration enclosure) than a system that incorporates components both interior and exterior to refrigerator interior.
  • the opening 25 into which items to be cooled or frozen is situated directly land laterally adjacent to the evaporator 35 .
  • FIG. in the proximity of back wall 20 D to facilitate the orientation of evaporator 35 towards the rear of the internal refrigeration space.
  • This allows for the placement of food racks 75 (or other aspects) directly forward of the evaporator 35 such that the evaporator 35 can intake hot air from a front side 35 B of the evaporator 35 and output cooled air to a back side 35 C of the evaporator 35 .
  • FIG. 13 illustrates a sectional view of FIG. 10 showing the evaporator 35 and direction of airflow.
  • the evaporator 35 is directly adjacent food racks 75 (although other objects to be cooled or frozen can be arranged in place of the food racks 75 ).
  • the modular refrigeration assembly 15 is configured to arrange the evaporator 35 directly adjacent the opening into which the food racks 75 or other objects are placed.
  • Left 20 A, right 20 B, and rear 20 D walls include surfaces 20 A 1 , 20 B 1 , and 20 D 1 interior to cabinet 20 .
  • a space for airflow is created between interior surfaces 20 A 1 , 20 B 1 , and 20 D 1 and the periphery of evaporator 35 .
  • the evaporator 35 is arranged laterally adjacent the opening (in which the food racks 75 are arranged) in the cabinet 20 , and the evaporator 35 is configured to intake hot air from the opening, cool and return the air in a first direction as shown.
  • the cabinet 20 is configured to direct the cooled air in a second direction and a third direction perpendicular to the first direction evaporator back 35 toward the opening as shown.
  • the back wall 20 D 1 of the cabinet 20 may deflect cooled air back toward the side walls 20 A 1 , 20 B 1 and back toward the opening (in which the food racks 75 are arranged).
  • the cabinet 20 includes space between the side walls 20 A 1 , 20 B 1 and the evaporator 35 such that cooled air can circulate back toward the opening (in which the food racks 75 are arranged).
  • the evaporator 35 is positioned co-extensively with opening (in which the food racks 75 are arranged) to draw heat evenly from the opening (in which the food racks 75 are arranged) into the evaporator 35 (a heat exchanger).
  • the cabinet 20 may include an air deflector 80 positioned between evaporator rear surface 35 C 1 and back wall interior surface 20 D 1 to split airflow to opposite sides of opening (in which the food racks 75 are arranged).
  • the air deflector 80 is angled inward towards surface 35 C 1 , is ‘V’ shaped, and is coextensive with evaporator 35 C.
  • FIG. 14 shows the cabinet 20 and air pulling into the evaporator 35 .
  • the evaporator 35 may include a plurality of evaporator/fans to accommodate coolers of varying dimensions.

Abstract

Various aspects of the present disclosure are directed toward refrigeration apparatuses, systems, and methods that include a housing and a cabinet arranged within the housing and including an opening configured to operate as a cooling or freezing space. The refrigeration apparatuses, systems, and methods may include a modular refrigeration assembly including a condenser assembly, a compressor, and an evaporator, the modular refrigeration assembly being configured to arrange the evaporator within the cabinet and arrange the condenser assembly and compressor within the housing and external to the cabinet and one or more conduits arranged between the condenser assembly, the compressor, and the evaporator forming a closed loop system configured to contain refrigerant.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • This application is a continuation-in-part of U.S. patent application Ser. No. 14/999,763, filed Jun. 23, 2019, which is incorporated herein by reference in its entirety for all purposes.
  • FIELD
  • The present invention related generally to a refrigeration system having modular components for ease of servicing and installation. More particularly, the refrigeration system may be environmentally friendly and efficient.
  • BACKGROUND
  • Refrigeration appliances are generally provided with a refrigeration system to cool the interior of the refrigerator enclosure. Refrigeration systems may include a compressor, evaporator, condenser, and expansion device connected by a plurality of conduits. The system also includes control electronics for operation of the system. Some refrigeration appliances include a refrigeration system having the components thereof individually mounted within the appliance. In the case of failure of one of the components, the malfunctioning component must be replaced. In order to repair the system, the refrigerant charge in the failed component and the conduits interconnecting the component to the system must be removed. The component is replaced via a welding process, and the system is then recharged with refrigerant then leak checked.
  • A problem with this type of system is that if the component is replaced on site, the repair could be time consuming and messy, and require a substantial amount of equipment to be brought to the job site to effect the repair. If the entire refrigeration appliance is taken off-site to be repaired, the time necessary to complete the repair and return the appliance may be substantial. The cost of the repair and travel time may also significant.
  • SUMMARY
  • In Example 1, a refrigeration system includes a housing; a cabinet arranged within the housing and including an opening configured to operate as a cooling or freezing space; a modular refrigeration assembly including a condenser assembly, a compressor, and an evaporator, the modular refrigeration assembly being configured to arrange the evaporator within the cabinet and arrange the condenser assembly and compressor within the housing and external to the cabinet; and one or more conduits arranged between the condenser assembly, the compressor, and the evaporator forming a closed loop system configured to contain refrigerant.
  • In Example 2, further to the refrigeration system of Example 1, the one or more conduits are configured to contain the refrigerant and facilitate temperature control within the modular refrigeration assembly free of a refrigerant reservoir.
  • In Example 3, further to the refrigeration system of Example 1, the one or more conduits are configured to contain the refrigerant.
  • In Example 4, further to the refrigeration system of Example 3, the one or more conduits are configured to maintain the refrigerant within the system without direct contact with any ignition source.
  • In Example 5, further to the refrigeration system of Example 4, the refrigerant is R290 propane.
  • In Example 6, further to the refrigeration system of Example 1, the modular refrigeration assembly is configured to remove from the cabinet and the housing for service and replacement of one or more parts of the modular refrigeration assembly.
  • In Example 7, further to the refrigeration system of Example 1, the modular refrigeration assembly includes modular connections configured to connect to power and control connections.
  • In Example 8, further to the refrigeration system of Example 1, the modular refrigeration assembly is configured to insulate and seal the evaporator within the cabinet.
  • In Example 9, further to the refrigeration system of Example 1, the condenser assembly and the compressor are arranged on a base plate that includes a substantially linear surface.
  • In Example 10, further to the refrigeration system of Example 1, the evaporator is arranged laterally adjacent the opening in the cabinet, and the evaporator is configured to intake hot air from the opening, cool and return the air in a first direction, and the cabinet is configured to direct the cooled air in a second direction and a third direction perpendicular to the first direction evaporator back toward the opening.
  • In Example 11, refrigeration system includes a housing; a cabinet arranged within the housing and including an opening configured to operate as a cooling or freezing space, and a wherein the evaporator is arranged laterally adjacent the opening in the cabinet, a diverter configured to facilitate air circulation relative to the opening; a modular refrigeration assembly including a condenser assembly, a compressor, and an evaporator, the modular refrigeration assembly being configured to removably insert the evaporator within the cabinet to intake hot air from the opening, cool and return the air in a first direction, and direct the cooled air toward the diverter to circulate the cooled air in a second direction and a third direction perpendicular to the first direction evaporator back toward the opening; and one or more conduits arranged between the condenser assembly, the compressor, and the evaporator forming a closed loop system configured to contain refrigerant.
  • In Example 12, further to the refrigeration system of Example 11, the modular refrigeration assembly is configured to arrange the condenser assembly and compressor within the housing and external to the cabinet and seal the evaporator within the cabinet.
  • In Example 13, further to the refrigeration system of Example 12, the modular refrigeration assembly is configured to the condenser assembly and compressor external to the cabinet and above the opening within the cabinet.
  • In Example 14, further to the refrigeration system of Example 12, the opening is configured to house one or more food racks.
  • In Example 15, further to the refrigeration system of Example 11, the modular refrigeration assembly is configured to arrange the evaporator directly adjacent the opening.
  • In Example 16, further to the refrigeration system of Example 11, the housing includes a controller configured to interface with the modular refrigeration assembly and facilitate multiple levels of cooling cycles.
  • In Example 17, a method of servicing a refrigeration system that includes a housing, and a cabinet arranged within the housing having an opening configured to operate as a cooling or freezing space, and a modular refrigeration assembly having a condenser assembly, a compressor, and an evaporator, the method includes: removing the panels of the housing to reveal the condenser assembly and the compressor of the modular refrigeration assembly; disconnecting the modular refrigeration assembly from the cabinet; removing the modular refrigeration assembly to lift the evaporator from within the cabinet; and repairing or replacing one or more parts of the modular refrigeration assembly.
  • In Example 18, the method of Example 17, the modular refrigeration assembly includes a base configured to hold the condenser assembly, the compressor, and the evaporator in place.
  • In Example 19, the method of Example 17, the method also includes placing the modular refrigeration assembly within the housing and the cabinet after repairing or replacing the one or more parts of the modular refrigeration assembly
  • In Example 20, the method of Example 18, the method also includes sealing the evaporator within the cabinet after placing the modular refrigeration assembly within the cabinet.
  • The foregoing Examples are just that, and should not be read to limit or otherwise narrow the scope of any of the inventive concepts otherwise provided by the instant disclosure.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The foregoing and other objects, features, and advantages of the invention are apparent from the following detailed description taken in conjunction with the accompanying drawings in which:
  • FIG. 1 illustrates a perspective view of a modular refrigeration assembly of the present invention;
  • FIG. 2 illustrates a right side view of FIG. 1;
  • FIG. 3 illustrates a front view of FIG. 1;
  • FIG. 4 illustrates the refrigeration enclosure adaptable to accept the refrigeration assembly of FIG. 1;
  • FIG. 5 illustrates a top view of the modular refrigeration assembly of FIG. 1 integrated into the refrigeration enclosure of FIG. 4;
  • FIG. 6 illustrates a front perspective view of the refrigeration enclosure of FIG. 4 with the modular refrigeration assembly of FIG. 1 installed therein;
  • FIG. 7 illustrates the refrigeration system of FIG. 6 showing in exploded view the enclosure panels for the assembly, the enclosure panels including the electronics board with the quick connect/disconnect feature;
  • FIG. 8 illustrates a perspective view of the modular refrigeration assembly of FIG. 1 while being semi-engaged in opening of refrigeration enclosure;
  • FIG. 9 illustrates a front perspective view of an integrated refrigeration system showing the food racks within the refrigeration enclosure;
  • FIG. 10 illustrates a front view of FIG. 9;
  • FIG. 11 illustrates a sectional view of FIG. 10 showing the interior placement of the food racks forward of the evaporator;
  • FIG. 12 illustrates the sectional view of FIG. 11 and further illustrates the evaporator semi-engaged in opening of refrigeration enclosure;
  • FIG. 13 illustrates a sectional view of FIG. 10 showing the evaporator and direction of airflow;
  • FIG. 14 illustrates the airflow direction of the refrigeration system of FIG. 6; and
  • FIG. 15 illustrates an alternative embodiment of the modular refrigeration assembly of FIG. 1.
  • DETAILED DESCRIPTION
  • Various aspects of the present disclosure are directed toward apparatuses, systems, and methods that include a refrigeration system. In certain instances, the refrigeration system may include refrigeration assembly. The refrigeration assembly may secure or include all aspects directed toward the functionality or operability of cooling air. More specifically, the refrigeration assembly may include a condenser assembly, a compressor, and an evaporator (as well as conduits and electrical components arranged between these aspects). The refrigeration assembly securing each of these aspects may facilitate efficient serviceability as explained in further detail below.
  • The refrigeration assembly, in certain instances, is an environmentally friendly and efficient unit. The refrigeration assembly, for example, may be configured to use a refrigerant that is recognized as being highly efficient. In addition, the refrigerant may safely contain the refrigerant within the system while maintaining enhanced serviceability.
  • FIG. 1 illustrates a perspective view of a modular refrigeration assembly 15 of the present invention. The modular refrigeration assembly 15 may include a condenser assembly 32, a compressor 30, and an evaporator 35. The modular refrigeration assembly 15 may secure each of the condenser assembly 32, the compressor 30, and the evaporator 35 together as one modular unit. As shown in FIG. 1, the condenser assembly 32 and the compressor 30 are arranged substantially in a first plane and the evaporator 35 is arranged in a second plane that is substantially perpendicular to the first plane. The evaporator 35 is also vertically offset from the condenser assembly 32 and the compressor 30. As explained in further detail below, this arrangement of the condenser assembly 32, the compressor 30, and the evaporator 35 facilitates placement of the evaporator 35 within a cabinet (e.g., where food may be placed for cooling of freezing) while also arranging the condenser assembly 32 and the compressor 30 external to the cabinet.
  • The modular refrigeration assembly 15 may include a base plate 38 to which the condenser assembly 32, the compressor 30, and the evaporator 35 are releasably secured. The base plate 38 may include a top surface 38A and a bottom surface 38B. As shown, the condenser assembly 32 and the compressor 30 are secured on the top surface 38A of the base plate 38 and the evaporator 35 is secured on the bottom surface 38B of the base plate 38.
  • The modular refrigeration assembly 15 may also include conduits 40 that connect the refrigeration system components (e.g., the condenser assembly 32, the compressor 30, and the evaporator 35). Further, the base plate 38 may include a handle 41 for ease of lifting the assembly 15 in and out of a refrigeration enclosure (shown in FIG. 4). In certain instances, the modular refrigeration assembly 15 is a blast chiller/blast freezer. The arrangement of the system components are advantageously arranged when the modular refrigeration assembly 15 is a blast chiller/blast freezer to allow for a highly efficient and environmentally friendly system 15 as described in further detail below.
  • FIG. 2 illustrates a right side view of FIG. 1, and shows the condenser assembly 32 and the compressor 30 being arranged substantially in the same plane and the evaporator 35 being arranged vertically offset from the condenser assembly 32 and the compressor 30. The base plate 38 may also include a sealing interface 45 attached to the bottom surface 38B and/or the top surface 35A. The sealing interface 45 (e.g., insulative foam) may seal the evaporator 35 within a refrigeration enclosure (shown in FIG. 4) and seal out the condenser assembly 32 and the compressor 30.
  • In certain instances and as shown in FIG. 3, the sealing interface 45 includes a lip extension 45A including a bottom surface 45A and a side surface 45A2. The sealing interface 45 may be aligned and fixedly attached along the base plate 38.
  • FIG. 4 illustrates the refrigeration enclosure adaptable to accept the modular refrigeration assembly 15. In certain instances, the modular refrigeration assembly 15 is a blast chiller/blast freezer. The arrangement of the system components are advantageously arranged when the modular refrigeration assembly 15 is a blast chiller/blast freezer to allow for a highly efficient and environmentally friendly system 15 as described in further detail below. The refrigeration enclosure may be a cabinet 20 that is arranged within a housing (e.g., shown in FIG. 6) that includes an opening configured to operate as a cooling or freezing space. The cabinet 20 includes a left 20A right 20B, front 20C, rear 20D, top 20E and bottom 20F walls defining an interior refrigeration space (an opening), where front wall 20C provides front door access to the interior of cabinet 20. Top wall 20E includes an opening 25 having a peripheral edge 25A and a side surface 25B that extends down to a stepped extension 25C. Stepped extension 25C may include a gasket (which may be magnetic) seated on the surface thereof. The opening 25 is dimensioned to accept the evaporator 35 and sealing interface 45 therein. The evaporator 35 may project downward into the interior refrigeration space of cabinet 20 up to a point where base plate 38 bottom surface 38B rests on top surface 20E of cabinet 20. In certain instances, at that point sealing interface 45 bottom surface 45A engages stepped extension 25C of opening 25 and side surface 25B of opening 25 rests flush with side surface 45A2 of sealing interface 45.
  • FIG. 5 illustrates a top view of the modular refrigeration assembly 15 integrated into the cabinet 20 shown in FIG. 4. The modular refrigeration assembly 15 may be placed (with portions extending within) the cabinet 20. The evaporator 35, for example, is arranged within the cabinet 20 when the modular refrigeration assembly 15 and the cabinet 20 are arranged together. The base plate 38 may be formed by injection molding, pressure molding, casting, or the like and is constructed from a material such as plastic, reinforced plastic, or lightweight metals such as aluminum. Ay be As shown in FIG. 5, the base plate 38 substantially L shaped including a forward section 38C and a rear section 38D, where the condenser assembly 32 is located in forward section 38C, and sits forward of the compressor 30 located in rear section 38D. The evaporator 35 projects downward from bottom surface 38B (FIG. 2) and is positioned beneath compressor 30. Conduits 40 fluidly connect the refrigeration system components. With the components interconnected by conduits 40, the assembly 15 is initially charged with refrigerant prior to being shipped to the which facilitates quick and easy assembly of refrigeration appliance 10. The base plate 38 may include a handle 41 for ease of lifting the assembly 15 in and out of a refrigeration cabinet 20. The condenser assembly 32 may be mounted to forward section 38C of base plate 32 by any suitable fasteners such as screws and the like and the compressor 30 may be mounted to a rearward section 38D of the base plate 32.
  • As discussed in further detail below, the conduits 40 may contain the refrigerant in a closed-loop system with the condenser assembly 32, the compressor 30, and the evaporator 35. The refrigerant may be a highly efficient and environmentally friendly component (e.g., propane). In certain instances, the refrigerant loaded in to the closed-loop system is approximately 100 grams to 200 grams. The closed-loop system is without a reservoir and contains the refrigerant within the loop formed by the conduits 40 and the condenser assembly 32, the compressor 30, and the evaporator 35.
  • The assembly 15 is configured to be removed and installed seamlessly into the opening 25 (shown in FIG. 4) of the cabinet 20. Various connection apertures 39 are provided in the base plate 38 that are in alignment with apertures 39 of top surface 20E which can be engaged by any suitable type of fasteners or methods known in the art, such as screws to secure assembly 15 to refrigeration cabinet 20.
  • As noted above, the base plate 38 includes a sealing interface 45 rigidly attached to the bottom surface 38B of the base plate 38 and/or the top surface 35A of evaporator 35. Upon removal of assembly 15 from the cabinet 20 connection plugs 70 may be disconnected from the assembly 15 and from portions of the housing as shown in FIG. 6.
  • FIG. 6 illustrates a front perspective view of the refrigeration enclosure of FIG. 4 with the modular refrigeration assembly of FIG. 1 installed therein. The refrigeration enclosure (or housing 50) may include multiple removable panels that facilitate installation of the assembly 15. FIG. 7 illustrates the refrigeration system of FIG. 6 showing in exploded view the enclosure panels 50A-E for the assembly of the housing. The housing 50 includes an electronics board with the quick connect/disconnect feature. As noted above, the modular refrigeration assembly 15 is a blast chiller/blast freezer. The arrangement of the system components are advantageously arranged when the modular refrigeration assembly 15 is a blast chiller/blast freezer to allow for a highly efficient and environmentally friendly system 15 as described in further detail below.
  • As shown in FIGS. 6 and 7, the assembly 15 is installed in the cabinet.
  • The removable panels 50A, 50B, 50C, 50D and 50E form a housing 50 over the assembly 15. The panels 50A, 50B, 50C, 50D and 50E may be secured together to form the housing 50 or the panels 50A, 50B, 50C, 50D and 50E may be individual removable to reveal the assembly 15. In certain instances, at least two panels include vents 50F (or louvers) for ventilation of heat generated by the assembly 15.
  • The housing 50 also includes an operator interface and controller 60 having a microprocessor based programmable computer for controlling the operation of assembly 15 components. The operator interface and controller 60 may be integrated into or mounted on a removable panel by any suitable type of fasteners. Upon removal of assembly 15 from refrigeration cabinet 20 cover 50 panels are removed and controller 60 is disconnected via connection plugs 70.
  • The controller 60 may be configured to interface with the modular refrigeration assembly 15 and facilitate multiple levels of cooling cycles. During servicing of the refrigeration system, one or more of the panels 50A, 50B, 50C, 50D and 50E of the housing 50 may be removed to reveal the condenser assembly 32 and the compressor 30 of the modular refrigeration assembly. The modular refrigeration assembly 15 may be disconnected the cabinet 20 (e.g., by uncoupling, unscrewing, or detaching the base plate 38 from the top 20E of the cabinet 20). In certain instances, the connection plugs 70 between the controller 60 and the assembly 15 may be disconnected. In addition, the conduits 40 that connect the assembly 15 may be disconnected. The modular refrigeration assembly 15 may be removed from the cabinet 20, which includes lifting the evaporator 35 from within the cabinet 20.
  • The assembly 15 may be completely separated and removed from the cabinet 20 to easily and accessible service the assembly 15. The assembly 15 is modular in that the parts can be removed from the assembly 15 and quickly repaired or replaced. This ensures the safety of technicians, as well as minimizing the downtime of your blast chiller in the event a repair is needed. To service the assembly 15, one or more of the parts (e.g., condenser assembly 32, compressor 30, and evaporator 35, conduits 40, refrigerant contained within the conduits 40) may be repaired or replaced. The parts (e.g., condenser assembly 32, compressor 30, and evaporator 35, conduits 40) may by coupled together by the connection plugs 70 (and in some instances the conduits 40), which enable modular quick disconnection of the parts of the assembly 15 and reinstallation of the new or repaired part.
  • After repairing or replacing one or more of the parts, the assembly 15 may be placed back the housing 50 and the cabinet 20. In addition, the evaporator 35 may be sealed within the cabinet after placing the modular refrigeration assembly 15 within the cabinet 20. Thus, in the event of component failure, the modular refrigeration assembly 15 may be removed from the cabinet 20, and a new component may be replaced on the assembly 15. In other instances, a new assembly 15 entirely may be installed within the cabinet 20. The assembly 15, new or with a component replaced or repaired, is slid into and out of the cabinet as a unit, with the only installation steps including bolting the assembly 15 in place and connecting the connection plugs 70. FIG. 7, for example, shows one or more of the panels 50A-E being removed to expose portions of the assembly 15. FIG. 8 shows the modular refrigeration assembly 15 as partially removed from the cabinet 20. As shown in FIG. 8, the entire modular refrigeration assembly 15 is removed as one unit. The system is shown and discussed in additional detail with reference to FIG. 9-14.
  • FIG. 9 illustrates a front perspective view of an integrated refrigeration system showing the food racks 75 within the refrigeration enclosure (or cabinet 20) and FIG. 10 illustrates a front view of FIG. 9. The cabinet 20 may include a front wall 20C that opens to expose the refrigeration enclosure or opening 25. Food racks 75 or other objects to be refrigerated or frozen may be arranged within the cabinet 20. The cabinet 20 may include a drain pan 21 that would allow moisture through drainage holes (not shown) to enter the pan, and exit the pan via a drain connection to an outside location (not shown).
  • FIG. 11 illustrates a sectional view of FIG. 10 showing the interior placement of the food racks forward of the evaporator 35. As described in detail above, the modular refrigeration assembly 15 may include the condenser assembly 32, the compressor 30, and the evaporator 35. Each of the condenser assembly 32, the compressor 30, and the evaporator 35 may be arranged together on a base plate 38 and can be removed and replaced on the cabinet 20 as an entire assembly 15.
  • As shown in FIG. 11, the modular refrigeration assembly 15 is configured to arrange the evaporator 35 within the cabinet 20 and arrange the condenser assembly 32 and compressor 30 within a housing 50 and external to the cabinet 20. One or more conduits 40 are arranged between and connect the condenser assembly 32, the compressor 30, and the evaporator 40 forming a closed loop system configured to contain refrigerant. The closed loop system formed by the conduits 40 and the condenser assembly 32, the compressor 30, and the evaporator 40 holds the refrigerant the assembly 15 requires without a reservoir.
  • The one or more conduits 40 are configured to contain the refrigerant and facilitate temperature control within the modular refrigeration 15 assembly free of a refrigerant reservoir. In certain instances, the conduits 40 are also configured to maintain the refrigerant within the system without direct contact with any ignition source. In addition, the refrigerant may be R290 propane. Prior refrigeration systems or blast chillers use refrigerants with high global warming potentials. The assembly 15 may use R290 propane refrigerant, which is non-toxic with a low global warming potential (e.g., GWP rating of 3 and no Ozone Depleting Properties (ODP)). The Environmental Protection Agency (EPA) has named R290 as its preferred hydrocarbon alternative.
  • Although R290 propane may be highly flammable, the assembly 15 fully contains and seals the R290 propane within the closed loop system of the conduits 40 and the condenser assembly 32, the compressor 30, and the evaporator 40. As a result, there risk of leaking is minimized and there is no direct contact with any ignition source. It has been shown that the assembly 15, using R290 propane, has a substantially similar fire risk as compared to a similar appliance using a different refrigerant.
  • In addition to the environmentally friendly nature of the assembly 15, the assembly 15 is also highly serviceable. For example, the modular refrigeration assembly 15 is configured to remove from the cabinet 20 and the housing 50 for service and replacement of one or more parts of the modular refrigeration assembly 15 (as shown in FIG. 12). The conduits 40 and electrical/control components include snap-fit connections that allow disconnection and disconnection of the condenser assembly 32, the compressor 30, and the evaporator 40 from the assembly 15. The connections are modular connections configured to connect to power and control connections.
  • In certain instances, the modular refrigeration assembly 15 is configured to insulate and seal the evaporator 35 within the cabinet 20. The base plate 38 may also include a sealing interface 45 attached to the bottom surface. The sealing interface 45 (e.g., insulative foam) may seal the evaporator 35 within the cabinet 20 and seal out the condenser assembly 32 and the compressor 30. In addition and as shown, the condenser assembly 32 and the compressor 30 are arranged on the base plate 38 that includes a substantially linear surface. The evaporator 35 being arranged within the cabinet 20 facilitates direct and efficient cooling of interior items within the cabinet 20 (e.g., refrigeration enclosure) than a system that incorporates components both interior and exterior to refrigerator interior. The opening 25 into which items to be cooled or frozen is situated directly land laterally adjacent to the evaporator 35. As shown in FIG. in the proximity of back wall 20D to facilitate the orientation of evaporator 35 towards the rear of the internal refrigeration space. This allows for the placement of food racks 75 (or other aspects) directly forward of the evaporator 35 such that the evaporator 35 can intake hot air from a front side 35B of the evaporator 35 and output cooled air to a back side 35C of the evaporator 35.
  • FIG. 13 illustrates a sectional view of FIG. 10 showing the evaporator 35 and direction of airflow. As shown in FIG. 13, the evaporator 35 is directly adjacent food racks 75 (although other objects to be cooled or frozen can be arranged in place of the food racks 75). The modular refrigeration assembly 15 is configured to arrange the evaporator 35 directly adjacent the opening into which the food racks 75 or other objects are placed.
  • The position and arrangement of the evaporator 35 to facilitate efficient air flow within the interior refrigeration space of cabinet 20. Left 20A, right 20B, and rear 20D walls include surfaces 20A1, 20B1, and 20D1 interior to cabinet 20. A space for airflow is created between interior surfaces 20A1, 20B1, and 20D1 and the periphery of evaporator 35. As illustrated by arrows indicating the direction of the airflow, there exists three way circulation of air within the refrigeration cabinet 20.
  • In certain instances, the evaporator 35 is arranged laterally adjacent the opening (in which the food racks 75 are arranged) in the cabinet 20, and the evaporator 35 is configured to intake hot air from the opening, cool and return the air in a first direction as shown. In addition, the cabinet 20 is configured to direct the cooled air in a second direction and a third direction perpendicular to the first direction evaporator back 35 toward the opening as shown. The back wall 20D1 of the cabinet 20 may deflect cooled air back toward the side walls 20A1, 20B1 and back toward the opening (in which the food racks 75 are arranged). The cabinet 20 includes space between the side walls 20A1, 20B1 and the evaporator 35 such that cooled air can circulate back toward the opening (in which the food racks 75 are arranged). In certain instances, the evaporator 35 is positioned co-extensively with opening (in which the food racks 75 are arranged) to draw heat evenly from the opening (in which the food racks 75 are arranged) into the evaporator 35 (a heat exchanger). In certain instances, the cabinet 20 may include an air deflector 80 positioned between evaporator rear surface 35C1 and back wall interior surface 20D1 to split airflow to opposite sides of opening (in which the food racks 75 are arranged). In certain instances, the air deflector 80 is angled inward towards surface 35C1, is ‘V’ shaped, and is coextensive with evaporator 35C. FIG. 14 shows the cabinet 20 and air pulling into the evaporator 35. As illustrated in FIG. 15, the evaporator 35 may include a plurality of evaporator/fans to accommodate coolers of varying dimensions.
  • The invention of this application has been described above both generically and with regard to specific embodiments. It will be apparent to those skilled in the art that various modifications and variations can be made in the embodiments without departing from the scope of the disclosure. Thus, it is intended that the embodiments cover the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents.

Claims (20)

What is claimed is:
1. A refrigeration system comprising:
a housing;
a cabinet arranged within the housing and including an opening configured to operate as a cooling or freezing space;
a modular refrigeration assembly including a condenser assembly, a compressor, and an evaporator, the modular refrigeration assembly being configured to arrange the evaporator within the cabinet and arrange the condenser assembly and compressor within the housing and external to the cabinet; and
one or more conduits arranged between the condenser assembly, the compressor, and the evaporator forming a closed loop system configured to contain refrigerant.
2. The refrigeration system of claim 1, wherein the one or more conduits are configured to contain the refrigerant and facilitate temperature control within the modular refrigeration assembly free of a refrigerant reservoir.
3. The refrigeration system of claim 1, wherein the one or more conduits are configured to contain the refrigerant.
4. The refrigeration system of claim 3, wherein the one or more conduits are configured to maintain the refrigerant within the system without direct contact with any ignition source.
5. The refrigeration system of claim 4, wherein the refrigerant is R290 propane.
6. The refrigeration system of claim 1, wherein the modular refrigeration assembly is configured to remove from the cabinet and the housing for service and replacement of one or more parts of the modular refrigeration assembly.
7. The refrigeration system of claim 1, wherein the modular refrigeration assembly includes modular connections configured to connect to power and control connections.
8. The refrigeration system of claim 1, wherein the modular refrigeration assembly is configured to insulate and seal the evaporator within the cabinet.
9. The refrigeration system of claim 1, wherein the condenser assembly and the compressor are arranged on a base plate that includes a substantially linear surface.
10. The refrigeration system of claim 1, wherein the evaporator is arranged laterally adjacent the opening in the cabinet, and the evaporator is configured to intake hot air from the opening, cool and return the air in a first direction, and the cabinet is configured to direct the cooled air in a second direction and a third direction perpendicular to the first direction evaporator back toward the opening.
11. A refrigeration system comprising:
a housing;
a cabinet arranged within the housing and including an opening configured to operate as a cooling or freezing space, and a wherein the evaporator is arranged laterally adjacent the opening in the cabinet, a diverter configured to facilitate air circulation relative to the opening;
a modular refrigeration assembly including a condenser assembly, a compressor, and an evaporator, the modular refrigeration assembly being configured to removably insert the evaporator within the cabinet to intake hot air from the opening, cool and return the air in a first direction, and direct the cooled air toward the diverter to circulate the cooled air in a second direction and a third direction perpendicular to the first direction evaporator back toward the opening; and
one or more conduits arranged between the condenser assembly, the compressor, and the evaporator forming a closed loop system configured to contain refrigerant.
12. The refrigeration system of claim 11, wherein the modular refrigeration assembly is configured to arrange the condenser assembly and compressor within the housing and external to the cabinet and seal the evaporator within the cabinet.
13. The refrigeration system of claim 12, wherein the modular refrigeration assembly is configured to the condenser assembly and compressor external to the cabinet and above the opening within the cabinet.
14. The refrigeration system of claim 12, wherein the opening is configured to house one or more food racks.
15. The refrigeration system of claim 11, wherein the modular refrigeration assembly is configured to arrange the evaporator directly adjacent the opening.
16. The refrigeration system of claim 11, wherein the housing includes a controller configured to interface with the modular refrigeration assembly and facilitate multiple levels of cooling cycles.
17. A method of servicing a refrigeration system that includes a housing, and a cabinet arranged within the housing having an opening configured to operate as a cooling or freezing space, and a modular refrigeration assembly having a condenser assembly, a compressor, and an evaporator, the method comprising:
removing the panels of the housing to reveal the condenser assembly and the compressor of the modular refrigeration assembly;
disconnecting the modular refrigeration assembly from the cabinet;
removing the modular refrigeration assembly to lift the evaporator from within the cabinet; and
repairing or replacing one or more parts of the modular refrigeration assembly.
18. The method of claim 17, wherein the modular refrigeration assembly includes a base configured to hold the condenser assembly, the compressor, and the evaporator in place.
19. The method of claim 17, further including placing the modular refrigeration assembly within the housing and the cabinet after repairing or replacing the one or more parts of the modular refrigeration assembly.
20. The method of claim 18, further including sealing the evaporator within the cabinet after placing the modular refrigeration assembly within the cabinet.
US17/027,934 2016-06-23 2020-09-22 Modular refrigeration system Abandoned US20210003328A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/027,934 US20210003328A1 (en) 2016-06-23 2020-09-22 Modular refrigeration system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201614999763A 2016-06-23 2016-06-23
US17/027,934 US20210003328A1 (en) 2016-06-23 2020-09-22 Modular refrigeration system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US201614999763A Continuation-In-Part 2016-06-23 2016-06-23

Publications (1)

Publication Number Publication Date
US20210003328A1 true US20210003328A1 (en) 2021-01-07

Family

ID=74066371

Family Applications (1)

Application Number Title Priority Date Filing Date
US17/027,934 Abandoned US20210003328A1 (en) 2016-06-23 2020-09-22 Modular refrigeration system

Country Status (1)

Country Link
US (1) US20210003328A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11162720B2 (en) * 2015-08-11 2021-11-02 Trane International Inc. Refrigerant recovery and repurposing

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040134221A1 (en) * 2002-10-18 2004-07-15 Habco Beverage Systems Inc. Modular refrigeration unit and refrigerator
US20050092012A1 (en) * 2003-11-05 2005-05-05 Akihiko Hirano Method of manufacturing refrigerated repositories and sales management system for refrigerated storage
US20060201196A1 (en) * 2002-10-18 2006-09-14 Habco Beverage Systems Inc. Modular refrigeration unit and refrigerator
US20070000273A1 (en) * 2005-06-30 2007-01-04 Sanders Joseph F Refrigeration unit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040134221A1 (en) * 2002-10-18 2004-07-15 Habco Beverage Systems Inc. Modular refrigeration unit and refrigerator
US20060201196A1 (en) * 2002-10-18 2006-09-14 Habco Beverage Systems Inc. Modular refrigeration unit and refrigerator
US20050092012A1 (en) * 2003-11-05 2005-05-05 Akihiko Hirano Method of manufacturing refrigerated repositories and sales management system for refrigerated storage
US20070000273A1 (en) * 2005-06-30 2007-01-04 Sanders Joseph F Refrigeration unit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11162720B2 (en) * 2015-08-11 2021-11-02 Trane International Inc. Refrigerant recovery and repurposing

Similar Documents

Publication Publication Date Title
US6701739B2 (en) Modular refrigeration system for refrigeration appliance
US6948324B2 (en) Refrigerator cooler and housing cabinet and an improved method of insertion of the refrigerator compressor unit
EP1669707B1 (en) Refrigerating device
CA2947597C (en) Refrigerated case with an induced air flow system
EP3343144B1 (en) Refrigerator
EP3343143B1 (en) Refrigerator
KR20150063175A (en) Refrigerator
US11624545B2 (en) Refrigerator having removable cooling module
RU2581735C2 (en) Household refrigerator
US11313607B2 (en) Refrigerator
US11306960B2 (en) Refrigerator having detachable cooling module
US10935486B2 (en) Environmental test chamber
US20210003328A1 (en) Modular refrigeration system
KR102168620B1 (en) Outdoor unit for air conditoiner
US7703295B2 (en) Modular refrigeration unit
JP2009264625A (en) Refrigerator
KR101245263B1 (en) Refrigerator for the cooling unit discrete type trade kitchen
CA3042606A1 (en) Condenser fan motor mounts and guards
JP5865874B2 (en) Fitting device for ship refrigeration equipment and method for attaching ship refrigeration equipment
KR100950846B1 (en) Refrigerator
JP5865875B2 (en) Refrigeration equipment for ship food storage
KR101419660B1 (en) Storing Equipment including Integrated Cooling Device
KR970001293B1 (en) Separable refrigerator
KR20120128037A (en) Refrigerator for the cooling unit discrete type trade kitchen
US20180299178A1 (en) Flexible cooling system for vehicles

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

AS Assignment

Owner name: EVERIDGE, INC., MINNESOTA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:IOVANEL, FLAVIAN;REEL/FRAME:055869/0096

Effective date: 20190919

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION