CA2522251A1 - Gasoline-impermeable coatings - Google Patents

Gasoline-impermeable coatings Download PDF

Info

Publication number
CA2522251A1
CA2522251A1 CA002522251A CA2522251A CA2522251A1 CA 2522251 A1 CA2522251 A1 CA 2522251A1 CA 002522251 A CA002522251 A CA 002522251A CA 2522251 A CA2522251 A CA 2522251A CA 2522251 A1 CA2522251 A1 CA 2522251A1
Authority
CA
Canada
Prior art keywords
compound
bis
curable compound
container
gasoline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002522251A
Other languages
French (fr)
Inventor
John Ulcar
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Crosslink Technology Inc
Original Assignee
Crosslink Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CA002486314A external-priority patent/CA2486314A1/en
Application filed by Crosslink Technology Inc filed Critical Crosslink Technology Inc
Priority to CA002522251A priority Critical patent/CA2522251A1/en
Publication of CA2522251A1 publication Critical patent/CA2522251A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/048Forming gas barrier coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2463/00Characterised by the use of epoxy resins; Derivatives of epoxy resins

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Details Of Rigid Or Semi-Rigid Containers (AREA)
  • Paints Or Removers (AREA)

Abstract

A coating that can be adhered to a polyethylene gasoline container to substantially reduce its gas permeability, and a gasoline container treated with such a coating. A single-component cationic curing composition with increased impermeability to gasoline vapour uses a bis 'F' epoxy in combination with a catalyst and oxetane. The invention takes advantage of a narrower ultraviolet absorption spectrum of the bis 'F' epoxy, whereby ultraviolet radiation outside the UV
absorption spectrum of the bis ',F' will activate the catalyst, the highly active superacid from the antimonate anion, without any significant reduction of the cationic curing reaction. In the preferred embodiment the bis 'F' and oxetane combination is used along with various additives included for flow and cosmetic purposes.

Description

GASOLINE-IMPERMEABLE COATINGS
Field of the Invention This invention relates to coatings. In particular, this invention relates to gas impermeable coatings for gasoline containers and the like.
Background of the Invention Gasoline containers are made from polyethylene. A typical gasoline container experiences a permeation rate of about 30 g/m2/day, resulting in the loss of a considerable amount of gasoline vapour into the environment. This extent of gasoline pollution caused by this problem is so substantial that the Environmental Protection 1 o Agency has announced a directive requiring that losses due to gasoline permeation be reduced to 1.5 g/m2/day.
Polyethylene is a preferred material for gasoline containers despite its permeability, because of its other physical and chemical properties, including resistance to decomposition. One possible method of reducing the permeability of polyethylene is to coat the container with a material having a lower permeability than polyethylene. However, polyethylene has a low surface energy, and consequently a very low adhesion, which makes coating the container difficult. There are techniques available to increase the adhesion of polyethylene sufficiently to allow a coating to adhere with reasonable permanence, for example chemical etching.
However, the production of a coating material that both adheres to polyethylene and has the required low permeability to gasoline has been problematic.
One type of coating suitable for surface modified polyethylene containers, which uses cationic ultraviolet (UV) technology, has been available for many years. The resins of choice for this type of coating have predominantly been cycloaliphatic resins modified with polycaprolactone polyols, combined With a LTV activated catalyst (typically triaryl sulphonium hexaflourophosphate). As in the case of standard two-component epoxies, these UV cured systems had generally good mechanical and chemical properties, as well as the advantage of very fast curing under UV lights (seconds as opposed to minutes), which made them suitable for mass production applications.
_1_ However, the high permeability to gasoline of such coatings has rendered them unsuitable for reducing the permeability of gasoline cans. The use of an aromatic epoxy in a cationic curing compound is capable of providing the desired low permeability to gasoline, providing a much tighter crosslink structure, but is problematic from the curing standpoint because absorption in the ultraviolet range for these types of epoxies is very high.
For example, Figure 1 illustrates diglycidyl ether of bisphenol 'A', an example of a standard bis 'A' structure, which is one of the most popular epoxy resins used for two-component systems. It has high LTV absorption in most of the same range as the 1o catalyst, as shown in Figure 2. Therefore, the ultraviolet radiation needed by the UV
activated catalyst to cure the compound is absorbed by the epoxy, which interferes with the curing process. As such these types of epoxies are considered~to be too slow for use in cationic ultraviolet applications.
Summary, of the Invention 15 The present invention provides a coating that can be adhered to a polyethylene gasoline container to substantially reduce its gas permeability, and a gasoline container treated with such a coating. The invention comprises a single-component cationic curing composition having greatly increased chemical resistance to gasoline, and in particular a very high impermeability to gasoline. The composition of the 20 invention creates a coating having a very close crosslink structure, capable of reducing gas pernleability to below 1.5 g/mz/day.
The invention accomplishes this using a bis 'F' epoxy compound in combination with an oxetane compound, which when mixed with a catalyst (activator) creates a cationic curing compound having the desired chemical properties. The use of 25 an aromatic epoxy compound in such an application has previously been dismissed as unviable, because ultraviolet absorption by aromatic epoxy compounds is known to interfere with the excitation of the catalyst and thus the formation of the superacid that causes the epoxy molecules to react. However, the invention takes advantage of a L1V
absorption spectrum of the bis 'F' epoxy compound, whereby ultraviolet radiation 3o outside the IJV absorption spectrum of the bis 'F' epoxy compound will activate the
-2-more active hexafluoro antimonite ion without any significant reduction of the cationic curing reaction.
In the preferred embodiment the bis 'F' epoxy compound and oxetane compound combination is used along with various additives included for flow and cosmetic purposes. The combination of a catalyst and a resin comprising the bis 'F' epoxy compound (bis 'F' epoxy resin) provides a quick reaction, which renders the composition suitable for use as a coating material in the mass production of gasoline containers, along with superior chemical resistance properties including a very low permeability to gasoline vapour.
1 o The invention thus provides a curable compound for use as a coating for a container, comprising a cationic photoinitiator, oxetane compound, and a bis 'F' epoxy compound, whereby upon application of the curable compound to a container and exposure to ultraviolet radiation, the curable compound cures and adheres to the container to decrease a permeability of the container.
15 The invention further provides a method of decreasing permeability of a gasoline container, comprising the steps of a) coating the container with a curable compound comprising a cationic photoinitiator, oxetane compound and a bis 'F' epoxy compound; and b) curing the curable compound using ultraviolet radiation, whereby the curable compound cures and adheres to the container to decrease a 20 permeability of the container to gasoline vapour.
Brief Description of the Drawings In drawings which illustrate by way of example only a preferred embodiment of the invention, Figure 1 illustrates an example of a bis 'A' structure;
25 Figure 2 is a graph illustrating the ultraviolet absorption spectrum of the standard bis 'A' compounds illustrated in Figure 1;
Figure 3 illustrates the structure of bisphenol F;
Figure 4 illustrates the structure of a bis 'F' epoxy compound;
-3-Figure 5 illustrates examples of cycloaliphatic resins;
Figure 6 is a graph illustrating the ultraviolet absorption spectrum of the cycloaliphatic resins illustrated in Figure 5;
Figure 7 illustrates polycaprolactone;
Figure 8 illustrates triaryl sulphonium hexaflouro phosphate;
Figure 9 illustrates examples of mixed arylsulphonium hexafluoroantimonate salts;
Figure 10 is a graph illustrating the ultraviolet absorption spectrum of the mixed arylsulphonium hexafluoroantimonate salts illustrated in Figure 9;
to Figure 11 is a graph illustrating the IJV emission spectrum of a standard industrial mercury bulb (irradiation energy vs. wavelength);
Figure 12 is a perspective view of a gasoline container treated with the coating of the invention; and Figure 12A is an enlarged sectional view of a wall of the gasoline container of 15 Figure 12.
Detailed Description of the Invention Figure 12 illustrates a typical gas container 10 having a wall 12. The method and curable compound described herein can be used to apply a coating 14 to the gasoline container 10, to reduce the permeability of the wall 12 to gasoline vapour.
20 As is well known to a person skilled in the art, bis F epoxy compounds or bis 'F' epoxies are derived from bisphenol F by processes known in the art. Figure illustrates the structure of bisphenol F. Figure 4 illustrates the structure of a typical bis 'F' epoxy compound that is used to form a typical bis F epoxy resin. As is known to a person skilled in the art, there are many different bis 'F' epoxies that can be 25 generated from bisphenol F. Bis 'F' resins are primarily used in high performance applications because of their high temperature resistance and superior chemical resistance
-4-The bis 'F' resin is mixed with an oxetane compound to impart some flexibility in the coating without sacrificing substantial permeation resistance.
Oxetane does not absorb light in the UV spectra and therefore does not interfere with the W curing process. Suitable oxetane compounds for the purposes of the present include the following formula (n:
_ n to n=1,2,or3;
and the following formula (I~:
O
R = H, OH, CH3, CHZOH, CH20N02, ETC.
R' = H, OH, CH3, CH20H, CH20N02, ETC
IS
In addition, oxetane can be the oxetane compound for the purposes of the present invention.
-5-An alternative additive is polycaprolactone, illustrated in Figure 7, but it does not appear to be as effective as oxetane or other oxetane compounds for this particular application.
The bis 'F' epoxy resin/oxetane compound combination is mixed with a cationic photoinitiator, also commonly known as a "catalyst" or "activator."
Cationic photoinitiators are frequently compounds found in classes such as the triaryl sulfonium, tetraaryl phosphonium, and diaryl iodonium salts of large protected anions (hexafluoro phosphates or antimonates). Figure 8 illustrates by way of example triaryl sulphonium hexaflouro phosphate which is a suitable catalyst for use in the present 1 o invention.
Figure 9 illustrates examples of mixed arylsulphonium hexafluoroantimonate salts. These compounds are the most suitable catalysts for use in the present invention because the stronger anions produced are more effective in accelerating the reaction.
For example, Figure 10 is a graph illustrating the ultraviolet absorption spectrum of the mixed arylsulphonium hexafluoroantimonate salts illustrated in Figure 10, from which it can be seen that the absorption band falls outside the absorption band of the bis 'F' epoxy compounds illustrated in Figure 4. Figure 11 is a graph illustrating the IJV emission spectrum of a standard industrial mercury bulb (irradiation energy as a function of wavelength), which peaks in the range of the bis 'F' epoxy resin.
Other 2o suitable catalysts, by way of example only, include triaryl sulphonium hexafluoroantimonate or triaryl iodonium hexafluoroantimonate.
To create the compound of the invention, the ingredients are mixed one at a time. Preferably the catalyst is added to the mixture last, ensuring a complete mixed solution.
In use, a polyethylene gasoline container 10 such as that illustrated in Figure 12 is preferably suitably pre-treated using physical or chemical etching, or any other process designed to improve the adherence of surface of the gasoline container. A
curable compound according to the invention is applied to the container wall 12, for example sprayed on or the container 10 is dipped into the compound, and the curable 3o compound is subsequently cured by exposure to ultraviolet radiation for the required
-6-interval (typically a few seconds) to create the low-permeability coating 14.
Additional coats 14 may be applied in like fashion, according to the desired level of impermeability, however a single coating of the preferred embodiment should lower the permeability of the container sufficient to meet proposed regulatory standards.
Other additives which can optionally be added, for the purpose indicated, are:
cycloaliphatic epoxies, for viscosity modification; low molecular weight polyols, for hardness and flexibility modification; and photosensitizers to increase the activity of light absorption by the catalyst.
Various embodiments of the present invention having been thus described in detail by way of example, it will be apparent to those skilled in the art that variations and modifications may be made without departing from the invention. The invention includes all such variations and modifications as fall within the scope of the appended claims.

Claims (17)

I CLAIM:
1. A curable compound for use as a coating for a container, comprising a cationic photoinitiator, oxetane compound, and a bis 'F' epoxy compound, whereby upon application of the curable compound to a container and exposure to ultraviolet radiation, the curable compound cures and adheres to the container to decrease a permeability of the container.
2. The curable compound of claim 1 wherein the permeability is decreased with respect to gasoline vapour.
3. The curable compound of claim 1 wherein the cationic photoinitiator comprises a triaryl sulfonium, tetraaryl phosphonium, or diaryl iodonium salt of hexafluoro phosphate or antimonite.
4. The curable compound of claim 1 wherein the bis 'F' epoxy compound is (2,2, -bis[p-(2,3-epoxypropoxy)phenyl]-methane).
5. The curable compound of claim 1 further comprising at least one cycloaliphatic epoxy for viscosity modification.
6. The curable compound of claim 1 further comprising at least one low molecular weight polyol for hardness or flexibility modification.
7. The curable compound of claim 1 further comprising at least one photosensitizer to increase the activity of light absorption by the catalyst.
8. The curable compound of claim 1 wherein the oxetane compound corresponds to the following formula (I):

n = 1, 2, or 3.
9. The curable compound of claim 1 wherein the oxetane compound corresponds to the following formula (II):
R = H, OH, CH3, CH2OH, CH2ONO2, ETC.
R' = H, OH, CH3, CH2OH, CH2ONO2, ETC.
10. A method of decreasing permeability of a gasoline container, comprising the steps of:
a. coating the container with a curable compound comprising a cationic photoinitiator, an oxetane compound and a bis 'F' epoxy compound, and b. curing the curable compound using ultraviolet radiation, whereby the curable compound cures and adheres to the container to decrease a permeability of the container to gasoline vapour.
11. The method of claim 10 wherein the cationic photoinitiator comprises a triaryl sulfonium, tetraaryl phosphonium, or diaryl iodonium salt of hexafluoro phosphate or antimonite.
12. The method of claim 10 wherein the bis 'F' epoxy is (2,2,-bis[p-(2,3-epoxypropoxy)phenyl]-methane).
13. The method of claim 10 wherein the curable compound further comprises at least one cycloaliphatic epoxy for viscosity modification.
14. The method of claim 10 wherein the curable compound further comprises at least one low molecular weight polyol for hardness or flexibility modification.
15. The method of claim 10 wherein the curable compound further comprises at least one photosensitizer to increase the activity of light absorption by the catalyst.
16. The method of claim 10 wherein the oxetane compound corresponds to the following formula (I):
n = 1, 2, or 3.
17. The method of claim 10 wherein the oxetane compound corresponds to the following formula (II):

R = H, OH, CH3, CH2OH, CH2ONO2, ETC.
R' = H, OH, CH3, CH2OH, CH2ONO2, ETC.
CA002522251A 2004-10-29 2005-10-04 Gasoline-impermeable coatings Abandoned CA2522251A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA002522251A CA2522251A1 (en) 2004-10-29 2005-10-04 Gasoline-impermeable coatings

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CA2,486,314 2004-10-29
CA002486314A CA2486314A1 (en) 2004-10-29 2004-10-29 Gasoline-impermeable coatings
CA002522251A CA2522251A1 (en) 2004-10-29 2005-10-04 Gasoline-impermeable coatings

Publications (1)

Publication Number Publication Date
CA2522251A1 true CA2522251A1 (en) 2006-04-29

Family

ID=36242677

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002522251A Abandoned CA2522251A1 (en) 2004-10-29 2005-10-04 Gasoline-impermeable coatings

Country Status (1)

Country Link
CA (1) CA2522251A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010118527A1 (en) * 2009-04-17 2010-10-21 Crosslink Technology Inc. Compositions comprising solvated aromatic amines and methods for the preparation thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010118527A1 (en) * 2009-04-17 2010-10-21 Crosslink Technology Inc. Compositions comprising solvated aromatic amines and methods for the preparation thereof
US8748540B2 (en) 2009-04-17 2014-06-10 Crosslink Technology, Inc Compositions comprising solvated aromatic amines and methods for the preparation thereof

Similar Documents

Publication Publication Date Title
CN107438650B (en) Sealants based on mercapto-terminated matrix polymers/epoxy compounds and hardening method using photolatent catalysts
US6780232B2 (en) Coating composition yielding abrasion-resistant tiniable coating
US20070077370A1 (en) Gasoline-impermeable coatings
US4179400A (en) Process for preparing catalytic solutions of sulfonium salts
US3711391A (en) Photopolymerizable epoxy systems containing sulfoxide gelation inhibitors
JPS63214413A (en) Method and device for working ultraviolet curing reactive resin compound
US20070021523A1 (en) Optical coating composition
JPH0413374B2 (en)
CA2258620A1 (en) Cold curing epoxy resin formulations
US4154872A (en) Process for preparing catalytic solutions of sulfonium salts
EP0445791B1 (en) Radiation curable protective coating composition containing epoxides and colloidal silica
CN110234715A (en) Antibacterial polymer coating composition and antibacterial polymer film
CA2522251A1 (en) Gasoline-impermeable coatings
CA1126436A (en) Photopolymerizable composition containing an acid-polymerizable material, an iodonium salt and a free radical generator
JP2001002760A (en) Hardened composition of resin containing energy ray- shielding material by irradiation with energy ray, and hardening method
CA2486314A1 (en) Gasoline-impermeable coatings
US6770686B2 (en) Photocationic initiator combinations
US3721616A (en) Photopolymerizable epoxy systems containing nitrile gelation inhibitors
JPS60104158A (en) Curable organopolysiloxane composition
JPH07118369A (en) Uv-curable resin composition
JP2002256092A (en) Hard coat film
CN110317320A (en) Cationic photo-curing compound and composition comprising it
JPH05202314A (en) Optically curable coating composition, its cured coating film and its formation
JP4313906B2 (en) Active energy ray curable composition and film forming method thereof
JPS6160720A (en) Resin composition

Legal Events

Date Code Title Description
FZDE Discontinued