CA2474182A1 - Harmonic reflective load-pull tuner - Google Patents
Harmonic reflective load-pull tuner Download PDFInfo
- Publication number
- CA2474182A1 CA2474182A1 CA 2474182 CA2474182A CA2474182A1 CA 2474182 A1 CA2474182 A1 CA 2474182A1 CA 2474182 CA2474182 CA 2474182 CA 2474182 A CA2474182 A CA 2474182A CA 2474182 A1 CA2474182 A1 CA 2474182A1
- Authority
- CA
- Canada
- Prior art keywords
- harmonic
- tuner
- slugs
- reflective
- resonators
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/316—Testing of analog circuits
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/317—Testing of digital circuits
- G01R31/3181—Functional testing
- G01R31/319—Tester hardware, i.e. output processing circuits
- G01R31/31917—Stimuli generation or application of test patterns to the device under test [DUT]
- G01R31/31924—Voltage or current aspects, e.g. driver, receiver
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Control Of Motors That Do Not Use Commutators (AREA)
Abstract
The present invention discloses a harmonic reflective tuner system consisting of a radio-frequency (RF) or microwave transmission line having a longitudinal axis, containing two harmonic resonators sliding on the central conductor, where the harmonic resonators are comprising a pair of identical RF slugs, mechanically attached together. The two harmonic resonators will reflect two harmonic frequencies of a base frequency F0. The harmonic reflective tuner of this invention has an input and output, said input being connected to the DUT trough a diplexer in parallel with the fundamental tuner.
Description
HARMONIC REFLECTIVE LOAD-PrJLL TUNER
REFERENCES CITED
U.S. Patent Documents 3851271 Nov., 197Q. Cooke et al. 331/47 4267532 May,1981 Saleh 333/33 4535307 Aug., 1985 Tsukii 333/35 4751480 Jun., 1988 Kunz et al. 333/129 5079507 Jan.,1992 ishida et al. 324/645 5363060 Nov.,1994 Kohno 330/286 5406224 Apr.,1995 Mikami et al. 330/277 6297649 Oct. 2, 2001 Tsironis 324/642 6674293 Jan. 6, 2004 Tsiranis 324/638 Other References ~ LANGE Julius, Microwave Transistor Characterization Including S-Parameters, Texas Instruments, in Hewlett Packard Application Nate 95 ~ KESHISHIAN Richard, VSWR Tuner, MACOM Application Note AN0004 ~ CUSACK Joseph M., PERLOW Stewart M., PERLMAN Barry S., Automatic Load Contour Mapping for Microwave Power Transistors; IIEEE Transactions on Microwave Theory and Techniques, vol. MMT-22, No. 12, Dec. 1974, pp1146-1152.
~ SECHI F., PAGLIONE R., PERLMAN B., BROWN J., A Computer-Controlled Microwave Tuner for Automated Load Pull, RCA Review, vol. 44 Dec. 1983, pp 566-583.
~ PERLOW Stewart M., New Algorithms for the Automated Microwave Tuner System, RCA Review, vol. 46, Sep. 1985, pop 441455.
_. ___...n... n m ._.__.._ _.. _ ~~, ~ ,. r ,~. ~,~:...~ ~.~. . M, .m .~_~..~
._-..~..,.____.__ ._ ..
REFERENCES CITED
U.S. Patent Documents 3851271 Nov., 197Q. Cooke et al. 331/47 4267532 May,1981 Saleh 333/33 4535307 Aug., 1985 Tsukii 333/35 4751480 Jun., 1988 Kunz et al. 333/129 5079507 Jan.,1992 ishida et al. 324/645 5363060 Nov.,1994 Kohno 330/286 5406224 Apr.,1995 Mikami et al. 330/277 6297649 Oct. 2, 2001 Tsironis 324/642 6674293 Jan. 6, 2004 Tsiranis 324/638 Other References ~ LANGE Julius, Microwave Transistor Characterization Including S-Parameters, Texas Instruments, in Hewlett Packard Application Nate 95 ~ KESHISHIAN Richard, VSWR Tuner, MACOM Application Note AN0004 ~ CUSACK Joseph M., PERLOW Stewart M., PERLMAN Barry S., Automatic Load Contour Mapping for Microwave Power Transistors; IIEEE Transactions on Microwave Theory and Techniques, vol. MMT-22, No. 12, Dec. 1974, pp1146-1152.
~ SECHI F., PAGLIONE R., PERLMAN B., BROWN J., A Computer-Controlled Microwave Tuner for Automated Load Pull, RCA Review, vol. 44 Dec. 1983, pp 566-583.
~ PERLOW Stewart M., New Algorithms for the Automated Microwave Tuner System, RCA Review, vol. 46, Sep. 1985, pop 441455.
_. ___...n... n m ._.__.._ _.. _ ~~, ~ ,. r ,~. ~,~:...~ ~.~. . M, .m .~_~..~
._-..~..,.____.__ ._ ..
Patent Application Publication, US 2003/0122633 Al, Jul. 3, 2003, Christos Tsironis, "High Frequency, High Reflection Pre-Matching Tuners with Variable Zero Initialization"
~ Patent Application Publication, US 2004f0I19481 Al, Jun. ~4, 2004, Christos Tsironis, "Microwave Tuners for Wideband High Reflection Applications"
FIELD OF THE INVENTION
The present invention relates to an electromechanical harmonic reflective tuner system, and more particularly to such a system to be used in harmonic load-pull setup for the measurement, characterization and testing of RF or microwave devices. Under high power conditions at its input at the fundamental frequency F0, the device under test (hereinafter referred to as "DUT") generates an output signal that contain s the fundamental frequency FO
and the harmonic frequencies of said fundamental frequency F0. RF/Microwave harmonic reflective tuners are electronic devices or mechanical devices which modify iu a predictable way the phase of the reflection of harmonics of a given operation frequency F0. The harmonic reflective tuner has the capability of generating high amplitude gamma to the microwave devices at harmonic frequencies. This technique of subjecting DUT's input and output to variable high gamma phase with corresponding harmonic source tuner and harmonic load tuner, commonly referred to as "harmonic load pull", is used to test transistors for amplifier, oscillator or frequency multiplier applications specially at high power, when the non-linear effect of the DUT produces harmonic frequencies.
DESCRIPTION OF THE PRIOR ART
The harmonic load-pull setup is composed of an input generator and its associated amplification (4) connected to input tuners, DUT (3) , output tuners and the appropriated measurement apparatus (5).
One possible configuration for harmonic load-pull is using frequency discriminators like triplexers at the input of the DUT (7) and at the output of the DU'I~ (7') shown in figure l and using large band tuners (6) on all frequency branches, the large band tuners on the harmonic branches being terminated by 50 ohms loads (2) connected to ground (1). With the large band tuners, the impedances at all frequencies at the input and output of the DUT
can be controlled independently. The disadvantage of this method lies in the losses of the triplexer, its limited frequency bandwidth and the high number of large band tuners required, 6 in the configuration of figure 1.
In order to obviate these problems, a specific harmonic tuner has been proposed in U.S.
Patent 6,297,649 issued to Christos TSIROrIIS Oct. 2, 2001. Dedicated harmonic tuners are inserted in series between the fundamental tuner (6,6') and the DUT's (3j at the input, harmonic tuner (8), and at the output, harmonic tuner ($'). These harmonic tuners are comprising a transmission line (g) an which 2 open stubs (11,12) are sliding on the central conductor (10), which open stubs are surrounded by a circular side wall (14,14') and permanently secured an the said side walls through dielectric, low loss washers (13,13'). In order to eliminate the residual reflection at the fundamental frequency F0, additional open stubs (11',12') might be added, said additional open stubs are identical to the first open stubs (i1,12). The open stubs are then positioned along the transmission line to control the phase of the reflection as indicated by arrows (11") and (12").
The advantages of this harmonic tuner are:
~ The number of tuners has been reduced to 2.
~ These tuners are easier to manufacture than fundamental tuner since they do only require 2 horizontal translation control of the resonators along the transmission line longitudinal axis in order to control the phase reflection at harmonic frequencies.
The disadvantages of this harmonic tuner are:
Stub copper foil sliding on the central conductor with a metallic to metallic contact in order to insure "perfect" galvanic contact to minimize the losses and to increase the band rejection will see these performances significantly degraded with long term use, because of the removal of the gold metallization of the central conductor, therefore decreasing the band rejection and increasing the losses.
~ Since the harmonic tuner of U.S. Patent 6,297,649 (8,8') is inserted in series between the DUT (3) and the fundamental tuner (6,6'), a supplementary constraint on the harmonic reflectors is that they have to be transparent at the fundamental frequency F0.
~ Since the harmonic tuner of U.S. Patent 6,297,649 (8,8') is inserted in series between the DUT (3) and the fundamental tuner (6,6'), the losses of the harmonic tuner at the fundamental frequency FO are directly degrading the performances of the fundamental tuner (fi,6'), lowering the gamma tuning range ofthe fundamental tuners.
~ Since the harmonic tuner of U.S. Patent 6,297,649 (8,8') is inserted in series between the DUT (3) and the fundamental tuner (6,6'), the RF isolation at the fundamental frequency F~ is very poor, meaning that any modifications of the position of the harmonic resonators will affect the impedance seen by the DIIT at this fundamental frequency FO and has to be corrected.
SUMMARY OF THE INVENTION
The problem remaining in the prior art has been solved in accordance with the present invention which relates to a class of mechanical harmonic reflective tuner comprising a transmission line, two harmonic resonators sliding along the transmission line longitudinal axis. Since the setup is using a diplexer in order to separate the fundamental frequencies FO
from the harmonic frequencies nFO, the isolation of the fundamental tuning compare to the harmonic tuning is very good by design, the harmonic resonators do not have to be transparent at the fundamental frequency FO and finally just the losses of the diplexer are affecting the gamma tuning range of the fundamental tuner at Ff?, said diplexers are much easier to manufacture than triplexers.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG 1: Prior Art: depicts a harmonic load-pull setup using triplexer and fundamental tuners FIG 2: Prior Art: depicts a harmonic load-pull setup using dedicated double-stub harmonic tuner in series between the fundamental tuners and the DUT
FIG 3A: Prior Art: depicts a double-stub harmonic tuner FIG 3B: Prior Art: depicts a double-stub harmonic tuner - longitudinal cross sectional view.
FIG 3C: Prior Art: depicts a double-stub harmonic tuner - transversal cross sectional view.
FIG 3D: Prior Art: depicts a double-stub harmonic tuner - schematic longitudinal cross sectional view.
FIG 4A: Prior Art: depicts a double-double-stub harmonic tuner FIG 4B: Prior Art: depicts a double-double-stub harmonic tuner - longitudinal cross sectional mew.
FIG 4C: Prior Art: depicts a double-double-stub harmonic tuner - transversal cross sectional view.
FIG 4D: Prior Art: depicts a double-double-stub harmonic tuner - schematic longitudinal cross sectional view.
FIG. 5: Depicts a harmonic load-pull setup using diplexer with harmonic reflective tuner FIG. 6A: Depicts a harmonic reflective tuner slab-line with 2 RF slugs mechanically linked together: longitudinal cross sectional view FIG. 6B: Depicts a harmonic reflective tuner slab-line with 2 RF slugs mechanically linked together: top view FIG 7: Depicts a harmonic reflective tuner slab-line with a single corrugated RF slug with one slot: longitudinal cross sectional view FIG 8: Depicts a preferred embodiment of the harmonic reflective tuner structure DESCRIPTION OF A PREFERRED EMBODIMENT OF TIIE INVENTION
The measurement setup for the harmonic tuner of this invention is described by figure 5. The harmonic load-pull setup is composed of an input generator and its associated amplification {4) connected in series to the input wide band tuner (6), input diplexer (13), DUT (3) , output diplexer (13'), output wide band tuner {fi') and the appropriated measurement apparatus (5), such as spectrum analyser, power meter or standard load. The harmonic tuners of this invention are placed in parallel with the DUT's input and output, the input harmonic tuner (14) being connected to the input diplexer {13), and the output harmonic tuner (14') being connected to the output diplexer (13'). The diplexers have one input and two outputs, discriminating the fundamental frequency FO on one branch, from the frequencies above FO
(harmonics of FO) on the other branch where the harmonic tuners are connected.
The harmonic reflective tuner, described by figure 8, consists of a housing (41), a slab-line (42,15) with a characteristic impedance Z0. The slab-line contains two harmonic resonators (19,20,23,24), that slide between the inner (16) and outer (42,15) conductors.
In a preferred embodiment of this invention, the harmonic resonators {19,20) include a pair of identical wide band RF slugs equal in sizes and materials, each pair of slugs being mechanically linked to a mobile carriage (46,47) trough a mechanical link (48,49). The harmonic resonators are horizontally positioned in the slab-line by mobile carriages (46,47), which are driven by two lateral mechanisms such as driving screws (44,45), which themselves are controlled by stepping motors (50,51). Both harmonic resonators are sliding on the central conductor of the slab-line.
The purpose of the harmonic tuners is to reflect back to the DUT with appropriate phase angle the harmonic frequencies of a fundamental frequency F0 produced by the DUT itself under non-linear conditions. The way this invention is accomplishing the reflection of the two harmonic frequencies is by using the maximum VSWR (Voltage Standing Wave Ratio) resonant property of a pair of quarter wavelength low impedance RF slugs, a quarter wavelength spaced apart. A second harmonic resonator is placed in series with the first harmonic resonator, said first harmonic resonator being transparent to the resonant frequency of the second harmonic resonator by using the transparent property of half wavelength low impedance RF slugs.
In a first preferred embodiment of this invention, flee harmonic resonators described by figure 6A are comprising two low impedance wide band RF slugs (17,17') or (18,18') apart from each other and mechanically attached together (19) or (20).
The maximum reflection VSWR of the first harmonic resonator comprising slug (17) and slug (1T) at harmonic frequency nF0 will occur when the RF slugs spacing is an odd multiple of a quarter wavelength of the harmonic frequency nF0 and said slugs (17,1T) longitudinal lengths are also an odd multiple of the quarter wavelength of the harmonic frequency nFO. The harmonic frequency nF0 will be reflected back to the DU'T
as depicted by arrow (22).
At twice the harmonic frequency nFO, i.e. 2nF0, the RF slugs (17,17') will be half a wavelength long and therefare transparent, letting the harmonic frequency 2nF0 to ga through the RF slugs (17,17') as depicted by arrow (21').
The maximum reflection VSWR of the second harmonic resonator comprising slug (18) and slug (18') at harmonic frequency 2nF0 will occur when the RF slugs spacing is an odd multiple of a quarter wavelength of the harmonic frequency 2nF0 and said slugs (i8,18') longitudinal lengths are also an odd multiple of the quarter wavelength of the harmonic frequency 2nF0. The harmonic frequency 2nF0 will be reflected back to the DUT
as depicted by arrow (Z1).
In order to control the phase angle of the reflection, the harmonic resonators are moveable along the longitudinal axis of the transmission line (15), as shown by arrows (17") and (18"). An appropriate motor driven mechanism (50,51) ensures the controlled smooth travel of the harmonic resonators (19,20,23,24) along the longitudinal axis of the transmission line (15) and thus the control of the phase reflection generated by flee harmonic resonators.
In a second preferred embodiment of the invention, the harmonic resonators are corrugated slugs (23) and (24) as shown by figure 7. The corrugated RF slugs with one slot which longitudinal length is equals to the two peaks longitudinal length, said longitudinal length being equal to quarter wavelength of the harmonic frequency being reflected by the resonator, said slot being arranged in a direction perpendicular to the longitudinal axis of the transmission line.
Practically however, the harmonic reflective tuner of the present invention will be supplied as a kit with a plurality of harmonic resonators. Each resonator will have a longitudinal length adapted to reflect out the harmonic frequency of a given frequency F0.
Finally, expressions such as "eqc~al" and °'identical" have been used in the present description and in the following claims. I-however, it will be understood that these expressions, and other like them, are used in the context of theoretical calculations, but in practice mean "as close as possible" to the theory.
Although the present invention has been explained hereinabove by way of a preferred embodiment thereof, it should be pointed out that any modifications to this preferred embodiment within the scope of the appended claims is not deemed to alter of change the nature and scope of the present invention.
Additional advantages and modifications will readily occur to those skilled in the art.
Therefore, the invention in its broader aspects is not limited to the specific details and representative embodiments shown and described herein. Accordingly, various modifications may be made without departing frown the spirit or scope of the general inventive concept as defined by the appended claims and their equivalents.
~ Patent Application Publication, US 2004f0I19481 Al, Jun. ~4, 2004, Christos Tsironis, "Microwave Tuners for Wideband High Reflection Applications"
FIELD OF THE INVENTION
The present invention relates to an electromechanical harmonic reflective tuner system, and more particularly to such a system to be used in harmonic load-pull setup for the measurement, characterization and testing of RF or microwave devices. Under high power conditions at its input at the fundamental frequency F0, the device under test (hereinafter referred to as "DUT") generates an output signal that contain s the fundamental frequency FO
and the harmonic frequencies of said fundamental frequency F0. RF/Microwave harmonic reflective tuners are electronic devices or mechanical devices which modify iu a predictable way the phase of the reflection of harmonics of a given operation frequency F0. The harmonic reflective tuner has the capability of generating high amplitude gamma to the microwave devices at harmonic frequencies. This technique of subjecting DUT's input and output to variable high gamma phase with corresponding harmonic source tuner and harmonic load tuner, commonly referred to as "harmonic load pull", is used to test transistors for amplifier, oscillator or frequency multiplier applications specially at high power, when the non-linear effect of the DUT produces harmonic frequencies.
DESCRIPTION OF THE PRIOR ART
The harmonic load-pull setup is composed of an input generator and its associated amplification (4) connected to input tuners, DUT (3) , output tuners and the appropriated measurement apparatus (5).
One possible configuration for harmonic load-pull is using frequency discriminators like triplexers at the input of the DUT (7) and at the output of the DU'I~ (7') shown in figure l and using large band tuners (6) on all frequency branches, the large band tuners on the harmonic branches being terminated by 50 ohms loads (2) connected to ground (1). With the large band tuners, the impedances at all frequencies at the input and output of the DUT
can be controlled independently. The disadvantage of this method lies in the losses of the triplexer, its limited frequency bandwidth and the high number of large band tuners required, 6 in the configuration of figure 1.
In order to obviate these problems, a specific harmonic tuner has been proposed in U.S.
Patent 6,297,649 issued to Christos TSIROrIIS Oct. 2, 2001. Dedicated harmonic tuners are inserted in series between the fundamental tuner (6,6') and the DUT's (3j at the input, harmonic tuner (8), and at the output, harmonic tuner ($'). These harmonic tuners are comprising a transmission line (g) an which 2 open stubs (11,12) are sliding on the central conductor (10), which open stubs are surrounded by a circular side wall (14,14') and permanently secured an the said side walls through dielectric, low loss washers (13,13'). In order to eliminate the residual reflection at the fundamental frequency F0, additional open stubs (11',12') might be added, said additional open stubs are identical to the first open stubs (i1,12). The open stubs are then positioned along the transmission line to control the phase of the reflection as indicated by arrows (11") and (12").
The advantages of this harmonic tuner are:
~ The number of tuners has been reduced to 2.
~ These tuners are easier to manufacture than fundamental tuner since they do only require 2 horizontal translation control of the resonators along the transmission line longitudinal axis in order to control the phase reflection at harmonic frequencies.
The disadvantages of this harmonic tuner are:
Stub copper foil sliding on the central conductor with a metallic to metallic contact in order to insure "perfect" galvanic contact to minimize the losses and to increase the band rejection will see these performances significantly degraded with long term use, because of the removal of the gold metallization of the central conductor, therefore decreasing the band rejection and increasing the losses.
~ Since the harmonic tuner of U.S. Patent 6,297,649 (8,8') is inserted in series between the DUT (3) and the fundamental tuner (6,6'), a supplementary constraint on the harmonic reflectors is that they have to be transparent at the fundamental frequency F0.
~ Since the harmonic tuner of U.S. Patent 6,297,649 (8,8') is inserted in series between the DUT (3) and the fundamental tuner (6,6'), the losses of the harmonic tuner at the fundamental frequency FO are directly degrading the performances of the fundamental tuner (fi,6'), lowering the gamma tuning range ofthe fundamental tuners.
~ Since the harmonic tuner of U.S. Patent 6,297,649 (8,8') is inserted in series between the DUT (3) and the fundamental tuner (6,6'), the RF isolation at the fundamental frequency F~ is very poor, meaning that any modifications of the position of the harmonic resonators will affect the impedance seen by the DIIT at this fundamental frequency FO and has to be corrected.
SUMMARY OF THE INVENTION
The problem remaining in the prior art has been solved in accordance with the present invention which relates to a class of mechanical harmonic reflective tuner comprising a transmission line, two harmonic resonators sliding along the transmission line longitudinal axis. Since the setup is using a diplexer in order to separate the fundamental frequencies FO
from the harmonic frequencies nFO, the isolation of the fundamental tuning compare to the harmonic tuning is very good by design, the harmonic resonators do not have to be transparent at the fundamental frequency FO and finally just the losses of the diplexer are affecting the gamma tuning range of the fundamental tuner at Ff?, said diplexers are much easier to manufacture than triplexers.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG 1: Prior Art: depicts a harmonic load-pull setup using triplexer and fundamental tuners FIG 2: Prior Art: depicts a harmonic load-pull setup using dedicated double-stub harmonic tuner in series between the fundamental tuners and the DUT
FIG 3A: Prior Art: depicts a double-stub harmonic tuner FIG 3B: Prior Art: depicts a double-stub harmonic tuner - longitudinal cross sectional view.
FIG 3C: Prior Art: depicts a double-stub harmonic tuner - transversal cross sectional view.
FIG 3D: Prior Art: depicts a double-stub harmonic tuner - schematic longitudinal cross sectional view.
FIG 4A: Prior Art: depicts a double-double-stub harmonic tuner FIG 4B: Prior Art: depicts a double-double-stub harmonic tuner - longitudinal cross sectional mew.
FIG 4C: Prior Art: depicts a double-double-stub harmonic tuner - transversal cross sectional view.
FIG 4D: Prior Art: depicts a double-double-stub harmonic tuner - schematic longitudinal cross sectional view.
FIG. 5: Depicts a harmonic load-pull setup using diplexer with harmonic reflective tuner FIG. 6A: Depicts a harmonic reflective tuner slab-line with 2 RF slugs mechanically linked together: longitudinal cross sectional view FIG. 6B: Depicts a harmonic reflective tuner slab-line with 2 RF slugs mechanically linked together: top view FIG 7: Depicts a harmonic reflective tuner slab-line with a single corrugated RF slug with one slot: longitudinal cross sectional view FIG 8: Depicts a preferred embodiment of the harmonic reflective tuner structure DESCRIPTION OF A PREFERRED EMBODIMENT OF TIIE INVENTION
The measurement setup for the harmonic tuner of this invention is described by figure 5. The harmonic load-pull setup is composed of an input generator and its associated amplification {4) connected in series to the input wide band tuner (6), input diplexer (13), DUT (3) , output diplexer (13'), output wide band tuner {fi') and the appropriated measurement apparatus (5), such as spectrum analyser, power meter or standard load. The harmonic tuners of this invention are placed in parallel with the DUT's input and output, the input harmonic tuner (14) being connected to the input diplexer {13), and the output harmonic tuner (14') being connected to the output diplexer (13'). The diplexers have one input and two outputs, discriminating the fundamental frequency FO on one branch, from the frequencies above FO
(harmonics of FO) on the other branch where the harmonic tuners are connected.
The harmonic reflective tuner, described by figure 8, consists of a housing (41), a slab-line (42,15) with a characteristic impedance Z0. The slab-line contains two harmonic resonators (19,20,23,24), that slide between the inner (16) and outer (42,15) conductors.
In a preferred embodiment of this invention, the harmonic resonators {19,20) include a pair of identical wide band RF slugs equal in sizes and materials, each pair of slugs being mechanically linked to a mobile carriage (46,47) trough a mechanical link (48,49). The harmonic resonators are horizontally positioned in the slab-line by mobile carriages (46,47), which are driven by two lateral mechanisms such as driving screws (44,45), which themselves are controlled by stepping motors (50,51). Both harmonic resonators are sliding on the central conductor of the slab-line.
The purpose of the harmonic tuners is to reflect back to the DUT with appropriate phase angle the harmonic frequencies of a fundamental frequency F0 produced by the DUT itself under non-linear conditions. The way this invention is accomplishing the reflection of the two harmonic frequencies is by using the maximum VSWR (Voltage Standing Wave Ratio) resonant property of a pair of quarter wavelength low impedance RF slugs, a quarter wavelength spaced apart. A second harmonic resonator is placed in series with the first harmonic resonator, said first harmonic resonator being transparent to the resonant frequency of the second harmonic resonator by using the transparent property of half wavelength low impedance RF slugs.
In a first preferred embodiment of this invention, flee harmonic resonators described by figure 6A are comprising two low impedance wide band RF slugs (17,17') or (18,18') apart from each other and mechanically attached together (19) or (20).
The maximum reflection VSWR of the first harmonic resonator comprising slug (17) and slug (1T) at harmonic frequency nF0 will occur when the RF slugs spacing is an odd multiple of a quarter wavelength of the harmonic frequency nF0 and said slugs (17,1T) longitudinal lengths are also an odd multiple of the quarter wavelength of the harmonic frequency nFO. The harmonic frequency nF0 will be reflected back to the DU'T
as depicted by arrow (22).
At twice the harmonic frequency nFO, i.e. 2nF0, the RF slugs (17,17') will be half a wavelength long and therefare transparent, letting the harmonic frequency 2nF0 to ga through the RF slugs (17,17') as depicted by arrow (21').
The maximum reflection VSWR of the second harmonic resonator comprising slug (18) and slug (18') at harmonic frequency 2nF0 will occur when the RF slugs spacing is an odd multiple of a quarter wavelength of the harmonic frequency 2nF0 and said slugs (i8,18') longitudinal lengths are also an odd multiple of the quarter wavelength of the harmonic frequency 2nF0. The harmonic frequency 2nF0 will be reflected back to the DUT
as depicted by arrow (Z1).
In order to control the phase angle of the reflection, the harmonic resonators are moveable along the longitudinal axis of the transmission line (15), as shown by arrows (17") and (18"). An appropriate motor driven mechanism (50,51) ensures the controlled smooth travel of the harmonic resonators (19,20,23,24) along the longitudinal axis of the transmission line (15) and thus the control of the phase reflection generated by flee harmonic resonators.
In a second preferred embodiment of the invention, the harmonic resonators are corrugated slugs (23) and (24) as shown by figure 7. The corrugated RF slugs with one slot which longitudinal length is equals to the two peaks longitudinal length, said longitudinal length being equal to quarter wavelength of the harmonic frequency being reflected by the resonator, said slot being arranged in a direction perpendicular to the longitudinal axis of the transmission line.
Practically however, the harmonic reflective tuner of the present invention will be supplied as a kit with a plurality of harmonic resonators. Each resonator will have a longitudinal length adapted to reflect out the harmonic frequency of a given frequency F0.
Finally, expressions such as "eqc~al" and °'identical" have been used in the present description and in the following claims. I-however, it will be understood that these expressions, and other like them, are used in the context of theoretical calculations, but in practice mean "as close as possible" to the theory.
Although the present invention has been explained hereinabove by way of a preferred embodiment thereof, it should be pointed out that any modifications to this preferred embodiment within the scope of the appended claims is not deemed to alter of change the nature and scope of the present invention.
Additional advantages and modifications will readily occur to those skilled in the art.
Therefore, the invention in its broader aspects is not limited to the specific details and representative embodiments shown and described herein. Accordingly, various modifications may be made without departing frown the spirit or scope of the general inventive concept as defined by the appended claims and their equivalents.
Claims (5)
1. An electromechanical harmonic reflective tuner having an input and an output, comprising a transmission line with longitudinal axis, in which two harmonic resonators are sliding along said transmission line by means of electrical remote control, said harmonic resonators are comprising 2 identical wide band RF
slugs longitudinally spaced apart with a longitudinal distance identical to said wide band RF slugs longitudinal lengths, first harmonic resonator being transparent to the maximum VSWR resonant frequency of the second harmonic resonator.
slugs longitudinally spaced apart with a longitudinal distance identical to said wide band RF slugs longitudinal lengths, first harmonic resonator being transparent to the maximum VSWR resonant frequency of the second harmonic resonator.
2. An electromechanical harmonic reflective tuner as in claim 1, wherein said first harmonic resonator has wide band RF slugs of longitudinal lengths equal to .lambda./2 of said second harmonic resonator maximum VSWR resonant frequency.
3. An electromechanical harmonic reflective tuner as in claim 1, wherein said second harmonic resonator has wide band RF slugs of longitudinal length equal to.lambda./4 of said second harmonic resonator maximum VSWR resonant frequency.
4. An electromechanical harmonic reflective tuner as in claim 1, wherein said harmonic resonator are corrugated RF slugs with a single slot which longitudinal length is equals to the two peals longitudinal length, said slot being arranged in a direction perpendicular to said longitudinal axis of said transmission line.
5. An electromechanical harmonic reflective tuner as in claim 1, wherein said electrical remote control comprises two electrical motors for the parallel movement of said two harmonics resonators along said longitudinal axis of said transmission line.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA 2474182 CA2474182A1 (en) | 2004-07-30 | 2004-07-30 | Harmonic reflective load-pull tuner |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA 2474182 CA2474182A1 (en) | 2004-07-30 | 2004-07-30 | Harmonic reflective load-pull tuner |
Publications (1)
Publication Number | Publication Date |
---|---|
CA2474182A1 true CA2474182A1 (en) | 2006-01-30 |
Family
ID=35767521
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA 2474182 Abandoned CA2474182A1 (en) | 2004-07-30 | 2004-07-30 | Harmonic reflective load-pull tuner |
Country Status (1)
Country | Link |
---|---|
CA (1) | CA2474182A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107634293A (en) * | 2017-09-13 | 2018-01-26 | 重庆邮电大学 | A kind of Mini Microstrip low pass filter with two transmission zeros |
-
2004
- 2004-07-30 CA CA 2474182 patent/CA2474182A1/en not_active Abandoned
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107634293A (en) * | 2017-09-13 | 2018-01-26 | 重庆邮电大学 | A kind of Mini Microstrip low pass filter with two transmission zeros |
CN107634293B (en) * | 2017-09-13 | 2019-05-03 | 重庆邮电大学 | There are two the Mini Microstrip low-pass filters of transmission zero for a kind of tool |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6297649B1 (en) | Harmonic rejection load tuner | |
US7646268B1 (en) | Low frequency harmonic load pull tuner and method | |
US8416030B2 (en) | Impedance tuner systems and probes | |
US7248866B1 (en) | Frequency selective load pull tuner and method | |
US7482893B2 (en) | Power combiners using meta-material composite right/left hand transmission line at infinite wavelength frequency | |
US8896401B1 (en) | Calibration and tuning using compact multi frequency-range impedance tuners | |
US7009463B2 (en) | Harmonic reflective load-pull tuner | |
US7042233B1 (en) | Harmonic rejection tuner | |
Fano et al. | Microwave filters using quarter-wave couplings | |
Matthaei | Direct-coupled, band-pass filters with λ_ {o}/4 resonators | |
Mok | Design of evanescent-mode waveguide diplexers | |
CA2474182A1 (en) | Harmonic reflective load-pull tuner | |
US8525518B1 (en) | Impedance matching in NMR probe with an adjustable segmented transmission line | |
Zhu et al. | Hybrid‐pair ratio adjustable power splitters for add‐on RF shimming and array‐compressed parallel transmission | |
Franceschetti | Scattering from plane layered media | |
US6992538B1 (en) | Interferometric load-pull tuner | |
Curutchet et al. | Early demonstration of a high VSWR microwave coaxial programmable impedance tuner with coaxial slugs | |
Tantawi et al. | The Next Linear Collider Test Accelerator’s RF Pulse Compression and Transmission Systems | |
Unlu et al. | Triple stub circuit topology as simultaneous insertion phase, amplitude and impedance control circuit for phased array applications | |
Ahn et al. | Small-sized wideband CVT-and CCT-ring filters | |
Lucas | Mathematical Synthesis and Design of Third Order Chebyshev Band-Pass Filters with Tunable Topology | |
Kotze | Reconfigurable microstrip filter with continuous coupling and frequency tunability | |
Oyedokun | Planar groove gap waveguides | |
Johnston | Wideband Balun design for the pyramidal sinuous antenna | |
Wu | Compact microwave dual-band bandpass filter design |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FZDE | Dead |