CA2463527A1 - Love variant regulator molecules - Google Patents
Love variant regulator molecules Download PDFInfo
- Publication number
- CA2463527A1 CA2463527A1 CA002463527A CA2463527A CA2463527A1 CA 2463527 A1 CA2463527 A1 CA 2463527A1 CA 002463527 A CA002463527 A CA 002463527A CA 2463527 A CA2463527 A CA 2463527A CA 2463527 A1 CA2463527 A1 CA 2463527A1
- Authority
- CA
- Canada
- Prior art keywords
- amino acid
- seq
- polypeptide
- group
- changed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/37—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi
- C07K14/38—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi from Aspergillus
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- Gastroenterology & Hepatology (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Medicinal Chemistry (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Mycology (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
The invention provides variant regulator proteins of secondary metabolite production and nucleic acids encoding said variant regulator proteins. In particular, the invention provides variant regulator molecules of the lovE protein.
Description
lovE VARIANT REGULATOR MOLECULES
FIELD OF THE INVENTION
The invention relates to the fields of microbiology and molecular biology. In particular, the invention relates to the field of mycology and the production of secondary metabolites from fungi.
SUMMARY OF THE RELATED ART
Secondary metabolites are a major source of commercially useful products 1 o such as food additives, vitamins, and medicines for the treatment of a wide variety of infections and diseases. By way of example, in 1997 the statin drugs lovastatin, simvastatin, and pravastatin, fungal secondary metabolites used in the treatment of hypercholesteremia, together had US sales of US$7.53 billion (Sutherland et al., Cur~Yerat Opinion Ih DrugDiseovery c~ Developmeht 4:229-236 (2001)). The cost and 15 availability of these plant, bacterial and fungal 'metabolites are frequently determined by limitations imposed on production and purification of these compounds from culture. This problem is frequently exacerbated by the fact that these products are generally produced during the stationary phase of bacterial and fungal growth.
A wide variety of methods have been utilized to increase the amount of 2o secondary metabolite produced in culture. Studies have demonstrated the importance of carefully designing the medium in which a fungus is grown to maximize the amount of a secondary metabolite produced (see, e.g., Hajjaj H, et al., Appl.
Envirora.
Microbiol. 67:2596-602 (2001); Lesova, K., et al., J. Basic Microbiol. 40:369-(2000)). In addition, the method of culture or fermentation also impacts directly on 25 the amount of secondary metabolite produced. For example, see Robinson, T., et al.
(Appl. Microbiol. Biotechrzol. 55:284-289 (2001)), which demonstrates the advantages of solid state (substrate) fermentation.
In addition to the manipulation of culture and media conditions, genetic approaches have been taken to increase secondary metabolite production. For 3o example, the production of penicillin is limited by the activity of two enzymes, encoded by the ipnA and acvA genes, both of which are regulated by the pacC
protein, a zinc-finger transcription factor. Naturally occurring mutant alleles of the pacC
locus are known to possess more transcription-activating activity than the cognate, wild-type allele (see, e.g., Tilburn et al. EMBO J. 14(4):779-790 (1995)).
Thus, one genetic approach to increasing secondary metabolite production is to identify and isolate naturally occurring mutant alleles, the expression of which leads to increased secondary metabolite production.
Although many regulators of secondary metabolite production in many organisms are known, not all of the organisms that produce secondary metabolites are amenable to genetic or molecular genetic manipulation. Thus, these systems are not generally useful as a source for the isolation of naturally occurring mutant alleles and are even less useful for the deliberate manipulation of secondary metabolite regulator protein structure with the aim of creating improved regulators of secondary metabolite production.
It would be advantageous to have improved regulators of the biosynthetic enzymes responsible for secondary metabolite production. For example, recent studies suggest increasing usage of statin drugs, e.g., see Waters D.D., Am.
J. Cardiol.
88:1 OF-SF (2001)). Thus, demand for statin drugs is likely to increase substantially.
In order to meet the demand for these and other secondary metabolites, new and improved methods for the production of secondary metabolites must be identified.
BRIEF SUMMARY OF THE INVENTION
The invention provides variant secondary metabolite regulator proteins that enable increased production of secondary metabolites. The invention also provides methods to make these improved regulator proteins. Certain of the variant secondary metabolite regulator proteins have increased ability to stimulate production of secondary metabolites in at least some strains of certain fungal species, e.g., certain strains ofAspergillus teYt~eus or Sacc~omyces cereviae.
In a first aspect, the invention provides a variant regulator protein of secondary metabolite production with the same greater activity than that of the 3o cognate, wild-type protein in at least some fungal strains In certain embodiments of this aspect of the invention, the regulator protein is a fungal regulator protein.
In an embodiment of the first aspect, the invention provides an improved regulator protein comprising an amino acid sequence coding for a variant lovE
protein having at least one specific mutation that gives rise to greater transcription-activating properties of the regulator protein and/or induction of secondary metabolite synthesis in at least some fungal strains.
By way of non-limiting example, certain preferred regulator proteins of this aspect of the invention include at least one of the following mutations (amino acid changes), e.g., in a polypeptide comprising the amino acid sequence of SEQ ID
N0:91): (1) a Group 6 amino acid residue (e.g., F) mutated to a Group 2 amino acid residue at position 31, in one embodiment the mutation represented by F31L;
(2) a Group 3 amino acid residue (e.g., Q) mutated to a Group 5 amino acid residue at position 41, in one embodiment the mutation represented by Q41K or Q41R; (3) a Group 4 amino acid residue (e.g., T) mutated to a Group 2 amino acid residue at position 52, in one embodiment the mutation represented by T52I; (4) a Group 4 ~5 amino acid residue (e.g., T) mutated to a Group 3 amino acid residue at position 52, in one embodiment the mutation represented by T52N; (5) a Group 4 amino acid residue (e.g., C) mutated to a Group 5 amino acid residue at position 73, in one embodiment the mutation represented by C73R; (6) a Group 1 amino acid residue (e.g., P) mutated to a Group 4 amino acid residue at position 101, in one embodiment the mutation 2o represented by PlOlS; (7) a Group 1 amino acid residue mutated to a Group 3 amino acid residue (e.g., P) at position 101, in one embodiment the mutation represented by P101Q; (8) a valine amino acid residue mutated to another Group 2 amino acid residue at position 111, in one embodiment the mutation represented by V111I;
(9) a Group 4 amino acid residue (e.g., S) mutated to a Group 2 amino acid residue at 25 position 133, in one embodiment the mutation represented by S133L; (10) a Group 3 amino acid residue (e.g., E) mutated to a Group 2 amino acid residue at position 141, in one embodiment the mutation represented by E141V; (11) a Group 3 amino acid residue (e.g., E) mutated to a Group 5 amino acid residue at position 141, in one embodiment the mutation represented by E141K; (12) a Group 4 amino acid residue 30 (e.g., C) mutated to Group 6 amino acid residue at position 153, in one embodiment the mutation represented by C153Y; (13) a Group 4 amino acid residue (e.g., C) mutated to a Group 5 amino acid residue at position 153, in one embodiment the mutation represented by C153R; (14) a Group 4 amino acid residue (e.g., T) mutated to a Group 1 amino acid residue at position 281, in one embodiment the mutation represented by T281A; (15) a Group 3 amino acid residue (e.g., N) mutated to a Group 2 amino acid residue at position 367, in one embodiment the mutation represented by N367I; (16) a Group 3 amino acid residue (e.g., N) mutated to a Group 6 amino acid residue at position 367, in one embodiment the mutation represented by N367Y; (17) a Group 1 amino acid residue (e.g., P) mutated to Group 4 amino acid residue at position 389, in one embodiment the mutation represented by P389S;
and (18) a Group 1 amino acid residue (e.g., P) mutated to a Group 2 amino acid residue at position 389, in one embodiment the mutation represented by P389L.
In some embodiments of the first aspect, the invention provides regulator proteins with at least two, or at least three, or at least four, or at least five, or at least six, or at least seven, or at least eight, or at least nine, or at least ten, or at least eleven, or at least twelve, or at least thirteen, or at least fourteen, or at least fi$een, or at least ~5 sixteen, or at least seventeen, or at least eighteen of the above described specific mutations.
In other embodiments of the first aspect, the invention provides an isolated lovE variant regulator protein or a polypeptide comprising, consisting of or consisting essentially of an amino acid sequence selected from the group consisting of SEQ ID
2o N0:41, SEQ ID N0:42, SEQ ID N0:43, SEQ ID N0:44, SEQ ID N0:45, SEQ ID
N0:46, SEQ ID N0:47, SEQ ID N0:48, SEQ ID N0:49, SEQ ID N0:50, SEQ ID
N0:51, SEQ ID NO:52, SEQ ID N0:53, SEQ ID NO:54, SEQ ID N0:55, SEQ ID
N0:56, SEQ ID NO:57, SEQ ID N0:58, SEQ ID N0:59, SEQ ID N0:60, SEQ ID
N0:61, SEQ ID N0:62, SEQ ID N0:63, SEQ ID N0:64, SEQ ID N0:65, SEQ ID
25 N0:91, SEQ ID N0:93, and SEQ ID N0:94.
In other embodiments of the first aspect, the invention provides an isolated lovE variant regulator protein or a polypeptide comprising, consisting of or consisting essentially of an amino acid sequence selected from the group consisting of:
SEQ ID
N0:41, SEQ ID N0:42, SEQ ID N0:43, SEQ ID NO:44, SEQ ID N0:45, SEQ ID
so N0:46, SEQ ID N0:47, SEQ ID N0:48, SEQ ID N0:49, SEQ ID N0:50, SEQ ID
N0:51, SEQ ID N0:52, SEQ ID N0:53, SEQ ID N0:54, SEQ ID N0:55, SEQ ID
N0:56, SEQ ID N0:57, SEQ ID N0:58, SEQ ID N0:59, SEQ ID N0:60, SEQ ID
N0:61, SEQ m N0:62, SEQ 117 NO:63, SEQ ID N0:64, SEQ DJ N0:65, SEQ ID
N0:91, with the addition of the amino acid sequence of SEQ ID N0:95 or SEQ ID
N0:96 at the amino terminus.
In a second aspect, the invention provides a nucleic acid molecule encoding a lovE regulator of the first aspect of the invention. By way of non-limiting example, the invention provides a nucleic acid molecule encoding the lovE variant regulator protein or a polypeptide comprising, consisting or consisting essentially of an amino acid sequence selected from the group consisting of SEQ ID N0:66, SEQ ID
N0:67, SEQ ID N0:68, SEQ D7 N0:69, SEQ ID NO:70, SEQ m N0:71, SEQ 117 N0:72, ~ o SEQ ID N0:73, SEQ ID N0:74, SEQ ID N0:75, SEQ ID N0:76, SEQ ID N0:78, SEQ ID N0:79, SEQ ID N0:81, SEQ 117 N0:82, SEQ ID N0:83, SEQ ID N0:84, SEQ ID N0:86, SEQ ID N0:87, SEQ ID N0:88, SEQ ID NO:89, SEQ ID N0:90, SEQ ID N0:91, SEQ ID N0:93, and SEQ ID NO:94. In certain embodiments the polypeptide comprises the amino acid sequence of SEQ m N0:95 or SEQ ID N0:96 at its amino terminus. In a preferred embodiment of the second aspect, the nucleic acid molecule lacks introns that interrupt the polypeptide coding sequence.
Thus, the nucleotide sequence encoding the polypeptide is contiguous.
In a third aspect, the invention provides a method of increasing the activity of a protein that regulates secondary metabolite production comprising: (a) selecting a 2o nucleic acid comprising a polynucleotide encoding a protein regulator of secondary metabolite production; (b) mutating the nucleic acid to create a plurality of nucleic acid molecules encoding variant regulator proteins of secondary metabolite production; and (c) selecting a variant regulator protein with more activity than the cognate, wild-type protein.
In various embodiments of the third aspect, the secondary metabolite is a fungal secondary metabolite. In certain embodiments of the third aspect, the protein regulator of secondary metabolite production is a transcription factor. In certain embodiments of the third aspect, the protein regulator of secondary metabolite production is a transmembrane transporter, protein that mediates secretion, kinase, G-3o protein, cell surface receptor, GTPase activating protein, guanine nucleotide exchange factor, phosphatase, protease, phosphodiesterase, bacterial protein toxin, importin, RNA-binding protein, SCF complex component, adherin, or protein encoded within a biosynthetic cluster. In certain other embodiments of the third aspect, the variant regulator protein is selected to have more activity in a heterologous cell and/or more activity in a homologous cell than the cognate, wild-type regulator protein.
In certain embodiments, the variant regulator protein is selected to have more activity in a heterologous cell andlor more activity in a homologous cell than the cognate, wild-type protein and to cause more secondary metabolite to be produced in a homologous cell and/or a heterologous cell when compared to the cognate, wild-type regulator protein. In a particularly preferred embodiment, the variant regulator protein is a lovE
variant regulator protein.
In a fourth aspect, the invention provides a method of increasing production of a secondary metabolite comprising: (a) selecting a nucleic acid comprising a polynucleotide encoding a protein regulator of secondary metabolite production; (b) mutating the nucleic acid to create a plurality of nucleic acid molecules encoding variant regulator proteins of secondary metabolite production; (c) selecting a variant ~ 5 regulator protein with more activity than the cognate, wild-type protein;
and (d) expressing the selected variant regulator protein in a cell, thereby increasing production of the secondary metabolite in the cell.
In various embodiments of the fourth aspect, the secondary metabolite is a fungal secondary metabolite. In certain embodiments of the third aspect, the protein 2o regulator of secondary metabolite production is a transcription factor. In certain embodiments of the fourth aspect, the protein regulator of secondary metabolite production is a transmembrane transporter, a protein that mediates secretion, a kinase, a G-protein, a cell surface receptor, a GTPase activating protein, a guanine nucleotide exchange factor, a phosphatase, a protease, a phosphodiesterase, a bacterial protein 25 toxin, an importin, an RNA-binding protein, an SCF complex component, an adherin, or a protein encoded within a biosynthetic cluster. In certain other embodiments of the fourth aspect, the variant regulator protein is selected to have more activity in a heterologous cell and/or more activity in a homologous cell. In certain embodiments, the variant regulator protein is selected to have more activity in a heterologous cell 3o and/or more activity in a homologous cell and to cause more secondary metabolite to be produced in a homologous cell and/or a heterologous cell when compared to the cognate, wild-type regulator protein. In a particularly preferred embodiment, the variant regulator protein is a lovE variant regulator protein.
In a fifth aspect, the invention provides an isolated variant regulator protein of secondary metabolite production having increased activity compared to a cognate, wild-type protein, the variant regulator protein made by the process comprising: (a) selecting a nucleic acid comprising a polynucleotide encoding a protein regulator of secondary metabolite production; (b) mutating the nucleic acid to create a plurality of nucleic acid molecules encoding variant regulator proteins of secondary metabolite production; (c) selecting a variant regulator protein with more activity than the 1 o cognate, wild-type protein; and (d) recovering the selected variant regulator protein.
In certain embodiments of the fifth aspect, the secondary metabolite is a fungal secondary metabolite. In certain embodiments of the fifth aspect, the protein regulator of secondary metabolite production is a transcription factor. In certain embodiments of the fifth aspect, the protein regulator of secondary metabolite ~ 5 production is a transmembrane transporter, a protein that mediates secretion, a kinase, a G-protein, a cell surface receptor, a GTPase activating protein, a guanine nucleotide exchange factor, a phosphatase, a protease, a phosphodiesterase, a bacterial protein toxin, an importin, an RNA-binding protein, an SCF complex component, an adherin, or a protein encoded within a biosynthetic cluster.
2o In certain embodiments of the fifth aspect, the variant regulator protein has more activity in a heterologous and/or a homologous cell than the cognate, wild-type protein in at least some fungal strains, e.g., in at least some strains ofA.
te~reus. In certain embodiments of the fourth aspect, the variant regulator protein increases production of a secondary metabolite in a heterologous cell and/or a homologous cell 25 when compared to the cognate, wild-type protein. In a particularly preferred embodiment, the variant regulator protein is a lovE variant regulator protein.
In a sixth aspect, the invention provides a fungus having improved lovastatin production made by the process of transforming a fungal cell with a nucleic acid molecule encoding a lovE variant protein of the first aspect of the invention.
In an 3o embodiment thereof, the nucleic acid molecule is selected from a nucleic acid molecule of the second aspect of the invention.
In a seventh aspect, the invention provides an improved process for making lovastatin comprising transforming a fungal cell with a nucleic acid molecule encoding a variant of the lovE protein of the first aspect of the invention.
In an embodiment thereof, the fungal cell is transformed with a nucleic acid molecule of the second aspect of the invention.
In a eighth aspect, the invention provides a nucleic acid molecule encoding a lovE protein defined by SEQ m NO:91. In one embodiment, the nucleic acid molecule comprises a contiguous coding sequence lacking introns encoding a polypeptide comprising SEQ m N0:91. In an embodiment thereof, the invention 1 o provides an isolated ZovE nucleic acid molecule defined by SEQ m N0:92. In an eighth aspect, the invention provides a nucleic acid molecule encoding a lovE
protein defined by SEQ m NO:91. In an embodiment thereof, the invention provides an isolated ZovE nucleic acid molecule defined by SEQ m N0:92.
In a ninth aspect the invention features an isolated polypeptide comprising, consisting of, or consisting essentially of the amino acid sequence of SEQ m N0:91 having an amino acid change selected from the group consisting of (a) a Phe changed to a Group 2 amino acid residue at position 31; (b) a Gln changed to a Group 5 amino acid residue at position 41; (c) a Thr changed to a Group 2 amino acid residue at position 52; (d) a Thr changed to a Group 3 amino acid residue at position 52; (e) a Cys changed to a Group 5 amino acid residue at position 73; (f) a Pro changed to a Group 4 amino acid residue at position 101; (g) a Pro changed to a Group 3 amino acid residue at position 101; (h) a Val changed to a Group 2 amino acid residue other than Val at position 111; (i) a Ser changed to a Group 2 amino acid residue at position 133; (j) a Glu changed to a Group 2 amino acid residue at position 141; (k) a Glu changed to a Group 5 amino acid residue at position 141; (1) a Cys changed to a Group 6 amino acid residue at position 153; (m) a Cys changed to a Group 5 amino acid residue at position 153; (n) a Thr changed to a Group 1 amino acid residue at position 281; (o) a Asn changed to a Group 2 amino acid residue at position 367; (p) a Asn changed to a Group 6 amino acid residue at position 367; (q) a 3o Pro changed to a Group 4 amino acid residue at position 389; and (r) a Pro changed to a Group 2 amino acid residue at position 389.
In various embodiments of the ninth aspect: the polypeptide when expressed in an A. terreus cell harboring a lovF gene increases expression of the lovF
gene relative to an otherwise identical cell not expressing the polypeptide; the polypeptide when expressed in a S. cerevisiae harboring a gene under the control of the A.
terreus lovF expression control region increases expression of the gene relative to an otherwise identical cell not expressing the polypeptide; the polypeptide has fewer than 11, fewer than 10, fewer than 8, or fewer than 5 amino acid changes; the polypeptide further comprises the amino acid sequence of SEQ ID N0:95 immediately amino terminal to the amino acid of SEQ m N0:91; the polypeptide further comprises the 1o amino acid sequence of SEQ ID N0:96 immediately amino terminal to the amino acid of SEQ ID N0:91; the isolated polypeptide has the amino acid change F31L, Q41K, Q41R, T52N, C73R, P101S, P101Q, V111I, S133L, E141V, E141K, C153Y, C153R, T281A, N367I, N367Y, P389S, or P389L; and the isolated polypeptide comprises, consists of or consists essentially of an amino acid sequence selected from the group consisting of SEQ ID N0:41, SEQ m N0:42, SEQ ID N0:43, SEQ ID N0:44, SEQ
ID NO:45, SEQ ID N0:46, SEQ ID N0:47, SEQ ID N0:48, SEQ ID N0:49, SEQ ~
NO:50, SEQ ID NO:51, SEQ ID N0:52, SEQ ID NO:53, SEQ ID N0:54, SEQ ID
NO:55, SEQ ID N0:56, SEQ 117 N0:57, SEQ ID N0:58, SEQ ID N0:59, SEQ ID
N0:60, SEQ ID N0:61, SEQ ID N0:62, SEQ ID N0:63, SEQ ID N0:64, SEQ ID
2o N0:65, SEQ ID N0:91, SEQ ID N0:93, and SEQ ID N0:94.
In a tenth aspect the invention features an isolated nucleic acid molecule comprising a nucleotide sequence encoding a polypeptide comprising the amino acid sequence of SEQ ID N0:91 having at least one amino acid change selected from the group consisting of-. : (a) a Phe changed to a Group 2 amino acid residue at position 31; (b) a Gln changed to a Group 5 amino acid residue at position 41; (c) a Thr changed to a Group 2 amino acid residue at position 52; (d) a Thr changed to a Group 3 amino acid residue at position 52; (e) a Cys changed to a Group 5 amino acid residue at position 73; (f) a Pro changed to a Group 4 amino acid residue at position 101; (g) a Pro changed to a Group 3 amino acid residue at position 101; (h) a Val 3o changed to a Group 2 amino acid residue other than Val at position 111; (i) a Ser changed to a Group 2 amino acid residue at position 133; (j) a Glu changed to a Group 2 amino acid residue at position 141; (k) a Glu changed to a Group 5 amino acid residue at position 141; (1) a Cys changed to a Group 6 amino acid residue at position 153; (m) a Cys changed to a Group 5 amino acid residue at position 153; (n) a Thr changed to a Group 1 amino acid residue at position 281; (o) a Asn changed to a Group 2 amino acid residue at position 367; (p) a Asn changed to a Group 6 amino acid residue at position 367; (q) a Pro changed to a Group 4 amino acid residue at position 389; and (r) a Pro changed to a Group 2 amino acid residue at position 389.
In various embodiments of the tenth aspect: the polypeptide when expressed in an A. terreus cell harboring a lovF gene increases expression of the lovF gene relative to an otherwise identical cell not expressing the polypeptide; the polypeptide when expressed in a S. cerevisiae harboring a gene under the control of the A.
terreus lovF
expression control region increases expression of the gene relative to an otherwise identical cell not expressing the polypeptide; the polypeptide has fewer than 11, fewer than 10, fewer than 8, or fewer than 5 amino acid changes; the polypeptide further comprises the amino acid sequence of SEQ ID NO:95 immediately amino terminal to ~5 the amino acid of SEQ ID N0:91; the polypeptide further comprises the amino acid sequence of SEQ ID N0:96 immediately amino terminal to the amino acid of SEQ
II?
N0:91; the isolated polypeptide has the amino acid change F31L, Q41K, Q41R, T52N, C73R, P101S, P101Q, V111I, S133L, E141V, E141K, C153Y, C153R, T281A, N367I, N367Y, P389S, or P389L; the isolated polypeptide comprises, 2o consists of, or consists essentially of an amino acid sequence selected from the group consisting of SEQ ID N0:41, SEQ ID N0:42, SEQ ID NO:43, SEQ ID N0:44, SEQ
ID NO:45, SEQ ID N0:46, SEQ ID N0:47, SEQ ID NO:48, SEQ ID N0:49, SEQ ~
NO:50, SEQ ID NO:51, SEQ ID N0:52, SEQ ID N0:53, SEQ ID N0:54, SEQ ID
NO:55, SEQ ID N0:56, SEQ ID N0:57, SEQ 117 N0:58, SEQ ID NO:59, SEQ ID
25 N0:60, SEQ ID N0:61, SEQ D7 N0:62, SEQ ID N0:63, SEQ ID N0:64, SEQ ID
N0:65, SEQ ID N0:91, SEQ ID N0:93, and SEQ ID N0:94; and the isolated nucleic acid molecule comprises, consists of, or consists essentially of a nucleotide sequence selected from the group consisting of SEQ ID N0:66, SEQ ID N0:67, SEQ ID
N0:68, SEQ ID N0:69, SEQ ID NO:70, SEQ ID N0:71, SEQ ID N0:72, SEQ ID
3o NO:73, SEQ ID N0:74, SEQ ~ N0:75, SEQ ID N0:76, SEQ ID N0:77, SEQ ID
N0:78, SEQ ID N0:79, SEQ ID N0:80, SEQ ID N0:81, SEQ ID NO:82, SEQ ID
N0:83, SEQ ID N0:84, SEQ ID N0:85, SEQ ID N0:86, SEQ ID N0:87, SEQ DJ
N0:88, SEQ ID N0:89, and SEQ ID N0:90. In other embodiments of the tenth aspect, the nucleotide sequence encoding the polypeptide is contiguous, i.e., the coding sequence is not interrupted by an intron.
In an eleventh aspect, the invention features a fungal cell containing a nucleic acid molecule encoding any of the forgoing polypeptides.
In a twelfth aspect, the invention feature a fungal cell (e.g., an A. terreus cell) containing any of the forgoing nucleic acid molecules. of any of claims 29-56.
In a thirteen aspect, the invention features a method for providing a fungal cell having improved production of a secondary metabolite (e.g., lovastatin), the method comprising transforming the fungal cell with a nucleic acid molecule described above whereby the fungal cell has increased secondary metabolite production compared to an otherwise identical fungal cell that has not been so transformed.
In a fourteenth aspect, the invention features a method for producing a secondary metabolite(e.g., lovastatin), the method comprising providing a fungal cell ~ 5 containing a forgoing nucleic acid molecule, culturing the cell under conditions so as to produce the secondary metabolite, and isolating from the cells a fraction containing the secondary metabolite.
In a fifteenth aspect, the invention features an isolated polypeptide comprising, consisting of, or consisting essentially of the amino acid sequence of SEQ
2o ID NO:91 having an amino acid change selected from the group consisting of:
H253R, S341P, R121W, S322G, A83V, T135I, E177G, E197K, T281A, T256A, N466S, C73R, E303K, Q41K, Q41K, P16A, G23S, T9M, Q362E, R21H, S34A, Q80H, A84S, E303D, H374D, A440T, A441V, C445S, P469S, F31L, T409I, M971, E113D, D146N, P163S, H458Y, I43V, Q295L, F31L, C159S, E162K, R293L, 2s S311N, L141, E18V, G138C, E338G, V361L, N400S, S174Y, A402T, F31L, P108S, D85N, I143F, M232I, T315I, S382Y, M385K, T461, Q62R, K77R, S323C, V373I, T294I, P310L, G337D, A394V, G436S, T139, V184I, D4E, V87I, D110E, A189T, N276D, T347R, N367I, Q377R, A425T, D131N, R312G, and A429G. In other embodiments, the polypeptide includes at least one such amino acid change.
3o In various embodiments of the fifteen aspect, the invention features In various embodiments of the ninth aspect: the polypeptide when expressed in an A.
terreus cell harboring a lovF gene increases expression of the lovF gene relative to an otherwise identical cell not expressing the polypeptide; the polypeptide when expressed in a S.
ce~evisiae harboring a gene under the control of the A. terreus lovF
expression control region increases expression of the gene relative to an otherwise identical cell not expressing the polypeptide; the polypeptide has fewer than 1 l, fewer than 10, fewer than 8, or fewer than 5 amino acid changes; the polypeptide further comprises the amino acid sequence of SEQ m N0:95 immediately amino terminal to the amino acid of SEQ ID NO:91; the polypeptide further comprises the amino acid sequence of SEQ DJ N0:96 immediately amino terminal to the amino acid of SEQ m N0:91.
BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 is a photographic representation of cells growing on media with and without 6418 selection demonstrating lovFp-HIS3p-Neo activation in S.
cerevisiae.
Controls include MB968 (vector only), MB2478 (lowly expressed wild-type lovE), and MB1644 (highly expressed wild-type lovE). All lovE variants are expressed in an 15 MB968 vector backbone similar to MB2478.
Figure 2A is a graphic representation of lovFp-CYCI p-ZacZ expression in S.
cerevisiae strains expressing lovE variant proteins from the clones lovE 1-10.
Figure 2B is a graphic representation of lovFp-CYCl p-lacZ expression in S.
ceYevisiae strains expressing lovE variant proteins from the clones lovE 1-10 from a 2o separate transformation than that of Figure 2A.
Figure 3 is a graphic presentation of lovFp-CYCI p-lacZ expression in S.
cerevisiae strains expressing lovE variant proteins from clones lovE 16-41.
Figure 4 is a graphic presentation of lovFp-lacZ expression in S. cerevisiae strains expressing lovE variant proteins from clones lovE 1-10.
25 Figure 5 is a graphic presentation of lovFp-lacZ expression in S.
cerevisiae strains expressing lovE variant proteins from clones lovE 16, 20, 21, 30-34, and 36-41.
Figure 6 is a graphic presentation of lovastatin culture concentration, as measured by enzyme inhibition assay, from broths of A. te~Yeus cultures expressing 30 lovE variant proteins 1-10 in.
Figure 7A is a graphic depiction of lovastatin culture concentration, as measured by HPLC analysis, from broths of A. terreus cultures expressing lovE
variant proteins 1-10 in MF117.
Figure 7B is a graphic depiction of lovastatin culture concentration, as measured by HPLC analysis, from broths of A. terreus cultures expressing lovE
variant proteins 2, 6, 30, 32, 36, 37, 39, and 41 in MF117.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
The invention provides variant secondary metabolite regulator proteins that enable production of secondary metabolites. The invention also provides methods to make these variant regulator proteins. Certain of the variant secondary metabolite regulator proteins have increased ability to stimulate production of secondary metabolites in at least some strains of certain fungal species, e.g., certain strains of Aspergillus terreus or Saccromyces cereviae, compared to the cognate wild-type 15 protein.
Iii certain embodiments of the aspects of the invention, the invention relates to the biosynthesis and improved production of secondary metabolites. The invention provides variant regulator proteins useful for the production of secondary metabolites, nucleic acid molecules encoding variant regulator proteins, and methods for their 2o production.
As used herein, the terms "fungal" and "fungus" refer generally to eukaryotic, heterotrophic organisms with an absorptive mode of nutrition. Fungi typically contain chitin in their cell walls and exhibit mycelial or yeast-like growth habits (More Gene Man~ulations in Fund, edited by J.W. Bennet and L.L. Lasure, Academic Press Inc.
25 (1991), ISBN 0120886421). More specifically, the terms refer to secondary metabolite producing organisms including, without limitation, Aspergillus sp., Penicillium sp., Acremonium chrysogenum, Yarrowia lipolytica, Nodulisporiuna sp., Fusarium sp., Monascus sp., Claviceps sp., Trichoderma sp., Tolypocladium sp., Tricotheiciuna sp., Fusidium sp., Emericellopsis sp., Ceplaalosporium sp., 3o Cochliobolus sp., Helmintlaosporium sp., Agaricus brunescetas, Ustilago maydis, Neurospora sp., Pestalotiopsis sp. and Pha~a rhodozyma (See, Fun ag 1 Physiolo~y, Chapter 9 (Secondary(Special) Metabolism), Griffin, D. H., John Wiley & Sons, Inc.;
ISBN: 0471166154).
The term "variant regulator protein" is used herein to refer to any regulatory protein having at least one change or difference in the amino acid sequence of the protein when compared to its cognate, wild-type regulatory protein sequence.
The term does not include naturally occurring allelic variations of the cognate, wild-type regulatory protein.
The term "regulator protein" is meant to refer to a protein having a positive or negative function that modifies the production of a secondary metabolite. The function of the protein may be at the level of transcription, e.g., repression or activation, protein synthesis, or transport. The regulator may alter the level of transcription, RNA stability, translation, post-translational modification, or cellular localization of proteins involved in secondary metabolite synthesis and/or transport.
The regulator may also have effects on precursor metabolite pools, flux through 15 specific pathways and metabolite resistance.
By way of non-limiting example, certain embodiments of the aspects of the invention relate to a regulator protein that is a protein that contributes andlor promotes transcription of a gene sequence, i.e., a transcription-activating protein.
"Transcription-activating" is a term used to refer to characteristics of a protein that 2o promote transcription. As used herein, a transcription-activating protein would include proteins that increase accessibility of the DNA to transcription complexes, for example, by opening or relaxing chromatin structure, proteins that promote the recognition and/or binding of transcription complexes to a target gene sequence, and/or proteins that promote transcription complex movement along the length of the 25 template DNA sequence.
Regulatory proteins of secondary metabolite production and the nucleic acid sequences encoding these are known to those skilled in the art. Non-limiting examples of regulatory proteins of secondary metabolite synthesis include:
regulator proteins of the aflatoxin/sterigmatocystin biosynthetic cluster (Woloshuk, C.P., et al., 3o Appl, Eravi~ofa. Microbiol. 60:2408-2414 (1994) and Brown, D.W., et al., Proc Natl Acad Sci TI S A. 93:1418-1422 (1996)); regulator proteins of the paxilline biosynthetic cluster (Young, C., et al., Mol, Microbiol. 39:754-764 (2001)); regulator proteins of the cephalosporin and penicillin biosynthetic clusters (Litzka O., et al., Antonie Tan Leeuwenhoek 75:95-105 (1999); Schmitt E.K. and Kuck U., .T. Biol. Chem.
275:9348-9357 (2000); MacCabe et al. Mol. Gen. Genet. 250:367-374 (1996); Suarez et al.
Mol.
Microbiol. 20:529-540 (1996); Lambert et al. Mol. Cell. Biol. 17:3966-3976 (1997);
Su et al. Genetics 133:67-77 (1993); regulator proteins of tricothecene synthesis (Trapp S.C., et al., Mol. Gerz. Genet. 257:421-432 (1998); Brown D.W., et al., Fungal Genet. Biol. 32:121-133 (2001); and Matsumoto G., et al. Biosci. Biotechnol.
Biochem. 63:2001-2004 (1999)); and regulator proteins of lovastatin synthesis (Kennedy, J., et al., Science 284:1368-1372 (1999); Hendrickson et al., Chem.
Biol.
6:429-439 (1999) Tag, A. et al., Mol Microbiol. 38:658-65 (2000)).
Certain embodiments of the aspects of the invention disclosed herein relate to the lovE regulator protein, a protein which plays a key role in the biosynthesis of lovastatin. More particularly, certain embodiments of the aspects of the invention relate to variant proteins of the lovE regulator protein and methods of making the 15 same. Such proteins are variant with respect to the following A. terreus wild-type ZovE sequences (SEQ ID NOS:91 and 92).
The patents and publications cited herein reflect the level of knowledge in the art and are hereby incorporated by reference in their entirety. Any conflict between any teaching of such references and this specification shall be resolved in favor of the 20 latter.
The invention utilizes techniques and methods common to the fields of molecular biology, genetics and microbiology. Useful laboratory references for these types of methodologies are readily available to those skilled in the art. See, for example, Molecular Cloning A Laboratory Manual, 3rd edition, edited by Sambrook, 25 J., MacCallum, P., and Russell, D.W. (2001), Cold Spring Harbor Laboratory Press (ISBN: 0-879-69576-5); Current Protocols In Molecular Biolo~y, edited by Ausubel, F.M., Brent, R., Kingston, R.E., Moore, D.D., Seidman, J.G., Struhl, K.
(1993), John Wiley and Sons, Inc. (ISBN: 0-471-30661-4); PCR Applications: Protocols for Functional Genomics, edited by Innis, M.A., Gelfand, D.H., Sninsky, J.J.
(1999), 3o Cold Spring Harbor Press (ISBN: 0-123-72186-S); and Methods In Yeast Genetics, 2000 Edition: A Cold Spring Habor Laboratory Course Manual, by Burke, D., Dawson, D. and Steams, T., Cold Spring Harbor Press (ISBN: 0-879-69588-9).
Table 1: Amino Acid and Nucleic Acid Sequences of Wild-type ZovE
Wild-type lovE Amino Acid Sequence maadqgiftnsvtlspvegsrtggtlprrafrrscdrchaqkikctgnkevtgrapcqr cqqaglrcvysercpkrklrqsraadlvsadpdpclhmssppvpsqslpldvseshssn tsrqfldppdsydwswtsigtdeaidtdcwglsqcdggfscqleptlpdlpspfestve kaplppvssdiaraasaqrelfddlsavsqeleeillavtvewpkqeiwthpigmffna srrlltvlrqqaqadchqgtldeclrtknlftavhcyilnvriltaiselllsqirrtq nshmsplegsrsqspsrddtssssghssvdtipffsenlpigelfsyvdplthalfsac ttlhvgvqllreneitlgvhsaqgiaasismsgepged.iartgatnsarceeqpttpaa rvlfmflsdegafqeaksagsrgrtiaalrrcyedifslarkhkhgmlrdlnnipp (SEQ ID N0:91) Wild-type lovE DNA Sequence (open reading frame only) atggctgcagatcaaggtatattcacgaactcggtcactctctcgccagtggagggttc acgcaccggtggaacattaccccgccgtgcattccgacgctcttgtgatcggtgtcatg cacaaaagatcaaatgtactggaaataaggaggttactggccgtgctccctgtcagcgt tgccagcaggctggacttcgatgcgtctacagtgagcgatgccccaagcgcaagctacg CCaatCCagggCagCggatCtCgtCtCtgCtgaCCCagatCCCtgCttgCaCatgtCCt CgCCtCCagtgCCCtCaCagagCttgCCgCtagaCgtatCCgagtCgCattCCtCaaat acctcccggcaatttcttgatccaccggacagctacgactggtcgtggacctcgattgg cactgacgaggctattgacactgactgctgggggctgtcccaatgtgatggaggcttca gctgtcagttagagccaacgctgccggatctaccttcgcccttcgagtctacggttgaa aaagctccgttgccaccggtatcgagcgacattgctcgtgcggccagtgcgcaacgaga gcttttcgatgacctgtcggcggtgtcgcaggaactggaagagatccttctggccgtga cggtagaatggccgaagcaggaaatctggacccatcccatcggaatgtttttcaatgcg tcacgacggcttcttactgtcctgcgccaacaagcgcaggccgactgccatcaaggcac actagacgaatgtttacggaccaagaacctctttacggcagtacactgttacatattga atgtgcggattttgaccgccatatcggagttgctcctgtcgcaaattaggcggacccag aacagccatatgagcccactggaagggagtcgatcccagtcgccgagcagagacgacac CagCagCagCagCggCCaCagCagtgttgaCc'~.CCataCCCttCtttagcgagaacctCC
ctattggtgagctgttctcctatgttgaccccctgacacacgccctattctcggcttgc actacgttacatgttggggtacaattgctgcgtgagaatgagattactctgggagtaca ctccgcccagggcattgcagcttccatcagcatgagcggggaaccaggcgaggatatag ccaggacaggggcgaccaattccgcaagatgcgaggagcagccgaccactccagcggct cgggttttgttcatgttcttgagtgatgaaggggctttccaggaggcaaagtctgctgg ttcccgaggtcgaaccatcgcagcactgcgacgatgctatgaggatatcttttccctcg cccgcaaacacaaacatggcatgctcagagacctcaacaatattcctccatga ( SECT ID NO : 92 ) As used herein, the term "secondary metabolite" means a compound, derived from primary metabolites, that is produced by an organism, is not a primary metabolite, is not ethanol or a fusel alcohol, and is not required for growth under standard conditions. Secondary metabolites are derived from intermediates of many pathways of primary metabolism. These pathways include, without limitation, pathways for biosynthesis of amino acids, the shikimic acid pathway for biosynthesis of aromatic amino acids, the polyketide biosynthetic pathway from acetyl coenzyme A (CoA), the mevalonic acid pathway from acetyl CoA, and pathways for biosynthesis of polysaccharides and peptidopolysaccharides. Collectively, secondary metabolism involves all primary pathways of carbon metabolism. Particularly preferred in embodiments of the aspects of the invention are fungal secondary metabolites (See, Fungal Physiolo~y, Chapter 9 (Secondary(Special) Metabolism), Griffin, D. H., John Wiley & Sons, Inc.; ISBN: 0471166154).
~ 5 "Secondary metabolite" also includes intermediate compounds in the biosynthetic pathway for a secondary metabolite that are dedicated to the pathway for synthesis of the secondary metabolite. "Dedicated to the pathway for synthesis of the secondary metabolite" means that once the intermediate is synthesized by the cell, the cell will not convert the intermediate to a primary metabolite. "Intermediate 2o compounds" also include secondary metabolite intermediate compounds which can be converted to useful compounds by subsequent chemical conversion or subsequent biotransformation. As such, providing improved availability of such intermediate compounds would still lead to improved production of the ultimate useful compound, which itself may be referred to herein as a secondary metabolite. The yeast 25 Saccha~omyces cerevisiae is not known to produce secondary metabolites.
The term "primary metabolite" means a natural product that has an obvious role in the functioning of almost all organisms. Primary metabolites include, without limitation, compounds involved in the biosynthesis of lipids, carbohydrates, proteins, and nucleic acids. The term "increasing the yield of the secondary metabolite"
means increasing the quantity of the secondary metabolite present in the total fermentation broth per unit volume of fermentation broth or culture.
As used herein, the phrase "modulate production of a secondary metabolite"
refers to a positive or negative or desirable change in one or more of the variables or values that affect the process or results of production of the primary or secondary metabolites in a liquid or solid state fungal fermentation. These positive or negative or desirable changes include, without limitation, an increase or decrease in the amount of a primary or secondary metabolite being produced (in absolute terms or in quantity per unit volume of fermentation broth or per unit mass of solid substrate); a decrease in the volume of the broth or the mass/quantity of substrate required for the production of sufficient quantities; a decrease in the cost of raw materials and energy, the time of fermentor or culture run, or the amount of waste that must be processed after a fermentor run; an increase or decrease in the specific production of the desired metabolite (both in total amounts and as a fraction of all metabolites and side products made by the fungus); an increase or decrease in the percent of the produced secondary 2o metabolite that can be recovered from the fermentation broth or culture;
and an increase in the resistance of an organism producing a primary or secondary metabolite to possible deleterious effects of contact with the secondary metabolite.
In certain embodiments of aspects of the invention, a secondary metabolite is an anti-bacterial. An "anti-bacterial" is a molecule that has cytocidal or cytostatic activity against some or all bacteria. Preferred anti-bacterials include, without limitation, (3-lactams. Preferred (3-lactams include, without limitation, penicillins and cephalosporins and biosynthetic intermediates thereof. Preferred penicillins and biosynthetic intermediates include, without limitation, isopenicillin N, 6-aminopenicillanic acid (6-APA), penicillin G, penicillin N, and penicillin V.
3o Preferred cephalosporins and biosynthetic intermediates include, without limitation, deacetoxycephalosporin V (DAOC V), deacetoxycephalosporin C (DAOC), deacetylcephalosporin C (DAC), 7-aminodeacetoxycephalosporanic acid (7-ADCA), cephalosporin C, 7-B-(5-carboxy-5-oxopentanamido)-cephalosporanic acid (keto-AD-7ACA), 7-B -(4-carboxybutanamido)-cephalosporanic acid (GL-7ACA), and 7-aminocephalosporanic acid (7ACA).
In certain embodiments of aspects of the invention, the secondary metabolite is an anti-hypercholesterolemic or a biosynthetic intermediate thereof. An "anti-hypercholesterolemic" is a drug administered to a patient diagnosed with elevated cholesterol levels for the purpose of lowering the cholesterol levels.
Preferred anti-hypercholesterolemics include, without limitation, lovastatin, mevastatin, simvastatin, and pravastatin.
According to other embodiments of the invention, a secondary metabolite is an immunosuppressant or a biosynthetic intermediate thereof. An "immunosuppressant"
is a molecule that reduces or eliminates an immune response in a host when the host is challenged with an immunogenic molecule, including immunogenic molecules present on transplanted organs, tissues or cells. Preferred immunosuppressants include, without limitation, members of the cyclosporin family and beauverolide L.
Preferred cyclosporins include, without limitation, cyclosporin A and cyclosporin C.
In certain embodiments of aspects of the invention, the secondary metabolite is an ergot alkaloid or a biosynthetic intermediate thereof. An "ergot alkaloid" is a member of a large family of alkaloid compounds that are most often produced in the 2o sclerotia of fungi of the genus Claviceps. An "alkaloid" is a small molecule that contains nitrogen and has basic pH characteristics. The classes of ergot alkaloids include clavine alkaloids, lysergic acids, lysergic acid amides, and ergot peptide alkaloids. Preferred ergot alkaloids include, without limitation, ergotamine, ergosine, ergocristine, ergocryptine, ergocornine, ergotaminine, ergosinine, ergocristinine, ergocryptinine, ergocorninine, ergonovine, ergometrinine, and ergoclavine.
In certain embodiments of aspects of the invention, the secondary metabolite is an inhibitor of angiogenesis or a biosynthetic intermediate thereof. An "angiogenesis inhibitor" is a molecule that decreases or prevents the formation of new blood vessels. Angiogenesis inhibitors have proven effective in the treatment of 3o several human diseases including, without limitation, cancer, rheumatoid arthritis, and diabetic retinopathy. Preferred inhibitors of angiogenesis include, without limitation, fumagillin and ovalicin.
In certain embodiments of aspects of the invention, the secondary metabolite is a glucan synthase inhibitor or a biosynthetic intermediate thereof. A
"glucan synthase inhibitor" is a molecule that decreases or inhibits the production of 1,3-(3-D-glucan, a structural polymer of fungal cell walls. Glucan synthase inhibitors are a class of antifungal agents. Preferred glucan synthase inhibitors include, without limitation, echinocandin B, pneumocandin B, aculeacin A, and papulacandin.
In certain embodiments of aspects of the invention, the secondary metabolite is a member of the gliotoxin family of compounds or a biosynthetic intermediate thereof. The "gliotoxin family of compounds" are related molecules of the 1o epipolythiodioxopiperazine class. Gliotoxins display diverse biological activities, including, without limitation, antimicrobial, antifungal, antiviral, and immunomodulating activities. Preferred members of the "gliotoxin family of compounds" include, without limitation, gliotoxin and aspirochlorine.
In certain embodiments of aspects of the invention, the secondary metabolite ~5 is a fungal toxin or a biosynthetic intermediate thereof. A "fungal toxin"
is a compound that causes a pathological condition in a host, either plant or animal.
Fungal toxins could be mycotoxins present in food products, toxins produced by phytopathogens, toxins from poisonous mushrooms, or toxins produced by zoopathogens. Preferred fungal toxins include, without limitation, aflatoxins, patulin, 2o zearalenone, cytochalasin, griseofulvin, ergochrome, cercosporin, marticin, xanthocillin, coumarins, tricothecenes, fusidanes, sesterpenes, amatoxins, malformin A, phallotoxins, pentoxin, HC toxin, psilocybin, bufotenine, lysergic acid, sporodesmin, pulcheriminic acid, sordarins, fumonisins, ochratoxin A, and fusaric acid.
25 With some certain embodiments of aspects of the invention, the secondary metabolite is a modulator of cell surface receptor signaling or a biosynthetic intermediate thereof. The term "cell surface receptor" is as used before.
Modulators of cell surface receptor signaling might function by one of several mechanisms including, without limitation, acting as agonists or antagonists, sequestering a 3o molecule that interacts with a receptor such as a ligand, or stabilizing the interaction of a receptor and molecule with which it interacts. Preferred modulators of cell surface signaling include, without limitation, the insulin receptor agonist L-783,281 and the cholecystokinin receptor antagonist asperlicin.
In certain embodiments of aspects of the invention, the secondary metabolite is a plant growth regulator or a biosynthetic intermediate thereof. A "plant growth regulator" is a molecule that controls growth and development of a plant by affecting processes that include, without limitation, division, elongation, and differentiation of cells. Preferred plant growth regulators include, without limitation, cytokinin, auxin, gibberellin, abscisic acid, and ethylene.
In certain embodiments of aspects of the invention, the secondary metabolite 1 o is a pigment or a biosynthetic intermediate thereof. A "pigment" is a substance that imparts a characteristic color. Preferred pigments include, without limitation, melanins and carotenoids.
In certain embodiments of aspects of the invention, the secondary metabolite is an insecticide or a biosynthetic intermediate thereof. An "insecticide" is a molecule ~5 that is toxic to insects. Preferred insecticides include, without limitation, nodulisporic acid.
In certain embodiments of aspects of the invention, the secondary metabolite is an anti-neoplastic compound or a biosynthetic intermediate thereof. An "anti-neoplastic" compound is a molecule that prevents or reduces tumor formation.
2o Preferred anti-neoplastic compounds include, without limitation, taxol (paclitaxel) and related taxoids.
The phrase "increased activity" is used herein to refer to a characteristic that results in an augmentation of the inherent negative or positive function of the regulatory protein.
25 The invention provides variant regulator proteins of secondary metabolite production with increased activity and methods of producing the same. The invention further provides for the identification of specific amino acid residues that are important to the functioning of secondary metabolite regulator proteins. By way of non-limiting example, variant regulator proteins of the secondary metabolite regulator 30 lovE are presented herein.
As known to those skilled in the art, certain substitutions of one amino acid for another may be tolerated at one or more amino acid residues of a wild-type regulator protein absent a change in the structure, activity and/or function of the wild-type protein. Such substitutions are referred to in the art as "conservative"
substitutions, and amino acids may be categorized into groups that identify which amino acids may be substituted for another without altering the structure and/or function of the protein.
As used herein, the term "conservative substitution" refers to the exchange of one amino acid for another in the same conservative substitution grouping in a protein sequence. Conservative amino acid substitutions are known in the art and are generally based on the relative similarity of the amino acid side-chain substituents, for example, their hydrophobicity, hydrophilicity, charge, size, and the like. In a preferred embodiment, conservative substitutions typically include substitutions within the following groups: Group 1: glycine, alanine, and proline; Group 2:
valine, isoleucine, leucine, and methionine; Group 3: aspartic acid, glutamic acid, asparagine, glutamine; Group 4: serine, threonine, and cysteine; Group 5: lysine, arginine, and histidine; Group 6: phenylalanine, tyrosine, and tryptophan. Each group provides a ~ 5 listing of amino acids that may be substituted in a protein sequence for any one of the other amino acids in that particular group.
As stated supYa, there are several criteria used to establish groupings of amino acids for conservative substitution. For example, the importance of the hydropathic amino acid index in confernng interactive biological function on a protein is generally 2o understood in the art (Kyte and Doolittle, Mol. Biol. 157:105-132 (1982).
It is known that certain amino acids may be substituted for other amino acids having a similar hydropathic index or score and still retain a similar biological activity.
Amino acid hydrophilicity is also used as a criteria for the establishment of conservative amino acid groupings (see, e.g., U.S. Patent No. 4,554,101).
25 Information relating to the substitution of one amino acid for another is generally known in the art (see, e.g., Introduction to Protein Architecture :
The Structural Biolo~y of Proteins, Lesk, A.M., Oxford University Press; ISBN:
0198504748; Introduction to Protein Structure, Branden, C.-L, Tooze, J., Karolinska Institute, Stockholm, Sweden (January 15, 1999); and Protein Structure Prediction:
3o Methods and Protocols (Methods in Molecular Biolo~y), Webster, D.M.(Editor), August 2000, Humana Press, ISBN: 0896036375).
In one embodiment of the first aspect, the invention provides an improved regulator protein comprising an amino acid sequence coding for a variant of the lovE
protein having at least one specific mutation that gives rise to greater transcription-activating properties of the regulator protein and/or increased lovastatin synthesis.
By way of non-limiting example, certain amino acid residues and mutations thereof in the lovE regulatory protein of A. te~Yeus (SEQ ID N0:91) are identified by the invention described herein. Mutations at residues 31, 41, 52, 73, 101, 111, 133, 141, 153, 281, 367, and 389 of the wild-type lovE protein ofA. ter~eus have been identified as being critical for the improvement of IoVE regulator protein function.
1o Those mutations include: F31L, Q41K, Q41R, T52I, T52N, C73R, P101S, P101Q, V111I, S133L, E141V, E141K, C153Y, C153R, T281A, N367I, N367Y, P389S and P389L. Each mutation, therefore, represents a change of one conservative class of amino acids for another. For example, the mutation F31L represents a change from a Group 6 amino acid residue to a Group 2 amino acid residue at position 31 of the ~ 5 wild-type, lovE regulator protein.
Poor transformation efficiency and the lack of efficient selection systems frequently precludes the screening of large numbers of variant regulator proteins of secondary metabolites in the organism from which the regulator protein is isolated.
For example, there are currently certain technical obstacles to the successful screening 20 of large numbers of variant regulator proteins in the fungus A. te~~eus, an organism that produces the secondary metabolite lovastatin.
The invention described herein takes advantage of the genetically tractable and experimentally amenable organism Sacch.aromyces cerevisiae for screening large numbers of variant regulator proteins of secondary metabolite production.
25 Techniques common to the field of molecular biology are well developed in S.
cerevisiae, and large numbers of vectors are available to assist the genetic manipulation and cloning of variant regulator proteins involved in secondary metabolite production. Other genetically tractable organisms could also be used for this purpose.
3o As used herein, "mutating" is used to refer to the deliberate alteration of at least one nucleotide residue of a wild-type, cognate nucleic acid sequence encoding a regulator protein of secondary metabolite production. A deliberate alteration or change in at least one nucleotide residue of a polynucleotide may be accomplished by any method known in the art. The mutations) can be made ira vivo or ih vitro and can include random, partially random or not random, i.e., directed, mutagenesis techniques.
By way of non-limiting example, ih vivo mutagenesis can be done by placing this nucleic acid molecule in a cell with a high mutation frequency, i.e. a mutagenic strain. By way of non-limiting example, Muhlrad et al. (Yeast 8:79-82 (1992)) have developed a rapid method for localized mutagenesis of yeast genes. As a first step, the region of interest of a gene sequence is first amplified in vitro under error-prone polymerise chain reaction (PCR) conditions. Error-prone polymerise chain reaction (PCR) is a method of introducing amino acid changes into proteins. With this technique, mutations are deliberately introduced during the PCR reaction through the use of error-prone DNA polymerises under specific reaction conditions. With the Muhlrad et al. procedure, the PCR product is then co-transformed with a gapped ~ 5 plasmid containing homology to both ends of the PCR product, resulting in ih vivo recombination to repair the gap with the mutagenized DNA.
There are a variety of commercially available kits that may be used to produce mutant nucleic acid molecules by error-prone PCR (see, e.g., GeneMorphTM PCR
Mutagenesis Kit (Stratagene, La Jolla, California); and DiversifyTM PCR Random 2o Mutagenesis Kit (BD Biosciences Clontech, Palo Alto, CA). Thus, a plurality of variant, i.e., mutated, regulator proteins of secondary metabolite production may be produced using established mutagenesis techniques.
As used herein, the term "activity" refers to a characteristic of the regulator protein that negatively or positively affects the biological system to bring about a 25 modulation in secondary metabolite production. By way of non-limiting example, the activity is the transcription of downstream genes involved in the biosynthetic pathway of the secondary metabolite of choice. Thus, in the present example, the phrase "more activity" refers to the property of a variant regulator protein to bring about more transcription than that effected by the cognate, wild-type regulator protein.
so In certain embodiments of the third aspect, the selected variant regulator protein has more activity in a fungal cell than the cognate, wild-type protein. In certain embodiments of the third aspect, the protein regulator of secondary metabolite production is a transcription factor. In certain embodiments of the fourth aspect, the protein regulator of secondary metabolite production is a transmembrane transporter, a protein that mediates secretion, a kinase, a G-protein, a cell surface receptor, a GTPase activating protein, a guanine nucleotide exchange factor, a phosphatase, a protease, a phosphodiesterase, a bacterial protein toxin, an importin, an RNA-binding protein, an SCF complex component, an adherin, or a protein encoded within a biosynthetic cluster. . In certain other embodiments of the third aspect, the selected variant regulator protein has more activity in a heterologous cell than the cognate, wild-type protein. In certain embodiments thereof, the heterologous cell is an organism selected from the group consisting of S. cerevisiae, E. coli, A.
nidulans, Candida sp., and N. crassa. In yet certain other embodiments of the third aspect, the selected variant regulator protein has more activity in a homologous cell than the cognate, wild-type protein. In certain embodiments thereof, the homologous cell is an organism selected from the group consisting of Asper~gillus sp., Perzicilliunz sp., Acremoniurn chrysogenum, Yarrowia lipolytica, Nodulisporium sp., Fusariurra sp., Monascus sp., Claviceps sp., Triehoder~rna sp., Tolypocladium sp., Tr~icotheicium sp., Fusidiunz sp., Errzer~icellopsis sp., Cephalospor~ium sp., Cochliobolus sp., Helmirzthosporium sp., Agar~ieus bt~unescens, Ustilago nzaydis, Neur~ospora sp., Pestalotiopsis sp., and Phaffia rhodozyma.
2o In certain embodiments of the third aspect, the selected variant regulator protein has more activity in a heterologous cell and a homologous cell than the cognate, wild-type protein. In certain embodiments thereof, the heterologous cell is an organism selected from the group consisting of S. cer~evisiae, E. coli, A.
nidulans, Candida sp., and N. crassa and the homologous cell is an organism selected from the group consisting of Aspergillus sp., Penicilliuna sp., Ac>~enzonium chrysogenurn, Yanr~owia lipolytica, Nodulisporiurrz sp., Fusarium sp., Monascus sp., Claviceps sp., Trichoderrrza sp., Tolypocladiunz sp., Trieotheicium sp., Fusidium sp., Ernericellopsis sp., Cephalospor~ium sp., Cochliobolus sp., Helrnirzthospor~ium sp., Agaricus br~unescens, Ustilago maydis, Neurospora sp., Pestalotiopsis sp. and Phaffia 3o rhodozyma.
As used herein, the phrase "heterologous cell" refers to a system for gene expression, i. e., an organism for gene expression, that is one other than the organism from which the selected regulator protein of secondary metabolite production has been isolated. Preferred heterologous cells include, but are not limited to, S.
cer~evisiae, E. coli, A. nidulans, and Carzdida sp.,. and N. cr~assa.
Particularly preferred are fungal heterologous cells. In an embodiment of the third aspect, the method comprises: (a) selecting a nucleic acid comprising a polynucleotide encoding a protein regulator of secondary metabolite production; (b) mutating the nucleic acid to create a plurality of nucleic acid molecules encoding variant regulator proteins of secondary metabolite production; and (c) selecting a mutagenized nucleic acid encoding a variant regulator protein with increased activity in a homologous cell than the cognate, wild-type protein.
As used herein, the phrase "homologous cell" refers to a system for gene expression, i.e., an organism for gene expression, that is the organism from which the regulator protein of secondary metabolite production has been isolated.
Preferred homologous cells are fungal homologous cells, including, but not limited to, Aspergilluus sp., Perzicillium sp., Acremonium chrysogenum, Yarrowia lipolytica, Nodulisporiurn sp., Fusarium sp., Morzascus sp., Claviceps sp., Tr~ichoder~nza sp., Tolypocladium sp., Tricotheicium sp., Fusidiurn sp., Emer~icellopsis sp., Cephalosporium sp., Cochliobolus sp., Helminthosporium sp., AgaYicus br~urzescens, Ustilago rnaydis, Neurospora sp., Pestalotiopsis sp and Phaffia rhodozyma.
(See, 2o Fun ,al Physiolo~y, Chapter 9 (Secondary(Special) Metabolism), Griffin, D.
H., John Wiley ~z Sons, Inc.; ISBN: 0471166154).
In certain embodiments of the third aspect, the method further comprises selecting a variant regulator protein that also increases production of a secondary metabolite in a cell when compared to the cognate, wild-type protein. In certain embodiments thereof, the cell is a fungal cell. In certain embodiments thereof, the cell is a heterologous cell, preferably selected from the group consisting of S.
cer~evisiae, E. coli, A. rzidulans, Candida sp., and N. crassa.
In certain embodiments thereof, the cell is a homologous cell, preferably selected from the group consisting of Aspergillus sp., Penicillium sp., Acr~emonium chrysogenurn, Yarrowia lipolytica, NodulispoYium sp., Fusarium sp., Morzascus sp., Claviceps sp., TYichoderma sp., Tolypocladium sp., Tricotlzeicium sp., Fusidium sp., Enzericellopsis sp., Cephalosporium sp., Cochliobolus sp., Helminthosporium sp., Agaricus brurzescetzs, Ustilago maydis, Neurospora.sp., Pestalotiopsis sp., and Pha~a rhodozyma.
Certain embodiments of the aspects of the invention relate to regulator proteins that promote secondary metabolite production by increasing transcription of one or more genes involved with secondary metabolite production. These wild-type sequences may be selected for mutagenesis to create a plurality of variant regulator proteins. The activity of these transcription-activating variant regulator proteins may be determined by measuring the activity of a reporter gene having the appropriate promoter sequences. These tests are done in a homologous and/or a heterologous cell.
1 o Certain embodiments of aspects of the invention are directed to fungal regulator proteins with transcription-activating activity that is tested in fungal heterologous and homologous cells.
Reporter genes are useful for isolating transformants expressing improved variant regulator proteins. The reporter genes may be operably linked to a promoter sequence that is normally regulated by the wild-type regulator protein.
Reporter genes include, but are not limited to, genes encoding (3-galactosidase (lack [3-glucoronidase (GUSH, (3-glucosidase, amylase and invertase, amino acid biosynthetic genes, e.g., the yeast LEU~, HIS3, LYS2, TRPl genes (or homologous genes from other fungi, such as filamentous fungi, that encode proteins with the similar functional 2o activities), nucleic acid biosynthetic genes, e.g., the yeast URA3 and ADE2 genes (or homologous genes from other fungi, such as filamentous fungi, that encode proteins with the similar functional activities), the mammalian chloramphenicol transacetylase (CAT) gene, or any surface antigen gene for which specific antibodies are available.
A reporter gene can also be a neomycin phosphotransferase(neo) gene, which encodes neomycin, kanamycin resistance gene and 6418 (geneticin) resistance gene. A
reporter gene may encode a protein detectable by luminescence or fluorescence, such as green fluorescent protein (GFP). Reporter genes may additionally or alternatively encode any protein that provides a phenotypic marker, for example, a protein that is necessary for cell growth or viability, or a toxic protein that causes cell death.
3o Alternatively, the reporter gene may encode a protein detectable by a color assay leading to the presence or absence of color.
The choice of reporter gene will depend on the type of cell to be transformed.
Preferred reporter genes are those that are operable in fungal cells. It is preferable to have two reporter genes within the cell. One reporter gene, when expressed, provides a growth advantage to transformed cells that are expressing the variant regulator protein. This allows for the isolation of such transformants though selective pressures. The other reporter gene provides a colorimetric marker, such as the lacZ
gene and its encoded protein, (3-galactosidase. Alternatively, the second reporter provides a fluorescent or luminescent marker, such as green fluorescent protein (GFP) 1 o In a fourth aspect, the invention provides a method of increasing production of a secondary metabolite comprising: (a) selecting a nucleic acid comprising a polynucleotide encoding a protein regulator of secondary metabolite production; (b) mutating the nucleic acid to create a plurality of nucleic acid molecules encoding variant regulator proteins of secondary metabolite production; (c) selecting a variant 15 regulator protein with more activity than the cognate, wild-type protein;
and (d) expressing the selected variant regulator protein in a cell, thereby increasing production of the secondary metabolite in the cell.
In certain embodiments of the fourth aspect, the cell is a fungal cell. In certain embodiments of the fourth aspect, the protein regulator of secondary metabolite 2o production is a transcription factor. In certain embodiments of the fourth aspect, the protein regulator of secondary metabolite production is a transmembrane transporter, a protein that mediates secretion, a kinase, a G-protein, a cell surface receptor, a GTPase activating protein, a guanine nucleotide exchange factor, a phosphatase, a protease, a phosphodiesterase, a bacterial protein toxin, an importin, an RNA-binding 25 protein, an SCF complex component, an adherin, or a protein encoded within a biosynthetic cluster. In certain embodiments of the fourth aspect, the cell is a heterologous cell, preferably selected from the group consisting of S.
eerevisiae, E.
coli, A. nidulans, Candida sp., and N. crassa. In certain other embodiments of the fourth aspect, the cell is a homologous cell, preferably selected from the group 3o consisting of Aspergillus sp., Penicilliurn sp., Acremonium chzysogenum, Yarrowia lipolytica, Nodulisporiuzzz sp., Fusa~iurrz sp., Morzascus sp., Claviceps sp., Trichoderzna sp., Tolypocladium sp., Tricotheiciunz sp., Fusidium sp., Emericellopsis sp., Ceplaalosporium sp., Cochliobolus sp., HelrrainthospoYium sp., Agar-icus brunescens, Ustilago rnaydis, Neurospora sp., Pestalotiopsis sp., and Pha~a rhodozyma.
In certain other embodiments of the fourth aspect, the cell is a heterologous cell and the method further comprises expressing the variant regulator protein in a homologous cell, thereby increasing secondary metabolite production in the homologous cell. In certain embodiments thereof, the heterologous cell is an organism selected from the group consisting of S. cerevisiae, E. coli, A.
nidulans, Candida sp., , and N. crassa and the homologous cell is an organism selected from the 1o group consisting ofAsper~gillus sp., Penicillium sp., Acrenaonium chr~ysogerzurn, Yar~~owia lipolytica, Nodulisporiurn sp., Fusar~ium sp., Monascus sp., Claviceps sp., Trichoder~rna sp., Tolypocladium sp., TricotlZeicium sp., Fusidium sp., Enaericellopsis sp., Cephalosporium sp., Cochliobolus sp., Helrninthosporium sp., Agar~icus b~unescens, Ustilago maydis, Neurospora sp., Pestalotiopsis sp.and Pha~a 15 >"hodozyma.
In a fifth aspect, the invention provides an isolated variant regulator protein of secondary metabolite production having increased activity compared to a cognate, wild-type protein, made by the process comprising: (a) selecting a nucleic acid comprising a polynucleotide encoding a protein regulator of secondary metabolite 2o production; (b) mutating the nucleic acid to create a plurality of nucleic acid molecules encoding variant regulator proteins of secondary metabolite production; (c) selecting a variant regulator protein with more activity than the cognate, wild-type protein; and (d) recovering the selected variant regulator protein.
In certain embodiments of the fifth aspect, the variant regulator protein 25 selected has more activity in a fungal cell. In certain embodiments of the fifth aspect, the protein regulator of secondary metabolite production is a transcription factor. In certain embodiments of the fifth aspect, the protein regulator of secondary metabolite production is a transmembrane transporter, a protein that mediates secretion, a kinase, a G-protein, a cell surface receptor, a GTPase activating protein, a guanine nucleotide 3o exchange factor, a phosphatase, a protease, a phosphodiesterase, a bacterial protein toxin, an importin, an RNA-binding protein, an SCF complex component, an adherin, or a protein encoded within a biosynthetic cluster. In certain embodiments of the fifth aspect, the variant regulator protein selected has more activity in a heterologous cell, preferably selected from the group consisting of S. cer~evisiae, E.
coli, A.
nidulans, Candida sp., Neurospora sp., Pestalotiopsis sp., and N. crassa. In certain embodiments of the fifth aspect, the variant regulator protein selected has more activity in a homologous cell, preferably selected from the group consisting of Asper~gillus sp., Penicillium sp., Acr~emonium chrysogenuna, Yar~r~owia lipolytica, Nodulisporium sp., Fusariurn sp., Monascus sp., Claviceps sp., Trichoder-nZa sp., Tolypocladium sp., Tr~icotheicium sp., Fusidium sp., Emericellopsis sp., CeplaalospoYiuna sp., Coclaliobolus sp., Helminthospor~iurn sp., Agaricus br~unesceras, Ustilago maydis, Neur~ospora sp., Pestalotiopsis sp., and Plaaffia r~hodozyma.
In certain embodiments of the fifth aspect, the variant regulator protein selected has more activity in a homologous cell and a heterologous cell. In embodiments thereof, the heterologous cell is an organism selected from the group consisting of S. cerevisiae, E. coli, A. nidulans, Candida sp., Neurospora sp., ~ 5 Pestalotiopsis sp., and N. crassa and the homologous cell is an organism selected from the group consisting of Aspergillus sp., Penicillium sp., Acr~emoraium chrysogenum, Yarrowia lipolytica, Nodulisporiuna sp., FusaYium sp., Monascus sp., Claviceps sp., Ti~ichoderma sp., Tolypocladiurn sp., TYicotheicium sp., Fusidiurn sp., Emer~icellopsis sp., Cephalosporium sp., Cochliobolus sp., Helrrtinthosporium sp., 2o Agaricus br°uraescens, Ustilago rnaydis, Neur~ospora sp., Pestalotiopsis sp., and Plaaffia rlaodozyma.
In yet another embodiment of the fifth aspect, the variant regulator protein is a variant protein of the lovE protein having at least one of the following mutations: (1) a Group 6 amino acid residue mutated to a Group 2 amino acid residue at position 31, 25 for example, the mutation represented by F31L;(2) a Group 3 amino acid residue mutated to a Group 5 amino acid residue at position 41, for example, the mutation represented by Q41K or Q41R; (3) a Group 4 amino acid residue mutated to a Group 2 amino acid residue at position 52, for example, the mutation represented by T52I;
FIELD OF THE INVENTION
The invention relates to the fields of microbiology and molecular biology. In particular, the invention relates to the field of mycology and the production of secondary metabolites from fungi.
SUMMARY OF THE RELATED ART
Secondary metabolites are a major source of commercially useful products 1 o such as food additives, vitamins, and medicines for the treatment of a wide variety of infections and diseases. By way of example, in 1997 the statin drugs lovastatin, simvastatin, and pravastatin, fungal secondary metabolites used in the treatment of hypercholesteremia, together had US sales of US$7.53 billion (Sutherland et al., Cur~Yerat Opinion Ih DrugDiseovery c~ Developmeht 4:229-236 (2001)). The cost and 15 availability of these plant, bacterial and fungal 'metabolites are frequently determined by limitations imposed on production and purification of these compounds from culture. This problem is frequently exacerbated by the fact that these products are generally produced during the stationary phase of bacterial and fungal growth.
A wide variety of methods have been utilized to increase the amount of 2o secondary metabolite produced in culture. Studies have demonstrated the importance of carefully designing the medium in which a fungus is grown to maximize the amount of a secondary metabolite produced (see, e.g., Hajjaj H, et al., Appl.
Envirora.
Microbiol. 67:2596-602 (2001); Lesova, K., et al., J. Basic Microbiol. 40:369-(2000)). In addition, the method of culture or fermentation also impacts directly on 25 the amount of secondary metabolite produced. For example, see Robinson, T., et al.
(Appl. Microbiol. Biotechrzol. 55:284-289 (2001)), which demonstrates the advantages of solid state (substrate) fermentation.
In addition to the manipulation of culture and media conditions, genetic approaches have been taken to increase secondary metabolite production. For 3o example, the production of penicillin is limited by the activity of two enzymes, encoded by the ipnA and acvA genes, both of which are regulated by the pacC
protein, a zinc-finger transcription factor. Naturally occurring mutant alleles of the pacC
locus are known to possess more transcription-activating activity than the cognate, wild-type allele (see, e.g., Tilburn et al. EMBO J. 14(4):779-790 (1995)).
Thus, one genetic approach to increasing secondary metabolite production is to identify and isolate naturally occurring mutant alleles, the expression of which leads to increased secondary metabolite production.
Although many regulators of secondary metabolite production in many organisms are known, not all of the organisms that produce secondary metabolites are amenable to genetic or molecular genetic manipulation. Thus, these systems are not generally useful as a source for the isolation of naturally occurring mutant alleles and are even less useful for the deliberate manipulation of secondary metabolite regulator protein structure with the aim of creating improved regulators of secondary metabolite production.
It would be advantageous to have improved regulators of the biosynthetic enzymes responsible for secondary metabolite production. For example, recent studies suggest increasing usage of statin drugs, e.g., see Waters D.D., Am.
J. Cardiol.
88:1 OF-SF (2001)). Thus, demand for statin drugs is likely to increase substantially.
In order to meet the demand for these and other secondary metabolites, new and improved methods for the production of secondary metabolites must be identified.
BRIEF SUMMARY OF THE INVENTION
The invention provides variant secondary metabolite regulator proteins that enable increased production of secondary metabolites. The invention also provides methods to make these improved regulator proteins. Certain of the variant secondary metabolite regulator proteins have increased ability to stimulate production of secondary metabolites in at least some strains of certain fungal species, e.g., certain strains ofAspergillus teYt~eus or Sacc~omyces cereviae.
In a first aspect, the invention provides a variant regulator protein of secondary metabolite production with the same greater activity than that of the 3o cognate, wild-type protein in at least some fungal strains In certain embodiments of this aspect of the invention, the regulator protein is a fungal regulator protein.
In an embodiment of the first aspect, the invention provides an improved regulator protein comprising an amino acid sequence coding for a variant lovE
protein having at least one specific mutation that gives rise to greater transcription-activating properties of the regulator protein and/or induction of secondary metabolite synthesis in at least some fungal strains.
By way of non-limiting example, certain preferred regulator proteins of this aspect of the invention include at least one of the following mutations (amino acid changes), e.g., in a polypeptide comprising the amino acid sequence of SEQ ID
N0:91): (1) a Group 6 amino acid residue (e.g., F) mutated to a Group 2 amino acid residue at position 31, in one embodiment the mutation represented by F31L;
(2) a Group 3 amino acid residue (e.g., Q) mutated to a Group 5 amino acid residue at position 41, in one embodiment the mutation represented by Q41K or Q41R; (3) a Group 4 amino acid residue (e.g., T) mutated to a Group 2 amino acid residue at position 52, in one embodiment the mutation represented by T52I; (4) a Group 4 ~5 amino acid residue (e.g., T) mutated to a Group 3 amino acid residue at position 52, in one embodiment the mutation represented by T52N; (5) a Group 4 amino acid residue (e.g., C) mutated to a Group 5 amino acid residue at position 73, in one embodiment the mutation represented by C73R; (6) a Group 1 amino acid residue (e.g., P) mutated to a Group 4 amino acid residue at position 101, in one embodiment the mutation 2o represented by PlOlS; (7) a Group 1 amino acid residue mutated to a Group 3 amino acid residue (e.g., P) at position 101, in one embodiment the mutation represented by P101Q; (8) a valine amino acid residue mutated to another Group 2 amino acid residue at position 111, in one embodiment the mutation represented by V111I;
(9) a Group 4 amino acid residue (e.g., S) mutated to a Group 2 amino acid residue at 25 position 133, in one embodiment the mutation represented by S133L; (10) a Group 3 amino acid residue (e.g., E) mutated to a Group 2 amino acid residue at position 141, in one embodiment the mutation represented by E141V; (11) a Group 3 amino acid residue (e.g., E) mutated to a Group 5 amino acid residue at position 141, in one embodiment the mutation represented by E141K; (12) a Group 4 amino acid residue 30 (e.g., C) mutated to Group 6 amino acid residue at position 153, in one embodiment the mutation represented by C153Y; (13) a Group 4 amino acid residue (e.g., C) mutated to a Group 5 amino acid residue at position 153, in one embodiment the mutation represented by C153R; (14) a Group 4 amino acid residue (e.g., T) mutated to a Group 1 amino acid residue at position 281, in one embodiment the mutation represented by T281A; (15) a Group 3 amino acid residue (e.g., N) mutated to a Group 2 amino acid residue at position 367, in one embodiment the mutation represented by N367I; (16) a Group 3 amino acid residue (e.g., N) mutated to a Group 6 amino acid residue at position 367, in one embodiment the mutation represented by N367Y; (17) a Group 1 amino acid residue (e.g., P) mutated to Group 4 amino acid residue at position 389, in one embodiment the mutation represented by P389S;
and (18) a Group 1 amino acid residue (e.g., P) mutated to a Group 2 amino acid residue at position 389, in one embodiment the mutation represented by P389L.
In some embodiments of the first aspect, the invention provides regulator proteins with at least two, or at least three, or at least four, or at least five, or at least six, or at least seven, or at least eight, or at least nine, or at least ten, or at least eleven, or at least twelve, or at least thirteen, or at least fourteen, or at least fi$een, or at least ~5 sixteen, or at least seventeen, or at least eighteen of the above described specific mutations.
In other embodiments of the first aspect, the invention provides an isolated lovE variant regulator protein or a polypeptide comprising, consisting of or consisting essentially of an amino acid sequence selected from the group consisting of SEQ ID
2o N0:41, SEQ ID N0:42, SEQ ID N0:43, SEQ ID N0:44, SEQ ID N0:45, SEQ ID
N0:46, SEQ ID N0:47, SEQ ID N0:48, SEQ ID N0:49, SEQ ID N0:50, SEQ ID
N0:51, SEQ ID NO:52, SEQ ID N0:53, SEQ ID NO:54, SEQ ID N0:55, SEQ ID
N0:56, SEQ ID NO:57, SEQ ID N0:58, SEQ ID N0:59, SEQ ID N0:60, SEQ ID
N0:61, SEQ ID N0:62, SEQ ID N0:63, SEQ ID N0:64, SEQ ID N0:65, SEQ ID
25 N0:91, SEQ ID N0:93, and SEQ ID N0:94.
In other embodiments of the first aspect, the invention provides an isolated lovE variant regulator protein or a polypeptide comprising, consisting of or consisting essentially of an amino acid sequence selected from the group consisting of:
SEQ ID
N0:41, SEQ ID N0:42, SEQ ID N0:43, SEQ ID NO:44, SEQ ID N0:45, SEQ ID
so N0:46, SEQ ID N0:47, SEQ ID N0:48, SEQ ID N0:49, SEQ ID N0:50, SEQ ID
N0:51, SEQ ID N0:52, SEQ ID N0:53, SEQ ID N0:54, SEQ ID N0:55, SEQ ID
N0:56, SEQ ID N0:57, SEQ ID N0:58, SEQ ID N0:59, SEQ ID N0:60, SEQ ID
N0:61, SEQ m N0:62, SEQ 117 NO:63, SEQ ID N0:64, SEQ DJ N0:65, SEQ ID
N0:91, with the addition of the amino acid sequence of SEQ ID N0:95 or SEQ ID
N0:96 at the amino terminus.
In a second aspect, the invention provides a nucleic acid molecule encoding a lovE regulator of the first aspect of the invention. By way of non-limiting example, the invention provides a nucleic acid molecule encoding the lovE variant regulator protein or a polypeptide comprising, consisting or consisting essentially of an amino acid sequence selected from the group consisting of SEQ ID N0:66, SEQ ID
N0:67, SEQ ID N0:68, SEQ D7 N0:69, SEQ ID NO:70, SEQ m N0:71, SEQ 117 N0:72, ~ o SEQ ID N0:73, SEQ ID N0:74, SEQ ID N0:75, SEQ ID N0:76, SEQ ID N0:78, SEQ ID N0:79, SEQ ID N0:81, SEQ 117 N0:82, SEQ ID N0:83, SEQ ID N0:84, SEQ ID N0:86, SEQ ID N0:87, SEQ ID N0:88, SEQ ID NO:89, SEQ ID N0:90, SEQ ID N0:91, SEQ ID N0:93, and SEQ ID NO:94. In certain embodiments the polypeptide comprises the amino acid sequence of SEQ m N0:95 or SEQ ID N0:96 at its amino terminus. In a preferred embodiment of the second aspect, the nucleic acid molecule lacks introns that interrupt the polypeptide coding sequence.
Thus, the nucleotide sequence encoding the polypeptide is contiguous.
In a third aspect, the invention provides a method of increasing the activity of a protein that regulates secondary metabolite production comprising: (a) selecting a 2o nucleic acid comprising a polynucleotide encoding a protein regulator of secondary metabolite production; (b) mutating the nucleic acid to create a plurality of nucleic acid molecules encoding variant regulator proteins of secondary metabolite production; and (c) selecting a variant regulator protein with more activity than the cognate, wild-type protein.
In various embodiments of the third aspect, the secondary metabolite is a fungal secondary metabolite. In certain embodiments of the third aspect, the protein regulator of secondary metabolite production is a transcription factor. In certain embodiments of the third aspect, the protein regulator of secondary metabolite production is a transmembrane transporter, protein that mediates secretion, kinase, G-3o protein, cell surface receptor, GTPase activating protein, guanine nucleotide exchange factor, phosphatase, protease, phosphodiesterase, bacterial protein toxin, importin, RNA-binding protein, SCF complex component, adherin, or protein encoded within a biosynthetic cluster. In certain other embodiments of the third aspect, the variant regulator protein is selected to have more activity in a heterologous cell and/or more activity in a homologous cell than the cognate, wild-type regulator protein.
In certain embodiments, the variant regulator protein is selected to have more activity in a heterologous cell andlor more activity in a homologous cell than the cognate, wild-type protein and to cause more secondary metabolite to be produced in a homologous cell and/or a heterologous cell when compared to the cognate, wild-type regulator protein. In a particularly preferred embodiment, the variant regulator protein is a lovE
variant regulator protein.
In a fourth aspect, the invention provides a method of increasing production of a secondary metabolite comprising: (a) selecting a nucleic acid comprising a polynucleotide encoding a protein regulator of secondary metabolite production; (b) mutating the nucleic acid to create a plurality of nucleic acid molecules encoding variant regulator proteins of secondary metabolite production; (c) selecting a variant ~ 5 regulator protein with more activity than the cognate, wild-type protein;
and (d) expressing the selected variant regulator protein in a cell, thereby increasing production of the secondary metabolite in the cell.
In various embodiments of the fourth aspect, the secondary metabolite is a fungal secondary metabolite. In certain embodiments of the third aspect, the protein 2o regulator of secondary metabolite production is a transcription factor. In certain embodiments of the fourth aspect, the protein regulator of secondary metabolite production is a transmembrane transporter, a protein that mediates secretion, a kinase, a G-protein, a cell surface receptor, a GTPase activating protein, a guanine nucleotide exchange factor, a phosphatase, a protease, a phosphodiesterase, a bacterial protein 25 toxin, an importin, an RNA-binding protein, an SCF complex component, an adherin, or a protein encoded within a biosynthetic cluster. In certain other embodiments of the fourth aspect, the variant regulator protein is selected to have more activity in a heterologous cell and/or more activity in a homologous cell. In certain embodiments, the variant regulator protein is selected to have more activity in a heterologous cell 3o and/or more activity in a homologous cell and to cause more secondary metabolite to be produced in a homologous cell and/or a heterologous cell when compared to the cognate, wild-type regulator protein. In a particularly preferred embodiment, the variant regulator protein is a lovE variant regulator protein.
In a fifth aspect, the invention provides an isolated variant regulator protein of secondary metabolite production having increased activity compared to a cognate, wild-type protein, the variant regulator protein made by the process comprising: (a) selecting a nucleic acid comprising a polynucleotide encoding a protein regulator of secondary metabolite production; (b) mutating the nucleic acid to create a plurality of nucleic acid molecules encoding variant regulator proteins of secondary metabolite production; (c) selecting a variant regulator protein with more activity than the 1 o cognate, wild-type protein; and (d) recovering the selected variant regulator protein.
In certain embodiments of the fifth aspect, the secondary metabolite is a fungal secondary metabolite. In certain embodiments of the fifth aspect, the protein regulator of secondary metabolite production is a transcription factor. In certain embodiments of the fifth aspect, the protein regulator of secondary metabolite ~ 5 production is a transmembrane transporter, a protein that mediates secretion, a kinase, a G-protein, a cell surface receptor, a GTPase activating protein, a guanine nucleotide exchange factor, a phosphatase, a protease, a phosphodiesterase, a bacterial protein toxin, an importin, an RNA-binding protein, an SCF complex component, an adherin, or a protein encoded within a biosynthetic cluster.
2o In certain embodiments of the fifth aspect, the variant regulator protein has more activity in a heterologous and/or a homologous cell than the cognate, wild-type protein in at least some fungal strains, e.g., in at least some strains ofA.
te~reus. In certain embodiments of the fourth aspect, the variant regulator protein increases production of a secondary metabolite in a heterologous cell and/or a homologous cell 25 when compared to the cognate, wild-type protein. In a particularly preferred embodiment, the variant regulator protein is a lovE variant regulator protein.
In a sixth aspect, the invention provides a fungus having improved lovastatin production made by the process of transforming a fungal cell with a nucleic acid molecule encoding a lovE variant protein of the first aspect of the invention.
In an 3o embodiment thereof, the nucleic acid molecule is selected from a nucleic acid molecule of the second aspect of the invention.
In a seventh aspect, the invention provides an improved process for making lovastatin comprising transforming a fungal cell with a nucleic acid molecule encoding a variant of the lovE protein of the first aspect of the invention.
In an embodiment thereof, the fungal cell is transformed with a nucleic acid molecule of the second aspect of the invention.
In a eighth aspect, the invention provides a nucleic acid molecule encoding a lovE protein defined by SEQ m NO:91. In one embodiment, the nucleic acid molecule comprises a contiguous coding sequence lacking introns encoding a polypeptide comprising SEQ m N0:91. In an embodiment thereof, the invention 1 o provides an isolated ZovE nucleic acid molecule defined by SEQ m N0:92. In an eighth aspect, the invention provides a nucleic acid molecule encoding a lovE
protein defined by SEQ m NO:91. In an embodiment thereof, the invention provides an isolated ZovE nucleic acid molecule defined by SEQ m N0:92.
In a ninth aspect the invention features an isolated polypeptide comprising, consisting of, or consisting essentially of the amino acid sequence of SEQ m N0:91 having an amino acid change selected from the group consisting of (a) a Phe changed to a Group 2 amino acid residue at position 31; (b) a Gln changed to a Group 5 amino acid residue at position 41; (c) a Thr changed to a Group 2 amino acid residue at position 52; (d) a Thr changed to a Group 3 amino acid residue at position 52; (e) a Cys changed to a Group 5 amino acid residue at position 73; (f) a Pro changed to a Group 4 amino acid residue at position 101; (g) a Pro changed to a Group 3 amino acid residue at position 101; (h) a Val changed to a Group 2 amino acid residue other than Val at position 111; (i) a Ser changed to a Group 2 amino acid residue at position 133; (j) a Glu changed to a Group 2 amino acid residue at position 141; (k) a Glu changed to a Group 5 amino acid residue at position 141; (1) a Cys changed to a Group 6 amino acid residue at position 153; (m) a Cys changed to a Group 5 amino acid residue at position 153; (n) a Thr changed to a Group 1 amino acid residue at position 281; (o) a Asn changed to a Group 2 amino acid residue at position 367; (p) a Asn changed to a Group 6 amino acid residue at position 367; (q) a 3o Pro changed to a Group 4 amino acid residue at position 389; and (r) a Pro changed to a Group 2 amino acid residue at position 389.
In various embodiments of the ninth aspect: the polypeptide when expressed in an A. terreus cell harboring a lovF gene increases expression of the lovF
gene relative to an otherwise identical cell not expressing the polypeptide; the polypeptide when expressed in a S. cerevisiae harboring a gene under the control of the A.
terreus lovF expression control region increases expression of the gene relative to an otherwise identical cell not expressing the polypeptide; the polypeptide has fewer than 11, fewer than 10, fewer than 8, or fewer than 5 amino acid changes; the polypeptide further comprises the amino acid sequence of SEQ ID N0:95 immediately amino terminal to the amino acid of SEQ m N0:91; the polypeptide further comprises the 1o amino acid sequence of SEQ ID N0:96 immediately amino terminal to the amino acid of SEQ ID N0:91; the isolated polypeptide has the amino acid change F31L, Q41K, Q41R, T52N, C73R, P101S, P101Q, V111I, S133L, E141V, E141K, C153Y, C153R, T281A, N367I, N367Y, P389S, or P389L; and the isolated polypeptide comprises, consists of or consists essentially of an amino acid sequence selected from the group consisting of SEQ ID N0:41, SEQ m N0:42, SEQ ID N0:43, SEQ ID N0:44, SEQ
ID NO:45, SEQ ID N0:46, SEQ ID N0:47, SEQ ID N0:48, SEQ ID N0:49, SEQ ~
NO:50, SEQ ID NO:51, SEQ ID N0:52, SEQ ID NO:53, SEQ ID N0:54, SEQ ID
NO:55, SEQ ID N0:56, SEQ 117 N0:57, SEQ ID N0:58, SEQ ID N0:59, SEQ ID
N0:60, SEQ ID N0:61, SEQ ID N0:62, SEQ ID N0:63, SEQ ID N0:64, SEQ ID
2o N0:65, SEQ ID N0:91, SEQ ID N0:93, and SEQ ID N0:94.
In a tenth aspect the invention features an isolated nucleic acid molecule comprising a nucleotide sequence encoding a polypeptide comprising the amino acid sequence of SEQ ID N0:91 having at least one amino acid change selected from the group consisting of-. : (a) a Phe changed to a Group 2 amino acid residue at position 31; (b) a Gln changed to a Group 5 amino acid residue at position 41; (c) a Thr changed to a Group 2 amino acid residue at position 52; (d) a Thr changed to a Group 3 amino acid residue at position 52; (e) a Cys changed to a Group 5 amino acid residue at position 73; (f) a Pro changed to a Group 4 amino acid residue at position 101; (g) a Pro changed to a Group 3 amino acid residue at position 101; (h) a Val 3o changed to a Group 2 amino acid residue other than Val at position 111; (i) a Ser changed to a Group 2 amino acid residue at position 133; (j) a Glu changed to a Group 2 amino acid residue at position 141; (k) a Glu changed to a Group 5 amino acid residue at position 141; (1) a Cys changed to a Group 6 amino acid residue at position 153; (m) a Cys changed to a Group 5 amino acid residue at position 153; (n) a Thr changed to a Group 1 amino acid residue at position 281; (o) a Asn changed to a Group 2 amino acid residue at position 367; (p) a Asn changed to a Group 6 amino acid residue at position 367; (q) a Pro changed to a Group 4 amino acid residue at position 389; and (r) a Pro changed to a Group 2 amino acid residue at position 389.
In various embodiments of the tenth aspect: the polypeptide when expressed in an A. terreus cell harboring a lovF gene increases expression of the lovF gene relative to an otherwise identical cell not expressing the polypeptide; the polypeptide when expressed in a S. cerevisiae harboring a gene under the control of the A.
terreus lovF
expression control region increases expression of the gene relative to an otherwise identical cell not expressing the polypeptide; the polypeptide has fewer than 11, fewer than 10, fewer than 8, or fewer than 5 amino acid changes; the polypeptide further comprises the amino acid sequence of SEQ ID NO:95 immediately amino terminal to ~5 the amino acid of SEQ ID N0:91; the polypeptide further comprises the amino acid sequence of SEQ ID N0:96 immediately amino terminal to the amino acid of SEQ
II?
N0:91; the isolated polypeptide has the amino acid change F31L, Q41K, Q41R, T52N, C73R, P101S, P101Q, V111I, S133L, E141V, E141K, C153Y, C153R, T281A, N367I, N367Y, P389S, or P389L; the isolated polypeptide comprises, 2o consists of, or consists essentially of an amino acid sequence selected from the group consisting of SEQ ID N0:41, SEQ ID N0:42, SEQ ID NO:43, SEQ ID N0:44, SEQ
ID NO:45, SEQ ID N0:46, SEQ ID N0:47, SEQ ID NO:48, SEQ ID N0:49, SEQ ~
NO:50, SEQ ID NO:51, SEQ ID N0:52, SEQ ID N0:53, SEQ ID N0:54, SEQ ID
NO:55, SEQ ID N0:56, SEQ ID N0:57, SEQ 117 N0:58, SEQ ID NO:59, SEQ ID
25 N0:60, SEQ ID N0:61, SEQ D7 N0:62, SEQ ID N0:63, SEQ ID N0:64, SEQ ID
N0:65, SEQ ID N0:91, SEQ ID N0:93, and SEQ ID N0:94; and the isolated nucleic acid molecule comprises, consists of, or consists essentially of a nucleotide sequence selected from the group consisting of SEQ ID N0:66, SEQ ID N0:67, SEQ ID
N0:68, SEQ ID N0:69, SEQ ID NO:70, SEQ ID N0:71, SEQ ID N0:72, SEQ ID
3o NO:73, SEQ ID N0:74, SEQ ~ N0:75, SEQ ID N0:76, SEQ ID N0:77, SEQ ID
N0:78, SEQ ID N0:79, SEQ ID N0:80, SEQ ID N0:81, SEQ ID NO:82, SEQ ID
N0:83, SEQ ID N0:84, SEQ ID N0:85, SEQ ID N0:86, SEQ ID N0:87, SEQ DJ
N0:88, SEQ ID N0:89, and SEQ ID N0:90. In other embodiments of the tenth aspect, the nucleotide sequence encoding the polypeptide is contiguous, i.e., the coding sequence is not interrupted by an intron.
In an eleventh aspect, the invention features a fungal cell containing a nucleic acid molecule encoding any of the forgoing polypeptides.
In a twelfth aspect, the invention feature a fungal cell (e.g., an A. terreus cell) containing any of the forgoing nucleic acid molecules. of any of claims 29-56.
In a thirteen aspect, the invention features a method for providing a fungal cell having improved production of a secondary metabolite (e.g., lovastatin), the method comprising transforming the fungal cell with a nucleic acid molecule described above whereby the fungal cell has increased secondary metabolite production compared to an otherwise identical fungal cell that has not been so transformed.
In a fourteenth aspect, the invention features a method for producing a secondary metabolite(e.g., lovastatin), the method comprising providing a fungal cell ~ 5 containing a forgoing nucleic acid molecule, culturing the cell under conditions so as to produce the secondary metabolite, and isolating from the cells a fraction containing the secondary metabolite.
In a fifteenth aspect, the invention features an isolated polypeptide comprising, consisting of, or consisting essentially of the amino acid sequence of SEQ
2o ID NO:91 having an amino acid change selected from the group consisting of:
H253R, S341P, R121W, S322G, A83V, T135I, E177G, E197K, T281A, T256A, N466S, C73R, E303K, Q41K, Q41K, P16A, G23S, T9M, Q362E, R21H, S34A, Q80H, A84S, E303D, H374D, A440T, A441V, C445S, P469S, F31L, T409I, M971, E113D, D146N, P163S, H458Y, I43V, Q295L, F31L, C159S, E162K, R293L, 2s S311N, L141, E18V, G138C, E338G, V361L, N400S, S174Y, A402T, F31L, P108S, D85N, I143F, M232I, T315I, S382Y, M385K, T461, Q62R, K77R, S323C, V373I, T294I, P310L, G337D, A394V, G436S, T139, V184I, D4E, V87I, D110E, A189T, N276D, T347R, N367I, Q377R, A425T, D131N, R312G, and A429G. In other embodiments, the polypeptide includes at least one such amino acid change.
3o In various embodiments of the fifteen aspect, the invention features In various embodiments of the ninth aspect: the polypeptide when expressed in an A.
terreus cell harboring a lovF gene increases expression of the lovF gene relative to an otherwise identical cell not expressing the polypeptide; the polypeptide when expressed in a S.
ce~evisiae harboring a gene under the control of the A. terreus lovF
expression control region increases expression of the gene relative to an otherwise identical cell not expressing the polypeptide; the polypeptide has fewer than 1 l, fewer than 10, fewer than 8, or fewer than 5 amino acid changes; the polypeptide further comprises the amino acid sequence of SEQ m N0:95 immediately amino terminal to the amino acid of SEQ ID NO:91; the polypeptide further comprises the amino acid sequence of SEQ DJ N0:96 immediately amino terminal to the amino acid of SEQ m N0:91.
BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 is a photographic representation of cells growing on media with and without 6418 selection demonstrating lovFp-HIS3p-Neo activation in S.
cerevisiae.
Controls include MB968 (vector only), MB2478 (lowly expressed wild-type lovE), and MB1644 (highly expressed wild-type lovE). All lovE variants are expressed in an 15 MB968 vector backbone similar to MB2478.
Figure 2A is a graphic representation of lovFp-CYCI p-ZacZ expression in S.
cerevisiae strains expressing lovE variant proteins from the clones lovE 1-10.
Figure 2B is a graphic representation of lovFp-CYCl p-lacZ expression in S.
ceYevisiae strains expressing lovE variant proteins from the clones lovE 1-10 from a 2o separate transformation than that of Figure 2A.
Figure 3 is a graphic presentation of lovFp-CYCI p-lacZ expression in S.
cerevisiae strains expressing lovE variant proteins from clones lovE 16-41.
Figure 4 is a graphic presentation of lovFp-lacZ expression in S. cerevisiae strains expressing lovE variant proteins from clones lovE 1-10.
25 Figure 5 is a graphic presentation of lovFp-lacZ expression in S.
cerevisiae strains expressing lovE variant proteins from clones lovE 16, 20, 21, 30-34, and 36-41.
Figure 6 is a graphic presentation of lovastatin culture concentration, as measured by enzyme inhibition assay, from broths of A. te~Yeus cultures expressing 30 lovE variant proteins 1-10 in.
Figure 7A is a graphic depiction of lovastatin culture concentration, as measured by HPLC analysis, from broths of A. terreus cultures expressing lovE
variant proteins 1-10 in MF117.
Figure 7B is a graphic depiction of lovastatin culture concentration, as measured by HPLC analysis, from broths of A. terreus cultures expressing lovE
variant proteins 2, 6, 30, 32, 36, 37, 39, and 41 in MF117.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
The invention provides variant secondary metabolite regulator proteins that enable production of secondary metabolites. The invention also provides methods to make these variant regulator proteins. Certain of the variant secondary metabolite regulator proteins have increased ability to stimulate production of secondary metabolites in at least some strains of certain fungal species, e.g., certain strains of Aspergillus terreus or Saccromyces cereviae, compared to the cognate wild-type 15 protein.
Iii certain embodiments of the aspects of the invention, the invention relates to the biosynthesis and improved production of secondary metabolites. The invention provides variant regulator proteins useful for the production of secondary metabolites, nucleic acid molecules encoding variant regulator proteins, and methods for their 2o production.
As used herein, the terms "fungal" and "fungus" refer generally to eukaryotic, heterotrophic organisms with an absorptive mode of nutrition. Fungi typically contain chitin in their cell walls and exhibit mycelial or yeast-like growth habits (More Gene Man~ulations in Fund, edited by J.W. Bennet and L.L. Lasure, Academic Press Inc.
25 (1991), ISBN 0120886421). More specifically, the terms refer to secondary metabolite producing organisms including, without limitation, Aspergillus sp., Penicillium sp., Acremonium chrysogenum, Yarrowia lipolytica, Nodulisporiuna sp., Fusarium sp., Monascus sp., Claviceps sp., Trichoderma sp., Tolypocladium sp., Tricotheiciuna sp., Fusidium sp., Emericellopsis sp., Ceplaalosporium sp., 3o Cochliobolus sp., Helmintlaosporium sp., Agaricus brunescetas, Ustilago maydis, Neurospora sp., Pestalotiopsis sp. and Pha~a rhodozyma (See, Fun ag 1 Physiolo~y, Chapter 9 (Secondary(Special) Metabolism), Griffin, D. H., John Wiley & Sons, Inc.;
ISBN: 0471166154).
The term "variant regulator protein" is used herein to refer to any regulatory protein having at least one change or difference in the amino acid sequence of the protein when compared to its cognate, wild-type regulatory protein sequence.
The term does not include naturally occurring allelic variations of the cognate, wild-type regulatory protein.
The term "regulator protein" is meant to refer to a protein having a positive or negative function that modifies the production of a secondary metabolite. The function of the protein may be at the level of transcription, e.g., repression or activation, protein synthesis, or transport. The regulator may alter the level of transcription, RNA stability, translation, post-translational modification, or cellular localization of proteins involved in secondary metabolite synthesis and/or transport.
The regulator may also have effects on precursor metabolite pools, flux through 15 specific pathways and metabolite resistance.
By way of non-limiting example, certain embodiments of the aspects of the invention relate to a regulator protein that is a protein that contributes andlor promotes transcription of a gene sequence, i.e., a transcription-activating protein.
"Transcription-activating" is a term used to refer to characteristics of a protein that 2o promote transcription. As used herein, a transcription-activating protein would include proteins that increase accessibility of the DNA to transcription complexes, for example, by opening or relaxing chromatin structure, proteins that promote the recognition and/or binding of transcription complexes to a target gene sequence, and/or proteins that promote transcription complex movement along the length of the 25 template DNA sequence.
Regulatory proteins of secondary metabolite production and the nucleic acid sequences encoding these are known to those skilled in the art. Non-limiting examples of regulatory proteins of secondary metabolite synthesis include:
regulator proteins of the aflatoxin/sterigmatocystin biosynthetic cluster (Woloshuk, C.P., et al., 3o Appl, Eravi~ofa. Microbiol. 60:2408-2414 (1994) and Brown, D.W., et al., Proc Natl Acad Sci TI S A. 93:1418-1422 (1996)); regulator proteins of the paxilline biosynthetic cluster (Young, C., et al., Mol, Microbiol. 39:754-764 (2001)); regulator proteins of the cephalosporin and penicillin biosynthetic clusters (Litzka O., et al., Antonie Tan Leeuwenhoek 75:95-105 (1999); Schmitt E.K. and Kuck U., .T. Biol. Chem.
275:9348-9357 (2000); MacCabe et al. Mol. Gen. Genet. 250:367-374 (1996); Suarez et al.
Mol.
Microbiol. 20:529-540 (1996); Lambert et al. Mol. Cell. Biol. 17:3966-3976 (1997);
Su et al. Genetics 133:67-77 (1993); regulator proteins of tricothecene synthesis (Trapp S.C., et al., Mol. Gerz. Genet. 257:421-432 (1998); Brown D.W., et al., Fungal Genet. Biol. 32:121-133 (2001); and Matsumoto G., et al. Biosci. Biotechnol.
Biochem. 63:2001-2004 (1999)); and regulator proteins of lovastatin synthesis (Kennedy, J., et al., Science 284:1368-1372 (1999); Hendrickson et al., Chem.
Biol.
6:429-439 (1999) Tag, A. et al., Mol Microbiol. 38:658-65 (2000)).
Certain embodiments of the aspects of the invention disclosed herein relate to the lovE regulator protein, a protein which plays a key role in the biosynthesis of lovastatin. More particularly, certain embodiments of the aspects of the invention relate to variant proteins of the lovE regulator protein and methods of making the 15 same. Such proteins are variant with respect to the following A. terreus wild-type ZovE sequences (SEQ ID NOS:91 and 92).
The patents and publications cited herein reflect the level of knowledge in the art and are hereby incorporated by reference in their entirety. Any conflict between any teaching of such references and this specification shall be resolved in favor of the 20 latter.
The invention utilizes techniques and methods common to the fields of molecular biology, genetics and microbiology. Useful laboratory references for these types of methodologies are readily available to those skilled in the art. See, for example, Molecular Cloning A Laboratory Manual, 3rd edition, edited by Sambrook, 25 J., MacCallum, P., and Russell, D.W. (2001), Cold Spring Harbor Laboratory Press (ISBN: 0-879-69576-5); Current Protocols In Molecular Biolo~y, edited by Ausubel, F.M., Brent, R., Kingston, R.E., Moore, D.D., Seidman, J.G., Struhl, K.
(1993), John Wiley and Sons, Inc. (ISBN: 0-471-30661-4); PCR Applications: Protocols for Functional Genomics, edited by Innis, M.A., Gelfand, D.H., Sninsky, J.J.
(1999), 3o Cold Spring Harbor Press (ISBN: 0-123-72186-S); and Methods In Yeast Genetics, 2000 Edition: A Cold Spring Habor Laboratory Course Manual, by Burke, D., Dawson, D. and Steams, T., Cold Spring Harbor Press (ISBN: 0-879-69588-9).
Table 1: Amino Acid and Nucleic Acid Sequences of Wild-type ZovE
Wild-type lovE Amino Acid Sequence maadqgiftnsvtlspvegsrtggtlprrafrrscdrchaqkikctgnkevtgrapcqr cqqaglrcvysercpkrklrqsraadlvsadpdpclhmssppvpsqslpldvseshssn tsrqfldppdsydwswtsigtdeaidtdcwglsqcdggfscqleptlpdlpspfestve kaplppvssdiaraasaqrelfddlsavsqeleeillavtvewpkqeiwthpigmffna srrlltvlrqqaqadchqgtldeclrtknlftavhcyilnvriltaiselllsqirrtq nshmsplegsrsqspsrddtssssghssvdtipffsenlpigelfsyvdplthalfsac ttlhvgvqllreneitlgvhsaqgiaasismsgepged.iartgatnsarceeqpttpaa rvlfmflsdegafqeaksagsrgrtiaalrrcyedifslarkhkhgmlrdlnnipp (SEQ ID N0:91) Wild-type lovE DNA Sequence (open reading frame only) atggctgcagatcaaggtatattcacgaactcggtcactctctcgccagtggagggttc acgcaccggtggaacattaccccgccgtgcattccgacgctcttgtgatcggtgtcatg cacaaaagatcaaatgtactggaaataaggaggttactggccgtgctccctgtcagcgt tgccagcaggctggacttcgatgcgtctacagtgagcgatgccccaagcgcaagctacg CCaatCCagggCagCggatCtCgtCtCtgCtgaCCCagatCCCtgCttgCaCatgtCCt CgCCtCCagtgCCCtCaCagagCttgCCgCtagaCgtatCCgagtCgCattCCtCaaat acctcccggcaatttcttgatccaccggacagctacgactggtcgtggacctcgattgg cactgacgaggctattgacactgactgctgggggctgtcccaatgtgatggaggcttca gctgtcagttagagccaacgctgccggatctaccttcgcccttcgagtctacggttgaa aaagctccgttgccaccggtatcgagcgacattgctcgtgcggccagtgcgcaacgaga gcttttcgatgacctgtcggcggtgtcgcaggaactggaagagatccttctggccgtga cggtagaatggccgaagcaggaaatctggacccatcccatcggaatgtttttcaatgcg tcacgacggcttcttactgtcctgcgccaacaagcgcaggccgactgccatcaaggcac actagacgaatgtttacggaccaagaacctctttacggcagtacactgttacatattga atgtgcggattttgaccgccatatcggagttgctcctgtcgcaaattaggcggacccag aacagccatatgagcccactggaagggagtcgatcccagtcgccgagcagagacgacac CagCagCagCagCggCCaCagCagtgttgaCc'~.CCataCCCttCtttagcgagaacctCC
ctattggtgagctgttctcctatgttgaccccctgacacacgccctattctcggcttgc actacgttacatgttggggtacaattgctgcgtgagaatgagattactctgggagtaca ctccgcccagggcattgcagcttccatcagcatgagcggggaaccaggcgaggatatag ccaggacaggggcgaccaattccgcaagatgcgaggagcagccgaccactccagcggct cgggttttgttcatgttcttgagtgatgaaggggctttccaggaggcaaagtctgctgg ttcccgaggtcgaaccatcgcagcactgcgacgatgctatgaggatatcttttccctcg cccgcaaacacaaacatggcatgctcagagacctcaacaatattcctccatga ( SECT ID NO : 92 ) As used herein, the term "secondary metabolite" means a compound, derived from primary metabolites, that is produced by an organism, is not a primary metabolite, is not ethanol or a fusel alcohol, and is not required for growth under standard conditions. Secondary metabolites are derived from intermediates of many pathways of primary metabolism. These pathways include, without limitation, pathways for biosynthesis of amino acids, the shikimic acid pathway for biosynthesis of aromatic amino acids, the polyketide biosynthetic pathway from acetyl coenzyme A (CoA), the mevalonic acid pathway from acetyl CoA, and pathways for biosynthesis of polysaccharides and peptidopolysaccharides. Collectively, secondary metabolism involves all primary pathways of carbon metabolism. Particularly preferred in embodiments of the aspects of the invention are fungal secondary metabolites (See, Fungal Physiolo~y, Chapter 9 (Secondary(Special) Metabolism), Griffin, D. H., John Wiley & Sons, Inc.; ISBN: 0471166154).
~ 5 "Secondary metabolite" also includes intermediate compounds in the biosynthetic pathway for a secondary metabolite that are dedicated to the pathway for synthesis of the secondary metabolite. "Dedicated to the pathway for synthesis of the secondary metabolite" means that once the intermediate is synthesized by the cell, the cell will not convert the intermediate to a primary metabolite. "Intermediate 2o compounds" also include secondary metabolite intermediate compounds which can be converted to useful compounds by subsequent chemical conversion or subsequent biotransformation. As such, providing improved availability of such intermediate compounds would still lead to improved production of the ultimate useful compound, which itself may be referred to herein as a secondary metabolite. The yeast 25 Saccha~omyces cerevisiae is not known to produce secondary metabolites.
The term "primary metabolite" means a natural product that has an obvious role in the functioning of almost all organisms. Primary metabolites include, without limitation, compounds involved in the biosynthesis of lipids, carbohydrates, proteins, and nucleic acids. The term "increasing the yield of the secondary metabolite"
means increasing the quantity of the secondary metabolite present in the total fermentation broth per unit volume of fermentation broth or culture.
As used herein, the phrase "modulate production of a secondary metabolite"
refers to a positive or negative or desirable change in one or more of the variables or values that affect the process or results of production of the primary or secondary metabolites in a liquid or solid state fungal fermentation. These positive or negative or desirable changes include, without limitation, an increase or decrease in the amount of a primary or secondary metabolite being produced (in absolute terms or in quantity per unit volume of fermentation broth or per unit mass of solid substrate); a decrease in the volume of the broth or the mass/quantity of substrate required for the production of sufficient quantities; a decrease in the cost of raw materials and energy, the time of fermentor or culture run, or the amount of waste that must be processed after a fermentor run; an increase or decrease in the specific production of the desired metabolite (both in total amounts and as a fraction of all metabolites and side products made by the fungus); an increase or decrease in the percent of the produced secondary 2o metabolite that can be recovered from the fermentation broth or culture;
and an increase in the resistance of an organism producing a primary or secondary metabolite to possible deleterious effects of contact with the secondary metabolite.
In certain embodiments of aspects of the invention, a secondary metabolite is an anti-bacterial. An "anti-bacterial" is a molecule that has cytocidal or cytostatic activity against some or all bacteria. Preferred anti-bacterials include, without limitation, (3-lactams. Preferred (3-lactams include, without limitation, penicillins and cephalosporins and biosynthetic intermediates thereof. Preferred penicillins and biosynthetic intermediates include, without limitation, isopenicillin N, 6-aminopenicillanic acid (6-APA), penicillin G, penicillin N, and penicillin V.
3o Preferred cephalosporins and biosynthetic intermediates include, without limitation, deacetoxycephalosporin V (DAOC V), deacetoxycephalosporin C (DAOC), deacetylcephalosporin C (DAC), 7-aminodeacetoxycephalosporanic acid (7-ADCA), cephalosporin C, 7-B-(5-carboxy-5-oxopentanamido)-cephalosporanic acid (keto-AD-7ACA), 7-B -(4-carboxybutanamido)-cephalosporanic acid (GL-7ACA), and 7-aminocephalosporanic acid (7ACA).
In certain embodiments of aspects of the invention, the secondary metabolite is an anti-hypercholesterolemic or a biosynthetic intermediate thereof. An "anti-hypercholesterolemic" is a drug administered to a patient diagnosed with elevated cholesterol levels for the purpose of lowering the cholesterol levels.
Preferred anti-hypercholesterolemics include, without limitation, lovastatin, mevastatin, simvastatin, and pravastatin.
According to other embodiments of the invention, a secondary metabolite is an immunosuppressant or a biosynthetic intermediate thereof. An "immunosuppressant"
is a molecule that reduces or eliminates an immune response in a host when the host is challenged with an immunogenic molecule, including immunogenic molecules present on transplanted organs, tissues or cells. Preferred immunosuppressants include, without limitation, members of the cyclosporin family and beauverolide L.
Preferred cyclosporins include, without limitation, cyclosporin A and cyclosporin C.
In certain embodiments of aspects of the invention, the secondary metabolite is an ergot alkaloid or a biosynthetic intermediate thereof. An "ergot alkaloid" is a member of a large family of alkaloid compounds that are most often produced in the 2o sclerotia of fungi of the genus Claviceps. An "alkaloid" is a small molecule that contains nitrogen and has basic pH characteristics. The classes of ergot alkaloids include clavine alkaloids, lysergic acids, lysergic acid amides, and ergot peptide alkaloids. Preferred ergot alkaloids include, without limitation, ergotamine, ergosine, ergocristine, ergocryptine, ergocornine, ergotaminine, ergosinine, ergocristinine, ergocryptinine, ergocorninine, ergonovine, ergometrinine, and ergoclavine.
In certain embodiments of aspects of the invention, the secondary metabolite is an inhibitor of angiogenesis or a biosynthetic intermediate thereof. An "angiogenesis inhibitor" is a molecule that decreases or prevents the formation of new blood vessels. Angiogenesis inhibitors have proven effective in the treatment of 3o several human diseases including, without limitation, cancer, rheumatoid arthritis, and diabetic retinopathy. Preferred inhibitors of angiogenesis include, without limitation, fumagillin and ovalicin.
In certain embodiments of aspects of the invention, the secondary metabolite is a glucan synthase inhibitor or a biosynthetic intermediate thereof. A
"glucan synthase inhibitor" is a molecule that decreases or inhibits the production of 1,3-(3-D-glucan, a structural polymer of fungal cell walls. Glucan synthase inhibitors are a class of antifungal agents. Preferred glucan synthase inhibitors include, without limitation, echinocandin B, pneumocandin B, aculeacin A, and papulacandin.
In certain embodiments of aspects of the invention, the secondary metabolite is a member of the gliotoxin family of compounds or a biosynthetic intermediate thereof. The "gliotoxin family of compounds" are related molecules of the 1o epipolythiodioxopiperazine class. Gliotoxins display diverse biological activities, including, without limitation, antimicrobial, antifungal, antiviral, and immunomodulating activities. Preferred members of the "gliotoxin family of compounds" include, without limitation, gliotoxin and aspirochlorine.
In certain embodiments of aspects of the invention, the secondary metabolite ~5 is a fungal toxin or a biosynthetic intermediate thereof. A "fungal toxin"
is a compound that causes a pathological condition in a host, either plant or animal.
Fungal toxins could be mycotoxins present in food products, toxins produced by phytopathogens, toxins from poisonous mushrooms, or toxins produced by zoopathogens. Preferred fungal toxins include, without limitation, aflatoxins, patulin, 2o zearalenone, cytochalasin, griseofulvin, ergochrome, cercosporin, marticin, xanthocillin, coumarins, tricothecenes, fusidanes, sesterpenes, amatoxins, malformin A, phallotoxins, pentoxin, HC toxin, psilocybin, bufotenine, lysergic acid, sporodesmin, pulcheriminic acid, sordarins, fumonisins, ochratoxin A, and fusaric acid.
25 With some certain embodiments of aspects of the invention, the secondary metabolite is a modulator of cell surface receptor signaling or a biosynthetic intermediate thereof. The term "cell surface receptor" is as used before.
Modulators of cell surface receptor signaling might function by one of several mechanisms including, without limitation, acting as agonists or antagonists, sequestering a 3o molecule that interacts with a receptor such as a ligand, or stabilizing the interaction of a receptor and molecule with which it interacts. Preferred modulators of cell surface signaling include, without limitation, the insulin receptor agonist L-783,281 and the cholecystokinin receptor antagonist asperlicin.
In certain embodiments of aspects of the invention, the secondary metabolite is a plant growth regulator or a biosynthetic intermediate thereof. A "plant growth regulator" is a molecule that controls growth and development of a plant by affecting processes that include, without limitation, division, elongation, and differentiation of cells. Preferred plant growth regulators include, without limitation, cytokinin, auxin, gibberellin, abscisic acid, and ethylene.
In certain embodiments of aspects of the invention, the secondary metabolite 1 o is a pigment or a biosynthetic intermediate thereof. A "pigment" is a substance that imparts a characteristic color. Preferred pigments include, without limitation, melanins and carotenoids.
In certain embodiments of aspects of the invention, the secondary metabolite is an insecticide or a biosynthetic intermediate thereof. An "insecticide" is a molecule ~5 that is toxic to insects. Preferred insecticides include, without limitation, nodulisporic acid.
In certain embodiments of aspects of the invention, the secondary metabolite is an anti-neoplastic compound or a biosynthetic intermediate thereof. An "anti-neoplastic" compound is a molecule that prevents or reduces tumor formation.
2o Preferred anti-neoplastic compounds include, without limitation, taxol (paclitaxel) and related taxoids.
The phrase "increased activity" is used herein to refer to a characteristic that results in an augmentation of the inherent negative or positive function of the regulatory protein.
25 The invention provides variant regulator proteins of secondary metabolite production with increased activity and methods of producing the same. The invention further provides for the identification of specific amino acid residues that are important to the functioning of secondary metabolite regulator proteins. By way of non-limiting example, variant regulator proteins of the secondary metabolite regulator 30 lovE are presented herein.
As known to those skilled in the art, certain substitutions of one amino acid for another may be tolerated at one or more amino acid residues of a wild-type regulator protein absent a change in the structure, activity and/or function of the wild-type protein. Such substitutions are referred to in the art as "conservative"
substitutions, and amino acids may be categorized into groups that identify which amino acids may be substituted for another without altering the structure and/or function of the protein.
As used herein, the term "conservative substitution" refers to the exchange of one amino acid for another in the same conservative substitution grouping in a protein sequence. Conservative amino acid substitutions are known in the art and are generally based on the relative similarity of the amino acid side-chain substituents, for example, their hydrophobicity, hydrophilicity, charge, size, and the like. In a preferred embodiment, conservative substitutions typically include substitutions within the following groups: Group 1: glycine, alanine, and proline; Group 2:
valine, isoleucine, leucine, and methionine; Group 3: aspartic acid, glutamic acid, asparagine, glutamine; Group 4: serine, threonine, and cysteine; Group 5: lysine, arginine, and histidine; Group 6: phenylalanine, tyrosine, and tryptophan. Each group provides a ~ 5 listing of amino acids that may be substituted in a protein sequence for any one of the other amino acids in that particular group.
As stated supYa, there are several criteria used to establish groupings of amino acids for conservative substitution. For example, the importance of the hydropathic amino acid index in confernng interactive biological function on a protein is generally 2o understood in the art (Kyte and Doolittle, Mol. Biol. 157:105-132 (1982).
It is known that certain amino acids may be substituted for other amino acids having a similar hydropathic index or score and still retain a similar biological activity.
Amino acid hydrophilicity is also used as a criteria for the establishment of conservative amino acid groupings (see, e.g., U.S. Patent No. 4,554,101).
25 Information relating to the substitution of one amino acid for another is generally known in the art (see, e.g., Introduction to Protein Architecture :
The Structural Biolo~y of Proteins, Lesk, A.M., Oxford University Press; ISBN:
0198504748; Introduction to Protein Structure, Branden, C.-L, Tooze, J., Karolinska Institute, Stockholm, Sweden (January 15, 1999); and Protein Structure Prediction:
3o Methods and Protocols (Methods in Molecular Biolo~y), Webster, D.M.(Editor), August 2000, Humana Press, ISBN: 0896036375).
In one embodiment of the first aspect, the invention provides an improved regulator protein comprising an amino acid sequence coding for a variant of the lovE
protein having at least one specific mutation that gives rise to greater transcription-activating properties of the regulator protein and/or increased lovastatin synthesis.
By way of non-limiting example, certain amino acid residues and mutations thereof in the lovE regulatory protein of A. te~Yeus (SEQ ID N0:91) are identified by the invention described herein. Mutations at residues 31, 41, 52, 73, 101, 111, 133, 141, 153, 281, 367, and 389 of the wild-type lovE protein ofA. ter~eus have been identified as being critical for the improvement of IoVE regulator protein function.
1o Those mutations include: F31L, Q41K, Q41R, T52I, T52N, C73R, P101S, P101Q, V111I, S133L, E141V, E141K, C153Y, C153R, T281A, N367I, N367Y, P389S and P389L. Each mutation, therefore, represents a change of one conservative class of amino acids for another. For example, the mutation F31L represents a change from a Group 6 amino acid residue to a Group 2 amino acid residue at position 31 of the ~ 5 wild-type, lovE regulator protein.
Poor transformation efficiency and the lack of efficient selection systems frequently precludes the screening of large numbers of variant regulator proteins of secondary metabolites in the organism from which the regulator protein is isolated.
For example, there are currently certain technical obstacles to the successful screening 20 of large numbers of variant regulator proteins in the fungus A. te~~eus, an organism that produces the secondary metabolite lovastatin.
The invention described herein takes advantage of the genetically tractable and experimentally amenable organism Sacch.aromyces cerevisiae for screening large numbers of variant regulator proteins of secondary metabolite production.
25 Techniques common to the field of molecular biology are well developed in S.
cerevisiae, and large numbers of vectors are available to assist the genetic manipulation and cloning of variant regulator proteins involved in secondary metabolite production. Other genetically tractable organisms could also be used for this purpose.
3o As used herein, "mutating" is used to refer to the deliberate alteration of at least one nucleotide residue of a wild-type, cognate nucleic acid sequence encoding a regulator protein of secondary metabolite production. A deliberate alteration or change in at least one nucleotide residue of a polynucleotide may be accomplished by any method known in the art. The mutations) can be made ira vivo or ih vitro and can include random, partially random or not random, i.e., directed, mutagenesis techniques.
By way of non-limiting example, ih vivo mutagenesis can be done by placing this nucleic acid molecule in a cell with a high mutation frequency, i.e. a mutagenic strain. By way of non-limiting example, Muhlrad et al. (Yeast 8:79-82 (1992)) have developed a rapid method for localized mutagenesis of yeast genes. As a first step, the region of interest of a gene sequence is first amplified in vitro under error-prone polymerise chain reaction (PCR) conditions. Error-prone polymerise chain reaction (PCR) is a method of introducing amino acid changes into proteins. With this technique, mutations are deliberately introduced during the PCR reaction through the use of error-prone DNA polymerises under specific reaction conditions. With the Muhlrad et al. procedure, the PCR product is then co-transformed with a gapped ~ 5 plasmid containing homology to both ends of the PCR product, resulting in ih vivo recombination to repair the gap with the mutagenized DNA.
There are a variety of commercially available kits that may be used to produce mutant nucleic acid molecules by error-prone PCR (see, e.g., GeneMorphTM PCR
Mutagenesis Kit (Stratagene, La Jolla, California); and DiversifyTM PCR Random 2o Mutagenesis Kit (BD Biosciences Clontech, Palo Alto, CA). Thus, a plurality of variant, i.e., mutated, regulator proteins of secondary metabolite production may be produced using established mutagenesis techniques.
As used herein, the term "activity" refers to a characteristic of the regulator protein that negatively or positively affects the biological system to bring about a 25 modulation in secondary metabolite production. By way of non-limiting example, the activity is the transcription of downstream genes involved in the biosynthetic pathway of the secondary metabolite of choice. Thus, in the present example, the phrase "more activity" refers to the property of a variant regulator protein to bring about more transcription than that effected by the cognate, wild-type regulator protein.
so In certain embodiments of the third aspect, the selected variant regulator protein has more activity in a fungal cell than the cognate, wild-type protein. In certain embodiments of the third aspect, the protein regulator of secondary metabolite production is a transcription factor. In certain embodiments of the fourth aspect, the protein regulator of secondary metabolite production is a transmembrane transporter, a protein that mediates secretion, a kinase, a G-protein, a cell surface receptor, a GTPase activating protein, a guanine nucleotide exchange factor, a phosphatase, a protease, a phosphodiesterase, a bacterial protein toxin, an importin, an RNA-binding protein, an SCF complex component, an adherin, or a protein encoded within a biosynthetic cluster. . In certain other embodiments of the third aspect, the selected variant regulator protein has more activity in a heterologous cell than the cognate, wild-type protein. In certain embodiments thereof, the heterologous cell is an organism selected from the group consisting of S. cerevisiae, E. coli, A.
nidulans, Candida sp., and N. crassa. In yet certain other embodiments of the third aspect, the selected variant regulator protein has more activity in a homologous cell than the cognate, wild-type protein. In certain embodiments thereof, the homologous cell is an organism selected from the group consisting of Asper~gillus sp., Perzicilliunz sp., Acremoniurn chrysogenum, Yarrowia lipolytica, Nodulisporium sp., Fusariurra sp., Monascus sp., Claviceps sp., Triehoder~rna sp., Tolypocladium sp., Tr~icotheicium sp., Fusidiunz sp., Errzer~icellopsis sp., Cephalospor~ium sp., Cochliobolus sp., Helmirzthosporium sp., Agar~ieus bt~unescens, Ustilago nzaydis, Neur~ospora sp., Pestalotiopsis sp., and Phaffia rhodozyma.
2o In certain embodiments of the third aspect, the selected variant regulator protein has more activity in a heterologous cell and a homologous cell than the cognate, wild-type protein. In certain embodiments thereof, the heterologous cell is an organism selected from the group consisting of S. cer~evisiae, E. coli, A.
nidulans, Candida sp., and N. crassa and the homologous cell is an organism selected from the group consisting of Aspergillus sp., Penicilliuna sp., Ac>~enzonium chrysogenurn, Yanr~owia lipolytica, Nodulisporiurrz sp., Fusarium sp., Monascus sp., Claviceps sp., Trichoderrrza sp., Tolypocladiunz sp., Trieotheicium sp., Fusidium sp., Ernericellopsis sp., Cephalospor~ium sp., Cochliobolus sp., Helrnirzthospor~ium sp., Agaricus br~unescens, Ustilago maydis, Neurospora sp., Pestalotiopsis sp. and Phaffia 3o rhodozyma.
As used herein, the phrase "heterologous cell" refers to a system for gene expression, i. e., an organism for gene expression, that is one other than the organism from which the selected regulator protein of secondary metabolite production has been isolated. Preferred heterologous cells include, but are not limited to, S.
cer~evisiae, E. coli, A. nidulans, and Carzdida sp.,. and N. cr~assa.
Particularly preferred are fungal heterologous cells. In an embodiment of the third aspect, the method comprises: (a) selecting a nucleic acid comprising a polynucleotide encoding a protein regulator of secondary metabolite production; (b) mutating the nucleic acid to create a plurality of nucleic acid molecules encoding variant regulator proteins of secondary metabolite production; and (c) selecting a mutagenized nucleic acid encoding a variant regulator protein with increased activity in a homologous cell than the cognate, wild-type protein.
As used herein, the phrase "homologous cell" refers to a system for gene expression, i.e., an organism for gene expression, that is the organism from which the regulator protein of secondary metabolite production has been isolated.
Preferred homologous cells are fungal homologous cells, including, but not limited to, Aspergilluus sp., Perzicillium sp., Acremonium chrysogenum, Yarrowia lipolytica, Nodulisporiurn sp., Fusarium sp., Morzascus sp., Claviceps sp., Tr~ichoder~nza sp., Tolypocladium sp., Tricotheicium sp., Fusidiurn sp., Emer~icellopsis sp., Cephalosporium sp., Cochliobolus sp., Helminthosporium sp., AgaYicus br~urzescens, Ustilago rnaydis, Neurospora sp., Pestalotiopsis sp and Phaffia rhodozyma.
(See, 2o Fun ,al Physiolo~y, Chapter 9 (Secondary(Special) Metabolism), Griffin, D.
H., John Wiley ~z Sons, Inc.; ISBN: 0471166154).
In certain embodiments of the third aspect, the method further comprises selecting a variant regulator protein that also increases production of a secondary metabolite in a cell when compared to the cognate, wild-type protein. In certain embodiments thereof, the cell is a fungal cell. In certain embodiments thereof, the cell is a heterologous cell, preferably selected from the group consisting of S.
cer~evisiae, E. coli, A. rzidulans, Candida sp., and N. crassa.
In certain embodiments thereof, the cell is a homologous cell, preferably selected from the group consisting of Aspergillus sp., Penicillium sp., Acr~emonium chrysogenurn, Yarrowia lipolytica, NodulispoYium sp., Fusarium sp., Morzascus sp., Claviceps sp., TYichoderma sp., Tolypocladium sp., Tricotlzeicium sp., Fusidium sp., Enzericellopsis sp., Cephalosporium sp., Cochliobolus sp., Helminthosporium sp., Agaricus brurzescetzs, Ustilago maydis, Neurospora.sp., Pestalotiopsis sp., and Pha~a rhodozyma.
Certain embodiments of the aspects of the invention relate to regulator proteins that promote secondary metabolite production by increasing transcription of one or more genes involved with secondary metabolite production. These wild-type sequences may be selected for mutagenesis to create a plurality of variant regulator proteins. The activity of these transcription-activating variant regulator proteins may be determined by measuring the activity of a reporter gene having the appropriate promoter sequences. These tests are done in a homologous and/or a heterologous cell.
1 o Certain embodiments of aspects of the invention are directed to fungal regulator proteins with transcription-activating activity that is tested in fungal heterologous and homologous cells.
Reporter genes are useful for isolating transformants expressing improved variant regulator proteins. The reporter genes may be operably linked to a promoter sequence that is normally regulated by the wild-type regulator protein.
Reporter genes include, but are not limited to, genes encoding (3-galactosidase (lack [3-glucoronidase (GUSH, (3-glucosidase, amylase and invertase, amino acid biosynthetic genes, e.g., the yeast LEU~, HIS3, LYS2, TRPl genes (or homologous genes from other fungi, such as filamentous fungi, that encode proteins with the similar functional 2o activities), nucleic acid biosynthetic genes, e.g., the yeast URA3 and ADE2 genes (or homologous genes from other fungi, such as filamentous fungi, that encode proteins with the similar functional activities), the mammalian chloramphenicol transacetylase (CAT) gene, or any surface antigen gene for which specific antibodies are available.
A reporter gene can also be a neomycin phosphotransferase(neo) gene, which encodes neomycin, kanamycin resistance gene and 6418 (geneticin) resistance gene. A
reporter gene may encode a protein detectable by luminescence or fluorescence, such as green fluorescent protein (GFP). Reporter genes may additionally or alternatively encode any protein that provides a phenotypic marker, for example, a protein that is necessary for cell growth or viability, or a toxic protein that causes cell death.
3o Alternatively, the reporter gene may encode a protein detectable by a color assay leading to the presence or absence of color.
The choice of reporter gene will depend on the type of cell to be transformed.
Preferred reporter genes are those that are operable in fungal cells. It is preferable to have two reporter genes within the cell. One reporter gene, when expressed, provides a growth advantage to transformed cells that are expressing the variant regulator protein. This allows for the isolation of such transformants though selective pressures. The other reporter gene provides a colorimetric marker, such as the lacZ
gene and its encoded protein, (3-galactosidase. Alternatively, the second reporter provides a fluorescent or luminescent marker, such as green fluorescent protein (GFP) 1 o In a fourth aspect, the invention provides a method of increasing production of a secondary metabolite comprising: (a) selecting a nucleic acid comprising a polynucleotide encoding a protein regulator of secondary metabolite production; (b) mutating the nucleic acid to create a plurality of nucleic acid molecules encoding variant regulator proteins of secondary metabolite production; (c) selecting a variant 15 regulator protein with more activity than the cognate, wild-type protein;
and (d) expressing the selected variant regulator protein in a cell, thereby increasing production of the secondary metabolite in the cell.
In certain embodiments of the fourth aspect, the cell is a fungal cell. In certain embodiments of the fourth aspect, the protein regulator of secondary metabolite 2o production is a transcription factor. In certain embodiments of the fourth aspect, the protein regulator of secondary metabolite production is a transmembrane transporter, a protein that mediates secretion, a kinase, a G-protein, a cell surface receptor, a GTPase activating protein, a guanine nucleotide exchange factor, a phosphatase, a protease, a phosphodiesterase, a bacterial protein toxin, an importin, an RNA-binding 25 protein, an SCF complex component, an adherin, or a protein encoded within a biosynthetic cluster. In certain embodiments of the fourth aspect, the cell is a heterologous cell, preferably selected from the group consisting of S.
eerevisiae, E.
coli, A. nidulans, Candida sp., and N. crassa. In certain other embodiments of the fourth aspect, the cell is a homologous cell, preferably selected from the group 3o consisting of Aspergillus sp., Penicilliurn sp., Acremonium chzysogenum, Yarrowia lipolytica, Nodulisporiuzzz sp., Fusa~iurrz sp., Morzascus sp., Claviceps sp., Trichoderzna sp., Tolypocladium sp., Tricotheiciunz sp., Fusidium sp., Emericellopsis sp., Ceplaalosporium sp., Cochliobolus sp., HelrrainthospoYium sp., Agar-icus brunescens, Ustilago rnaydis, Neurospora sp., Pestalotiopsis sp., and Pha~a rhodozyma.
In certain other embodiments of the fourth aspect, the cell is a heterologous cell and the method further comprises expressing the variant regulator protein in a homologous cell, thereby increasing secondary metabolite production in the homologous cell. In certain embodiments thereof, the heterologous cell is an organism selected from the group consisting of S. cerevisiae, E. coli, A.
nidulans, Candida sp., , and N. crassa and the homologous cell is an organism selected from the 1o group consisting ofAsper~gillus sp., Penicillium sp., Acrenaonium chr~ysogerzurn, Yar~~owia lipolytica, Nodulisporiurn sp., Fusar~ium sp., Monascus sp., Claviceps sp., Trichoder~rna sp., Tolypocladium sp., TricotlZeicium sp., Fusidium sp., Enaericellopsis sp., Cephalosporium sp., Cochliobolus sp., Helrninthosporium sp., Agar~icus b~unescens, Ustilago maydis, Neurospora sp., Pestalotiopsis sp.and Pha~a 15 >"hodozyma.
In a fifth aspect, the invention provides an isolated variant regulator protein of secondary metabolite production having increased activity compared to a cognate, wild-type protein, made by the process comprising: (a) selecting a nucleic acid comprising a polynucleotide encoding a protein regulator of secondary metabolite 2o production; (b) mutating the nucleic acid to create a plurality of nucleic acid molecules encoding variant regulator proteins of secondary metabolite production; (c) selecting a variant regulator protein with more activity than the cognate, wild-type protein; and (d) recovering the selected variant regulator protein.
In certain embodiments of the fifth aspect, the variant regulator protein 25 selected has more activity in a fungal cell. In certain embodiments of the fifth aspect, the protein regulator of secondary metabolite production is a transcription factor. In certain embodiments of the fifth aspect, the protein regulator of secondary metabolite production is a transmembrane transporter, a protein that mediates secretion, a kinase, a G-protein, a cell surface receptor, a GTPase activating protein, a guanine nucleotide 3o exchange factor, a phosphatase, a protease, a phosphodiesterase, a bacterial protein toxin, an importin, an RNA-binding protein, an SCF complex component, an adherin, or a protein encoded within a biosynthetic cluster. In certain embodiments of the fifth aspect, the variant regulator protein selected has more activity in a heterologous cell, preferably selected from the group consisting of S. cer~evisiae, E.
coli, A.
nidulans, Candida sp., Neurospora sp., Pestalotiopsis sp., and N. crassa. In certain embodiments of the fifth aspect, the variant regulator protein selected has more activity in a homologous cell, preferably selected from the group consisting of Asper~gillus sp., Penicillium sp., Acr~emonium chrysogenuna, Yar~r~owia lipolytica, Nodulisporium sp., Fusariurn sp., Monascus sp., Claviceps sp., Trichoder-nZa sp., Tolypocladium sp., Tr~icotheicium sp., Fusidium sp., Emericellopsis sp., CeplaalospoYiuna sp., Coclaliobolus sp., Helminthospor~iurn sp., Agaricus br~unesceras, Ustilago maydis, Neur~ospora sp., Pestalotiopsis sp., and Plaaffia r~hodozyma.
In certain embodiments of the fifth aspect, the variant regulator protein selected has more activity in a homologous cell and a heterologous cell. In embodiments thereof, the heterologous cell is an organism selected from the group consisting of S. cerevisiae, E. coli, A. nidulans, Candida sp., Neurospora sp., ~ 5 Pestalotiopsis sp., and N. crassa and the homologous cell is an organism selected from the group consisting of Aspergillus sp., Penicillium sp., Acr~emoraium chrysogenum, Yarrowia lipolytica, Nodulisporiuna sp., FusaYium sp., Monascus sp., Claviceps sp., Ti~ichoderma sp., Tolypocladiurn sp., TYicotheicium sp., Fusidiurn sp., Emer~icellopsis sp., Cephalosporium sp., Cochliobolus sp., Helrrtinthosporium sp., 2o Agaricus br°uraescens, Ustilago rnaydis, Neur~ospora sp., Pestalotiopsis sp., and Plaaffia rlaodozyma.
In yet another embodiment of the fifth aspect, the variant regulator protein is a variant protein of the lovE protein having at least one of the following mutations: (1) a Group 6 amino acid residue mutated to a Group 2 amino acid residue at position 31, 25 for example, the mutation represented by F31L;(2) a Group 3 amino acid residue mutated to a Group 5 amino acid residue at position 41, for example, the mutation represented by Q41K or Q41R; (3) a Group 4 amino acid residue mutated to a Group 2 amino acid residue at position 52, for example, the mutation represented by T52I;
(4) a Group 4 amino acid residue mutated to a Group 3 amino acid residue at position 30 52, for example, the mutation represented by T52N; (5) a Group 4 amino acid residue mutated to a Group 5 amino acid residue at position 73, for example, the mutation represented by C73R; (6) a Group 1 amino acid residue mutated to a Group 4 amino acid residue at position 101, for example, the mutation represented by PlOlS;
(7) a Group 1 amino acid residue mutated to a Group 3 amino acid residue at position 101, for example, the mutation represented by PlOlQ; (8) a valine amino acid residue mutated to another Group 2 amino acid residue at position 111, for example, the mutation represented by V 11 l I; (9) a Group 4 amino acid residue mutated to a Group 2 amino acid residue at position 133, for example, the mutation represented by S133L; (10) a Group 3 amino acid residue mutated to a Group 2 amino acid residue at position 141, for example, the mutation represented by E141V; (11) a Group 3 amino acid residue mutated to a Group 5 amino acid residue at position 141, for example, the mutation represented by E141K; (12) a Group 4 amino acid residue mutated to Group 6 amino acid residue at position 153, for example, the mutation represented by C153Y; (13) a Group 4 amino acid residue mutated to a Group 5 amino acid residue at position 153, for example, the mutation represented by C153R; (14) a Group amino acid residue mutated to a Group 1 amino acid residue at position 281, for ~5 example, the mutation represented by T281A; (15) a Group 3 amino acid residue mutated to a Group 2 amino acid residue at position 367, for example, the mutation represented by N367I; (16) a Group 3 amino acid residue mutated to a Group 6 amino acid residue at position 367, for example, the mutation represented by N367Y;
(17) a Group 1 amino acid residue mutated to Group 4 amino acid residue at position 389, 2o for example, the mutation represented by P389S; and/or (18) a Group 1 amino acid residue mutated to a Group 2 amino acid residue at position 389, for example, the mutation represented by P389L.
In a sixth aspect, the invention provides a fungus having improved lovastatin production made by the process of transforming a fungal cell with a nucleic acid 25 molecule encoding a variant of the lovE protein of the first aspect of the invention. In an embodiment thereof, the nucleic acid molecule is selected from a nucleic acid molecule of the second aspect of the invention.
In a seventh aspect, the invention provides an improved process for making lovastatin comprising transforming a fungal cell with a nucleic acid molecule 3o encoding a variant of the lovE protein of the first aspect of the invention. In an embodiment thereof, the fungal cell is transformed with a nucleic acid molecule of the second aspect of the invention.
International Patent Application PCT/US99/29583 discloses lovastatin production genes. However, this reference does not provide a mature lovE cDNA
sequence. The invention herein remedies the shortcoming of this reference by providing a complete cDNA sequence for the lovE mRNA.
The following examples illustrate the preferred modes of making and practicing the present invention but are not meant to limit the scope of the invention since alternative methods may be utilized to obtain similar results.
EXAMPLES
Example 1: Preparation of Strains and Plasmids Strain MY2124 was derived from the Sigma 1278b strain background of S.
cerevisiae and its complete genotype is as follows: MATerlMATa::LEU2 ura3d0 ~ 5 /u~a3d0 leu~d0/leu2d0 trpl d0: : hisGlt~pl d0: : hisG lzis3d0: :
hisGlhis3d0: : laisG
u~~a3d0:: love HIS3p-neoluYa3d0. MY2124 can be constructed by mating S.
ee~evisiae strains MY2112 (MATa ura3d0 leu2d0 trpl d0:: hisG his3d0:: laisG
ura3d0::lovFp-HIS3p-raeo) with MY1555 (matct.~:LEU2 ura3d0 leu2d0 t~pld0::hisG
his3d0: : hisG) and isolating zygotes. The ura3d0: : lovFp-HIS3p-~ceo allele of 2o MY2112 was derived by cotransforming SfiI-linearized plasmid MB2254 with pRS424 (Sikorski and Hieter (1989) Genetics 122:19-27) into MY1413 (MATa leu2d0 trpl d0: : hisG lzis3d0:: hisG). Transformants were selected on SC-Trp media and subsequently screened for 5-fluoro-orotic acid resistance to identify those transformants containing the ura3d0.~:lovFp-HIS3p-raeo allele. Trp segregants 25 lacking plasmid pRS424 were isolated by growing the strain under non-selective conditions.
The following oligonucleotides were used in the construction of plasmids.
Table 2: Oligonucleotides Utilized For LovE Variant Cloning (5'GGCCATGGAGGCCGCTAGCTCGAGTCGACGGCCTAGGTGGCCAGCT3') (SEQ
ID N0:1) (5'GGCCACCTAGGCCGTCGACTCGAGCTAGCGGCCTCCATGGCCGTAC3') (SEQ
ID N0:2) MO666 (5'GGCGGCCGCTCTAGAACTAGTCTCGAGGGTACC3') (SEQ ID
N0:3) M0667 (5'GGTACCCTCGAGACTAGTTCTAGAGCGGCCGCC3') (SEQ ID
N0:4) M01794 (5' CACAGCGGCCGCTCAACCTTCCCATTGGGGC3') (SEQ ID
N0:5) M01793 (5'CACCACTAGTACGCGGGCTGATTCGAC3') (SEQ ID N0:6) M01785 (5'CACCACTAGTTATACATTATATAAAGTAATGTG3') (SEQ ID
N0:7) M01786 (5'CACAGGATCCGTCATCTTTGCCTTCGTTTATC3') (SEQ ID
NO:8) M0195 (5'CGCGGATCCTATTGAACAAGATGGATTGCAC3') (SEQ ID
N0:9) M0196 (5'CCGGAATTCAGAAGAACTCGTCAA.GAAG3') (SEQ ID
N0:10) M0841 (5' ACAAAAAAGCAGGCTCCACAATGGCTGCAGATCAAGGTAT3') (SEQ ID N0: 11) M0842 (5' ACAAGAAAGCTGGGTTCATGGAGGAATATTGTTGA3') (SEQ
ID N0:12) M02278 (5' GGGGATCCAATCGAGGTCCACGACCAGT3') (SEQ ID
N0:13) M0343 (5' GGGGACAAGTTTGTAC'AP~AA.AAGCAGGCT3' ) (SEQ ID
N0:14) M02273 (5' GGGGATCCGCCAATGGTCCCGTTCAAAC3') (SEQ ID
N0:15) M02274 (5' ACAAGAA.AGCTGGGTTCACAGAATGTTTAGCTCAA3') (SEQ
ID N0:16) M0344 (5' GGGGACCACTTTGTACAAGAA.AGCTGGGT3') (SEQ ID
N0:17) M02624 (5'GCGATGCCCCAAGCGCAAGCTACGCCAATCCAGGG3') (SEQ
ID N0:18) M02654 (5'CGTCGCGCCATTCGCCATTCAGGCTGCGCAACTGT3') (SEQ
ID N0:19) M02680 (5'GGACCTTTGCAGCATAAATTACTATACTTCT3') (SEQ ID
N0:20) M02686 (5'GGCGCGTCCATTCGCCATTCAGGCTGCGCAACTGT3') (SEQ
ID N0:21) M02 6 81 ( 5 ' TAAA.ACTCTTGTTTTCTTCTTTTCTCTAAA.T3 ' ) ( SEQ ID
N0:22) M02700 (5'CAGTGAGCGCGCGTAATACGACTCACTATAGGGCGA3') (SEQ
ID N0:23) M02701 (5' ATACTTCTATAGACACACAAACACAA.ATACACACAC3') (SEQ ID N0:24) M0107 (5'CGCGGATCCCGTCGTTTTACAAC3') (SEQ ID N0:25) M0197 (5'CCCAAGCTTATTATTTTTGACACCAGACCAA3') (SEQ ID
N0:26) M01293 (5'GGAAGATCTAGCATCGTGGCCAATTTCTTCTAGTTT3') (SEQ
ID N0:27) M01294 (5'ATAAGAATGCGGCCGCTCAACCTTCCCATTGGGGCGTTTGC3') (SEQ TD N0:28) M01787 (5'CACAGGATCCAGCATTATTAATTTAGTGTGTGTATTT3') ( SEQ ID
NO : 2 9 ) M01788 (5'CACCACTAGTCTCGAGCAGATCCGCCAG3') (SEQ ID
N0:30) M01793 (5'CACCACTAGTACGCGGGCTGATTCGAC3') (SEQ ID
N0:31) M01794 (5'CACAGCGGCCGCTCAACCTTCCCATTGGGGC3') (SEQ ID
N0:32) M0511 (5'GGCCATCGATACAAGTTTGTACA1~A.AAAGCTGAAC3') (SEQ
ID N0:33) M0540 (5'GGCGCCCTATTACACCACTTTGTACAAGAAAGC3') (SEQ ID
N0:34) M01985 (5'CACACGTCTCCGGCCTCAACCTTCCCATTGGGGCG3') (SEQ
ID N0:35) M01986 (5'CACACAGATCTCGTGGCCAATTTCTTCTAGTTTGA3') (SEQ
ID N0:36) M01992 (5'CACACGGATCCACAATGTTACGTCCTGTAGAAACCCC3') (SEQ ID 37) N0:
MO1993 (5'CACAGCGGCCGCTTCATTGTTTGCCTCCCTGCTG3') (SEQ
ID N0:38) M0316 (5'GCGGCCGCGGCGCCCGGCCCATGTCAACAAGAAT3') (SEQ ID
N0:39) M0318 (5'CCGCGGCCGAGTGGAGATGTGGAGT3') (SEQ ID N0:40) Plasmid MB2254 contains the lovFp-HIS3p-neo reporter gene flanked by URA3 sequence. First primers M0664 (SEQ ID NO:l) and M0665 (SEQ ID N0:2) were annealed and inserted into the KptaI-SacI sites of plasmid pBluescript II
KS
(Stratagene,). The resulting vector, MB1038, contains a SaII site in the polylinker.
Next, the SpeI XhoI fragment from pJL164 (Brachmann et al. Yeast 14:115-132 (1998)) containing a deletion of the URA3 gene with additional flanking sequences was inserted into the NheI-SaII sites of MB1038 to create MB1053. Primers (SEQ ID N0:3) and M0667 (SEQ ID NO:4) that contain multiple restriction sites (NotI, XbaI, SpeI, lPIzoI and Kpnn were then annealed together and ligated into the SmaI site of MB 1053 to create MB 1054. Next, the following four fragments were combined in MB1054 to obtain plasmid MB2254. The ZovF promoter from A. terreus genomic DNA was PCR amplified with M01794 (SEQ ID NO:S) and M01793 (SEQ
~ 5 ID NO:6) and inserted into MB 1054 on a NotI-SpeI fragment. The HIS3 basal promoter from pRS403 (Sikorski and Hieter, Genetics 122:19-27 (1989)) was PCR
amplified with primers M01785 (SEQ ID N0:7) and M01786 (SEQ ID N0:8) and inserted into MB1054 on a SpeI-BamHI fragment. Finally, the neo gene (PCR
amplified with M0195 (BamHT) (SEQ ID NO:) and MO196 (EcoR1) (SEQ ID
NO:10) from plasmid pYXl 1 (Xiao and Weaver, Nucl. Acids Res. 25:2985-2991 (1997)) and CYCl terminator sequences (XhoI-KpnI fragment from pRS426-GAL-S
(Mumberg, et al., Nucl. Acids. Res. 22:5767-5768 (1994)) were first combined in pRS416 (Sikorski and Hieter, Genetics 122:19-27 (1989)) and then cut out with BarnHI-KpnI and inserted into MB 1054 to create MB2254.
The lovFp-HIS3p-neo reporter in MY2124 can confer resistance to the drug geneticin (G418). It was empirically determined that MY2124 (untransformed or transformed with parental plasmids MB2478 (CYCI-lovElCEl~ or MB2848 (CYCl-lovElAt274/CEN) was unable to grow on YPD media supplemented with 100 ~,g /ml 6418. Plasmid MB2478 contains the CYCI promoter operationally linked to the entire A. ter~reus lovE open reading frame. The CYGl promoter is a relatively weak promoter and thus the lovE ORF in MB2478 was expressed at low levels. MB2478 was the parental vector plasmid for creating full length lovE variants.
Plasmid ~5 MB2848 contains the CYCl promoter operationally linked to a chimeric open reading frame consisting of the A. teYr~eus lovE DNA binding domain fused to the carboxy-terminal portion of the At274 gene (U.S. Serial No. 60/257,431, filed December 22, 2000).
MB2848 was used to create lovE variants in which the DNA binding domain 2o was not mutated. Both MB2478 and MB2848 contain yeast CEN and autonomously replicating sequences and both are maintained at 1-2 copies per cell. In contrast to strains transformed with MB2478 or MB2848, strains transformed with plasmid MB1644 (TEFL-lovEl2 micron) were able to grow on 6418-supplemented YPD
media. The lovE gene of MB1644 is under control of the constitutively strong S.
25 cer~evisiae TEFL promoter. MB 1644 contains a 2-micron origin for high-copy replication in yeast. An objective of these studies was to identify lovE
variants which when expressed at low levels could confer 6418 resistance similar to the highly expressed wild-type ZovE molecule of MB 1644. S. cer~evisiae expression vectors used in these studies were constructed as follows.
3o MB968 is a low copy S. cer°evisiae URA3 based expression vector.
was created by inserting the EcoRV fragment (containing the destination cassette) from gateway pEZC7201 (InvitrogenTM, Carlsbad, CA) into XhoIlSalI (filled in with Klenow) linearized pRS416 CYCl (Mumberg, et al., Gene 156:119-122 (1995)).
MB1644 and MB2478 are URA3-based S. cerevisiae expression plasmids that contain the wild-type lovE gene. They are both derivatives of MBl 199. MB1199 was created by using primers M0841 (SEQ ID N0:11) and M0842 (SEQ ID N0:12) to amplify the ZovE ORF from A. te~reus cDNA. Gateway (InvitrogenTM, Carlsbad, CA) Cloning Technology (LTS Patent 5,888,732) was used to clone the lovE PCR
fragment into the gateway entry vector pDONR206 (InvitrogenTM, Carlsbad, CA) to create MB1199. Similarly, Gateway Cloning Technology was used to transfer the lovE ORF from MB1199 into MB968 to create MB2478 and into MB969 (LJ.S. Serial No. 60/198,335, filed April 18, 2000) to create MB1644.
MB2848 is a derivative of MB968 that contains a lovE AT274 chimera. The lovE portion of MB2848 was derived by using oligos M0841 (SEQ ID N0:11) and M02278 (SEQ ID N0:13) to PCR amplify the lovE DNA binding domain from A.
terYeus cDNA. A second round of PCR was performed with primers M0343 (SEQ
ID NO:14) and M02278 to add appropriate Gateway Cloning Technology compatible sequences. The At274 portion of MB2848 can be derived by using primers MO2273 (SEQ ID NO:15) and M02274 (SEQ ID N0:16) to PCR amplify the carboxy-terminal domain of At274 from A. ter~eus cDNA. A second round of PCR was performed with 2o primers M0344 (SEQ DJ N0:17) and M02273 to add appropriate Gateway Cloning Technology compatible sequences. The lovE and At274 PCR products were cut with BamHI and purified over a QIAquick PCR purification kit (Qiagen, Valencia, CA) according to manufacturer's instructions. Finally, the products were mixed 3-4 hours in a standard ligation reaction and used in Gateway entry and destination reactions to create MB2848.
Gateway cloning technology was used to clone the lovE variants of interest into plasmid MB 1419 which is a filamentous fungal expression vector. The MB
fungal selection marker is the A. nidulans GPD promoter controlling the ble gene from S. hiradustanus. The transgene is controlled by the A. nidularzs PGK
promoter.
3o A. terreus strain MF117 is a derivative of A. tenreus strain ATCC 20542.
Example 2: PCR Mutagenesis of the lovE DNA Binding Domain The zinc finger DNA binding domain of lovE is encoded by nucleotides 100-201 (SEQ ID N0:92). Oligos MO2624 (SEQ ID N0:18) and MO2654 (SEQ ID N0:19) were used to PCR amplify a lovE containing fragment from plasmid MB2478. The 1.7 kb product contains nucleotides 212-1410 of ZovE and 500 by of flanking vector sequence. Two rounds of standard PCR (1.5 mM MgClz) were performed with Amplitaq DNA polymerase (Applied Biosystems, Foster City, Ca) according to the manufacturer's instructions.
Plasmid MB2848 was cut with KphI-BamHI to release a 1.1 kb fragment containing the At274 portion of the lovE-At274 chimeric open reading frame.
The remaining 5.5 kb vector sequence retains the lovE DNA binding domain.
Example 3: PCR Mutagenesis of the lovE Open Reading Frame lovE open reading frame insert was prepared according to the following procedure. Oligo pairs M02680 (SEQ ID N0:20) /MO2686 (SEQ ID N0:21), 15 MO2681 (SEQ ID N0:22) /M02686, and M02700 (SEQ ID N0:23) /M02701 (SEQ
ID N0:24) were used to PCR amplify the entire lovE open reading frame from plasmid MB2478. The PCR products differ in the amount of 5' and 3' vector sequence flanking the lovE open reading frame.
PCR was performed using a GeneMorph PCR mutagenesis kit (Stratagene, La 2o Jolla, Ca) according to manufacturer's instructions to achieve medium and high range mutation frequencies.
Plasmid MB2478 was cut with Asp718/XbaI to release a 1.7 kb fragment. The remaining 5.0 kb vector sequence completely lacks lovE ORF sequence.
2s Example 4: Transformation and Selection for G418R Isolates All PCR products were purified using a QIAquick PCR purification kit (Qiagen) according to manufacturer's instructions. All vectors were gel purified using a QIAquick gel extraction kit (Qiagen) according to manufacturer's instructions.
The mutagenesis strategy of Muhkad et al. (Yeast 8:79-82 (1992))was used 3o which involves cotransforming a mutated PCR product and gapped plasmids into S.
cerevisiae, and then screening for ih vivo recombinants having the desired phenotype).
Transformation of Saccharomyces ce~evisiae was accomplished by the lithium acetate/single-stranded carrier DNA/polyethylene glycol (LiAclss-DNA/PEG) protocol (Woods R.A. and Gietz R.D. Methods Mol. Biol. 177:85-97 (2001)) with a 1:5 molar ratio of vector:insert DNA to generate >55,000 ira vivo recombinant transformants on SC-Ura plates. Transformants were transferred by replica printing to YPD plates containing 100 ~,g/ml 6418 and allowed to grow for 2-4 days at 30°C
(Figure 1).
Drug resistant clones were confirmed in secondary assays including growth on 6418 concentrations up to 2000 p,g/ml. The plasmid-dependence of the phenotype was determined by observing the re-appearance of drug sensitivity correlating with loss of the library plasmid. lovE variant plasmids were recovered from promising candidates (Hoffinan and Winston (1986) Gene 57:267). More than 70 lovE
variants were identified and definitively characterized by DNA sequence and/or restriction digestion analysis.
15 Table 3 summarizes the 6418 resistance phenotype and sequence analysis of 26 of these variants.
c Q
'~
~
a.
n u o .J~30 ~ ado ~ o ,~ m n _ Z C~
'7 .
> N
~ tt C
' tpl = ~ CGa ~ ~
~
Q~
81 ~ ~ ~I . ~,1" J ~C3G
r ~y~ th r r p7 iD't!
~n'~ ' ~ I--_ ~ 1 U
~ ~ ~ CL LF~. ~ .
~ ".
~a r1 iD ~ G7f3 lI?~ C~ C4 d'g t-N ~ ~ r CV
~ ~
.Q C ~1 h? T-'rs3' I ~ O 0.~"l~ ~ ~ ~ ~rt V
.r ~ Cy ~ C.~I--~~,$'~ (r ~ G y, ' ~ r C~'O ~ i ~'O ~ ''-' -..tY?
~7 J .
a ~, ~ . _tK O_ , ~ ~ ' t ~ ~ ~ k 3t~ W C3G ~ t~
r1V
RIO G J~ C~ ~ ~d~_'~ dxC ~ ~C m N ~ o N T
..
_ . u C r r ~ ~ ~~ ~ ~ ~~ LV~fy7 ''o I~ -f' ~ ~' G~U3 LEI L1.7E-IJ-3LL! -w r ~es ~ .~I ~ ,a,~ T urn~
c ~ ~~Cd ~C t~CC~ S~ ~-b ~ " ~ r r- '~' . C yM ~ fi? 07K'7Q7r r ~~ ~ 'c1'f900 ~ ii) r ~'y W r1 i~3~ h.Y~~ t~t~ 'b' CVC~7C7*?' J U..~ j"'~
r u u..-..LL q 0 .cX ~ ~ CCCaC,~C7~{~C?C~ O r -'~
r-r r tQSs? Ct~ ,-r ,~ tp ~ Lit)11'3~l 4~0C7O C~Od47 OD ~?CY ~ 0~
Ut 'a ~ C~ C~JC~V~ NN N ~1~INN ~~ ~'1~ ~
C ~"~I ~'~.d Y ~~ T~'~Y~~G' ~t3'~'~ 0"~ ~ ~ ~ ~ ~ O m ' ~ rt - G ~- Sd~ NCdCVCV~ 1 NCVCVG?t~Ct J
G w"CV(s7Ct5~DC~~ N cdc>'3~DfDh-f~-t~~.i Sfl'i!7fph.h~ h- ~P N
~- tL1 ~4 C tt~Dx N ~1tVn1 CV ACVv ~ ~# ~ N tVCVN NN N Ct1 n 1CSI v l .
tV CV CV
d - t~ i~
~ ~ _ .
~
~
' ~.3 _0.t _ dt ~ ~O Y r ~1 N d'40 t~.~ O? t"
O T "3 C?M C7 b' S. 41~ T t~l $ '~ 7~~f3J rT C~7 D7 4 ~ t C d lIth ~ r N C ~7 Table 4 summarizes amino acid substitutions that were isolated multiple times, suggesting that they are particularly important for improving lovE variant activity on lovFp-HIS3p-neo expression.
Table 4: ZovE Mutations Isolated Multiple Times Amino Acid Number of Times lovE varia~at Change Isolated in ZovE 1-41 F31L 4 20, 21, 31, 34 Q41K 2* 10, 16 Q41R 3* 33, 38, 40 T52I/T52N 1 each 34, 39 C73R 6* 3, 4, 5, 7, 8, P101S/PlOlQ 1 each 31, 34 V111I 2 34, 39 S 133L 2 2, 41 E141V, E141K 1 each 8, 40 C153Y/C153R 1 each 6, 31 T281A 2 6, 39 N367I/N367Y 2/1 21, 40, 37 P389S/P389L 1 each 32, 38 * allele was isolated in additional ZovE variants that were not fully sequenced Example 5: Increased ZovF lacZ Expression in S. cerevisiae In order to quantify the increase in lovF expression, (3-galactosidase activity was measured in lovE variant transformed S. cerevisiae strains that also harbored lovFp-lacZ reporter derivative plasmids. love lacZ reporter derivative plasmids were constructed as follows.
Plasmid MB 1918 contains the ZovFp-lacZ reporter gene. It can be derived from pRS424 (Sikorski and Hieter (1989) Genetics 122:19-27). First, primers M0107 (SEQ ID N0:25) and M0197 (SEQ ID N0:26) are used to PCR amplify the lacZ gene from Yep355 (Myers, et al., Gene 45:299-310 (1986)). This lacZ-containing fragment was inserted into the BamHI-Hindlll sites of pRS416 (Sikorski and Hieter, Genetics 122:19-27 (1989)). This same lacZ fragment can be cut out of the resulting vector with I~pnI-NotI and inserted into the same sites of pRS424 to create pRS424-lacZ. Primers M01293 (SEQ ID N0:27) and M01294 (SEQ ID
N0:28) are used to PCR amplify a 2.09 kb fragment of the lovF promoter from A.
te~reus genomic DNA. The lovF promoter fragment was then cut with NotI-BgIII
and inserted into NotI-BanaHI linearized pRS424-lacZ.
Plasmid MB2114 contains the lovFp-CYClp-lacZ reporter gene. It can be 1 o derived from pRS424-lacZ (see MB 1918 plasmid construction). Primers MO
(SEQ ID N0:29) and M01788 (SEQ ID NO:30) are used to amplify the 264 by basal CYCl element from pRS415 CYC1 (Mumberg, et al., Gene 156:119-122 (1995)).
This 264 by fragment was inserted upstream of the pRS424-lacZ derivative which has been digested with SpeI-BamHI. Finally, the lovFpromoter from MB1918 was PCR
amplified with M01793 (SEQ ID NO:31) and M01794 (SEQ ID N0:32) and inserted into the NotI-SpeI sites to create MB2114.
Yeast strains utilized in this study include strains MY2145 and MY2159, which are both derived from the S. ce~evisiae sigma 1278b strain background;
the genotypes are both strains are as follows: MATa ura3d0 Zeu2d0 his3d: : hisG
2o trpl d0::7zisG. MY2145 and MY2159 contain the lovFp-lacZ reporter plasmids MB2114 and MB1918, respectively.
MY2124 transformed with individual lovE variant plasmids was mated to S
ceYevisiae strains MY2154 and MY2159. Diploids were selected on SC-UraTrp media. Multiple diploids from each individual mating were assayed for lovFp-lacZ
expression using 96 well format (3-galactosidase assays. For (3-galactosidase assays, cells were transferred from transformation plates to 96-well microtiter plates containing 200 ~,1 Z buffer. 12 strains were transferred simultaneously using a 12-channel multi-pipettor to scoop cells from transformation plates. Duplicate samples were prepared for all assays. OD6oo readings were taken on samples in Z
buffer.
3o These values were used to normalize for equal cell number in all assays.
After determining OD6oo, 150 ~1 of each sample in Z buffer was transferred onto a Millipore Multiscreen Assay System (Nitrocellulose Immobilon NC), filtered, and then washed by filtering 200 ~,1 Z buffer. 100 ~,1 Z buffer with (3ME and detergents was then added to each well, as was 20 X14 mg/ml ONPG. Reactions were incubated at 30°C, stopped with SOp,I 1 M NaaC03, filtered into a polystyrene 96-well assay plate, and OD4ao was determined for each assay well. j3-galactosidase units were determined using the Miller formula (0.D. 420 X 1000)/ (OD600*minutes*volume in mL). Z
buffer is made by dissolving the following in 1 L of water (16.1 g Na2HPO4-7H2O, S.Sg NaH~P04-H20, 0.75 g KCl and 0.246 g MgSO4-7H20). Z buffer with detergents and (3ME is made as follows: 9.8 ml Z buffer, 100 p.1 20 mg/ml CTAB, 100 ~,l mg/ml sodium deoxycholate, and 69 ~,1 [3ME Control plasmids utilized in these studies included MB968, MB2478 and MB1644.
Results of these studies are presented in Figures 2-5, demonstrating increased transcription-activating properties of the l~vE variants disclosed herein.
Example 6: Secondary Metabolite Production Transformation of filamentous fungi was performed according to the following procedure. Protoplasts were generated by inoculating rich media with spores. Spores were allowed to germinate for about 20 hrs or until germ tubes were between 5 and 10 spore lengths. The germlings were centrifuged and washed twice 2o with sterile distilled water and once with 1 M magnesium sulfate. Germlings were then resuspended in 1M magnesium sulfate containing approximately 2 mg/ml of Novozyme. Tubes were then incubated at 30°C shaking at 80 RPM for about 2 hrs or until most of the hyphae were digested and protoplasts were abundant.
Protoplasts were filtered through one layer of Miracloth. At least one volume of STC was added and protoplasts were centrifuged. Protoplasts were washed twice with STC.
Protoplasts then were resuspended in lml STC and counted in a hemacytometer. A
final concentration of approximately 5 x 107 protoplasts/ml were frozen in a 9:1:0.1 solution of STC, SPTC and DMSO in a Nalgene Cryo cooler at -80°C (cools -1 °C/min).
3o Solutions for transformation were as follows: STC (0.8 M Sorbitol, 25 mM
Tris-HCl pH 7.5, 25 mM CaCl2) and SPTC (0.8 M Sorbitol, 40% PEG 4000, 25 mM
Tris-HCl pH 8, 50 mM CaCl2). Transformation was accomplished according to the following protocol. 1-5 ~,g of DNA comprising a lovE variant according to the invention in a fungal expression vector was placed in a 50 ml Falcon tube. 100 ~,l of previously frozen protoplasts were added to the DNA, gently mixed, and then incubated on ice for 30 min. 15 ~,1 of SPTC was added, followed by mixing by tapping and incubation at RT for 15 min. 500 ~.1 SPTC was added and mixed well by tapping and rolling, then incubated at RT for 15 min. 25 mls of regeneration minimal medium was added, mixed well and poured on plates containing 25 mls of regeneration minimal medium with 2X the concentration of selection drug.
Transformation plates were incubated at 26°C for 5-6 days or until colonies started to appear. Regeneration minimal medium contains trace elements, salts, mM sodium nitrate, 0.8 M Sucrose, and 1% agarose at pH 6.5. The selection drug that was used successfully with A. terreus is phleomycin, a broad-spectrum glycopeptide antibiotic. Transformants were picked onto new plates with a toothpick ~ 5 (if the fungus was sporulating) or with sterile forceps (if the fungus did not sporulate).
Purification plates contained minimal medium (same as regeneration minimal medium but containing 2 % instead of 0.8 M sucrose) and 1X drug concentration.
Picked transformants were incubated at 26°C for 5-6 days.
Transformants were grown in production media for secondary metabolite 2o production. Briefly, for A. te~~eus and lovastatin production, spores were used as the inoculum. Spores were obtained from the purification plate by using a wooden inoculation stick. The medium was RPM containing corn steep liquor, sodium nitrate, potassium phosphate, magnesium sulfate, sodium chloride, P2000 (Dow chemical), trace elements and lactose or glucose as carbon source. The medium was pH 6.5.
25 Flasks were incubated at 26°C with shaking at 225 RPM. For static 96-well cultures, the same medium was used and the spores were obtained from the purification plate with a wooden toothpick. 96-well plates were incubated, without shaking at 26°C.
Sampling was done after after 5 days for lovastatin.For shake flask experiments 1-1.5 mls of supernatant was placed into 96-well plates, which were 3o centrifuged and supernatants transferred to new 96-well plates. Samples were frozen at -80°C for storage or for later assays.
Cultures that were grown standing in a 96-well plate were centrifuged and the supernatant was transferred to a new 96 well plate. Samples were frozen at -80°C.
Example 7: Measurement of Secondary Metabolite Production The concentration of the secondary metabolite lovastatin was determined by enzyme inhibition assay (Figure 6). Briefly, 10 p,L of sample was removed and diluted 1:100 in HBO. 10 p.1 of this diluted broth was assayed in a reaction (200 pL
total) containing 1 mM HMGCoA, 1 mM NADPH, 0.005 mM DTT and 5 p,1 (His)6HMGR. The disappearance of absorbance at 340 nm was observed over time.
This represents the disappearance of NADPH, and lovastatin inhibits this reaction.
The initial velocities were calculated for the reactions containing samples, adjusted for dilution, and compared to reactions containing lovastatin standards to determine levels of metabolite produced. (His)6HMGR was expressed in Saccha~omyces ce~-evisiae and purified with a nickel column.
~ 5 The results from ten individual transformants for each allele are shown in standard box plot format in Figure 6. Lovastatin concentration from the corresponding wild-type lovE control is shown in matching fill pattern. For example, lovE alleles 2, 7, 8 and 9 were all transformed and assayed at the same time as the non-hatched wild-type control. The horizontal line in each individual box represents 2o the median.
Lovastatin concentration was also determined by high pressure liquid chromatography (HPLC). Briefly, 100 ~.L of broth sample was removed and diluted 1:10 into 70% Ha0-30% acetonitrile (900 p,1). This mixture was spun down to pellet debris at 13000 RPM for 5 minutes. 900 ~,1 of this diluted broth was transferred to a 25 vial and the sample was analyzed by HPLC. 10 ~,1 were injected into a Waters HPLC
system (996 photo-diode array detector, 600 E pump controller and 717 autosampler) equipped with a YMC-Pack ODS column (Aq-302-3, 150 x 4.6 mm m, S-3 p,M pore size) and eluted with isocratic 40% aqueous acetic acid (0.7%)-60%
acetonitrile for 8 minutes. Lovastatin was detected at 238 nm to have a retention time of 6.5 minutes 3o and was quantified using a calibration curve created from pure lovastatin samples.
The results from ten individual transformants for each lovE variant are shown in standard box plot format in Figure 7A and 7B. Thirty individual wild-type lovE
transformants and ten individual MB2143 negative control transformants were tested.
Identical controls are plotted in Figures 7A and 7B.
PCR analysis ofA. terreus transformants demonstrates that greater than fifty percent of the transformants contain the transgene. Variability in levels of transgene expression can presumably be influenced by integration site and copy number.
ZovE
variants containing identical amino acid substitutions are labeled.
The amino acid and nucleic acid sequences of ZovE variant sequences are presented in Table 5 and Table 6, respectively.
Example 8: Isolation of additional forms of love An A. terYeus cDNA was screened to identify sequences that increase expression of a lovF reporter gene in A. terreus. This analysis led to the identification ~ 5 of two cDNAs that could encode lovE variants having additional amino aicds at their amino terminus compared to the love of SEQ ID N0:91. One variant, at242, has the amino sequence mtqdtaqyrga (SEQ ID N0:95) preceding the sequence of SEQ ID
N0:91. The entire amino acid sequence of at242 (SEQ ID N0:93) is shown in Table 7. The other variant, at258, has the amino sequence mlmtqdtaqyrga (SEQ ID
N0:96) 2o preceding the sequence of SEQ ID N0:91. The entire amino acid sequence of at258 (SEQ ID N0:94) is shown in Table 7. Thus, both variants appeax to encode forms of lovE that is longer than the lovE of SEQ ID N0:91. The various amino acid changes present in the various love variants of Table 5 can be introduced into the at242 or at 258 to generate additional forms of lovE.
Table 5: Amino Acid Sequences of Variants of the lovE Gene IovE-1 maadqgiftnsvtlspvegsrtggtlprrafrrscdrchaqkikctgnkevtgrapcqr cqqaglrcvysercpkrklrqsraadlvsadpdpclhmssppvpsqslpldvseshssn tsrqfldppdsydwswtsigtdeaidtdcwglsqcdggfscqleptlpdlpspfestve kaplppvssdiaraasaqrelfddlsavsqeleeillavtvewpkqeiwthpigmffna srrlltvlrqqaqadcrqgtldeclrtknlftavhcyilnvriltaiselllsqirrtq nshmsplegsrsqspsrddtssssghssvdtipffsenlpigelfpyVdplthalfsac ttlhvgvqllreneitlgvhsaqgiaasismsgepgediartgatnsarceeqpttpaa rvlfmflsdegafqeaksagsrgrtiaalrrcyedifslarkhkhgmlrdlnnipp (SEQ ID N0:41) lovE-2 maadqgiftnsvtlspvegsrtggtlprrafrrscdrchaqkikctgnkevtgrapcqr cqqaglrcvysercpkrklrqsraadlvsadpdpclhmssppvpsqslpldvseshssn tswqfldppdsydwlwtsigtdeaidtdcwglsqcdggfscqleptlpdlpspfestve kaplppvssdiaraasaqrelfddlsavsqeleeillavtvewpkqeiwthpigmffna srrlltvlrqqaqadchqgtldeclrtknlftavhcyilnvriltaiselllsqirrtq nshmsplegsrsqspsrddtssssghgsvdtipffsenlpigelfsyvdplthalfsac ttlhvgvqllreneitlgvhsaqgiaasismsgepgediartgatnsarceeqpttpaa rvlfmflsdegafqeaksagsrgrtiaalrrcyedifslarkhkhgmlrdlnnipp (SEQ ID N0:42) IovE-3 maadqgiftnsvtlspvegsrtggtlprrafrrscdrchaqkikctgnkevtgrapcqr cqqaglrcvyserrpkrklrqsrvadlvsadpdpclhmssppvpsqslpldvseshssn tsrqfldppdsydwswisigtdeaidtdcwglsqcdggfscqleptlpdlpspfestve kaplppvssdiaraasaqrelfddlsavsqeleeillavtvewpkqeiwthpigmffna srrlltvlrqqaqadchqgtldeclrtknlftavhcyilnvriltaiselllsqirrtq nshmsplegsrsqspsrddtssssghssvdtipffsenlpigelfsyvdplthalfsac ttlhvgvqllreneitlgvhsaqgiaasismsgepgediartgatnsarceeqpttpaa rvlfmflsdegafqeaksagsrgrtiaalrrcyedifslarkhkhgmlrdlnnipp (SEQ ID N0:43) lovE-4 maadqgiftnsvtlspvegsrtggtlprrafrrscdrchaqkikctgnkevtgrapcqr cqqaglrcvyserrpkrklrqsraadlvsadpdpclhmssppvpsqslpldvseshssn tsrqfldppdsydwswtsigtdeaidtdcwglsqcdggfscqleptlpdlpspfestvg kaplppvssdiaraasaqrelfddlsavsqeleeillavtvewpkqeiwthpigmffna srrlltvlrqqaqadchqgtldeclrtknlftavhcyilnvriltaiselllsqirrtq nshmsplegsrsqspsrddtssssghssvdtipffsenlpigelfsyvdplthalfsac ttlhvgvqllreneitlgvhsaqgiaasismsgepgediartgatnsarceeqpttpaa rvlfmflsdegafqeaksagsrgrtiaalrrcyedifslarkhkhgmlrdlnnipp (SEQ ID N0:44) IovE-5 maadqgiftnsvtlspvegsrtggtlprrafrrscdrchaqkikctgnkevtgrapcqr cqqaglrcvyserrpkrklrqsraadlvsadpdpclhmssppvpsqslpldvseshssn tsrqfldppdsydwswtsigtdeaidtdcwglsqcdggfscqleptlpdlpspfestve kaplppvssdiaraasaqrelfddlsavsqeleeillavtvewpkqeiwthpigmffna srrlltvlrqqaqadchqgtldeclrtknlftavhcyilnvriltaiselllsqirrtq nshmsplegsrsqspsrddtssssghssvdtipffsenlpigelfsyvdplthalfsac ttlhvgvqllreneitlgvhsaqgiaasismsgepgediartgatnsarceeqpttpaa rvlfmflsdegafqeaksagsrgrtiaalrrcyedifslarkhkhgmlrdlnnipp (SEQ ID N0:45) lovE-6 maadqgiftnsvtlspvegsrtggtlprrafrrscdrchaqkikctgnkevtgrapcqr cqqaglrcvysercpkrklrqsraadlvsadpdpclhmssppvpsqslpldvseshssn tsrqfldppdsydwswtsigtdeaidtdcwglsqydggfscqleptlpdlpspfestve kaplppvssdiaraasaqrklfddlsavsqeleeillavtvewpkqeiwthpigmffna srrlltvlrqqaqadchqgtldeclrtknlftavhcyilnvrilaaiselllsqirrtq nshmsplegsrsqspsrddtssssghssvdtipffsenlpigelfsyvdplthalfsac ttlhvgvqllreneitlgvhsaqgiaasismsgepgediartgatnsarceeqpttpaa rvlfmflsdegafqeaksagsrgrtiaalrrcyedifslarkhkhgmlrdlnnipp (SEQ ID NO:46) lovE-7 maadqgiftnsvtlspvegsrtggtlprrafrrscdrchaqkikctgnkevtgrapcqr cqqaglrcvyserrpkrklrqsraadlvsadpdpclhmssppvpsqslpldvseshssn tsrqfldppdsydwswtsigtdeaidtdcwglsqcdggfscqleptlpdlpspfestve kaplppvssdiaraasaqrelfddlsavsqeleeillavtvewpkqeiwthpigmffna srrlltvlrqqaqadchqgaldeclrtknlftavhcyilnvriltaiselllsqirrtq nshmsplegsrsqspsrddtssssghssvdtipffsenlpigelfsyvdplthalfsac ttlhvgvqllreneitlgvhsaqgiaasismsgepgediartgatnsarceeqpttpaa rvlfmflsdegafqeaksagsrgrtiaalrrcyedifslarkhkhgmlrdlnsipp (SEQ ID NO:47) IovE-~
maadqgiftnsvtlspvegsrtggtlprrafrrscdrchaqkikctgnkevtgrapcqr cqqaglrcvyserrpkrklrqsraadlvsadpdpclhmssppvpsqslpldvseshssn tsrqfldppdsydwswtsigtdeaidtdcwglsqcdggfscqleptlpdlpspfestve kaplppvssdiaraasaqrelfddlsavsqeleeillavtvewpkqeiwthpigmffna srrlltvlrqqaqadchqgaldeclrtknlftavhcyilnvriltaiselllsqirrtq nshmsplegsrsqspsrddtssssghssvdtipffsenlpigelfsyvdplthalfsac ttlhvgvqllreneitlgvhsaqgiaasismsgepgediartgatnsarceeqpttpaa rvlfmflsdegafqeaksagsrgrtiaalrrcyedifslarkhkhgmlrdlnsipp (SEQ ID NO:48) lovE-9 maadqgiftnsvtlspvegsrtggtlprrafrrscdrchaqkikctgnkevtgrapcqr cqqaglrcvyserrpkrklrqsraadlvsadpdpclhmssppvpsqslpldvseshssn tsrqfldppdsydwswtsigtdeaidtdcwglsqcdggfscqleptlpdlpspfestve kaplppvssdiaraasaqrelfddlsavsqeleeillavtvewpkqeiwthpigmffna srrlltvlrqqaqadchqgaldeclrtknlftavhcyilnvriltaiselllsqirrtq nshmsplegsrsqspsrddtssssghssvdtipffsenlpigelfsyvdplthalfsac ttlhvgvqllreneitlgvhsaqgiaasismsgepgediartgatnsarceeqpttpaa rvlfmflsdegafqeaksagsrgrtiaalrrcyedifslarkhkhgmlrdlnsipp (SEQ ID N0:49) lovE-10 maadqgiftnsvtlspvegsrtggtlprrafrrscdrchaqkikctgnkevtgrapcqr cqqaglrcvyserrpkrklrqsraadlvsadpdpclhmssppvpsqslpldvseshssn tsrqfldppdsydwswtsigtdeaidtdcwglsqcdggfscqleptlpdlpspfestve kaplppvssdiaraasaqrelfddlsavsqeleeillavtvewpkqeiwthpigmffna srrlltvlrqqaqadchqgaldeclrtknlftavhcyilnvriltaiselllsqirrtq nshmsplegsrsqspsrddtssssghssvdtipffsenlpigelfsyvdplthalfsac ttlhvgvqllreneitlgvhsaqgiaasismsgepgediartgatnsarceeqpttpaa rvlfmflsdegafqeaksagsrgrtiaalrrcyedifslarkhkhgmlrdlnsipp (SEQ ID N0:50) lovE-16 maadqgifmnsvtlsavegsrtsgtlprrafrrscdrchakkikctgnkevtgrapcqr cqqaglrcvysercpkrklrqsraadlvsadpdpclhmssppvpsqslpldvseshssn tsrqfldppdsydwswtsigtdeaidtdcwglsqcdggfscqleptlpdlpspfestve kaplppvssdiaraasaqrelfddlsavsqeleeillavtvewpkqeiwthpigmffna srrlltvlrqqaqadchqgtldeclrtknlftavhcyilnvriltaiselllsqirrtq nshmsplegsrsqspsrddtssssghssvdtipffsenlpigelfsyvdplthalfsac ttlhvgvellreneitlgvhsaqgiaasismsgepgediartgatnsarceeqpttpaa rvlfmflsdegafqeaksagsrgrtiaalrrcyedifslarkhkhgmlrdlnnipp ( SEQ ID NO : 51 ) lovE-19 maadqgiftnsvtlspvegshtggtlprrafrracdrchaqkikctgnkevtgrapcqr cqqaglrcvysercpkrklrhsrasdlvsadpdpclhmssppvpsqslpldvseshssn tsrqfldppdsydwswtsigtdeaidtdcwglsqcdggfscqleptlpdlpspfestve kaplppvssdiaraasaqrelfddlsavsqeleeillavtvewpkqeiwthpigmffna srrlltvlrqqaqadchqgtldeclrtknlftavhcyilnvriltaiselllsqirrtq nshmspldgsrsqspsrddtssssghssvdtipffsenlpigelfsyvdplthalfsac ttlhvgvqllreneitlgvdsaqgiaasismsgepgediartgatnsarceeqpttpaa rvlfmflsdegafqeaksagsrgrtitvlrrsyedifslarkhkhgmlrdlnnips (SEQ ID N0:52) lovE-20 maadqgiftnsvtlspvegsrtggtlprralrrscdrchaqkikctgnkevtgrapcqr cqqaglrcvysercpkrklrqsraadlvsadpdpclhmssppvpsqslpldvseshssn tsrqfldppdsydwswtsigtdeaidtdcwglsqcdggfscqleptlpdlpspfestve kaplppvssdiaraasaqrelfddlsavsqeleeillavtvewpkqeiwthpigmffna srrlltvlrqqaqadchqgtldeclrtknlftavhcyilnvriltaiselllsqirrtq nshmsplegsrsqspsrddtssssghssvdtipffsenlpigelfsyvdplthalfsac ttlhvgvqllreneitlgvhsaqgiaasismsgepgediartgatnsarceeqpitpaa rvlfmflsdegafqeaksagsrgrtiaalrrcyedifslarkhkhgmlrdlnnipp (SEQ ID N0:53) lovE-21 maadqgiftnsvtlspvegsrtggtlprralrrscdrchaqkikctgnkevtgrapcqr cqqaglrcvysercpkrklrqsraadlvsadpdpclhissppvpsqslpldvsdshssn tsrqfldppdsydwswtsigtdeaidtncwglsqcdggfscqlestlpdlpspfestve kaplppvssdiaraasaqrelfddlsavsqeleeillavtvewpkqeiwthpigmffna srrlltvlrqqaqadchqgtldeclrtknlftavhcyilnvriltaiselllsqirrtq nshmsplegsrsqspsrddtssssghssvdtipffsenlpigelfsyvdplthalfsac ttlhvgvqllreieitlgvhsaqgiaasismsgepgediartgatnsarceeqpttpaa rvlfmflsdegafqeaksagsrgrtiaalrrcyedifslarkhkygmlrdlnnipp (SEQ ID N0:54) a lovE-30 maadqgiftnsvtlspvegsrtggtlprrafrrscdrchaqkvkctgnkevtgrapcqr cqqaglrcvysercpkrklrqsraadlvsadpdpclhmssppvpsqslpldvseshssn tsrqfldppdsydwswtsigtdeaidtdcwglsqcdggfscqleptlpdlpspfestve kaplppvssdiaraasaqrelfddlsavsqeleeillavtvewpkqeiwthpigmffna srrlltvlrqqaqadchqgthdeclrtknlftavhcyilnvriltaiselllsqirrtl nshmsplegsrsqspsrddtssssghssvdtipffsenlpigelfsyvdplthalfsac ttlhvgvqllreneitlgvhsaqgiaasismsgepgediartgatnsarceeqpttpaa rvlfmflsdegafqeaksagsrgrtiaalrrcyedifslarkhkhgmlrdlnnippc (SEQ ID N0:55) lovE-31 maadqgiftnsvtlspvegsrtggtlprralrrscdrchaqkikctgnkevtgrapcqr cqqaglrcvysercpkrklrqsraadlvsadpdpclhmsspsvpsqslpldvseshssn tsrqfldppdsydwswtsigtdeaidtdcwglsqrdggfssqlkptlpdlpspfestve kaplppvssdiaraasaqrelfddlsavsqeleeillavtvewpkqeiwthpigmffna srrlltvlrqqaqadchqgtldeclrtknlftavhcyilnvriltaiselllsqirltq nshmsplegsrsqspnrddtssssghssvdtipffsenlpigelfsyvdplthalfsac ttlhvgvqllreneitlgvhsaqgiaasismsgepgediartgatnsarceeqpttpaa rvlfmflsdegafqeaksagsrgrtiaalrrcyedifslarkhkhgmlrdlnnipp (SEQ ID N0:56) lovE-32 maadqgiftnsvtispvvgsrtggtlprrafrrscdrchaqkikctgnkevtgrapcqr cqqaglrcvysercpkrklrqsraadlvsadpdpclhmssppvpsqslpldvseshssn tsrqfldppdsydwswtsictdeaidtdcwglsqcdggfscqleptlpdlpspfestve kaplppvssdiaraasaqrelfddlsavsqeleeillavtvewpkqeiwthpigmffna srrlltvlrqqaqadchqgtldeclrtknlftavhcyilnvriltaiselllsqirrtq nshmsplegsrsqspsrddtssssghssvdtipffsenlpigglfsyvdplthalfsac ttlhvglqllreneitlgvhsaqgiaasismsgesgediartgatssarceeqpttpaa rvlfmflsdegafqeaksagsrgrtiaalrrcyedifslarkhkhgmlrdlnnipp (SEQ ID N0:57) lovE-33 maadqgiftnsvtlspvegsrtggtlprrafrrscdrcharkikctgnkevtgrapcqr cqqaglrcvysercpkrklrqsraadlvsadpdpclhmssppvpsqslpldvseshssn tsrqfldppdsydwswtsigtdeaidtdcwglsqcdggfscqleptlpdlpspfeytve kaplppvssdiaraasaqrelfddlsavsqeleeillavtvewpkqeiwthpigmffna srrlltvlrqqaqadchqgtldeclrtknlftavhcyilnvriltaiselllsqirrtq nshmsplegsrsqspsrddtssssghssvdtipffsenlpigelfsyvdplthalfsac ttlhvgvqllreneitlgvhsaqgiaasismsgepgediartgatnstrceeqpttpaa rvlfmflsdegafqeaksagsrgrtiaalrrcyedifslarkhkhgmlrdlnnipp (SEQ ID N0:58) lovE-34 maadqgiftnsvtlspvegsrtggtlprralrrscdrchaqkikctgnkevigrapcqr cqqaglrcvysercpkrklrqsraadlvsadpdpclhmsspqvpsqslsldiseshssn tsrqfldppdsydwswtsigtdeaidtdcwglsqcdggfscqleptlpdlpspfestve kaplppvssdiaraasaqrelfddlsavsqeleeillavtvewpkqeiwthpigmffna srrlltvlrqqaqadchqgtldeclrtknlftavhcyilnvriltaiselllsqirrtq nshmsplegsrsqspsrddtssssghssvdtipffsenlpigelfsyvdplthalfsac ttlhvgvqllreneitlgvhsaqgiaasismsgepgediartgatnsarceeqpttpaa rvlfmflsdegafqeaksagsrgrtiaalrrcyedifslarkhkhgmlrdlnnipp (SEQ ID N0:59) lovE-36 I
maadqgiftnsvtlspvegsrtggtlprrafrrscdrchaqkikctgnkevtgrapcqr cqqaglrcvysercpkrklrqsraanlvsadpdpclhmssppvpsqslpldvseshssn tsrqfldppdsydwswtsigtdeafdtdcwglsqcdggfscqleptlpdlpspfestve kaplppvssdiaraasaqrelfddlsavsqeleeillavtvewpkqeiwthpigiffna srrlltvlrqqaqadchqgtldeclrtknlftavhcyilnvriltaiselllsqirrtq nshmsplegsrsqspsrddissssghssvdtipffsenlpigelfsyvdplthalfsac ttlhvgvqllreneitlgvhsaqgiaayisksgepgediartgatnsarceeqpttpaa rvlfmflsdegafqeaksagsrgrtiaalrrcyedifslarkhkhgmlrdlnnipp (SEQ ID N0:60) lovE-37 maadqgiftnsvtlspvegsrtggtlprrafrrscdrchaqkikcignkevtgrapcqr cqraglrcvysercpkrrlrqsraadlvsadpdpclhmssppvpsqslpldvseshssn tsrqfldppdsydwswtsigtdeaidtdcwglsqcdggfscqleptlpdlpspfestve kaplppvssdiaraasaqrelfddlsavsqeleeillavtvewpkqeiwthpigmffna srrlltvlrqqaqadchqgtldeclrtknlftavhcyilnvriltaiselllsqirrtq nshmsplegsrsqspsrddtssssghscvdtipffsenlpigelfsyvdplthalfsac ttlhvgvqllreyeitlgihsaqgiaasismsgepgediartgatnsarceeqpttpaa rvlfmflsdegafqeaksagsrgrtiaalrrcyedifslarkhkhgmlrdlnnipp (SEQ ID N0:61) lovE-3 ~
maadqgiftnsvtlspvegsrtggtlprrafrrscdrcharkikctgnkevtgrapcqr cqqaglrcvysercpkrklrqsraadlvsadpdpclhmssppvpsqslpldvseshssn tsrqfldppdsydwswtsigtdeaidtdcwglsqcdggfscqleptlpdlpspfestve kaplppvssdiaraasaqrelfddlsavsqeleeillavtvewpkqeiwthpigmffna srrlltvlrqqaqadchqgtldeclrtknlftavhcyilnvriltaiselllsqirriq nshmsplegsrsqslsrddtssssghssvdtipffsenlpidelfsyvdplthalfsac ttlhvgvqllreneitlgvhsaqgiaasismsgelgedivrtgatnsarceeqpttpaa rvlfmflsdegafqeaksagsrsrtiaalrrcyedifslarkhkhgmlrdlnnipp (SEQ ID N0:62) lovE-39 maadqgiftnsvtlspvegsrtggtlprrafrrscdrchaqkikctgnkevngrapcqr cqqaglrcvysercpkrklrqsraadlvsadpdpclhmssppvpsqslpldiseshssn tsrqfldppdsydwswtsigideaidtdcwglsqcdggfscqleptlpdlpspfestve kaplppissdiaraasaqrelfddlsavsqeleeillavtvewpkqeiwthpigmffna srrlltvlrqqaqadchqgtldeclrtknlftavhcyilnvrilaaiselllsqirrtq nshmsplegsrsqspsrddtssssghssvdtipffsenlpigelfsyvdplthalfsac ttlhvgvqllreneitlgvhsaqgiaasismsgepgediartgatnsarceeqpttpaa rvlfmflsdegafqeaksagsrgrtiaalrrcyedifslarkhkhgmlrdlnnipp (SEQ ID N0:63) lovE-40 maaeqgiftnsvtlspvegsrtggtlprrafrrscdrcharkikctgnkevtgrapcqr cqqaglrcvysercpkrklrqsraadlisadpdpclhmssppvpsqslplevseshssn tsrqfldppdsydwswtsigtdkaidtdcwglsqcdggfscqleptlpdlpspfestve kaplppvssditraasaqrelfddlsavsqeleeillavtvewpkqeiwthpigmffna srrlltvlrqqaqadchqgtldeclrtknlftavhcyildvriltaiselllsqirrtq nshmsplegsrsqspsrddtssssghssvdtipffsenlpigelfsyvdplrhalfsac ttlhvgvqllreieitlgvhsargiaasismsgepgediartgatnsarceeqpttpaa rvlfmflsdegtfqeaksagsrgrtiaalrrcyedifslarkhkhgmlrdlnnipp (SEQ ID N0:64) lovE-4Z
maadqgiftnsvtlspvegsrtggtlprrafrrscdrchaqkikctgnkevtgrapcqr cqqaglrcvysercpkrklrqsraadlvsadpdpclhmssppvpsqslpldvseshssn tsrqfldppdsynwlwtsigtdeaidtdcwglsqcdggfscqleptlpdlpspfestve kaplppvssdiaraasaqrelfddlsavsqeleeillavtvewpkqeiwthpigmffna srrlltvlrqqaqadchqgtldeclrtknlftavhcyilnvriltaiselllsqirrtq nshmsplegsrsqspsgddtssssghssvdtipffsenlpigelfsyvdplthalfsac ttlhvgvqllreneitlgvhsaqgiaasismsgepgediartgatnsarceeqpttpaa rvlfmflsdegafqegksagsrgrtiaalrrcyedifslarkhkhgmlrdlnnipp (SEQ ID N0:65) Table 6: DNA Sequences of Variants of the ZovE Gene lovE-1 ATGGCTGCAGATCAAGGTATATTCACGAACTCGGTCACTCTCTCGCCAGTGGAGGGTTC
ACGCACCGGTGGAACATTACCCCGCCGTGCATTCCGACGCTCTTGTGATCGGTGTCATG
CACAAA.AGATCAAATGTACTGGAAATAAGGAGGTTACTGGCCGTGCTCCCTGTCAGCGT
TGCCAGCAGGCTGGACTTCGATGCGTCTACAGTGAGCGATGCCCCAAGCGCAAGCTACG
CCAATCCAGGGCAGCGGATCTCGTCTCTGCTGACCCAGATCCCTGCTTGCACATGTCCT
CGCCTCCAGTGCCCTCACAGAGCTTGCCGCTAGACGTATCCGAGTCGCATTCCTCAAAT
ACCTCCCGGCAGTTTCTTGATCCACCGGACAGCTACGACTGGTCGTGGACCTCGATTGG
CACTGACGAGGCTATTGACACTGACTGCTGGGGGCTGTCCCAATGTGATGGAGGCTTCA
GCTGTCAGTTAGAGCCAACGCTGCCGGATCTACCTTCGCCCTTCGAGTCTACGGTTGAA
AAAGCTCCGTTGCCACCGGTATCGAGCGACATTGCTCGTGCGGCCAGTGCGCAACGAGA
GCTTTTCGATGACCTGTCGGCGGTGTCGCAGGAACTGGAAGAGATCCTTCTGGCCGTGA
CGGTAGAATGGCCGAAGCAGGAA.ATCTGGACCCATCCCATCGGAATGTTTTTCAATGCG
TCACGACGGCTTCTTACTGTCCTGCGCCAACAAGCGCAGGCCGACTGCCGTCAAGGCAC
ACTAGACGAATGTTTACGGACCAAGAACCTCTTTACGGCAGTACACTGTTACATATTGA
ATGTGCGGATTTTGACCGCCATATCGGAGTTGCTCCTGTCGCAAATTAGGCGGACCCAG
AACAGCCATATGAGCCCACTGGAAGGGAGTCGATCCCAGTCGCCGAGCAGAGACGACAC
CAGCAGCAGCAGCGGCCACAGCAGTGTTGACACCATACCCTTCTTTAGCGAGAACCTCC
CTATTGGTGAGCTGTTCCCCTATGTTGACCCCCTGACACACGCCCTATTCTCGGCTTGC
ACTACGTTACATGTTGGGGTACAATTGCTGCGTGAGAATGAGATTACTCTGGGAGTACA
CTCCGCCCAGGGCATTGCAGCTTCCATCAGCATGAGCGGGGAACCAGGCGAGGATATAG
CCAGGACAGGGGCGACCAATTCCGCAAGATGCGAGGAGCAGCCGACCACTCCAGCGGCT
CGGGTTTTGTTCATGTTCTTGAGTGATGAAGGGGCTTTCCAGGAGGCAAAGTCTGCTGG
TTCCCGAGGTCGAACCATCGCAGCACTGCGACGATGCTATGAGGATATCTTTTCCCTCG
CCCGCAAACACAAACATGGCATGCTCAGAGACCTCAACAATATTCCTCCATGA
(SEQ ID N0:66) lovE-2 ATGGCTGCAGATCAAGGTATATTCACGAACTCGGTCACTCTCTCGCCAGTGGAGGGTTC
ACGCACCGGTGGAACATTACCCCGCCGTGCATTCCGACGCTCTTGTGATCGGTGTCATG
CACAAA.AGATCAAATGTACTGGAAATAAGGAGGTTACTGGCCGTGCTCCCTGTCAGCGT
TGCCAGCAGGCTGGACTTCGATGCGTCTACAGTGAGCGATGCCCCAAGCGCAAGCTACG
CCAATCCAGGGCAGCGGATCTCGTCTCTGCTGACCCAGATCCCTGCTTGCACATGTCCT
CGCCTCCAGTGCCCTCACAGAGCTTGCCGCTAGACGTATCCGAGTCGCATTCCTCAA.AT
ACCTCCTGGCAATTTCTTGATCCACCGGACAGCTACGACTGGTTGTGGACCTCGATTGG
CACTGACGAGGCTATTGACACTGACTGCTGGGGGCTGTCCCAATGTGATGGAGGCTTCA
GCTGTCAGTTAGAGCCAACGCTGCCGGATCTACCTTCGCCCTTCGAGTCTACGGTTGAA
AAAGCTCCGTTGCCACCGGTATCGAGCGACATTGCTCGTGCGGCCAGTGCGCAACGAGA
GCTTTTCGATGACCTGTCGGCGGTGTCGCAGGAACTGGAAGAGATCCTTCTGGCCGTGA
CGGTAGAGTGGCCGAAGCAGGAAATCTGGACCCATCCCATCGGAATGTTTTTCAATGCG
TCACGACGGCTTCTTACTGTCCTGCGCCAACAAGCGCAGGCCGACTGCCATCAAGGCAC
ACTAGACGAATGTTTACGGACCAAGAACCTCTTTACGGCAGTACACTGTTACATATTGA
ATGTGCGGATTTTGACCGCCATATCGGAGTTGCTCCTGTCGCAAATTAGGCGGACCCAG
AACAGCCATATGAGCCCACTGGAAGGGAGTCGATCCCAGTCGCCGAGCAGAGACGACAC
CAGCAGCAGCAGCGGCCACGGCAGTGTTGACACCATACCCTTCTTTAGCGAGAACCTCC
CTATTGGTGAGCTGTTCTCCTATGTTGACCCCCTGACACACGCCCTATTCTCGGCTTGC
ACTACGTTACATGTTGGGGTACAATTGCTGCGTGAGAATGAGATTACTCTGGGAGTACA
CTCCGCCCAGGGCATTGCAGCTTCCATCAGCATGAGCGGGGAACCAGGCGAGGATATAG
CCAGGACAGGGGCGACCAATTCCGCAAGATGCGAGGAGCAGCCGACCACTCCAGCGGCT
CGGGTTTTGTTCATGTTCTTGAGTGATGAAGGGGCTTTCCAGGAGGCAAA.GTCTGCTGG
TTCCCGAGGTCGAACCATCGCAGCACTGCGACGATGCTATGAGGATATCTTTTCCCTCG
CCCGCAAACACAAACATGGCATGCTCAGAGACCTCAACAATATTCCTCCATGA
(SEQ ID N0:67) lovE-3 ATGGCTGCAGATCAAGGTATATTCACGAACTCGGTCACTCTCTCGCCAGTGGAGGGTTC
ACGCACCGGTGGAACATTACCCCGCCGTGCATTCCGACGCTCTTGTGATCGGTGTCATG
CACAAAAGATCAAATGTACTGGAAATAAGGAGGTTACTGGCCGTGCTCCCTGTCAGCGT
TGCCAGCAGGCTGGACTTCGATGCGTCTACAGTGAGCGACGCCCCAAGCGCAAGCTACG
CCAATCCAGGGTAGCGGATCTCGTCTCTGCTGACCCAGATCCCTGCTTGCACATGTCCT
CGCCTCCAGTGCCCTCACAGAGCTTGCCGCTAGACGTATCCGAGTCGCATTCCTCAAAT
ACCTCCCGGCAATTTCTTGATCCACCGGACAGCTACGACTGGTCGTGGATCTCGATTGG
CACTGACGAGGCTATTGACACTGACTGCTGGGGGCTGTCCCAATGTGATGGAGGCTTCA
GCTGTCAGTTAGAGCCAACGCTGCCGGATCTACCTTCGCCCTTCGAGTCTACGGTTGAA
AAAGCTCCGTTGCCACCGGTATCGAGCGACATTGCTCGTGCGGCCAGTGCGCAACGAGA
GCTTTTCGATGACCTGTCGGCGGTGTCGCAGGAACTGGAAGAGATCCTTCTGGCCGTGA
CGGTAGAATGGCCGAAGCAGGAAATCTGGACCCATCCCATCGGAATGTTTTTCAATGCG
TCACGACGGCTTCTTACTGTCCTGCGCCAACAAGCGCAGGCCGACTGCCATCAAGGCAC
ACTAGACGAATGTTTACGGACCAAGAACCTCTTTACGGCAGTACACTGTTACATATTGA
ATGTGCGGATTTTGACCGCCATATCGGAGTTGCTCCTGTCGCAAATTAGGCGGACCCAG
AACAGCCATATGAGCCCACTGGAAGGGAGTCGATCCCAGTCGCCGAGCAGAGACGACAC
CAGCAGCAGCAGCGGCCACAGCAGTGTTGACACCATACCCTTCTTTAGCGAGAACCTCC
CTATTGGTGAGCTGTTCTCCTATGTTGACCCCCTGACACACGCCCTATTCTCGGCTTGC
ACTACGTTACATGTTGGGGTACAATTGCTGCGTGAGAATGAGATTACTCTGGGAGTACA
CTCCGCCCAGGGCATTGCAGCTTCCATCAGCATGAGCGGGGAACCAGGCGAGGATATAG
CCAGGACAGGGGCGACCAATTCCGCAAGATGCGAGGAGCAGCCGACCACTCCAGCGGCT
CGGGTTTTGTTCATGTTCTTGAGTGATGAAGGGGCTTTCCAGGAGGCAAAGTCTGCTGG
TTCCCGAGGTCGAACCATCGCAGCACTGCGACGATGCTATGAGGATATCTTTTCCCTCG
CCCGCAAACACAAACATGGCATGCTCAGAGACCTCAACAATATTCCTCCATGA
(SEQ ID N0:68) lovE-4 ATGGCTGCAGATCAAGGTATATTCACGAACTCGGTCACTCTCTCGCCAGTGGAGGGTTC
ACGCACCGGTGGAACATTACCCCGCCGTGCATTCCGACGCTCTTGTGATCGGTGTCATG
CACAAAAGATCAAATGTACTGGAAATAAGGAGGTTACTGGCCGTGCTCCCTGTCAGCGT
TGCCAGCAGGCTGGACTTCGATGCGTCTACAGTGAGCGACGCCCCAAGCGCAAGCTACG
CCAATCCAGGGCAGCGGATCTCGTCTCTGCTGACCCAGATCCCTGCTTGCACATGTCCT
CGCCTCCAGTGCCCTCACAGAGCTTGCCGCTAGACGTATCCGAGTCGCATTCCTCAAAT
ACCTCCCGGCAATTTCTTGATCCACCGGACAGCTACGACTGGTCGTGGACCTCGATTGG
CACTGACGAGGCTATTGACACTGACTGCTGGGGGCTGTCCCAATGTGATGGAGGCTTCA
GCTGTCAGTTAGAGCCAACGCTGCCGGATCTACCTTCGCCCTTCGAGTCTACGGTTGGA
AAAGCTCCGTTGCCACCGGTATCGAGCGACATTGCTCGTGCGGCCAGTGCGCAACGAGA
GCTTTTCGATGACCTGTCGGCGGTGTCGCAGGAACTGGAAGAGATCCTTCTGGCCGTGA
CGGTAGAATGGCCGAAGCAGGAAATCTGGACCCATCCCATCGGAATGTTTTTCAATGCG
TCACGACGGCTTCTTACTGTCCTGCGCCAACAAGCGCAGGCCGACTGCCATCAAGGCAC
ACTAGACGAATGTTTACGGACCAAGAACCTCTTTACGGCAGTACACTGTTACATATTGA
ATGTGCGGATTTTGACCGCCATATCGGAGTTGCTCCTGTCGCAAATTAGGCGGACCCAG
AACAGCCATATGAGCCCACTGGAAGGGAGTCGATCCCAGTCGCCGAGCAGAGACGACAC
CAGCAGCAGCAGCGGCCACAGCAGTGTTGACACCATACCCTTCTTTAGCGAGAACCTCC
CTATTGGTGAGCTGTTCTCCTATGTTGACCCCCTGACACACGCCCTATTCTCGGCTTGC
ACTACGTTACATGTTGGGGTACAATTGCTGCGTGAGAATGAGATTACTCTGGGAGTACA
CTCCGCCCAGGGCATTGCAGCTTCCATCAGCATGAGCGGGGAACCAGGCGAGGATATAG
CCAGGACAGGGGCGACCAATTCCGCAAGATGCGAGGAGCAGCCGACCACTCCAGCGGCT
CGGGTTTTGTTCATGTTCTTGAGTGATGAAGGGGCTTTCCAGGAGGCAAAGTCTGCTGG
TTCCCGAGGTCGAACCATCGCAGCACTGCGACGATGCTATGAGGATATCTTTTCCCTCG
CCCGCAAACACAAACATGGCATGCTCAGAGACCTCAACAATATTCCTCCATGA
(SEQ ID N0:69) IovE-5 ATGGCTGCAGATCAAGGTATATTCACGAACTCGGTCACTCTCTCGCCAGTGGAGGGTTC
ACGCACCGGTGGAACATTACCCCGCCGTGCATTCCGACGCTCTTGTGATCGGTGTCATG
CACAAAAGATCAAATGTACTGGAAATAAGGAGGTTACTGGCCGTGCTCCCTGTCAGCGT
TGCCAGCAGGCTGGACTTCGATGCGTCTACAGTGAGCGACGCCCCAAGCGCAAGCTACG
CCAATCCAGGGCAGCGGATCTCGTCTCTGCTGACCCAGATCCCTGCTTGCACATGTCCT
CGCCTCCAGTGCCCTCACAGAGCTTGCCGCTAGACGTATCCGAGTCGCATTCCTCAAAT
ACCTCCCGGCAATTTCTTGATCCACCGGACAGCTACGACTGGTCGTGGACCTCGATTGG
CACTGACGAGGCTATTGACACTGACTGCTGGGGGCTGTCCCAATGTGATGGAGGCTTCA
GCTGTCAGTTAGAGCCAACGCTGCCGGATCTACCTTCGCCCTTCGAGTCTACGGTTGAA
AA.AGCTCCGTTGCCACCGGTATCGAGCGACATTGCTCGTGCGGCCAGTGCGCAACGAGA
GCTTTTCGATGACCTGTCGGCGGTGTCGCAGGAACTGGAAGAGATCCTTCTGGCCGTGA
CGGTAGAATGGCCGAAGCAGGAAATCTGGACCCATCCCATCGGAATGTTTTTCAATGCG
TCACGACGGCTTCTTACTGTCCTGCGCCAACAAGCGCAGGCCGACTGCCATCAAGGCAC
ACTAGACGAATGTTTACGGACCAAGAACCTCTTTACGGCAGTACACTGTTACATATTGA
ATGTGCGGATTTTGACCGCCATATCGGAGTTGCTCCTGTCGCAAA.TTAGGCGGACCCAG
AACAGCCATATGAGCCCACTGGAAGGGAGTCGATCCCAGTCGCCGAGCAGAGACGACAC
CAGCAGCAGCAGCGGCCACAGCAGTGTTGACACCATACCCTTCTTTAGCGAGAACCTCC
CTATTGGTGAGCTGTTCTCCTATGTTGACCCCCTGACACACGCCCTATTCTCGGCTTGC
ACTACGTTACATGTTGGGGTACAATTGCTGCGTGAGAATGAGATTACTCTGGGAGTACA
CTCCGCCCAGGGCATTGCAGCTTCCATCAGCATGAGCGGGGAACCAGGCGAGGATATAG
CCAGGACAGGGGCGACCAATTCCGCAAGATGCGAGGAGCAGCCGACTACTCCAGCGGCT
CGGGTTTTGTTCATGTTCTTGAGTGATGAAGGGGCTTTCCAGGAGGCAAAGTCTGCTGG
TTCCCGAGGTCGAACCATCGCAGCACTGCGACGATGCTATGAGGATATCTTTTCCCTCG
CCCGCAAACACAAACATGGCATGCTCAGAGACCTCAACAATATTCCTCCATGA
(SEQ ID N0:70) lovE-6 ATGGCTGCAGATCAAGGTATATTCACGAACTCGGTCACTCTCTCGCCAGTGGAGGGTTC
ACGCACCGGTGGAACATTACCCCGCCGTGCATTCCGACGCTCTTGTGATCGGTGTCATG
CACAAAAGATCAAATGTACTGGAAATAAGGAGGTTACTGGCCGTGCTCCCTGTCAGCGT
TGCCAGCAGGCTGGACTTCGATGCGTCTACAGTGAGCGATGCCCCAAGCGCAAGCTACG
CCAATCCAGGGCAGCGGATCTCGTCTCTGCTGACCCAGATCCCTGCTTGCACATGTCCT
CGCCTCCAGTGCCCTCACAGAGCTTGCCGCTAGACGTATCCGAGTCGCATTCCTCAAAT
ACCTCCCGGCAATTTCTTGATCCACCGGACAGCTACGACTGGTCGTGGACCTCGATTGG
CACTGACGAGGCTATTGACACTGACTGCTGGGGGCTGTCCCAATATGATGGAGGCTTCA
GCTGTCAGTTAGAGCCAACGCTGCCGGATCTACCTTCGCCCTTCGAGTCTACGGTTGAA
AAAGCTCCGTTGCCACCGGTATCGAGCGACATTGCTCGTGCGGCCAGTGCGCAACGAAA
GCTTTTCGATGACCTGTCGGCGGTGTCGCAGGAACTGGAAGAGATCCTTCTGGCCGTGA
CGGTAGAATGGCCGAAGCAGGAAATCTGGACCCATCCCATCGGAATGTTTTTCAATGCG
TCACGACGGCTTCTTACTGTCCTGCGCCAACAAGCGCAGGCCGACTGCCATCAAGGCAC
ACTAGACGAATGTTTACGGACCAAGAACCTCTTTACGGCAGTACACTGTTACATATTGA
ATGTGCGGATTTTGGCCGCCATATCGGAGTTGCTCCTGTCGCAAATTAGGCGGACCCAG
AACAGCCATATGAGCCCACTGGAAGGGAGTCGATCCCAGTCGCCGAGCAGAGACGACAC
CAGCAGCAGCAGCGGCCACAGCAGTGTTGACACCATACCCTTCTTTAGCGAGAACCTCC
CTATTGGTGAGCTGTTCTCCTATGTTGACCCCCTGACACACGCCCTATTCTCGGCTTGC
ACTACGTTACATGTTGGGGTACAATTGCTGCGTGAGAATGAGATTACTCTGGGAGTACA
CTCCGCCCAGGGCATTGCAGCTTCCATCAGCATGAGCGGGGAACCAGGCGAGGATATAG
CCAGGACAGGGGCGACCAATTCCGCAAGATGCGAGGAGCAGCCGACCACTCCAGCGGCT
CGGGTTTTGTTCATGTTCTTGAGTGATGAAGGGGCTTTCCAGGAGGCAAAGTCTGCTGG
TTCCCGAGGTCGAACCATCGCAGCACTGCGACGATGCTATGAGGATATCTTTTCCCTCG
CCCGCAA.A.CACAAACATGGCATGCTCAGAGACCTCAACAATATTCCTCCATGA
( SEQ ID NO : 71 ) lovE-7 ATGGCTGCAGATCAAGGTATATTCACGAACTCGGTCACTCTCTCGCCAGTGGAGGGTTC
ACGCACCGGTGGAACATTACCCCGCCGTGCATTCCGACGCTCTTGTGATCGGTGTCATG
CACAAA.AGATCAAATGTACTGGAAATAAGGAGGTTACTGGCCGTGCTCCCTGTCAGCGT
TGCCAGCAGGCTGGACTTCGATGCGTCTACAGTGAGCGACGCCCCAAGCGCAAGCTACG
CCAATCCAGGGCAGCGGATCTCGTCTCTGCTGACCCAGATCCCTGCTTGCACATGTCCT
CGCCTCCAGTGCCCTCACAGAGCTTGCCGCTAGACGTATCCGAGTCGCATTCCTCAAAT
ACCTCCCGGCAATTTCTTGATCCACCGGACAGCTACGACTGGTCGTGGACCTCGATTGG
CACTGACGAGGCTATTGACACTGACTGCTGGGGGCTGTCCCAATGTGATGGAGGCTTCA
GCTGTCAGTTAGAGCCAACGCTGCCGGATCTACCTTCGCCCTTCGAGTCTACGGTTGAA
AAAGCTCCGTTGCCACCGGTATCGAGCGACATTGCTCGTGCGGCCAGTGCGCAACGAGA
GCTTTTCGATGACCTGTCGGCGGTGTCGCAGGAACTGGAAGAGATCCTTCTGGCCGTGA
CGGTAGAATGGCCGAAGCAGGAAATCTGGACCCATCCCATCGGAATGTTTTTCAATGCG
TCACGACGGCTTCTTACTGTCCTGCGCCAACAAGCGCAGGCCGACTGCCATCAAGGCGC
ACTAGACGAATGTTTACGGACCAAGAACCTCTTTACGGCAGTACACTGTTACATATTGA
ATGTGCGGATTTTGACCGCCATATCGGAGTTGCTCCTGTCGCAAATTAGGCGGACCCAG
AACAGCCATATGAGCCCACTGGAAGGGAGTCGATCCCAGTCGCCGAGCAGAGACGACAC
CAGCAGCAGCAGCGGCCACAGCAGTGTTGACACCATACCCTTCTTTAGCGAGAACCTCC
CTATTGGTGAGCTGTTCTCCTATGTTGACCCCCTGACACACGCCCTATTCTCGGCTTGC
ACTACGTTACATGTTGGGGTACAATTGCTGCGTGAGAATGAGATTACTCTGGGAGTACA
CTCCGCCCAGGGCATTGCAGCTTCCATCAGCATGAGCGGGGAACCAGGCGAGGATATAG
CCAGGACAGGGGCGACCAATTCCGCAAGATGCGAGGAGCAGCCGACCACTCCAGCGGCT
CGGGTTTTGTTCATGTTCTTGAGTGATGAAGGGGCTTTCCAGGAGGCAAAGTCTGCTGG
TTCCCGAGGTCGAACCATCGCAGCACTGCGACGATGCTATGAGGATATCTTTTCCCTCG
CCCGCAAACACAAACATGGCATGCTCAGAGACCTCAACAGTATTCCTCCATGA
(SEQ ID N0:72) lovE-8 ATGGCTGCAGATCAAGGTATATTCACGAACTCGGTCACTCTCTCGCCAGTGGAGGGTTC
ACGCACCGGTGGAACATTACCCCGCCGTGCATTCCGACGCTCTTGTGATCGGTGTCATG
CACAAAAGATCAA.ATGTACTGGAAATAAGGAGGTTACTGGCCGTGCTCCCTGTCAGCGT
TGCCAGCAGGCTGGACTTCGATGCGTCTACAGTGAGCGACGCCCCAAGCGCAAGCTACG
CCAATCCAGGGCAGCGGATCTCGTCTCTGCTGACCCAGATCCCTGCTTGCACATGTCCT
CGCCTCCAGTGCCCTCACAGAGCTTGCCGCTAGACGTATCCGAGTCGCATTCCTCAAAT
ACCTCCCGGCAATTTCTTGATCCACCGGACAGCTACGACTGGTCGTGGACCTCGATTGG
CACTGACGTGGCTATTGACACTGACTGCTGGGGGCTGTCCCAATGTGATGGAGGCTTCA
GCTGTCAGTTAGAGCCAACGCTGCCGGATCTACCTTCGCCCTTCGAGTCTACGGTTGAA
AAAGCTCCGTTGCCACCGGTATCGAGCGACATTGCTCGTGCGGCCAGTGCGCAACGAGA
GCTTTTCGATGACCTGTCGGCGGTGTCGCAGGAACTGGAAGAGATCCTTCTGGCCGTGA
CGGTAGAATGGCCGAAGCAGGAAATCTGGACCCATCCCATCGGAATGTTTTTCAATGCG
TCACGACGGCTTCTTACTGTCCTGCGCCAACAAGCGCAGGCCGACTGCCATCAAGGCAC
ACTAGACGAATGTTTACGGACCAAGAACCTCTTTACGGCAGTACACTGTTACATATTGA
ATGTGCGGATTTTGACCGCCATATCGGAGTTGCTCCTGTCGCAAATTAGGCGGACCCAG
AACAGCCATATGAGCCCACTGGAAGGGAGTCGATCCCAGTCGCCGAGCAGAGACGACAC
CAGCAGCAGCAGCGGCCACAGCAGTGTTGACACCATACCCTTCTTTAGCGAGAACCTCC
CTATTGGTGAGCTGTTCTCCTATGTTGACCCCCTGACACACGCCCTATTCTCGGCTTGC
ACTACGTTACATGTTGGGGTACAATTGCTGCGTGAGAATGAGATTACTCTGGGAGTACA
CTCCGCCCAGGGCATTGCAGCTTCCATCAGCATGAGCGGGGAACCAGGCGAGGATATAG
CCAGGACAGGGGCGACCAATTCCGCAAGATGCGAGGAGCAGCCGACCACTCCAGCGGCT
CGGGTTTTGTTCATGTTCTTGAGTGATGAAGGGGCTTTCCAGGAGGCAAAGTCTGCTGG
TTCCCGAGGTCGAACCATCGCAGCACTGCGACGATGCTATGAGGATATCTTTTCCCTCG
CCCGCAAACACAAACATGGCATGCTCAGAGACCTCAACAATATTCCTCCATGA
(SEQ ID N0:73) lovE-9 ATGGCTGCAGATCAAGGTATATTCACGAACTCGGTCACTCTCTCGCCAGTGGAGGGTTC
ACGCACCGGTGGAACATTACCCCGCCGTGCATTCCGACGCTCTTGTGATCGGTGTCATG
CACAAAAGATCAAATGTACTGGAAATAAGGAGGTTACTGGCCGTGCTCCCTGTCAGCGT
TGCCAGCAGGCTGGACTTCGATGCGTCTACAGTGAGCGACGCCCCAAGCGCAAGCTACG
CCAATCCAGGGCAGCGGATCTCGTTTCTGCTGACCCAGATCCCTGCTTGCACATGTCCT
CGCCTCCAGTGCCCTCACAGAGCTTGCCACTAGACGTATCCGAGTCGCATTCCTCAAAT
ACCTCCCGGCAATTTCTTGATCCACCGGACAGCTACGACTGGTCGTGGACCTCGATTGG
CACTGACGAGGCTATTGACACTGACTGCTGGGGGCTGTCCCAATGTGATGGAGGCTTCA
GCTGTCAGTTAGAGCCAACGCTGCCGGATCTACCTTCGCCCTTCGAGTCTACGGTTGAA
AAAGCTCCGTTGCCACCGGTATCGAGCGACATTGCTCGTGCGGCCAGTGCGCAACGAGA
GCTTTTCGATGACCTGTCGGCGGTGTCGCAGGAACTGGAAGAGATCCTTCTGGCCGTGA
CGGTAGAATGGCCGAAGCAGGAAATCTGGACCCATCCCATCGGAATGTTTTTCAATGCG
TCACGACGGCTTCTTACTGTCCTGCGCCAACAAGCGCAGGCCGACTGCCATCAAGGCAC
ACTAGACGAATGTTTACGGACCAAGAACCTCTTTACGGCAGTACACTGTTACATATTGA
ACGTGCGGATTTTGACCGCCATATCGGAGTTGCTCCTGTCGCAAATTAGGCGGACCCAG
AACAGCCATATGAGCCCACTGAAAGGGAGTCGATCCCAGTCGCCGAGCAGAGACGACAC
CAGCAGCAGCAGCGGCCACAGCAGTGTTGACACCATACCCTTCTTTAGCGAGAACCTCC
CTATTGGTGAGCTGTTCTCCTATGTTGACCCCCTGACACACGCCCTATTCTCGGCTTGC
ACTACGTTACATGTTGGGGTACAATTGCTGCGTGAGAATGAGATTACTCTGGGAGTACA
CTCCGCCCAGGGCATTGCAGCTTCCATCAGCATGAGCGGGGAACCAGGCGAGGATATAG
CCAGGACAGGGGCGACCAATTCCGCAAGATGCGAGGAGCAGCCGACCACTCCAGCGGCT
CGGGTTTTGTTCATGTTCTTGAGTGATGAAGGGGCTTTCCAGGAGGCAAAGTCTGCTGG
TTCCCGAGGTCGAACCATCGCAGCACTGCGACGATGCTATGAGGATATCTTTTCCCTCG
CCCGCAAACACAA.ACATGGCATGCTCAGAGACCTCAACAATATTCCTCCATGA
(SEQ ID N0:74) lovE-10 ATGGCTGCAGATCAAGGTATATTCACGAACTCGGTCACTCTCTCGCCAGTGGAGGGTTC
ACGCACCGGTGGAACATTACCCCGCCGTGCATTCCGACGCTCTTGTGATCGGTGTCATG
CAAAAA.AGATCAAATGTACTGGAAA.TAAGGAGGTTACTGGCCGTGCTCCCTGTCAGCGT
TGCCAGCAGGCTGGACTTCGATGCGTCTACAGTGAGCGATGCCCCAAGCGCAAGCTACG
CCAATCCAGGGCAGCGGATCTCGTCTCTGCTGACCCAGATCCCTGCTTGCACATGTCCT
CGCCTCCAGTGCCCTCACAGAGCTTGCCGCTAGACGTATCCGAGTCGCATTCCTCAAAT
ACCTCCCGGCAATTTCTTGATCCACCGGACAGCTACGACTGGTCGTGGACCTCGATTGG
CACTGACGAGGCTATTGACACTGACTGCTGGGGGCTGTCCCAATGTGATGGAGGCTTCA
GCTGTCAGTTAGAGCCAACGCTGCCGGATCTACCTTCGCCCTTCGAGTCTACGGTTGAA
AAAGCTCCGTTGCCACCGGTATCGAGCGACATTGCTCGTGCGGCCAGTGCGCAACGAGA
GCTTTTCGATGACCTGTCGGCGGTGTCGCAGGAACTGGAAGAGATCCTTCTGGCCGTGA
CGGTAGAATGGCCGAAGCAGGAA.ATCTGGACCCATCCCATCGGAATGTTTTTCAATGCG
TCACGACGGCTTCTTACTGTCCTGCGCCAACAAGCGCAGGCCGACTGCCATCAAGGCAC
ACTAGACGAATGTTTACGGACCAAGAACCTCTTTACGGCAGTACACTGTTACATATTGA
ATGTGCGGATTTTGACCGCCATATCGGAGTTGCTCCTGTCGCAAATTAGGCGGACCCAG
AACAGCCATATGAGCCCACTGGAAGGGAGTCGATCCCAGTCGCCGAGCAGAGACGACAC
CAGCAGCAGCAGCGGCCACAGCAGTGTTGACACCATACCCTTCTTTAGCGAGAACCTCC
CTATTGGTGAGCTGTTCTCCTATGTTGACCCCCTGACACACGCCCTATTCTCGGCTTGC
ACTACGCTACATGTTGGGGTACAATTGCTGCGTGAGAATGAGATTACTCTGGGAGTACA
CTCCGCCCAGGGCATTGCAGCTTCCATCAGCATGAGCGGGGAACCAGGCGAGGATATAG
CCAGGACAGGGGCGACCAATTCCGCAAGATGCGAGGAGCAGCCGACCACTCCAGCGGCT
CGGGTTTTGTTCATGTTCTTGAGTGATGAAGGGGCTTTCCAGGAGGCAAAGTCTGCTGG
TTCCCGAGGTCGAACCATCGCAGCACTGCGACGATGCTATGAGGATATCTTTTCCCTCG
CCCGCAAACACAAACATGGCATGCTCAGAGACCTCAACAATATTCCTCCATGA
(SEQ ID N0:75) lovE-16 ATGGCTGCAGATCAAGGTATATTCATGAACTCGGTCACTCTCTCTGCAGTGGAGGGTTC
ACGCACCAGTGGAACATTACCCCGCCGTGCATTCCGACGCTCTTGTGATCGGTGTCATG
CAAAAAAGATCAAATGTACTGGAAATAAGGAGGTTACTGGCCGTGCTCCCTGTCAGCGT
TGCCAGCAGGCTGGACTTCGATGCGTCTACAGTGAGCGATGCCCCAAGCGCAAGCTACG
CCAATCCAGGGCAGCGGATCTCGTCTCTGCTGACCCAGATCCCTGCTTGCACATGTCCT
CGCCTCCAGTGCCCTCACAGAGCTTGCCGCTAGACGTATCCGAGTCGCATTCCTCAA.AT
ACCTCCCGGCAATTTCTTGATCCACCGGACAGCTACGACTGGTCGTGGACCTCGATTGG
CACTGACGAGGCTATTGACACTGACTGCTGGGGGCTGTCCCAATGTGATGGAGGCTTCA
GCTGTCAGTTAGAGCCAACGCTGCCGGATCTACCTTCGCCCTTCGAGTCTACAGTTGAA
AAAGCTCCGTTGCCACCGGTATCGAGCGACATTGCTCGTGCGGCCAGTGCGCAACGAGA
GCTTTTCGATGACCTGTCGGCGGTGTCGCAGGAACTGGAAGAGATCCTTCTGGCCGTGA
CGGTAGAATGGCCGAAGCAGGAAATCTGGACCCATCCCATCGGAATGTTTTTCAATGCG
TCACGACGGCTTCTTACTGTCCTGCGCCAACAAGCGCAGGCCGACTGCCATCAAGGCAC
ACTAGACGAATGTTTACGGACCAAGAACCTCTTTACGGCAGTACACTGTTACATATTGA
ATGTGCGGATTTTGACCGCCATATCGGAGTTGCTCCTATCGCAAATTAGGCGGACCCAG
AACAGCCATATGAGCCCACTGGAAGGGAGTCGATCCCAGTCGCCGAGCAGAGACGACAC
TAGCAGCAGCAGCGGCCACAGCAGTGTTGACACCATACCCTTCTTTAGCGAGAACCTCC
CTATTGGTGAGCTGTTCTCCTATGTTGACCCCCTGACACACGCCCTATTCTCGGCTTGC
ACTACGTTACATGTTGGGGTAGAATTGCTGCGTGAGAATGAGATTACTCTGGGAGTACA
CTCCGCCCAGGGCATTGCAGCTTCCATCAGCATGAGCGGGGAACCAGGCGAGGATATAG
CCAGGACAGGGGCGACCAATTCCGCAAGATGCGAGGAGCAGCCGACCACTCCAGCGGCT
CGGGTTTTGTTCATGTTCTTGAGTGATGAAGGGGCTTTCCAGGAGGCAAAGTCTGCTGG
TTCCCGAGGTCGAACCATCGCAGCACTGCGACGATGCTATGAGGATATCTTTTCCCTCG
CCCGCAAACACAAACATGGCATGCTCAGAGACCTCAACAATATTCCTCCATGA
(SEQ ID N0:76) lovE-19 ATGGCTGCAGATCAAGGTATATTCACGAACTCGGTCACTCTCTCGCCAGTGGAGGGTTC
ACACACCGGTGGAACATTACCCCGCCGTGCATTCCGACGCGCTTGTGATCGGTGTCATG
CACAAAAGATCAAATGTACTGGAAATAAGGAGGTTACTGGCCGTGCTCCCTGTCAGCGT
TGCCAGCAGGCTGGACTTCGATGCGTCTACAGTGAGCGATGCCCCAAGCGCAAGCTACG
CCATTCCAGGGCATCGGATCTCGTCTCTGCTGACCCAGATCCCTGCTTGCACATGTCCT
CGCCTCCAGTGCCCTCACAGAGCTTGCCGCTAGACGTATCCGAGTCGCATTCCTCAAAT
ACCTCCCGGCAATTTCTTGATCCACCGGACAGCTACGACTGGTCGTGGACCTCGATTGG
CACTGACGAGGCTATTGACACTGACTGCTGGGGGCTGTCCCAATGTGATGGAGGCTTCA
GCTGTCAGTTAGAGCCAACGCTGCCGGATCTACCTTCGCCCTTCGAGTCTACGGTTGAA
AA.AGCTCCGTTGCCACCGGTATCGAGCGACATTGCTCGTGCGGCCAGTGCGCAACGAGA
GCTTTTCGATGACCTGTCGGCGGTGTCGCAGGAACTGGAAGAGATCCTTCTGGCCGTGA
CGGTAGAATGGCCGAAGCAGGAAATCTGGACCCATCCCATCGGAATGTTTTTCAATGCG
TCACGACGGCTTCTTACTGTCCTGCGCCAACAAGCGCAGGCCGACTGCCATCAAGGCAC
ACTAGACGAATGTTTACGGACCAAGAACCTCTTTACGGCAGTACACTGTTACATATTGA
ATGTGCGGATTTTGACCGCCATATCGGAGTTGCTCCTGTCGCAAATTAGGCGGACCCAG
AACAGCCATATGAGCCCACTGGACGGGAGTCGATCCCAGTCGCCGAGCAGAGACGACAC
CAGCAGCAGCAGCGGCCACAGCAGTGTTGACACCATACCCTTCTTTAGCGAGAACCTCC
CTATTGGTGAGCTATTCTCCTATGTTGACCCCCTGACACACGCCCTATTCTCGGCTTGC
ACTACGTTACATGTTGGGGTACAATTGCTGCGTGAGAATGAGATTACTCTGGGAGTAGA
CTCCGCCCAGGGCATTGCAGCTTCCATCAGCATGAGCGGGGAACCAGGCGAGGATATAG
CCAGGACAGGGGCGACCAATTCCGCAAGATGCGAGGAGCAGCCGACCACTCCAGCGGCT
CGGGTTTTGTTCATGTTCTTGAGTGATGAAGGGGCTTTCCAGGAGGCAAA.GTCTGCTGG
TTCCCGAGGTCGAACCATCACAGTACTGCGACGAAGCTATGAGGATATCTTTTCCCTCG
CCCGCAAACACAAACATGGCATGCTCAGAGACCTCAACAATATTCCTTCATGA
(SEQ ID N0:77) lovE-20 ATGGCTGCAGATCAAGGTATATTCACGAACTCGGTCACTCTCTCGCCAGTGGAGGGTTC
ACGCACCGGTGGAACATTACCCCGCCGTGCACTCCGACGCTCTTGTGATCGGTGTCATG
CACAA.AAGATCAAATGTACTGGAAATAAGGAGGTTACTGGCCGTGCTCCCTGTCAGCGT
TGCCAGCAGGCTGGACTTCGATGCGTCTACAGTGAGCGATGCCCCAAGCGCAAGCTACG
CCAATCCAGGGCAGCGGATCTCGTCTCTGCTGACCCAGATCCCTGCTTGCACATGTCCT
CGCCTCCAGTGCCCTCACAGAGCTTGCCGCTAGACGTATCCGAGTCGCATTCCTCAAAT
ACCTCCCGGCAATTTCTTGATCCACCGGACAGCTACGACTGGTCGTGGACCTCGATTGG
CACTGACGAGGCTATTGACACTGACTGCTGGGGGCTGTCCCAATGTGATGGAGGCTTCA
GCTGTCAGTTAGAGCCAACGCTGCCGGATCTACCTTCGCCCTTCGAGTCTACGGTTGAA
AAAGCTCCGTTGCCACCGGTATCGAGCGACATTGCTCGTGCGGCCAGTGCGCAACGAGA
GCTTTTCGATGACCTGTCGGCGGTGTCGCAGGAACTGGAAGAGATCCTTCTGGCCGTGA
CGGTAGAATGGCCGAAGCAGGAAATCTGGACCCATCCCATCGGAATGTTTTTCAATGCG
TCACGACGGCTTCTTACTGTCCTGCGCCAACAAGCGCAGGCCGACTGCCATCAAGGCAC
ACTAGACGAATGTTTACGGACCAAGAACCTCTTTACGGCAGTACACTGTTACATATTGA
ATGTGCGGATTTTGACCGCCATATCGGAGTTGCTCCTGTCGCAAATTAGGCGGACCCAG
AACAGCCATATGAGCCCACTGGAAGGGAGTCGATCCCAGTCGCCGAGCAGAGACGACAC
CAGCAGCAGCAGCGGCCACAGCAGTGTTGACACCATACCCTTCTTTAGCGAGAACCTCC
CTATTGGTGAGCTGTTCTCCTATGTTGACCCCCTGACACACGCCCTATTCTCGGCTTGC
ACTACGTTACATGTTGGGGTACAATTGCTGCGTGAGAATGAGATTACTCTGGGAGTACA
CTCCGCCCAGGGCATTGCAGCTTCCATCAGCATGAGCGGGGAACCAGGCGAGGATATAG
CCAGGACAGGGGCGACCAATTCCGCAAGATGCGAGGAGCAGCCGATCACTCCAGCGGCT
CGGGTTTTGTTCATGTTCTTGAGTGATGAAGGGGCTTTCCAGGAGGCAAAGTCTGCTGG
TTCCCGAGGTCGAACCATCGCAGCACTGCGACGATGCTATGAGGATATCTTTTCCCTCG
CCCGCAAACACAAACATGGCATGCTCAGAGACCTCAACAATATTCCTCCATGA
(SEQ ID N0:78) lovE-21 ATGGCTGCAGATCAAGGTATATTCACGAACTCGGTCACTCTCTCGCCAGTGGAGGGTTC
ACGCACCGGTGGAACATTACCCCGCCGTGCACTCCGACGCTCTTGTGATCGGTGTCATG
CACAAAAGATCAAATGTACTGGAAATAAGGAGGTTACTGGCCGTGCTCCCTGTCAGCGT
TGCCAGCAGGCTGGACTTCGATGCGTCTACAGTGAGCGATGCCCCAAGCGCAAGCTACG
CCAATCCAGGGCAGCGGATCTCGTCTCTGCTGACCCAGATCCCTGCTTGCACATATCCT
CGCCTCCAGTGCCCTCACAGAGCTTACCGCTAGACGTATCCGATTCGCATTCCTCAAAT
ACCTCCCGGCAATTTCTTGATCCACCGGACAGCTACGACTGGTCGTGGACCTCGATTGG
CACTGACGAGGCTATTGACACTAACTGCTGGGGGCTGTCCCAATGTGATGGAGGCTTCA
GCTGTCAGTTAGAGTCAACGCTGCCGGATCTACCTTCGCCCTTCGAGTCTACGGTTGAA
AAAGCTCCGTTGCCACCGGTATCGAGCGACATTGCTCGTGCGGCCAGTGCGCAACGAGA
GCTTTTCGATGACCTGTCGGCGGTGTCGCAGGAACTGGAAGAGATCCTTCTGGCCGTGA
CGGTAGAATGGCCTAAGCAGGAAATCTGGACCCATCCCATCGGAATGTTTTTCAATGCG
TCACGACGGCTTCTTACTGTCCTGCGCCAACAAGCGCAGGCCGACTGCCATCAAGGCAC
ACTAGACGAATGTTTACGGACCAAGAACCTCTTTACGGCAGTACACTGTTACATATTGA
ATGTGCGGATTTTGACCGCCATATCGGAGTTGCTCCTGTCGCAAATTAGGCGGACCCAG
AACAGCCATATGAGCCCACTGGAAGGGAGTCGATCCCAGTCGCCGAGCAGAGACGACAC
CAGCAGCAGCAGCGGCCACAGCAGTGTTGACACCATACCCTTCTTTAGCGAGAACCTCC
CTATTGGTGAGCTGTTCTCCTATGTTGACCCCCTGACACACGCCCTATTCTCGGCTTGC
ACTACGTTACATGTTGGGGTACAATTGCTGCGTGAGATTGAGATTACTCTGGGAGTACA
CTCCGCCCAGGGCATTGCAGCTTCCATCAGCATGAGCGGGGAACCAGGCGAGGATATAG
CCAGGACAGGGGCAACCAATTCCGCAAGATGCGAGGAGCAGCCGACCACTCCAGCGGCT
CGGGTTTTGTTCATGTTCTTGAGTGATGAAGGGGCTTTCCAGGAGGCAAAGTCTGCTGG
TTCCCGAGGTCGAACCATCGCAGCACTGCGACGATGCTATGAGGATATCTTTTCCCTCG
CCCGCAAACACAAATATGGCATGCTCAGAGACCTCAACAATATTCCTCCATGA
(SEQ ID N0:79) lovE-30 ATGGCTGCAGATCAAGGTATATTCACGAACTCGGTCACTCTCTCGCCAGTGGAGGGTTC
ACGCACCGGTGGAACATTACCCCGCCGTGCATTCCGACGCTCTTGTGATCGGTGTCATG
CACAAA.AGGTCAAATGTACTGGAAATAAGGAGGTTACTGGCCGTGCTCCCTGTCAGCGT
TGCCAGCAGGCTGGACTTCGATGCGTCTACAGTGAGCGATGCCCCAAGCGCAAGCTACG
CCAATCCAGGGCAGCGGATCTCGTCTCTGCTGACCCAGATCCCTGCTTGCACATGTCCT
CGCCTCCAGTGCCCTCACAGAGCTTGCCGCTAGACGTATCCGAGTCGCATTCCTCAAAT
ACCTCCCGGCAATTTCTTGATCCACCGGACAGCTACGACTGGTCGTGGACCTCGATTGG
CACTGACGAGGCTATTGACACTGACTGCTGGGGGCTGTCCCAATGTGATGGAGGCTTCA
GCTGTCAGTTAGAGCCAACGCTGCCGGATCTACCTTCGCCCTTCGAGTCTACGGTTGAA
AAAGCTCCGTTGCCACCGGTATCGAGCGACATTGCTCGTGCGGCCAGTGCGCAACGAGA
GCTTTTCGATGACCTGTCGGCGGTGTCGCAGGAACTGGAAGAGATCCTTCTGGCCGTGA
CGGTAGAATGGCCGAAGCAGGAAATCTGGACCCATCCCATCGGAATGTTTTTCAATGCG
TCACGACGGCTTCTTACTGTCCTGCGCCAACAAGCGCAGGCCGACTGCCATCAAGGCAC
ACTAGACGAATGTTTACGGACCAAGAACCTCTTTACGGCAGTACACTGTTACATATTGA
ATGTGCGGATTTTGACCGCCATATCGGAGTTGCTCCTGTCGCAAATTAGGCGGACCCTG
AACAGCCATATGAGCCCACTGGAAGGGAGTCGATCCCAGTCGCCGAGCAGAGACGACAC
CAGCAGCAGCAGCGGCCACAGCAGTGTTGACACCATACCCTTCTTTAGCGAGAACCTCC
CTATTGGTGAGCTGTTCTCCTATGTTGACCCCCTGACACACGCCCTATTCTCGGCTTGC
ACTACGTTACATGTTGGGGTACAATTGCTGCGTGAGAATGAGATTACTCTGGGAGTACA
CTCCGCCCAGGGCATTGCAGCTTCCATCAGCATGAGCGGGGAACCAGGCGAGGATATAG
CCAGGACAGGGGCGACCAATTCCGCAAGATGCGAGGAGCAGCCGACCACTCCAGCGGCT
CGGGTTTTGTTCATGTTCTTGAGTGATGAAGGGGCTTTCCAGGAGGCAAAGTCTGCTGG
TTCCCGAGGTCGAACCATCGCAGCACTGCGACGATGCTATGAGGATATCTTTTCCCTCG
CCCGCAAACACAAACATGGCATGCTCAGAGACCTCAACAATATTCCTCCATGA
(SEQ ID N0:80) lovE-31 ATGGCTGCAGATCAAGGTATATTCACGAACTCCGTCACTCTCTCGCCAGTGGAGGGTTC
ACGCACCGGTGGAACATTACCCCGCCGTGCATTACGACGCTCTTGTGATCGGTGTCATG
CACAAA.AGATCAAATGTACTGGAAATAAGGAGGTTACTGGCCGTGCTCCCTGTCAGCGT
TGCCAGCAGGCTGGACTTCGATGCGTCTACAGTGAGCGATGCCCCAAGCGCAAGTTACG
CCAATCCAGGGCAGCGGATCTCGTCTCTGCTGACCCAGATCCCTGCTTGCACATGTCCT
CGCCTTCAGTGCCCTCACAGAGCTTGCCGCTAGACGTATCCGAGTCGCATTCCTCAAAT
ACCTCCCGGCAATTTCTTGATCCACCGGACAGCTACGACTGGTCGTGGACCTCGATTGG
CACTGACGAGGCTATTGACACTGACTGCTGGGGGCTGTCCCAACGTGATGGAGGCTTCA
GCTCTCAGTTAAAGCCAACGCTGCCGGATCTACCTTCGCCCTTCGAGTCTACGGTTGAA
AAA.GCTCCGTTGCCACCGGTATCGAGCGACATTGCTCGTGCGGCCAGTGCGCAACGAGA
GCTTTTCGATGACCTGTCGGCGGTGTCGCAGGAACTGGAAGAGATCCTTCTGGCCGTGA
CGGTAGAATGGCCGAAGCAGGAAATCTGGACCCATCCCATCGGAATGTTTTTCAATGCG
TCACGACGGCTTCTTACTGTCCTGCGCCAACAAGCGCAGGCCGACTGCCATCAAGGCAC
ACTAGACGAATGTTTACGGACCAAGAACCTCTTTACGGCAGTACACTGTTACATATTGA
ATGTGCGGATTTTGACCGCCATATCGGAGTTGCTACTGTCGCAAATTAGGCTGACCCAG
AACAGCCATATGAGCCCACTGGAAGGGAGTCGATCCCAGTCGCCGAACAGAGACGACAC
CAGCAGCAGCAGCGGCCACAGCAGTGTTGACACCATACCCTTCTTTAGCGAGAACCTCC
CTATTGGTGAGCTGTTCTCCTATGTTGACCCCCTGACACACGCCCTATTCTCGGCTTGC
ACTACGTTACATGTTGGGGTACAATTGCTGCGTGAGAATGAGATTACTCTGGGAGTACA
CTCCGCCCAGGGCATTGCAGCTTCCATCAGCATGAGCGGGGAACCAGGCGAGGATATAG
CCAGGACAGGGGCGACCAATTCCGCAAGATGCGAGGAGCAGCCGACCACTCCAGCGGCT
CGGGTTTTGTTCATGTTCTTGAGTGATGAAGGGGCTTTCCAGGAGGCAAAGTCTGCTGG
TTCCCGAGGTCGAACCATCGCAGCACTGCGACGATGCTATGAGGATATCTTTTCCCTCG
CCCGCAAACACAAACATGGCATGCTCAGAGACCTCAACAATATTCCTCCATGA
( SEQ ID NO : 81 ) lovE-32 ATGGCTGCAGATCAAGGTATATTCACTAACTCGGTCACTATCTCGCCAGTGGTGGGTTC
ACGCACCGGTGGAACATTACCCCGCCGTGCATTCCGACGCTCTTGTGATCGGTGTCATG
CACAAAAGATCAAATGTACTGGAAATAAGGAGGTTACTGGCCGTGCTCCCTGTCAGCGT
TGCCAGCAGGCTGGACTTCGATGCGTCTACAGTGAGCGATGCCCCAAGCGCAAGCTACG
CCAATCCAGGGCAGCGGATCTCGTCTCTGCTGACCCAGATCCCTGCTTGCACATGTCCT
CGCCTCCAGTGCCCTCACAGAGTTTGCCGCTAGACGTATCCGAGTCGCATTCCTCAAAT
ACCTCCCGGCAATTTCTTGATCCACCGGACAGCTACGACTGGTCGTGGACCTCGATTTG
CACTGACGAGGCTATTGACACTGACTGCTGGGGGCTGTCCCAATGTGATGGAGGCTTCA
GCTGTCAGTTAGAGCCAACGCTGCCGGATCTACCTTCGCCCTTCGAGTCTACGGTTGAA
AAAGCTCCGTTGCCACCGGTATCGAGCGACATTGCTCGTGCGGCCAGTGCGCAACGAGA
GCTTTTCGATGACCTGTCGGCGGTGTCGCAGGAACTGGAAGAGATCCTTCTGGCCGTGA
CGGTAGAATGGCCGAAGCAGGAA.ATCTGGACCCATCCCATCGGAATGTTTTTCAATGCG
TCACGACGGCTTCTTACTGTCCTGCGCCAACAAGCGCAGGCCGACTGCCATCAAGGCAC
ACTAGACGAATGTTTACGGACCAAGAACCTCTTTACGGCAGTACACTGTTACATATTGA
ATGTGCGGATTTTGACCGCCATATCGGAGTTGCTCCTGTCGCAAATTAGGCGGACCCAG
AACAGCCATATGAGCCCACTGGAAGGGAGTCGATCCCAGTCGCCGAGCAGAGACGACAC
CAGCAGCAGCAGCGGCCACAGCAGTGTTGACACCATACCCTTCTTTAGCGAGAACCTCC
CTATTGGTGGGCTGTTCTCCTATGTTGACCCCCTGACACACGCCCTATTCTCGGCTTGC
ACTACGTTACATGTTGGGCTACAATTGCTGCGTGAGAATGAGATTACTCTGGGAGTACA
CTCCGCCCAGGGCATTGCAGCTTCCATCAGCATGAGCGGGGAATCAGGCGAGGATATAG
CCAGGACAGGGGCGACCAGTTCCGCAAGATGCGAGGAGCAGCCGACCACTCCAGCGGCT
CGGGTTTTGTTCATGTTCTTGAGTGATGAAGGGGCTTTCCAGGAGGCAAAGTCTGCTGG
TTCCCGAGGTCGAACCATCGCAGCACTGCGACGATGCTATGAGGATATCTTTTCCCTCG
CCCGCAAACACAAACATGGCATGCTCAGAGACCTCAACAATATTCCTCCATGA
(SEQ ID N0:82) lovE-33 ATGGCTGCAGATCAAGGTATATTCACGAACTCGGTCACTCTCTCGCCAGTGGAGGGTTC
ACGCACCGGTGGAACATTACCCCGCCGTGCATTCCGACGCTCTTGTGATCGGTGTCATG
CACGAAAGATCAAATGTACTGGAAATAAGGAGGTTACTGGCCGTGCTCCCTGTCAGCGT
TGCCAGCAGGCTGGACTTCGATGCGTCTACAGTGAGCGATGCCCCAAGCGCAAGCTACG
CCAATCCAGGGCAGCGGATCTCGTCTCTGCTGACCCAGATCCCTGCTTGCACATGTCCT
CGCCTCCAGTGCCCTCACAGAGCTTGCCGCTAGACGTATCCGAGTCGCATTCCTCAA.AT
ACCTCCCGGCAATTTCTTGATCCACCGGACAGCTACGACTGGTCGTGGACCTCGATTGG
CACTGACGAGGCTATTGACACTGACTGCTGGGGGCTGTCCCAATGTGATGGAGGCTTCA
GCTGTCAGTTAGAGCCAACGCTGCCGGATCTACCTTCGCCCTTCGAGTATACGGTTGAA
AAAGCTCCGTTGCCACCGGTATCGAGCGACATTGCTCGTGCGGCCAGTGCGCAACGAGA
GCTTTTCGATGACCTGTCGGCGGTGTCGCAGGAACTGGAAGAGATCCTTCTGGCCGTGA
CGGTAGAATGGCCGAAGCAGGAAATCTGGACCCATCCCATCGGAATGTTTTTCAATGCG
TCACGACGGCTTCTTACTGTCCTGCGCCAACAAGCGCAGGCCGACTGCCATCAAGGCAC
ACTAGACGAATGTTTACGGACCAAGAACCTCTTTACGGCAGTACACTGTTACATATTGA
ATGTGCGGATTTTGACCGCCATATCGGAGTTGCTCCTGTCGCAAATTAGGCGGACCCAG
AACAGCCATATGAGCCCACTGGAAGGGAGTCGATCCCAGTCGCCGAGCAGAGACGACAC
CAGCAGCAGCAGCGGCCACAGCAGTGTTGACACCATACCCTTCTTTAGCGAGAACCTCC
CTATTGGTGAGCTGTTCTCCTATGTTGACCCCCTGACACACGCCCTATTCTCGGCTTGC
ACTACGTTACATGTTGGGGTACAATTGCTGCGTGAGAATGAGATTACTCTGGGAGTACA
CTCCGCCCAGGGCATTGCAGCTTCCATCAGCATGAGCGGGGAACCAGGCGAGGATATAG
CCAGGACAGGGGCGACCAATTCCACAAGATGCGAGGAGCAGCCGACCACTCCAGCGGCT
CGGGTTTTGTTCATGTTCTTGAGTGATGAAGGGGCTTTCCAGGAGGCAAAGTCTGCTGG
TTCCCGAGGTCGAACCATCGCAGCACTGCGACGATGCTATGAGGATATCTTTTCCCTCG
CCCGCAAACACAA.ACATGGCATGCTCAGAGACCTCAACAATATTCCTCCATGA
(SEQ ID N0:83) lovE-34 ATGGCTGCAGATCAAGGTATATTCACGAACTCGGTCACTCTCTCGCCAGTGGAGGGTTC
ACGCACCGGTGGAACATTACCCCGCCGTGCATTGCGACGCTCTTGTGATCGGTGTCATG
CACAAAAGATCAAATGTACTGGAAATAAGGAGGTTATTGGCCGTGCTCCCTGTCAGCGT
TGCCAGCAGGCTGGACTTCGATGCGTATACAGTGAGCGATGCCCCAAGCGCAAGCTACG
CCAATCCAGGGCAGCGGATCTCGTCTCTGCTGACCCAGATCCCTGCTTGCACATGTCCT
CGCCTCAAGTGCCCTCACAGAGCTTGTCGCTAGACATATCCGAGTCGCATTCCTCAAAT
ACCTCCCGGCAATTTCTTGATCCACCGGACAGCTACGACTGGTCGTGGACCTCGATTGG
CACTGACGAGGCTATTGACACTGACTGCTGGGGGCTGTCCCAATGTGATGGAGGCTTCA
GCTGTCAGTTAGAGCCAACGCTGCCGGATCTACCTTCGCCCTTCGAGTCTACGGTTGAA
AAAGCTCCGTTGCCACCGGTATCGAGCGACATTGCTCGTGCGGCCAGTGCGCAACGAGA
GCTTTTCGATGACCTGTCGGCGGTGTCGCAGGAACTGGAAGAGATCCTTCTGGCCGTGA
CGGTAGAATGGCCGAAGCAGGAA.ATCTGGACCCATCCCATCGGAATGTTTTTCAATGCG
TCACGACGGCTTCTTACTGTCCTGCGCCAACAAGCGCAGGCCGACTGCCATCAAGGCAC
ACTAGACGAATGTTTACGGACCAAGAACCTCTTTACGGCAGTACACTGTTACATATTGA
ATGTGCGGATTTTGACCGCCATATCGGAGTTGCTCCTGTCGCAAATTAGGCGGACCCAG
AACAGCCATATGAGCCCACTGGAAGGGAGTCGATCCCAGTCGCCGAGCAGAGACGACAC
CAGCAGCAGCAGCGGCCACAGCAGTGTTGACACCATACCCTTCTTTAGCGAGAACCTCC
CTATTGGTGAGCTGTTCTCCTATGTTGACCCCCTGACACACGCCCTATTCTCGGCTTGC
ACTACGTTACATGTTGGGGTACAATTGCTGCGTGAGAATGAGATTACTCTGGGAGTACA
CTCCGCCCAGGGCATTGCAGCTTCCATCAGCATGAGCGGGGAACCAGGCGAGGATATAG
CCAGGACAGGGGCGACCAATTCCGCAAGATGCGAGGAGCAGCCGACCACTCCAGCGGCT
CGGGTTTTGTTCATGTTCTTGAGTGATGAAGGGGCATTCCAGGAGGCAAAGTCTGCTGG
TTCCCGAGGTCGAACCATCGCAGCACTGCGACGATGCTATGAGGATATCTTTTCCCTCG
CCCGCAAA.CACAAACATGGCATGCTCAGAGACCTCAACAATATTCCTCCATGA
(SEQ ID N0:84) lovE-36 ATGGCTGCAGATCAAGGTATATTCACGAACTCGGTCACTCTCTCACCAGTGGAGGGTTC
ACGCACCGGTGGAACATTACCCCGCCGTGCATTCCGACGCTCTTGTGATCGGTGTCATG
CACAAAAGATCAAATGTACTGGAAATAAGGAGGTTACTGGCCGTGCTCCCTGTCAGCGT
TGCCAGCAGGCTGGACTTCGATGCGTCTACAGTGAGCGATGCCCCAAGCGCAAGCTACG
CCAATCCAGGGCAGCGAATCTCGTCTCTGCTGACCCAGATCCCTGCTTACACATGTCCT
CGCCTCCAGTGCCCTCACAGAGCTTGCCGCTAGACGTATCCGAGTCGCATTCCTCAAAT
ACCTCCCGGCAATTTCTTGATCCACCGGACAGCTACGACTGGTCGTGGACCTCGATTGG
CACTGACGAGGCTTTTGACACTGACTGCTGGGGGCTATCCCAATGTGATGGAGGCTTCA
GCTGTCAGCTAGAGCCAACGCTGCCGGATCTACCTTCGCCCTTCGAGTCTACGGTTGAA
AAAGCTCCGTTGCCACCGGTATCGAGCGACATTGCTCGTGCGGCCAGTGCGCAACGAGA
GCTTTTCGATGACCTGTCGGCGGTGTCGCAGGAACTGGAAGAGATCCTTCTGGCCGTGA
CGGTAGAATGGCCGAAGCAGGAAATCTGGACCCATCCCATCGGAATCTTTTTCAATGCG
TCACGACGGCTTCTTACTGTCCTGCGCCAGCAAGCGCAGGCCGACTGCCATCAAGGCAC
ACTAGACGAATGTTTACGGACCAAGAACCTCTTTACGGCAGTACACTGTTACATATTGA
ATGTGCGGATTTTGACCGCCATATCGGAGTTGCTCCTGTCGCAAATTAGGCGGACCCAG
AACAGCCATATGAGCCCACTGGAAGGGAGTCGATCCCAGTCGCCGAGCAGAGACGACAT
CAGCAGCAGCAGCGGCCACAGCAGTGTTGACACCATACCCTTCTTTAGCGAGAACCTCC
CTATTGGTGAGCTGTTCTCCTATGTTGACCCCCTGACACACGCCCTATTCTCGGCTTGC
ACTACGTTACATGTTGGGGTACAATTGCTGCGTGAGAATGAGATTACTCTGGGAGTACA
CTCCGCCCAGGGCATTGCAGCTTACATCAGCAAGAGCGGGGAACCAGGCGAGGATATAG
CCAGGACAGGGGCGACCAATTCCGCAAGATGCGAGGAGCAGCCGACCACTCCAGCGGCT
CGGGTGTTGTTCATGTTCTTGAGTGATGAAGGGGCTTTCCAGGAGGCAAAGTCTGCTGG
TTCCCGAGGTCGAACCATCGCAGCACTGCGACGATGCTATGAGGATATCTTTTCCCTCG
CCCGCAA.ACACAAA.CATGGCATGCTCAGAGACCTCAACAATATTCCTCCATGA
(SEQ ID N0:85) IovE-37 ATGGCTGCAGATCAAGGTATATTCACGAACTCGGTCACTCTCTCGCCAGTGGAGGGTTC
ACGCACCGGTGGAACATTACCCCGCCGTGCATTCCGACGCTCTTGTGATCGGTGTCATG
CACAAA.AGATCAAATGTATTGGAAATAAGGAGGTTACTGGCCGTGCTCCCTGTCAGCGT
TGCCAACGGGCTGGACTTCGATGCGTCTACAGTGAGCGATGCCCCAAGCGCAGGCTACG
CCAATCCAGGGCAGCGGATCTCGTCTCTGCTGACCCAGATCCCTGCTTGCACATGTCCT
CGCCTCCAGTGCCCTCACAGAGCTTGCCGCTAGACGTATCCGAGTCGCATTCCTCAAAT
ACCTCCCGGCAATTTCTTGATCCACCGGACAGCTACGACTGGTCGTGGACCTCGATTGG
CACTGACGAGGCTATTGACACTGACTGCTGGGGGCTGTCCCAATGTGATGGAGGCTTCA
GCTGTCAGTTAGAGCCAACGCTGCCGGATCTACCTTCGCCCTTCGAGTCTACGGTTGAA
AAAGCTCCGTTGCCACCGGTATCGAGCGACATTGCTCGTGCGGCCAGTGCGCAACGAGA
GCTTTTCGATGACCTGTCGGCGGTGTCGCAGGAACTGGAAGAGATCCTTCTGGCCGTGA
CGGTAGAATGGCCGAAGCAGGAAA.TCTGGACCCATCCCATCGGAATGTTTTTCAATGCT
TCACGACGGCTTCTTACTGTCCTGCGCCAACAAGCTCAGGCCGACTGCCATCAAGGCAC
ACTAGACGAATGTTTACGGACCAAGAACCTCTTTACGGCAGTACACTGTTACATATTGA
ATGTGCGGATTTTGACCGCCATATCGGAGTTGCTCCTGTCGCAAATTAGGCGGACCCAG
AACAGCCATATGAGCCCACTGGAAGGGAGTCGATCCCAGTCGCCGAGCAGAGACGACAC
CAGCAGCAGCAGCGGCCACAGCTGTGTCGACACCATACCCTTCTTTAGCGAGAACCTCC
CTATTGGTGAGCTGTTCTCCTATGTTGACCCCCTGACACACGCCCTATTCTCGGCTTGC
ACTACGTTACATGTTGGGGTACAATTGCTGCGTGAGTATGAGATTACTCTGGGAATACA
CTCCGCCCAGGGCATTGCAGCTTCCATCAGCATGAGCGGGGAACCAGGCGAGGATATAG
CCAGGACAGGGGCGACCAATTCCGCAAGATGCGAGGAGCAGCCGACCACTCCAGCGGCT
CGGGTTTTGTTCATGTTCTTGAGTGATGAAGGGGCTTTCCAGGAGGCAAAGTCTGCTGG
TTCCCGAGGTCGAACCATCGCAGCACTGCGACGATGCTATGAGGATATCTTTTCCCTCG
CCCGCAAACACAAACATGGCATGCTCAGAGATCTCAACAATATTCCTCCATGA
(SEQ ID N0:86) IovE-38 ATGGCTGCAGATCAAGGTATATTCACGAACTCGGTCACTCTCTCGCCAGTGGAGGGTTC
ACGCACCGGTGGAACATTACCCCGCCGTGCATTCCGACGCTCTTGTGATCGGTGTCATG
CACGAAAGATCAAATGTACTGGAAATAAGGAGGTTACTGGCCGTGCTCCCTGTCAGCGT
TGCCAGCAAGCTGGACTTCGATGCGTCTATAGTGAGCGATGCCCCAAGCGCAAGCTACG
CCAATCCAGGGCAGCGGATCTCGTCTCTGCTGACCCAGATCCCTGCTTGCACATGTCCT
CGCCTCCAGTGCCCTCACAGAGCTTGCCGCTAGACGTATCCGAGTCGCATTCCTCAAAT
ACCTCCCGGCAATTTCTTGATCCACCGGACAGCTACGACTGGTCGTGGACCTCGATTGG
CACTGACGAGGCTATTGACACTGACTGCTGGGGGCTGTCCCAATGTGATGGAGGCTTCA
GCTGTCAGCTAGAGCCAACGCTGCCGGATCTACCTTCGCCCTTCGAGTCTACGGTTGAA
AAAGCTCCGTTGCCACCGGTATCGAGCGACATTGCTCGTGCGGCCAGTGCGCAACGAGA
GCTTTTCGATGACCTGTCGGCGGTGTCGCAGGAACTGGAAGAGATCCTTCTGGCCGTGA
CGGTAGAATGGCCGAAGCAGGAAATCTGGACCCATCCCATCGGAATGTTTTTCAATGCG
TCACGACGGCTTCTTACTGTCCTGCGCCAACAAGCGCAGGCCGACTGCCATCAAGGCAC
ACTAGACGAATGTTTACGGACCAAGAACCTCTTTACGGCAGTACACTGTTACATATTGA
ATGTGCGGATTTTGACCGCCATATCGGAGTTGCTCCTGTCGCAA.ATTAGGCGGATCCAG
AACAGCCATATGAGCCCACTGGAAGGGAGTCGATCCCAGTCGCTGAGCAGAGACGACAC
CAGCAGCAGTAGCGGCCACAGCAGTGTTGACACCATACCCTTCTTTAGCGAGAACCTCC
CTATTGATGAGCTGTTCTCCTATGTTGACCCCCTGACACACGCCCTATTCTCGGCTTGC
ACTACGTTACATGTTGGGGTACAATTGCTGCGTGAGAATGAGATTACTCTGGGAGTACA
CTCCGCCCAGGGCATTGCAGCTTCCATCAGCATGAGCGGGGAACTAGGCGAGGATATAG
TCAGGACAGGGGCGACCAATTCCGCAAGATGCGAGGAGCAGCCGACCACTCCAGCGGCT
CGGGTTTTGTTCATGTTCTTGAGTGATGAAGGGGCTTTCCAGGAGGCAAAGTCTGCTGG
TTCCCGAAGTCGAACCATCGCAGCACTGCGACGATGCTATGAGGATATCTTTTCCCTCG
CCCGCAAACACAAACATGGCATGCTCAGAGACCTCAACAATATTCCTCCATGA
(SEQ ID N0:87) lovE-39 ATGGCTGCAGATCAAGGTATATTCACGAACTCGGTCACTCTCTCACCAGTGGAGGGTTC
ACGCACCGGTGGAACATTACCCCGCCGTGCATTCCGACGCTCTTGTGATCGGTGTCATG
CACAAAAGATCAAATGTACTGGAAATAAGGAGGTTAATGGCCGTGCTCCCTGTCAGCGT
TGCCAGCAGGCTGGACTTCGATGCGTCTACAGTGAGCGATGCCCCAAGCGCAAGCTACG
CCAATCCAGGGCAGCGGATCTCGTCTCTGCTGACCCAGATCCCTGCTTGCACATGTCCT
CGCCTCCAGTGCCCTCCCAGAGCTTGCCGCTAGACATATCCGAGTCGCATTCCTCAAAT
ACCTCCCGGCAATTTCTTGATCCACCGGACAGCTACGACTGGTCGTGGACCTCGATTGG
CATTGACGAGGCTATTGACACTGACTGCTGGGGGCTGTCCCAATGTGATGGAGGCTTCA
GCTGTCAGTTAGAGCCAACGCTGCCGGATCTACCTTCGCCCTTCGAGTCTACGGTTGAA
AAAGCTCCGTTGCCACCGATATCGAGCGACATTGCTCGTGCGGCCAGTGCGCAACGAGA
GCTTTTCGATGACCTGTCGGCGGTGTCGCAGGAACTGGAAGAGATCCTTCTGGCCGTGA
CGGTAGAATGGCCGAAGCAGGAAATCTGGACCCATCCCATCGGAATGTTTTTCAATGCG
TCACGACGGCTTCTTACTGTCCTGCGCCAACAAGCGCAGGCCGACTGCCATCAAGGCAC
ACTAGACGAATGTTTACGGACCAAGAACCTCTTTACGGCAGTACACTGTTACATATTGA
ATGTGCGGATTTTGGCCGCCATATCGGAGTTGCTCCTGTCGCAAATTAGGCGGACCCAG
AACAGCCATATGAGCCCACTGGAAGGGAGTCGATCCCAGTCGCCGAGCAGAGACGACAC
CAGCAGCAGCAGCGGCCACAGCAGTGTTGACACCATACCCTTCTTTAGCGAGAACCTCC
CTATTGGTGAGCTGTTCTCCTATGTTGACCCCCTGACACACGCCCTATTCTCGGCTTGC
ACTACGTTACATGTTGGGGTACAATTGCTGCGTGAGAATGAGATTACTCTGGGAGTACA
CTCCGCCCAGGGCATTGCAGCTTCCATCAGCATGAGCGGGGAACCAGGCGAGGATATAG
CCAGGACAGGGGCGACCAATTCCGCAAGATGCGAGGAGCAGCCGACCACTCCAGCGGCT
CGGGTTTTGTTCATGTTCTTGAGTGATGAAGGGGCTTTCCAGGAGGCAAAGTCTGCTGG
TTCCCGAGGTCGAACCATCGCAGCACTGCGACGATGCTATGAGGATATCTTTTCCCTCG
CCCGCAAACACAAACATGGCATGCTCAGAGACCTCAACAATATTCCTCCATGA
(SEQ ID N0:88) lovE-40 ATGGCTGCAGAACAAGGTATATTCACGAACTCGGTCACTCTCTCGCCAGTGGAGGGTTC
ACGCACCGGTGGAACATTACCCCGCCGTGCATTCCGACGCTCTTGTGATCGGTGTCATG
CACGAAAGATCAAATGTACTGGAAATAAGGAGGTTACTGGCCGTGCTCCCTGTCAGCGT
TGCCAGCAGGCTGGACTTCGATGTGTCTACAGTGAGCGATGCCCCAAGCGCAAGCTACG
CCAATCCAGGGCAGCGGATCTCATCTCTGCTGACCCAGATCCCTGCTTGCACATGTCCT
CGCCTCCAGTGCCCTCACAGAGCTTGCCGCTAGAAGTATCCGAGTCGCATTCCTCAAAT
ACCTCCCGGCAATTTCTTGATCCACCGGACAGCTACGACTGGTCGTGGACCTCGATTGG
CACTGACAAGGCTATTGACACTGACTGCTGGGGGCTGTCCCAATGTGATGGAGGCTTCA
GCTGTCAGTTAGAGCCAACGCTGCCGGATCTACCTTCGCCCTTTGAGTCTACGGTTGAA
AAAGCTCCGTTGCCACCGGTATCGAGCGACATTACTCGTGCGGCCAGTGCGCAACGAGA
GCTTTTCGATGACCTGTCGGCGGTGTCGCAGGAACTGGAAGAGATCCTTCTGGCCGTGA
CGGTAGAATGGCCGAAGCAGGAAATCTGGACCCATCCCATCGGAATGTTTTTCAATGCG
TCACGACGGCTTCTTACTGTCCTGCGCCAACAAGCGCAGGCCGACTGCCATCAAGGCAC
-ACTAGACGAATGTTTACGGACCAAGAACCTCTTTACGGCAGTACACTGTTACATATTGG
ATGTGCGGATTTTGACCGCCATATCGGAGTTGCTCCTGTCGCAAATTAGGCGGACCCAG
AACAGCCATATGAGCCCACTGGAAGGGAGTCGATCCCAGTCGCCGAGCAGAGACGACAC
CAGCAGCAGCAGCGGCCACAGCAGTGTTGACACCATACCCTTCTTTAGCGAGAACCTCC
CTATTGGTGAGCTGTTCTCCTATGTTGACCCCCTGAGACACGCCCTATTCTCGGCTTGC
ACTACGTTACATGTTGGGGTACAATTGCTGCGTGAGATTGAGATTACTCTGGGAGTACA
CTCCGCCCGGGGCATTGCAGCTTCCATCAGCATGAGCGGGGAACCAGGCGAGGATATAG
CCAGGACAGGGGCGACCAATTCCGCAAGATGCGAGGAGCAGCCGACCACTCCAGCGGCT
CGGGTTTTGTTCATGTTCTTGAGTGATGAAGGGACTTTCCAGGAGGCAAAGTCTGCTGG
TTCCCGAGGTCGAACCATCGCAGCACTGCGACGATGCTATGAGGATATCTTTTCCCTCG
CCCGCAAACACAA.ACATGGCATGCTCAGAGACCTCAACAATATTCCTCCATGA
(SEQ ID N0:89) IovE-41 ATGGCTGCAGATCAAGGTATATTCACGAACTCGGTCACTCTCTCGCCAGTGGAGGGTTC
ACGCACCGGTGGAACATTACCCCGCCGTGCATTCCGACGCTCTTGTGATCGGTGTCATG
CACAAAAGATCAAATGTACTGGAAATAAGGAGGTTACTGGCCGTGCTCCCTGTCAGCGT
TGCCAGCAGGCTGGACTTCGATGCGTCTACAGTGAGCGATGCCCCAAGCGCAAGCTACG
CCAATCCAGGGCAGCGGATCTCGTCTCTGCTGACCCAGATCCCTGCTTGCACATGTCCT
CACCTCCAGTGCCCTCACAGAGCTTGCCGCTAGACGTATCCGAGTCGCATTCCTCAAAT
ACCTCCCGGCAATTTCTTGATCCACCGGACAGCTACAACTGGTTGTGGACCTCGATTGG
CACTGACGAGGCTATTGACACTGACTGCTGGGGGCTGTCCCAATGTGATGGAGGCTTCA
GCTGTCAGTTAGAGCCAACGCTGCCGGATCTACCTTCGCCCTTCGAATCTACGGTTGAA
AAAGCTCCGTTGCCACCGGTATCGAGCGACATTGCTCGTGCGGCCAGTGCGCAACGAGA
GCTTTTCGATGACCTGTCGGCGGTGTCGCAGGAACTGGAAGAGATCCTTCTGGCCGTGA
CGGTAGAATGGCCGAAGCAGGAAATCTGGACCCATCCCATCGGAATGTTTTTCAATGCG
TCACGACGGCTTCTTACTGTCCTGCGCCAACAAGCGCAGGCCGACTGCCATCAAGGCAC
ACTAGACGAATGTTTACGGACCAAGAACCTCTTTACGGCAGTACACTGTTACATATTGA
ATGTGCGGATTTTGACCGCCATATCGGAGTTGCTCCTGTCGCAAATTAGGCGGACCCAG
AACAGCCATATGAGCCCACTGGAAGGGAGTCGATCCCAGTCGCCGAGCGGAGACGACAC
CAGCAGCAGCAGCGGCCACAGCAGTGTTGACACCATACCCTTCTTTAGCGAGAACCTCC
CTATTGGTGAGCTGTTCTCCTATGTTGACCCCCTGACACACGCCCTATTCTCGGCTTGC
ACTACGTTACATGTTGGGGTACAATTGCTGCGTGAGAATGAGATTACTCTGGGAGTACA
CTCCGCCCAGGGTATTGCAGCTTCCATCAGCATGAGCGGGGAACCAGGCGAGGATATAG
CCAGGACAGGGGCGACCAATTCCGCAAGATGCGAGGAGCAGCCGACCACTCCAGCGGCT
CGGGTTTTGTTCATGTTCTTGAGTGATGAAGGGGCTTTCCAGGAGGGAAAGTCTGCTGG
TTCCCGAGGTCGAACCATCGCAGCACTGCGACGATGCTATGAGGATATCTTTTCCCTCG
CCCGCAAACACAAACATGGCATGCTCAGAGACCTCAACAATATTCCTCCATGA
(SEQ ID N0:90) Table 7: Amino Acid Sequence of ZovE Variants at242 and LovE at242 mtqdtaqyrgamaadqgiftnsvtlspvegsrtggtlprrafrrscdrchaqkikctgn kevtgrapcqrcqqaglrcvysercpkrklrqsraadlvsadpdpclhmssppvpsqsl pldvseshssntsrqfldppdsydwswtsigtdeaidtdcwglsqcdggfscqleptlp dlpspfestvekaplppvssdiaraasaqrelfddlsavsqeleeillavtvewpkqei wthpigmffnasrrlltvlrqqaqadchqgtldeclrtknlftavhcyilnvriltais elllsqirrtqnshmsplegsrsqspsrddtssssghssvdtipffsenlpigelfsyv dplthalfsacttlhvgvqllreneitlgvhsaqgiaasismsgepgediartgatnsa rceeqpttpaarvlfmflsdegafqeaksagsrgrtiaalrrcyedifslarkhkhgml rdlnnipp (SEQ ID N0:93) LovE at242 mlmtqdtaqyrgamaadqgiftnsvtlspvegsrtggtlprrafrrscdrchaqkikct gnkevtgrapcqrcqqaglrcvysercpkrklrqsraadlvsadpdpclhmssppvpsq slpldvseshssntsrqfldppdsydwswtsigtdeaidtdcwglsqcdggfscqlept lpdlpspfestvekaplppvssdiaraasaqrelfddlsavsqeleeillavtvewpkq eiwthpigmffnasrrlltvlrqqaqadchqgtldeclrtknlftavhcyilnvrilta iselllsqirrtqnshmsplegsrsqspsrddtssssghssvdtipffsenlpigelfs yvdplthalfsacttlhvgvqllreneitlgvhsaqgiaasismsgepgediartgatn sarceeqpttpaarvlfmflsdegafqeaksagsrgrtiaalrrcyedifslarkhkhg mlrdlnnipp (SEQ ID N0:94) Equivalents Those skilled in the art will recognize, or be able to ascertain, using no more than routine experimentation, many equivalents to the specific embodiments of the invention described herein. Such equivalents are intended to be encompasssed by the following claims.
8o
(7) a Group 1 amino acid residue mutated to a Group 3 amino acid residue at position 101, for example, the mutation represented by PlOlQ; (8) a valine amino acid residue mutated to another Group 2 amino acid residue at position 111, for example, the mutation represented by V 11 l I; (9) a Group 4 amino acid residue mutated to a Group 2 amino acid residue at position 133, for example, the mutation represented by S133L; (10) a Group 3 amino acid residue mutated to a Group 2 amino acid residue at position 141, for example, the mutation represented by E141V; (11) a Group 3 amino acid residue mutated to a Group 5 amino acid residue at position 141, for example, the mutation represented by E141K; (12) a Group 4 amino acid residue mutated to Group 6 amino acid residue at position 153, for example, the mutation represented by C153Y; (13) a Group 4 amino acid residue mutated to a Group 5 amino acid residue at position 153, for example, the mutation represented by C153R; (14) a Group amino acid residue mutated to a Group 1 amino acid residue at position 281, for ~5 example, the mutation represented by T281A; (15) a Group 3 amino acid residue mutated to a Group 2 amino acid residue at position 367, for example, the mutation represented by N367I; (16) a Group 3 amino acid residue mutated to a Group 6 amino acid residue at position 367, for example, the mutation represented by N367Y;
(17) a Group 1 amino acid residue mutated to Group 4 amino acid residue at position 389, 2o for example, the mutation represented by P389S; and/or (18) a Group 1 amino acid residue mutated to a Group 2 amino acid residue at position 389, for example, the mutation represented by P389L.
In a sixth aspect, the invention provides a fungus having improved lovastatin production made by the process of transforming a fungal cell with a nucleic acid 25 molecule encoding a variant of the lovE protein of the first aspect of the invention. In an embodiment thereof, the nucleic acid molecule is selected from a nucleic acid molecule of the second aspect of the invention.
In a seventh aspect, the invention provides an improved process for making lovastatin comprising transforming a fungal cell with a nucleic acid molecule 3o encoding a variant of the lovE protein of the first aspect of the invention. In an embodiment thereof, the fungal cell is transformed with a nucleic acid molecule of the second aspect of the invention.
International Patent Application PCT/US99/29583 discloses lovastatin production genes. However, this reference does not provide a mature lovE cDNA
sequence. The invention herein remedies the shortcoming of this reference by providing a complete cDNA sequence for the lovE mRNA.
The following examples illustrate the preferred modes of making and practicing the present invention but are not meant to limit the scope of the invention since alternative methods may be utilized to obtain similar results.
EXAMPLES
Example 1: Preparation of Strains and Plasmids Strain MY2124 was derived from the Sigma 1278b strain background of S.
cerevisiae and its complete genotype is as follows: MATerlMATa::LEU2 ura3d0 ~ 5 /u~a3d0 leu~d0/leu2d0 trpl d0: : hisGlt~pl d0: : hisG lzis3d0: :
hisGlhis3d0: : laisG
u~~a3d0:: love HIS3p-neoluYa3d0. MY2124 can be constructed by mating S.
ee~evisiae strains MY2112 (MATa ura3d0 leu2d0 trpl d0:: hisG his3d0:: laisG
ura3d0::lovFp-HIS3p-raeo) with MY1555 (matct.~:LEU2 ura3d0 leu2d0 t~pld0::hisG
his3d0: : hisG) and isolating zygotes. The ura3d0: : lovFp-HIS3p-~ceo allele of 2o MY2112 was derived by cotransforming SfiI-linearized plasmid MB2254 with pRS424 (Sikorski and Hieter (1989) Genetics 122:19-27) into MY1413 (MATa leu2d0 trpl d0: : hisG lzis3d0:: hisG). Transformants were selected on SC-Trp media and subsequently screened for 5-fluoro-orotic acid resistance to identify those transformants containing the ura3d0.~:lovFp-HIS3p-raeo allele. Trp segregants 25 lacking plasmid pRS424 were isolated by growing the strain under non-selective conditions.
The following oligonucleotides were used in the construction of plasmids.
Table 2: Oligonucleotides Utilized For LovE Variant Cloning (5'GGCCATGGAGGCCGCTAGCTCGAGTCGACGGCCTAGGTGGCCAGCT3') (SEQ
ID N0:1) (5'GGCCACCTAGGCCGTCGACTCGAGCTAGCGGCCTCCATGGCCGTAC3') (SEQ
ID N0:2) MO666 (5'GGCGGCCGCTCTAGAACTAGTCTCGAGGGTACC3') (SEQ ID
N0:3) M0667 (5'GGTACCCTCGAGACTAGTTCTAGAGCGGCCGCC3') (SEQ ID
N0:4) M01794 (5' CACAGCGGCCGCTCAACCTTCCCATTGGGGC3') (SEQ ID
N0:5) M01793 (5'CACCACTAGTACGCGGGCTGATTCGAC3') (SEQ ID N0:6) M01785 (5'CACCACTAGTTATACATTATATAAAGTAATGTG3') (SEQ ID
N0:7) M01786 (5'CACAGGATCCGTCATCTTTGCCTTCGTTTATC3') (SEQ ID
NO:8) M0195 (5'CGCGGATCCTATTGAACAAGATGGATTGCAC3') (SEQ ID
N0:9) M0196 (5'CCGGAATTCAGAAGAACTCGTCAA.GAAG3') (SEQ ID
N0:10) M0841 (5' ACAAAAAAGCAGGCTCCACAATGGCTGCAGATCAAGGTAT3') (SEQ ID N0: 11) M0842 (5' ACAAGAAAGCTGGGTTCATGGAGGAATATTGTTGA3') (SEQ
ID N0:12) M02278 (5' GGGGATCCAATCGAGGTCCACGACCAGT3') (SEQ ID
N0:13) M0343 (5' GGGGACAAGTTTGTAC'AP~AA.AAGCAGGCT3' ) (SEQ ID
N0:14) M02273 (5' GGGGATCCGCCAATGGTCCCGTTCAAAC3') (SEQ ID
N0:15) M02274 (5' ACAAGAA.AGCTGGGTTCACAGAATGTTTAGCTCAA3') (SEQ
ID N0:16) M0344 (5' GGGGACCACTTTGTACAAGAA.AGCTGGGT3') (SEQ ID
N0:17) M02624 (5'GCGATGCCCCAAGCGCAAGCTACGCCAATCCAGGG3') (SEQ
ID N0:18) M02654 (5'CGTCGCGCCATTCGCCATTCAGGCTGCGCAACTGT3') (SEQ
ID N0:19) M02680 (5'GGACCTTTGCAGCATAAATTACTATACTTCT3') (SEQ ID
N0:20) M02686 (5'GGCGCGTCCATTCGCCATTCAGGCTGCGCAACTGT3') (SEQ
ID N0:21) M02 6 81 ( 5 ' TAAA.ACTCTTGTTTTCTTCTTTTCTCTAAA.T3 ' ) ( SEQ ID
N0:22) M02700 (5'CAGTGAGCGCGCGTAATACGACTCACTATAGGGCGA3') (SEQ
ID N0:23) M02701 (5' ATACTTCTATAGACACACAAACACAA.ATACACACAC3') (SEQ ID N0:24) M0107 (5'CGCGGATCCCGTCGTTTTACAAC3') (SEQ ID N0:25) M0197 (5'CCCAAGCTTATTATTTTTGACACCAGACCAA3') (SEQ ID
N0:26) M01293 (5'GGAAGATCTAGCATCGTGGCCAATTTCTTCTAGTTT3') (SEQ
ID N0:27) M01294 (5'ATAAGAATGCGGCCGCTCAACCTTCCCATTGGGGCGTTTGC3') (SEQ TD N0:28) M01787 (5'CACAGGATCCAGCATTATTAATTTAGTGTGTGTATTT3') ( SEQ ID
NO : 2 9 ) M01788 (5'CACCACTAGTCTCGAGCAGATCCGCCAG3') (SEQ ID
N0:30) M01793 (5'CACCACTAGTACGCGGGCTGATTCGAC3') (SEQ ID
N0:31) M01794 (5'CACAGCGGCCGCTCAACCTTCCCATTGGGGC3') (SEQ ID
N0:32) M0511 (5'GGCCATCGATACAAGTTTGTACA1~A.AAAGCTGAAC3') (SEQ
ID N0:33) M0540 (5'GGCGCCCTATTACACCACTTTGTACAAGAAAGC3') (SEQ ID
N0:34) M01985 (5'CACACGTCTCCGGCCTCAACCTTCCCATTGGGGCG3') (SEQ
ID N0:35) M01986 (5'CACACAGATCTCGTGGCCAATTTCTTCTAGTTTGA3') (SEQ
ID N0:36) M01992 (5'CACACGGATCCACAATGTTACGTCCTGTAGAAACCCC3') (SEQ ID 37) N0:
MO1993 (5'CACAGCGGCCGCTTCATTGTTTGCCTCCCTGCTG3') (SEQ
ID N0:38) M0316 (5'GCGGCCGCGGCGCCCGGCCCATGTCAACAAGAAT3') (SEQ ID
N0:39) M0318 (5'CCGCGGCCGAGTGGAGATGTGGAGT3') (SEQ ID N0:40) Plasmid MB2254 contains the lovFp-HIS3p-neo reporter gene flanked by URA3 sequence. First primers M0664 (SEQ ID NO:l) and M0665 (SEQ ID N0:2) were annealed and inserted into the KptaI-SacI sites of plasmid pBluescript II
KS
(Stratagene,). The resulting vector, MB1038, contains a SaII site in the polylinker.
Next, the SpeI XhoI fragment from pJL164 (Brachmann et al. Yeast 14:115-132 (1998)) containing a deletion of the URA3 gene with additional flanking sequences was inserted into the NheI-SaII sites of MB1038 to create MB1053. Primers (SEQ ID N0:3) and M0667 (SEQ ID NO:4) that contain multiple restriction sites (NotI, XbaI, SpeI, lPIzoI and Kpnn were then annealed together and ligated into the SmaI site of MB 1053 to create MB 1054. Next, the following four fragments were combined in MB1054 to obtain plasmid MB2254. The ZovF promoter from A. terreus genomic DNA was PCR amplified with M01794 (SEQ ID NO:S) and M01793 (SEQ
~ 5 ID NO:6) and inserted into MB 1054 on a NotI-SpeI fragment. The HIS3 basal promoter from pRS403 (Sikorski and Hieter, Genetics 122:19-27 (1989)) was PCR
amplified with primers M01785 (SEQ ID N0:7) and M01786 (SEQ ID N0:8) and inserted into MB1054 on a SpeI-BamHI fragment. Finally, the neo gene (PCR
amplified with M0195 (BamHT) (SEQ ID NO:) and MO196 (EcoR1) (SEQ ID
NO:10) from plasmid pYXl 1 (Xiao and Weaver, Nucl. Acids Res. 25:2985-2991 (1997)) and CYCl terminator sequences (XhoI-KpnI fragment from pRS426-GAL-S
(Mumberg, et al., Nucl. Acids. Res. 22:5767-5768 (1994)) were first combined in pRS416 (Sikorski and Hieter, Genetics 122:19-27 (1989)) and then cut out with BarnHI-KpnI and inserted into MB 1054 to create MB2254.
The lovFp-HIS3p-neo reporter in MY2124 can confer resistance to the drug geneticin (G418). It was empirically determined that MY2124 (untransformed or transformed with parental plasmids MB2478 (CYCI-lovElCEl~ or MB2848 (CYCl-lovElAt274/CEN) was unable to grow on YPD media supplemented with 100 ~,g /ml 6418. Plasmid MB2478 contains the CYCI promoter operationally linked to the entire A. ter~reus lovE open reading frame. The CYGl promoter is a relatively weak promoter and thus the lovE ORF in MB2478 was expressed at low levels. MB2478 was the parental vector plasmid for creating full length lovE variants.
Plasmid ~5 MB2848 contains the CYCl promoter operationally linked to a chimeric open reading frame consisting of the A. teYr~eus lovE DNA binding domain fused to the carboxy-terminal portion of the At274 gene (U.S. Serial No. 60/257,431, filed December 22, 2000).
MB2848 was used to create lovE variants in which the DNA binding domain 2o was not mutated. Both MB2478 and MB2848 contain yeast CEN and autonomously replicating sequences and both are maintained at 1-2 copies per cell. In contrast to strains transformed with MB2478 or MB2848, strains transformed with plasmid MB1644 (TEFL-lovEl2 micron) were able to grow on 6418-supplemented YPD
media. The lovE gene of MB1644 is under control of the constitutively strong S.
25 cer~evisiae TEFL promoter. MB 1644 contains a 2-micron origin for high-copy replication in yeast. An objective of these studies was to identify lovE
variants which when expressed at low levels could confer 6418 resistance similar to the highly expressed wild-type ZovE molecule of MB 1644. S. cer~evisiae expression vectors used in these studies were constructed as follows.
3o MB968 is a low copy S. cer°evisiae URA3 based expression vector.
was created by inserting the EcoRV fragment (containing the destination cassette) from gateway pEZC7201 (InvitrogenTM, Carlsbad, CA) into XhoIlSalI (filled in with Klenow) linearized pRS416 CYCl (Mumberg, et al., Gene 156:119-122 (1995)).
MB1644 and MB2478 are URA3-based S. cerevisiae expression plasmids that contain the wild-type lovE gene. They are both derivatives of MBl 199. MB1199 was created by using primers M0841 (SEQ ID N0:11) and M0842 (SEQ ID N0:12) to amplify the ZovE ORF from A. te~reus cDNA. Gateway (InvitrogenTM, Carlsbad, CA) Cloning Technology (LTS Patent 5,888,732) was used to clone the lovE PCR
fragment into the gateway entry vector pDONR206 (InvitrogenTM, Carlsbad, CA) to create MB1199. Similarly, Gateway Cloning Technology was used to transfer the lovE ORF from MB1199 into MB968 to create MB2478 and into MB969 (LJ.S. Serial No. 60/198,335, filed April 18, 2000) to create MB1644.
MB2848 is a derivative of MB968 that contains a lovE AT274 chimera. The lovE portion of MB2848 was derived by using oligos M0841 (SEQ ID N0:11) and M02278 (SEQ ID N0:13) to PCR amplify the lovE DNA binding domain from A.
terYeus cDNA. A second round of PCR was performed with primers M0343 (SEQ
ID NO:14) and M02278 to add appropriate Gateway Cloning Technology compatible sequences. The At274 portion of MB2848 can be derived by using primers MO2273 (SEQ ID NO:15) and M02274 (SEQ ID N0:16) to PCR amplify the carboxy-terminal domain of At274 from A. ter~eus cDNA. A second round of PCR was performed with 2o primers M0344 (SEQ DJ N0:17) and M02273 to add appropriate Gateway Cloning Technology compatible sequences. The lovE and At274 PCR products were cut with BamHI and purified over a QIAquick PCR purification kit (Qiagen, Valencia, CA) according to manufacturer's instructions. Finally, the products were mixed 3-4 hours in a standard ligation reaction and used in Gateway entry and destination reactions to create MB2848.
Gateway cloning technology was used to clone the lovE variants of interest into plasmid MB 1419 which is a filamentous fungal expression vector. The MB
fungal selection marker is the A. nidulans GPD promoter controlling the ble gene from S. hiradustanus. The transgene is controlled by the A. nidularzs PGK
promoter.
3o A. terreus strain MF117 is a derivative of A. tenreus strain ATCC 20542.
Example 2: PCR Mutagenesis of the lovE DNA Binding Domain The zinc finger DNA binding domain of lovE is encoded by nucleotides 100-201 (SEQ ID N0:92). Oligos MO2624 (SEQ ID N0:18) and MO2654 (SEQ ID N0:19) were used to PCR amplify a lovE containing fragment from plasmid MB2478. The 1.7 kb product contains nucleotides 212-1410 of ZovE and 500 by of flanking vector sequence. Two rounds of standard PCR (1.5 mM MgClz) were performed with Amplitaq DNA polymerase (Applied Biosystems, Foster City, Ca) according to the manufacturer's instructions.
Plasmid MB2848 was cut with KphI-BamHI to release a 1.1 kb fragment containing the At274 portion of the lovE-At274 chimeric open reading frame.
The remaining 5.5 kb vector sequence retains the lovE DNA binding domain.
Example 3: PCR Mutagenesis of the lovE Open Reading Frame lovE open reading frame insert was prepared according to the following procedure. Oligo pairs M02680 (SEQ ID N0:20) /MO2686 (SEQ ID N0:21), 15 MO2681 (SEQ ID N0:22) /M02686, and M02700 (SEQ ID N0:23) /M02701 (SEQ
ID N0:24) were used to PCR amplify the entire lovE open reading frame from plasmid MB2478. The PCR products differ in the amount of 5' and 3' vector sequence flanking the lovE open reading frame.
PCR was performed using a GeneMorph PCR mutagenesis kit (Stratagene, La 2o Jolla, Ca) according to manufacturer's instructions to achieve medium and high range mutation frequencies.
Plasmid MB2478 was cut with Asp718/XbaI to release a 1.7 kb fragment. The remaining 5.0 kb vector sequence completely lacks lovE ORF sequence.
2s Example 4: Transformation and Selection for G418R Isolates All PCR products were purified using a QIAquick PCR purification kit (Qiagen) according to manufacturer's instructions. All vectors were gel purified using a QIAquick gel extraction kit (Qiagen) according to manufacturer's instructions.
The mutagenesis strategy of Muhkad et al. (Yeast 8:79-82 (1992))was used 3o which involves cotransforming a mutated PCR product and gapped plasmids into S.
cerevisiae, and then screening for ih vivo recombinants having the desired phenotype).
Transformation of Saccharomyces ce~evisiae was accomplished by the lithium acetate/single-stranded carrier DNA/polyethylene glycol (LiAclss-DNA/PEG) protocol (Woods R.A. and Gietz R.D. Methods Mol. Biol. 177:85-97 (2001)) with a 1:5 molar ratio of vector:insert DNA to generate >55,000 ira vivo recombinant transformants on SC-Ura plates. Transformants were transferred by replica printing to YPD plates containing 100 ~,g/ml 6418 and allowed to grow for 2-4 days at 30°C
(Figure 1).
Drug resistant clones were confirmed in secondary assays including growth on 6418 concentrations up to 2000 p,g/ml. The plasmid-dependence of the phenotype was determined by observing the re-appearance of drug sensitivity correlating with loss of the library plasmid. lovE variant plasmids were recovered from promising candidates (Hoffinan and Winston (1986) Gene 57:267). More than 70 lovE
variants were identified and definitively characterized by DNA sequence and/or restriction digestion analysis.
15 Table 3 summarizes the 6418 resistance phenotype and sequence analysis of 26 of these variants.
c Q
'~
~
a.
n u o .J~30 ~ ado ~ o ,~ m n _ Z C~
'7 .
> N
~ tt C
' tpl = ~ CGa ~ ~
~
Q~
81 ~ ~ ~I . ~,1" J ~C3G
r ~y~ th r r p7 iD't!
~n'~ ' ~ I--_ ~ 1 U
~ ~ ~ CL LF~. ~ .
~ ".
~a r1 iD ~ G7f3 lI?~ C~ C4 d'g t-N ~ ~ r CV
~ ~
.Q C ~1 h? T-'rs3' I ~ O 0.~"l~ ~ ~ ~ ~rt V
.r ~ Cy ~ C.~I--~~,$'~ (r ~ G y, ' ~ r C~'O ~ i ~'O ~ ''-' -..tY?
~7 J .
a ~, ~ . _tK O_ , ~ ~ ' t ~ ~ ~ k 3t~ W C3G ~ t~
r1V
RIO G J~ C~ ~ ~d~_'~ dxC ~ ~C m N ~ o N T
..
_ . u C r r ~ ~ ~~ ~ ~ ~~ LV~fy7 ''o I~ -f' ~ ~' G~U3 LEI L1.7E-IJ-3LL! -w r ~es ~ .~I ~ ,a,~ T urn~
c ~ ~~Cd ~C t~CC~ S~ ~-b ~ " ~ r r- '~' . C yM ~ fi? 07K'7Q7r r ~~ ~ 'c1'f900 ~ ii) r ~'y W r1 i~3~ h.Y~~ t~t~ 'b' CVC~7C7*?' J U..~ j"'~
r u u..-..LL q 0 .cX ~ ~ CCCaC,~C7~{~C?C~ O r -'~
r-r r tQSs? Ct~ ,-r ,~ tp ~ Lit)11'3~l 4~0C7O C~Od47 OD ~?CY ~ 0~
Ut 'a ~ C~ C~JC~V~ NN N ~1~INN ~~ ~'1~ ~
C ~"~I ~'~.d Y ~~ T~'~Y~~G' ~t3'~'~ 0"~ ~ ~ ~ ~ ~ O m ' ~ rt - G ~- Sd~ NCdCVCV~ 1 NCVCVG?t~Ct J
G w"CV(s7Ct5~DC~~ N cdc>'3~DfDh-f~-t~~.i Sfl'i!7fph.h~ h- ~P N
~- tL1 ~4 C tt~Dx N ~1tVn1 CV ACVv ~ ~# ~ N tVCVN NN N Ct1 n 1CSI v l .
tV CV CV
d - t~ i~
~ ~ _ .
~
~
' ~.3 _0.t _ dt ~ ~O Y r ~1 N d'40 t~.~ O? t"
O T "3 C?M C7 b' S. 41~ T t~l $ '~ 7~~f3J rT C~7 D7 4 ~ t C d lIth ~ r N C ~7 Table 4 summarizes amino acid substitutions that were isolated multiple times, suggesting that they are particularly important for improving lovE variant activity on lovFp-HIS3p-neo expression.
Table 4: ZovE Mutations Isolated Multiple Times Amino Acid Number of Times lovE varia~at Change Isolated in ZovE 1-41 F31L 4 20, 21, 31, 34 Q41K 2* 10, 16 Q41R 3* 33, 38, 40 T52I/T52N 1 each 34, 39 C73R 6* 3, 4, 5, 7, 8, P101S/PlOlQ 1 each 31, 34 V111I 2 34, 39 S 133L 2 2, 41 E141V, E141K 1 each 8, 40 C153Y/C153R 1 each 6, 31 T281A 2 6, 39 N367I/N367Y 2/1 21, 40, 37 P389S/P389L 1 each 32, 38 * allele was isolated in additional ZovE variants that were not fully sequenced Example 5: Increased ZovF lacZ Expression in S. cerevisiae In order to quantify the increase in lovF expression, (3-galactosidase activity was measured in lovE variant transformed S. cerevisiae strains that also harbored lovFp-lacZ reporter derivative plasmids. love lacZ reporter derivative plasmids were constructed as follows.
Plasmid MB 1918 contains the ZovFp-lacZ reporter gene. It can be derived from pRS424 (Sikorski and Hieter (1989) Genetics 122:19-27). First, primers M0107 (SEQ ID N0:25) and M0197 (SEQ ID N0:26) are used to PCR amplify the lacZ gene from Yep355 (Myers, et al., Gene 45:299-310 (1986)). This lacZ-containing fragment was inserted into the BamHI-Hindlll sites of pRS416 (Sikorski and Hieter, Genetics 122:19-27 (1989)). This same lacZ fragment can be cut out of the resulting vector with I~pnI-NotI and inserted into the same sites of pRS424 to create pRS424-lacZ. Primers M01293 (SEQ ID N0:27) and M01294 (SEQ ID
N0:28) are used to PCR amplify a 2.09 kb fragment of the lovF promoter from A.
te~reus genomic DNA. The lovF promoter fragment was then cut with NotI-BgIII
and inserted into NotI-BanaHI linearized pRS424-lacZ.
Plasmid MB2114 contains the lovFp-CYClp-lacZ reporter gene. It can be 1 o derived from pRS424-lacZ (see MB 1918 plasmid construction). Primers MO
(SEQ ID N0:29) and M01788 (SEQ ID NO:30) are used to amplify the 264 by basal CYCl element from pRS415 CYC1 (Mumberg, et al., Gene 156:119-122 (1995)).
This 264 by fragment was inserted upstream of the pRS424-lacZ derivative which has been digested with SpeI-BamHI. Finally, the lovFpromoter from MB1918 was PCR
amplified with M01793 (SEQ ID NO:31) and M01794 (SEQ ID N0:32) and inserted into the NotI-SpeI sites to create MB2114.
Yeast strains utilized in this study include strains MY2145 and MY2159, which are both derived from the S. ce~evisiae sigma 1278b strain background;
the genotypes are both strains are as follows: MATa ura3d0 Zeu2d0 his3d: : hisG
2o trpl d0::7zisG. MY2145 and MY2159 contain the lovFp-lacZ reporter plasmids MB2114 and MB1918, respectively.
MY2124 transformed with individual lovE variant plasmids was mated to S
ceYevisiae strains MY2154 and MY2159. Diploids were selected on SC-UraTrp media. Multiple diploids from each individual mating were assayed for lovFp-lacZ
expression using 96 well format (3-galactosidase assays. For (3-galactosidase assays, cells were transferred from transformation plates to 96-well microtiter plates containing 200 ~,1 Z buffer. 12 strains were transferred simultaneously using a 12-channel multi-pipettor to scoop cells from transformation plates. Duplicate samples were prepared for all assays. OD6oo readings were taken on samples in Z
buffer.
3o These values were used to normalize for equal cell number in all assays.
After determining OD6oo, 150 ~1 of each sample in Z buffer was transferred onto a Millipore Multiscreen Assay System (Nitrocellulose Immobilon NC), filtered, and then washed by filtering 200 ~,1 Z buffer. 100 ~,1 Z buffer with (3ME and detergents was then added to each well, as was 20 X14 mg/ml ONPG. Reactions were incubated at 30°C, stopped with SOp,I 1 M NaaC03, filtered into a polystyrene 96-well assay plate, and OD4ao was determined for each assay well. j3-galactosidase units were determined using the Miller formula (0.D. 420 X 1000)/ (OD600*minutes*volume in mL). Z
buffer is made by dissolving the following in 1 L of water (16.1 g Na2HPO4-7H2O, S.Sg NaH~P04-H20, 0.75 g KCl and 0.246 g MgSO4-7H20). Z buffer with detergents and (3ME is made as follows: 9.8 ml Z buffer, 100 p.1 20 mg/ml CTAB, 100 ~,l mg/ml sodium deoxycholate, and 69 ~,1 [3ME Control plasmids utilized in these studies included MB968, MB2478 and MB1644.
Results of these studies are presented in Figures 2-5, demonstrating increased transcription-activating properties of the l~vE variants disclosed herein.
Example 6: Secondary Metabolite Production Transformation of filamentous fungi was performed according to the following procedure. Protoplasts were generated by inoculating rich media with spores. Spores were allowed to germinate for about 20 hrs or until germ tubes were between 5 and 10 spore lengths. The germlings were centrifuged and washed twice 2o with sterile distilled water and once with 1 M magnesium sulfate. Germlings were then resuspended in 1M magnesium sulfate containing approximately 2 mg/ml of Novozyme. Tubes were then incubated at 30°C shaking at 80 RPM for about 2 hrs or until most of the hyphae were digested and protoplasts were abundant.
Protoplasts were filtered through one layer of Miracloth. At least one volume of STC was added and protoplasts were centrifuged. Protoplasts were washed twice with STC.
Protoplasts then were resuspended in lml STC and counted in a hemacytometer. A
final concentration of approximately 5 x 107 protoplasts/ml were frozen in a 9:1:0.1 solution of STC, SPTC and DMSO in a Nalgene Cryo cooler at -80°C (cools -1 °C/min).
3o Solutions for transformation were as follows: STC (0.8 M Sorbitol, 25 mM
Tris-HCl pH 7.5, 25 mM CaCl2) and SPTC (0.8 M Sorbitol, 40% PEG 4000, 25 mM
Tris-HCl pH 8, 50 mM CaCl2). Transformation was accomplished according to the following protocol. 1-5 ~,g of DNA comprising a lovE variant according to the invention in a fungal expression vector was placed in a 50 ml Falcon tube. 100 ~,l of previously frozen protoplasts were added to the DNA, gently mixed, and then incubated on ice for 30 min. 15 ~,1 of SPTC was added, followed by mixing by tapping and incubation at RT for 15 min. 500 ~.1 SPTC was added and mixed well by tapping and rolling, then incubated at RT for 15 min. 25 mls of regeneration minimal medium was added, mixed well and poured on plates containing 25 mls of regeneration minimal medium with 2X the concentration of selection drug.
Transformation plates were incubated at 26°C for 5-6 days or until colonies started to appear. Regeneration minimal medium contains trace elements, salts, mM sodium nitrate, 0.8 M Sucrose, and 1% agarose at pH 6.5. The selection drug that was used successfully with A. terreus is phleomycin, a broad-spectrum glycopeptide antibiotic. Transformants were picked onto new plates with a toothpick ~ 5 (if the fungus was sporulating) or with sterile forceps (if the fungus did not sporulate).
Purification plates contained minimal medium (same as regeneration minimal medium but containing 2 % instead of 0.8 M sucrose) and 1X drug concentration.
Picked transformants were incubated at 26°C for 5-6 days.
Transformants were grown in production media for secondary metabolite 2o production. Briefly, for A. te~~eus and lovastatin production, spores were used as the inoculum. Spores were obtained from the purification plate by using a wooden inoculation stick. The medium was RPM containing corn steep liquor, sodium nitrate, potassium phosphate, magnesium sulfate, sodium chloride, P2000 (Dow chemical), trace elements and lactose or glucose as carbon source. The medium was pH 6.5.
25 Flasks were incubated at 26°C with shaking at 225 RPM. For static 96-well cultures, the same medium was used and the spores were obtained from the purification plate with a wooden toothpick. 96-well plates were incubated, without shaking at 26°C.
Sampling was done after after 5 days for lovastatin.For shake flask experiments 1-1.5 mls of supernatant was placed into 96-well plates, which were 3o centrifuged and supernatants transferred to new 96-well plates. Samples were frozen at -80°C for storage or for later assays.
Cultures that were grown standing in a 96-well plate were centrifuged and the supernatant was transferred to a new 96 well plate. Samples were frozen at -80°C.
Example 7: Measurement of Secondary Metabolite Production The concentration of the secondary metabolite lovastatin was determined by enzyme inhibition assay (Figure 6). Briefly, 10 p,L of sample was removed and diluted 1:100 in HBO. 10 p.1 of this diluted broth was assayed in a reaction (200 pL
total) containing 1 mM HMGCoA, 1 mM NADPH, 0.005 mM DTT and 5 p,1 (His)6HMGR. The disappearance of absorbance at 340 nm was observed over time.
This represents the disappearance of NADPH, and lovastatin inhibits this reaction.
The initial velocities were calculated for the reactions containing samples, adjusted for dilution, and compared to reactions containing lovastatin standards to determine levels of metabolite produced. (His)6HMGR was expressed in Saccha~omyces ce~-evisiae and purified with a nickel column.
~ 5 The results from ten individual transformants for each allele are shown in standard box plot format in Figure 6. Lovastatin concentration from the corresponding wild-type lovE control is shown in matching fill pattern. For example, lovE alleles 2, 7, 8 and 9 were all transformed and assayed at the same time as the non-hatched wild-type control. The horizontal line in each individual box represents 2o the median.
Lovastatin concentration was also determined by high pressure liquid chromatography (HPLC). Briefly, 100 ~.L of broth sample was removed and diluted 1:10 into 70% Ha0-30% acetonitrile (900 p,1). This mixture was spun down to pellet debris at 13000 RPM for 5 minutes. 900 ~,1 of this diluted broth was transferred to a 25 vial and the sample was analyzed by HPLC. 10 ~,1 were injected into a Waters HPLC
system (996 photo-diode array detector, 600 E pump controller and 717 autosampler) equipped with a YMC-Pack ODS column (Aq-302-3, 150 x 4.6 mm m, S-3 p,M pore size) and eluted with isocratic 40% aqueous acetic acid (0.7%)-60%
acetonitrile for 8 minutes. Lovastatin was detected at 238 nm to have a retention time of 6.5 minutes 3o and was quantified using a calibration curve created from pure lovastatin samples.
The results from ten individual transformants for each lovE variant are shown in standard box plot format in Figure 7A and 7B. Thirty individual wild-type lovE
transformants and ten individual MB2143 negative control transformants were tested.
Identical controls are plotted in Figures 7A and 7B.
PCR analysis ofA. terreus transformants demonstrates that greater than fifty percent of the transformants contain the transgene. Variability in levels of transgene expression can presumably be influenced by integration site and copy number.
ZovE
variants containing identical amino acid substitutions are labeled.
The amino acid and nucleic acid sequences of ZovE variant sequences are presented in Table 5 and Table 6, respectively.
Example 8: Isolation of additional forms of love An A. terYeus cDNA was screened to identify sequences that increase expression of a lovF reporter gene in A. terreus. This analysis led to the identification ~ 5 of two cDNAs that could encode lovE variants having additional amino aicds at their amino terminus compared to the love of SEQ ID N0:91. One variant, at242, has the amino sequence mtqdtaqyrga (SEQ ID N0:95) preceding the sequence of SEQ ID
N0:91. The entire amino acid sequence of at242 (SEQ ID N0:93) is shown in Table 7. The other variant, at258, has the amino sequence mlmtqdtaqyrga (SEQ ID
N0:96) 2o preceding the sequence of SEQ ID N0:91. The entire amino acid sequence of at258 (SEQ ID N0:94) is shown in Table 7. Thus, both variants appeax to encode forms of lovE that is longer than the lovE of SEQ ID N0:91. The various amino acid changes present in the various love variants of Table 5 can be introduced into the at242 or at 258 to generate additional forms of lovE.
Table 5: Amino Acid Sequences of Variants of the lovE Gene IovE-1 maadqgiftnsvtlspvegsrtggtlprrafrrscdrchaqkikctgnkevtgrapcqr cqqaglrcvysercpkrklrqsraadlvsadpdpclhmssppvpsqslpldvseshssn tsrqfldppdsydwswtsigtdeaidtdcwglsqcdggfscqleptlpdlpspfestve kaplppvssdiaraasaqrelfddlsavsqeleeillavtvewpkqeiwthpigmffna srrlltvlrqqaqadcrqgtldeclrtknlftavhcyilnvriltaiselllsqirrtq nshmsplegsrsqspsrddtssssghssvdtipffsenlpigelfpyVdplthalfsac ttlhvgvqllreneitlgvhsaqgiaasismsgepgediartgatnsarceeqpttpaa rvlfmflsdegafqeaksagsrgrtiaalrrcyedifslarkhkhgmlrdlnnipp (SEQ ID N0:41) lovE-2 maadqgiftnsvtlspvegsrtggtlprrafrrscdrchaqkikctgnkevtgrapcqr cqqaglrcvysercpkrklrqsraadlvsadpdpclhmssppvpsqslpldvseshssn tswqfldppdsydwlwtsigtdeaidtdcwglsqcdggfscqleptlpdlpspfestve kaplppvssdiaraasaqrelfddlsavsqeleeillavtvewpkqeiwthpigmffna srrlltvlrqqaqadchqgtldeclrtknlftavhcyilnvriltaiselllsqirrtq nshmsplegsrsqspsrddtssssghgsvdtipffsenlpigelfsyvdplthalfsac ttlhvgvqllreneitlgvhsaqgiaasismsgepgediartgatnsarceeqpttpaa rvlfmflsdegafqeaksagsrgrtiaalrrcyedifslarkhkhgmlrdlnnipp (SEQ ID N0:42) IovE-3 maadqgiftnsvtlspvegsrtggtlprrafrrscdrchaqkikctgnkevtgrapcqr cqqaglrcvyserrpkrklrqsrvadlvsadpdpclhmssppvpsqslpldvseshssn tsrqfldppdsydwswisigtdeaidtdcwglsqcdggfscqleptlpdlpspfestve kaplppvssdiaraasaqrelfddlsavsqeleeillavtvewpkqeiwthpigmffna srrlltvlrqqaqadchqgtldeclrtknlftavhcyilnvriltaiselllsqirrtq nshmsplegsrsqspsrddtssssghssvdtipffsenlpigelfsyvdplthalfsac ttlhvgvqllreneitlgvhsaqgiaasismsgepgediartgatnsarceeqpttpaa rvlfmflsdegafqeaksagsrgrtiaalrrcyedifslarkhkhgmlrdlnnipp (SEQ ID N0:43) lovE-4 maadqgiftnsvtlspvegsrtggtlprrafrrscdrchaqkikctgnkevtgrapcqr cqqaglrcvyserrpkrklrqsraadlvsadpdpclhmssppvpsqslpldvseshssn tsrqfldppdsydwswtsigtdeaidtdcwglsqcdggfscqleptlpdlpspfestvg kaplppvssdiaraasaqrelfddlsavsqeleeillavtvewpkqeiwthpigmffna srrlltvlrqqaqadchqgtldeclrtknlftavhcyilnvriltaiselllsqirrtq nshmsplegsrsqspsrddtssssghssvdtipffsenlpigelfsyvdplthalfsac ttlhvgvqllreneitlgvhsaqgiaasismsgepgediartgatnsarceeqpttpaa rvlfmflsdegafqeaksagsrgrtiaalrrcyedifslarkhkhgmlrdlnnipp (SEQ ID N0:44) IovE-5 maadqgiftnsvtlspvegsrtggtlprrafrrscdrchaqkikctgnkevtgrapcqr cqqaglrcvyserrpkrklrqsraadlvsadpdpclhmssppvpsqslpldvseshssn tsrqfldppdsydwswtsigtdeaidtdcwglsqcdggfscqleptlpdlpspfestve kaplppvssdiaraasaqrelfddlsavsqeleeillavtvewpkqeiwthpigmffna srrlltvlrqqaqadchqgtldeclrtknlftavhcyilnvriltaiselllsqirrtq nshmsplegsrsqspsrddtssssghssvdtipffsenlpigelfsyvdplthalfsac ttlhvgvqllreneitlgvhsaqgiaasismsgepgediartgatnsarceeqpttpaa rvlfmflsdegafqeaksagsrgrtiaalrrcyedifslarkhkhgmlrdlnnipp (SEQ ID N0:45) lovE-6 maadqgiftnsvtlspvegsrtggtlprrafrrscdrchaqkikctgnkevtgrapcqr cqqaglrcvysercpkrklrqsraadlvsadpdpclhmssppvpsqslpldvseshssn tsrqfldppdsydwswtsigtdeaidtdcwglsqydggfscqleptlpdlpspfestve kaplppvssdiaraasaqrklfddlsavsqeleeillavtvewpkqeiwthpigmffna srrlltvlrqqaqadchqgtldeclrtknlftavhcyilnvrilaaiselllsqirrtq nshmsplegsrsqspsrddtssssghssvdtipffsenlpigelfsyvdplthalfsac ttlhvgvqllreneitlgvhsaqgiaasismsgepgediartgatnsarceeqpttpaa rvlfmflsdegafqeaksagsrgrtiaalrrcyedifslarkhkhgmlrdlnnipp (SEQ ID NO:46) lovE-7 maadqgiftnsvtlspvegsrtggtlprrafrrscdrchaqkikctgnkevtgrapcqr cqqaglrcvyserrpkrklrqsraadlvsadpdpclhmssppvpsqslpldvseshssn tsrqfldppdsydwswtsigtdeaidtdcwglsqcdggfscqleptlpdlpspfestve kaplppvssdiaraasaqrelfddlsavsqeleeillavtvewpkqeiwthpigmffna srrlltvlrqqaqadchqgaldeclrtknlftavhcyilnvriltaiselllsqirrtq nshmsplegsrsqspsrddtssssghssvdtipffsenlpigelfsyvdplthalfsac ttlhvgvqllreneitlgvhsaqgiaasismsgepgediartgatnsarceeqpttpaa rvlfmflsdegafqeaksagsrgrtiaalrrcyedifslarkhkhgmlrdlnsipp (SEQ ID NO:47) IovE-~
maadqgiftnsvtlspvegsrtggtlprrafrrscdrchaqkikctgnkevtgrapcqr cqqaglrcvyserrpkrklrqsraadlvsadpdpclhmssppvpsqslpldvseshssn tsrqfldppdsydwswtsigtdeaidtdcwglsqcdggfscqleptlpdlpspfestve kaplppvssdiaraasaqrelfddlsavsqeleeillavtvewpkqeiwthpigmffna srrlltvlrqqaqadchqgaldeclrtknlftavhcyilnvriltaiselllsqirrtq nshmsplegsrsqspsrddtssssghssvdtipffsenlpigelfsyvdplthalfsac ttlhvgvqllreneitlgvhsaqgiaasismsgepgediartgatnsarceeqpttpaa rvlfmflsdegafqeaksagsrgrtiaalrrcyedifslarkhkhgmlrdlnsipp (SEQ ID NO:48) lovE-9 maadqgiftnsvtlspvegsrtggtlprrafrrscdrchaqkikctgnkevtgrapcqr cqqaglrcvyserrpkrklrqsraadlvsadpdpclhmssppvpsqslpldvseshssn tsrqfldppdsydwswtsigtdeaidtdcwglsqcdggfscqleptlpdlpspfestve kaplppvssdiaraasaqrelfddlsavsqeleeillavtvewpkqeiwthpigmffna srrlltvlrqqaqadchqgaldeclrtknlftavhcyilnvriltaiselllsqirrtq nshmsplegsrsqspsrddtssssghssvdtipffsenlpigelfsyvdplthalfsac ttlhvgvqllreneitlgvhsaqgiaasismsgepgediartgatnsarceeqpttpaa rvlfmflsdegafqeaksagsrgrtiaalrrcyedifslarkhkhgmlrdlnsipp (SEQ ID N0:49) lovE-10 maadqgiftnsvtlspvegsrtggtlprrafrrscdrchaqkikctgnkevtgrapcqr cqqaglrcvyserrpkrklrqsraadlvsadpdpclhmssppvpsqslpldvseshssn tsrqfldppdsydwswtsigtdeaidtdcwglsqcdggfscqleptlpdlpspfestve kaplppvssdiaraasaqrelfddlsavsqeleeillavtvewpkqeiwthpigmffna srrlltvlrqqaqadchqgaldeclrtknlftavhcyilnvriltaiselllsqirrtq nshmsplegsrsqspsrddtssssghssvdtipffsenlpigelfsyvdplthalfsac ttlhvgvqllreneitlgvhsaqgiaasismsgepgediartgatnsarceeqpttpaa rvlfmflsdegafqeaksagsrgrtiaalrrcyedifslarkhkhgmlrdlnsipp (SEQ ID N0:50) lovE-16 maadqgifmnsvtlsavegsrtsgtlprrafrrscdrchakkikctgnkevtgrapcqr cqqaglrcvysercpkrklrqsraadlvsadpdpclhmssppvpsqslpldvseshssn tsrqfldppdsydwswtsigtdeaidtdcwglsqcdggfscqleptlpdlpspfestve kaplppvssdiaraasaqrelfddlsavsqeleeillavtvewpkqeiwthpigmffna srrlltvlrqqaqadchqgtldeclrtknlftavhcyilnvriltaiselllsqirrtq nshmsplegsrsqspsrddtssssghssvdtipffsenlpigelfsyvdplthalfsac ttlhvgvellreneitlgvhsaqgiaasismsgepgediartgatnsarceeqpttpaa rvlfmflsdegafqeaksagsrgrtiaalrrcyedifslarkhkhgmlrdlnnipp ( SEQ ID NO : 51 ) lovE-19 maadqgiftnsvtlspvegshtggtlprrafrracdrchaqkikctgnkevtgrapcqr cqqaglrcvysercpkrklrhsrasdlvsadpdpclhmssppvpsqslpldvseshssn tsrqfldppdsydwswtsigtdeaidtdcwglsqcdggfscqleptlpdlpspfestve kaplppvssdiaraasaqrelfddlsavsqeleeillavtvewpkqeiwthpigmffna srrlltvlrqqaqadchqgtldeclrtknlftavhcyilnvriltaiselllsqirrtq nshmspldgsrsqspsrddtssssghssvdtipffsenlpigelfsyvdplthalfsac ttlhvgvqllreneitlgvdsaqgiaasismsgepgediartgatnsarceeqpttpaa rvlfmflsdegafqeaksagsrgrtitvlrrsyedifslarkhkhgmlrdlnnips (SEQ ID N0:52) lovE-20 maadqgiftnsvtlspvegsrtggtlprralrrscdrchaqkikctgnkevtgrapcqr cqqaglrcvysercpkrklrqsraadlvsadpdpclhmssppvpsqslpldvseshssn tsrqfldppdsydwswtsigtdeaidtdcwglsqcdggfscqleptlpdlpspfestve kaplppvssdiaraasaqrelfddlsavsqeleeillavtvewpkqeiwthpigmffna srrlltvlrqqaqadchqgtldeclrtknlftavhcyilnvriltaiselllsqirrtq nshmsplegsrsqspsrddtssssghssvdtipffsenlpigelfsyvdplthalfsac ttlhvgvqllreneitlgvhsaqgiaasismsgepgediartgatnsarceeqpitpaa rvlfmflsdegafqeaksagsrgrtiaalrrcyedifslarkhkhgmlrdlnnipp (SEQ ID N0:53) lovE-21 maadqgiftnsvtlspvegsrtggtlprralrrscdrchaqkikctgnkevtgrapcqr cqqaglrcvysercpkrklrqsraadlvsadpdpclhissppvpsqslpldvsdshssn tsrqfldppdsydwswtsigtdeaidtncwglsqcdggfscqlestlpdlpspfestve kaplppvssdiaraasaqrelfddlsavsqeleeillavtvewpkqeiwthpigmffna srrlltvlrqqaqadchqgtldeclrtknlftavhcyilnvriltaiselllsqirrtq nshmsplegsrsqspsrddtssssghssvdtipffsenlpigelfsyvdplthalfsac ttlhvgvqllreieitlgvhsaqgiaasismsgepgediartgatnsarceeqpttpaa rvlfmflsdegafqeaksagsrgrtiaalrrcyedifslarkhkygmlrdlnnipp (SEQ ID N0:54) a lovE-30 maadqgiftnsvtlspvegsrtggtlprrafrrscdrchaqkvkctgnkevtgrapcqr cqqaglrcvysercpkrklrqsraadlvsadpdpclhmssppvpsqslpldvseshssn tsrqfldppdsydwswtsigtdeaidtdcwglsqcdggfscqleptlpdlpspfestve kaplppvssdiaraasaqrelfddlsavsqeleeillavtvewpkqeiwthpigmffna srrlltvlrqqaqadchqgthdeclrtknlftavhcyilnvriltaiselllsqirrtl nshmsplegsrsqspsrddtssssghssvdtipffsenlpigelfsyvdplthalfsac ttlhvgvqllreneitlgvhsaqgiaasismsgepgediartgatnsarceeqpttpaa rvlfmflsdegafqeaksagsrgrtiaalrrcyedifslarkhkhgmlrdlnnippc (SEQ ID N0:55) lovE-31 maadqgiftnsvtlspvegsrtggtlprralrrscdrchaqkikctgnkevtgrapcqr cqqaglrcvysercpkrklrqsraadlvsadpdpclhmsspsvpsqslpldvseshssn tsrqfldppdsydwswtsigtdeaidtdcwglsqrdggfssqlkptlpdlpspfestve kaplppvssdiaraasaqrelfddlsavsqeleeillavtvewpkqeiwthpigmffna srrlltvlrqqaqadchqgtldeclrtknlftavhcyilnvriltaiselllsqirltq nshmsplegsrsqspnrddtssssghssvdtipffsenlpigelfsyvdplthalfsac ttlhvgvqllreneitlgvhsaqgiaasismsgepgediartgatnsarceeqpttpaa rvlfmflsdegafqeaksagsrgrtiaalrrcyedifslarkhkhgmlrdlnnipp (SEQ ID N0:56) lovE-32 maadqgiftnsvtispvvgsrtggtlprrafrrscdrchaqkikctgnkevtgrapcqr cqqaglrcvysercpkrklrqsraadlvsadpdpclhmssppvpsqslpldvseshssn tsrqfldppdsydwswtsictdeaidtdcwglsqcdggfscqleptlpdlpspfestve kaplppvssdiaraasaqrelfddlsavsqeleeillavtvewpkqeiwthpigmffna srrlltvlrqqaqadchqgtldeclrtknlftavhcyilnvriltaiselllsqirrtq nshmsplegsrsqspsrddtssssghssvdtipffsenlpigglfsyvdplthalfsac ttlhvglqllreneitlgvhsaqgiaasismsgesgediartgatssarceeqpttpaa rvlfmflsdegafqeaksagsrgrtiaalrrcyedifslarkhkhgmlrdlnnipp (SEQ ID N0:57) lovE-33 maadqgiftnsvtlspvegsrtggtlprrafrrscdrcharkikctgnkevtgrapcqr cqqaglrcvysercpkrklrqsraadlvsadpdpclhmssppvpsqslpldvseshssn tsrqfldppdsydwswtsigtdeaidtdcwglsqcdggfscqleptlpdlpspfeytve kaplppvssdiaraasaqrelfddlsavsqeleeillavtvewpkqeiwthpigmffna srrlltvlrqqaqadchqgtldeclrtknlftavhcyilnvriltaiselllsqirrtq nshmsplegsrsqspsrddtssssghssvdtipffsenlpigelfsyvdplthalfsac ttlhvgvqllreneitlgvhsaqgiaasismsgepgediartgatnstrceeqpttpaa rvlfmflsdegafqeaksagsrgrtiaalrrcyedifslarkhkhgmlrdlnnipp (SEQ ID N0:58) lovE-34 maadqgiftnsvtlspvegsrtggtlprralrrscdrchaqkikctgnkevigrapcqr cqqaglrcvysercpkrklrqsraadlvsadpdpclhmsspqvpsqslsldiseshssn tsrqfldppdsydwswtsigtdeaidtdcwglsqcdggfscqleptlpdlpspfestve kaplppvssdiaraasaqrelfddlsavsqeleeillavtvewpkqeiwthpigmffna srrlltvlrqqaqadchqgtldeclrtknlftavhcyilnvriltaiselllsqirrtq nshmsplegsrsqspsrddtssssghssvdtipffsenlpigelfsyvdplthalfsac ttlhvgvqllreneitlgvhsaqgiaasismsgepgediartgatnsarceeqpttpaa rvlfmflsdegafqeaksagsrgrtiaalrrcyedifslarkhkhgmlrdlnnipp (SEQ ID N0:59) lovE-36 I
maadqgiftnsvtlspvegsrtggtlprrafrrscdrchaqkikctgnkevtgrapcqr cqqaglrcvysercpkrklrqsraanlvsadpdpclhmssppvpsqslpldvseshssn tsrqfldppdsydwswtsigtdeafdtdcwglsqcdggfscqleptlpdlpspfestve kaplppvssdiaraasaqrelfddlsavsqeleeillavtvewpkqeiwthpigiffna srrlltvlrqqaqadchqgtldeclrtknlftavhcyilnvriltaiselllsqirrtq nshmsplegsrsqspsrddissssghssvdtipffsenlpigelfsyvdplthalfsac ttlhvgvqllreneitlgvhsaqgiaayisksgepgediartgatnsarceeqpttpaa rvlfmflsdegafqeaksagsrgrtiaalrrcyedifslarkhkhgmlrdlnnipp (SEQ ID N0:60) lovE-37 maadqgiftnsvtlspvegsrtggtlprrafrrscdrchaqkikcignkevtgrapcqr cqraglrcvysercpkrrlrqsraadlvsadpdpclhmssppvpsqslpldvseshssn tsrqfldppdsydwswtsigtdeaidtdcwglsqcdggfscqleptlpdlpspfestve kaplppvssdiaraasaqrelfddlsavsqeleeillavtvewpkqeiwthpigmffna srrlltvlrqqaqadchqgtldeclrtknlftavhcyilnvriltaiselllsqirrtq nshmsplegsrsqspsrddtssssghscvdtipffsenlpigelfsyvdplthalfsac ttlhvgvqllreyeitlgihsaqgiaasismsgepgediartgatnsarceeqpttpaa rvlfmflsdegafqeaksagsrgrtiaalrrcyedifslarkhkhgmlrdlnnipp (SEQ ID N0:61) lovE-3 ~
maadqgiftnsvtlspvegsrtggtlprrafrrscdrcharkikctgnkevtgrapcqr cqqaglrcvysercpkrklrqsraadlvsadpdpclhmssppvpsqslpldvseshssn tsrqfldppdsydwswtsigtdeaidtdcwglsqcdggfscqleptlpdlpspfestve kaplppvssdiaraasaqrelfddlsavsqeleeillavtvewpkqeiwthpigmffna srrlltvlrqqaqadchqgtldeclrtknlftavhcyilnvriltaiselllsqirriq nshmsplegsrsqslsrddtssssghssvdtipffsenlpidelfsyvdplthalfsac ttlhvgvqllreneitlgvhsaqgiaasismsgelgedivrtgatnsarceeqpttpaa rvlfmflsdegafqeaksagsrsrtiaalrrcyedifslarkhkhgmlrdlnnipp (SEQ ID N0:62) lovE-39 maadqgiftnsvtlspvegsrtggtlprrafrrscdrchaqkikctgnkevngrapcqr cqqaglrcvysercpkrklrqsraadlvsadpdpclhmssppvpsqslpldiseshssn tsrqfldppdsydwswtsigideaidtdcwglsqcdggfscqleptlpdlpspfestve kaplppissdiaraasaqrelfddlsavsqeleeillavtvewpkqeiwthpigmffna srrlltvlrqqaqadchqgtldeclrtknlftavhcyilnvrilaaiselllsqirrtq nshmsplegsrsqspsrddtssssghssvdtipffsenlpigelfsyvdplthalfsac ttlhvgvqllreneitlgvhsaqgiaasismsgepgediartgatnsarceeqpttpaa rvlfmflsdegafqeaksagsrgrtiaalrrcyedifslarkhkhgmlrdlnnipp (SEQ ID N0:63) lovE-40 maaeqgiftnsvtlspvegsrtggtlprrafrrscdrcharkikctgnkevtgrapcqr cqqaglrcvysercpkrklrqsraadlisadpdpclhmssppvpsqslplevseshssn tsrqfldppdsydwswtsigtdkaidtdcwglsqcdggfscqleptlpdlpspfestve kaplppvssditraasaqrelfddlsavsqeleeillavtvewpkqeiwthpigmffna srrlltvlrqqaqadchqgtldeclrtknlftavhcyildvriltaiselllsqirrtq nshmsplegsrsqspsrddtssssghssvdtipffsenlpigelfsyvdplrhalfsac ttlhvgvqllreieitlgvhsargiaasismsgepgediartgatnsarceeqpttpaa rvlfmflsdegtfqeaksagsrgrtiaalrrcyedifslarkhkhgmlrdlnnipp (SEQ ID N0:64) lovE-4Z
maadqgiftnsvtlspvegsrtggtlprrafrrscdrchaqkikctgnkevtgrapcqr cqqaglrcvysercpkrklrqsraadlvsadpdpclhmssppvpsqslpldvseshssn tsrqfldppdsynwlwtsigtdeaidtdcwglsqcdggfscqleptlpdlpspfestve kaplppvssdiaraasaqrelfddlsavsqeleeillavtvewpkqeiwthpigmffna srrlltvlrqqaqadchqgtldeclrtknlftavhcyilnvriltaiselllsqirrtq nshmsplegsrsqspsgddtssssghssvdtipffsenlpigelfsyvdplthalfsac ttlhvgvqllreneitlgvhsaqgiaasismsgepgediartgatnsarceeqpttpaa rvlfmflsdegafqegksagsrgrtiaalrrcyedifslarkhkhgmlrdlnnipp (SEQ ID N0:65) Table 6: DNA Sequences of Variants of the ZovE Gene lovE-1 ATGGCTGCAGATCAAGGTATATTCACGAACTCGGTCACTCTCTCGCCAGTGGAGGGTTC
ACGCACCGGTGGAACATTACCCCGCCGTGCATTCCGACGCTCTTGTGATCGGTGTCATG
CACAAA.AGATCAAATGTACTGGAAATAAGGAGGTTACTGGCCGTGCTCCCTGTCAGCGT
TGCCAGCAGGCTGGACTTCGATGCGTCTACAGTGAGCGATGCCCCAAGCGCAAGCTACG
CCAATCCAGGGCAGCGGATCTCGTCTCTGCTGACCCAGATCCCTGCTTGCACATGTCCT
CGCCTCCAGTGCCCTCACAGAGCTTGCCGCTAGACGTATCCGAGTCGCATTCCTCAAAT
ACCTCCCGGCAGTTTCTTGATCCACCGGACAGCTACGACTGGTCGTGGACCTCGATTGG
CACTGACGAGGCTATTGACACTGACTGCTGGGGGCTGTCCCAATGTGATGGAGGCTTCA
GCTGTCAGTTAGAGCCAACGCTGCCGGATCTACCTTCGCCCTTCGAGTCTACGGTTGAA
AAAGCTCCGTTGCCACCGGTATCGAGCGACATTGCTCGTGCGGCCAGTGCGCAACGAGA
GCTTTTCGATGACCTGTCGGCGGTGTCGCAGGAACTGGAAGAGATCCTTCTGGCCGTGA
CGGTAGAATGGCCGAAGCAGGAA.ATCTGGACCCATCCCATCGGAATGTTTTTCAATGCG
TCACGACGGCTTCTTACTGTCCTGCGCCAACAAGCGCAGGCCGACTGCCGTCAAGGCAC
ACTAGACGAATGTTTACGGACCAAGAACCTCTTTACGGCAGTACACTGTTACATATTGA
ATGTGCGGATTTTGACCGCCATATCGGAGTTGCTCCTGTCGCAAATTAGGCGGACCCAG
AACAGCCATATGAGCCCACTGGAAGGGAGTCGATCCCAGTCGCCGAGCAGAGACGACAC
CAGCAGCAGCAGCGGCCACAGCAGTGTTGACACCATACCCTTCTTTAGCGAGAACCTCC
CTATTGGTGAGCTGTTCCCCTATGTTGACCCCCTGACACACGCCCTATTCTCGGCTTGC
ACTACGTTACATGTTGGGGTACAATTGCTGCGTGAGAATGAGATTACTCTGGGAGTACA
CTCCGCCCAGGGCATTGCAGCTTCCATCAGCATGAGCGGGGAACCAGGCGAGGATATAG
CCAGGACAGGGGCGACCAATTCCGCAAGATGCGAGGAGCAGCCGACCACTCCAGCGGCT
CGGGTTTTGTTCATGTTCTTGAGTGATGAAGGGGCTTTCCAGGAGGCAAAGTCTGCTGG
TTCCCGAGGTCGAACCATCGCAGCACTGCGACGATGCTATGAGGATATCTTTTCCCTCG
CCCGCAAACACAAACATGGCATGCTCAGAGACCTCAACAATATTCCTCCATGA
(SEQ ID N0:66) lovE-2 ATGGCTGCAGATCAAGGTATATTCACGAACTCGGTCACTCTCTCGCCAGTGGAGGGTTC
ACGCACCGGTGGAACATTACCCCGCCGTGCATTCCGACGCTCTTGTGATCGGTGTCATG
CACAAA.AGATCAAATGTACTGGAAATAAGGAGGTTACTGGCCGTGCTCCCTGTCAGCGT
TGCCAGCAGGCTGGACTTCGATGCGTCTACAGTGAGCGATGCCCCAAGCGCAAGCTACG
CCAATCCAGGGCAGCGGATCTCGTCTCTGCTGACCCAGATCCCTGCTTGCACATGTCCT
CGCCTCCAGTGCCCTCACAGAGCTTGCCGCTAGACGTATCCGAGTCGCATTCCTCAA.AT
ACCTCCTGGCAATTTCTTGATCCACCGGACAGCTACGACTGGTTGTGGACCTCGATTGG
CACTGACGAGGCTATTGACACTGACTGCTGGGGGCTGTCCCAATGTGATGGAGGCTTCA
GCTGTCAGTTAGAGCCAACGCTGCCGGATCTACCTTCGCCCTTCGAGTCTACGGTTGAA
AAAGCTCCGTTGCCACCGGTATCGAGCGACATTGCTCGTGCGGCCAGTGCGCAACGAGA
GCTTTTCGATGACCTGTCGGCGGTGTCGCAGGAACTGGAAGAGATCCTTCTGGCCGTGA
CGGTAGAGTGGCCGAAGCAGGAAATCTGGACCCATCCCATCGGAATGTTTTTCAATGCG
TCACGACGGCTTCTTACTGTCCTGCGCCAACAAGCGCAGGCCGACTGCCATCAAGGCAC
ACTAGACGAATGTTTACGGACCAAGAACCTCTTTACGGCAGTACACTGTTACATATTGA
ATGTGCGGATTTTGACCGCCATATCGGAGTTGCTCCTGTCGCAAATTAGGCGGACCCAG
AACAGCCATATGAGCCCACTGGAAGGGAGTCGATCCCAGTCGCCGAGCAGAGACGACAC
CAGCAGCAGCAGCGGCCACGGCAGTGTTGACACCATACCCTTCTTTAGCGAGAACCTCC
CTATTGGTGAGCTGTTCTCCTATGTTGACCCCCTGACACACGCCCTATTCTCGGCTTGC
ACTACGTTACATGTTGGGGTACAATTGCTGCGTGAGAATGAGATTACTCTGGGAGTACA
CTCCGCCCAGGGCATTGCAGCTTCCATCAGCATGAGCGGGGAACCAGGCGAGGATATAG
CCAGGACAGGGGCGACCAATTCCGCAAGATGCGAGGAGCAGCCGACCACTCCAGCGGCT
CGGGTTTTGTTCATGTTCTTGAGTGATGAAGGGGCTTTCCAGGAGGCAAA.GTCTGCTGG
TTCCCGAGGTCGAACCATCGCAGCACTGCGACGATGCTATGAGGATATCTTTTCCCTCG
CCCGCAAACACAAACATGGCATGCTCAGAGACCTCAACAATATTCCTCCATGA
(SEQ ID N0:67) lovE-3 ATGGCTGCAGATCAAGGTATATTCACGAACTCGGTCACTCTCTCGCCAGTGGAGGGTTC
ACGCACCGGTGGAACATTACCCCGCCGTGCATTCCGACGCTCTTGTGATCGGTGTCATG
CACAAAAGATCAAATGTACTGGAAATAAGGAGGTTACTGGCCGTGCTCCCTGTCAGCGT
TGCCAGCAGGCTGGACTTCGATGCGTCTACAGTGAGCGACGCCCCAAGCGCAAGCTACG
CCAATCCAGGGTAGCGGATCTCGTCTCTGCTGACCCAGATCCCTGCTTGCACATGTCCT
CGCCTCCAGTGCCCTCACAGAGCTTGCCGCTAGACGTATCCGAGTCGCATTCCTCAAAT
ACCTCCCGGCAATTTCTTGATCCACCGGACAGCTACGACTGGTCGTGGATCTCGATTGG
CACTGACGAGGCTATTGACACTGACTGCTGGGGGCTGTCCCAATGTGATGGAGGCTTCA
GCTGTCAGTTAGAGCCAACGCTGCCGGATCTACCTTCGCCCTTCGAGTCTACGGTTGAA
AAAGCTCCGTTGCCACCGGTATCGAGCGACATTGCTCGTGCGGCCAGTGCGCAACGAGA
GCTTTTCGATGACCTGTCGGCGGTGTCGCAGGAACTGGAAGAGATCCTTCTGGCCGTGA
CGGTAGAATGGCCGAAGCAGGAAATCTGGACCCATCCCATCGGAATGTTTTTCAATGCG
TCACGACGGCTTCTTACTGTCCTGCGCCAACAAGCGCAGGCCGACTGCCATCAAGGCAC
ACTAGACGAATGTTTACGGACCAAGAACCTCTTTACGGCAGTACACTGTTACATATTGA
ATGTGCGGATTTTGACCGCCATATCGGAGTTGCTCCTGTCGCAAATTAGGCGGACCCAG
AACAGCCATATGAGCCCACTGGAAGGGAGTCGATCCCAGTCGCCGAGCAGAGACGACAC
CAGCAGCAGCAGCGGCCACAGCAGTGTTGACACCATACCCTTCTTTAGCGAGAACCTCC
CTATTGGTGAGCTGTTCTCCTATGTTGACCCCCTGACACACGCCCTATTCTCGGCTTGC
ACTACGTTACATGTTGGGGTACAATTGCTGCGTGAGAATGAGATTACTCTGGGAGTACA
CTCCGCCCAGGGCATTGCAGCTTCCATCAGCATGAGCGGGGAACCAGGCGAGGATATAG
CCAGGACAGGGGCGACCAATTCCGCAAGATGCGAGGAGCAGCCGACCACTCCAGCGGCT
CGGGTTTTGTTCATGTTCTTGAGTGATGAAGGGGCTTTCCAGGAGGCAAAGTCTGCTGG
TTCCCGAGGTCGAACCATCGCAGCACTGCGACGATGCTATGAGGATATCTTTTCCCTCG
CCCGCAAACACAAACATGGCATGCTCAGAGACCTCAACAATATTCCTCCATGA
(SEQ ID N0:68) lovE-4 ATGGCTGCAGATCAAGGTATATTCACGAACTCGGTCACTCTCTCGCCAGTGGAGGGTTC
ACGCACCGGTGGAACATTACCCCGCCGTGCATTCCGACGCTCTTGTGATCGGTGTCATG
CACAAAAGATCAAATGTACTGGAAATAAGGAGGTTACTGGCCGTGCTCCCTGTCAGCGT
TGCCAGCAGGCTGGACTTCGATGCGTCTACAGTGAGCGACGCCCCAAGCGCAAGCTACG
CCAATCCAGGGCAGCGGATCTCGTCTCTGCTGACCCAGATCCCTGCTTGCACATGTCCT
CGCCTCCAGTGCCCTCACAGAGCTTGCCGCTAGACGTATCCGAGTCGCATTCCTCAAAT
ACCTCCCGGCAATTTCTTGATCCACCGGACAGCTACGACTGGTCGTGGACCTCGATTGG
CACTGACGAGGCTATTGACACTGACTGCTGGGGGCTGTCCCAATGTGATGGAGGCTTCA
GCTGTCAGTTAGAGCCAACGCTGCCGGATCTACCTTCGCCCTTCGAGTCTACGGTTGGA
AAAGCTCCGTTGCCACCGGTATCGAGCGACATTGCTCGTGCGGCCAGTGCGCAACGAGA
GCTTTTCGATGACCTGTCGGCGGTGTCGCAGGAACTGGAAGAGATCCTTCTGGCCGTGA
CGGTAGAATGGCCGAAGCAGGAAATCTGGACCCATCCCATCGGAATGTTTTTCAATGCG
TCACGACGGCTTCTTACTGTCCTGCGCCAACAAGCGCAGGCCGACTGCCATCAAGGCAC
ACTAGACGAATGTTTACGGACCAAGAACCTCTTTACGGCAGTACACTGTTACATATTGA
ATGTGCGGATTTTGACCGCCATATCGGAGTTGCTCCTGTCGCAAATTAGGCGGACCCAG
AACAGCCATATGAGCCCACTGGAAGGGAGTCGATCCCAGTCGCCGAGCAGAGACGACAC
CAGCAGCAGCAGCGGCCACAGCAGTGTTGACACCATACCCTTCTTTAGCGAGAACCTCC
CTATTGGTGAGCTGTTCTCCTATGTTGACCCCCTGACACACGCCCTATTCTCGGCTTGC
ACTACGTTACATGTTGGGGTACAATTGCTGCGTGAGAATGAGATTACTCTGGGAGTACA
CTCCGCCCAGGGCATTGCAGCTTCCATCAGCATGAGCGGGGAACCAGGCGAGGATATAG
CCAGGACAGGGGCGACCAATTCCGCAAGATGCGAGGAGCAGCCGACCACTCCAGCGGCT
CGGGTTTTGTTCATGTTCTTGAGTGATGAAGGGGCTTTCCAGGAGGCAAAGTCTGCTGG
TTCCCGAGGTCGAACCATCGCAGCACTGCGACGATGCTATGAGGATATCTTTTCCCTCG
CCCGCAAACACAAACATGGCATGCTCAGAGACCTCAACAATATTCCTCCATGA
(SEQ ID N0:69) IovE-5 ATGGCTGCAGATCAAGGTATATTCACGAACTCGGTCACTCTCTCGCCAGTGGAGGGTTC
ACGCACCGGTGGAACATTACCCCGCCGTGCATTCCGACGCTCTTGTGATCGGTGTCATG
CACAAAAGATCAAATGTACTGGAAATAAGGAGGTTACTGGCCGTGCTCCCTGTCAGCGT
TGCCAGCAGGCTGGACTTCGATGCGTCTACAGTGAGCGACGCCCCAAGCGCAAGCTACG
CCAATCCAGGGCAGCGGATCTCGTCTCTGCTGACCCAGATCCCTGCTTGCACATGTCCT
CGCCTCCAGTGCCCTCACAGAGCTTGCCGCTAGACGTATCCGAGTCGCATTCCTCAAAT
ACCTCCCGGCAATTTCTTGATCCACCGGACAGCTACGACTGGTCGTGGACCTCGATTGG
CACTGACGAGGCTATTGACACTGACTGCTGGGGGCTGTCCCAATGTGATGGAGGCTTCA
GCTGTCAGTTAGAGCCAACGCTGCCGGATCTACCTTCGCCCTTCGAGTCTACGGTTGAA
AA.AGCTCCGTTGCCACCGGTATCGAGCGACATTGCTCGTGCGGCCAGTGCGCAACGAGA
GCTTTTCGATGACCTGTCGGCGGTGTCGCAGGAACTGGAAGAGATCCTTCTGGCCGTGA
CGGTAGAATGGCCGAAGCAGGAAATCTGGACCCATCCCATCGGAATGTTTTTCAATGCG
TCACGACGGCTTCTTACTGTCCTGCGCCAACAAGCGCAGGCCGACTGCCATCAAGGCAC
ACTAGACGAATGTTTACGGACCAAGAACCTCTTTACGGCAGTACACTGTTACATATTGA
ATGTGCGGATTTTGACCGCCATATCGGAGTTGCTCCTGTCGCAAA.TTAGGCGGACCCAG
AACAGCCATATGAGCCCACTGGAAGGGAGTCGATCCCAGTCGCCGAGCAGAGACGACAC
CAGCAGCAGCAGCGGCCACAGCAGTGTTGACACCATACCCTTCTTTAGCGAGAACCTCC
CTATTGGTGAGCTGTTCTCCTATGTTGACCCCCTGACACACGCCCTATTCTCGGCTTGC
ACTACGTTACATGTTGGGGTACAATTGCTGCGTGAGAATGAGATTACTCTGGGAGTACA
CTCCGCCCAGGGCATTGCAGCTTCCATCAGCATGAGCGGGGAACCAGGCGAGGATATAG
CCAGGACAGGGGCGACCAATTCCGCAAGATGCGAGGAGCAGCCGACTACTCCAGCGGCT
CGGGTTTTGTTCATGTTCTTGAGTGATGAAGGGGCTTTCCAGGAGGCAAAGTCTGCTGG
TTCCCGAGGTCGAACCATCGCAGCACTGCGACGATGCTATGAGGATATCTTTTCCCTCG
CCCGCAAACACAAACATGGCATGCTCAGAGACCTCAACAATATTCCTCCATGA
(SEQ ID N0:70) lovE-6 ATGGCTGCAGATCAAGGTATATTCACGAACTCGGTCACTCTCTCGCCAGTGGAGGGTTC
ACGCACCGGTGGAACATTACCCCGCCGTGCATTCCGACGCTCTTGTGATCGGTGTCATG
CACAAAAGATCAAATGTACTGGAAATAAGGAGGTTACTGGCCGTGCTCCCTGTCAGCGT
TGCCAGCAGGCTGGACTTCGATGCGTCTACAGTGAGCGATGCCCCAAGCGCAAGCTACG
CCAATCCAGGGCAGCGGATCTCGTCTCTGCTGACCCAGATCCCTGCTTGCACATGTCCT
CGCCTCCAGTGCCCTCACAGAGCTTGCCGCTAGACGTATCCGAGTCGCATTCCTCAAAT
ACCTCCCGGCAATTTCTTGATCCACCGGACAGCTACGACTGGTCGTGGACCTCGATTGG
CACTGACGAGGCTATTGACACTGACTGCTGGGGGCTGTCCCAATATGATGGAGGCTTCA
GCTGTCAGTTAGAGCCAACGCTGCCGGATCTACCTTCGCCCTTCGAGTCTACGGTTGAA
AAAGCTCCGTTGCCACCGGTATCGAGCGACATTGCTCGTGCGGCCAGTGCGCAACGAAA
GCTTTTCGATGACCTGTCGGCGGTGTCGCAGGAACTGGAAGAGATCCTTCTGGCCGTGA
CGGTAGAATGGCCGAAGCAGGAAATCTGGACCCATCCCATCGGAATGTTTTTCAATGCG
TCACGACGGCTTCTTACTGTCCTGCGCCAACAAGCGCAGGCCGACTGCCATCAAGGCAC
ACTAGACGAATGTTTACGGACCAAGAACCTCTTTACGGCAGTACACTGTTACATATTGA
ATGTGCGGATTTTGGCCGCCATATCGGAGTTGCTCCTGTCGCAAATTAGGCGGACCCAG
AACAGCCATATGAGCCCACTGGAAGGGAGTCGATCCCAGTCGCCGAGCAGAGACGACAC
CAGCAGCAGCAGCGGCCACAGCAGTGTTGACACCATACCCTTCTTTAGCGAGAACCTCC
CTATTGGTGAGCTGTTCTCCTATGTTGACCCCCTGACACACGCCCTATTCTCGGCTTGC
ACTACGTTACATGTTGGGGTACAATTGCTGCGTGAGAATGAGATTACTCTGGGAGTACA
CTCCGCCCAGGGCATTGCAGCTTCCATCAGCATGAGCGGGGAACCAGGCGAGGATATAG
CCAGGACAGGGGCGACCAATTCCGCAAGATGCGAGGAGCAGCCGACCACTCCAGCGGCT
CGGGTTTTGTTCATGTTCTTGAGTGATGAAGGGGCTTTCCAGGAGGCAAAGTCTGCTGG
TTCCCGAGGTCGAACCATCGCAGCACTGCGACGATGCTATGAGGATATCTTTTCCCTCG
CCCGCAA.A.CACAAACATGGCATGCTCAGAGACCTCAACAATATTCCTCCATGA
( SEQ ID NO : 71 ) lovE-7 ATGGCTGCAGATCAAGGTATATTCACGAACTCGGTCACTCTCTCGCCAGTGGAGGGTTC
ACGCACCGGTGGAACATTACCCCGCCGTGCATTCCGACGCTCTTGTGATCGGTGTCATG
CACAAA.AGATCAAATGTACTGGAAATAAGGAGGTTACTGGCCGTGCTCCCTGTCAGCGT
TGCCAGCAGGCTGGACTTCGATGCGTCTACAGTGAGCGACGCCCCAAGCGCAAGCTACG
CCAATCCAGGGCAGCGGATCTCGTCTCTGCTGACCCAGATCCCTGCTTGCACATGTCCT
CGCCTCCAGTGCCCTCACAGAGCTTGCCGCTAGACGTATCCGAGTCGCATTCCTCAAAT
ACCTCCCGGCAATTTCTTGATCCACCGGACAGCTACGACTGGTCGTGGACCTCGATTGG
CACTGACGAGGCTATTGACACTGACTGCTGGGGGCTGTCCCAATGTGATGGAGGCTTCA
GCTGTCAGTTAGAGCCAACGCTGCCGGATCTACCTTCGCCCTTCGAGTCTACGGTTGAA
AAAGCTCCGTTGCCACCGGTATCGAGCGACATTGCTCGTGCGGCCAGTGCGCAACGAGA
GCTTTTCGATGACCTGTCGGCGGTGTCGCAGGAACTGGAAGAGATCCTTCTGGCCGTGA
CGGTAGAATGGCCGAAGCAGGAAATCTGGACCCATCCCATCGGAATGTTTTTCAATGCG
TCACGACGGCTTCTTACTGTCCTGCGCCAACAAGCGCAGGCCGACTGCCATCAAGGCGC
ACTAGACGAATGTTTACGGACCAAGAACCTCTTTACGGCAGTACACTGTTACATATTGA
ATGTGCGGATTTTGACCGCCATATCGGAGTTGCTCCTGTCGCAAATTAGGCGGACCCAG
AACAGCCATATGAGCCCACTGGAAGGGAGTCGATCCCAGTCGCCGAGCAGAGACGACAC
CAGCAGCAGCAGCGGCCACAGCAGTGTTGACACCATACCCTTCTTTAGCGAGAACCTCC
CTATTGGTGAGCTGTTCTCCTATGTTGACCCCCTGACACACGCCCTATTCTCGGCTTGC
ACTACGTTACATGTTGGGGTACAATTGCTGCGTGAGAATGAGATTACTCTGGGAGTACA
CTCCGCCCAGGGCATTGCAGCTTCCATCAGCATGAGCGGGGAACCAGGCGAGGATATAG
CCAGGACAGGGGCGACCAATTCCGCAAGATGCGAGGAGCAGCCGACCACTCCAGCGGCT
CGGGTTTTGTTCATGTTCTTGAGTGATGAAGGGGCTTTCCAGGAGGCAAAGTCTGCTGG
TTCCCGAGGTCGAACCATCGCAGCACTGCGACGATGCTATGAGGATATCTTTTCCCTCG
CCCGCAAACACAAACATGGCATGCTCAGAGACCTCAACAGTATTCCTCCATGA
(SEQ ID N0:72) lovE-8 ATGGCTGCAGATCAAGGTATATTCACGAACTCGGTCACTCTCTCGCCAGTGGAGGGTTC
ACGCACCGGTGGAACATTACCCCGCCGTGCATTCCGACGCTCTTGTGATCGGTGTCATG
CACAAAAGATCAA.ATGTACTGGAAATAAGGAGGTTACTGGCCGTGCTCCCTGTCAGCGT
TGCCAGCAGGCTGGACTTCGATGCGTCTACAGTGAGCGACGCCCCAAGCGCAAGCTACG
CCAATCCAGGGCAGCGGATCTCGTCTCTGCTGACCCAGATCCCTGCTTGCACATGTCCT
CGCCTCCAGTGCCCTCACAGAGCTTGCCGCTAGACGTATCCGAGTCGCATTCCTCAAAT
ACCTCCCGGCAATTTCTTGATCCACCGGACAGCTACGACTGGTCGTGGACCTCGATTGG
CACTGACGTGGCTATTGACACTGACTGCTGGGGGCTGTCCCAATGTGATGGAGGCTTCA
GCTGTCAGTTAGAGCCAACGCTGCCGGATCTACCTTCGCCCTTCGAGTCTACGGTTGAA
AAAGCTCCGTTGCCACCGGTATCGAGCGACATTGCTCGTGCGGCCAGTGCGCAACGAGA
GCTTTTCGATGACCTGTCGGCGGTGTCGCAGGAACTGGAAGAGATCCTTCTGGCCGTGA
CGGTAGAATGGCCGAAGCAGGAAATCTGGACCCATCCCATCGGAATGTTTTTCAATGCG
TCACGACGGCTTCTTACTGTCCTGCGCCAACAAGCGCAGGCCGACTGCCATCAAGGCAC
ACTAGACGAATGTTTACGGACCAAGAACCTCTTTACGGCAGTACACTGTTACATATTGA
ATGTGCGGATTTTGACCGCCATATCGGAGTTGCTCCTGTCGCAAATTAGGCGGACCCAG
AACAGCCATATGAGCCCACTGGAAGGGAGTCGATCCCAGTCGCCGAGCAGAGACGACAC
CAGCAGCAGCAGCGGCCACAGCAGTGTTGACACCATACCCTTCTTTAGCGAGAACCTCC
CTATTGGTGAGCTGTTCTCCTATGTTGACCCCCTGACACACGCCCTATTCTCGGCTTGC
ACTACGTTACATGTTGGGGTACAATTGCTGCGTGAGAATGAGATTACTCTGGGAGTACA
CTCCGCCCAGGGCATTGCAGCTTCCATCAGCATGAGCGGGGAACCAGGCGAGGATATAG
CCAGGACAGGGGCGACCAATTCCGCAAGATGCGAGGAGCAGCCGACCACTCCAGCGGCT
CGGGTTTTGTTCATGTTCTTGAGTGATGAAGGGGCTTTCCAGGAGGCAAAGTCTGCTGG
TTCCCGAGGTCGAACCATCGCAGCACTGCGACGATGCTATGAGGATATCTTTTCCCTCG
CCCGCAAACACAAACATGGCATGCTCAGAGACCTCAACAATATTCCTCCATGA
(SEQ ID N0:73) lovE-9 ATGGCTGCAGATCAAGGTATATTCACGAACTCGGTCACTCTCTCGCCAGTGGAGGGTTC
ACGCACCGGTGGAACATTACCCCGCCGTGCATTCCGACGCTCTTGTGATCGGTGTCATG
CACAAAAGATCAAATGTACTGGAAATAAGGAGGTTACTGGCCGTGCTCCCTGTCAGCGT
TGCCAGCAGGCTGGACTTCGATGCGTCTACAGTGAGCGACGCCCCAAGCGCAAGCTACG
CCAATCCAGGGCAGCGGATCTCGTTTCTGCTGACCCAGATCCCTGCTTGCACATGTCCT
CGCCTCCAGTGCCCTCACAGAGCTTGCCACTAGACGTATCCGAGTCGCATTCCTCAAAT
ACCTCCCGGCAATTTCTTGATCCACCGGACAGCTACGACTGGTCGTGGACCTCGATTGG
CACTGACGAGGCTATTGACACTGACTGCTGGGGGCTGTCCCAATGTGATGGAGGCTTCA
GCTGTCAGTTAGAGCCAACGCTGCCGGATCTACCTTCGCCCTTCGAGTCTACGGTTGAA
AAAGCTCCGTTGCCACCGGTATCGAGCGACATTGCTCGTGCGGCCAGTGCGCAACGAGA
GCTTTTCGATGACCTGTCGGCGGTGTCGCAGGAACTGGAAGAGATCCTTCTGGCCGTGA
CGGTAGAATGGCCGAAGCAGGAAATCTGGACCCATCCCATCGGAATGTTTTTCAATGCG
TCACGACGGCTTCTTACTGTCCTGCGCCAACAAGCGCAGGCCGACTGCCATCAAGGCAC
ACTAGACGAATGTTTACGGACCAAGAACCTCTTTACGGCAGTACACTGTTACATATTGA
ACGTGCGGATTTTGACCGCCATATCGGAGTTGCTCCTGTCGCAAATTAGGCGGACCCAG
AACAGCCATATGAGCCCACTGAAAGGGAGTCGATCCCAGTCGCCGAGCAGAGACGACAC
CAGCAGCAGCAGCGGCCACAGCAGTGTTGACACCATACCCTTCTTTAGCGAGAACCTCC
CTATTGGTGAGCTGTTCTCCTATGTTGACCCCCTGACACACGCCCTATTCTCGGCTTGC
ACTACGTTACATGTTGGGGTACAATTGCTGCGTGAGAATGAGATTACTCTGGGAGTACA
CTCCGCCCAGGGCATTGCAGCTTCCATCAGCATGAGCGGGGAACCAGGCGAGGATATAG
CCAGGACAGGGGCGACCAATTCCGCAAGATGCGAGGAGCAGCCGACCACTCCAGCGGCT
CGGGTTTTGTTCATGTTCTTGAGTGATGAAGGGGCTTTCCAGGAGGCAAAGTCTGCTGG
TTCCCGAGGTCGAACCATCGCAGCACTGCGACGATGCTATGAGGATATCTTTTCCCTCG
CCCGCAAACACAA.ACATGGCATGCTCAGAGACCTCAACAATATTCCTCCATGA
(SEQ ID N0:74) lovE-10 ATGGCTGCAGATCAAGGTATATTCACGAACTCGGTCACTCTCTCGCCAGTGGAGGGTTC
ACGCACCGGTGGAACATTACCCCGCCGTGCATTCCGACGCTCTTGTGATCGGTGTCATG
CAAAAA.AGATCAAATGTACTGGAAA.TAAGGAGGTTACTGGCCGTGCTCCCTGTCAGCGT
TGCCAGCAGGCTGGACTTCGATGCGTCTACAGTGAGCGATGCCCCAAGCGCAAGCTACG
CCAATCCAGGGCAGCGGATCTCGTCTCTGCTGACCCAGATCCCTGCTTGCACATGTCCT
CGCCTCCAGTGCCCTCACAGAGCTTGCCGCTAGACGTATCCGAGTCGCATTCCTCAAAT
ACCTCCCGGCAATTTCTTGATCCACCGGACAGCTACGACTGGTCGTGGACCTCGATTGG
CACTGACGAGGCTATTGACACTGACTGCTGGGGGCTGTCCCAATGTGATGGAGGCTTCA
GCTGTCAGTTAGAGCCAACGCTGCCGGATCTACCTTCGCCCTTCGAGTCTACGGTTGAA
AAAGCTCCGTTGCCACCGGTATCGAGCGACATTGCTCGTGCGGCCAGTGCGCAACGAGA
GCTTTTCGATGACCTGTCGGCGGTGTCGCAGGAACTGGAAGAGATCCTTCTGGCCGTGA
CGGTAGAATGGCCGAAGCAGGAA.ATCTGGACCCATCCCATCGGAATGTTTTTCAATGCG
TCACGACGGCTTCTTACTGTCCTGCGCCAACAAGCGCAGGCCGACTGCCATCAAGGCAC
ACTAGACGAATGTTTACGGACCAAGAACCTCTTTACGGCAGTACACTGTTACATATTGA
ATGTGCGGATTTTGACCGCCATATCGGAGTTGCTCCTGTCGCAAATTAGGCGGACCCAG
AACAGCCATATGAGCCCACTGGAAGGGAGTCGATCCCAGTCGCCGAGCAGAGACGACAC
CAGCAGCAGCAGCGGCCACAGCAGTGTTGACACCATACCCTTCTTTAGCGAGAACCTCC
CTATTGGTGAGCTGTTCTCCTATGTTGACCCCCTGACACACGCCCTATTCTCGGCTTGC
ACTACGCTACATGTTGGGGTACAATTGCTGCGTGAGAATGAGATTACTCTGGGAGTACA
CTCCGCCCAGGGCATTGCAGCTTCCATCAGCATGAGCGGGGAACCAGGCGAGGATATAG
CCAGGACAGGGGCGACCAATTCCGCAAGATGCGAGGAGCAGCCGACCACTCCAGCGGCT
CGGGTTTTGTTCATGTTCTTGAGTGATGAAGGGGCTTTCCAGGAGGCAAAGTCTGCTGG
TTCCCGAGGTCGAACCATCGCAGCACTGCGACGATGCTATGAGGATATCTTTTCCCTCG
CCCGCAAACACAAACATGGCATGCTCAGAGACCTCAACAATATTCCTCCATGA
(SEQ ID N0:75) lovE-16 ATGGCTGCAGATCAAGGTATATTCATGAACTCGGTCACTCTCTCTGCAGTGGAGGGTTC
ACGCACCAGTGGAACATTACCCCGCCGTGCATTCCGACGCTCTTGTGATCGGTGTCATG
CAAAAAAGATCAAATGTACTGGAAATAAGGAGGTTACTGGCCGTGCTCCCTGTCAGCGT
TGCCAGCAGGCTGGACTTCGATGCGTCTACAGTGAGCGATGCCCCAAGCGCAAGCTACG
CCAATCCAGGGCAGCGGATCTCGTCTCTGCTGACCCAGATCCCTGCTTGCACATGTCCT
CGCCTCCAGTGCCCTCACAGAGCTTGCCGCTAGACGTATCCGAGTCGCATTCCTCAA.AT
ACCTCCCGGCAATTTCTTGATCCACCGGACAGCTACGACTGGTCGTGGACCTCGATTGG
CACTGACGAGGCTATTGACACTGACTGCTGGGGGCTGTCCCAATGTGATGGAGGCTTCA
GCTGTCAGTTAGAGCCAACGCTGCCGGATCTACCTTCGCCCTTCGAGTCTACAGTTGAA
AAAGCTCCGTTGCCACCGGTATCGAGCGACATTGCTCGTGCGGCCAGTGCGCAACGAGA
GCTTTTCGATGACCTGTCGGCGGTGTCGCAGGAACTGGAAGAGATCCTTCTGGCCGTGA
CGGTAGAATGGCCGAAGCAGGAAATCTGGACCCATCCCATCGGAATGTTTTTCAATGCG
TCACGACGGCTTCTTACTGTCCTGCGCCAACAAGCGCAGGCCGACTGCCATCAAGGCAC
ACTAGACGAATGTTTACGGACCAAGAACCTCTTTACGGCAGTACACTGTTACATATTGA
ATGTGCGGATTTTGACCGCCATATCGGAGTTGCTCCTATCGCAAATTAGGCGGACCCAG
AACAGCCATATGAGCCCACTGGAAGGGAGTCGATCCCAGTCGCCGAGCAGAGACGACAC
TAGCAGCAGCAGCGGCCACAGCAGTGTTGACACCATACCCTTCTTTAGCGAGAACCTCC
CTATTGGTGAGCTGTTCTCCTATGTTGACCCCCTGACACACGCCCTATTCTCGGCTTGC
ACTACGTTACATGTTGGGGTAGAATTGCTGCGTGAGAATGAGATTACTCTGGGAGTACA
CTCCGCCCAGGGCATTGCAGCTTCCATCAGCATGAGCGGGGAACCAGGCGAGGATATAG
CCAGGACAGGGGCGACCAATTCCGCAAGATGCGAGGAGCAGCCGACCACTCCAGCGGCT
CGGGTTTTGTTCATGTTCTTGAGTGATGAAGGGGCTTTCCAGGAGGCAAAGTCTGCTGG
TTCCCGAGGTCGAACCATCGCAGCACTGCGACGATGCTATGAGGATATCTTTTCCCTCG
CCCGCAAACACAAACATGGCATGCTCAGAGACCTCAACAATATTCCTCCATGA
(SEQ ID N0:76) lovE-19 ATGGCTGCAGATCAAGGTATATTCACGAACTCGGTCACTCTCTCGCCAGTGGAGGGTTC
ACACACCGGTGGAACATTACCCCGCCGTGCATTCCGACGCGCTTGTGATCGGTGTCATG
CACAAAAGATCAAATGTACTGGAAATAAGGAGGTTACTGGCCGTGCTCCCTGTCAGCGT
TGCCAGCAGGCTGGACTTCGATGCGTCTACAGTGAGCGATGCCCCAAGCGCAAGCTACG
CCATTCCAGGGCATCGGATCTCGTCTCTGCTGACCCAGATCCCTGCTTGCACATGTCCT
CGCCTCCAGTGCCCTCACAGAGCTTGCCGCTAGACGTATCCGAGTCGCATTCCTCAAAT
ACCTCCCGGCAATTTCTTGATCCACCGGACAGCTACGACTGGTCGTGGACCTCGATTGG
CACTGACGAGGCTATTGACACTGACTGCTGGGGGCTGTCCCAATGTGATGGAGGCTTCA
GCTGTCAGTTAGAGCCAACGCTGCCGGATCTACCTTCGCCCTTCGAGTCTACGGTTGAA
AA.AGCTCCGTTGCCACCGGTATCGAGCGACATTGCTCGTGCGGCCAGTGCGCAACGAGA
GCTTTTCGATGACCTGTCGGCGGTGTCGCAGGAACTGGAAGAGATCCTTCTGGCCGTGA
CGGTAGAATGGCCGAAGCAGGAAATCTGGACCCATCCCATCGGAATGTTTTTCAATGCG
TCACGACGGCTTCTTACTGTCCTGCGCCAACAAGCGCAGGCCGACTGCCATCAAGGCAC
ACTAGACGAATGTTTACGGACCAAGAACCTCTTTACGGCAGTACACTGTTACATATTGA
ATGTGCGGATTTTGACCGCCATATCGGAGTTGCTCCTGTCGCAAATTAGGCGGACCCAG
AACAGCCATATGAGCCCACTGGACGGGAGTCGATCCCAGTCGCCGAGCAGAGACGACAC
CAGCAGCAGCAGCGGCCACAGCAGTGTTGACACCATACCCTTCTTTAGCGAGAACCTCC
CTATTGGTGAGCTATTCTCCTATGTTGACCCCCTGACACACGCCCTATTCTCGGCTTGC
ACTACGTTACATGTTGGGGTACAATTGCTGCGTGAGAATGAGATTACTCTGGGAGTAGA
CTCCGCCCAGGGCATTGCAGCTTCCATCAGCATGAGCGGGGAACCAGGCGAGGATATAG
CCAGGACAGGGGCGACCAATTCCGCAAGATGCGAGGAGCAGCCGACCACTCCAGCGGCT
CGGGTTTTGTTCATGTTCTTGAGTGATGAAGGGGCTTTCCAGGAGGCAAA.GTCTGCTGG
TTCCCGAGGTCGAACCATCACAGTACTGCGACGAAGCTATGAGGATATCTTTTCCCTCG
CCCGCAAACACAAACATGGCATGCTCAGAGACCTCAACAATATTCCTTCATGA
(SEQ ID N0:77) lovE-20 ATGGCTGCAGATCAAGGTATATTCACGAACTCGGTCACTCTCTCGCCAGTGGAGGGTTC
ACGCACCGGTGGAACATTACCCCGCCGTGCACTCCGACGCTCTTGTGATCGGTGTCATG
CACAA.AAGATCAAATGTACTGGAAATAAGGAGGTTACTGGCCGTGCTCCCTGTCAGCGT
TGCCAGCAGGCTGGACTTCGATGCGTCTACAGTGAGCGATGCCCCAAGCGCAAGCTACG
CCAATCCAGGGCAGCGGATCTCGTCTCTGCTGACCCAGATCCCTGCTTGCACATGTCCT
CGCCTCCAGTGCCCTCACAGAGCTTGCCGCTAGACGTATCCGAGTCGCATTCCTCAAAT
ACCTCCCGGCAATTTCTTGATCCACCGGACAGCTACGACTGGTCGTGGACCTCGATTGG
CACTGACGAGGCTATTGACACTGACTGCTGGGGGCTGTCCCAATGTGATGGAGGCTTCA
GCTGTCAGTTAGAGCCAACGCTGCCGGATCTACCTTCGCCCTTCGAGTCTACGGTTGAA
AAAGCTCCGTTGCCACCGGTATCGAGCGACATTGCTCGTGCGGCCAGTGCGCAACGAGA
GCTTTTCGATGACCTGTCGGCGGTGTCGCAGGAACTGGAAGAGATCCTTCTGGCCGTGA
CGGTAGAATGGCCGAAGCAGGAAATCTGGACCCATCCCATCGGAATGTTTTTCAATGCG
TCACGACGGCTTCTTACTGTCCTGCGCCAACAAGCGCAGGCCGACTGCCATCAAGGCAC
ACTAGACGAATGTTTACGGACCAAGAACCTCTTTACGGCAGTACACTGTTACATATTGA
ATGTGCGGATTTTGACCGCCATATCGGAGTTGCTCCTGTCGCAAATTAGGCGGACCCAG
AACAGCCATATGAGCCCACTGGAAGGGAGTCGATCCCAGTCGCCGAGCAGAGACGACAC
CAGCAGCAGCAGCGGCCACAGCAGTGTTGACACCATACCCTTCTTTAGCGAGAACCTCC
CTATTGGTGAGCTGTTCTCCTATGTTGACCCCCTGACACACGCCCTATTCTCGGCTTGC
ACTACGTTACATGTTGGGGTACAATTGCTGCGTGAGAATGAGATTACTCTGGGAGTACA
CTCCGCCCAGGGCATTGCAGCTTCCATCAGCATGAGCGGGGAACCAGGCGAGGATATAG
CCAGGACAGGGGCGACCAATTCCGCAAGATGCGAGGAGCAGCCGATCACTCCAGCGGCT
CGGGTTTTGTTCATGTTCTTGAGTGATGAAGGGGCTTTCCAGGAGGCAAAGTCTGCTGG
TTCCCGAGGTCGAACCATCGCAGCACTGCGACGATGCTATGAGGATATCTTTTCCCTCG
CCCGCAAACACAAACATGGCATGCTCAGAGACCTCAACAATATTCCTCCATGA
(SEQ ID N0:78) lovE-21 ATGGCTGCAGATCAAGGTATATTCACGAACTCGGTCACTCTCTCGCCAGTGGAGGGTTC
ACGCACCGGTGGAACATTACCCCGCCGTGCACTCCGACGCTCTTGTGATCGGTGTCATG
CACAAAAGATCAAATGTACTGGAAATAAGGAGGTTACTGGCCGTGCTCCCTGTCAGCGT
TGCCAGCAGGCTGGACTTCGATGCGTCTACAGTGAGCGATGCCCCAAGCGCAAGCTACG
CCAATCCAGGGCAGCGGATCTCGTCTCTGCTGACCCAGATCCCTGCTTGCACATATCCT
CGCCTCCAGTGCCCTCACAGAGCTTACCGCTAGACGTATCCGATTCGCATTCCTCAAAT
ACCTCCCGGCAATTTCTTGATCCACCGGACAGCTACGACTGGTCGTGGACCTCGATTGG
CACTGACGAGGCTATTGACACTAACTGCTGGGGGCTGTCCCAATGTGATGGAGGCTTCA
GCTGTCAGTTAGAGTCAACGCTGCCGGATCTACCTTCGCCCTTCGAGTCTACGGTTGAA
AAAGCTCCGTTGCCACCGGTATCGAGCGACATTGCTCGTGCGGCCAGTGCGCAACGAGA
GCTTTTCGATGACCTGTCGGCGGTGTCGCAGGAACTGGAAGAGATCCTTCTGGCCGTGA
CGGTAGAATGGCCTAAGCAGGAAATCTGGACCCATCCCATCGGAATGTTTTTCAATGCG
TCACGACGGCTTCTTACTGTCCTGCGCCAACAAGCGCAGGCCGACTGCCATCAAGGCAC
ACTAGACGAATGTTTACGGACCAAGAACCTCTTTACGGCAGTACACTGTTACATATTGA
ATGTGCGGATTTTGACCGCCATATCGGAGTTGCTCCTGTCGCAAATTAGGCGGACCCAG
AACAGCCATATGAGCCCACTGGAAGGGAGTCGATCCCAGTCGCCGAGCAGAGACGACAC
CAGCAGCAGCAGCGGCCACAGCAGTGTTGACACCATACCCTTCTTTAGCGAGAACCTCC
CTATTGGTGAGCTGTTCTCCTATGTTGACCCCCTGACACACGCCCTATTCTCGGCTTGC
ACTACGTTACATGTTGGGGTACAATTGCTGCGTGAGATTGAGATTACTCTGGGAGTACA
CTCCGCCCAGGGCATTGCAGCTTCCATCAGCATGAGCGGGGAACCAGGCGAGGATATAG
CCAGGACAGGGGCAACCAATTCCGCAAGATGCGAGGAGCAGCCGACCACTCCAGCGGCT
CGGGTTTTGTTCATGTTCTTGAGTGATGAAGGGGCTTTCCAGGAGGCAAAGTCTGCTGG
TTCCCGAGGTCGAACCATCGCAGCACTGCGACGATGCTATGAGGATATCTTTTCCCTCG
CCCGCAAACACAAATATGGCATGCTCAGAGACCTCAACAATATTCCTCCATGA
(SEQ ID N0:79) lovE-30 ATGGCTGCAGATCAAGGTATATTCACGAACTCGGTCACTCTCTCGCCAGTGGAGGGTTC
ACGCACCGGTGGAACATTACCCCGCCGTGCATTCCGACGCTCTTGTGATCGGTGTCATG
CACAAA.AGGTCAAATGTACTGGAAATAAGGAGGTTACTGGCCGTGCTCCCTGTCAGCGT
TGCCAGCAGGCTGGACTTCGATGCGTCTACAGTGAGCGATGCCCCAAGCGCAAGCTACG
CCAATCCAGGGCAGCGGATCTCGTCTCTGCTGACCCAGATCCCTGCTTGCACATGTCCT
CGCCTCCAGTGCCCTCACAGAGCTTGCCGCTAGACGTATCCGAGTCGCATTCCTCAAAT
ACCTCCCGGCAATTTCTTGATCCACCGGACAGCTACGACTGGTCGTGGACCTCGATTGG
CACTGACGAGGCTATTGACACTGACTGCTGGGGGCTGTCCCAATGTGATGGAGGCTTCA
GCTGTCAGTTAGAGCCAACGCTGCCGGATCTACCTTCGCCCTTCGAGTCTACGGTTGAA
AAAGCTCCGTTGCCACCGGTATCGAGCGACATTGCTCGTGCGGCCAGTGCGCAACGAGA
GCTTTTCGATGACCTGTCGGCGGTGTCGCAGGAACTGGAAGAGATCCTTCTGGCCGTGA
CGGTAGAATGGCCGAAGCAGGAAATCTGGACCCATCCCATCGGAATGTTTTTCAATGCG
TCACGACGGCTTCTTACTGTCCTGCGCCAACAAGCGCAGGCCGACTGCCATCAAGGCAC
ACTAGACGAATGTTTACGGACCAAGAACCTCTTTACGGCAGTACACTGTTACATATTGA
ATGTGCGGATTTTGACCGCCATATCGGAGTTGCTCCTGTCGCAAATTAGGCGGACCCTG
AACAGCCATATGAGCCCACTGGAAGGGAGTCGATCCCAGTCGCCGAGCAGAGACGACAC
CAGCAGCAGCAGCGGCCACAGCAGTGTTGACACCATACCCTTCTTTAGCGAGAACCTCC
CTATTGGTGAGCTGTTCTCCTATGTTGACCCCCTGACACACGCCCTATTCTCGGCTTGC
ACTACGTTACATGTTGGGGTACAATTGCTGCGTGAGAATGAGATTACTCTGGGAGTACA
CTCCGCCCAGGGCATTGCAGCTTCCATCAGCATGAGCGGGGAACCAGGCGAGGATATAG
CCAGGACAGGGGCGACCAATTCCGCAAGATGCGAGGAGCAGCCGACCACTCCAGCGGCT
CGGGTTTTGTTCATGTTCTTGAGTGATGAAGGGGCTTTCCAGGAGGCAAAGTCTGCTGG
TTCCCGAGGTCGAACCATCGCAGCACTGCGACGATGCTATGAGGATATCTTTTCCCTCG
CCCGCAAACACAAACATGGCATGCTCAGAGACCTCAACAATATTCCTCCATGA
(SEQ ID N0:80) lovE-31 ATGGCTGCAGATCAAGGTATATTCACGAACTCCGTCACTCTCTCGCCAGTGGAGGGTTC
ACGCACCGGTGGAACATTACCCCGCCGTGCATTACGACGCTCTTGTGATCGGTGTCATG
CACAAA.AGATCAAATGTACTGGAAATAAGGAGGTTACTGGCCGTGCTCCCTGTCAGCGT
TGCCAGCAGGCTGGACTTCGATGCGTCTACAGTGAGCGATGCCCCAAGCGCAAGTTACG
CCAATCCAGGGCAGCGGATCTCGTCTCTGCTGACCCAGATCCCTGCTTGCACATGTCCT
CGCCTTCAGTGCCCTCACAGAGCTTGCCGCTAGACGTATCCGAGTCGCATTCCTCAAAT
ACCTCCCGGCAATTTCTTGATCCACCGGACAGCTACGACTGGTCGTGGACCTCGATTGG
CACTGACGAGGCTATTGACACTGACTGCTGGGGGCTGTCCCAACGTGATGGAGGCTTCA
GCTCTCAGTTAAAGCCAACGCTGCCGGATCTACCTTCGCCCTTCGAGTCTACGGTTGAA
AAA.GCTCCGTTGCCACCGGTATCGAGCGACATTGCTCGTGCGGCCAGTGCGCAACGAGA
GCTTTTCGATGACCTGTCGGCGGTGTCGCAGGAACTGGAAGAGATCCTTCTGGCCGTGA
CGGTAGAATGGCCGAAGCAGGAAATCTGGACCCATCCCATCGGAATGTTTTTCAATGCG
TCACGACGGCTTCTTACTGTCCTGCGCCAACAAGCGCAGGCCGACTGCCATCAAGGCAC
ACTAGACGAATGTTTACGGACCAAGAACCTCTTTACGGCAGTACACTGTTACATATTGA
ATGTGCGGATTTTGACCGCCATATCGGAGTTGCTACTGTCGCAAATTAGGCTGACCCAG
AACAGCCATATGAGCCCACTGGAAGGGAGTCGATCCCAGTCGCCGAACAGAGACGACAC
CAGCAGCAGCAGCGGCCACAGCAGTGTTGACACCATACCCTTCTTTAGCGAGAACCTCC
CTATTGGTGAGCTGTTCTCCTATGTTGACCCCCTGACACACGCCCTATTCTCGGCTTGC
ACTACGTTACATGTTGGGGTACAATTGCTGCGTGAGAATGAGATTACTCTGGGAGTACA
CTCCGCCCAGGGCATTGCAGCTTCCATCAGCATGAGCGGGGAACCAGGCGAGGATATAG
CCAGGACAGGGGCGACCAATTCCGCAAGATGCGAGGAGCAGCCGACCACTCCAGCGGCT
CGGGTTTTGTTCATGTTCTTGAGTGATGAAGGGGCTTTCCAGGAGGCAAAGTCTGCTGG
TTCCCGAGGTCGAACCATCGCAGCACTGCGACGATGCTATGAGGATATCTTTTCCCTCG
CCCGCAAACACAAACATGGCATGCTCAGAGACCTCAACAATATTCCTCCATGA
( SEQ ID NO : 81 ) lovE-32 ATGGCTGCAGATCAAGGTATATTCACTAACTCGGTCACTATCTCGCCAGTGGTGGGTTC
ACGCACCGGTGGAACATTACCCCGCCGTGCATTCCGACGCTCTTGTGATCGGTGTCATG
CACAAAAGATCAAATGTACTGGAAATAAGGAGGTTACTGGCCGTGCTCCCTGTCAGCGT
TGCCAGCAGGCTGGACTTCGATGCGTCTACAGTGAGCGATGCCCCAAGCGCAAGCTACG
CCAATCCAGGGCAGCGGATCTCGTCTCTGCTGACCCAGATCCCTGCTTGCACATGTCCT
CGCCTCCAGTGCCCTCACAGAGTTTGCCGCTAGACGTATCCGAGTCGCATTCCTCAAAT
ACCTCCCGGCAATTTCTTGATCCACCGGACAGCTACGACTGGTCGTGGACCTCGATTTG
CACTGACGAGGCTATTGACACTGACTGCTGGGGGCTGTCCCAATGTGATGGAGGCTTCA
GCTGTCAGTTAGAGCCAACGCTGCCGGATCTACCTTCGCCCTTCGAGTCTACGGTTGAA
AAAGCTCCGTTGCCACCGGTATCGAGCGACATTGCTCGTGCGGCCAGTGCGCAACGAGA
GCTTTTCGATGACCTGTCGGCGGTGTCGCAGGAACTGGAAGAGATCCTTCTGGCCGTGA
CGGTAGAATGGCCGAAGCAGGAA.ATCTGGACCCATCCCATCGGAATGTTTTTCAATGCG
TCACGACGGCTTCTTACTGTCCTGCGCCAACAAGCGCAGGCCGACTGCCATCAAGGCAC
ACTAGACGAATGTTTACGGACCAAGAACCTCTTTACGGCAGTACACTGTTACATATTGA
ATGTGCGGATTTTGACCGCCATATCGGAGTTGCTCCTGTCGCAAATTAGGCGGACCCAG
AACAGCCATATGAGCCCACTGGAAGGGAGTCGATCCCAGTCGCCGAGCAGAGACGACAC
CAGCAGCAGCAGCGGCCACAGCAGTGTTGACACCATACCCTTCTTTAGCGAGAACCTCC
CTATTGGTGGGCTGTTCTCCTATGTTGACCCCCTGACACACGCCCTATTCTCGGCTTGC
ACTACGTTACATGTTGGGCTACAATTGCTGCGTGAGAATGAGATTACTCTGGGAGTACA
CTCCGCCCAGGGCATTGCAGCTTCCATCAGCATGAGCGGGGAATCAGGCGAGGATATAG
CCAGGACAGGGGCGACCAGTTCCGCAAGATGCGAGGAGCAGCCGACCACTCCAGCGGCT
CGGGTTTTGTTCATGTTCTTGAGTGATGAAGGGGCTTTCCAGGAGGCAAAGTCTGCTGG
TTCCCGAGGTCGAACCATCGCAGCACTGCGACGATGCTATGAGGATATCTTTTCCCTCG
CCCGCAAACACAAACATGGCATGCTCAGAGACCTCAACAATATTCCTCCATGA
(SEQ ID N0:82) lovE-33 ATGGCTGCAGATCAAGGTATATTCACGAACTCGGTCACTCTCTCGCCAGTGGAGGGTTC
ACGCACCGGTGGAACATTACCCCGCCGTGCATTCCGACGCTCTTGTGATCGGTGTCATG
CACGAAAGATCAAATGTACTGGAAATAAGGAGGTTACTGGCCGTGCTCCCTGTCAGCGT
TGCCAGCAGGCTGGACTTCGATGCGTCTACAGTGAGCGATGCCCCAAGCGCAAGCTACG
CCAATCCAGGGCAGCGGATCTCGTCTCTGCTGACCCAGATCCCTGCTTGCACATGTCCT
CGCCTCCAGTGCCCTCACAGAGCTTGCCGCTAGACGTATCCGAGTCGCATTCCTCAA.AT
ACCTCCCGGCAATTTCTTGATCCACCGGACAGCTACGACTGGTCGTGGACCTCGATTGG
CACTGACGAGGCTATTGACACTGACTGCTGGGGGCTGTCCCAATGTGATGGAGGCTTCA
GCTGTCAGTTAGAGCCAACGCTGCCGGATCTACCTTCGCCCTTCGAGTATACGGTTGAA
AAAGCTCCGTTGCCACCGGTATCGAGCGACATTGCTCGTGCGGCCAGTGCGCAACGAGA
GCTTTTCGATGACCTGTCGGCGGTGTCGCAGGAACTGGAAGAGATCCTTCTGGCCGTGA
CGGTAGAATGGCCGAAGCAGGAAATCTGGACCCATCCCATCGGAATGTTTTTCAATGCG
TCACGACGGCTTCTTACTGTCCTGCGCCAACAAGCGCAGGCCGACTGCCATCAAGGCAC
ACTAGACGAATGTTTACGGACCAAGAACCTCTTTACGGCAGTACACTGTTACATATTGA
ATGTGCGGATTTTGACCGCCATATCGGAGTTGCTCCTGTCGCAAATTAGGCGGACCCAG
AACAGCCATATGAGCCCACTGGAAGGGAGTCGATCCCAGTCGCCGAGCAGAGACGACAC
CAGCAGCAGCAGCGGCCACAGCAGTGTTGACACCATACCCTTCTTTAGCGAGAACCTCC
CTATTGGTGAGCTGTTCTCCTATGTTGACCCCCTGACACACGCCCTATTCTCGGCTTGC
ACTACGTTACATGTTGGGGTACAATTGCTGCGTGAGAATGAGATTACTCTGGGAGTACA
CTCCGCCCAGGGCATTGCAGCTTCCATCAGCATGAGCGGGGAACCAGGCGAGGATATAG
CCAGGACAGGGGCGACCAATTCCACAAGATGCGAGGAGCAGCCGACCACTCCAGCGGCT
CGGGTTTTGTTCATGTTCTTGAGTGATGAAGGGGCTTTCCAGGAGGCAAAGTCTGCTGG
TTCCCGAGGTCGAACCATCGCAGCACTGCGACGATGCTATGAGGATATCTTTTCCCTCG
CCCGCAAACACAA.ACATGGCATGCTCAGAGACCTCAACAATATTCCTCCATGA
(SEQ ID N0:83) lovE-34 ATGGCTGCAGATCAAGGTATATTCACGAACTCGGTCACTCTCTCGCCAGTGGAGGGTTC
ACGCACCGGTGGAACATTACCCCGCCGTGCATTGCGACGCTCTTGTGATCGGTGTCATG
CACAAAAGATCAAATGTACTGGAAATAAGGAGGTTATTGGCCGTGCTCCCTGTCAGCGT
TGCCAGCAGGCTGGACTTCGATGCGTATACAGTGAGCGATGCCCCAAGCGCAAGCTACG
CCAATCCAGGGCAGCGGATCTCGTCTCTGCTGACCCAGATCCCTGCTTGCACATGTCCT
CGCCTCAAGTGCCCTCACAGAGCTTGTCGCTAGACATATCCGAGTCGCATTCCTCAAAT
ACCTCCCGGCAATTTCTTGATCCACCGGACAGCTACGACTGGTCGTGGACCTCGATTGG
CACTGACGAGGCTATTGACACTGACTGCTGGGGGCTGTCCCAATGTGATGGAGGCTTCA
GCTGTCAGTTAGAGCCAACGCTGCCGGATCTACCTTCGCCCTTCGAGTCTACGGTTGAA
AAAGCTCCGTTGCCACCGGTATCGAGCGACATTGCTCGTGCGGCCAGTGCGCAACGAGA
GCTTTTCGATGACCTGTCGGCGGTGTCGCAGGAACTGGAAGAGATCCTTCTGGCCGTGA
CGGTAGAATGGCCGAAGCAGGAA.ATCTGGACCCATCCCATCGGAATGTTTTTCAATGCG
TCACGACGGCTTCTTACTGTCCTGCGCCAACAAGCGCAGGCCGACTGCCATCAAGGCAC
ACTAGACGAATGTTTACGGACCAAGAACCTCTTTACGGCAGTACACTGTTACATATTGA
ATGTGCGGATTTTGACCGCCATATCGGAGTTGCTCCTGTCGCAAATTAGGCGGACCCAG
AACAGCCATATGAGCCCACTGGAAGGGAGTCGATCCCAGTCGCCGAGCAGAGACGACAC
CAGCAGCAGCAGCGGCCACAGCAGTGTTGACACCATACCCTTCTTTAGCGAGAACCTCC
CTATTGGTGAGCTGTTCTCCTATGTTGACCCCCTGACACACGCCCTATTCTCGGCTTGC
ACTACGTTACATGTTGGGGTACAATTGCTGCGTGAGAATGAGATTACTCTGGGAGTACA
CTCCGCCCAGGGCATTGCAGCTTCCATCAGCATGAGCGGGGAACCAGGCGAGGATATAG
CCAGGACAGGGGCGACCAATTCCGCAAGATGCGAGGAGCAGCCGACCACTCCAGCGGCT
CGGGTTTTGTTCATGTTCTTGAGTGATGAAGGGGCATTCCAGGAGGCAAAGTCTGCTGG
TTCCCGAGGTCGAACCATCGCAGCACTGCGACGATGCTATGAGGATATCTTTTCCCTCG
CCCGCAAA.CACAAACATGGCATGCTCAGAGACCTCAACAATATTCCTCCATGA
(SEQ ID N0:84) lovE-36 ATGGCTGCAGATCAAGGTATATTCACGAACTCGGTCACTCTCTCACCAGTGGAGGGTTC
ACGCACCGGTGGAACATTACCCCGCCGTGCATTCCGACGCTCTTGTGATCGGTGTCATG
CACAAAAGATCAAATGTACTGGAAATAAGGAGGTTACTGGCCGTGCTCCCTGTCAGCGT
TGCCAGCAGGCTGGACTTCGATGCGTCTACAGTGAGCGATGCCCCAAGCGCAAGCTACG
CCAATCCAGGGCAGCGAATCTCGTCTCTGCTGACCCAGATCCCTGCTTACACATGTCCT
CGCCTCCAGTGCCCTCACAGAGCTTGCCGCTAGACGTATCCGAGTCGCATTCCTCAAAT
ACCTCCCGGCAATTTCTTGATCCACCGGACAGCTACGACTGGTCGTGGACCTCGATTGG
CACTGACGAGGCTTTTGACACTGACTGCTGGGGGCTATCCCAATGTGATGGAGGCTTCA
GCTGTCAGCTAGAGCCAACGCTGCCGGATCTACCTTCGCCCTTCGAGTCTACGGTTGAA
AAAGCTCCGTTGCCACCGGTATCGAGCGACATTGCTCGTGCGGCCAGTGCGCAACGAGA
GCTTTTCGATGACCTGTCGGCGGTGTCGCAGGAACTGGAAGAGATCCTTCTGGCCGTGA
CGGTAGAATGGCCGAAGCAGGAAATCTGGACCCATCCCATCGGAATCTTTTTCAATGCG
TCACGACGGCTTCTTACTGTCCTGCGCCAGCAAGCGCAGGCCGACTGCCATCAAGGCAC
ACTAGACGAATGTTTACGGACCAAGAACCTCTTTACGGCAGTACACTGTTACATATTGA
ATGTGCGGATTTTGACCGCCATATCGGAGTTGCTCCTGTCGCAAATTAGGCGGACCCAG
AACAGCCATATGAGCCCACTGGAAGGGAGTCGATCCCAGTCGCCGAGCAGAGACGACAT
CAGCAGCAGCAGCGGCCACAGCAGTGTTGACACCATACCCTTCTTTAGCGAGAACCTCC
CTATTGGTGAGCTGTTCTCCTATGTTGACCCCCTGACACACGCCCTATTCTCGGCTTGC
ACTACGTTACATGTTGGGGTACAATTGCTGCGTGAGAATGAGATTACTCTGGGAGTACA
CTCCGCCCAGGGCATTGCAGCTTACATCAGCAAGAGCGGGGAACCAGGCGAGGATATAG
CCAGGACAGGGGCGACCAATTCCGCAAGATGCGAGGAGCAGCCGACCACTCCAGCGGCT
CGGGTGTTGTTCATGTTCTTGAGTGATGAAGGGGCTTTCCAGGAGGCAAAGTCTGCTGG
TTCCCGAGGTCGAACCATCGCAGCACTGCGACGATGCTATGAGGATATCTTTTCCCTCG
CCCGCAA.ACACAAA.CATGGCATGCTCAGAGACCTCAACAATATTCCTCCATGA
(SEQ ID N0:85) IovE-37 ATGGCTGCAGATCAAGGTATATTCACGAACTCGGTCACTCTCTCGCCAGTGGAGGGTTC
ACGCACCGGTGGAACATTACCCCGCCGTGCATTCCGACGCTCTTGTGATCGGTGTCATG
CACAAA.AGATCAAATGTATTGGAAATAAGGAGGTTACTGGCCGTGCTCCCTGTCAGCGT
TGCCAACGGGCTGGACTTCGATGCGTCTACAGTGAGCGATGCCCCAAGCGCAGGCTACG
CCAATCCAGGGCAGCGGATCTCGTCTCTGCTGACCCAGATCCCTGCTTGCACATGTCCT
CGCCTCCAGTGCCCTCACAGAGCTTGCCGCTAGACGTATCCGAGTCGCATTCCTCAAAT
ACCTCCCGGCAATTTCTTGATCCACCGGACAGCTACGACTGGTCGTGGACCTCGATTGG
CACTGACGAGGCTATTGACACTGACTGCTGGGGGCTGTCCCAATGTGATGGAGGCTTCA
GCTGTCAGTTAGAGCCAACGCTGCCGGATCTACCTTCGCCCTTCGAGTCTACGGTTGAA
AAAGCTCCGTTGCCACCGGTATCGAGCGACATTGCTCGTGCGGCCAGTGCGCAACGAGA
GCTTTTCGATGACCTGTCGGCGGTGTCGCAGGAACTGGAAGAGATCCTTCTGGCCGTGA
CGGTAGAATGGCCGAAGCAGGAAA.TCTGGACCCATCCCATCGGAATGTTTTTCAATGCT
TCACGACGGCTTCTTACTGTCCTGCGCCAACAAGCTCAGGCCGACTGCCATCAAGGCAC
ACTAGACGAATGTTTACGGACCAAGAACCTCTTTACGGCAGTACACTGTTACATATTGA
ATGTGCGGATTTTGACCGCCATATCGGAGTTGCTCCTGTCGCAAATTAGGCGGACCCAG
AACAGCCATATGAGCCCACTGGAAGGGAGTCGATCCCAGTCGCCGAGCAGAGACGACAC
CAGCAGCAGCAGCGGCCACAGCTGTGTCGACACCATACCCTTCTTTAGCGAGAACCTCC
CTATTGGTGAGCTGTTCTCCTATGTTGACCCCCTGACACACGCCCTATTCTCGGCTTGC
ACTACGTTACATGTTGGGGTACAATTGCTGCGTGAGTATGAGATTACTCTGGGAATACA
CTCCGCCCAGGGCATTGCAGCTTCCATCAGCATGAGCGGGGAACCAGGCGAGGATATAG
CCAGGACAGGGGCGACCAATTCCGCAAGATGCGAGGAGCAGCCGACCACTCCAGCGGCT
CGGGTTTTGTTCATGTTCTTGAGTGATGAAGGGGCTTTCCAGGAGGCAAAGTCTGCTGG
TTCCCGAGGTCGAACCATCGCAGCACTGCGACGATGCTATGAGGATATCTTTTCCCTCG
CCCGCAAACACAAACATGGCATGCTCAGAGATCTCAACAATATTCCTCCATGA
(SEQ ID N0:86) IovE-38 ATGGCTGCAGATCAAGGTATATTCACGAACTCGGTCACTCTCTCGCCAGTGGAGGGTTC
ACGCACCGGTGGAACATTACCCCGCCGTGCATTCCGACGCTCTTGTGATCGGTGTCATG
CACGAAAGATCAAATGTACTGGAAATAAGGAGGTTACTGGCCGTGCTCCCTGTCAGCGT
TGCCAGCAAGCTGGACTTCGATGCGTCTATAGTGAGCGATGCCCCAAGCGCAAGCTACG
CCAATCCAGGGCAGCGGATCTCGTCTCTGCTGACCCAGATCCCTGCTTGCACATGTCCT
CGCCTCCAGTGCCCTCACAGAGCTTGCCGCTAGACGTATCCGAGTCGCATTCCTCAAAT
ACCTCCCGGCAATTTCTTGATCCACCGGACAGCTACGACTGGTCGTGGACCTCGATTGG
CACTGACGAGGCTATTGACACTGACTGCTGGGGGCTGTCCCAATGTGATGGAGGCTTCA
GCTGTCAGCTAGAGCCAACGCTGCCGGATCTACCTTCGCCCTTCGAGTCTACGGTTGAA
AAAGCTCCGTTGCCACCGGTATCGAGCGACATTGCTCGTGCGGCCAGTGCGCAACGAGA
GCTTTTCGATGACCTGTCGGCGGTGTCGCAGGAACTGGAAGAGATCCTTCTGGCCGTGA
CGGTAGAATGGCCGAAGCAGGAAATCTGGACCCATCCCATCGGAATGTTTTTCAATGCG
TCACGACGGCTTCTTACTGTCCTGCGCCAACAAGCGCAGGCCGACTGCCATCAAGGCAC
ACTAGACGAATGTTTACGGACCAAGAACCTCTTTACGGCAGTACACTGTTACATATTGA
ATGTGCGGATTTTGACCGCCATATCGGAGTTGCTCCTGTCGCAA.ATTAGGCGGATCCAG
AACAGCCATATGAGCCCACTGGAAGGGAGTCGATCCCAGTCGCTGAGCAGAGACGACAC
CAGCAGCAGTAGCGGCCACAGCAGTGTTGACACCATACCCTTCTTTAGCGAGAACCTCC
CTATTGATGAGCTGTTCTCCTATGTTGACCCCCTGACACACGCCCTATTCTCGGCTTGC
ACTACGTTACATGTTGGGGTACAATTGCTGCGTGAGAATGAGATTACTCTGGGAGTACA
CTCCGCCCAGGGCATTGCAGCTTCCATCAGCATGAGCGGGGAACTAGGCGAGGATATAG
TCAGGACAGGGGCGACCAATTCCGCAAGATGCGAGGAGCAGCCGACCACTCCAGCGGCT
CGGGTTTTGTTCATGTTCTTGAGTGATGAAGGGGCTTTCCAGGAGGCAAAGTCTGCTGG
TTCCCGAAGTCGAACCATCGCAGCACTGCGACGATGCTATGAGGATATCTTTTCCCTCG
CCCGCAAACACAAACATGGCATGCTCAGAGACCTCAACAATATTCCTCCATGA
(SEQ ID N0:87) lovE-39 ATGGCTGCAGATCAAGGTATATTCACGAACTCGGTCACTCTCTCACCAGTGGAGGGTTC
ACGCACCGGTGGAACATTACCCCGCCGTGCATTCCGACGCTCTTGTGATCGGTGTCATG
CACAAAAGATCAAATGTACTGGAAATAAGGAGGTTAATGGCCGTGCTCCCTGTCAGCGT
TGCCAGCAGGCTGGACTTCGATGCGTCTACAGTGAGCGATGCCCCAAGCGCAAGCTACG
CCAATCCAGGGCAGCGGATCTCGTCTCTGCTGACCCAGATCCCTGCTTGCACATGTCCT
CGCCTCCAGTGCCCTCCCAGAGCTTGCCGCTAGACATATCCGAGTCGCATTCCTCAAAT
ACCTCCCGGCAATTTCTTGATCCACCGGACAGCTACGACTGGTCGTGGACCTCGATTGG
CATTGACGAGGCTATTGACACTGACTGCTGGGGGCTGTCCCAATGTGATGGAGGCTTCA
GCTGTCAGTTAGAGCCAACGCTGCCGGATCTACCTTCGCCCTTCGAGTCTACGGTTGAA
AAAGCTCCGTTGCCACCGATATCGAGCGACATTGCTCGTGCGGCCAGTGCGCAACGAGA
GCTTTTCGATGACCTGTCGGCGGTGTCGCAGGAACTGGAAGAGATCCTTCTGGCCGTGA
CGGTAGAATGGCCGAAGCAGGAAATCTGGACCCATCCCATCGGAATGTTTTTCAATGCG
TCACGACGGCTTCTTACTGTCCTGCGCCAACAAGCGCAGGCCGACTGCCATCAAGGCAC
ACTAGACGAATGTTTACGGACCAAGAACCTCTTTACGGCAGTACACTGTTACATATTGA
ATGTGCGGATTTTGGCCGCCATATCGGAGTTGCTCCTGTCGCAAATTAGGCGGACCCAG
AACAGCCATATGAGCCCACTGGAAGGGAGTCGATCCCAGTCGCCGAGCAGAGACGACAC
CAGCAGCAGCAGCGGCCACAGCAGTGTTGACACCATACCCTTCTTTAGCGAGAACCTCC
CTATTGGTGAGCTGTTCTCCTATGTTGACCCCCTGACACACGCCCTATTCTCGGCTTGC
ACTACGTTACATGTTGGGGTACAATTGCTGCGTGAGAATGAGATTACTCTGGGAGTACA
CTCCGCCCAGGGCATTGCAGCTTCCATCAGCATGAGCGGGGAACCAGGCGAGGATATAG
CCAGGACAGGGGCGACCAATTCCGCAAGATGCGAGGAGCAGCCGACCACTCCAGCGGCT
CGGGTTTTGTTCATGTTCTTGAGTGATGAAGGGGCTTTCCAGGAGGCAAAGTCTGCTGG
TTCCCGAGGTCGAACCATCGCAGCACTGCGACGATGCTATGAGGATATCTTTTCCCTCG
CCCGCAAACACAAACATGGCATGCTCAGAGACCTCAACAATATTCCTCCATGA
(SEQ ID N0:88) lovE-40 ATGGCTGCAGAACAAGGTATATTCACGAACTCGGTCACTCTCTCGCCAGTGGAGGGTTC
ACGCACCGGTGGAACATTACCCCGCCGTGCATTCCGACGCTCTTGTGATCGGTGTCATG
CACGAAAGATCAAATGTACTGGAAATAAGGAGGTTACTGGCCGTGCTCCCTGTCAGCGT
TGCCAGCAGGCTGGACTTCGATGTGTCTACAGTGAGCGATGCCCCAAGCGCAAGCTACG
CCAATCCAGGGCAGCGGATCTCATCTCTGCTGACCCAGATCCCTGCTTGCACATGTCCT
CGCCTCCAGTGCCCTCACAGAGCTTGCCGCTAGAAGTATCCGAGTCGCATTCCTCAAAT
ACCTCCCGGCAATTTCTTGATCCACCGGACAGCTACGACTGGTCGTGGACCTCGATTGG
CACTGACAAGGCTATTGACACTGACTGCTGGGGGCTGTCCCAATGTGATGGAGGCTTCA
GCTGTCAGTTAGAGCCAACGCTGCCGGATCTACCTTCGCCCTTTGAGTCTACGGTTGAA
AAAGCTCCGTTGCCACCGGTATCGAGCGACATTACTCGTGCGGCCAGTGCGCAACGAGA
GCTTTTCGATGACCTGTCGGCGGTGTCGCAGGAACTGGAAGAGATCCTTCTGGCCGTGA
CGGTAGAATGGCCGAAGCAGGAAATCTGGACCCATCCCATCGGAATGTTTTTCAATGCG
TCACGACGGCTTCTTACTGTCCTGCGCCAACAAGCGCAGGCCGACTGCCATCAAGGCAC
-ACTAGACGAATGTTTACGGACCAAGAACCTCTTTACGGCAGTACACTGTTACATATTGG
ATGTGCGGATTTTGACCGCCATATCGGAGTTGCTCCTGTCGCAAATTAGGCGGACCCAG
AACAGCCATATGAGCCCACTGGAAGGGAGTCGATCCCAGTCGCCGAGCAGAGACGACAC
CAGCAGCAGCAGCGGCCACAGCAGTGTTGACACCATACCCTTCTTTAGCGAGAACCTCC
CTATTGGTGAGCTGTTCTCCTATGTTGACCCCCTGAGACACGCCCTATTCTCGGCTTGC
ACTACGTTACATGTTGGGGTACAATTGCTGCGTGAGATTGAGATTACTCTGGGAGTACA
CTCCGCCCGGGGCATTGCAGCTTCCATCAGCATGAGCGGGGAACCAGGCGAGGATATAG
CCAGGACAGGGGCGACCAATTCCGCAAGATGCGAGGAGCAGCCGACCACTCCAGCGGCT
CGGGTTTTGTTCATGTTCTTGAGTGATGAAGGGACTTTCCAGGAGGCAAAGTCTGCTGG
TTCCCGAGGTCGAACCATCGCAGCACTGCGACGATGCTATGAGGATATCTTTTCCCTCG
CCCGCAAACACAA.ACATGGCATGCTCAGAGACCTCAACAATATTCCTCCATGA
(SEQ ID N0:89) IovE-41 ATGGCTGCAGATCAAGGTATATTCACGAACTCGGTCACTCTCTCGCCAGTGGAGGGTTC
ACGCACCGGTGGAACATTACCCCGCCGTGCATTCCGACGCTCTTGTGATCGGTGTCATG
CACAAAAGATCAAATGTACTGGAAATAAGGAGGTTACTGGCCGTGCTCCCTGTCAGCGT
TGCCAGCAGGCTGGACTTCGATGCGTCTACAGTGAGCGATGCCCCAAGCGCAAGCTACG
CCAATCCAGGGCAGCGGATCTCGTCTCTGCTGACCCAGATCCCTGCTTGCACATGTCCT
CACCTCCAGTGCCCTCACAGAGCTTGCCGCTAGACGTATCCGAGTCGCATTCCTCAAAT
ACCTCCCGGCAATTTCTTGATCCACCGGACAGCTACAACTGGTTGTGGACCTCGATTGG
CACTGACGAGGCTATTGACACTGACTGCTGGGGGCTGTCCCAATGTGATGGAGGCTTCA
GCTGTCAGTTAGAGCCAACGCTGCCGGATCTACCTTCGCCCTTCGAATCTACGGTTGAA
AAAGCTCCGTTGCCACCGGTATCGAGCGACATTGCTCGTGCGGCCAGTGCGCAACGAGA
GCTTTTCGATGACCTGTCGGCGGTGTCGCAGGAACTGGAAGAGATCCTTCTGGCCGTGA
CGGTAGAATGGCCGAAGCAGGAAATCTGGACCCATCCCATCGGAATGTTTTTCAATGCG
TCACGACGGCTTCTTACTGTCCTGCGCCAACAAGCGCAGGCCGACTGCCATCAAGGCAC
ACTAGACGAATGTTTACGGACCAAGAACCTCTTTACGGCAGTACACTGTTACATATTGA
ATGTGCGGATTTTGACCGCCATATCGGAGTTGCTCCTGTCGCAAATTAGGCGGACCCAG
AACAGCCATATGAGCCCACTGGAAGGGAGTCGATCCCAGTCGCCGAGCGGAGACGACAC
CAGCAGCAGCAGCGGCCACAGCAGTGTTGACACCATACCCTTCTTTAGCGAGAACCTCC
CTATTGGTGAGCTGTTCTCCTATGTTGACCCCCTGACACACGCCCTATTCTCGGCTTGC
ACTACGTTACATGTTGGGGTACAATTGCTGCGTGAGAATGAGATTACTCTGGGAGTACA
CTCCGCCCAGGGTATTGCAGCTTCCATCAGCATGAGCGGGGAACCAGGCGAGGATATAG
CCAGGACAGGGGCGACCAATTCCGCAAGATGCGAGGAGCAGCCGACCACTCCAGCGGCT
CGGGTTTTGTTCATGTTCTTGAGTGATGAAGGGGCTTTCCAGGAGGGAAAGTCTGCTGG
TTCCCGAGGTCGAACCATCGCAGCACTGCGACGATGCTATGAGGATATCTTTTCCCTCG
CCCGCAAACACAAACATGGCATGCTCAGAGACCTCAACAATATTCCTCCATGA
(SEQ ID N0:90) Table 7: Amino Acid Sequence of ZovE Variants at242 and LovE at242 mtqdtaqyrgamaadqgiftnsvtlspvegsrtggtlprrafrrscdrchaqkikctgn kevtgrapcqrcqqaglrcvysercpkrklrqsraadlvsadpdpclhmssppvpsqsl pldvseshssntsrqfldppdsydwswtsigtdeaidtdcwglsqcdggfscqleptlp dlpspfestvekaplppvssdiaraasaqrelfddlsavsqeleeillavtvewpkqei wthpigmffnasrrlltvlrqqaqadchqgtldeclrtknlftavhcyilnvriltais elllsqirrtqnshmsplegsrsqspsrddtssssghssvdtipffsenlpigelfsyv dplthalfsacttlhvgvqllreneitlgvhsaqgiaasismsgepgediartgatnsa rceeqpttpaarvlfmflsdegafqeaksagsrgrtiaalrrcyedifslarkhkhgml rdlnnipp (SEQ ID N0:93) LovE at242 mlmtqdtaqyrgamaadqgiftnsvtlspvegsrtggtlprrafrrscdrchaqkikct gnkevtgrapcqrcqqaglrcvysercpkrklrqsraadlvsadpdpclhmssppvpsq slpldvseshssntsrqfldppdsydwswtsigtdeaidtdcwglsqcdggfscqlept lpdlpspfestvekaplppvssdiaraasaqrelfddlsavsqeleeillavtvewpkq eiwthpigmffnasrrlltvlrqqaqadchqgtldeclrtknlftavhcyilnvrilta iselllsqirrtqnshmsplegsrsqspsrddtssssghssvdtipffsenlpigelfs yvdplthalfsacttlhvgvqllreneitlgvhsaqgiaasismsgepgediartgatn sarceeqpttpaarvlfmflsdegafqeaksagsrgrtiaalrrcyedifslarkhkhg mlrdlnnipp (SEQ ID N0:94) Equivalents Those skilled in the art will recognize, or be able to ascertain, using no more than routine experimentation, many equivalents to the specific embodiments of the invention described herein. Such equivalents are intended to be encompasssed by the following claims.
8o
Claims (72)
1. An isolated polypeptide comprising the amino acid sequence of SEQ
ID N0:91 having an amino acid change selected from the group consisting of:
(a) a Phe changed to a Group 2 amino acid residue at position 31;
(b) a GIn changed to a Group 5 amino acid residue at position 41;
(c) a Thr changed to a Group 2 amino acid residue at position 52;
(d) a Thr changed to a Group 3 amino acid residue at position 52;
(e) a Cys changed to a Group 5 amino acid residue at position 73;
(f) a Pro changed to a Group 4 amino acid residue at position 101;
(g) a Pro changed to a Group 3 amino acid residue at position 101;
(h) a Val changed to a Group 2 amino acid residue other than Val at position 111;
(i) a Ser changed to a Group 2 amino acid residue at position 133;
(j) a Glu changed to a Group 2 amino acid residue at position 141;
(k) a Glu changed to a Group 5 amino acid residue at position 141;
(1) a Cys changed to a Group 6 amino acid residue at position 153;
(m) a Cys changed to a Group 5 amino acid residue at position 153;
(n) a Thr changed to a Group 1 amino acid residue at position 281;
(o) a Asn changed to a Group 2 amino acid residue at position 367;
(p) a Asn changed to a Group 6 amino acid residue at position 367;
(q) a Pro changed to a Group 4 amino acid residue at position 389; and (r) a Fro changed to a Group 2 amino acid residue at position 389.
ID N0:91 having an amino acid change selected from the group consisting of:
(a) a Phe changed to a Group 2 amino acid residue at position 31;
(b) a GIn changed to a Group 5 amino acid residue at position 41;
(c) a Thr changed to a Group 2 amino acid residue at position 52;
(d) a Thr changed to a Group 3 amino acid residue at position 52;
(e) a Cys changed to a Group 5 amino acid residue at position 73;
(f) a Pro changed to a Group 4 amino acid residue at position 101;
(g) a Pro changed to a Group 3 amino acid residue at position 101;
(h) a Val changed to a Group 2 amino acid residue other than Val at position 111;
(i) a Ser changed to a Group 2 amino acid residue at position 133;
(j) a Glu changed to a Group 2 amino acid residue at position 141;
(k) a Glu changed to a Group 5 amino acid residue at position 141;
(1) a Cys changed to a Group 6 amino acid residue at position 153;
(m) a Cys changed to a Group 5 amino acid residue at position 153;
(n) a Thr changed to a Group 1 amino acid residue at position 281;
(o) a Asn changed to a Group 2 amino acid residue at position 367;
(p) a Asn changed to a Group 6 amino acid residue at position 367;
(q) a Pro changed to a Group 4 amino acid residue at position 389; and (r) a Fro changed to a Group 2 amino acid residue at position 389.
2. The polypeptide of claim 1 wherein the polypeptide when expressed in an A. terreus cell harboring a lovF gene increases expression of the lovF gene relative to an otherwise identical cell not expressing the polypeptide.
3. The polypeptide of claim 1 wherein the polypeptide when expressed in a S. cerevisiae harboring a gene under the control of the A. terreus lovF
expression control region increases expression of the gene relative to an otherwise identical cell not expressing the polypeptide.
expression control region increases expression of the gene relative to an otherwise identical cell not expressing the polypeptide.
4. The isolated polypeptide of claim 1 having fewer than 11 amino acid changes.
5. The isolated polypeptide of claim 1 having fewer than 10 amino acid changes.
6. The isolated polypeptide of claim 1 having fewer than 8 amino acid changes.
7. The isolated polypeptide of claim 1 having fewer than 5 amino acid changes.
8. The isolated polypeptide of claim 1 wherein the polypeptide further comprises the amino acid sequence of SEQ ID NO:95 immediately amino terminal to the amino acid of SEQ ID NO:91.
9. The isolated polypeptide of claim 1 wherein the polypeptide further comprises the amino acid sequence of SEQ ID NO:96 immediately amino terminal to the amino acid of SEQ ID NO:91.
10. The isolated polypeptide of claim 1 having the amino acid change F31L.
11. The isolated polypeptide of claim 1 having the amino acid change Q41K or Q41R.
12. The isolated polypeptide of claim 1 having the amino acid change T52I.
13. The isolated polypeptide of claim 1 having the amino acid change T52N.
14. The isolated polypeptide of claim 1 having the amino acid change C73R.
15. The isolated polypeptide of claim 1 having the amino acid change P101S.
16. The isolated polypeptide of claim 1 having the amino acid change P101Q.
17. The isolated polypeptide of claim 1 having the amino acid change V111I.
18. The isolated polypeptide of claim 1 having the amino acid change S133L.
19. The isolated polypeptide of claim 1 having the amino acid change E141V.
20. The isolated polypeptide of claim 1 having the amino acid change E141K.
21. The isolated polypeptide of claim 1 having the amino acid change C153Y.
22. The isolated polypeptide of claim 1 having the amino acid change C153R.
23. The isolated polypeptide of claim 1 having the amino acid change T281A.
24. The isolated polypeptide of claim 1 having the amino acid change N367I.
25. The isolated polypeptide of claim 1 having the amino acid change N367Y.
26. The isolated polypeptide of claim 1 having the amino acid change P389S.
27. The isolated polypeptide of claim 1 having the amino acid change P389L.
28. The isolated polypeptide of claim 1 comprising an amino acid sequence selected from the group consisting of SEQ ID N0:41, SEQ ID N0:42, SEQ
ID N0:43, SEQ ID N0:44, SEQ ID N0:45, SEQ ID NO:46, SEQ ID N0:47, SEQ ID
N0:48, SEQ ID N0:49, SEQ ID NO:50, SEQ ID NO:51, SEQ ID N0:52, SEQ ID
N0:53, SEQ ID N0:54, SEQ ID NO:55, SEQ ID N0:56, SEQ ID N0:57, SEQ ID
N0:58, SEQ ID N0:59, SEQ ID N0:60, SEQ ID N0:61, SEQ ID N0:62, SEQ ID
N0:63, SEQ ID N0:64, SEQ ID N0:65, SEQ ID N0:91, SEQ ID N0:93, and SEQ
ID N0:94.
ID N0:43, SEQ ID N0:44, SEQ ID N0:45, SEQ ID NO:46, SEQ ID N0:47, SEQ ID
N0:48, SEQ ID N0:49, SEQ ID NO:50, SEQ ID NO:51, SEQ ID N0:52, SEQ ID
N0:53, SEQ ID N0:54, SEQ ID NO:55, SEQ ID N0:56, SEQ ID N0:57, SEQ ID
N0:58, SEQ ID N0:59, SEQ ID N0:60, SEQ ID N0:61, SEQ ID N0:62, SEQ ID
N0:63, SEQ ID N0:64, SEQ ID N0:65, SEQ ID N0:91, SEQ ID N0:93, and SEQ
ID N0:94.
29. An isolated nucleic acid molecule comprising a nucleotide sequence encoding a polypeptide comprising the amino acid sequence of SEQ ID N0:91 having at least one amino acid change selected from the group consisting of:
(a) a Phe changed to a Group 2 amino acid residue at position 31;
(b) a Gln changed to a Group 5 amino acid residue at position 41;
(c) a Thr changed to a Group 2 amino acid residue at position 52;
(d) a Thr changed to a Group 3 amino acid residue at position 52;
(e) a Cys changed to a Group 5 amino acid residue at position 73;
(f) a Pro changed to a Group 4 amino acid residue at position 101;
(g) a Pro changed to a Group 3 amino acid residue at position 101;
(h) a Val changed to a Group 2 amino acid residue other than Val at position 111;
(i) a Ser changed to a Group 2 amino acid residue at position 133;
(j) a Glu changed to a Group 2 amino acid residue at position 141;
(k) a Glu changed to a Group 5 amino acid residue at position 141;
(l) a Cys changed to a Group 6 amino acid residue at position 153;
(m) a Cys changed to a Group 5 amino acid residue at position 153;
(n) a Thr changed to a Group 1 amino acid residue at position 281;
(o) a Asn changed to a Group 2 amino acid residue at position 367;
(p) a Asn changed to a Group 6 amino acid residue at position 367;
(q) a Pro changed to a Group 4 amino acid residue at position 389; and (r) a Pro changed to a Group 2 amino acid residue at position 389.
(a) a Phe changed to a Group 2 amino acid residue at position 31;
(b) a Gln changed to a Group 5 amino acid residue at position 41;
(c) a Thr changed to a Group 2 amino acid residue at position 52;
(d) a Thr changed to a Group 3 amino acid residue at position 52;
(e) a Cys changed to a Group 5 amino acid residue at position 73;
(f) a Pro changed to a Group 4 amino acid residue at position 101;
(g) a Pro changed to a Group 3 amino acid residue at position 101;
(h) a Val changed to a Group 2 amino acid residue other than Val at position 111;
(i) a Ser changed to a Group 2 amino acid residue at position 133;
(j) a Glu changed to a Group 2 amino acid residue at position 141;
(k) a Glu changed to a Group 5 amino acid residue at position 141;
(l) a Cys changed to a Group 6 amino acid residue at position 153;
(m) a Cys changed to a Group 5 amino acid residue at position 153;
(n) a Thr changed to a Group 1 amino acid residue at position 281;
(o) a Asn changed to a Group 2 amino acid residue at position 367;
(p) a Asn changed to a Group 6 amino acid residue at position 367;
(q) a Pro changed to a Group 4 amino acid residue at position 389; and (r) a Pro changed to a Group 2 amino acid residue at position 389.
30. The isolated nucleic acid molecule of claim 29 wherein the polypeptide when expressed in an A. terreus cell harboring a LovF gene increases expression of the lovF gene relative to an otherwise identical cell not expressing the polypeptide.
31. The isolated nucleic acid molecule of claim 29 wherein the polypeptide when expressed in a S. cerevisiae harboring a gene under the control of the A.
terreus lovF expression control region increases expression of the gene relative to an otherwise identical cell not expressing the polypeptide.
terreus lovF expression control region increases expression of the gene relative to an otherwise identical cell not expressing the polypeptide.
32. The isolated nucleic acid molecule of claim 29 wherein the polypeptide has fewer than 11 amino acid changes.
33. The isolated nucleic acid molecule of claim 29 wherein the polypeptide has fewer than 10 amino acid changes.
34. The isolated nucleic acid molecule of claim 29 wherein the polypeptide has fewer than 8 amino acid changes.
35. The isolated nucleic acid molecule of claim 29 wherein the polypeptide has fewer than 5 amino acid changes.
36. The isolated nucleic acid molecule of claim 29 wherein the polypeptide further comprises the amino acid sequence of SEQ ID N0:95 immediately amino terminal to the amino acid of SEQ ID N0:91.
37. The isolated nucleic acid molecule of claim 29 wherein the polypeptide further comprises the amino acid sequence of SEQ ID N0:96 immediately amino terminal to the amino acid of SEQ ID N0:91.
38. The isolated nucleic acid molecule of claim 29 wherein the polypeptide has the amino acid change F31L.
39. The isolated nucleic acid molecule of claim 29 wherein the polypeptide has the amino acid change Q41K or Q41R.
40. The isolated nucleic acid molecule of claim 29 wherein the polypeptide has the amino acid change T52I.
41. The isolated nucleic acid molecule of claim 29 wherein the polypeptide has the amino acid change T52N.
42. The isolated nucleic acid molecule of claim 29 wherein the polypeptide has the amino acid change C73R.
43. The isolated nucleic acid molecule of claim 29 wherein the polypeptide has the amino acid change P101S.
44. The isolated nucleic acid molecule of claim 29 wherein the polypeptide has the amino acid change P101Q.
45. The isolated nucleic acid molecule of claim 29 wherein the polypeptide has the amino acid change V111I.
46. The isolated nucleic acid molecule of claim 29 wherein the polypeptide has the amino acid change S133L.
47. The isolated nucleic acid molecule of claim 29 wherein the polypeptide has the amino acid change E141V.
48. The isolated nucleic acid molecule of claim 29 wherein the polypeptide has the amino acid change E141K.
49. The isolated nucleic acid molecule of claim 29 wherein the polypeptide has the amino acid change C153Y.
50. The isolated nucleic acid molecule of claim 29 wherein the polypeptide has the amino acid change C153R.
51. The isolated nucleic acid molecule of claim 29 wherein the polypeptide has the amino acid change T281A.
52. The isolated nucleic acid molecule of claim 29 wherein the polypeptide has the amino acid change N367I.
53. The isolated nucleic acid molecule of claim 29 wherein the polypeptide has the amino acid change N367Y.
54. The isolated nucleic acid molecule of claim 29 wherein the polypeptide has the amino acid change P389S.
55. The isolated nucleic acid molecule of claim 29 wherein the polypeptide has the amino acid change P389L.
56. The isolated nucleic acid molecule of claim 29 comprising a nucleotide sequence selected from the group consisting of: SEQ ID NO:66, SEQ ID NO:67, SEQ
ID NO:68, SEQ ID NO:69, SEQ ID NO:70, SEQ ID NO:71, SEQ ID NO:72, SEQ ID
NO:73, SEQ ID NO:74, SEQ ID NO:75, SEQ ID NO:76, SEQ ID NO:77, SEQ ID
NO:78, SEQ ID NO:79, SEQ ID NO:80, SEQ ID NO:81, SEQ ID NO:82, SEQ ID
NO:83, SEQ ID NO:84, SEQ ID NO:85, SEQ ID NO:86, SEQ ID NO:87, SEQ ID
NO:88, SEQ ID NO:89, and SEQ ID NO:90.
ID NO:68, SEQ ID NO:69, SEQ ID NO:70, SEQ ID NO:71, SEQ ID NO:72, SEQ ID
NO:73, SEQ ID NO:74, SEQ ID NO:75, SEQ ID NO:76, SEQ ID NO:77, SEQ ID
NO:78, SEQ ID NO:79, SEQ ID NO:80, SEQ ID NO:81, SEQ ID NO:82, SEQ ID
NO:83, SEQ ID NO:84, SEQ ID NO:85, SEQ ID NO:86, SEQ ID NO:87, SEQ ID
NO:88, SEQ ID NO:89, and SEQ ID NO:90.
57. The isolated nucleic acid molecule of any of claims 29-56 wherein the nucleotide sequence encoding the polypeptide is contiguous.
58. A fungal cell containing a nucleic acid molecule encoding the polypeptide of any of claims 1-28.
59. A fungal cell containing the nucleic acid molecule of any of claims 29-56.
60. The fungal cell of claim 58 or 59 wherein the fungus is A. terreus.
61. A method for providing a fungal cell having improved production of a secondary metabolite, the method comprising transforming the fungal cell with a nucleic acid molecule of any of claims 29-56, whereby the fungal cell has increased secondary metabolite production compared to an otherwise identical fungal cell that has not been so transformed.
62. The method of claim 61 wherein the secondary metabolite is lovastatin.
63. A method for producing a secondary metabolite, the method comprising providing a fungal cell containing the nucleic acid molecule of any of claims 29-56, culturing the cell under conditions so as to produce the secondary metabolite, and isolating from the cells a fraction containing the secondary metabolite.
64. The method of claim 63 wherein the secondary metabolite is lovastatin.
65. An isolated polypeptide comprising the amino acid sequence of SEQ
ID NO:91 having an amino acid change selected from the group consisting of H253R, S341P, R121W, S322G, A83V, T135I, E177G, E197K, T281A, T256A, N466S, C73R, E303K, Q41K, Q41K, P16A, G23S, T9M, Q362E, R21H, S34A, Q80H, A84S, E303D, H374D, A440T, A441V, C445S, P469S, F31L, T409I, M971, E113D, D146N, P163S, H458Y, I43V, Q295L, F31L, C159S, E162K, R293L, S311N, L141, E18V, G138C, E338G, V361L, N400S, S174Y, A402T, F31L, P108S, D85N, I143F, M232I, T315I, S382Y, M385K, T461, Q62R, K77R, S323C, V373I, T294I, P310L, G337D, A394V, G436S, T139, V184I, D4E, V87I, D110E, A189T, N276D, T347R, N367I, Q377R, A425T, D131N, R312G, and A429G
ID NO:91 having an amino acid change selected from the group consisting of H253R, S341P, R121W, S322G, A83V, T135I, E177G, E197K, T281A, T256A, N466S, C73R, E303K, Q41K, Q41K, P16A, G23S, T9M, Q362E, R21H, S34A, Q80H, A84S, E303D, H374D, A440T, A441V, C445S, P469S, F31L, T409I, M971, E113D, D146N, P163S, H458Y, I43V, Q295L, F31L, C159S, E162K, R293L, S311N, L141, E18V, G138C, E338G, V361L, N400S, S174Y, A402T, F31L, P108S, D85N, I143F, M232I, T315I, S382Y, M385K, T461, Q62R, K77R, S323C, V373I, T294I, P310L, G337D, A394V, G436S, T139, V184I, D4E, V87I, D110E, A189T, N276D, T347R, N367I, Q377R, A425T, D131N, R312G, and A429G
66. The polypeptide of claim 65 wherein the polypeptide when expressed in an A. terreus cell harboring a lovF gene increases expression of the Z~vF
gene relative to an otherwise identical cell not expressing the polypeptide.
gene relative to an otherwise identical cell not expressing the polypeptide.
67. The polypeptide of claim 65 wherein the polypeptide when expressed in a S. cerevisiae harboring a gene under the control of the A. terreus lovF
expression control region increases expression of the gene relative to an otherwise identical cell not expressing the polypeptide.
expression control region increases expression of the gene relative to an otherwise identical cell not expressing the polypeptide.
68. The isolated polypeptide of claim 65 having fewer than 11 amino acid changes.
69. The isolated polypeptide of claim 65 having fewer than 10 amino acid changes.
70. The isolated polypeptide of claim 65 having fewer than 8 amino acid changes.
71. The isolated polypeptide of claim 65 having fewer than 5 amino acid changes.
72. The isolated polypeptide of claim 1 or 65 wherein the polypeptide has an amino acid sequence that is otherwise identical to SEQ m N0:91.
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US32833901P | 2001-10-09 | 2001-10-09 | |
US60/328,339 | 2001-10-09 | ||
US09/974,760(CIP) | 2001-10-09 | ||
US09/974,760 US7026460B2 (en) | 2001-10-09 | 2001-10-09 | lovE variant regulator molecules |
PCT/US2002/032248 WO2003031642A2 (en) | 2001-10-09 | 2002-10-09 | lovE VARIANT REGULATOR MOLECULES |
Publications (1)
Publication Number | Publication Date |
---|---|
CA2463527A1 true CA2463527A1 (en) | 2003-04-17 |
Family
ID=32095726
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA002463527A Abandoned CA2463527A1 (en) | 2001-10-09 | 2002-10-09 | Love variant regulator molecules |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP1451309A4 (en) |
CA (1) | CA2463527A1 (en) |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6391583B1 (en) * | 1998-12-18 | 2002-05-21 | Wisconsin Alumni Research Foundation | Method of producing antihypercholesterolemic agents |
-
2002
- 2002-10-09 CA CA002463527A patent/CA2463527A1/en not_active Abandoned
- 2002-10-09 EP EP02776194A patent/EP1451309A4/en not_active Withdrawn
Also Published As
Publication number | Publication date |
---|---|
EP1451309A4 (en) | 2005-01-26 |
EP1451309A2 (en) | 2004-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Márquez-Fernández et al. | Phosphopantetheinyl transferase CfwA/NpgA is required for Aspergillus nidulans secondary metabolism and asexual development | |
US20020155517A1 (en) | Regulation of fungal gene expression | |
US7026460B2 (en) | lovE variant regulator molecules | |
US20060263864A1 (en) | Methods for improving secondary metabolite production of fungi | |
AU718791B2 (en) | A method and nucleotide sequence for transforming microorganisms | |
US7196189B2 (en) | love variant regulator molecules | |
US20060211089A1 (en) | Expression of defensins in filamentous fungi | |
EP1385981A2 (en) | Antifungal compounds and methods of use | |
US20050118690A1 (en) | Love variant regulator molecules | |
Meyer et al. | The polarisome component SpaA localises to hyphal tips of Aspergillus niger and is important for polar growth | |
CA2463527A1 (en) | Love variant regulator molecules | |
EP2010559A1 (en) | Production of compounds in a recombinant host | |
AU2006224628B2 (en) | Recombinant expression of defensins in filamentous fungi | |
JP2002505072A (en) | Pre-activated chimeric transcription factor | |
Gow et al. | Key genes in the regulation of dimorphism of Candida albicans | |
JP2008517591A (en) | Double hybrid system based on gene pausing by transcription interference | |
AU2003202416B2 (en) | Regulation of fungal gene expression | |
US6358708B1 (en) | Candida albicans SRB-7 | |
US20030134329A1 (en) | Cross-species bioactive peptides | |
Busch | Amino Acid Biosynthesis and the COP9 Signalosome in Aspergillus nidulans | |
Li | A map kinase pathway essential for mating and contributing to asexual development in Neurospora Crassa | |
Busch | Amino acid biosynthesis and the COP9 signalosome in Aspergillus nidulans: regulatory networks in a filamentous fungus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FZDE | Discontinued |