CA2426802A1 - Highly swellable absorption medium with reduced caking tendency - Google Patents

Highly swellable absorption medium with reduced caking tendency Download PDF

Info

Publication number
CA2426802A1
CA2426802A1 CA002426802A CA2426802A CA2426802A1 CA 2426802 A1 CA2426802 A1 CA 2426802A1 CA 002426802 A CA002426802 A CA 002426802A CA 2426802 A CA2426802 A CA 2426802A CA 2426802 A1 CA2426802 A1 CA 2426802A1
Authority
CA
Canada
Prior art keywords
acid
absorption medium
water
medium according
residue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002426802A
Other languages
French (fr)
Inventor
Gerd Jonas
Richard Mertens
Markus Frank
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Evonik Operations GmbH
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CA2426802A1 publication Critical patent/CA2426802A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/42Use of materials characterised by their function or physical properties
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/42Use of materials characterised by their function or physical properties
    • A61L15/60Liquid-swellable gel-forming materials, e.g. super-absorbents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/30Introducing nitrogen atoms or nitrogen-containing groups

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Hematology (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Analytical Chemistry (AREA)
  • Absorbent Articles And Supports Therefor (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Paints Or Removers (AREA)
  • Food Preservation Except Freezing, Refrigeration, And Drying (AREA)
  • Orthopedics, Nursing, And Contraception (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

The invention relates to absorption agents with a high swelling capacity whi ch have a reduced tendency to cake in the presence of high air humidity and/or high temperatures. The invention is characterised in that a swellable polyme r is coated with a non-ionic, nitrogen-containing tenside and optionally, a Lewis acid, and caused to react by heating.

Description

based on WO 02/034384 07. April 2003 Stockhausen GmbH & Co. KG D80227PC HZ/Li HIGHLY SWELLABLE ABSORPTION MEDIUM WITH REDUCED
CAKING TENDENCY
The present invention relates to highly swellable absorption mediums having a reduced caking tendency in a moist environment and/or at high temperatures.
The present invention also relates to the production and application of this absorption medium in hygiene articles and in technical fields.
Polymers that absorb aqueous fluids, termed superabsorbers, are known from a large number of publications. They are modified natural polymers and partially or totally synthetic polymers. Totally synthetic polymers are usually produced by radical polymerisation of different hydrophilic monomers in aqueous solution using a variety of methods. In general, cross-linking agents are polymerised as well so that the polymer is no longer water-soluble but only water swellable.
Polymers based, for example, on (meth)acrylic acids can be used as superabsorbers and are partially in the neutralised form as the alkali salt.
2o Superabsorbent polymers are usually used in the form of granulates as absorbing components in many hygiene articles such as nappies, feminine pads or absorbent dressings. Producing such articles requires exact proportions to be used that can only be guaranteed by constant conveying into the production plant. The highly hygroscopic nature of superabsorbent polymers causes problems as regards constant conveying speeds. This hygroscopic nature results in caking of the polymer particles, in particular when the humidity is relatively high and/or when the temperature is high. Agglomerated superabsorbers cannot be dosed precisely and stick to the walls of the production plant, resulting in increased cleaning costs.
Thus, there have been many attempts in the past to develop superabsorbent 3o polymers with a reduced caking tendency.

t Many known processes reduce the hygroscopic nature by adding finely divided inorganic powder to the surface of the polymer particles. Thus, European patent EP 0 388 120 A describes the surface treatment of polymers with silicon dioxide powder with an average particle size of 0.1 to 30 ~.m.
United States patent US-A-4,734,478 discloses polymers to which, after polymerisation, a mixture of a polyalcohol and a hydrophilic organic solvent is added followed by heat treatment at > 90°C. Subsequently, the surface cross-linked polymers are treated with 0.01 % to 10% by weight of silica dust with a to particle diameter of less than 10 Vin. Such polymers are stated to have a high water uptake capacity as well as a reduced caking tendency.
US-A-4,286,082 discloses processes for the production of water absorbing resins, in which at least one water-soluble, surface active reagent is added to the monomer solution and the polymer obtained is heat treated at a temperature of 100°C to 230°C. The surface active reagents are preferably nonionic surfactants with an HLB of 7 to 20. To reduce the caking tendency of such polymers, the polymers are mixed with ultramicroscopic silica.
2o Since the dust content of such polymers is increased by treating with an inorganic powder, problems with dust arise, in particular when under mechanical stress such as the friction resulting from pneumatic conveying. Such a release of dust is ~"""', preferably avoided on health grounds, and so such polymers are more difficult to manipulate during production and use.
Attempts to produce polymers with a low dust content are described in US-A-5,994,440. Such polymers are obtained by coating the surface of water-absorbent, cross-linked polymers with hydrophilic organic compounds that do not penetrate into the internal structure of the polymer. Suitable organic compounds 3o are aliphatic polyols with a molecular weight of more than 200 g/mol. The surface coating causes the polymer dust to adhere to the polymer particles or to the wall of the storage container so that dust can be avoided. The loose dust . CA 02426802 2003-04-24 a t portion of such a polymer is stated to be <_ 2.5 ppm, with dust particles with a diameter of <_ 10 ~,xn being counted.
In another series of known processes, the surface of the absorbent particles is treated with hydrophobic agents to reduce the hygroscopic nature. Thus, EP 0 755 964 A2 describes highly swellable hydrogels the surface of which is coated with wax. Any wax with no reactive groups that can react with the carboxyl groups of the polymer surface can be used. Preferably, waxes with a melting point range of 30°C to 180°C are used.
EP 0 509 708 A1 discloses polymers obtained by surface cross-linking with polyhydroxy compounds and by coating the surface with surfactants with an HLB
between 3 and 10. The polyhydroxy compounds can be any compound that has at least two hydroxyl groups and that can react with the carboxyl groups on the polymer particles. Preferred polyhydroxy compounds include polyglycols or lower glycol derivatives. Particular surfactants that can be used are sorbitan fatty acid esters, ethoxylated sorbitan fatty acid esters, glycerin or polyglycerin fatty acid esters or modified surface active polyesters.
2o A disadvantage of that process for surface coating polymers with hydrophobic substances is that the hydrophilic nature of the polymer surface is reduced, resulting in reduced liquid uptake rates.
US 5,728,742 A discloses a non caking, non dusty composition obtained by treating water absorbing, lightly cross-linked polymers with an anti-caking agent and a hydrophilic de-dusting agent. Such dedusting agents are either polyols with a molecular weight of more than 200 g/mol or polyalkylene glycols with a molecular weight of 400 to 6000 g/mol. 'The anti-caking agents are cationic surfactants, for example quaternary ammonium or phosphonium salts.
The aim of the present invention is to provide superabsorbent polymers that have a reduced caking tendency compared with absorption mediums that are known from the prior art, in particular in a moist environment such as high humidity rt and/or high temperatures, with at least equivalent properties, in particular at least an unchanged water uptake capacity, retention and uptake rate for water or aqueous fluids, in particular body fluids.
The present invention provides a highly swellable absorption medium with a reduced caking tendency in a moist environment and/or at high temperatures based on the following components:
I a water- or aqueous fluid-absorbing natural polymer modified with acid groups or a water-insoluble, optionally surface cross-linked, water- or 1o aqueous fluid-absorbing cross-linked polymer based on polymerised monomers containing at least partially neutralised acid groups, which is treated with:
II at least one coating agent selected from the group formed by nitrogen-containing, non-ionic surfactants; and whereby the mixture formed from components I and II has been heat treated.
Preferably, the surfactant in the absorption medium of the invention is at least one compound with general formula I:
!,~"", ~ R2 R~ C N

O n z I
in which Rl is a z-substituted aliphatic residue, preferably a z-substituted, saturated or unsaturated, linear or branched aliphatic C1 to C3o hydrocarbon residue, more preferably C8 to C22, which optionally carries aryl residues, preferably a phenyl residue, a z-substituted benzene residue, optionally i t condensed with five or six-membered rings optionally containing heteroatoms such as oxygen, phosphorus or nitrogen;
R2 is a hydrogen; or an aliphatic residue, preferably a saturated or unsaturated, linear or branched C2 to CZa hydrocarbon residue, preferably C8 to C2z;
a hydroxyalkylene residue, the hydroxyl group of said hydroxyalkylen residue is preferably an to end group and/or optionally alkoxylated with 1 to 50, preferably 1 to 20, more particularly with 1 to 10 alkylene oxide units, preferably ethylene "'°~ and/or propylene oxide units, and/or said hydroxyl group is optionally esterified with a carbon acid, preferably a C~- to Cg-carbon acid, and the alkylene group of said hydroxyalkylen residue is a C1- to Cg-, preferably C1- to C4-hydrocarbon group, occurs in the alkylene residue, or a N,N-dihydroxyalkylene-amino-alkylene residue with Cl-C4 in each alkylene residue;
R3, which may be identical or different, has the same meaning as R2, provided that with amide compounds, at least one of residues RZ or R3 represents a hydroxyalkylene residue or an alkoxylated hydroxyalkylene residue or a corresponding esterified or alkoxylated or esterified and '"~'' alkoxylated hydroxyalkylene residue with the definition given for R2 above;
n is 0 or 1, preferably 1;
and z is a whole number from 1 to 4.
3o Preferably, component I is a powder. The particle size of this powder is preferably at least 20% by weight, preferably at least 50% by weight and more preferably at least 70% by weight in the range 150 to 1000 Vim. Preferably again, less than 20% by weight, more preferably less than 10% by weight of the particles of the powder is less than 150~m. The proportions given by weight in this z paragraph all refer to the powder as a whole. The particle size can be determined using ERT-420.1-99.
It has surprisingly been discovered that coating water or aqueous fluid-absorbing polymers with at least one coating agent II of the invention possibly in combination with a Lewis acid III can produce absorption mediums with a significantly reduced caking tendency, while the other technical properties, in particular retention and absorption under load, are not affected. Further, the treated polymers have a reduced dust production.
The absorption medium of the invention exhibits at least one, preferably all of the '~" following properties:
(a) no anti-caking after at least 3, preferably at least 6 and particularly preferably at least 24 h, most preferably in the range 3 to 30 hours, heat treatment being in accordance with the anti-caking tests described below;
(b) a retention of at least 20 glg, preferably at least 25 g/g and particularly preferably at least 30 g/g , most preferably in the range 20 to 100 g/g;
(c) an absorption under load at a load of 0.9 psi (AUL,o.~,S;) of at least 7 2o g/g, preferably at least 15 g/g and particular preferably at least 20 g/g, most preferably in the range 7 to 40 g/g.
Combinations of two or more of the above properties each produce preferred embodiments of the absorption medium of the invention; combinations ab, ac, be are preferred, with combinations ab and ac being particularly preferred.
Partially synthetic or totally synthetic polymers can be considered in addition to natural polymers as the water swellable hydrophilic polymers. Natural polymers modified with acidic groups, preferably carboxyl groups, that can be used are 3o polysaccharides with carboxyl groups, preferably starches, celluloses, guar, for example carboxymethyl guar, xanthan gum, alginates, gum arabic, carboxymethylcellulose, carboxymethyl starches and mixtures of these polysaccharides. These polymers are water swellable and partially or totally water-insoluble.
A
. . CA 02426802 2003-04-24 Partially synthetic and totally synthetic polymers are preferably used, in particular anionic (meth)acrylic acid based polymers, which are in the partially neutralised form as alkali salts, in particular sodium and/or potassium salts. The degree of neutralisation of the acidic monomer components can vary, but is preferably in the range 25 mole % to 85 mole %. Homo- and co-polymers can be used that are obtained solely from acrylic acids and/or methacrylic acids, from such monomers together with one or more other monomers or alone from one or more other monomers, but, for example, they can also be grafted anionic polymers, for 1o example based on (meth)acrylic acids, in the partially neutralised form as the alkali salt, for example graft polymers with polyvinyl alcohol, polysaccharides ''~ such as starches or cellulose or derivatives thereof or with polyalkylene oxides such as polyethylene oxides or polypropylene oxides.
Examples of monomers that can be used to produce the polymers in addition to (meth)acrylic acids are methyl, ethyl, and (poly)hydroxyalkylesters of (meth)acrylic acids, (meth)acrylamide, crotonic acid, malefic and fumaric acids, itaconic acid, 2-acrylamido-2-methylpropanesulphonic acid, vinylsulphonic acid and vinylphosphonic acids and the methyl, ethyl and poly(hydroxyalkyl)esters and 2o amides of these acids, amino- and ammonium group-containing esters and amides of all said acids and water-soluble N-vinylamides, but also all other monomers usually employed as elemental units in the production of superabsorbent polymers '"~ can be contained in the polymer. The polymers are preferably cross-linked.
Examples of suitable cross-linking compounds that can be used to produce the absorbent polymers and contain two or more reactive groups are polyglycidyl compounds such as polyglycidyl ether, methylene bis(meth)acrylamide, bis-acrylamido acetic acid, esters of unsaturated acids with polyols or alkoxylated polyols, for example ethylene glycol di(meth)acrylate or trimethylolpropane tri(meth)acrylate or allyl compounds, such as allyl(meth)acrylate, polyallyl esters, 3o tetra-allyloxyethane, triallylamine, tetra-allylethylenediamine or allylesters of phosphoric acid as well as vinyl phosphonic acid derivatives or mixtures thereof.
The proportion of cross-linking agents added during production of the absorbent polymer is preferably 0.01 % to 20% by weight, more preferably 0.1 % to 3% by weight with respect to the total monomer quantity.
'' _ Polymer production is carried out using known methods such as that described in German patent DE-C1-40 20 780 and which is hereby incorporated by reference and constitutes part of the disclosure. Preferably, the polymer is produced by polymerisation in an aqueous solution using the gel polymerisation process.
The polymer powder obtained by disintegrating, drying and grinding of the polymer gel can then undergo surface cross-linking.
to Prior to surface cross-linking, the polymer is preferably dried, ground and screened to obtain the desired grain size fraction, then the surface cross-linking reaction is carned out. In some cases, however, it is pertinent to add the surface cross-linking agent before drying the polymer gel or before disintegrating the partially or essentially dry polymer. A surface cross-linking step that can be carned out in accordance with the invention has been described in US-A-4 666 983 and DE-C-40 20 780. These documents are hereby incorporated by reference and thus constitute part of the disclosure. Preferably, the surface cross-linking agent is often added in the form of a solution in water, an organic solvent or a mixture thereof, in particular when small amounts of surface cross-linking agent are used. Examples of suitable mixing machines for adding the surface cross-linking agents are a Patterson-Kelley mixer, a DRAIS turbulence mixer, a Lodige mixer, a Ruberg mixer, a worm mixer, a pan mixer and a fluidised bed mixer, also continuous vertical mixers in which the powder is mixed at a high frequency using rotating knives (Schugi mixer). After the surface cross-linking agent has been mixed with the polymer, it is heated to temperatures of 60°C to 250°C, preferably 135°C to 200°C and particularly preferably 150°C to 185°C to carry out the surface cross-linking reaction. The heating period must be limited so that the properties of the polymer are not affected by the heat treatment.
3o Preferred post cross-linking agents for surface cross-linking of the polymers are organic cross-linking agents, i.e., compounds that react with the surface COOH
groups of the polymers, such as alkylene carbonates, for example 1,3-dioxolan-one, 4-methyl-1,3-dioxolan-2-one, 4,5-dimethyl-1,3-dioxolan-2-one, 4,4-dimethyl-1,3-dioxolan-2-one, 4-ethyl-1,3-dioxolan-2-one, 4-hydroxymethyl-1,3-a dioxolan-2-one, 1,3-dioxan-2-one, 4-methyl-1,3-dioxan-2-one, 4,6-dimethyl-1,3-dioxan-2-one or 1,3-dioxepan-1-one. Particularly preferred compounds are 1,3-dioxolan-2-one and 4-methyl-1,3-dioxolan-2-one.
Further, the following compounds can be used as surface cross-linking agents:
polyhydroxy compounds, for example ethyleneglycol, propyleneglycol, diethyleneglycol, dipropyleneglycol, triethyleneglycol, tetraethyleneglycol, tetrapropyleneglycol, polyethyleneglycol, polypropyleneglycol, 1,3-propanediol, glycerine, polyglycerine, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1o trimethylolpropane, pentaerythritol or sorbitol; amino alcohols such as diethanolamine, triethanolamine. Further organic surface cross-linking agents that """are not preferred on the grounds of their toxicity and so have to be severely limited in their use are: polyepoxides such as ethyleneglycol diglycidylether, polyethyleneglycol diglycidylether, glycerolpolyglycidylether polyglycerol polyglycidylether, propyleneglycol diglycidylether, polypropyleneglycol diglycidylether, glycidol; polyisocyanates such as 2,4-toluenediisocyanate and hexamethylenediisocyanate; halogenated epoxides such as epichlor- and epibromhydrin and oc-methyl-epichlorhydrin; polyamine compounds such as ethylenediamine, diethylenetriamine, triethylenetetramine, polyallylamine or 2o polyethyleneimine. Additional surface cross-linking agents that can be used are polyoxazolin compounds such as 1,2-ethylenebisoxazolin. T'he organic surface cross-linking agent is preferably used in amount of 0.01% to 5% by weight, more preferably 0.1 % to 2.5% by weight and particularly preferably from 0.1 % to 1 by weight, with respect to the polymer.
Non-ionic, nitrogen-containing surfactants cn be used as coating agent II, preferably compounds with general formula I. However, a mixture of at least two compounds with this formula can also be used. Preferably, coating agent II is based on a fatty acid such as caprylic acid, caprinic acid, lauric acid, myristic acid, 3o palmitic acid, palmitoleic acid, magaric acid, stearic acid, oleic acid, linoleic acid, linolenic acid, arachic acid, or eurecasic acid.
In particular, coating agent II is a fatty acid alkanolamide, the corresponding ethoxylated and/or propoxylated compounds, the esterified compounds; or fatty acid amines, the corresponding ethoxylated and/or propoxylated compounds, which can also be esterified. These include lauric acid monoethanolamide, coconut acid monoethanolamide, stearic acid monoethanolamide, ricinic acid monoethanolamide, undecylenic acid monoethanolamide, lauric acid diethanolamide, coconut acid diethanolamide, Soya acid diethanolamide, linoleic acid diethanolamide, laurylmyristinic acid diethanolamide, oleic acid diethanolamide, lauric acid isopropanolamide, coconut acid isopropanolamide, oleic acid isopropanolamide, undecylenic acid polydiethanolamide, coconut acid polydiethanolamide, stearylamine, stearyl propylenediamine, coconut acid amine, to laurylamine, oleylamine, stearylamine, tallow acid amine, the ethoxylates and/or propoxylates of said compounds, which may contain 1 to 50, preferably 1 to 20 alkylene oxide units, also the esters of said compounds, such as coconut acid monoethanolamide acetate. Mixtures of said compounds can also be used.
,;, Coating agents II are preferably employed in a concentration of 50 to 50000 ppm, particular preferably 100 to 5000 ppm, still more preferably 300 to 3000 ppm with respect to to component I.
In a particular embodiment of the present invention, at least one Lewis acid is 2o added as coating agent III to the polymers in addition to at least one coating agent II,. In accordance with the invention, electron pair acceptors can be employed as the Lewis acid.
The compounds that can be used as Lewis acid III or coating agent III in the absorption medium of the invention are inorganic acids, water-soluble, saturated or unsaturated organic acids, water-soluble hydrocarbon acids or water-soluble acid salts.
The Lewis acids are preferably inorganic acids such as hydrogen halides, oxyhalogen acids, sulphur or selenium oxyacids, nitrogen or phosphorus oxyacids, organic acids such as water-soluble saturated or unsaturated organic acids, and/or water-soluble acid salts such as water-soluble bromides, chlorides, nitrates, sulphates, phosphates or salts of organic acids such as the acetate, formate, oxalate and lactate of the metals Al, Fe, Zn, Sb, As, Sn, Cu, Mg, Ca, Cr, Ga, V, Ti, Bi, Tl, In, Mn, Ni, Co, Be and zirconium.
~"'"'""
Preferably, the inorganic acids are hydrochloric acid, perchloric acid, bromic acid, hydrobromic acid, sulphuric acid, sulphur-containing acids, selenic acid, nitric acid, phosphonic acid or phosphorus-containing acids; the organic water-soluble acids are preferably carbonic acid, hydrocarbon acids, sulphonic acids or phosphonic acids or the corresponding amino acids, for example acrylic acid, methacrylic acid, formic acid, acetic acid, propionic acid, butyric acid, oxalic acid, 1o malonic acid, succinic acid, lactic acid, malefic acid, fumaric acid, benzoic acid, phthalic acid, salicylic acid, tartaric acid, citric acid, p-, m- and o-toluenesulphonic acid, benzenesulphonic acid, aminomethanesulphonic acid, aminomethanephosphonic acid; and the acid salts are aluminium salts, alums and their various hydrates such as AlCl3 x 6 HZO, NaAI(S04)2 x 12 HZO, KAl(S04)Z x 12 H20 or A12(S04)3 x 14-18 H20, zinc salts and their hydrates such as ZnCl2, ZnS04 x 1-7 HZO and Zn(CH3C00)2 x 2 H20, iron salts and their hydrates such as NaFe(S04)2 x 12 H20, KFe(S04)2 x 12 H20 and Fe2(S04)3 x n H20, Mg-salts such as MgCl2 or MgS04, double salts, also mixtures of the salts and mixtures of the inorganic and/or organic acids and mixtures of the salts with the inorganic 2o and/or organic acids.
Particularly preferred compounds are: for the inorganic acids, sulphuric acid or "~ phosphoric acid; for the acid salts: A1C13 x 6 H20, A12(S04)3 x 14-18 H20, ZnCl2, ZnS04 x 1-7 H20, Zn (CH3 COO)Z x 2H20, MgS04, MgCl2; and for the organic acids, acetic acid, oxalic acid, lactic acid, citric acid and tartaric acid.
Particularly preferably, the Lewis acid is sulphuric acid, phosphoric acid, formic acid, acetic acid, citric acid or p-toluenesulphonic acid, an aluminium salt or alum and/or their various hydrates, zinc salts and/or hydrates thereof, magnesium salts 3o and/or hydrates thereof and/or double salts.
In accordance with the invention, at least one Lewis acid is used. However, a mixture of at least two of the cited Lewis acids can be used.
The total amount of coating agents II and III is 100 to 50000 ppm, preferably to 25000 ppm, more particularly 500 to 13000 ppm with respect to component I.
Coating agent II can be added with Lewis acid III or before or after carrying out the surface cross-linking step or simultaneously with the cross-linking agent, and then undergo the heat treatment with polymer I. Alternatively, when a combination of coating agent II with Lewis acid III is used, the two compounds can be added separately, preferably as aqueous solutions, or they can be added simultaneously to polymer I, optionally together with the cross-linking agent, to preferably as an aqueous solution. Preferably, coating agent II, optionally in combination with Lewis acid III, is added simultaneously with the cross-linking agent and the coated polymer then undergoes heat treatment, thus dispensing with an additional process step. Particularly preferably, component I is coated with an aqueous solution of coating agent II and III and then reacted. Still more preferably, coating agent II is a fatty acid alkanolamide or a fatty acid amine with formula I, which may be alkoxylated and/or esterified.
Suitable solvents are water or polar, water-miscible organic solvents such as acetone, methanol, ethanol or 2-propanol or mixtures thereof, preferably water.
2o The term "aqueous solution" as used in the context of the invention means, when referring to solvent components, that they can also contain organic solvents in addition to water. The concentration of the optional cross-linking agent in the coating solution can vary between wide limits and is primarily in the range 1 % to 80% by weight, preferably in the range 1 % to 60% by weight, particularly preferably in the range 10% to 50% by weight. The concentration of coating agent II or optional Lewis acid III in the solution can also vary between wide limits, preferably in the range 0.5% to 80% by weight, preferably in the range 0.5% to 60% by weight, particularly preferably in the range 0.5% to 60% by weight and particularly preferably in the range 0.5% to 30% by weight. The 3o preferred solvent for the optional organic cross-linking agent and coating agent II
and optional Lewis acid III is water, preferably in an amount of 0.5% to 10%
by weight, particularly preferably 0.5% to 5% by weight and still more preferably 0.5% to 4% by weight with respect to polymer I.
To obtain the desired properties, the coating solutions) must be evenly distributed on the absorbent polymer. To this end, the components are thoroughly and homogeneously mixed in suitable mixers, such as fluidised bed mixers, pan mixers, roller mixers or twin screw mixers.
It is also possible to coat the polymers during production of the polymer, preferably at the final stage of polymerisation. To this end, reverse suspension polymerisation is suitable.
to Heat treatment of component I coated with coating agent II or a corresponding coating solution is preferably carried out at temperatures of 100°C to 250°C, particularly preferably 150°C to 230°C, more particularly preferably 150°C to 210°C, to cause component I to react with the coating agent.
If coating agent II and III or the corresponding coating solution is used, heat treatment is preferably carried out at a temperature of 40°C to 250°C, particularly preferably 100°C to 230°C, more particularly preferably 130°C to 210°C, to cause component I to react with the coating agent.
Preferably, coating agent II is added to the absorbent polymer in combination with a Lewis acid III before, after or simultaneously with the cross-linking agent prior to heat treatment, as in this case the temperature and duration of the heat treatment is lower and shorter than when treating the absorbent polymer with coating agent II without Lewis acid III.
The particle size of the powder to be coated is preferably in the range 50 to Vim, particularly preferably in the range 50 to 1000 ~m and more particularly preferably in the range 50 to 850 dun. The particle size is determined using known screening methods.
The heat treatment period is also dependent on the selected temperature. It should be noted in this regard that the higher the temperature, the shorter the period. The treatment time and temperature are selected so that the treated polymer has a reduced caking tendency, i.e., it passes the anti-caking test (>_ 3 hours), retaining or improving the retention, absorption under load and uptake rate for water or aqueous fluids, in particular body fluids, compared with superabsorbent polymers that are not in accordance with the invention. For polymers based on partially neutralised and cross-linked poly(meth)acrylic acids, this means a retention of >_ 20 g/g and an AUL,~,9 of >_ 19 g/g using the methods described below.
The invention also concerns absorbent agent produced by the process of the invention.
The polymers treated in accordance with the invention are easy to manipulate, for example easy to convey and dose.
The polymers of the invention or absorbent agents are preferably used in absorbent hygiene products such as nappies, incontinence products for adults and feminine pads.
Absorbent hygiene products usually have a general construction constituted by a fluid-permeable cover facing the body, a fluid-absorbing absorbent layer and an 2o essentially fluid impermeable, outer layer facing away from the body.
Optionally, they may have further means for rapid uptake and distribution of body fluids to the absorbent core. These constructions are often, but not necessarily between the fluid-permeable cover facing the body and the fluid-absorbing absorbent core.
The fluid-permeable cover usually consists of a nonwoven, fibrous fabric or a different porous construction.
Examples of materials for this cover are synthetic polymers such as polyvinyl chloride or fluoride, polytetrafluorethylene (PTFE), polyvinylalcohols and their derivatives, polyacrylates, polyamides, polyesters, polyurethanes, polystyrene, polysiloxane or polyolefins (for example polyethylene (PE) or polypropylene (PP)), also natural fibrous materials and combinations of the above materials as mixed materials or composites or copolymers.
The fluid permable cover is hydrophilic in nature. It can also consist of a combination of hydrophilic and hydrophobic components. Preferably, the fluid-permeable cover has a hydrophilic framework so that body fluids can trickle quickly through into the fluid-absorbing absorbent layer, however partially hydrophobic covers are also used.
Fluid-absorbing absorbentlayer.
The fluid-absorbing absorbent layer contains the superabsorbent powdered or 1 o granulated polymer of the invention and further components, for example fibrous materials, foamed materials, film-forming materials or porous materials as well as ''combinations of two or more of such materials. Each material can be natural or synthetic in origin or can be produced by chemical or physical modification of natural materials. The materials can be hydrophilic or hydrophobic, preferably hydrophilic. This is particularly the case for compositions that efficiently take up exuded body fluids and transport the body fluid to a location in the absorbent core that is at a distance from the entry point.
Suitable fibrous materials are cellulose fibres, modified cellulose fibres (for 2o example stiffened cellulose fibres), polyester fibres (for example Dacron), hydrophilic nylon or hydrophilised hydrophobic fibres, such as polyolefins (PE, PP) hydrophilised with surfactants, polyesters, polyacrylates, polyamides, polystyrene, polyurethanes and the like.
Preferably, cellulose fibres and modified cellulose fibres are used.
Combinations of cellulose fibres and/or modified cellulose fibres with synthetic fibres such as PE/PP composite materials, termed bi-component fibres, such as those used for thremobonding of air laid materials, or other materials can also be used.
3o The fibrous materials can be in different forms, for example loose from an air stream or as an aqueous phase or deposited cellulose fibres, as a nonwoven fabric or as a tissue. Combinations of different forms are possible.
Optionally, in addition to the superabsorber of the invention, other powdered substances can be used, for example odour-binding substances such as cyclodextrin, zeolites, inorganic or organic salts and the like.
The porous materials and foamed materials can, for example, be polymer foams such as those described in DE 44 18 319 A1 and DE 195 05 709 A1, hereby incoporated by reference and considered to constitute part of the disclosure.
Thermoplastic fibres (for example bi-component fibres of polyolefins, polyolefin 1o granulates, latex dispersions or hot melt adhesives) can be used to stabilise the fluid-absorbing absorbent layer mechanically. Optionally, one or more layers of tissue can be used for stabilisation.
The fluid-absorbing absorbent layer can be a single layer, or it can consist of a plurality of layers. Preferably, constructions are used that consist of hydrophilic fibres, preferably cellulose fibres, optionally a construction for rapid uptake and distribution of body fluids, such as chemically stiffened (modified) cellulose fibres or high loft fabric from hydrophilic or hydrophilised fibres, and superabsorbent polymers.
The superabsorbent polymer of the invention can be homogeneously distributed in the cellulose fibres or stiffened cellulose fibres, it can be layered between the cellulose fibres or stiffened cellulose fibres, or the concentration of superabsorbent polymer can be graduated within the cellulose fibres or stiffened cellulose fibres. The ratio of the total amount of superabsorbent polymer to the total amount of cellulose fibres or stiffened cellulose fibres in the absorbent core can be between 0 to 100 and 80 to 20, while in one embodiment, for example that with a gradient or layered structure, local concentrations of up to 100% by weight of polymer can be obtained. Such constructions with regions of high concentrations of absorbent polymer, where the proportion of superabsorber in certain regions is between 60% and 100% by weight, or between 90% and 100%
by weight at its highest, each based on the total weight of the construction, are described, for example, in US 5,669,894 A, hereby incorporated by reference and considered to constitute part of the disclosure.
Optionally, a plurality of different absorbent polymers differing, for example, in absorbing speed, permeability, storage capacity, absorption under load, grain size distribution or chemical composition, can be used at the same time. These different polymers can be mixed together in the absorbent pad or can be in different locations in the absorbent core. Such differentiated positioning can be along the thickness of the absorbent pad or along the length or breadth of the absorbent pad.
1o One or more of the layers of cellulose fibres or stiffened cellulose fibres containing superabsorbent polymers are contained in the absorbing absorbent layer. In a preferred embodiment, constructions of combinations of layers with homogeneous superabsorbing layers and additional layers are used.
Optionally, the cited structures can be supplemented by further layers of pure cellulose fibres or stiffened cellulose fibres on the side facing the body and/or facing away from the body.
The constructions described above can be repeated a plurality of times, by 2o stacking two or more similar layers or by stacking two or more different constructions. The differences may be entirely constructive or may reside in the type of the materials used, such as the use of absorbent polymers with different properties or different cellulose types.
Optionally, the entire absorbent pad or individual layers of the absorbing absorbent layer can be separated from the other components with layers of tissue or they may be in direct contact with other layers or components.
As an example, the structure for rapid uptake and distribution of body fluids can 3o be separated from the absorbing absorbent layer by tissue or they can be in direct contact with each other. If no separate construction for rapid uptake and distribution of body fluid exists between the absorbing absorbent layer and the fluid-permeable cover facing the body, but the effect of fluid distribution is to be obtained, for example by using a special fluid-permeable cover on the body side, the fluid-permeable cover facing the body can optionally be separated from the fluid-absorbing absorbent layer by a tissue.
Optionally, instead of tissue, a nonwoven fabric can be added to the fluid-absorbing absorbent layer. Both components result in the desired side effect of stabilising and fixing the absorbent core when moist.
Process for producing the fluid-absorbing absorbent layer.
1o Fibre-containing, superabsorber-containing, fluid distributing and storing layers can be generated by a plurality of processes.
Established conventional processes, summarised by the skilled person as drum forming with the assistance of shaping wheels, pockets and product shapes and suitable corresponding dosing apparatus for the raw materials, are supplemented by modern processes such as the air laid process (e.g. EP 850 615, cn. 4 line 39 to cn. 5 line 29, US 4,640,810) with all types of dosing, deposition of fibres and fixing such as hydrogen bonding (e.g.DE 197 50 890, cn. 1 line 45 to cn. 3 line 50, thermo bonding, latex bonding (e.g. EP 850 615, cn. 8 line 33 to cn. 9 line 17 2o and hybrid bonding, the wet laid process (e.g. PCT WO 99/49905, cn. 4 line 14 to cn. 7 line 16) , carding, melt blown, spun blown processes and similar processes for the production of superabsorber-containing nonwovens (as defined by EDANA, Brussels), also combinations of these processes with other normal methods for the production of the cited fluid storage means. The documents cited above are hereby incorporated by reference and should be considered to constitute part of the disclosure.
Further processes that can be considered are the production of laminates in the broadest sense and the production of extruded and co-extruded, wet and dry 3o structures and post-formed structures.
A combination of these processes with each other is also possible.
Constructions for rapid uptake and distribution of body fluids A construction for rapid uptake and distribution of body fluids consists, for example, of chemically stiffened (modified) cellulose fibres or high loft fabrics of hydrophilic or hydrophilised fibres or a combination of the two.
Chemically stiffened, modified cellulose fibres can, for example, be produced from cellulose fibres, which are chemically transformed by cross-linking agents such as.C2 - Cg dialdehydes, CZ - C8 monoaldehydes with an additional acid function, or C2 - C9 polycarbon acids. Particular examples are:
glutaraldehyde, 1o glyoxal, glyoxalic acid or citric acid. Cationically modified starches or polyamide-epichlorhydrin resins (for example KYMENE 557H, Hercules Inc., Wilmington, Delaware) are also known. Cross-linking produces a twisted, crumpled structure that is stable, which advantageously affects the rate of fliud uptake.
Weight per unit area and density of absorbent articles The absorbent hygiene products can vary widely in weight per unit area and thickness and thus in density. Typically, the density of the absorbent core is in the 2o range 0.08 to 0.25 glcm3. The weight per unit area is between 10 and 1000 g/m2, and preferably the weight per unit area is between 100 and 600 g/m2 (see also US-A-5 669 894, hereby incorporated by reference and considered to constitute part of the disclosure). The density normally varies over the length of the absorbent core. This is as a result of predetermined dosing of the cellulose fibre or stiffened cellulose fibre or the amount of the superabsorbent polymer, as in preferred embodiments, these components are more concentrated in the frontal area of the absorbent disposable articles.
This deliberate increase in the concentration of absorbent material in particular 3o regions of the absorbent core can be achieved in other ways, for example by producing an appropriately dimensioned flat form using an air laid or wet laid process consisting of hydrophilic cellulose fibres, optionally from stiffened cellulose fibres, optionally from synthetic fibres (for example polyolefins) and superabsorbent polymers and then folding it back or stacking.
Test methods Unless otherwise indicated, the following tests are carried out using polymers with a particle size of 300 to 600 ~m (determined using the screen method).
Anti-caking test:
l0 5 g ~ 0.1 of polymer with a particle size of 150 to 180 ~m is weighed into an aluminium weighing boat (57 mm) and distributed homogeneously over the entire boat. The boat is weighed. Then the boat is placed in a heated cabinet at a temperature of 35°C with a relative humidity of 80% for 3, 6 or 24 h.
Then the boat is weighed again. A further boat is weighed and a sieve with a mesh of 1.5 mm is placed over it. 'The sample is tipped onto the sieve. After tapping lightly on the sieve a number of times, the weight of the product that has fallen through the sieve is measured.
The test is considered to have been passed when more than 90% by weight of the 2o product falls through the sieve. The water uptake of the product is also determined.
Method for measuring surface tension:
Measurement of surface tension of aqueous solutions using a Traube-Gerhardt stalagmometer.
A stalagmometer is a type of volumetric pipette that empties into a very carefully 3o produced drip surface. On this polished surface, droplets form one after the other, the size of which is dependent on the surface tension of the product under consideration. The higher the surface tension, the larger the droplets, and vice versa. The volume of the pipette is calibrated with circular marks. Since the volume is constant and the droplet size is dependent on the surface tension, the number of droplets is a direct measure of the surface tension. The value that is measured, therefore, is compared with the number of droplets of pure water, the surface tension of which is known.
150 g of 0.9% NaCI solution is placed in a 250 m1 beaker and stirred with a magnetic stirrer (200 rpm). 1 g of the test polymer is slowly scattered in the spout formed by the 0.9% NaCI solution. When scattering is complete, the solution is stirred for 3 minutes. It is then allowed to stand for 1 S minutes.
The test solution is drawn up to well beyond the upper pipette volume mark using a pipette bulb. T'he number of droplets between the upper and lower mark are counted. Each solution is tested twice.
Calculation of surface tension in mN/m =
Number of droplets of pure water x 72.75*/test sample droplet number *(surface tension of water in mN/m).
Measuring the surface tension establishes how much coating agent may be 2o released into an aqueous environment. In other words, this measurement establishes how well the coating agent is bonded to the polymer. If the surface tension is reduced by the coating, then the problem of re-wetting can occur.
Re ,~""
wetting causes fluids, for example urine, that have already been absorbed to be released, for example, by pressure on the swollen gel, meaning that the hygiene article is not comfortable for the wearer.
Retention:
The retention is obtained using the teabag method and the average of three measurements is taken. About 200 mg of polymer is sealed in a teabag and soaked in 0.9% NaCI solution for 30 minutes. Then the teabag is centrifuged in a centrifuge (23 cm diameter, 1400 rpm) for 3 minutes and then weighed. A teabag with no absorbent polymer is run at the same time as a reference.
Retention [g/g]= endothermic weight - reference weight / starting weight Fluid uptake under 0.9 psi load, AUL:
0.16 g of polymer is accurately weighed into a Plexiglas cylinder with an internal diameter of 25.4 mm fitted with a 400 mesh nylon sieve base. The layer of polymer evenly distributed on the sieve base is covered with a 26.1 mm diameter Teflon disk and weighed down with a cylindrical piston weighing 332.4 g. The Teflon disk and piston together constitute a load of 63 g/cm2, or 0.9 psi. The to weighed cylinder is then placed on a glass filter plate in a dish with 0.9%
NaCI
solution the depth of which exactly corresponds to the depth of the filter plate.
After the cylinder assembly has been left for 1 hour to allow the 0.9% NaCI
solution to be absorbed, the filter paper is patted free of excess test solution and then re-weighed and the AUL is calculated as follows:
AUL = final weight(cylinder assembly + swollen polymer) -start weight (cylinder assembly + non swollen polymer) / polymer start weight Examples The invention will now be illustrated by examples. The examples are given purely by way of illustration and in no way limit the scope of the invention.
The following abbreviations are used:
ABAH 2.2'-azo-bis-amidinopropane-dihydrochloride AIBN 2.2'-azo-bis-2-methylpropionitrile AMPS 2-acrylamido-2-methylpropanesulphonic acid BO 2-butyl-octanol 3o EO ethylene oxide (1,2-epoxyethane) IHD isohexadecane ITDA isotridecylalcohol ITS isotridecylstearate DN degree of neutralisation, mole-OABOE oleic acid butyloctyl ester ROSME rapeseed oil acid methyl ester TAMAC triallylmethylammonium chloride Comparative example 1 : US 5,728,742 1000 ppm of Ethoquad 0/12 dissolved in 3 g of isopropanol was added, using a syringe, stirring with a mixer, to 50 g of powdered polyacrylate that had been 70%
1o neutralised and surface cross-linked (Favor SXM 880 ~, available from Stockhausen GmbH & Co. KG), with a retention of 32 g/g in 0.9% NaCI-solution and a AUL,o.9 Ps; of 22.1 g/g. The polymer was rolled for 60 minutes on a roll bench at ambient temperature. The product did not pass the 3 h anti-caking test described above.
Ethoquad 0/12 = oleylmethyldi(2-hydroxyethyl)ammonium chloride Comparative example 2 : US 5,728,742 1000 ppm of Arquad 16-50 dissolved in 3 g of isopropanol was added, using a 2o syringe, stirring with a mixer, to 50 g of powdered polyacrylate as described in comparative example 1 (Favor SXM 880 ~, available from Stockhausen GmbH &
Co. KG). The polymer was rolled for 60 minutes on a roll bench at ambient temperature. The product did not pass the 3 h anti-caking test described above.
Arquad 16-50 = Hexadecyltrimethylammonium chloride Production of polymer powders 1 - 5 Powder 1:
290 g of acrylic acid was divided into two equal portions. One portion was added to 458.5 g of H20. 0.85 g of polyethylene glycol -300-diacrylate and 1.5 g of allyloxypolyethylene glycol acrylic acid ester were dissolved in the second portion of acrylic acid and then added to the water. The solution was cooled to 10°C, then a total of 225.4 g of 50% sodium hydroxide was slowly added with cooling so that the temperature did not exceed 30°C. The solution was then flushed with nitrogen at 20°C and then cooled again. When the start temperature of 4°C had been reached, the initiator solutions (0.1 g of 2.2'-azobis-amidinopropane-dihydrochloride in 10 g H20, 1.0 g sodium peroxydisulphate in g HZO, 0.1 g 30% hydrogen peroxide solution in 1 g H20 and 0.015 g ascorbic acid in 2 g water) was added. After the final temperature of 102°C had been to reached, the gel that had formed was disintegrated and then dried for 90 minutes at 150°C. the dried polymer was coarsely crushed, ground and screened to a powder with a particle size of 150 to 850 hum.
Powder 2:
300 g of acrylic acid was divided into two equal portions. One portion was added to 429.1 g of H20. 0.36 g of triallylamine, 1.05 g of allyloxypolyethylene glycol acrylic acid ester and 12 g of methoxypolyethylene glycol (22E0) methacrylate were dissolved in the second portion of acrylic acid and then added to the water.
The solution was cooled to 10°C. Then a total of 233.1 g of 50%
sodium 2o hydroxide was slowly added with cooling so that the temperature did not exceed 30°C. The solution was then flushed with nitrogen at 20°C and then cooled again.
When the start temperature of 4°C had been reached, 0.9 g of sodium carbonate and the initiator solutions (0.1 g of 2.2'-azobis-2-amidinopropane-dihydrochloride in 10 g H20, 0.15 g of sodium peroxydisulphate in 10 g H20, 0.1 g of 30%
hydrogen peroxide solution in 1 g H20 and 0.01 g ascorbic acid in 2 g water) were added. After the final temperature of 104°C had been reached, the gel that had formed was disintegrated and then dried for 90 minutes at 150°C. The dried polymer was coarsely crushed, ground and screened to a powder with a particle size of 150 to 850 ~,m.
Powder 3:
was a non surface cross-linked polyacrylic acid (fabrication product of Favor SXM 880~), 70% neutralised and with a retention of 40 g/g in 0.9% NaCI
solution and an AUL of 8.7 g/g.
Powder 4:
280 g of acrylic acid was divided into two equal portions. One portion was added to 517.04 g of H20. 0.28 g of triallylamine, 0.72 g of allyloxypolyethylene glycol acrylic acid ester and 7.51 g of methoxypolyethylene glycol (22E0) methacrylate were dissolved in the second portion of acrylic acid and then added to the water.
The solution was cooled to 10°C. Then a total of 170.97 g of 50%
sodium hydroxide was slowly added with cooling so that the temperature did not exceed 30°C. The solution was then flushed with nitrogen at 20°C and then cooled again.
When the start temperature of 4°C had been reached, 0.9 g of sodium carbonate and the initiator solutions (0.1 g of 2.2'-azobis-2-amidinopropane-dihydrochloride in 10 g of H20, 1.0 g of sodium peroxydisulphate in 10 g H20, 0.07 g of 30%
hydrogen peroxide solution in 1 g H20 and 0.01 g ascorbic acid in 2 g water) were added. After the final temperature of 102°C had been reached, the gel that had formed was disintegrated and then dried for 90 minutes at 150°C. The dried polymer was coarsely crushed, ground and screened to a powder with a particle size of 150 to 850 ~.m.
'" Powder 5:
was the non surface cross-linked polyacrylic acid of comparative Example 1 with a retention of 32 g/g in 0.9% NaCI solution and an AUL of 22.1 g/g (Favor SXM
880~).
Example 1 A mixture of 0.015 g of Comperlan COD, 0.25 g of ethylene carbonate as a cross-linking agent, 1.0 g of H20 and 4.0 g of acetone was added to 50 g of powder l, stirring with a mixer (Krups Dry Mix Type 7007) on its highest setting. 'The coated polymer was evenly poured into a photographic tank and dried for 30 minutes in a circulating air drying oven at 180°C. The retention, AUL
value, surface tension and anti-caking tests were carried out as described above and the results are shown in Table 1.
Examples 2 -17 1o Examples 2 - 17 were carried out as described for Example 1. The powder used, added compounds, the amounts of the compounds and the duration and temperature of the heat treatment are shown in Table I along with the corresponding retention, AUL, surface tension and the results of the anti-caking tests.
Comparative Example 3 A mixture of 0.05 g of Imbentin CMEA/045 in 1.0 g of H20 was added to 50 g of 2o powder 5, stirring with a mixer (Krups Dry Mix Type 7007) on its highest setting;
it was then stirred for a further 2 minutes. No heat treatment was carried out. The polymer did not pass the 3 h anti-caking test and had reduced pourability.
The polymer had a retention of 31.4 g/g and an AUL of 21.3 g/g.
Example 18 A mixture of 0.05 g of Imbertin CMEA/045 in 1.0 g of H20 was added to 50 g of powder 5, stirring with a mixer (Krups Dry Mix Type 7007) on its highest setting.
It was then stirred for a further 2 minutes. The product was poured into a photographic tank and dried for 20 minutes in a circulating air drying oven at 180°C. The treated polymer passed the anti-caking test. Its retention, AUL and surface tension are shown in Table 1.
Example 19 A mixture of 0.05 g of Imbentin CMEA/045 in 1.0 g of H20 was added to 50 g of powder 5, stirring with a mixer (Krups Dry Mix Type 7007) on its highest setting.
It was then stirred for a further 2 minutes. The product was poured into a photographic tank and dried for 15 minutes in a circulating air drying oven at 190°C. The treated polymer passed the anti-caking test. Its retention, AUL and surface tension are shown in Table 1.
Tabelle 1 Exam- PowderAnti- Conc'n, Temperatur3 Re- AUL Surface wt h ple caking % with e/time anti-ten- 0.9 tension sub- psi stance respect [C/t] cakingtion [g/g] [mN/m]
to roduct test ]

1 180/30 31.5 17.7 1 1 Comperlan0.015 180/30 + 31.5 17.6 72.5 COD

2 1 Comperlan0.06 180/30 + 32.8 17.4 72.5 LD

2 180/30 34.8 23.5 3 2 Marlazin 0.03 180/40 + 35.0 23.7 72.5 ~

' 4 2 Marlazin 0.10 180/40 + 34.9 23.8 72.5 5 2 Serdox 0.10 180/30 + 34.5 22.5 72.5 6 2 Serdox 0.10 180/40 + 35.0 21.0 72.5 7 2 Serdox 0.10 180/40 + 34.8 22.0 72.5 8 2 Serdox 0.05 180/40 + 35.2 22.3 72.5 3 190/25 32.4 21.2 9 3 Serdox 0.10 180/35 + 32.3 19.1 72.5 3 Marlazin 0.10 180/35 + 32.3 20.3 72.5 11 3 Marlazin 0.10 180/35 + 32.3 19.5 72.5 L
12 3 Comperlan0.2 180/30 + 31.3 21.1 72.5 COD

13 3 Serdox 0.1 180/30 + 31.7 21.2 72.5 14 3 Imbentin 0.1 190/20 + 32.1 21.0 72.5 15 3 Imbentin 0.2 190/20 + 32.0 20.8 72.5 4 170/25 30.5 21.0 16 4 Stokomin 0.1 170/25 + 30.1 21.2 72.5 17 4 Serdox 0.1 170/25 + 30.9 20.4 72.5 5 32.0 22.1 18 5 Imbentin 0.05 180/20 + 30.9 20.8 72.5 ~", CMEA/045 19 5 Imbentin 0.05 190/15 + 30.8 21.0 72.5 Stokomin S 10 = Stearylamine, ethoxylated with 10 EO; Comperlan COD =
coconut acid diethanolamide (Henkel KGaA); Comperlan LD = lauric acid diethanolamide (Henkel KGaA); Comperlan 100 - coconut acid monoethanolamide (Henkel KGaA); Marlazin L 10 = laurylamine, ethoxylated with 10 EO (Contensio); Marlazin OL 20 = oleylamine, ethoxylated with 20 EO
(Contensio); Serdox NXC 3 = Oleic acid monoethanolamide, ethoxylated with 3 EO (Condea); Serdox NXC 6 = Oleic acid monoethanolamide, ethoxylated with 6 EO (Condea); Serdox NXC 14 = Oleic acid monoethanolamide, ethoxylated with 14 EO (Condea); Imbentin CMEA/045 = coconut acid monoethanolamide, 1o ethoxylated with 4.5 EO
Comparative value for surface tension of water: a = 72.5 mN/m ,,,.:,,, + : test passed test failed Comparative Example 4 0.5 g of ethylene carbonate, 2 g of water and 0.25 g of A12(S04)3 x 18H20 were mixed together and added using a syringe to 50 g of powder 3, stirring with a 2o mixer (Krups Dry Mix Type 7007) on its highest setting. The product was poured into a photographic tank and dried for 50 minutes in a circulating air drying oven at 170°C.
The treated polymer failed the 3 h anti-caking test. Its retention, AUL and surface tension are shown in Table 2.
Example 20 Powder 3 was mixed with 0.7 % by weight of ethylene carbonate, 1.8% by weight of water, 0.2% by weight of Al2(S04)3 x 14H20 and 0.2% by weight of Imbentin CMEA/024 (Kolb AG) in a mixer (Krups Dry Mix Type 7007) on its highest setting, and coated. Then, the treated polymer was placed in a blade dryer and left for 10 minutes at a temperature of 110°C.
The product passed the 3 h anti-caking test. Its retention and AUL are shown in Table 2.
Example 21 0.5 g of ethylene carbonate, 0.5 g of acetone, 2 g of water, 0.075 g of ZnCl2 and 0.05 g of Imbentin CMEA/045 (Kolb AG) were mixed and added to 50 g of powder 3 using a syringe, stirnng with a mixer (Krups Dry Mix Type 7007) on its 2o highest setting. Then, the polymer was poured into a photographic tank and dried for 50 minutes in a circulating air drying oven at 170°C.
The treated polymer passed the 3 h anti-caking test. Its retention, AUL and surface tension are shown in Table 2.
Exam 1p a 22 Powder 3 was coated by adding a mixture of 2% by weight of water and 1 % by weight of H2S04 (98%) with a syringe, stirring using a mixer. 0.5 g of ethylene 3o carbonate, 0.5 g of acetone, 0.05 g of Imbentin CMEA/045 and 1 g of water were mixed together and added using a syringe to 50 g of powder 3 stirring with the mixer (Krups Dry Mix Type 7007) on its highest setting. Then, the polymer was poured into a photographic tank and dried for 50 minutes in a circulating air drying oven at 170°C.
The treated polymer passed the 3 h anti-caking test. Its retention, AUL and surface tension are shown in Table 2.
Example 23 1o ~.~, 0.5 g of ethylene carbonate, 0.5 g of acetone, 1 g of water, 1 g of H3P04 (85%) and 0.1 g of Imbentin CMEA/045 (Kolb AG) were mixed together and added using a syringe to 50 g of powder 3 stirring with the mixer (Krups Dry Mix Type 7007) on its highest setting. Then, the polymer was poured into a photographic tank and dried for 50 minutes in a circulating air drying oven at 170°C.
The treated polymer passed the 3 h anti-caking test. Its retention, AUL and surface tension are shown in Table 2.
2o Examples 24 - 27 Examples 24 - 29 were carried out as described for Example 21, with the amounts of Lewis acids and Imbentin CMEA/045 employed shown in Table 2. The results of the 3 h anti-caking tests, retention, AUL and surface tension for the respective polymers are shown in Table 2.
Table 2 Example Lewis acid Imbentin* Temp. Reten-AULo,9 3 h / / tion ps; Anti-Lewis acid**time (fig) (g/g) caking (Gew.%) (C/min) Comp. Al2(S04)3 x 0.0 / 0.50170 / 31.5 22.6 Ex. 4 18H20 50 20 Al2(S04)3 x 0.2 / 0.20110 / 35.7 7.2 +

21 ZnCl2 0.1 / 0.15170 / 32.8 21.8 +

22 H2S04 0.1 / 1.00170 / 31.9 19.0 +

23 H3P04 0.2 / 2.00170 / 30.0 17.1 +

24 FeC13x6H20 0.1 / 0.05170 / 32.3 21.4 +

25 MgS04x7H20 0.3 / 0.10170 / 31.5 23.6 +

26 A1C13x6H20 0.1 / 0.05160 / 35.9 14.0 +

27 FeC13x6H20 0.2 / 0.10170 / 32.1 19.2 +

* Imbentin CMEA/045 * * with respect to component I
+ : anti-caking test passed - : anti-caking test failed Examples 28 - 29 0.5 g of ethylene carbonate, 2 g of water, aluminium sulphate and Imbentin CMEA/045 (Kolb AG) were mixed together and added using a syringe to 50 g of powder 3 stirring with the mixer (Krups Dry Mix Type 7007) on its highest setting. Then, the polymer was poured into a photographic tank and dried for minutes in a circulating air drying oven at 170°C. The reaction conditions and product properties are shown in Table 3.
Examples 30 - 33 Two polyacrylic acids were produced with a degree of neutralisation of 65% or 70% and a retention of 34% or 32 g/g in 0.9% aqueous NaCI solution as described for the production of powder 1. 50 g of this powder (particle size in the range 150 to 850 Vim) was mixed with a mixture consisting of 0.5 g of ethylene carbonate, 2 g of water, aluminium sulphate x 14 H20 and Imbentin CMEA/045 using a mixer (Krups Dry Mix Type 7007) on its highest setting. The powder was then dried in a circulating air drying oven in a photographic tank. The reaction conditions and to properties of the products are shown in Table 3.
Table 3 Ex. Start RetentionImben-A12(S04)3xTemp.Time Anti-Reten-AUL
productg/g tin~l~14H20~1~ C min cakingtion 0.9 DN test~2~ psi 28 70 39 0.1 0.1 170 60 6 31.7 22.0 29 70 39 0.1 0.2 170 60 6 31.6 21.5 30 65 34 0.25 0.45 170 60 24 30 20.5 31 65 34 0.25 0.50 170 60 24 30 21 32 70 32 0.30 0.50 180 30 24 28 19.5 33 70 32 0.25 0.60 180 30 24 30 20 Wt % with respect to powder ~2~ Anti-caking test passed after 6 or 24 hours

Claims (29)

1. A highly swellable absorption medium with a reduced caking tendency in a moist environment and/or at high temperatures based at least on the following components:
I a water- or aqueous fluid-absorbing natural polymer modified with acid groups or a water-insoluble, optionally surface cross-linked, water- or aqueous fluid-absorbing cross-linked polymer based on polymerised monomers containing at least partially neutralised acid groups, which is treated with:
II at least one coating agent selected from the group formed by nitrogen-containing, non-ionic surfactants; and whereby the mixture formed from components I and II has been heat treated.
2. The absorption medium according to claim 1, wherein the surfactant is at least one compound with general formula I:

in which R1 is a z-substituted aliphatic residue, preferably a z-substituted, saturated or unsaturated, linear or branched aliphatic C1 to C30 hydrocarbon residue, more preferably C8 to C22, which optionally carries aryl residues, preferably a phenyl residue, a z-substituted benzene residue, optionally condensed with five or six-membered rings optionally containing heteroatoms such as oxygen, phosphorus or nitrogen;

R2 is a hydrogen; or an aliphatic residue, preferably a saturated or unsaturated, linear or branched C2 to C24 hydrocarbon residue, preferably C8 to C22;
a hydroxyalkylene residue, the hydroxyl group of said hydroxyalkylen residue is preferably an end group and/or optionally alkoxylated with 1 to 50, preferably 1 to 20, more particularly with 1 to 10 alkylene oxide units, preferably ethylene and/or propylene oxide units, and/or said hydroxyl group is optionally esterified with a carbon acid, preferably a C1- to C8-carbon acid, and the alkylene group of said hydroxyalkylene residue is a C1- to C8-, preferably C1- to C4-hydrocarbon group, occurs in the alkylene residue, or a N,N-dihydroxyalkylene-amino-alkylene residue with C1-C4 in each alkylene residue;

R3, which may be identical or different, has the same meaning as R2, provided that with amide compounds, at least one of residues R2 or R3 represents a hydroxyalkylene residue or an alkoxylated hydroxyalkylene residue or a corresponding esterified or alkoxylated or esterified and alkoxylated hydroxyalkylene residue with the definition given for R2 above;

n is 0 or 1, preferably 1;

and z is a whole number from 1 to 4.
3. The absorption medium according to claim 1 or claim 2, wherin polymer I
is surface cross-linked.
4. The absorption medium according to any one of claims 1 to 3, wherein the coating agent II is used in an amount of 50 to 50000 ppm, preferably 100 to 5000 ppm, particularly preferably 300 to 3000 ppm.
5. The absorption medium according to any one of claims 1 to 4, wherein the coated component I is heat treated at a temperature of 100°C to 250°C, preferably 150°C to 230°C, particularly preferably 160°C
to 210°C.
6. The absorption medium according to any one of claims 1 to 4, or an absorption medium based at least on the following components:

I a water- or aqueous fluid-absorbing natural polymer modified with acid groups or a water-insoluble, optionally surface cross-linked, water- or aqueous fluid-absorbing cross-linked polymer based on polymerised monomers containing at least partially neutralised acid groups, which is treated with:
II at least one coating agent selected from the group formed by nitrogen-containing, non-ionic surfactants; and whereby the mixture formed from components I and II has been heat treated, wherein at least one Lewis acid is used as a further coating agent III.
7. The absorption medium according to claim 6, wherein the coating agents II and III are used in a total amount of 100 to 50000 ppm, preferably 300 to 25000 ppm, particularly preferably 500 to 13000 ppm.
8. The absorption medium according to claim 6 or claim 7, wherein heat treatment of the coated component I is carried out at a temperature of 40°C
to 250°C, preferably 100°C to 230°C, particularly preferably 130°C to 210°C.
9. The absorption medium according to any one of claims 6 to 8, wherein component I is coated with an aqueous solution of coating agents II and III
and caused to react.
10. The absorption medium according to one or more of claims 1 to 9, wherein coating agent II is a fatty acid alkanolamide or a fatty acid amine according to formula I in claim 1, which is optionally alkoxylated and/or esterified.
11. The absorption medium according to any one of claims 1 to 10, wherein the coating agent II is at least one compound selected from the group formed by lauric acid monoethanolamide, coconut acid monoethanolamide, stearic acid monoethanolamide, ricinic acid monoethanolamide, undecylenic acid monoethanolamide, lauric acid diethanolamide, coconut acid diethanolamide, soya acid diethanolamide, linoleic acid diethanolamide, laurylmyristic acid diethanolamide, oleic acid diethanolamide, lauric acid isopropanolamide, coconut acid isopropanolamide, oleic acid isopropanolamide, undecylenic acid polydiethanolamide, coconut acid polydiethanolamide, stearylamine, stearyl propylenediamine, coconut acid amine, laurylamine, oleylamine, stearylamine, tallow fat amine; a corresponding ethoxylated and/or propoxylated compound with 1 to 50, preferably 1 to 20 ethylene oxide and/or propylene oxide units and the corresponding esterified compound.
12. The absorption medium according to any one of claims 6 to 11, wherein the Lewis acid III is an inorganic acid, a water-soluble, saturated or unsaturated organic acid, a water-soluble hydrocarbon acid or a water-soluble acid salt.
13. The absorption medium according to claim 12, wherein the Lewis acid is HCI, H2SO4, selenium or phosphorus oxyacids, HNO3, H2SO2, H2SO3, HClO3, HBr, acrylic acid, methacrylic acid, formic acid, acetic acid, propionic acid, butyric acid, oxalic acid, malonic acid, succinic acid, lactic acid, maleinic acid, fumaric acid, benzoic acid, phthalic acid, salicylic acid, tartaric acid, citric acid, p- m- or o- toluenesulphonic acid, benzenesulphonic acid, aminomethanesulphonic acid, aminomethanephosphonic acid, water-soluble bromides, chlorides, nitrates, sulphates, phosphates, acetates, formates, oxalates or lactates of aluminium, iron, zinc, antimony, arsenic, tin, copper, magnesium, calcium, chromium, gallium, vanadium, titanium, bismuth, thallium, indium, manganese, nickel, cobalt, beryllium or zirconium or mixtures of two of more of said compounds.
14. The absorption medium according to claim 13, wherein the Lewis acid is sulphuric acid, phosphoric acid, formic acid, acetic acid, citric acid or p-toluenesulphonic acid, aluminium salts or alums and/or hydrates thereof, zinc salts and/or hydrates thereof, magnesium salts and/or different hydrates thereof and/or double salts.
15. The absorption medium according to any one of claims 1 to 14, wherein the component I to be coated is in the form of a powder.
16. The absorption medium according to any one of claims 1 to 15, wherein the polymer is based on (meth)acrylic acid, the carboxyl groups of which are at least 50 mole % neutralised.
17. A process for the production of an absorption medium according to any one of claims 1 to 16, wherein component I is a water- or aqueous fluid-absorbing, natural polymer modified with acid groups or a water- or aqueous fluid-absorbing, cross-linked polymer based on polymerised monomers containing at least partially neutralised acid groups is coated with a coating agent selected from the group formed by nitrogen-containing, non-ionic surfactants as component II and optionally a Lewis acid as component III and the mixture undergoes a heat treatment.
18. The process according to claim 17, wherein an aqueous solution of the coating agent(s) is mixed with component I.
19. The process according to claim 17 or claim 18, wherein the polymer is treated before, during or after its surface cross-linking with an aqueous solution of component II and optional component III, with the addition of heat.
20. ~The process according to any one of clams 17 to 19, wherein transformation with the aqueous solution of component II and optional component III is simultaneous with surface cross-linking of the polymer.
21. ~The process according to any one of claims 17 to 20, wherein the mixture of components I and II is heated to temperatures of 150°C to 250°C, preferably 150°C to 210°C.
22. ~The process according to any one of claims 17 to 20, wherein the mixture of components I, II and III is heated to temperatures of 40°C to 250°C, preferably 100°C to 230°C, particularly preferably 130°C
to 210°C.
23. ~An absorption medium produced by the process defined in any one of claims 17 to 22.
24. ~Use of an absorption medium according to any one of claims 1 to 16 or 23 in composites for absorbing water, aqueous or serous fluids, preferably body fluids.
25. ~Use of an absorption medium according to any one of claims 1 to 16 or 23 in hygiene articles, preferably nappies, tampons or feminine pads.
26. ~Use of an absorption medium according to any one of claims 1 to 16 or 23 in cable sheaths or packaging.
27. ~Use of an absorption medium according to any one of claims 1 to 16 or 23 as a water storage means in floors or substrates.
28. ~Use of an absorption medium according to any one of claims 1 to 16 or 23 to store nutrients and active agents and for their controlled release.
29. ~Nappies, incontinence products for adults, feminine hygiene articles containing absorption mediums, preferably in composites, according to any one of claims 1 to 16 or 23, or an absorption medium based at least on the following components:

I ~a water- or aqueous fluid-absorbing natural polymer modified with acid groups or a water-insoluble, optionally surface cross-linked, water- or aqueous fluid-absorbing cross-linked polymer based on polymerised monomers containing at least partially neutralised acid groups, which is treated with:
II at least one coating agent selected from the group formed by nitrogen-containing, non-ionic surfactants; and whereby the mixture formed from components I and II has been heat treated, whereby the absorption medium does'nt show anti-caking after at least 3 hours heat treatment according to the anticaking test disclosed in the description.
CA002426802A 2000-10-25 2001-10-25 Highly swellable absorption medium with reduced caking tendency Abandoned CA2426802A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10052966A DE10052966A1 (en) 2000-10-25 2000-10-25 Highly-swellable absorption material with reduced caking tendency comprises an acid group-containing natural or synthetic polymer coated with a nitrogen-containing nonionic surfactant
DE10052966.6 2000-10-25
PCT/EP2001/012315 WO2002034384A2 (en) 2000-10-25 2001-10-25 Absorption agents with a high swelling capacity, with a reduced tendency to cake

Publications (1)

Publication Number Publication Date
CA2426802A1 true CA2426802A1 (en) 2003-04-24

Family

ID=7661058

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002426802A Abandoned CA2426802A1 (en) 2000-10-25 2001-10-25 Highly swellable absorption medium with reduced caking tendency

Country Status (10)

Country Link
EP (1) EP1335756B1 (en)
JP (1) JP2004512165A (en)
CN (1) CN100430098C (en)
AT (1) ATE327780T1 (en)
AU (2) AU2002221743B2 (en)
BR (1) BR0114916A (en)
CA (1) CA2426802A1 (en)
DE (2) DE10052966A1 (en)
TW (1) TWI253955B (en)
WO (1) WO2002034384A2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7473739B2 (en) 2004-02-05 2009-01-06 Nippon Shokubai Co., Ltd. Particulate water absorbent agent and production method thereof, and water absorbent article
US7687596B2 (en) 2003-07-10 2010-03-30 Basf Aktiengesellschaft (Meth)acrylic acid esters of alkyoxylated unsaturated polyol ethers, and production thereof
US7728045B2 (en) 2004-04-21 2010-06-01 Evonik Stockhausen Gmbh Process for producing an absorbent polymer by means of spread-drying
US8076436B2 (en) 2006-10-19 2011-12-13 Basf Se Method for the production of superabsorbers
US8252715B2 (en) 2007-03-05 2012-08-28 Nippon Shokubai Co., Ltd. Water-absorbing agent and production method thereof
US8596931B2 (en) 2007-03-29 2013-12-03 Nippon Shokubai Co., Ltd. Particulate water absorbing agent and method for producing the same
US8952116B2 (en) 2009-09-29 2015-02-10 Nippon Shokubai Co., Ltd. Particulate water absorbent and process for production thereof
US9062140B2 (en) 2005-04-07 2015-06-23 Nippon Shokubai Co., Ltd. Polyacrylic acid (salt) water-absorbent resin, production process thereof, and acrylic acid used in polymerization for production of water-absorbent resin
US9090718B2 (en) 2006-03-24 2015-07-28 Nippon Shokubai Co., Ltd. Water-absorbing resin and method for manufacturing the same
US9926449B2 (en) 2005-12-22 2018-03-27 Nippon Shokubai Co., Ltd. Water-absorbent resin composition, method of manufacturing the same, and absorbent article

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10249822A1 (en) 2002-10-25 2004-05-13 Stockhausen Gmbh & Co. Kg A two-stage process for preparation of an absorbing polymer useful for foams, sealing materials, liquid absorbing hygiene articles, plant growth regulators, packaging materials, and floor covering additives
AU2003296558A1 (en) 2002-10-25 2004-05-13 Stockhausen Gmbh Absorbent polymer structure provided with an improved retention capacity and permeability
AU2004210275B2 (en) * 2003-02-10 2006-03-09 Nippon Shokubai Co., Ltd. Particulate water absorbent containing water absorbent resin as a main component
WO2005027984A1 (en) * 2003-08-06 2005-03-31 The Procter & Gamble Company Absorbent article comprising coated water swellable material
DE102004007163B3 (en) * 2004-02-12 2005-10-06 Stockhausen Gmbh Silo device for superabsorbent polymers
DE102004020646A1 (en) 2004-04-22 2005-11-24 Coty B.V. Sweat-absorbing complex for cosmetic products
DE102004020647A1 (en) * 2004-04-22 2005-11-24 Coty B.V. Sweat-absorbing complex for cosmetic products
EP1843799B1 (en) * 2005-02-04 2015-02-25 The Procter & Gamble Company Absorbent structure with improved water-swellable material
CN101115509A (en) * 2005-02-04 2008-01-30 宝洁公司 Absorbent structure with improved water-absorbing material
JP2007167193A (en) * 2005-12-20 2007-07-05 Kao Corp Absorbent sheet and absorbent article using the same
JP6057495B2 (en) * 2010-11-11 2017-01-11 ユニ・チャーム株式会社 Absorbent articles
WO2015152299A1 (en) 2014-03-31 2015-10-08 株式会社日本触媒 Particulate water absorbent and method for producing same
KR102025892B1 (en) 2016-02-17 2019-09-26 주식회사 엘지화학 A method of preparing superabsorbent polymers with improved anti-caking property
CN106866446A (en) * 2017-01-20 2017-06-20 天津斯瑞吉高新科技研究院有限公司 Bio-based unsaturation medium chain acid amides water soluble surfactant active
DE102017006922A1 (en) 2017-07-20 2019-01-24 Wolf-Dieter Jülich Water-storing layer system to support sowing and planting as well as moisturizing the root zone
CN112480469B (en) * 2020-11-10 2022-11-11 烟台大学 Marine organism polysaccharide-based composite sponge and preparation method and application thereof

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63270741A (en) * 1986-02-05 1988-11-08 Sekisui Plastics Co Ltd Production of water-absorptive polyacrylic acid resin
DE4020780C1 (en) * 1990-06-29 1991-08-29 Chemische Fabrik Stockhausen Gmbh, 4150 Krefeld, De
ES2070369T3 (en) * 1990-07-17 1995-06-01 Sanyo Chemical Ind Ltd PROCEDURE FOR THE MANUFACTURE OF WATER ABSORBENT RESINS.
JPH04175319A (en) * 1990-07-17 1992-06-23 Sanyo Chem Ind Ltd Production of water-absorptive resin
GB9107952D0 (en) * 1991-04-15 1991-05-29 Dow Rheinmuenster Surface crosslinked and surfactant coated absorbent resin particles and method of preparation
CA2072914C (en) * 1992-03-27 2004-04-20 James Richard Gross Method for reducing malodor in absorbent products and products formed thereby
BR9307837A (en) * 1993-03-29 1996-01-09 Dow Chemical Co Composition comprising lightly crosslinked water-absorbent, free-flowing water-insoluble polymer particles process for preparing said particles and process for measuring the amount of unassociated matter having a diameter smaller than a predetermined size present in a polymer composition swellable by water containing said particles
DE19601763A1 (en) * 1996-01-19 1997-07-24 Hoechst Ag Use of surfactants in the drying of hydrophilic, highly swellable hydrogels
US5728742A (en) * 1996-04-04 1998-03-17 The Dow Chemical Company Absorbent polymers having a reduced caking tendency
DE19801933A1 (en) * 1998-01-20 1999-07-22 Clariant Gmbh Encapsulated hydrogel for use in sanitary products
US6146570A (en) * 1998-03-20 2000-11-14 Rhodia Inc. Process for producing extruded hydrocolloid granules
JP4141526B2 (en) * 1998-04-07 2008-08-27 株式会社日本触媒 Method for producing water absorbent resin
US6124391A (en) * 1998-08-18 2000-09-26 Stockhausen Gmbh & Co. Kg Superabsorbent polymers having anti-caking characteristics
JP4717979B2 (en) * 2000-02-04 2011-07-06 三洋化成工業株式会社 Manufacturing method of water absorbent resin
DE10016041A1 (en) * 2000-03-31 2001-10-04 Stockhausen Chem Fab Gmbh Powdery surface crosslinked polymers

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7687596B2 (en) 2003-07-10 2010-03-30 Basf Aktiengesellschaft (Meth)acrylic acid esters of alkyoxylated unsaturated polyol ethers, and production thereof
US7473739B2 (en) 2004-02-05 2009-01-06 Nippon Shokubai Co., Ltd. Particulate water absorbent agent and production method thereof, and water absorbent article
US7582705B2 (en) 2004-02-05 2009-09-01 Nippon Shokubai Co., Ltd. Particulate water absorbent agent and production method thereof, and water absorbent article
US7728045B2 (en) 2004-04-21 2010-06-01 Evonik Stockhausen Gmbh Process for producing an absorbent polymer by means of spread-drying
US7863338B2 (en) 2004-04-21 2011-01-04 Evonik Stockhausen Gmbh Absorbent polymer granulate
US9062140B2 (en) 2005-04-07 2015-06-23 Nippon Shokubai Co., Ltd. Polyacrylic acid (salt) water-absorbent resin, production process thereof, and acrylic acid used in polymerization for production of water-absorbent resin
US9926449B2 (en) 2005-12-22 2018-03-27 Nippon Shokubai Co., Ltd. Water-absorbent resin composition, method of manufacturing the same, and absorbent article
US10358558B2 (en) 2005-12-22 2019-07-23 Nippon Shokubai Co., Ltd. Water-absorbent resin composition, method of manufacturing the same, and absorbent article
US9090718B2 (en) 2006-03-24 2015-07-28 Nippon Shokubai Co., Ltd. Water-absorbing resin and method for manufacturing the same
US8076436B2 (en) 2006-10-19 2011-12-13 Basf Se Method for the production of superabsorbers
US8252715B2 (en) 2007-03-05 2012-08-28 Nippon Shokubai Co., Ltd. Water-absorbing agent and production method thereof
US8596931B2 (en) 2007-03-29 2013-12-03 Nippon Shokubai Co., Ltd. Particulate water absorbing agent and method for producing the same
US8952116B2 (en) 2009-09-29 2015-02-10 Nippon Shokubai Co., Ltd. Particulate water absorbent and process for production thereof
US9775927B2 (en) 2009-09-29 2017-10-03 Nippon Shokubai Co., Ltd. Particulate water absorbent and process for production thereof

Also Published As

Publication number Publication date
AU2002221743B2 (en) 2006-01-05
ATE327780T1 (en) 2006-06-15
WO2002034384A3 (en) 2002-07-18
TWI253955B (en) 2006-05-01
CN1471411A (en) 2004-01-28
DE10052966A1 (en) 2002-05-02
EP1335756A2 (en) 2003-08-20
EP1335756B1 (en) 2006-05-31
CN100430098C (en) 2008-11-05
DE50109981D1 (en) 2006-07-06
WO2002034384A2 (en) 2002-05-02
BR0114916A (en) 2003-12-23
JP2004512165A (en) 2004-04-22
AU2174302A (en) 2002-05-06

Similar Documents

Publication Publication Date Title
US8247640B2 (en) Highly swellable absorption medium with reduced caking tendency
AU2002221743B2 (en) Absorption agents with a high swelling capacity, with a reduced tendency to cake
US7282262B2 (en) Particulate water absorbent containing water absorbent resin as a main component
JP6013414B2 (en) Polyacrylic acid water-absorbing resin powder and method for producing the same
CN101622065B (en) Particulate water-absorbing agent and method for producing the same
JP5421243B2 (en) Method for producing particulate water-absorbing agent mainly composed of water-absorbing resin
JP6246746B2 (en) Water absorbing agent and method for producing the same
JP4926474B2 (en) Particulate water-absorbing agent, method for producing the same, and water-absorbing article
JP5342726B2 (en) Powdered cross-linked absorbent polymer that absorbs aqueous liquids and blood, its production method and use
US8686216B2 (en) Superabsorbent composition with metal salicylate for odor control
WO2009113679A1 (en) Method of manufacturing a particulate water-absorbing agent composed principally of a water-absorbing resin
CN103619919A (en) Polyacrylic acid (salt) water-absorbent resin powder, and method for producing same
CN102675522A (en) Method of producing particle-shaped water absorbing agent
CN103459473A (en) Manufacturing method for polyacrylic acid (salt) -based water-absorbent resin powder
JP7299958B2 (en) Particulate water absorbing agent
JP2022116823A (en) Method for producing water-absorbing resin

Legal Events

Date Code Title Description
FZDE Discontinued