CA2421314A1 - Self-propelled vacuum cleaner with reversible rotary agitator - Google Patents

Self-propelled vacuum cleaner with reversible rotary agitator Download PDF

Info

Publication number
CA2421314A1
CA2421314A1 CA002421314A CA2421314A CA2421314A1 CA 2421314 A1 CA2421314 A1 CA 2421314A1 CA 002421314 A CA002421314 A CA 002421314A CA 2421314 A CA2421314 A CA 2421314A CA 2421314 A1 CA2421314 A1 CA 2421314A1
Authority
CA
Canada
Prior art keywords
agitator
nozzle assembly
drive motor
vacuum cleaner
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002421314A
Other languages
French (fr)
Inventor
Erik J. Hitzelberger
John A. Iii Cloud
Eric J. Streciwilk
Hiroshi Nishimura
Hiroshi Nakao
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp of North America
Original Assignee
Erik J. Hitzelberger
John A. Iii Cloud
Eric J. Streciwilk
Hiroshi Nishimura
Hiroshi Nakao
Matsushita Electric Corporation Of America
Panasonic Corporation Of North America
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Erik J. Hitzelberger, John A. Iii Cloud, Eric J. Streciwilk, Hiroshi Nishimura, Hiroshi Nakao, Matsushita Electric Corporation Of America, Panasonic Corporation Of North America filed Critical Erik J. Hitzelberger
Publication of CA2421314A1 publication Critical patent/CA2421314A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/32Handles
    • A47L9/325Handles for wheeled suction cleaners with steering handle
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L5/00Structural features of suction cleaners
    • A47L5/12Structural features of suction cleaners with power-driven air-pumps or air-compressors, e.g. driven by motor vehicle engine vacuum
    • A47L5/22Structural features of suction cleaners with power-driven air-pumps or air-compressors, e.g. driven by motor vehicle engine vacuum with rotary fans
    • A47L5/28Suction cleaners with handles and nozzles fixed on the casings, e.g. wheeled suction cleaners with steering handle
    • A47L5/30Suction cleaners with handles and nozzles fixed on the casings, e.g. wheeled suction cleaners with steering handle with driven dust-loosening tools, e.g. rotating brushes
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/009Carrying-vehicles; Arrangements of trollies or wheels; Means for avoiding mechanical obstacles
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/28Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means
    • A47L9/2805Parameters or conditions being sensed
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/28Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means
    • A47L9/2836Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means characterised by the parts which are controlled
    • A47L9/2847Surface treating elements

Abstract

A vacuum cleaner includes a cannister assembly, a nozzle assembly, and a suction generator that draws air, dust, dirt and debris from a surface to be cleaned through the nozzle assembly to a collection vessel. A rotary agitator carried on the nozzle assembly is driven by a motor in a forward or a rearward direction. Depending upon the direction of rotation, the rotary agitator propels the nozzle assembly in the forward or rearward direction.

Description

VACUUM CLEA1~TER.
~IVITFi REVERSIBLE ROTARY .AGITATOR
This application claims the benefit of U.S. Provisional Patent Applic anon S erial 1Vo . 601362,960 file d March 8, 20 02.
Technical Field The present invention relates generally to the vacuum cleaner field, and, more particularly, to a vacuum cleaner having a reversible rotary agitator for propelling or drawing a nozzle assembly of the vacuum cleaner in a forward or rearward direction.
Background of the Invention Upright vacuum cleaners and power head assemblies for canister vacuum cleaners in all of their designs and permutations have become increasingly popular over th a years. Uprigh t vacuum cleaners ge nerally incorporate a nozzle assembly which rides on wheels over a floor surface to be cleaned and a canister assembly that is pivotally connected to tlae nozzle assembly. The canister assembly typicall;y~ includes an operating handle that is manipulated by an operator to move the vacuum cleaner to and fro across the floor. The canister assembly also includes a dirt collection vessel comprising either a bag-like filter or a dirt cup that may include a cyclonic separation chamber and filter combination. The dirt collection vessel traps dirt and debris while substantially clean air is exhausted by an electrically operated fan that is driven by an onboard motor. It is this fan and motor arrangement that generates the drop in air pressure necessary to provide the desired cleaning action.
In most upright vacuum cleaners sold today, a rotary agitator is also provided in the nozzle assembly. The rotary agitator includes tufts of bristles, brushes, beater bars or the like to beat dirt and debris from the nap of a carpet being cleaned while the pressure drop or vacuum is used to force air entrained with this dirt and debris into a. nozzle housing of the vacuum cleaner. Power head assemblies for canister vacuum cleaners simi larly in clud a a ro tary ag itato r in th a no zzle asse mbly.
In either the upright vacuum cleaner or the power head assembly, as the agitator rotates and engages the surface being cleaned, the agitator has a tendency to pull the nozzle assembly forward in accordance with its direction of rotation. The present invention utilizes the motion imparted to the nozzle assembly of the vacuum cleaner by a reversibly driven agitator to full advantage and to provide a vacuum cleaner that is self propelled in both a forward and rearward direction. Such a vacuum cleaner works with the operator at all times and is easier to move to and fro across the surface being c leaned.
Summarx of the Invention In accordance with the purposes of the present invention as described herein, an improved self propelled vacuum cleaner is provided.
The vacuum cleaner includes a cannister assembly, a suction generator, and a nozzle assembly. The nozzle assembly includes a housing that defines an agitator cavity, an agitator mounted in the agitator cavity for rotation in a forward and rearward direction for propelling the nozzle assembly, and a drive motor for driving the agitator. An actuator for controlling operation of the drive motor and rotation direction of the a3;itator may be carried on either the cannister assembly or the nozzle assembly.
In one embodiment, for example, a moveable hand grip is slidably mounted to a control handle for directing the forward and rearward rotation of the agitator and direction of movement of the nozzle assembly. As force is exerted on the hand grip by an operator, the hand grip slides along a stem of the control handle. A forward thrust moves the hand grip forward forcing the closure of a forward switch and the application of a voltage signal to a controller. Similarly, a reverse thrust exerted on the hand grip moves the hand grip rearward opening the forward switch and forcing the closure of a rearward switch and the application of a voltage signal to the controller. The status of the sw itches is monitored by the controller.
In accordance with another aspect of the present invention, the controller is programmed to drive the drive motoa~ in either of the first direction and the second direction upon receipt of a signal from the actuator. More specifically, the controller may be programmed upon a change of state of the actuator signal to remove power from the drive motor and to reapply power to the drive motor such that the agitator is rotated in a different direction. In one embodiment, the reapplication of power to the drive motor is delayed by the controller for between 0.1 second and 1.0 second to allow the agitator rotating in the first direction to slow significantly, if not stop, before power is reapplied to drive the agitator in the second direction and vice versa. In addition, the power reapplied to the agitator drive motor may be incrementally increased using a ramp or step function, or the like, to a normal operating level in order to reduce arcing and inrush current peaks.
In accordance with the broadest teachings of the present invention, the vacuum cleaner described generally above many be an upright vacuum cleaner or extractor, or a canister type vacuum cleaner equipped with a power nozzle as are well known in the art. In either instance, the agitator 1 S drive moto r may be pos itxoned coaxially with the ag itator including within the agitator. Alternately, the nozzle assembly ma;y include a belt and pulley assembly or even a gear drive connecting a remotely positioned drive motor to the agitator as is also well known in the art. In addition, the canister assembly in either instance, includes a collection vessel comprising either a bag-like filter or a dirt cup that may but does not necessarily have to include a cyclonic separation chamber and filter combination. The collection vessel traps dirt and debris while substantially clean air is exhausted by an electrically operated fan that is driven by an onboard mo tor.

In accordance with another aspect of the 1>resent invention, a method of propelling a nozzle assembly of a vacuum cleaner having a power driven agitator in a forward or rearward dnrection may be broadly defined as including the step of selectively rotating the agitator in a first 5 direction to draw the nozzle assembly forward and in a second direction to draw the nozzle assembly rearward. The method may be alternatively described as including the steps of sensing operator input to determine a direction of desired nozzle assembly movement and driving the agitator to draw the nozzle assembly in the desired direction.
In accordance with still another aspect of the present inventions a vacuum cleaner includes a nozzle assembly including an agitator cavity and at least one rotary agitator mounted for rotation in the agitator cavity. That rotary agitator is rotated in a first direction for drawing fhe nozzle assembly forward and in a second direction for drawing the nozzle assembly rearward. The vacuum cleaner also includes a cannister assembly connected to the nozzle assembly, a suction generator, a drive motor for driving the at least one agitator, and a.n actuator for controlling operation of the drive motor and ro tation direction of the at least one agitator. In accordance with the broad teaching of the present invention, the suction generator, the at least one agitator, and the drive motor may each be carried on one of the nozzle assembly and cannister assembly.
In the following description there is shown and described one possible embodiment of this invention, simply by way of illustration of one of the modes best suited to carry out the invention. As it will be realized, the invention is capable of other different embodiments, and its several details are capable of modification in various, obvious aspects all without departing from the invention. Accordingly, the drawings and descriptions will be regarded as illustrative in nature and not as restrictive.
Brief Description of the Drawins The accompanying drawing incorporated in and forming a part of the specification, illustrates several aspects of the; present invention, and together with the description serves to explain the principles of the invention. In the drawing:
Figure 1 is a perspective view of a vacuum cleaner constructed in accordance with the teachings of the present invention;
Figure 2 is a schematic block diagram showing the control circuit which controls the application of electrical power to the agitator motor and thus the direction the nozzle assembly is propelled;
Figure 3 is a cross-sectional view through the nozzle assembly of the vacuum cleaner showing the agitator and agitator drive arrangement;
and Figure 3a is a detailed cross-sectional view through the agitator.
Reference will now be made in detail to the present invention, an example of which is illustrated in the accompanying drawing.
Detailed Description of the Invention Reference is now made to Figure 1 showing a preferred embodiment of an upright vacuum cleaner 10 of the present invention. It should be appreciated that while an upright vacuum cleaner' 10 is illustrated, embodiments of the present invention also include different upright vacuum cleaners and canister vacuum cleaners eduipped with a powerhead incorporating a power driven agitator such as shown, for example, in U.S.
Patent 6,148,474 which is owned by the assignee of the present invention and is incorporated herein by reference.
The uprzght vacuum cleaner 10 includes a nozzle assembly 16 and a canister assembly 18 pivotally connected to the nozzle assembly. The canister assembly 18 further includes a control handle 20 and a hand grip 22. A power switch 24 is provided for turning the vacuum cleaner on and off. Of course, electrical power is supplied to the vacuum cleaner 10 from a standard a lectrical wall o utlet through a cord (no t shown) a s is know n in the art.
In the present preferred embodiment, the hand grip 22 is slidably mounted to a stem 21 of the control handle 20. As forces are exerted on the hand grip 22 by an operator, the hand grip 22 slides along the stem 21 as shown by action arrows A in Figure 1. A forward thrust moves the hand grip 22 forward toward the cannister assembly 18 forcing closure of a forward switch 23 and the application of a voltage signal (Vcc) generated by a power supply (not shown) to a first pin of controller 27. Similarly, a reverse thrust exerted on the hand grip 22 moves t:he hand grip rearward away from the cannister assembly 18 opening the forward switch and forcing closure of a rearward switch 25 and the application of the voltage signal (Vcc) to a second pin of controller 27. Dependent upon the desired direction of movement of the nozzle assembly 15 as indicated by the open/closed states of the forward and rearward switches 23 and 25, the voltage signal (Vcc) generated by a power supply (not shown) is selectively applied to the first or second pins of controller 27.
As shown in Figure 2, the con~oller 27 in turn generates an output signal (S1) which is applied to and directs the operation of relay29 and agitator motor 40. In the present preferred embadiment, the electrical power is converted from AC to DC by converter 31. The DC power is applied to the agitator motor 40 through relay 29 such that the motor is rotated in a first direction for drawing the nozzle assembly 16 forward or in a second direction for drawing the nozzle assembly rearward depending upon the open/closed states of the switches 23 am.d 25.
Preferably, the controller is programmed to monitor the open/closed states of the switches 23 and 25 and to generate the output signal (S1 ) which operates relay 29 accordingly. The controller 27 is further programmed to remove the DC power provided through relay 29 to the drive motor 40 and to reapply power to the drive motor such that the agitator is rotated in a different direction upon a change in state of the switches 23 and 25. In other words, when the operator of the vacuum cleaner 10 desires to change the direction of movE;ment of the vacuum cleaner 10 by actuating the. hand grip 22, the controller 27 generates a different output signal (S1) causing the removal and reapplication of DC
power to the agitator motor 40 through relay 29.

In one preferred embodiment, the reapplication of power to the drive motor 40 is delayed by the controller 27 for between 0.1 second and 1.0 second to allow the agitator 38 rotating in the first direction to slow significantly, if not stop, before DC power is reapplied to drive the agitator 3 8 in the second direction and vice versa. It should be noted that the DC
power reapplied to the agitator drive motor 40 may be incrementally increased using a ramp or step function, or the l~:e, to a normal operating level in order to reduce arcing and inrush current peaks.
A pair of rear wheels 26 (partially shown) are provided at a lower portion of the cannister assembly 18 and a pair of front wheels 27 are provided on the nozzle assembly 16. Together, these wheels 26, 27 support the vacuum cleaner 10 for movement across the floor. T'o allow for convenient stowage of the vacuum cleaner 10, a foot latch (not shown) may function to lock the canister assembly 18 in an upright position as shown in Figure 1. When the foot latch is released, the canister assembly 18 may be pivoted relative to the nozzle assembly 16 as the vacuum cleaner 10 is manipulated to-and-fro to clean the floor.
In the present preferred embodiment, the canister assembly 18 includes a cavity adapted to receive and hold a collection assembly or vessel 12. A detailed description of the dust collection vessel 12 of the present preferred embodiment may be found in PCT Application PCT/USO1/47401, entitled Cyclonic Vacuum Cleaner with Filter and Filter Sweeper, filed November 13, 2001. Although described as accessible from the front of the vacuum cleaner 10 in the noted PCT application, the dust collection vessel 12 may likewise be accessible from the rear of the vacuum cleaner 10. In accordance with the broad teaching of the present invention, the dust collection vessel may alternatively include a bag-like filter to receive dirt and debris as is also well known in the art.
5 The canister assembly 18 further carries a suction generator or fan 33 and suction fan drive motor 34. Together, the suction fan 33 and its cooperating drive motor 34 function to generate a vacuum airstream for drawing air, dust, dirt and debris from a surface to be cleaned through the nozzle assembly 16 to the collection vessel 12. While the suction fan 33 10 and suction fan drive motor 34 are illustrated as being carried on the canister assembly 18, it should be appreciated that one or bath could likewise be carried on the nozzle assembly 16 if desired.
The nozzle assembly 16 includes a nozzle housing 35 that defines an agitator cavity 36 that receives a rotating agitator 38. The agitator 38 shown is rotatably mounted in the agitator cavity 36 and driven by a motor 40 and cooperating gear drive 42. In the present preferred embodiment, the motor 40 and gear drive 42 are coaxial with and housed within the agitator 38 as is described in greater detail below (see Figures 3 and 3a). While ii~e vacuum cleaner of the present preferred embodiment is described with the agitator motor40 positioned coaxially with and held within the agitator 38, the motor could be positioned outside of the agitator in either tha nozzle assembly 16 or the canister assembly 18 utilizing a drive arrangement incorporating a belt and pulley assembly and/or a gear drive assembly in any manner desired.

In the illustrated vacuum cleaner 10, the scrubbing action of the rotary agitator 38 and the negative air pressure created by the suction fan 33 and drive motor 34 cooperate to brush and beat dirt and dust from the nap of the carpet being cleaned and then to draw the dirt and dust laden air from the agitator cavity 36 to the dust collection vessel 12. Specifically, the dirt and dust laden air passes serially through a suction inlet defined by the nozzle housing 35 and hose andlor an integrally molded conduit in the nozzle housing 35 andlor canister assembly 18 as is generally known in the art. Next, the dirt and dust laden air is delivered into the dust collection vessel 12 which serves to trap the suspended dirt, dust and other particles inside while allowing the now clean air to pass freely through to the suction fan 33 and ultimately to the environment through an exhaust port 50.
Reference is now made to Figures 3 and 3a which show the mounting of the agitator motor 40 and associated ;gear drive 42 coaxially with and w ithin the agitato r 3 8 in detail. A s shown, the agitator 38 is mounted for rotation relative to the nozzle assembly 16. Specifically, a first end of the agitator 38 includes an end cap 52 which is supported on bearings 54 on a stub shaft SS held in mounting block 56 keyed into slot 58 in the side of ~e nozzle housing 35. An end cap 60 at the opposite end of the agitator 38 is supported on hearings 62 mounted on the housing 64 of the motor 40. As should be appreciated, the motor 40 is fixed to the nozzle housing 35 by means of the mounting block 66 fixed to the motor housing 64 and keyed in the slot 68 in the side of the nozzle housing.

The motor 40 drives a shaft 70 including gear teeth 72. The drive shaft 70 extends through a bearing 74 held in the hub 76 of the planetary gear set carrier 78. In the most preferred embodiment a fan 80 is keyed or otherwise secured bo the distal end of the drive shaft 70.
' The planetary gear set carrier 78 includes three stub shafts 82 that each carry a p lanetary gear 84 . Each of th a planetary gears 84 includ a teeth that mesh with the gear teeth 72 of the drive shaft 70. Additionally, the planetary gears 82 mesh with the teeth of an annular gear 86 that is fixed to the agitator motor housing 64 by pin or other means. Thus, it should be appreciated that as the drive shaft 70 is driven by the motor 40, the planetary gears 84 are driven around the annular gear 86, thereby causing the planetary gear set carrier 78 to rotate.
As best shown in Figure 3a, planetary gear set carrier 78 also includes a drive ring 88 and associated rubber drive boot 87 which includes a series of spaced channels 89 that receive and engage axial ribs 91 projecting inwardly radially from the inner wall of the agitator 38. Thus, the rotation of the planetary geax set carrier 78 is transmitted by the drive ring 88 and drive boot 87 directly to and causes l~C:e rotation of the agitator 38. The rubber drive boot 87 provides the necessary damping to insure the smooth transmission of power to the agitator 38. simultaneously with the rotation of ~e planetary gear set carrier 78 and agitator 38, the drive shaft 70 also drives the fan 80 at a ratio of between 4--1 to 10-1 and most preferably 6-1 with respect to the agitator 38. The resulting rapid rotation of the fan 80 helps to move air through the agitator 38 and ensure proper cooling of the agitator motor 40 during its operation.
In operation, the operator applies a force to the hand grip 22 dependent upon a desired direction of movement of the nozzle assembly 16. If the force exerted on the hand grip 22 is in a forward direction, the forward switch 23 is closed through contact with the hand grip and the voltage signal (Vcc) is applied to the first pin of controller 27. The controller 27 in turn generates an output signal (S 1 } based on the openlclosed states of the switches 23, 25 which is applied to and directs the operation of relay 29. In the present scenario with a forward force applied to the hand grip 22, DC power is applied to the agitator motor 40 such that the agitator 38 is driven in the forward direction drawing the nozzle assembly 16 forward.
Conversely, if the force exerted on the hand grip 22 is in a rearward direction, the rearward switch 25 is closed through contact with the hand grip and the forward switch remains open or is opened. In response to the output signal (S1) ofthe controller 27, relay29 operates to direct the DC
power to the agitator motor 40 such that the agitator 38 is driven in a rearward direction drawing the nozzle assembly 16 rea~wvard.
Once the agitator 38 is rotating, a change in direction initiated by the operator, i.e., a change in the force exerted on the hand grip 22, is indicated to the controller 27 by the forward and rearward switches 23 and 25, respectively. If the agitator 38 is being driven in a forward direction and the operator exerts a rearward force on the hand grip 22, the hand grip travels along the stem 21 of the control handle allowing the forward switch 23 to open followed by the closure of the rearward switch 25. As the forward switch 23 opens, the voltage signal (Vcc:) is removed from the first pin of controller 27 thus changing the controller input. As the rearward switch closes, the voltage signal (Vcc) is applied to the second pin of controller 27 again changing the controller input.
Based on the new states of the forward and rearward switches 23 and 25, the controller 27 stops generating the present output signal (S 1 ) thus turning the relay 29 off and removing power from the agitator motor 40. The controller 27 may then generate a new output signal (S 1 ) either immediately or after a delay period which actuates the relay 29 to direct the DC power to the agitator motor 40 such that the agitator 38 is driven in the rearward direction. The delay established by the controller 27 may be between 0:1 second and 1.0 second to allow the agitator 38 rotating in the first direction to slow significantly, if not stop, bf;fore DC power is reapplied to drive the agitator 38 for movement in the second direction and vice versa. In this manner, overheating of the agitator motor 40 may be substantially avoided.
The foregoing description of the preferred embodiment of this invention has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise form disclosed. Obvious modifications or variations ara possible in light of the above teachings. For example, various pressure sensing devices may be utilized to replace the foavvard and rearward switches which sense changes in direction initiated by an operator, or a single switch may be utilized to sense a change in direction with the agitator rotating in a normally forward direction. Additionally, different delay timing patterns may be utilized during a stop, delay, and restart sequence or application of the DC power to the agitator motor 40 may be incrementally increased over a period of time.
5 Even further, additional switching devices such a.s a FET array, for example, activated by the controller output signal may be utilized to direct the DC power to the agitator motor 40. The vacuum cleaner could also be equipped with multiple agitators rather than a single agitator as illustrated.
The present embodiment was chosen and described to.provide the 10 best illustration of the principles of the invention and its practical application to thereby enable one of ordinary skill in the art to utilize the invention in various embodiments and with various modifications as are suited to the particular use contemplated. All such modifications and variations are within the scope of the invention as determined by the 15 appended claims when interpreted in accordance with the breadth to which they are fairly, legally and equitably entitled.

Claims (29)

1. A vacuum cleaner, comprising:
a cannister assembly including a collection vessel;
a suction generator;
a nozzle assembly, said nozzle assembly including a housing defining an agitator cavity and an agitator mounted in the agitator cavity for rotation (a) in a first direction for drawing said nozzle assembly forward and (b) in a second direction for drawing said nozzle assembly rearward;
a drive motor for driving said agitator; and an actuator for controlling operation of said drive motor and rotation direction of said agitator.
2. The vacuum cleaner of claim 1 wherein said drive motor is positioned within said agitator.
3. The vacuum cleaner of claim 1 wherein said drive motor and said agitator are coaxial.
4. The vacuum cleaner of claim 1 wherein said nozzle assembly further includes a belt and pulley assembly connecting said drive motor to said agitator.
5. The vacuum cleaner of claim 1 further comprising a controller programmed to drive said drive motor in either of said first direction and said second direction dependent upon a signal received from said actuator.
6. The vacuum cleaner of claim 5 wherein said controller is programmed upon a change of state of the actuator signal to remove power from said drive motor and to reapply power to said drive motor such that the agitator is rotated in a different direction.
7. The vacuum cleaner of claim 6 wherein said controller is programmed to delay the reapplication of power to said drive motor.
8. The vacuum cleaner of claim 7 wherein the delay in the reapplication of power to said drive motor is between 0.1 second and 1.0 second.
9. The vacuum cleaner of claim 6 wherein the power reapplied to said drive motor is incrementally increased to a normal operating level.
10. The vacuum cleaner of claim 1 wherein said collection vessel is selected from a cup and a bag.
11. The vacuum cleaner of claim 1 wherein said vacuum cleaner is cyclonic.
12. A nozzle assembly of a vacuum cleaner, comprising:
a housing defining an agitator cavity;
an agitator mounted in said agitator cavity for rotation (a) in a first direction for drawing the nozzle assembly forward and (b) in a second direction for drawing the nozzle assembly rearward;
a drive motor for driving said agitator in either of said first direction and said second direction; and an actuator for controlling operation of said drive motor and rotation direction of said agitator.
13. The nozzle assembly of claim 12 wherein said agitator drive motor is positioned within said agitator.
14. The nozzle assembly of claim 12 wherein said drive motor and said agitator are coaxial.
15. The nozzle assembly of claim 12 further comprising a controller programmed to receive an actuator signal and drive said drive motor in either of said first direction and said second direction.
16. The nozzle assembly of claim 15 wherein said controller is programmed upon a change of state of said actuator signal to remove power from said drive motor and to reapply power to said drive motor such that the agitator is rotated in a different direction.
17. The nozzle assembly of claim 16 wherein said controller is programmed to delay the reapplication of pow er to said drive motor.
18. The nozzle assembly of claim 17 wherein the delay in the reapplication of power to said drive motor is between 0.1 second and 1.0 second.
19. The nozzle assembly of claim 16 wherein the power reapplied to said drive motor is incrementally increased to a normal operational level.
20. A method of propelling a nozzle assembly of a vacuum cleaner having a power driven agitator in a desired forward or rearward direction, comprising:
selectively rotating said agitator (a) in a first direction to draw said nozzle assembly forward and (b) in a second direction to draw said nozzle assembly rearward.
21. The method of propelling a nozzle assembly of a vacuum cleaner of claim 20 further comprising the step of sensing operator input to determine a direction of desired nozzle assembly movement; and driving said agitator in a selected direction to draw said nozzle assembly in the direction of desired nozzle assembly movement.
22. A vacuum cleaner, comprising:
a nozzle assembly including an agitator cavity and at least one rotary agitator mounted for rotation in the agitator cavity (a) in a first direction for drawing said nozzle assembly forward and (b) in a second direction for drawing said nozzle assembly rearward;
a cannister assembly connected to said nozzle assembly;
a suction generator carried on one of said nozzle assembly and cannister assembly;
a drive motor for driving said at least one agitator, said drive motor being carried on one of said nozzle assembly and said cannister assembly; and an actuator for controlling operation of said drive motor and rotation direction of said at least one agitator, said actuator being carried on one of said nozzle assembly and said cannister assembly.
23. The vacuum cleaner of claim 22 further comprising a controller programmed to receive a signal generated by said actuator and drive said drive motor in either of said first direction and said second direction.
24. The vacuum cleaner of claim 23 wherein said controller is programmed upon a change of state of the actuator signal to remove power from said drive motor and to reapply power to said drive motor such that said agitator is rotated in a different direction.
25. The vacuum cleaner of claim 24 wherein said controller is programmed to delay the reapplication of pow er to said drive motor.
26. The vacuum cleaner of claim 25 wherein the delay in the reapplication of power to said drive motor is between 0.1 second and 1.0 second.
27. The vacuum cleaner of claim 26 wherein the power reapplied to said drive motor is incrementally increased to a normal operating level.
28. The vacuum cleaner of claim 25 wherein said collection vessel is selected from a cup and a bag.
29. The vacuum cleaner of claim 22 wherein said vacuum cleaner is cyclonic.
CA002421314A 2002-03-08 2003-03-07 Self-propelled vacuum cleaner with reversible rotary agitator Abandoned CA2421314A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US36296002P 2002-03-08 2002-03-08
US60/362,960 2002-03-08

Publications (1)

Publication Number Publication Date
CA2421314A1 true CA2421314A1 (en) 2003-09-08

Family

ID=28041718

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002421314A Abandoned CA2421314A1 (en) 2002-03-08 2003-03-07 Self-propelled vacuum cleaner with reversible rotary agitator

Country Status (5)

Country Link
US (1) US20040000023A1 (en)
EP (1) EP1371317A3 (en)
JP (1) JP2003325397A (en)
CA (1) CA2421314A1 (en)
MX (1) MXPA03002065A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005087074A1 (en) * 2003-12-06 2005-09-22 Vorwerk & Co. Interholding Gmbh Method for operating a vacuum cleaner comprising a suction nozzle, and vacuum cleaner comprising a suction nozzle

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6848147B2 (en) * 2002-04-08 2005-02-01 Royal Appliance Mfg. Co. Internally driven agitator
US20040010884A1 (en) * 2002-07-22 2004-01-22 Hitzelberger J. Erik Floor care apparatus with deep cleaning action
US20050015918A1 (en) * 2003-07-22 2005-01-27 Royal Appliance Mfg. Co. Brushless dc drive mechanism for seld propelled aplicance
CA2495150A1 (en) * 2004-01-27 2005-07-27 Panasonic Corporation Of North America Vacuum cleaner with twin independently driven agitators
KR100774463B1 (en) * 2004-04-30 2007-11-08 엘지전자 주식회사 Self propel apparatus of upright cleaner
KR100635823B1 (en) * 2005-04-01 2006-10-19 엘지전자 주식회사 A grip for controlling a self-propelling driver of an upright vacuum cleaner
US9402570B2 (en) 2011-12-11 2016-08-02 Abbott Diabetes Care Inc. Analyte sensor devices, connections, and methods
GB2498351B (en) 2012-01-10 2014-06-18 Dyson Technology Ltd A cleaner head for a vacuum cleaner
GB2499214B (en) 2012-02-08 2014-03-26 Dyson Technology Ltd A cleaner-head for a vacuum cleaner
GB2499213B (en) 2012-02-08 2016-10-19 Dyson Technology Ltd A cleaner-head for a vacuum cleaner
GB2507320B (en) * 2012-10-26 2014-12-10 Dyson Technology Ltd Switching mechanism
GB2536152B (en) 2014-03-19 2017-04-12 Dyson Technology Ltd Cleaning appliance
GB2524285B (en) 2014-03-19 2016-12-07 Dyson Technology Ltd Cleaner head
US11382477B2 (en) 2017-12-18 2022-07-12 Techtronic Floor Care Technology Limited Surface cleaning device with automated control
CN111936023B (en) 2017-12-18 2022-01-14 创科地板护理技术有限公司 Surface cleaning apparatus with triggerless fluid dispensing mechanism
WO2019209879A1 (en) 2018-04-23 2019-10-31 Sharkninja Operating Llc Assisted drive for surface cleaning devices
CN114246518B (en) * 2021-11-18 2023-06-23 安克创新科技股份有限公司 Cleaning device and control method thereof
DE102022107565A1 (en) 2022-03-30 2023-10-05 Miele & Cie. Kg Vacuum cleaner, preferably a handheld vacuum cleaner

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2753503A (en) * 1952-02-21 1956-07-03 Bbc Brown Boveri & Cie Reversible motor control system for regulating a variable
US2814063A (en) * 1954-08-31 1957-11-26 Hoover Co Self propelled suction cleaner
US3056152A (en) * 1955-07-22 1962-10-02 Clara A Dostal Electrically propelled household devices
US3854164A (en) * 1973-01-15 1974-12-17 Whirlpool Co Self-propelled upright vacuum cleaner
US4139922A (en) * 1977-08-19 1979-02-20 Chester Fitch Carpet cleaning device
DE3502071A1 (en) * 1985-01-23 1986-07-24 Battenfeld Maschinenfabriken Gmbh, 5882 Meinerzhagen AGITATOR
US4766640A (en) * 1986-12-31 1988-08-30 Whirlpool Corporation Self-propelled upright vacuum cleaner having a remotely disposed transmission and a positive locking mechanism
JPH0815470B2 (en) * 1988-07-22 1996-02-21 松下電器産業株式会社 Electric vacuum cleaner
US5005382A (en) * 1990-01-16 1991-04-09 Eaton Corporation Electromechanical motor reversing
KR940004373B1 (en) * 1992-03-21 1994-05-23 대우전자 주식회사 Control circuit for driver brush of vacuum cleaner
US5339916A (en) * 1993-04-05 1994-08-23 The Hoover Company Self seeking neutralling arrangement for a power assisted cleaner
JP2001501860A (en) * 1997-08-11 2001-02-13 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Vacuum cleaner having a suction nozzle provided with controllable electric drive means
KR100384980B1 (en) * 1998-04-03 2003-06-02 마츠시타 덴끼 산교 가부시키가이샤 Rotational brush device and electric instrument using same
US6108862A (en) * 1998-05-08 2000-08-29 The Hoover Company Hand grip and upper handle assembly for a self-propelled upright vacuum cleaner
US6282747B1 (en) * 2000-06-26 2001-09-04 The Hoover Company Handle operated power drive link lockout
JP2002058623A (en) * 2000-08-16 2002-02-26 Masaya Hara Vacuum cleaner
WO2002017766A2 (en) * 2000-09-01 2002-03-07 Royal Appliance Mfg. Co. Bagless canister vacuum cleaner
US20040010884A1 (en) * 2002-07-22 2004-01-22 Hitzelberger J. Erik Floor care apparatus with deep cleaning action
US7076830B2 (en) * 2003-01-09 2006-07-18 Royal Appliance Mfg. Co. Electronically commutated drive system for vacuum cleaner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005087074A1 (en) * 2003-12-06 2005-09-22 Vorwerk & Co. Interholding Gmbh Method for operating a vacuum cleaner comprising a suction nozzle, and vacuum cleaner comprising a suction nozzle

Also Published As

Publication number Publication date
JP2003325397A (en) 2003-11-18
MXPA03002065A (en) 2004-09-03
EP1371317A2 (en) 2003-12-17
EP1371317A3 (en) 2005-01-05
US20040000023A1 (en) 2004-01-01

Similar Documents

Publication Publication Date Title
EP1371317A2 (en) Vacuum cleaner with reversible rotary agitator
CA2442830C (en) Agitator drive system for vacuum cleaner
JP5433718B2 (en) Surface treatment head
US20050172447A1 (en) Floor cleaning apparatus with twin agitators having different diameters
US7318250B2 (en) Bare floor shifter for vacuum cleaner
GB2251178A (en) Vacuum cleaner
EP1806087A2 (en) Upright vacuum cleaner with removable power head
JP2011019915A (en) Surface treating head
CA2495150A1 (en) Vacuum cleaner with twin independently driven agitators
JP2007089755A (en) Dust collector and vacuum cleaner having the same
AU2008200647A1 (en) Electric vacuum cleaner
US6067689A (en) Shifter mechanism for vacuum cleaner
JP2011019916A (en) Surface treating head
US6918155B2 (en) Dual agitator drive system with worm gear
CA2483742C (en) Floor care apparatus with multiple agitator speeds and constant suction power
CA2313662C (en) Pivotal edge cleaning brushes for vacuum cleaner
US20040010884A1 (en) Floor care apparatus with deep cleaning action
US20060070209A1 (en) Vacuum cleaner with displaceable height adjustment assembly and rotary agitator switch
US20240090716A1 (en) Vacuum cleaner
US20060117521A1 (en) Rotary agitator providing low noise operation
JP7246179B2 (en) Vacuum cleaner suction port body and vacuum cleaner provided with the same
JP2005065770A (en) Vacuum cleaner
EP3662804B1 (en) Suction opening body and electric cleaner
JPS6151886B2 (en)
WO1998029021A1 (en) Shifter mechanism for vacuum cleaner

Legal Events

Date Code Title Description
EEER Examination request
FZDE Dead