CA2403413A1 - Light hardening device and method for hardening a polymerizable mass for dental applications - Google Patents

Light hardening device and method for hardening a polymerizable mass for dental applications Download PDF

Info

Publication number
CA2403413A1
CA2403413A1 CA002403413A CA2403413A CA2403413A1 CA 2403413 A1 CA2403413 A1 CA 2403413A1 CA 002403413 A CA002403413 A CA 002403413A CA 2403413 A CA2403413 A CA 2403413A CA 2403413 A1 CA2403413 A1 CA 2403413A1
Authority
CA
Canada
Prior art keywords
light emitting
emitting diode
light
photo initiator
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002403413A
Other languages
French (fr)
Inventor
Peter Burtscher
Wolfgang Plank
Gottfried Rohner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ivoclar Vivadent AG
Original Assignee
Ivoclar Vivadent AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ivoclar Vivadent AG filed Critical Ivoclar Vivadent AG
Publication of CA2403413A1 publication Critical patent/CA2403413A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C19/00Dental auxiliary appliances
    • A61C19/003Apparatus for curing resins by radiation
    • A61C19/004Hand-held apparatus, e.g. guns

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Public Health (AREA)
  • Dentistry (AREA)
  • Dental Tools And Instruments Or Auxiliary Dental Instruments (AREA)
  • Dental Preparations (AREA)
  • Glass Compositions (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)
  • Led Device Packages (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

A light hardening device is provided for hardening a light hardenable mass applied for dental purposes that has a first light emitting diode for emitting light at a range of intensities corresponding to a set of wavelengths which at most only partially overlap a range of light sensitivities of a photo initiator comprised in the mass. The light hardening device also includes a second light emitting diode for emitting light at a range of intensities corresponding to a set of wavelengths which overlap the set of photo initiator light sensitivities to a relatively greater extent than the partial overlap of the range of first light emitting diode intensities with the range of photo initiator light sensitivities.

Description

Light Hardening Device And Method For Hardening A Polymerizable Mass For Dental Applications Background of the Invention The present invention relates to a light hardening device as well as a method for polymerization of polymerizable masses. Light hardening devices of this type are used, for example, if light polymerizable masses or material are to be hardened in a focused manner.
The polymerizable materials which can be hardened by light hardening devices, as is conventionally known, are, for example, cements, an excess amount of which must be applied to complete the application task. The oversupply or excess amount of cement is extremely hard after the complete hardening of the mass or material, and a high degree of effort is required in order to remove this excess material with suitable dental instruments such as, for example, by milling.
Moreover, the removal of hardened excess material causes a high wearing away of the scraping or sharpening instruments or, respectively, the milling instruments.
It has. been proposed, for example, to use two photo initiators, which have different spectral sensitivity maximums, and to harden the mass or material completely with lamps or lights having the corresponding emission spectrum.
It has further been proposed in the prior art, with respect to photo polymerizable materials which comprise two different photo initiators, to initially activate the first photo initiator by irradiation thereof by an can be used as a photo initiator and the first light emitting diode can be configured as a green light emitting diode. The wavelength maxima values are then between around 470 and 505 nanometers; therefore, the wavelength is clearly different than that of the photo initiator.
In accordance with a particularly advantageous configuration of the present invention, the second light emitting diode is chosen such that its emission maximum coincides with the sensitivity maximum of the photo initiator while, at the same time, the spectrums are, to the greatest extent possible, coincidental with one another.
It is to be understood, however, that in lieu of a light emitting diode or a plurality of light emitting diodes, at least one group of LEDs or, respectively, so-called pads, can be deployed. German Patent Applications 101 25 340.0, 101 25 343.5, and 101 27 416.5 are, in this regard, fully incorporated by reference herein.
Brief Description of the Drawings Further advantages, details, and features of the present invention are set forth in the following description of an embodiment of the present invention described in connection with the drawings, in which:
Fig. 1 is a schematic view of an embodiment of a light hardening device of the present invention having two light emitting diodes of differing emission spectrums;
Fig. 2 is a graphical diagram of the emission and sensitivity spectrums of the light hardening device shown in Fig. 1; and Fig. 3 is a time diagram of the time periods for the hardening operation effected by the light hardening device of the present invention.
Detailed Description of the Preferred Embodiment The light hardening device 10 shown in Fig. 1 is configured as a hand operable device that is either connected by a cable (not shown) to a main power supply or is provided with a battery or accumulator for operation independent of a main power supply. The light hardening device includes a blower (not shown) for cooling the light source of the device.
t In accordance with the present invention, several light emitting diodes or LEDs are provided, whereby the term "light emitting diodes"
includes as well the concept of laser diodes and other fixed body light emitters. In Fig.1, a first green light emitting diode 12 is illustrated. The light emitting diode 12 is disposed adjacent to a second blue light emitting diode 14 so that light from one or the other of the light emitting diodes can be selectively guided to a light guide 16 for passage therethrough exteriorly of the light hardening device onto the mass in the dental region to be irradiated.
Although only a light emitting diode 12 and a light emitting diode 14 are illustrated, it is to be understood that, in practice, a multiple arrangement of identical fight emitting diodes can be used which are commonly actuated and operated as a group.
in accordance with the present invention, it is advantageous if the light emitting diodes 12 and 14 are controlled by a control device 18 which is schematically shown in Fig. 1. The control device permits a program controlled actuation in which the intensity and the time period are pre-programmed but which permits, within certain limits, via programming steps, variation of the program by the user, whereby it is possible to provide an accommodation of the program to the parameters of the dental material which has been applied.
In Fig. 2, a diagram of the emission spectrums of the green and the blue light emitting diodes 12 and 14 is shown. Both emission spectrums extend in a known manner, substantially in the manner of a t Gauss curve, whereby the maximum of the emission of the green light emitting diode lies at approximately 505 nanometers and the maximum of the emission of the blue light emitting diode lies at approximately 460 nanometers. The steepness or slope of the flanks of the Gauss curve are such that the emission values of the blue light emitting diode have fallen to substantially zero at the emission maximum of the green light emitting diode, while, conversely, the emission values of the green light emitting diode have fallen to substantially zero at the emission maximum of the blue light emitting diode.
Fig. 2 additionally illustrates the sensitivity of the camphor quinone 20, which is deployed as the photo initiator. The serisitivity spectrum overlaps strongly over the wavelengths with the emission spectrum of the blue light emitting diode.
In accordance with the present invention, an overlapping region 22 exists between the camphor quinone spectrum 20 and the spectrum of the green light emitting diode 12. The overlapping region lies substantially between 460 and 500 nanometers. By actuation of the green light emitting diode 12, the camphor quinone 20 in the dental mass is partially excited so that a pre-hardening of the dental material results.
As is also illustrated in Fig. 2, the maxima of the blue light emitting diode and the camphor quinone 20 do not totally coincide with one another. It is much more the case that the spectral maximum of the blue light emitting diode is generally less than the sensitivity maximum of the camphor quinone, offset toward the short wavelength end by approximately '9 nanometers. The steepness or slope of the emissions curve of the blue light emitting diode is clearly greater than the steepness or slope of the flanks of the spectrum of the sensitivity curve of the camphor quinone, especially in the short wave length region - namely, as shown in Fig. 2, in the left-hand flank.
The diagram in Fig. 2 is normalized so that the maxima of the blue light emitting diode 14, the green light emitting diode 12, and the camphor quinone 20, are plotted to the same height. In this diagram, the spectrums have been chosen such that the spectrum of the camphor quinone 20 surrounds or encompasses the spectrum of the blue light emitting diode 14; that is, the spectrum of the camphor quinone 20 exceeds the maximum of the blue light emitting diode 14 to the left and right thereof by a clearly larger value. These so configured difference surfaces of the spectrum of the camphor quinone are generally the same to the right and left of the maximum of the blue light emitting diode 14, so that the spectrum of the blue light emitting diode, as so regarded., is approximately symmetrically disposed relative to the spectrum of the camphor quinone. It has been demonstrated that by selecting the spectrums to be substantially symmetrical in this manner, a particularly good finishing hardening of the mass can be achieved. If, on the other hand, the maxima of the blue light emitting diode 14 and the camphor quinone 20 are chosen to have the same wavelengths, an asymmetric spectrum results which leads to somewhat less desirable hardening results.
With further regard to the surface, the overlapping region 22 between the green light emitting diode 12 and the camphor quinone 20 comprises approximately one-fourth of the total surface of the spectrum of the camphor quinone. Such a dimensional relationship has shown itself to be particularly favorable for the realization of a partial polymerization.
The desired hardness also permits itself to be easily adjusted by adjustment of the duration of the light irradiation. As seen in Fig. 3, the green light emitting diode 12 is operated during a firsttime period 24, with a light emitting intensity of 500 mW/cm2. Following the expiration of the first time period 24, the dental mass has been hardened to such an extent that a working or removal of the excess material can be undertaken. This occurs during an excess material removal time period 26, which can be of a duration sufficiently tong to permit the dentist to remove the excess material.

The blue light emitting diode is thereafter actuated with a light emitting intensity of 1,000 mW/cm2during a second time period 28.
In the illustrated embodiment ofthe present invention, the two time periods 24 and 26 have been selected to be of the same duration. It is to be understood, however, that the time periods can be accommodated to the requirements of the situation.
The present invention is, of course, in no way restricted to the specific disclosure of the specification and drawings, but also encompasses any modifications within the scope of the appended claims.

Claims (16)

1. A light hardening device for hardening a light hardenable mass applied for dental purposes, the light hardenable mass having a photo initiator actuable to initiate hardening of the mass upon irradiation of the photo initiator with light and the photo initiator being sensitive to light across a range of sensitivities which vary from one another at different wavelengths of a set of photo initiator wavelengths, the light hardening device comprising:
a first light emitting diode for emitting light at a range of intensities which vary from one another at different wavelengths of a set of first light emitting diode wavelengths, the range of first light emitting diode intensities overlapping the range of photo initiator light sensitivities at most only partially; and a second light emitting diode for emitting light at a range of intensities which vary from one another at different wavelengths of a set of second light emitting diode wavelengths, the range of second light emitting diode intensities overlapping the range of photo initiator light sensitivities to a relatively greater extent than the partial overlap of the range of first light emitting diode intensities with the range of photo initiator light sensitivities.
2. A device according to Claim 1, wherein the sensitivity maximum of the photo initiator differs from the emission maximum of the second light emitting diode by less than 20 nanometers and, in particular, by less than 15 nanometers, and, preferably, the sensitivity maximum of the photo initiator is at a wavelength which is approximately 10 nanometers larger than the wavelength of the emission maximum of the second light emitting diode.
3. A device according to Claim 1, wherein, in a plot of the emissions spectrum of the second light emitting diode and the sensitivity spectrum of the photo initiator in a two dimensional graphical format in which values of the relative intensity or sensitivity are arranged on the Y axis and values of the wavelength are arranged on the X axis, the second light emitting diode has an emission spectrum having a steep flank and, preferably, having two steep flanks, each steep flank having a larger slope than the flanks of the sensitivity spectrum of the photo initiator, and the plot of the emissions spectrum of the second light emitting diode is substantially symmetrically enclosed within the plot of the sensitivity spectrum of the photo initiator.
4. A device according to Claim 1, wherein the photo initiator comprises camphor quinone having a sensitivity maximum of approximately 470 nanometers and the emissions maximum of the first light emitting diode has a wavelength larger than 470 nanometers.
5. A device according to Claim 1, wherein the emissions value of the first light emitting diode at the wavelength value of the sensitivity maximum of the photo initiator is substantially less than the emissions maximum of the first light emitting diode, and especially, is at least ten times less than the value of the emissions maximum of the first light emitting diode.
6. A device according to Claim 1, wherein the light emission intensity of the first light emitting diode as integrated over the surface area of the spectrum of the first light emitting diode is at least 100 mW/cm2.
7. A device according to Claim 1, wherein the first light emitting diode has its emission maximum in the green spectral region and the maximum is preferably in the region of between 500 to 520 nanometers, and especially, is in the region between approximately 503 to 508 nanometers and, most preferably, is at 505 nanometers.
8. A device according to Claim 1, wherein the light emission intensity of the second light emitting diode over the spectrum of the second light emitting diode is at least 300 mW/cm2 and, preferably, is between 600 to 1000 mW/cm2.
9. A device according to Claim 1, wherein the emission maximum of the second light emitting diode is in the region of 440 to 470 nanometers.
10. A device according to Claim 1, wherein the first light emitting diode is comprised in a group of first light emitting diodes and the second light emitting diode is comprised in a group of second light emitting diodes, each respective group of the first light emitting diodes and the second light emitting diodes being commonly controllable.
11 11. A device according to Claim 1, and further comprising a control device which is operable to actuate the first light emitting diode before actuation of the second light emitting diode, and the control device actuates the first light emitting diode for a first predetermined time and actuates the second light emitting diode for a second predetermined time.
12. A device according to Claim 1, wherein the mass to be applied in the dental application comprises at least two photo initiators.
13. A device according to Claim 1, wherein the first light emitting diode has a relatively larger wavelength and a relatively smaller intensity than the second light emitting diode.
14. A method for polymerizing a light hardenable mass applied for dental purposes with a light hardening device, the light hardenable mass having a photo initiator actuable to initiate hardening of the mass upon irradiation of the photo initiator with light and the photo initiator being sensitive to light across a range of sensitivities which vary from one to another at different wavelengths of a set of photo initiator wavelengths, and the light hardening device having two light emitting diodes having differing emission spectrums, the method comprising:
irradiating the mass with a first light emitting diode of the light hardening device during a first time period such that the first light emitting diode emits light in an emission spectrum which at most only partially overlaps the sensitivity spectrum of a photo initiator of the mass.
15. A method according to Claim 14, wherein the second light emitting diode of the light hardening device has an emission spectrum which is substantially coincidental with the sensitivity spectrum of a photo initiator of the mass and the method further comprises actuating the second light emitting diode after actuation of the first light emitting diode.
16. A method according to Claim 15, wherein the mass is irradiated solely with light emitted by the first light emitting diode during the first time period to at most partially harden the mass, excess mass material is thereafter removed, and1 subsequently, the mass is completely hardened by irradiation of the mass by the second light emitting diode.
CA002403413A 2001-11-09 2002-09-16 Light hardening device and method for hardening a polymerizable mass for dental applications Abandoned CA2403413A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DEP10155034.0 2001-11-09
DE10155034A DE10155034B4 (en) 2001-11-09 2001-11-09 A light curing apparatus and method of polymerizing polymerizable compositions

Publications (1)

Publication Number Publication Date
CA2403413A1 true CA2403413A1 (en) 2003-05-09

Family

ID=7705159

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002403413A Abandoned CA2403413A1 (en) 2001-11-09 2002-09-16 Light hardening device and method for hardening a polymerizable mass for dental applications

Country Status (5)

Country Link
EP (1) EP1310218B1 (en)
JP (1) JP2003144462A (en)
AT (1) ATE410974T1 (en)
CA (1) CA2403413A1 (en)
DE (2) DE10155034B4 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7134875B2 (en) 2002-06-28 2006-11-14 3M Innovative Properties Company Processes for forming dental materials and device
JP2004250673A (en) * 2003-01-28 2004-09-09 National Institute For Materials Science Gelled colloid crystal precursor and gelled colloid crystal, method and apparatus for producing gelled colloid crystal
US7939575B2 (en) * 2007-02-23 2011-05-10 Dentsply International, Inc. Methods for making dental restorations using two-phase light-curing materials
FR2962325B1 (en) * 2010-07-07 2012-08-31 Conception Des Applic Des Tech Electroniques Soc Pour SPECTRUM SCANNING PHOTORETICULATION DEVICE
EP2579075A1 (en) * 2011-10-06 2013-04-10 Ivoclar Vivadent AG Rod-shaped light-guide
EP3968864A4 (en) * 2019-05-13 2023-01-18 Akos Elemér Gombos Method and device for removing an ectoparasite from the skin

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3404904C2 (en) * 1984-02-11 1986-01-16 Kulzer & Co GmbH, 6393 Wehrheim Process for the manufacture of orthodontic devices and appliances
DE19721311C1 (en) * 1997-05-21 1998-12-03 Eka Ges Fuer Medizinisch Tech Irradiation device for the polymerization of light-curing plastics
EP1031326A1 (en) * 1999-02-05 2000-08-30 Jean-Michel Decaudin Device for photo-activation of photosensitive composite materials especially in dentistry
FR2805148B1 (en) * 2000-02-17 2003-01-31 Francois Duret DENTAL APPLICATION PHOTOPOLYMERIZATION DEVICE
EP1138276A1 (en) * 2000-03-29 2001-10-04 CMS-Dental ApS Dental material curing apparatus
DE10125340B4 (en) * 2001-05-23 2004-08-05 Ivoclar Vivadent Ag Dental light device
DE10125343C2 (en) * 2001-05-23 2003-09-18 Ivoclar Vivadent Ag lighting device
DE10127416B4 (en) * 2001-06-06 2008-01-03 Ivoclar Vivadent Ag Light curing device and light source with a plurality of LEDs and a heat sink

Also Published As

Publication number Publication date
JP2003144462A (en) 2003-05-20
EP1310218B1 (en) 2008-10-15
ATE410974T1 (en) 2008-10-15
EP1310218A2 (en) 2003-05-14
EP1310218A3 (en) 2003-08-27
DE10155034A1 (en) 2003-05-28
DE50212890D1 (en) 2008-11-27
DE10155034B4 (en) 2006-03-09

Similar Documents

Publication Publication Date Title
USRE44046E1 (en) Light hardening device and method for hardening a polymerizable mass for dental applications
JP7305687B2 (en) dental curing light
US7331784B2 (en) Mouthpiece
US5975895A (en) Strobe light curing apparatus and method
EP3308740B1 (en) Light curing device for dental restoration materials
US20080285302A1 (en) Dental curing light having a short wavelength led and a fluorescing lens for converting short wavelength light to curing wavelengths and related method
US20080002402A1 (en) Dental illumination device and method
WO2001024724A1 (en) Method for curing a dental composition using a light emitting diode
CA2403413A1 (en) Light hardening device and method for hardening a polymerizable mass for dental applications
JPH0928719A (en) Photopolymerization device
US4538070A (en) Apparatus for treating dental prosthetic parts with radiation
US20180296310A1 (en) Light curing device for dental restoration materials and method of curing dental restoration materials
JP2004321801A (en) Spot curing lens used to spot cure dental appliance adhesive, and system and method employing such lens
US6866506B2 (en) Light hardening apparatus particularly for a dental practice
Giorgi et al. Does an additional UV LED improve the degree of conversion and Knoop Hardness of light-shade composite resins?
JP3516629B2 (en) Light curing device
CA2383181A1 (en) Light hardening apparatus particularly for a dental practice
WO1999037239A1 (en) Device for hardening composite materials used in the dental field
WO2011123738A1 (en) Dental curing light having long pulse mode for more extensive curing
CN107367783B (en) System and method for illuminating an object field during the processing of light-cured plastics
Soares et al. Degree of conversion in dental resins polymerized by argon laser, halogen lamp and LED: a Raman study
JP2006167308A (en) Light irradiation device for dental restoration

Legal Events

Date Code Title Description
EEER Examination request
FZDE Discontinued