CA2402599A1 - Programmed cell death and caspase-12 - Google Patents

Programmed cell death and caspase-12 Download PDF

Info

Publication number
CA2402599A1
CA2402599A1 CA002402599A CA2402599A CA2402599A1 CA 2402599 A1 CA2402599 A1 CA 2402599A1 CA 002402599 A CA002402599 A CA 002402599A CA 2402599 A CA2402599 A CA 2402599A CA 2402599 A1 CA2402599 A1 CA 2402599A1
Authority
CA
Canada
Prior art keywords
caspase
leu
lys
nucleic acid
ser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002402599A
Other languages
French (fr)
Inventor
Junying Yuan
Nobuhiro Morishima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Hospital Corp
Original Assignee
The General Hospital Corporation
Junying Yuan
Nobuhiro Morishima
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The General Hospital Corporation, Junying Yuan, Nobuhiro Morishima filed Critical The General Hospital Corporation
Priority claimed from CA002327516A external-priority patent/CA2327516A1/en
Publication of CA2402599A1 publication Critical patent/CA2402599A1/en
Abandoned legal-status Critical Current

Links

Abstract

This invention relates to nucleic aids according caspase-12, proteins encoded by camp-12 nucleic acids proteins, and hosts transformed with vectors. Caspase-12 is a member of the caspase family, which also includes mammalian interleukin-1.beta.-converting enzyme (ICE).
Caspases are thought to carry out the execution phase of apoptosis in a cascade of proteolytic events. The invention also to the use of caspsae-12 to induce programmed cell death.

Description

WO 99/52925 PCT/iJS99/08064 -Programmed Cell Death and Caspase-12 Background of the Invention Statement as to Rights to Inventions Made Under Federally-Sponsored Research and Development Part of the work performed during development of this invention utilized U.S. Government funds. The U.S. Government has certain rights in this im~ention.
Field of the Invention This invention is generally in the field of molecular biology. This invention relates to the control of programmed cell death.
Related Art Programmed Cell Death Apoptosis, also referred to as programmed cell death or regulated cell death, is a process by which organisms eliminate unwanted cells. Such cell death occurs as a normal aspect of animal development as well as in tissue homeostasis, such as in tissue remodeling and the establishment of immune self tolerance, during aging and in disease (gaff, M.C., Nature 36:397-400 (1992);
Glucksmann, A., Biol. Rev. Cambridge Fhilos. Soc. 26:59-86 ( 1950); Ellis et al., Dev. 112:591-603 (1991); Vaux et al., Cel17G:777-779 (1994); Thompson, C.B., Science 267:1456-1462 (1995)). Programmed cell death can also act to regulate cell number, to facilitate morphogenesis, to remove harmful or otherwise abnormal cells and to eliminate cells that have already performed their function.
Additionally, programmed cell death is believed to occur in response to various physiological stresses such as hypoxia or ischemia. The morphological characteristics of apoptosis include plasma membrane blebbing, condensation of nucleoplasm and cytoplasm and degradation of chromosomal DNA at _7_ inter-nucleosomal intervals. (Wyllie, A_ H., in Cell Death in Biology and Pathology, Bowen and Lockshin, eds., Chapman and Hall ( 19$1 ), pp. 9-34).
Apoptosis is achieved through an endogenous mechanism of cellular suicide (Wyllie, A. H., in Cell Death in Biology and Pathology, Bowen and Lockshin, eds., Chapman and Hall ( 1981 ), pp. 9-34) and occurs when a cell activates its internally encoded suicide program as a result of either internal or external signals. The suicide program is executed through the activation of a carefully regulated genetic program (Wylie, A.H., et al., Int. Rev. Cyt. 68:

( 1980); Eilis, R.E., et a1_, Ann. Rev. Cell Bio. 7: 663 ( 1991 ); Yuan, Y.
Curr. Op.
Cell. Biol. 7:211-214 (1995)). In many cases, gene expression appears to be required for apoptosis, since cell death can be prevented by inhibitors of RNA
or protein synthesis (Cohen et al.. J. Immunol. 32:38-42 (1984); Stanisic et al., Invest. Urol. 16:19-22 (1978); Martin et al., J. Cell Biol. 106:829-844 (1988).
Acute and chronic disregulation of cell death is believed to lead to a number of major human diseases (Barn et al. Biotech. 12:487-493 (1995);
Thompson C.B., Science 267:14561462 (1995)). These diseases include but are not limited to malignant and pre-malignant conditions, neurological and neurodegenerative disorders, heart disease, immune system disorders, intestinal disorders, kidney disease, aging, viral infections and AIDS.
Malignant and pre-malignant conditions may include solid tumors, B cell lymphomas, chronic lymphocytic leukemia, prostate hypertrophy, preneoplastic liver foci and resistance to chemotherapy. Neurological disorders may include stroke, Alzheimer's disease, amyotrophic lateral sclerosis, prion-associated disorder and ataxia telangiectasia. Heart disease may include ischemic cardiac 2S damage and chemotherapy-induced myocardial damage. Immune system disorders may include AIDS. type I diabetes, lupus erythematosus, Sjogren's syndrome and glomerulonephritis. Intestinal disorder may include dysentery, inflammatory bowel disease and radiation- and H1V-induced diarrhea. Kidney disease may include polycystic kidney disease and anemialerythropoiesis.

Specific references to many of these pathophysiological conditions as involving disregulated apoptosis can be found in Barr et al. Id- Table 1.
Caspases Caspases are a family of proteins, previously referred to as ICE or ced-3 proteins, involved in the regulation of apoptosis. A genetic pathway of programmed cell death has been identified in the nematode Caenorhabditis elegans (Ellis, R.E., et al.,Annual Review ofCell Bioloy 7:663-698 (1991).) In this genetic pathway, the genes ced-3 and ced 4 are required for cell death, while another gene, ced-9, is a negative regulator of cell death. The ced-3 gene encodes a cysteine . protease (Yuan, J., et al. , Cell 75:641-fi52 ( 1993)) which shares sequence similarity to the mammalian interleukin-ll3-converting enzyme (ICE), also called caspase-1, which catalyzes the processing of pro-interleukin-113 to its biologically active form (Thornberry, N.A., et al., Nature 3~b:768-774 (1992)).
The active centers of ICE and Ced-3 are remarkably conserved with an identical pentapeptide QACRG (SEQ ID N0:3) in which the cysteine is the catalytic residue (Yuan, J., etal., Cell 75:641-652 (1993); Thornberry, N.A., etal., Nature 356:768-774 (1992)). ICE and Ced-3 exhibit unique requirement for Asp at P1 position for cleavage with different preference for P2-P4 positions in their substrates (Thornberry> N.A., et al. , Nature 356:768-774 ( 1992); Xue, D., et al., Genes and Development 10:1073-1083 (1996)). The ICE/Ced-3 family of cysteine proteases have recently been renamed as caspases (AInemri, E.S., et al., Cell 87:171 (1996)), which stands for cysteine aspartic acid specific proteases.
There have been at least ten human caspases identified (Stennicke, H.R. and Salvesen, G.S., J. Biol. Chem. 272(41):25719-25723 (1997)).
Overexpression of ICE in a rat fibroblast cell line results in apoptosis, which can be blocked by mammalian Bcl-2. a homolog of the nematode cell death suppressor, Ced-9 (Miura, M., et al., Cell 75:653-660 (1993)). While Ced-3 is the only caspase identified in C. elegans, at least twelve caspases have been identified in mammals (Kumar, S., et al., Genes and Development 8:1613-1626 __ (1994); Wang, L., et al., Cell 78:739-750 (1994); Fernandez-Alnemri, T., et al., J. Biol. Chem. 269:30761-30764 (1994); Tewari, M., Cell 81:801-809 (1995);
Faucheu, C., et al., The EMBOJournal 14:1914-1922 (1995); Munday, N.A., et al., J. Biol. Chem. ?70:15870-15876 (1995); Duan, H., et al., J. Biol. Chem.
271:1621-1625 (1996); Wang, S., et al.,J. Biol. Chem. 271:20580-20587 ( 1996);
Van de Craen, M., et al. , FEBS Letters 403:61-69 ( 1997)).
The members of the caspase family are expressed in multiple tissues and cell types during development and adult life. Thus, unlike that in C elegans where a single ced-3 gene controls alt programmed cell death, multiple homologs of CED-3 regulate mammalian apoptosis. Interesting results have come from gene knockout experiments where mice that are mutant for ICE and caspase-3 have been generated (Li, P., et al., Cell 80:401-411 (1995); Kuida, K., et al., Science 267:2000-2003 (1995); Kuida, K., et al., Nature 384:368-372 (1996)).
The results emerging from analyses of these mutant mice support the hypothesis 1 S that these homologs act in both parallel and sequential fashion to regulate apoptosis (Enari, M., et al., Nature 380:723-725 ( 1996)). Ice-I- embryonic fibroblasts and B lymphoblasts are resistant to granzyme B-induced apoptosis (Shi, L., et al., Proc. Natl. Acacf Sci. US A 93:11002-11007 (1996)).
Caspase-3-/- mutant mice are defective in brain development, exhibiting a variety of hyperplasias and disorganizations which may be due to the absence of apoptosis, although their thymocytes respond normally to a variety of apoptotic agents (Kuida, K., et al., Nature 384:368-372 (1996)). These results suggest that either ICE or caspase-3 is critical for certain types of apoptosis in certain cells while their functions in other cell types are redundant.
Inhibitors of the caspase family prevent apoptosis induced by a variety of signals such as trophic factor deprivation, Fas and TNF, suggesting that the members of the caspase family are critical regulators of mammalian apoptosis (Miura, M., et al., Cell 75:653-660 {1993); GagIiardini, V., et al., Science 263:97-100 (1994); Tewari, M., and Dixit, V.M., J. Biol. Chem. 270:3255-3260 (1995)). Since cells have been found to express multiple caspases (Wang, L., et al., Cell 78:739-750 (1994)), it is proposed that caspases may act in a proteolytic cascade to carry out the execution of cells (Enari, M., et al., Nature 380:723-( 1996)). Caspases are synthesized as proforms which are to be activated through cleavages after specific Asp residues during activation process. For example, active ICE is generated from its 45 kDa precursor protein through specific cleavages at four Asp residues, which give rise to the 20 kDa (p20} and 10 kDa (p 10) subunits.
The unique specificity of the caspase family suggests that either autoprocessing or cleavage by other homoiogs is responsible for the activation of the praforms. In vitro, pro-ICE can be activated by active caspase-4 (Faucheu, C., et al., The ENfBO Journal 14:1914-19'?2 (1995)}, pro-caspase-3 by active ICE
(Tewari, M., Cell 81:801-809 (1995); Nicholson, D.W., et al., Nature 376:37-43 (1995}} and pro-caspase-3 and pro-caspase-7 by active caspase-10 (Fernandes-Alnemri. T., etal., Proc. Natl. Acad. Sci. USA 93:7464-7469 (1996)).
In apoptosis induced by anti-Fas antibody, a transient increase in ICE-like activity was detected prior to an elevation in caspase-3-Iike activity, supporting the idea that the caspase family of proteases act in a proteolytic cascade (Enari, M., et al., Nature 380:723-725 (1996)).
summary of the Invention An object of the present invention is to provide a Programmed Cell Death and Caspase-I2. In accordance with an aspect of the present invention, these is provided an isolated nucleic acid molecule at least 90% identical to a nucleic acid molecule selected from the group consisting of:
(a) a nucleic acid molecule comprising a nucleotide sequence encoding the amino acid sequence of easpase-12S as shown in Figure 9 (SEQ ID
N0:14);
(b) a nucleic acid molecule comprising a nucleotide sequence encoding the amino acid sequence of caspase-12S as encoded by the eDNA clone contained in ATCC Deposit No. 209710;

5a (c) a nucleic acid molecule comprising the nucleotide sequence of caspase-12S as shown in Figure 9 {SEQ ID N0:13};
(d) a nucleic acid molecule comprising a nucleotide sequence encoding caspase-12~ (amino acid residues 95 to 419 of SEQ ID N0:2);
(e) a nucleic acid molecule comprising a nucleotide sequence encoding caspase-122 (amino acid residues 145 to 419 of SEQ ID N0:2); and (f) a nucleic acid molecule comprising a nucleotide sequence complementary to (a), (b), (c), (d) or (e).
In accordance with another aspect of the invention, there is provided an isolated nucleic acid molecule encoding a caspase-12S polypeptide, said nucleic acid molecule prepared by a process comprising:
(a) hybridizing a population of nucleic acid molecules to a nucleic acid molecule comprising the sense or antisense nucleotide sequence of SEQ ID N0:13, wherein the hybridization is performed under stringent hybridization conditions;
(b) selecting those nucleic acid molecules of said population that hybridize to said nucleic acid molecule comprising the sense or antisense nucleotide sequence of SEQ ID N0:13; and (c) selecting nucleic acid molecules of (b) that encode caspase-125.
In accordance with another aspect of the invention, there is provided a nucleic acid construct comprising a nucleic acid molecule encoding a caspase-polypeptide operably linked to a heterologous promoter.
In accordance with another aspect of the invention, there is provided an isolated polypeptide at least 90% identical to a polypeptide selected from the group consisting of:
(a) an isolated polypeptide comprising the amino acid sequence of caspase-12S as shown in Figure 9 (SEQ ID N0:14);

Sb (b) an isolated poiypeptide comprising the amino acid sequence of caspase-12S as encoded by the cDNA clone contained in ATCC
Deposit No. 209710;
(c) an isolated polypeptide comprising the amino acid sequence of caspase-12~ (amino acid residues 95 to 419 of SEQ iD N0:2); and (d) an isolated polypeptide comprising the amino acid sequence of caspase-1202 (amino acid residues 145 to 4I9 of SEQ ID N0:2).
In the present invention, the gene encoding caspase-12, {casp-12 previously referred to as Ich-4), was isolated through degenerate polymerise chain reaction and sequenced. Casp-12 has at least two alternative splicing products, casp-12S and casp-12L. Casp-12L contains an open reading frame of 419 amino acid residues. Casp-12S contains an open reading frame of 349 amino acid residues. Fragments of caspase-12 were also obtained: rasp-1201, consisting of the open reading frame for amino acid residues 95-419 of carp-12L; and casp-12d2, consisting of the open reading frame for amino acid residues 145-419 of Gasp-12L.

This invention is thus directed, inter- alia, to isolated nucleic acid molecules comprising a nucleotide sequence encoding the amino acid sequence of caspase-12S as shown in Figure 9 (SEQ ID NO:14) or as encoded by the cDNA clone contained in ATCC Deposit No. 209710. 'the invention is also directed to isolated nucleic acid molecules comprising the nucleotide sequence of caspase-12S as shown in Figure 9 (SEQ ID N0:13); nucleic acid molecules comprising a nucleotide sequence encoding caspase-12~ (amino acid residues 95 to 419 of SEQ ID N0:2); and nucleic acid molecules comprising a nucleotide sequence encoding caspase-122 (amino acid residues 145 to 419 of SEQ ID
N0:2). The invention is also directed to nucleic acid molecules comprising a nucleotide sequence complementary to the above-described sequences.
Also provided for are nucleic acid molecules at least 80%, preferably 85%
or 90%, still more preferably 95%, 96%, 97%, 98%, or 99% identical to any of the above-described nueieic acid molecules. Also provided for are nucleic acid molecules which hybridize under stringent conditions to any of the above-described nucleic acid molecules.
The present invention also provides for recombinant vectors comprising an above-described nucleic acid molecule, and host cells transformed with such vectors.
Also provided are isolated polypeptides comprising the amino acid sequence of caspase-12S as shown in Figure 9 (SEQ ID N0:14) or as encoded by the cDNA clone contained in ATCC DepositNo. 209710, as well as polypeptides comprising the amino acid sequence of caspase-I 20 (amino acid residues 95 to 419 of SEQ ID N0:2) and polypeptides comprising the amino acid sequence of 2~ caspase-1202 {amino acid residues 145 to 419 of SEQ ID N0:2). Also provided are polypeptides at least 80%, more preferably 85% or 90%, still more preferably 95%, 96%, 97%, 98%, ar 99% identical to any of the above-described polypeptides.
Also provided are methods for inducing programmed cell death in a cell comprising contacting the cell with an above-described polypeptide.

Overexpression of cusp-12L, cusp-12S, and casp-12~ in rat fibroblast cells caused apoptosis. The apoptotic activity of caspase-12 was not inhibitabte by CrmA, a serpin encoded by cowpox virus which is a specific inhibitor of ICE, by Bcl-2, a mammalian cell death suppressor. 'fhe pro-caspase-12 protein was cleaved effectively by several other members of the caspase family in vitro, while recombinant caspase-12 protein and fragments thereof poorly cleaved other caspases except pro-caspase-12 itself. Therefore, the invention provides for a method of modulating apoptosis comprising contacting a cell with the protein encoded for by carp-12L, case-12S, casp-12~ or casp-1202.
Brief Description of the Bigures Figures IA-1B. caspase-12 cDNA. Figure 1 A shows the cDNA sequence (SEQ ID NO: l ) and deduced amino acid sequence (SEQ ID N0:2) of caspase-12.
Horizontal arrows indicate the position of degenerate PCR primers used for the initial screening of mouse thymus eDNA library. The alternative splicing sites are indicated by vertical arrows. Diamonds indicate the position of the termination codon. Figure 1 B is a diagram of the alternative splicing and protein structure of caspase-12. The exons and introns between them are shown as bars and lines, respectively (top). Nucleotides at the exon/intron boundaries are indicated. Numbers above the bars correspond to nucleotide numbers in the caspase-12L cDNA sequence. A schematic comparison of caspase-12L (419 residues) and caspase-12S (349 residues) proteins is shown at the bottom.
Potential cleavage sites for maturation of the precursor proteins are indicated below the bars with the residues at the sites.
Figure 2A-2B. Sequence alignment of caspase-12. Figure 2A shows the sequence alignment of caspase-12 protein with other members of the caspase family: caspase-5 (SEQ TD N0:4), hICE (SEQ ID NO:S), mICE (SEQ ID N0:6), caspase-l I (SEQ ID N0:7), caspase-4 (SEQ ID N0:8), caspase-5 (SEQ ID

WO 99/52925 PCTlUS99/08064 _g__ N0:9), caspase-2 (SEQ ID NO:10), caspasc-3 (SEQ ID NO:1 I ) and CED-3 (SEQ
ID N0:12). Seven amino acid residues well conserved among the caspase family are marked with either asterisks (catalytic residues) or filled diamonds (P1 binding). Open diamonds indicate the residues for S2-S4 subsites. Figure 2B
shows the alignment of amino acid residues involved in substrate binding.
Amino acid residues of each member of the caspase family are described by one-letter codes: ICE (SEQ ID N0:31 ), caspase-I 2 (SEQ ID N0:32); caspase-1 I
(SEQ ID N0:33), caspase-2 (SEQ ID N0:34), caspase-3 (SEQ ID N0:35) and CED-3 (SEQ ID N0:36). Numbering above the residues corresponds to the positions in human ICE. Seven residues which form the P 1 active pocket of ICE
are grouped into those involved in catalysis (His, Gly, Cys) and those for binding (Arg, Gln, Arg, Ser).
Figure 3. RT PCR analysis of caspase-12 in mouse adult tissues. cDNA
samples were reverse transcribed from mRNA isolated from brain, thymus, heart, 1 ~ lung, liver, kidney, spleen, and intestine. Lane 12L, PCR products (617 bp) by using cusp-12L as a positive control. Lane 12S , PCR products (407 bp) by using cusp-12S as a positive control. Arrows indicate these Gasp-12L and casp-12S
specific fragments. M, lambda phage DNA HindIII digest as molecular weight standard. N, negative control as no DNA templates were used for PCR.
Figure 4A-4C. Cell death induced by overexpression of caspase-1Z.
Figure 4A shows Rat-1 cells that were transiently transfected with the casp-12L-IacZ construct, fixed 24 hr later, and stained with anti-(3-galactosidase antibody (left panels) or by Hoechst dye 33258 (right panels). The round cells expressing the casp-12L-lacZ fusion proteins show condensed and fragmented 2~ nuclei. Figure 4B shows Rat-1 cells that were transiently transfected with the control lacZ vector and treated as in A. The nuclear morphology in 13-galactosidase-positive cells is nornlal and noncondensed (indicated by arrows).
Figure 4C shows Rat-1 cells and rat embryonic fibroblast cells that were _c~_.
transfected with the expression constructs, fixed 24 hr later. and stained with X-Gal solution for 3 hr. The data shown are the percentage of round blue cells among total number of blue cells counted. In each transfection, over 200 blue cells were randomly chosen and counted. The data of Rat-I cells collected from at least three independent experiments. T'he constructs used were: casp-12L-lacZ, casp-125-lacZ, Gasp-12~-lacZ, ICE-lacZ, lac2. Rat embryonic fibroblast cells (REF) were also transfected with either Gasp-12L-lacZ or IacZ.
Figure SA-SB. Effect of cell death suppressors on tl:e killing activity of caspase-12. Figure 5A shows a bcl-2 expressing stable transfectant, Rat-1lbcl-2, that was transiently transfected with carp-12L-lacZ. Cell death was assayed as described in Figure 4C. Figure SB shows a crmA expressing transfectant, Rat-1/crmA, that was transient)}' transfected with casp-12L-lacZ. The data from transfection of the parental cell Line, Rat-1 (Figure 4C), are included in the figures for comparison. The lacZ construct was also used for transfection as a control.
Figure 6. The cell type spec(city of caspase-12-induced cell killing activity. NG108-15, HeLaand COS-1 cells were transfected with Gasp-12L-lacZ, casp-12S-LacZ, lacZ or ICE-lacZ. Staining of transfectants were done and the data are presented as in Figure 4C.
Figure 7. In vitro cleavage of caspase-I2 by other members of the caspase fan:ily. [35S]-labeled caspase-12, either casp-12L or casp-12~, was incubated with E. coli lysate expressing other caspases (l, ICE; 2, easpase-2;
3, caspase-3) for 3 hr at 30°C. Control samples (-) were incubated in the absence of E. coli Iysate.

Figure 8A-8C. Protease activity of caspase-12d2. Figure 8A shows SDS-polyacrylamide gel electrophoresis of partially purified proteins. D, casp-12L1 (amino acid residues 95-419 of SEQ ID N0:2); O?, easp-122 (amino acid residues 145-419 of SEQ ID NO:2). Proteins were run on 15% gel and detected by Coomassie brilliant blue staining. Arrowheads indicate polypeptides derived from caspase-12 proteins. Figure 8B is a diagram of processing sites on caspase-120 and caspase-1202. Figure 8C shows [355)-labeled proteins that were incubated with (+) or without (-) partially purified caspase- I 2112 for 1 hr at 37°C.
Reaction was stopped by boiling with the addition of sample buffer for SDS-polyacrylamide gel electrophoresis. The molecular sizes in kilodaltons are indicated at the left.
Figure 9. Sequence of Gasp-12,5 cDNA sequence (SEQ ID N0:13) and deduced amino acid sequence (SEQ ID N0:14) of~ caspase-125.
Detailed Description of the Preferred Embodiments In the description that follows, a variety of technical terms are used.
These terms shall have their ordinary well-recognized meaning in the art, unless the context indicates otherwise. In order to provide clearer and more consistent understanding of the specification and the claims, the following definitions are provided.
Caspase. This is the current designation for members of the ICE/Ced-3 family of apoptosis proteins.
Caspase-12 activity. A potypeptide having caspase-12 activity should be understood to be a polypeptide having "caspase-12 activiy" similar, but not necessarily identical activity to the caspase-12 protein measured in a particular biological assay. For example, caspase-12 is able to induce programmed cell death in rat embryonic fibroblast cells. Therefore. a polypeptide which is able to induce programmed cell death in rat embryonic fibroblast cells is said to have ''caspase-12 activity."
Cell Extract. A cell extract that contains the nucleic acid or polypeptide of interest should be understood to mean a preparation such as a homogenate or cell-free preparation obtained from cells that express the polypeptide or contain the nucleic acid of interest. The term "cell extract" is intended to include culture media, especially spent culture media from which the cells have been removed.
Fragment. A fragment of a molecule should be understood as referring to a nucleic acid molecule or polypeptide that contains a shortened nucleotide or amino acid sequence compared to a reference nucleic acid molecule or polypeptide. The fragment may or may not retain one or more desired chemical or biological properties of the full-length nucleic acid molecule or polypeptide.
Examples of caspase-12 fragments are casp-12~ or casp-122.
Functional Derivative. A functional derivative of caspase-12 should be I 5 understood as referring to a polypeptide, or nucleic acid encoding a polypeptide, that possesses a biological activity that is substantially similar to the biological activity of caspase-12. A functional derivative may or may not contain post-translational modifications such as covalently linked carbohydrates, depending on the necessity of such modifications for the performance of a specific function.
The term "functional derivative" is intended to include the "fragments,"
"variants," "analogues," or "chemical derivatives" of a molecule. The derivative retains at least one of the naturally-occurring functions of the parent gene or protein. The function can be any of the regulatory gene functions or any of the function of the finally processed protein. The degree of activity of the function need not be quantitatively identical to the caspase-12 activity as long as the qualitative function is substantially similar.
Host. As used herein, a "host" or a "host cell" is a cell into which a recombinant nucleic acid has been introduced. A heterologous host is a host that normally does not express the gene or protein of interest.

_ I 2__ Isolated. As used herein, an "isolated" molecule refers to a molecule that has been removed from its native environment. Isolated nucleic acid molecules include nucleic acid molecules contained in a recombinant vector; purified nucleic acid molecules in solution, and nucleic acid molecules produced in S heterologous host cells. Isolated polypeptides include recombinantly produced polypeptides expressed in host cells; native or recombinant polypeptides which have been essentially or partially purif ed by any suitable technique known in the art; and polypeptides produced synthetically.
Modulating programmed cell death. Modulating programmed cell death should be understood as referring to either an increase or a decrease in programmed cell death following manipulation of a cell. Such manipulation can be the result of transfection or transformation of cells with particular carp-constructs, e.g., casp-12S or casp-12L. ,Alternatively, one may contact a cell with a polypeptide of interest.
I S Mutation. A "mutation" should be understood as referring to a detectable change in the genetic material which may be transmitted to daughter cells and possibly even to succeeding generations giving rise to mutant cells or mutant organisms. If the descendants of a mutant cell give rise only to somatic cells in muIticellular organisms, a mutant spot or area of cells arises.
Mutations in the germ line of sexually reproducing organisms may be transmitted by the gametes to the next generation resulting in an individual with the new mutant condition in both its somatic and germ cells.
A mutation may be any (or a combination of) detectable change affecting the chemical or physical constitution, mutability, replication, phenotypic function, or recombination of one or more nucleotides. In a mutation, nucleotides may be added, deleted, substituted, inverted or transposed to new positions with and without inversion. Mutations may occur spontaneously or can be induced experimentally by application of mutagens. A mutant variation of a nucleic acid molecule results from a mutation. A mutant polypeptide may result from a mutant nucleic acid molecule.

_.13_ Nucleotide sequence. As used herein "nucleotide sequence" refers to a series of deoxyribonucleotides, in the case of DNA, or of ribonucleotides, in the case of RNA. Nucleotide sequences are herein presented as a sequence of deoxyribonucleotides, abbreviated as follows: A for adenine, C for cytosine, G
for guanine, and T for thymine. However, the nucleotide sequences presented herein are intended to also represent RNA sequences, wherein each deoxyribonucleotide thymine is replaced by a ribonucleotide uracil.
Operably linked. Two nucleotide sequences are said to be "operably linked" if induction ofpromoter function results in the transcription ofthe coding sequence and if the nature of the linkage between the two DNA sequences does not: ( 1 ) result in the introduction of a frame-shift mutation; (2) interfere with the ability of regulatory sequences to direct the expression of the coding sequence;
or (3) interfere with the ability of the coding sequence template to be transcribed by the promoter region sequence. Thus, a promoter region would be operably I S linked to a nucleotide sequence if the promoter were capable of effecting transcription of that nucleotide sequence.
identical. As used herein. a first nucleotide sequence is said to be, for instance, "95% identical" to the nucleotide sequence of a second reference nucleic acid if the first nucleotide sequence is identical to the complete length of the reference sequence, except that the nucleotide sequence of the first nucleic acid may include up to 5 substitutions per each 100 nucleotides of the second, reference sequence. This includes any combination of deletions, insertions, or single nucleotide substitutions up to five per each 1 U0 nucleotides of the reference sequence. Likewise, a sequence is "85% identical" to a reference sequence if the nucleotide sequence of the nucleic acid is identical to the reference sequence except that the nucleotide sequence may include up to I 5 substitutions per each 100 nucleotides of reference sequence. This applies equally to amino acid sequences, therefore one amino acid sequence may be, for example, 95%
identical to a second amino acid sequence by having 95 out of 100 of the same amino acids as the reference amino acid sequence.

_1 As a practical matter, whether any particular nucleic acid molecule is at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identical to, for instance, the nucleotide sequence shown in Figure 1 {SEQ ID NO:1 ) or to the nucleotide sequence of the deposited cDNA clone can be determined conventionally using known computer programs such as the Bestfit program (Wisconsin Sequence Analysis Package, Version 8 for Unix, Genetics Computer Group, University Research Park, 575 Science Drive, Madison, WI 53711 ). Bestfit uses the local homology algorithm of Smith and Waterman (Advances in Applied Mathematics 2:482-489 ( 1991 )) to find the best segment of homology between two sequences.
When using Bestfit or any other sequence alignment program to determine whether a particular sequence is, for instance, 95% identical to a reference sequence according to the present invention, the parameters are set, of course, such that the percentage of identity is calculated over the full length of the reference nucleotide sequence and that gaps in homology of up to 5% of the total number of nucleotides in the reference sequence are allowed.
Population. A "population of nucleic acid molecules" is a mixture of nucleic acid molecules, in which at least some nucleic acid molecules are non-identical to the other nucleic acid molecules in the mixture. This includes, inter alia, cDNA libraries made from one cell type; extractions from heterologous cells, which include both DNA and RNA, or which include DNA or RNA only;
and extractions from homologous cells, which include both DNA and RNA, or which include DNA or RNA only.
PuriFed. Preparations made fiom biological cells or hosts that are said to be "purif ed" are any cell extract containing the indicated nucleic acid or polypeptide including a crude extract of the nucleic acid or polypeptide of interest. Such preparations include molecules removed from their native environment. For example, in the case of a polypeptide, a purified preparation can be obtained following an individual technique or a series of preparative or biochemical techniques, and the polypeptide of interest can be present at various degrees of purity in these preparations. The procedures include, but are not limited to, ammonium sulfate fractionation, gel filtration, ion exchange chromatography, affinity chromatography, density gradient centrifugation, electrophoresis, and other techniques known to those of skill in the art. See, e.g., Current Protocols in Molecular Biology, John Wiley and Sons (I996).
A preparation of nucleic acid or polypeptide that is "pure" should be understood to mean a preparation free from naturally occurnng materials with which such nucleic acid or polypeptide is normally associated in nature.
''Essentially pure" should be understood to mean a ''highly" purified preparation that contains at least 95% of the nucleic acid or protein of interest.
Preparations of nucleic acids or polypeptides of interest that are ''partially pure" are less pure than preparations that are essentially pure, and include crudely purified nucleic acids or polypeptides.
Stringent Hybridization. Stringent hybridization conditions should be understood to be those conditions normally used by one of skill in the art to establish at least a 90% homology between complementary pieces of nucleic acids. Lesser homologies, such as at least 70% homology or preferably at least 80% homology, may also be desired and obtained by varying the hybridization conditions.
There are only two required conditions for hybridization to a denatured strand of nucleic acid to occur: (1) there must be complementary single strands in the sample; and (2) the ionic strength of the solution of single-stranded nucleic acid must be fairly high so that the bases can approach each other;
operationally, this is greater than 0.2 M. A third condition affects the rate of hybridization: the nucleic acid concentration mush be high enough for intermolecular collisions to occur at a reasonable frequency.
Conditions routinely used by those of skill in the art are set out in readily available procedure texts, e.g., Current Protocols in Molecular Biolo~ry, Vol.
I, Chap. 2.10, John Wiley 8c Sons, Publishers ( 1994) or Sambrook et al., Molecular Cloning, Cold Spring Harbor ( 1989), incorporated herein by reference. As would be known by one of skill in the art, the ultimate hybridization stringency reflects both the actual hybridization conditions as well as the washing conditions following the hybridization. One of skill in the art would know the appropriate manner in which to change these conditions to obtain a desired result.
For example, a prehybridization solution should contain sufficient salt and nonspecific nucleic acid to allow for hybridization to non-specific sites on the solid matrix, at the desired temperature and in the desired prehybridization time.
For example, for stringent hybridization, such prehybridization solution could contain 6x sodium chloride/sodium citrate (IxSSC is 0.15 M NaCI, 0.015 M Na citrate; pH 7.0), Sx Denhardt's solution, 0.05% sodium pyrophosphate and 100 pg per ml of herring sperm DNA. An appropriate stringent hybridization mixture might then contain 6x SSC, 1x Denhardt's solution, 100 pg per ml of yeast tRNA
and 0.05% sodium pyrophosphate.
Alternative conditions for nucleic acid hybrid analysis could entail the following:
1 ) prehybridization at room temperature and hybridization at 68 °C;
2) washing with 0.2x SSC/0.1% SDS at room temperature;
3) as desired, additional washes at 0.2x SSC/0.1% SDS at 42°C
(moderate-stringency wash); or 4) as desired, additional washes at O.lx SSC/0.1% SDS at 68°C
(high stringency).
Known hybridization mixtures, e.g., that of Church and Gilbert, Proc.
Natl. Acad.. Sci. USA 81:1991-1995 (1984), comprising the following composition may also be used: I % crystalline grade bovine serum albumin/ 1 mM
EDTA/O.SM NaHP04, pH 7.2/7% SDS. Additional, alternative but similar reaction conditions can also be found in Sambrook et al.. Molecular Cloning, Cold Spring Harbor (1989). Formamide may also be included in prehybridization/hybridization solutions as desired.
It should be understood that these conditions are not meant to be definitive or limiting and may be adjusted as required by those of ordinary skill in the art to accomplish the desired objective.
_17_ Vector. As used herein, a vector is a vehicle which provides an appropriate nucleic acid environment for a transfer of a nucleic acid of interest into a host cell. Such a vector may be used for cloning or expressing a desired sequence, such as a nucleotide sequence c>f a caspase-12 encoding nucleic acid of the invention, in an apprapriate host. An expression vector may contain the nucleic acid of interest operably linked to ahomologous or heterologous promoter or regulatory sequences.
In one embodiment of the present invention, isolated nucleic acid molecules having a nucleotide sequence encoding an amino acid sequence corresponding to caspase-I2 are provided. In one preferred embodiment, the isolated nucleic acid molecule has a nucleotide sequence encoding the amino acid sequence of casp-I2S as shown in Figure 9(SEQ ID N0:14). In another preferred embodiment, the isolated nucleic acid molecule has a nucleotide sequence encoding the amino acid sequence encoded by the cDNA clone deposited as ATCC Deposit No. 209710 on March 18, 1998 at the American Type Culture Collection (ATCC), 10801 University Boulevard, Manassas, VA, 20110-2209.
In another preferred embodiment, the isolated nucleic acid molecule has a nucleotide sequence encoding the amino acid sequence of case-12D (amino acids 95 to 419 of SEQ ID N0:2). In yet another preferred embodiment, the isolated nucleic acid molecule has a nucleotide sequence encoding the amino acid sequence of casp-12Q2 (amino acids 145 to 419 of SEQ ID N0:2).
Additionally, nucleic acid molecules of the invention may include only the coding region of the sequence, with or without leader sequences.
Isolated nucleic acid molecules of the present invention may be in the form of RNA, for example, mRNA, or in the form of DNA, for example, cDNA.
The DNA may be double-stranded or single-stranded. Single-stranded DNA or RN A
may by the coding strand, which is also known as the sense strand, or it may be the non-coding strand, which is also known as the anti-sense strand.

The nucleic acid molecules of the present invention may be chemically synthesized or they may be produced using standard cloning and screening procedures which are well known in the art. See, e.g., Current Protocols in Molecular Biology, John Wiley and Sons (1996). Provided in Example 1 is a description of one preferred method for cloning and screening for the nucleic acid molecules of the present invention.
As can be appreciated by one of ordinary ski 1l in the art, there are nucleic acid molecules other than those specifically depicted here, which due to the degeneracy of the genetic code, will encode the amino acid sequence of cusp-as shown in Figure 9 (SEQ ID N0:14) or as encoded by the cDNA clone contained in ATCC Deposit No. 209710. All degenerate variants of the claimed sequences are also encompassed by the invention. The genetic code is well known in the art. Thus, it would be routine for one skilled in the art to generate nucleic acids, other than those specifically depicted here, that still encode the I 5 amino acid sequence of the invention.
In another embodiment of the present invention, there are provided nucleic acid molecules having a nucleotide sequence that is at least 80%, and preferably at least 85% or 90%, still more preferably at least 95%, 96%, 97%, 98%, or 99%, identical to the nucleotide sequences described above. The present invention is directed to nucleic acid molecules having a nucleotide sequence at least 80% identical to the nucleotide sequence of the above-recited nucleic acid molecules irrespective of whether or not they encode a polypeptide having caspase-I2 activity. This is because, even where a particular nucleic acid molecule does not encode a polypeptide having caspase-12 activity, one of skill in the art would still know how to use the nucleic acid molecule, for instance as a probe. Uses of the nucleic acid molecules of the present invention that do not encode a polypeptide having caspase-t2 activity include, inter alia, isolating the caspase-12 gene or allelic variants thereof in a cDNA library: flourescent in situ hybridization ("FISH") to metaphase chromosomal spreads to provide precise chromosomal location of the caspase-12 gene as described in Verma et al., Human Chromosomes: a Manual of Basic Technigues, Pergamon Press, New York (1988); and Northern Blot analysis for detecting caspase-I2 mRNA
expression in specific tissues.
Preferred, however, are nucleic acid molecules having a nucleotide sequence at least 80%, more preferably 85% or 90%, still more preferably at least 9~%, 96%, 97%, 98%, or 99% identical to the nucleotide sequence of the above-described nucleic acid molecules which in fact encode a polypeptide having a caspase-12 activity. One of ordinary skill in the art would immediately recognize that, due to the degeneracy of the genetic code, a large number of nucleic acid molecules having a nucleotide sequence at least 80%, more preferably 85% or 90%, still more preferably at least 95%, 96%, 97%, 98%, or 99% identical to the nucleotide sequence of the above-described nucleic acid molecules will encode a polypeptide of the present invention. Since the degenerate variants of the claimed molecules all encode the same polypeptide as the original sequence, it would be clear to the skilled artisan that degenerate the variants will encode a polypeptide having activity similar to that of the original sequence, even without performing screening assays, e.g. for caspase-12 activity. Uses of nucleic acid molecules which encode a polypeptide having caspase-I2 activity include, inter alia, modulating programmed cell death by inserting the nucleic acid molecule into a cell, and production of polypeptides with caspase-12 activity by inserting the nucleic acid molecule into a vector, transforming a host cell with the vector, and inducing expression of the polypeptide.
It will be further recognized by those skilled in the art that, even for such nucleic acid molecules that are not degenerate variants, a reasonable number will also encode a polypeptide having caspase-12 activity. This is because the skilled artisan is aware of possible amino acid substitution that are less likely or not likely to significantly affect protein function.
For example, "conservative" amino acid substitutions generally have little effect on activity of a polypeptide. Typically seen as conservative amino acid substitutions are: exchange of aromatic residues Phe and Try; exchange of the basic residues Lys and Arg; exchange of the amide residues Asn and Gln;
exchange of the acidic residues Asp and Glu; exchange of the hydroxyl residues Ser and Thr; and substitution among the aliphatic residues AIa, Val, Leu, and Ile.
Further guidance concerning how to make phenotypically silent amino acid substitution is provided, for example, in Bowie et al., Science 247:1306-1310 ( 1990).
A further embodiment of the present invention provides for a vector comprising a nucleic acid molecule described above. Vectors useful in the present invention include chromosomal-, episomal- and virus-derived vectors, for example, vectors derived from bacterial plasmids, yeast episomes, yeast chromosomal elements, viruses such as bacteriophage, baculoviruses, papova viruses, herpes viruses, vaccinia viruses, adenoviruses, fowl pox viruses;
pseudorabies viruses and retroviruses, and vectors derived from combinations thereof, such as cosmids and phagemids.
If desired, a recombinant vector encoding a fusion product of a polypeptide of the invention may be constructed. For example, the nucleotide sequence encoding a polypeptide of the invention may be linked to a signal sequence which allows secretion of the polypeptide from, or the compartmentalization of the polypeptide in, a particular host. Such signal sequences may be designed with or without specific protease sites such that the signal peptide sequence is amenable to subsequent removal. Alternatively, the polypeptide may be fused to a sequence which enabled easier purification of the polypeptide, for example, a Histidine tag.
For cloning into a vector, a nucleic acid molecule of the present invention is randomly sheared or enzymatically cleaved, and ligated into an appropriate vector. Methods for cloning nucleic acids into vectors are well known in the art.
See, for example, Sambrook et al., ~Ylolecular C.'loning, Cold Spring Harbor ( 1989).
The nucleic acid molecules may be joined to a vector containing a selectable marker suitable for use in identifying cells transformed with the vector.

Examples of selectable markers include dihydrofolate reductase or neomycin resistance for eukaryotic cell culture and tetracycline or ampicillin resistance genes for culturing in bacteria.
Certain preferred vectors provide for specific expression of the nucleic acid molecule, which may be inducible and/or cell-type specific. Particularly preferred among such vectors are those inducible by environmental factors that are easily manipulated, such as temperature or nutrient additives. In this regard, the nucleic acid insert should be operably linked to an appropriate promoter, for example, the phage lambda PL promoter, the E. coli 1ac promoter, the SV40 early and late promoters, the CMV immediate early promoter, the HSV thymidine kinase promoter, the promoters of retroviral LTRs, and metallotionein promoters.
Still another embodiment of the present invention is a host transformed with a vector described above. The sequence may be incorporated into the genome of the host cell, or it may be maintained extrachromasomally.
Recombinant vectors may be introduced into host cells using well known techniques such as infection, transduction, transfection, transvection, electroporation, and transformation.
Examples of appropriate hosts include, but are not limited to, bacterial cells, such as E. coli and Salmonella typhimurium cells; fungal cells, such as yeast cells; insect cells, such as Drosophila S2 and Spodoptera Sf~ cells; animal cells, such as CHO, COS cells, NIH 3T3 cells, human 293 cells, 293T cells, and HeLa cells; and plant cells. Appropriate culture conditions for the above-described host cells are known in the art.
Expression of the polypeptides of the invention from recombinant vectors 2~ in hosts may require the presence of regulatory regions functional in such hosts.
The precise nature of the regulatory regions needed for gene expression may vary between species or cell types, but shall in general include, as necessary, 5' non-transcribed and/or non-translated and/or 3' non-transcribed and/or non-translated (non-coding) sequences involved with the regulation of transcription and translation, such as the TATA box, capping sequence, CAAT sequence, _22_ sequences for transcriptional termination, and the like. Such 5' non-transcribed control sequences may include the region which contains a promoter for transcriptional control of the operably linked gene.
In eukaryotic hosts, where transcription is not linked to translation, control regions may or may not provide an initiator methionine (ATG) codon, depending on whether the cloned sequence contains such a methionine. Such regions will, in general, include a promoter region sufficient to direct the initiation of RNA
synthesis in the host cell. The promoter region may be a homologous or heterologous promoter. A heterologous promoter is one that is not normally associated with the nucleic acid being expressed. For example, the use of a cytomegalovirus promoter with a mouse ICE gene on or an acting promoter with a mouse ICE gene are uses of a heteroIogous promoter. The homologous promoter for carp-12 is the promoter with which the casp-12 gene is operably linked naturally.
Further embodiments of this invention relate to caspase-12 polypeptides.
In one preferred embodiment, there is provided an isolated polypeptide having an amino acid sequence of caspase-12S as shown in Figure 9 (SEQ ID N0:14). In another preferred embodiment, there is provided an isolated polypeptide having an amino acid sequence of caspase-12S as encoded by the eDNA clone contained in ATCC Deposit No. 209710. In another preferred embodiment, there is provided an isolated polypeptide having an amino acid sequence of caspase-12d (amino acid residues 95-419 of SEQ ID N0:2). In yet another preferred embodiment, there is provided an isolated polypeptide having an amino acid sequence of caspase-1202 (amino acid residues 145-419 of SEQ ID N0:2).
Polypeptides of the present invention include, but are not limited to, naturally purified products, chemically synthesized polypeptides, and polypeptides produced by recombinant techniques. Expression of polypeptides by recombinant techniques may result in different post-translational modifications, dependent on the host cell. These modified forms of the polypeptides are also encompassed by the claimed invention.

It would be readily recognized by one of skill in the art that some amino acid residues of caspase-12S could be varied without significant effect on the structure or function of the protein. Such variations include deletions, insertions, inversions, repeals, arid type substitutions. Guidance concerning which amino acid changes are likely to be phenotypically silent can be found in Bowie et al., Science 247:306-1310 (1990).
Thus, another embodiment of the present invention are polypeptides which are 80%, more preferably 85% or 90%, still more preferably at least 95%, 96%, 97%, 98%, or 99% identical to the above-described polypeptides.
Preferably, these polypeptides will display caspase-12 activity. A skilled artisan is fully aware of possible amino acid substitution that are less likely or not likely to significantly affect protein function. Guidance concerning how to make phenotypically silent amino acid substitution is provided, for example, in Bowie et al., Science 247:1306-1310 (1990).
The polypeptides of the invention may be used for the purpose of generating polyclonal or monoclonal antibodies using standard techniques known in the art (Klein, J., Immunology: The Science of Cell-Noncell Discrimination, John Wiley & Sons, N.Y. (1982); Kennett et al., Monoclonal Antibodies, Hybridoma: A New Dimension in Biological Analyses, Plenum Press, N.Y.
( 1980); Campbell, A., "Monoclonal Antibody Technology," In: Laboratory Technigues in Biochemistry and Molecular Biology 13, Burdon et al. eds., Elseiver, Amsterdam (1984); Harlow and Lane, Antibodies, A Laboratory Manual, Cold Spring Harbor Laboratory, N.Y. (1988)). Such antibodies may be used in assays for determining gene expression and for screening expression libraries. Purified protein would serve as the standard in such assays.
The present inventors have shown that caspase-12 induces apoptosis in cells. Thus, another embodiment of the present invention is a method of inducing programmed cell death in a cell comprising contacting the cell with a polypeptide described above. For the purpose of inducing programmed cell death _24__ in a cell, the polypeptides of the present invention can be administered to a cell in vitro or in vivo.
The polypeptides may be administered to the cell exogenously. The polypeptides may also be administered through recombinant expression. For example, homologous recombination can be used to express the polypeptides of the invention in cells. Extrachromosomal nucleic acids with the appropriate nucleotide sequence can also be introduced into cells.
Induction of apoptosis can be used to treat, inter alia, malignant and pre-malignant conditions, and autoimmune disorders. Malignant and pre-malignant conditions may include solid tumors, B cell lymphomas, chronic Iymphocytic leukemia, prostate hypertrophy, preneoplastic liver foci and resistance to chemotherapy.
The following are presented as representative, but non-limiting, examples of the present invention. Other suitable modifications are within the scope of the present invention and will be apparent to one of ordinary skill in the art.
Example 1 Caspase-12 is a Member of the Caspase Family To isolate additional members of the caspase family, two degenerate primers based upon sequences of two conserved regions among the members of the caspase family were designed: the pentapeptide motif QACRG (SEQ ID
N0:3) around the active cysteine residue and a hexapeptide sequence FYLFPG
(SEQ ID N0:17) at the C-terminus. This pair of degenerate primers were used to amplify cDNA from mouse thymus which generated a 400 by fragment as expected for caspases. This fragment was cloned and subjected to restriction enzyme and sequence analyses, which showed that there are several different cDNA species in this 400 by band. One of them, named caspase-12, was a novel member of the caspase family with a deduced amino acid sequence sharing about 35% identity with mouse ICE. Southern blot analysis of mouse genomic DNA
showed that caspase-12 is a single copy gene. Using this cDNA clone as a probe, nine clones from mouse thymus cDNA library were isolated. These nine positive clones can be classified into two groups: Long forni of the caspase-12 cDNA
(plasmid pNB6, casp-12L) and short form (plasmid pNB7, casp-12S ).
Methods PCR amplification of caspase-12 cDNA
Standard techniques of molecular cloning were used as described (Sambrook, J., et al., Molecular cloning: a laboratory manual (second edition), Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1989)), unless otherwise stated. A partial cDNA clone for caspase-12 was amplified from murine thymus cDNA by polymerase chain reaction (PCR) using degenerate oligonucleotide primers: upstream, 5'- TG(GATC) CC(GATC) GGG AA(GATC) AGG TAG AA-3' (SEQ ID NO:15); downstream, 5'-ATC AT(ATC) ATC CAG
GC(GATC) TGC AG(AG) GG-3' (SEQ ID N0:16) (bases in parentheses indicate degenerate nucleotides). The following conditions were used for the PCR
reactions: 1 x reaction buffer (Promega), 1.5 mM MgCl2, 200 mM dNTP, 2 mM
each primer, I unit of Taq DNA polymerase (Promega) in a total volume of 50 ~cl. cDNA was denatured for 4 min at 94°C prior to 25 cycles of 94°C for 1 min, 46°C for I min, 72°C for 2 min. A 0.4 kb PCR product was cloned into the EcoRV site of pBluescript II SK(-) plasmid vector (Stratagene). E. coli cells were transformed with the plasmid DNA and individual colonies were isolated and prepared for DNA sequencing. A novel caspase cDNA was identified based upon DNA sequence and was named caspase-12.
The 0.4 kb cDNA fragment was labeled with [32P) dATP (Amersham) and used to screen a murine thymus cDNA library (Stratagene) under high stringent conditions. Nine positive clones were identified from about 10' phage clones.
The plasmid DNAs were excised from phage DNAs by an in vivo excision protocol (Stratagene). Eight out of the nine clones contain identical sequences with a 419 amino acid residue open reading frame and was designated as caspase-12L (Figure 1A). The ninth clone is 210 by shorter than caspase-12L
because it does not contain the bases 94 through 303 of caspase-12L (Figure 1 B).
The missing sequence starts fiom a dinucleotide sequence, GT, which is a S probable mammalian splice donor site. Analysis of the caspase-12 genomic clones showed that the base 303/304 is located exactly at a splice junction, and the base 304 is preceded by a dinucleotide sequence AG in the intronic sequence, conforming to the GT/AG rule for splice donor/acceptor site (Figure 1B). Thus, the shorter clone was likely derived from an alternatively spliced mRNA. The short form of mRNA was named caspase-12S which contains an open reading frame of 349 amino acid residues.
A potential processing site in pro-caspase-12L is found at Asp94/G1y95 (Asp24/GIy25 in caspase-12S). The 210 by sequence which is missing in caspase-12S (codons 17-87) probably encodes the sequence within the pro-domain of the caspase-12 (Figure 1B), which could be removed during proteolytic processing of precursor form to generate a mature protein. Both caspase-12L and caspase-12S proteins have another possible processing site (Asp318/Thr319 in caspase-12L, Asp248/Thr249 in caspase-12S), corresponding to the cleavage site between p20 and p 10 fragments of ICE. Thus, the difference between caspase-12L and caspase-12S is in their pro-domains and processing of caspase-12L and caspase-12S would give rise to a mature enzyme of identical subunit composition and sequences.
The caspase family can be divided into three subfamilies according to their amino acid sequence similarity: the ICE subfamily, the caspase-2 subfamily, and the caspase-3 subfamily (Duan, H., et al., J. Biol. Chenz 271:1621-1625 ( I 996)). The caspase-12L protein shares 41 % sequence identity with human ICE
(Thornberry, N.A., et al., Nature 356:768-774 ( 1992)), 41 % sequence identity with mouse ICE (Miura, M., et al., Cell 75:653-660 (1993); Nett, M.A., et al., J.
Immunol. 149:3254-3258 (1992), 42% sequence identity with mouse caspase-11 (Wang, S., et al., J. Biol. Chem. 271:20580-20587 (1996)), 49% with human _27_ caspase-4 (Faucheu, C., et al., The EMBD.Iournal 14:1914-1922 (1995)), 46%
with human caspase-5 (Munday, N.A., et al., J. Biol. Chem. 270:15870-15876 ( 1995)), 21 % with human caspase-2L (Wang, L., et al., Cell 78:739-750 {
1994)), 20% with human caspase-3 (I~ernandez-Alnemri, 't., et al., J. Biol. Chem.
269:30761-30764 (1994)), and 18% with the C. elegans Ced-3 (Yuan, J., et al., Cell 75:641-652 { 1993)) (Figure 2A, Table 1 ). The comparison of the caspase-amino acid sequence with those of other caspase family members suggests that caspase-12 belongs to the ICE subfamily, which includes ICE, caspase-4, -5 and 1 o Table 1 Sequence Similarity Among Caspase Family (% Identity) ( ~ hICEcaspase-llcaspase-4caspase-5cas~pase-2caspase-3CED-3 ~ ~ ( ( ( J

caspase-1241 42 49 46 21 20 18 caspase-1l 60 54 30 32 26 1 J caspase-4 73 28 32 27 caspase-5 25 30 25 caspase-2 28 28 caspase-3 34 The X-ray crystallography of the ICE protein has revealed that the p10 20 subunit apparently makes a direct contact with P2-P4 amino acid residues of a substrate (Walker, N.P.C., et al., Cell 78:343-352 (1994}; Wilson, K.P., et al., Nature 370:270-275 (1994)). Three groups of amino acid residues in ICE are assumed to be the subsites (S2-S4) which recognize and bind to the P2-P4 substrate determinants (Figure 2B). The first group (Va1338 and Trp340 in 25 human ICE) is best conserved among the caspase family. The second one (His342 and Pro343) is least conserved among the ICE subfamily {ICE, caspase-12 and caspase-11), whereas the other three members (caspase-2, caspase-3 and CED-3) show similar composition (Asn and Thr/Ser). The variation in the amino acid composition of the subsites probably reflects different substrate specificity.
Sequence alignment of caspase-12 with ICE reveals that the three residues S involved in catalysis of ICE {His237, G1y238 and Cys285, (Walker, N.P.C., etal., Cell 78:343-352 (/994); Wilson, K.P., et al., Nature 370:270-27~ {1994)) are conserved in caspase-12 (His250, G1y251 and Cys298. Figs. 2A and 2B) as well as the residues that are part of the P1 Asp binding pocket in ICE (Arg179, G1n283, Arg341 and Ser347) which correspond to Arg192. G1n286, Lys356, Ser362 in caspase-12 with the only substitution of Arg with Lys at residue 356.
This is the first example that a member of the caspase family shows such a substitution at this position. The residues in ICE that make up the groove for binding P2-P4 residues of the substrate (Va1338, Trp340. His342, Pro343, Arg383 and GIn385) are less conserved in caspase-12, in which only Trp and Gln are conserved with the corresponding amino acid residues, IIe353, Trp355, Va1357, G1y368, Leu398, and GIn400 (Figure 2B). These results suggest that caspase-12 is a member of the caspase family with P1 Asp specificity but likely to have different P2-P4 preference in its substrates in comparison to that of ICE.
Example 2 Expression Pattern of Casp-12 To examine the expression pattern of both casp-l~'L and Gasp-12S, fragments of casp-12L and casp-12S messages were amplified by RT-PCR.
Methods RT-PCR
2~ mRNA was isolated from mouse brain, thymus, lung. heart, liver, kidney, spleen, and intestine using the MicroFast mRNA isolation kit (Invitrogen). One WO 99/52925 PCT/US99/080Gd microgram of mRNA was used for reverse transcription with random primers and Moloney murine leukemia virus (MoMLV) reverse transcriptase {lnvitrogen).
The caspase-12 cDNA was amplified with PCR. The conditions of PCR were as follows: 94°C, 1 min; 50°C, 2 min; 72°C, 2 min, 30 cycles. The primers used were: upstream, 5'-GAGAT'CCAATC'TACAAGATC-3' (SEQ ID N0:18);
downstream, 5'-CACCACAGAGTATCCAAG-3' (SEQ ID N0:19). These two specific primers span the 210 by region that is deleted in casp-12S and were designed using sequences from separate exons so that the possibility of amplification from contaminating genomic DNA could be eliminated.
In the PCR reaction, both case-12L and case-12S can be amplified simultaneously to produce DNA fragments of 617 by and 407 bp, respectively.
Both fragments were amplified from all the tissues examined which include brain, thymus, lung, heart, liver, kidney, spleen and intestine (Figure 3). These results indicate that both caspase-12L and caspase-125 are ubiquitously expressed in adult tissues. Since ubiquitous expression of several members of the caspase family has been found in adult tissues (Kumar, S_, et al., Genes and Development 8:1613-1626 (1994); Wang, L., et al., Cell 78:739-750 (1994);
Fernandez-Alnemri, T., et al., J. Biol. Chem. 269:30761-30764 (1994); Tewari, M., Cell 81:801-809 (1995); Faucheu, C., et al., The EMBO Journal 14:1914-1922 (1995); Munday, N.A., et al., J. Biol. Chem. 270:15870-15876 (1995); Duan, H., et al , J Biol. Chem. 271:1621-1625 (1996); Wang, S., et al., J. Biol. Chem. 271:20580-20587 (1996); Van de Craen, M., etal., FEBSLetters 403:61-69 (/997)), the caspase-12 protein is likely coexpressed with other members of the caspase family in a single cell.
There was another intense band of 900 by in each lane of the RT-PCR
products (Figure 3). Cloning and sequencing of this fragment showed that it contains no similarity to carp-12, and it did not hybridize to the casp-12 genomic clones, indicating that this band was amplified from a different genetic locus.

WO 99/52925 PCT/US99t08064 Example 3 Overexpression of casp-12 cDNA Induces Apoptosis in Mammalian Cells To examine if expression of caspase-12 induces apoptosis, a transient expression system was used to overexpress caspase-12 in mammalian cells.
S Expression constructs of ICE, cusp-2 and casp-11 fused with E. coli lacZ
have been successfully used to demonstrate that expression of these ICE family members induces apoptosis (Miura, M., et al., Cell 75:653-660 ( 1993); Wang, L., et al., Cell 78:739-750 (1994); Wang, S., et al., J. Biol. Chem. 271:20580-(1996)). Transfected cells are easily detected by staining with X-gal because of the i3-galactosidase activity of IacZ. Expression constructs of case-12L and casp-125 fused with lacZ gene in pcDNA3 vector, which contains the cytomegalovirus (CMV) promoter, were generated. These expression constructs were introduced into Rat-1 cells by transfection, and the expression of the genes were examined 24 hr after transfection using X-gal reaction.
Methods Plasmid construction The long form of caspase-12 cDNA (casp-12L) within pNB6 was amplified by using Vent DNA polymerase (New England Biolabs) and the following primers: upstream, S'-CTC GAA TTC ATG GCG GCC AGG AGG
ACA CAT G-3' (SEQ ID N0:20); and downstream, S'-CTC GGA TCC TTC
CCG GGA AAA GGT AG-3' (SEQ ID N0:21 ). The amplified fragments were digested with EcoRI and BamHI and then cloned into pBluescript II SK(-) (pBSI9S). pBI9SZ was made by inserting BamHI fragment of lacZ (Miura, M., et al., Cell 75:653-660 (1993)) into pBSI9S. The cusp-12-IacZ fusion gene was cut out from pBI9SZ by using KpnI and XbaI and inserted into peDNA3 vector (Invitrogen) digested with Kpnl and XbaI to generate pNB 15. The expression construct pNB 16, a fusion of the short form of caspase-12 cDNA (casp-12S) and lacZ in pcDNA3 vector, was generated through the same strategy as described above, using pNB7 instead of pNB6 as a template for PCR.
For the expression construct of caspase-12D (amino acid residues 95-419 of SEQ ID N0:2), a pan of Gasp-12L was amplified by PCR with following primers: upstream, 5'-CTC GG'I~ ACC ATG GGA CCT CAG AAG ATA TGT
AC-3' (SEQ ID N0:22); and downstream, 5'-CTC GTC GAC CCA TTC CCG
GGA AAA AGG TAG-3' (SEQ ID N0:23). The upstream primer contains an ATG for an artificial initiation codon. The amplified fragments were digested with KpnI/SaII and fused with IacZ in pBluescript II SK(-) vector. The rasp-12~-lacZ fusion gene was excised from the pBluescript-based plasmid using Kpnl and XbaI and inserted into KpnI/Xbal sites of peDNA3 vector.
Cell culture and transient transfection Rat-1, rat embryonic fibroblast cells, NG108-1 S, HeLa and COS-1 were maintained in culture at 37°C with 5% CO~ in Dulbecco's modified Eagle's medium containing 10% (v/v) fetal bovine serum (BioWhittaker) and 50 units/ml penicillin and 50 ~g/ml streptomycin (Sigma). The day before transfection, cells were seeded at a density of 1.3 x 104 cells/ cmz. Expression constructs were transferred to cells with either calcium phosphate or lipofectamine (GIBCO
BRL) as previously described (Miura, M., et al., Cell 7~:6~3-660 (1993); Kumar, S., et al., Genes and Development 8:1613-1626 (1994); Wang, L., et al., Cell 78:739-750 ( 1994)). The expression of chimeric genes in cells was detected by staining of cells with 5-bromo-4-chloro-3-indolyl t3- D-galactoside (X-gal) as previously described (Miura, M., etal., Ce1175:6~3-660 (1993); Kumar, S., etal., Genes and Development 8:1613-1626 (1994); Wang, L., et al., Cell 78:739-750 ( 1994)). Immunostaining of transfected cells was done as previously described using mouse monoclonal anti-lacZ antibody (Miura, M., et al., Cell 75:653-660 (1993); Kumar, S., et al., Genes and Development 8:1613-1626 (1994); Wang, L., et al., Cell 78:739-750 (1994)).

WO 99/52925 PCT/US99/080b4 __32_ More than halfofX-gal positive cells transfected with casp-12-lacZ fusion construct are round and smaller than healthy X-gal positive cells transfected with lacZ alone. Such reduction of cell size is a characteristic feature of apoptotic cells (Miura, M., et al., Cell 75:653-660 (1993); Jacobson, M.D., et al., Nature 361:365-369 (1993)). To confirm that the casp-12 overexpression causes apoptosis, the nuclear morphology of the cell death induced by casp-I2 expression was examined by staining the casp-12L-lacZ transfected Rat-1 cells with anti-13-galactosidase antibody and Hoechst dye 33258.
13-galactosidase-positive round cells which had been transfeeted with casp-12L-lacZ had condensed and fragmented nuclei, characteristic of cells undergoing apoptosis (Figures 4A and 4B).
The percentage of cell death induced by caspase-12L and caspase-125 in Rat-1 cells are about 60% (Figure 4C). A similar result was obtained using primary culture of rat embryonic fibroblasts. About 60% of transfected rat embryonic fibroblasts were round and small (Figure 4C). Thus, overexpression of casp-12 causes cell death of both an established cell line and primary cells.
The apoptotic activity of casp-Z 2, however, is weaker than that of ICE and carp-2, since overexpression of ICE and casp-2 caused over 90% of cells to die (Miura, M., et al., Cell 75:653-660 (1993); Wang, L., et al., Cell 78:739-750 (1994)).
In a parallel experiment (Figure 4C), the same culture of Rat-1 cells were efficiently killed by overexpression of ICE (Miura, M., et al., Cell 7.1:653-660 (1993)).
The N-terminal pro-domains of the caspase family may have a role in regulating proteolytic activation of the precursor proteins and removal of the pro-domain often results in higher activity (Yuan, J., et al., Cell 75:641-652 (1993); Thornberry, N.A., et u1., Nature 356:768-774 (1992); Duan, H., et al., J.
Biol. Chem. 271:1621-1625 (1996)). Based upon the sequence homology of caspase-12 with other members of the caspase family, Asp94-G1y95 of caspase-12L was identified as a possible cleavage site (Figure 1B). To examine the possibility that the pro-domain of caspase-12 may have inhibitory function which reduces cell-killing activity of caspase-12, an expression construct was WO 99/52925 PCTIl1S99108064 _33_ made which lacked the first 94 amino acids of caspase-12L with remaining GIy95-Asn419 (caspase-120) fused to the IacZ sequence. This casp-I2L1-IacZ
fusion construct was transfected into Rat-I cells and the efficiency of cell-killing was examined by X-gal staining. The truncated construct exhibited a cell-killing activity comparable to that of caspase-12L and caspase-12S (60% dead cells, Figure 4C). Thus, unlike the pro-domains of other members of the caspase family {Duan, H., et al., J. Biol. C.'hena. 271:1621-1625 (199b)), the pro-domain of caspase-12 does not appear to have an inhibitory function to the apoptotic activity of caspase-12. The relatively lower cell-killing activity of caspase-12 is likely intrinsic to the caspase-12 protein, rather than due to the inhibition of the pro-domain. This result also shows that the G1y95-Asn419 portion of the caspase-12 protein is sufficient to exhibit its killing activity.
Although the percentages of apoptotic cells induced by overexpression of either full-length caspase-12 or a truncated caspase-120 eDNA are comparable IS to each other, the full-length caspase-12 protein is not active in vitro.
It is thus likely that the maturation of caspase-12 rn vivo requires other caspases.
Example 4 Effects of Cell Death Suppressors oh Caspase-12 Cytotoxicil3~
Cell death induced by overexpression of ICE, casp-2 and case-I 1 can be effectively inhibited by bcl-2 (Miura, M., et al., Cell 7:653-660 (1993);
Wang, L., et al., Cell 78:739-750 (1994); Wang, S., et al., J. Biol. Chem.
271:20580-20587 (1996)). bcl-2 is a mammalian homolog of the C. elegans ced-9 gene, which is a cell death suppressor in the worm (Elks, R.E., et al., Annual Review of Cell Biology 7:663-698 ( 1991 )). CrtnA is a serpin encoded by cowpox virus which is a discriminatory inhibitor of the caspase family with high affinity for ICE and low affinity for caspase-2 and caspase-3 (Ray, C.A., et al., Cell 69:597-604 (1992); Komiyama,T., et al., J. Biol. Chem. 269:19331-19337 (1994)). Apoptosis induced by ICE and easpase-11 but not caspase-2 can be suppressed by CrmA (Miura, M., et al., C.'ell 75:653-660 ( 1993); Wang, L., et al., Cell 78:739-750 (1994); Wang, S., et al., J. Biol. Chem. 271:20580-20587 ( 1996)). Expression of either bcl-2 or crmA prevents apoptosis of many cell types induced by different stimuli (Miura, M., et al., Cell 75:653-660 (1993);
Gagliardini, V., et al., Science 263:97-100 (1994); Tewari, M., and Dixit, V.M., J. Biol. Chem. 270:3255-3260 (1995); Tewari, M., et al., J. Biol. Chem.
270:22605-22708 (1995); Enari, M., et al., Nature 375:78-81 ( 1995); Los, M., et crl. , Nature 375:81-83 ( 1995); Miura, M., et al. , Proc. Natl. Acad. 5c1.
USA
92:8318-8322 (1995)).
To determine if expression of bcl-2 and crmA can inhibit apoptosis induced by case-12 overexpression, casp-12L-lacZ fusion construct was transfected into stable cell lines of Rat-I that overexpresses either bcl-2 or crmA
(Miura, M., et al., Cell 75:653-660 (1993)). Cell death was assayed as described above (Example 3). The results showed that the cell death induced by overexpression of casp-12 can be only very weakly inhibited by Bcl-2 (Figure 5A) but not by CrmA (Figure 5B). The magnitude of the bcl-2 suppression against toxicity of Gasp-12 overexpression was about 10% (60% for Rat-1, 50% for Rat-1/bcl-2) which is much smaller than that observed for ICE and casp-2 (Figure SA; Wang, L., et al., Cell 78:739-750 (1994)). Statistical analysis suggests that the suppression of caspase-12 by Bcl-2 is not significant with the t-value of 0.35 (P < 0.05). Although the ICE-induced apoptosis was suppressed by 50% in Rat-I/crmA cells (Wang, L., et al., Cell 78:739-750 (1994)), caspase-12-induced apoptosis is not suppressed in the same stable cell line (Figure 5B).
CrmA is known to be a suicide substrate, which forms an equimolar complex with ICE (Komiyama,T., et al., J. Biol. Chem. 269:19331-19337 ( 1994)). The results thus indicate that although caspase-12 may belong to the ICE
subfamily, its substrate specificity is quite different from that of ICE. It has been found that another virus inhibitor for the caspase family, baculovirus p35, could not eff cientIy suppress the cell-killing activity of caspase-12 (N. Morishima et al., unpublished data). As p35 is an effective inhibitor of ICE, caspase-2 and caspase-3 (Xue, D., and Horvitz, H.R., Nature 3 77:248-251 ( I 995)), the substrate specificity of caspase-12 appears to be unique among the members of the caspase family.
Unlike ICE, casp-2 and casp-1 l, cytotoxicity of Gasp-12 overexpression was not effectively suppressed by Bel-2. Thus, easpase-12 may control apoptotic pathways that are not sensitive to the inhibition of Bcl-2. Although Bcl-2 is a potent inhibitor of cell death under many circumstances, some types of cell death have been shown to be resistant to BcI-2 action. For example, Fas-induced apoptosis is not inhabitable by Bcl-2 in several cell types examined (Memon, S.A., et al., J Immunol. 15.5_4644-4652 (1995); Strasser, A., et al., The EMBO
Journal 14:6136-6147 (1995)). Caspase-12 could be involved in such Bcl-2 resistant cell death pathway. Alternatively, caspase-12 may control a step which is downstream from the point of Bcl-2 inhibition in the apoptosis pathway.
This hypothesis will predict that ICE, caspase-2 and caspase-I I activate apoptosis before or at the step inhabitable by Bcl-2 whereas caspase-12 activates apoptosis after that step. Armstrong et al. (Armstrong, R.C., et al., J. Biol. Chem.
271:16850-16855 (1996)) have shown that Bc1-2 prevents pro-caspase-3 processing. It is thus probable that downstream effectors activated by caspase-are insensitive to Bcl-2. The evidence shows that pro-caspase-12 can be cleaved by caspase-3 while caspase-12 cannot efficiently cleave other caspases tested.
Example S
Cell Type Specificity of Caspase-12 Cytotoxicity The cytotoxic effects of caspase-12 exhibited cell type specificity. The casp-I2L-LacZ constructs were transfected into NG108-15, HeLa and COS-1 cells and cell killing effects were assayed to see if caspase-12 kills tumor cell lines as well as Rat-I fibroblast cells. The results showed that these tumor cell lines are resistant to apoptosis induced by casp-12L expression (Figure 6).

-3 ti-COS-1 cells were established by transformation of monkey kidney cells with SV40 (Gluzman, Y., C.'ell 23:175-1$2 ( 1981 )) and are resistant to apoptosis induced by overexpression of ICE and casp-2 (Wang, L., et al., Cell 78:739-750 (1994)). The neuroblastomalglioma hybrid cell line NG108-15 and HeLa cells are sensitive, however, to apoptosis induced by overexpression of ICE and casp-(Wang, L., et al., Cell 78:739-750 (1994)). Control experiments using Ice-lacZ
construct showed that overexpression of ICE induced apoptosis of both tumor cell lines effectively under the same experimental conditions (about 70% dead cells as to NG108-15 and 90% for HeLa). These results suggest that the apoptosis inducing activity of caspase-12 may be more sensitive to transformation status of cells than that of ICE and caspase-2.
Caspase-12 is unique among the caspases because of its cell type specifccity; fibroblast cells are sensitive to its overexpression, while tumor cell lines examined are resistant. Therefore, one use of casp-12 may be to specifically 1 S kill fibroblast cells. The spectrum of caspase-12 killing activity could be related to regulatory mechanism of cell death. One of the possibilities is that the action spectrum that caspase-12 shows is somehow relevant to difference in terms of cell transformation. Tumor cells may lack either substrates or activators of caspase-12, or tumor cells could have specific inhibitors of caspase-12. An aspect of tumorigenesis now well recognized is that cells lose their ability to undergo apoptosis during tumor progression (Symonds, H., et al., Cell 78:703-7I1 (1994); White, E.. Nature 371:21-22 (1994); Fisher, D.E., Cell 78:539-542 ( I 994)). Identification of the proteins which interact with caspase-12 is thus important and could provide further insight into both apoptosis and tumorigenesis.

Example 6 In vitro Cleavage ojCaspase-12 Recent data suggest an ordered activation of caspases (Enari, M., et al., Nature 380:723-725 ( 1996)). To examine if the caspase-12 protein is a substrate for other members of the caspase family, [35S]-labeled caspase-12 precursor was incubated with Escherichia coli lysates containing the caspase family members.
Methods Plasmid construction Casp-12L was amplified through PCR with the following primers:
upstream, 5'-CTG GAT CCG TAT GGC GGC CAG GAG GAC ACA TGA
AAG AGA TCC-3' (SEQ ID N0:24); and downstream, 5'-CTC GTC GAC CCA
TTC CCG GGA AAA AGG TAG-3' (SEQ ID NO:25). Casp-I20 was amplified through PCR with the following primers: upstream, 5'-CTC GGT ACC ATG
GGA CCT CAG AAG ATA TGT AC-3' (SEQ ID N0:22); and downstream, 5'-CTC CTC GAG CTA ATT CCC GGG AAA AAG G-3' (SEQ ID N0:26).
The amplified fragments were cleaved by either BamHI/SaII or KpnI/XhoI, and cloned into pcDNA3.
In vitro cleavage ICE, casp-2 and Gasp-3 were cloned into a pET-15b vector (Novagen) and their expression was induced in the presence of 0.2-0.3 mM IPTG (Wang, S., et u1., J. Biol. Chem. 271.20580-20587 ( 1996); Cryns, V.L., et al., J. Biol.
Chem.
271:31277-31282 (1996)). Bacterial lysates containing the ICE-like proteases were prepared as described (Wang, S., et al., J. Biol. Chem. 271:20580-20587 (1996); Cryns, V.L., et al., J Biol. Chem. 271:31277-31282 (1996)).
2 ~ [35S]-labeled proteins were prepared by in vitro transcription and translation using a TNT coupled reticulocyte lysate system (Promega) and ['SS]methionine {Amersham). Labeled proteins were incubated at 37°C with purified _3g_ caspase-1202 or at 30°C with E. coli lysates containing the caspase family members. The reaction mixture contained 25 mM Hepes (pH 7.5) with 5 mM
EDTA, S mM dithiothreitoi, 10% sucrose, 10 ug/ml leupeptin and 250 ,uM
phenylmethylsulfonyl fluoride. Amount of proteins used for cleavage reaction S were: 0. I ~cg for partially purified caspase-1202, 25-70 E.cg for E. coli lysate. To inactivate caspase-12,x.2 with thiol reagents, purified caspase-122 was preincubated with either 1 mM 5, S'-dithio-bis(2-nitrobenzoic acid) (DTNB) at 25°C for 60 min or 2 mM iodoaceamide at 0°C for 60 rnin in the absence of reducing reagents such as dithiothreitol, and subsequently the enzyme solution was used for reaction with [355]-labeled proteins. For the inhibition experiments using DTNB, dithiothreitol was omitted from reaction mixture. Peptide inhibitors, YVAD-CHO (Thornberry, N.A., et al., Nature 356:768-774 (I992)) and DEVD-CHO (Nicholson, D.W., et al., Nature 376:37-43 (1995)) were purchased from Peptide Institute Inc. (Osaka, Japan). Cleavage products were analyzed by either 10- or I S% SDS-polyacrylamide gel electrophoresis:
Detection ofproteins were done by fluorography using ENLIGHTNING solution (New England Nuclear) as previously described (Cryns, V.L., et al., J. Biol.
Chem. 271:31277-31282 (1996)).
It was found that caspase-2 and caspase-3 can cleave pro-caspase-12 protein, generating smaller fragments of about 40 kDa (Figure 7). Thus, the precursor form of caspase-I2 may be a substrate of several caspases. Among these proteases, caspase-3 was focused on because the probable processing site in pro-caspase-12 (Asp9,Gluq,Asp93Asp94/G1y95) matches the consensus sequence for caspase-3 cleavage, DXXD (SEQ ID N0:30); Nicholson, D.W., et al., Nature 3 7b:37-43 ( 1995)). Cleavage of the caspase-12 precursor at this site by caspase-3 would generate a fragment of 38 kDa. whose size is comparable to that of the fragment observed in cleavage experiments with caspase-3. Caspase-2 has a preference for the DXXD (SEQ ID N0:30) sequence, while its cleavage efficiency is also dependent on a PS residue. which makes this enzyme unique among the caspase family (Van de Craen, M., et al., FEBS Letters 403:61-69 ( I 997)). Cleavage of pro-caspase-12 by caspase-2 generated a fragment of about 40 kDa at a lower cleavage efficiency, compared to caspase-3 digestion.
To examine if caspase-3 cleaves at the peptide bond between Asp94 and G1y95, in vitro cleavage of caspase-12D was tried. Casp-12~ was cloned into pcDNA3 vector with an artificial initiation codon. Figure 7 shows that the truncated form is identical in size to the fragment generated from pro-caspase-by caspase-3 digestion. Caspase-3 treatment of the truncated form did not produce any smaller fragments. These results suggest that the truncated protein does not contain the cleavage site for caspase-3, and that caspase-3 likely cleaves between Asp94 and G1y95.
Caspase-12 can be cleaved by other members of the caspase family (caspase-2, caspase-3}. Removal of the N-terminal portion of caspase-12 (Metl through Asp94} resulted in autoprocessing of the truncated protein when it was expressed in E. coli. These results suggest the possibility that caspase-12 can be 1 S activated by caspase-3 (or caspase-3-like protease) in vivo through removal of the N-terminal pro-domain. The 38 kDa fragment of caspase-12 generated by the action of caspase-3, however, did not get processed further. Autoprocessing of ICE occurs under particular conditions (Ramage, P., et al., J. l3iol. Chem.
270:9378-9383 (1995)).
Example 7 Protease Activity of Recombinant Caspase-12 To study the enzymatic properties of caspase-12, caspase-I2 cDNA was expressed in E. coli for protein production.
Methods Plasmid construction For production of histidine-tagged proteins, casp-12L1 was inserted into a prokaryotic expression vector, pRSET-A (lnvitrogen). Primers used were:

upstream, 5'-CTC GGA TCC GGA CCT CAG AAG ATA TGT AC-3' (SEQ ID
N0:27); and downstream, 5'-CTC GGA'rCC CTA ATT CCC GGG AAA AAG
GTA G-3' (SEQ ID N0:28). The amplified fragments were digested with BamHI
and inserted into the BamHI site of pRSET-A, which encodes an N-terminal histidine tag. Similarly, bacterial expression plasmid for caspase-12L12 (amino acid residues 145-419 of SEQ ID NO:2) was constructed by using another upstream primer, 5'-CTC GGA TCC ACA CTG AAG CTT TGT CCA CG-3' (SEQ ID N0:29).
Production of recombinant Caspase-12 protein casp-12D and easp-1202 were cloned into a pRSET-A vector (Invitrogen), and the resultant plasmid was introduced into E. coli BL21(DE3) pLys.
Production of the histidine tagged proteins were induced by 0.1 mM
isopropyl-I-thio-13- D-galactopyranoside (IPTG), and the protein was purified with a pET system (Novagen) according to the manufacturer's protocol. Purified protein was stored at -80°C in 50 mM Tris-HCl (pH7.S) containing 100 mM
NaCI and 50% glycerol. N-terminal sequencing was done according to the method of Matsudaira (LeGendre, N., and Matsudaira, P., BioTechniques 6:154-159 (1988)) with an Applied Biosystems 473A Protein Sequences".
Full-length caspase-12 protein expressed and purified from E. coli was stable without any processing and protease activity in vitro. Thus, a truncated caspase-12 cDNA (caspase-120 corresponding to Gly9~-Asn419) was expressed in E. coli after removal of N-terminal pro-domain coding region and tagged its N-terminal with a His rich sequence. The His-tagged caspase-1261 protein (approximately 42 kDa including the tag portion of 4.2 kDa) from E. coli was partially purified. The purified proteins consisted of three polypeptides of kDa, 17 kDa and 10 kDa (Figure 8A). Microsequencing of these polypeptide chains revealed that the 42 kDa polypeptide contains the N-terminal His-tag, suggesting that it is an intact form of caspase-120. The 10 kDa polypeptides were a mixture of two polypeptides (roughly equal quantities), one of which has WO 99!52925 PCT/US99/08064 the N-terminal His-tag. The other polypeptide of 10 kDa is the predicted small subunit of caspase-120 whose sequence started right after Asp318 in caspase-12 sequence. The 17 kDa poiypeptide turned out to be a contaminating E. toll His rich piotein, the ferric uptake regulation protein. Since there is no reported protease of bacterial origin which shows Asp specificity, it is very likely that the autoprocessing of the caspase-12 protein took place at the position of Asp318 either before or during the purification of the truncated protein. It is also probable that the smaller subunit was obtained by the Ni column chromatography because of its physical association with the intact form of caspase-120.
The presence of the smaller tagged protein ( 10 kDa) suggests that another autoproeessing occurred at an Asp residue which is approximately SO residues apart from G1y95 (about 90 residues including the tag). It was suspected that the mature p20 subunit of caspase-12 was lost because the N-terminal His tag was removed through autoproeessing (Figure 8B). To recover the mature form of caspase-12 (p20 and pI0), another version of truncated caspase-12 (caspase-12x2) which lacked a region of Metl through Asp144 was expressed.
Figure 8A shows that purified caspase-12112 consists of two major fragments (p24 and p10). p24 had the His tag and the N-terminal of p10 had the sequence starting from Thr319, as revealed by microsequencing. The sequence of p10 indicates that autoprocessing at the Asp318 again occurred in caspase-12112 as well as caspase-12~ (Figure 8B). The subunit composition (two polypeptides) and sizes (the 20 kDa subunit tagged with the 4.2 kDa His-rich sequence and the other subunit of 10 kDa) of the purified protein is similar to the mature form of ICE, which consists of 20 kDa and 10 kDa subunits.
The His-tagged caspase-12 recombinant protein was incubated with other members of the caspase family in vitro to determine if caspase-12 can cleave these pro-enzymes. Among the caspase family members examined, caspase-12L12 can efficiently process pro-caspase-12 (48 kDa) into fragments. With the disappearance of the intact pro-caspase-12, fragments of about 35 kDa and 13 kDa by caspase-12112 were generated (Figure 8C). When [35SJ-labeled caspase-120 was incubated with active caspase-1202. the 38 kDa polypeptide was cleaved into 26 kDa and 13 kDa fragments (Figure 8C). Therefore the truncated polypeptide contains the major cleavage site which divides caspase-122 into the N-terminal 26 kDa and the C-terminal 13 kDa.
Other members of the family including pro-ICE, pro-caspase-2 and pro-caspase-3, however, were resistant to the recombinant caspase-12112 as only faint bands of cleavage products were visible after incubation with caspase-for the same (Figure 8C) or longer time period (3 hr). Resistance of ICE, caspase-2 and caspase-3 to caspase-1202 cleavage suggests that these proteases are unlikely to be the substrate for caspase-12 in vivv.
The cleavage of pro-caspase-I2 by caspase-12L12 was inhibited by thiol reagents. Pretreatment of caspase-12L12 with either 5, 5'-dithio-bis(2-nitroben2oic acid) or iodoaeetamide completely inhibited its proteolytic activity. This result demonstrates that caspase-12 is a cysteine protease. On the other hand, caspase-12 cleavage activity cannot be inhibited by up to I O uM YVAD-CHO, the peptide inhibitor with a preference for ICE (Thornberry, N.A., et al., Nature 356:768-774 {1992)), or up to 10 uM DEVD-CHO, a peptide inhibitor with a preference for CPP32 (Nicholson, D.W., et al., Nature 376:37-43 (1995)).
Consistent with this result is that purified caspase-122 showed little activity for cleavage of pro-IL-1 (3 and poly(ADP-ribose) polymerase, which are the preferred substrates for ICE and caspase-3, respectively. 'these data suggest that the substrate specificity of caspase-12 mature protein is unique among the known caspases. Therefore, one use of caspase-12 and shortened forms of case-12, such as casp-1212, may be to specifically cleave proteins for polypeptide mapping.

WO 99/52925 PCTlUS99/08064 Example 8 Cloning DNA Encoding caspase-12 A DNA molecule encoding the caspase-12 protein is cloned by hybridizing a desired DNA molecule to the sequence or antisense sequence of, for S example, DNA SEQ ID NO:1 or DNA SEQ ID N0:13 under stringent hybridization conditions. Those DNA molecules hybridizing to the probe sequences are selected and transformed into a host cell. The transformants that express caspase-12 are selected and cloned.
One possible set of hybridization conditions for the cloning of the DNA
encoding caspase-12 protein is as follows:
1 ) prehybridizing far I hour;
2) hybridizing overnight at 65 °C in the hybridization buffer; and 3) washing once for I 5 minutes in 2xSSX at room temperature, then two times for 30 minutes in 0.1 xSSC and 0. I % SDS at 60 ° C.
I S Example 9 Molecular Weigl:t Markers The ca.spase-12 proteins produced recombinantly are purified by routine methods in the art (Current Protocols in Molecular Biology, Vol. 2, Chap. 10, John Wiley & Sons, Publishers ( 1994)). Because the deduced amino acid sequence is known, the molecular weight of these proteins can be precisely determined, and the proteins can be used as molecular weight markers for gel electrophoresis. The calculated molecular weight of the full length caspase-12 protein based on the deduced amino acid sequence is 48kDa.

__ Example 10 Treatment of cells with caspase-12 Since caspase-12 can induce programmed cell death (see, Example 3}, caspase-12 is used to modulate cell death in a cell. This is accomplished by contacting a cell with a caspase-12 poIypeptide. Caspase-12L, caspase 12S, caspase-1211, or caspase-1202 is used for this purpose.
All art mentioned herein is incorporated by reference into the disclosure.
Having now fully described the invention by way of illustration and example for purposes of clarity and understanding, it will be apparent to those of ordinary skill in the art that certain changes and modifications may be made in the disclosed embodiments and such modifications are intended to be within the scope of the present invention.

-44 .1-INDICATIONS RELATING TO A DEPOSITED MICROORGANISM
OR OTHER BIOLOGICAL MATERIAL
(PCT Rule l3bis) A. The indications made below relate to the deposited microorganism or other biological material referred to in the description on page 6 , fine B. IDENTIFICATION OF DEPOSIT
Further deposits arc identified on an additional sheet ~

Name of depositary institution American Type Culture Collection Address of depositary institution (including postal code and country) 10801 University Boulevard Manassas, Virginia 20110-2209 United States of America Date of deposit Accession Number March 18, 1998 ATCC 209710 C. ADDITIONAL INDICATIONS !leave blank if not opplicable) This information is continued on an additions! sheet CI

Murine caspase-12s (Plasmid pNB7) D. DESIGNATED STATES FOR WHICH
INDICATIONS ARE MADE (iftlxindtcationsarenotjoralldesiguuedStates) E. SEPARATE FURNISHING OF INDICATIONS
rrr~~Yr~mk ilnnrapphcahlr) The indications listed below wilt be submitted to the international Bureau later (specify the general nature ajthe indications e.g., "Accession Number of Deposit') Far receiving Office use only For International Bureau use only f~'This sheet was received withd This sheet was received by the International the imernational application Bureau on:

Authori ,~~ ;..~,~>~ .~ ~"~ Authorized officer T.r-~-r~1 a~
~ .~.~~N
;
;:
fir -... ~
, Form PCTIROIl34 (July 1998) 440PC134.inscrtapp SEQUENCE LTSTING
<110> The General Hospital Corporation <120> Programmed Cell Death and Caspase-12 <130> 184-325 <140> 2,327,516 <1 41 > 1 999-04-1 4 <150> US 60/081,962 <151> 1998-04-16 <160> 38 <170> PatentIn Ver_ 2.0 <21 0> 1 <211> 1402 <212> DNA
<213> Artificial Sequence <220>
<221> CDS
<222> (45)..(1301) <220>
<223> Description of Artificial Sequence. cDNA
<400> 1 cttttttttt tttttttttt tatgtcctgg agtcctgcac agcc atg gcg gcc agg 56 Met Ala Ala Arg agg aca cat gaa aga gat cca atc tac aag atc aaa ggt ttg gcc aag 104 Arg Thr His Glu Arg Asp Pro Ile Tyr Lys I1e Lys Gly Leu Ala Lys gac atg ctg gat ggg gtt ttt gat gac ctg gtg gag aag aat gtt tta 152 Asp Met Leu Asp Gly Val Phe Asp Asp Leu Val Glu Lys Asn Val Leu aat gga gat gag tta ctc aaa ata ggg gaa agt gcg agt ttc atc ctg 200 Asn Gly Asp Glu Leu Leu Lys Ile Gly Glu Ser Ala Ser Phe Ile Leu aac aag get gag aat ctg gtt gag aac ttc tta gag aaa aca gac atg 248 Asn Lys Ala Glu Asn Leu Val Glu Asn Phe Leu Glu Lys Thr Asp Met gca gga aaa ata ttt get ggc cac att gcc aat tcc cag gaa cag ctg 296 Ala Gly Lys Ile Phe Ala Gly His Ile Ala Asn Ser Gln Glu Gln Leu agt tta caa ttt tct aat gat gag gat gat gga cct cag aag ata tgt 344 Ser Leu Gln Phe Ser Asn Asp Glu Asp .Asp Gly Pro Gln Lys Ile Cys aca cct tct tct cca tca gaa tcc aag aga aaa gta gag gat gat gaa 392 Thr Pro Ser Ser Pro Ser Glu Ser Lys Arg Lys Val Glu Asp Asp Glu atg gag gta aat get gga ttg gcc cat gaa tca cat cta atg ctg aca 440 Met Glu Val Asn Ala Gly Leu Ala His Glu Ser His Leu Met Leu Thr get cct cat gga ctc cag agc tca gaa gtc caa gat aca ctg aag ctt 488 Ala Pro His Gly Leu Gln Ser Ser Glu Val Gln Asp Thr Leu Lys Leu tgt cca cgt gat cag ttt tgt aag ata aag aca gaa agg gca aaa gag 536 Cys Pro Arg Asp Gln Phe Cys Lys Ile Lys Thr Glu Arg Ala Lys Glu ata tat eca gtg atg gag aag gag gga cga aca egt ctg get ctc ate 584 Ile Tyr Pro Val Met Glu Lys Glu Gly Arg Thr Arg Leu Ala Leu Ile atc tgc aac aaa aag ttt gac tac ctt ttt gat aga gat aat get gat 632 Ile Cys Asn Lys Lys Phe Asp Tyr Leu Phe Asp Arg Asp Asn Ala Asp act gac att ttg aac atg caa gaa cta ctt gaa aat ctt gga tac tct 680 Thr Asp Ile Leu Asn Met Gln Glu Leu Leu Glu Asn Leu Gly Tyr Ser gtg gtg tta aaa gaa aac ctt aca get cag gaa atg gag aca gag tta 728 Val Val Leu Lys Glu Asn Leu Thr Ala Gln Glu Met Glu Thr Glu Leu atg cag ttt get ggc cgt cca gag cac cag tcc tca gac agc aca ttc 776 Met Gln Phe Ala Gly Arg Pro Glu His Gln Ser Ser Asp Ser Thr Phe ctg gtg ttt atg tcc cat ggc atc ctg gaa gga atc tgt ggg gtg aag 824 Leu Val Phe Met Ser His Gly Ile Leu Glu Gly Ile Cys Gly Val Lys cac cga aac aaa aag cca gat gtt ctt cat gat gac act atc ttc aaa 872 His Arg Asn Lys Lys Pro Asp Val Leu His Asp Asp Thr Ile Phe Lys att ttc aac aac tct aac tgt cgg agt ctg aga aac aaa ccc aag att 920 Ile Phe Asn Asn Ser Asn Cys Arg Ser Leu Arg Asn Lys Pro Lys Ile ctc atc atg cag gcc tgc aga ggc aga tat aat gga act att tgg gta 968 Leu Ile Met Gln Ala Cys Arg Gly Arg Tyr Asn Gly Thr Ile Trp Val tcc aca aac aaa ggg ata gcc act get gat aca gat gag gaa cgt gtg 1016 Ser Thr Asn Lys Gly Ile Ala Thr Ala Asp Thr Asp Glu Glu Arg Val ttg agc tgt aaa tgg aat aat agt ata aca aag gcc cat gtg gag aca 1064 Leu Ser Cys Lys Trp Asn Asn Ser Ile Thr Lys Ala His Val Glu Thr gat ttc att get ttc aaa tct tct acc eca cat aat att tct tgg aag 1112 Asp Phe Ile Ala Phe Lys Ser Ser Thr Pro His Asn Ile Ser Trp Lys gta ggc aag act ggt tcc ctc ttc att tcc aaa ctc att gac tgc ttc 1160 Val Gly Lys Thr Gly Ser Leu Phe Ile Ser Lys Leu Ile Asp Cys Phe aaa aag tac tgt tgg tgt tat cat ttg gag gaa att ttt cga aag gtt 1208 Lys Lys Tyr Cys Trp Cys Tyr His Leu Glu Glu Ile Phe Arg Lys Val caa cac tca ttt gag gtc cca ggt gaa ctg acc cag atg ccc act att 1256 Gln His Ser Phe Glu Val Pro Gly Glu Leu Thr Gln Met Pro Thr Ile gag aga gta tcc atg aca cgc tat ttc tac ctt ttt ccc ggg aat 1301 Glu Arg Val Ser Met Thr Arg Tyr Phe Tyr Leu Phe Pro Gly Asn tagcacaggc aactctcatg cagttcacag tcaagtattg ctgtagctga gaagaaaaga 1361 aaattccaag atcccaggat ttttaaatgt gtaaaacttt t 1402 <210> 2 <211> 419 <212> PRT
<213> Artificial Sequence <220>
<223> Description of Artificial Sequence: Deduced amino acid of Caspase-12 <400> 2 Met Ala Ala Arg Arg Thr His Glu Arg Asp Pro Ile Tyr Lys Tle Lys Gly Leu Ala Lys Asp Met Leu Asp Gly Val Phe Asp Asp Leu Val Glu Lys Asn Val Leu Asn Gly Asp Glu Leu Leu Lys Ile Gly Glu Ser Ala Ser Phe Ile Leu Asn Lys Ala Glu Asn Leu Val Glu Asn Phe Leu Glu Lys Thr Asp Met Ala Gly Lys Ile Phe Ala Gly His Ile Ala Asn Ser Gln Glu Gln Leu Ser Leu Gln Phe Ser Asn Asp Glu Asp Asp Gly Pro Gln Lys Ile Cys Thr Pro Ser Ser Pro Ser Glu Ser Lys Arg Lys Val Glu Asp Asp Glu Met Glu Val Asn Ala Gly Leu Ala His Glu Ser His Leu Met Leu Thr Ala Pro His Gly Leu Gln Ser Ser Glu Val Gln Asp Thr Leu Lys Leu Cys Pro Arg Asp Gln Phe Cys Lys Ile Lys Thr Glu Arg Ala Lys Glu Ile Tyr Pro Val Met Glu Lys Glu Gly Arg Thr Arg Leu Ala Leu Ile Ile Cys Asn Lys Lys Phe Asp Tyr Leu Phe Asp Arg Asp Asn Ala Asp Thr Asp Ile Leu Asn Met Gln Glu Leu Leu Glu Asn Leu Gly Tyr Ser Val Val Leu Lys Glu Asn Leu Thr Ala Gln Glu Met Glu Thr Glu Leu Met Gln Phe Ala Gly Arg Pro Glu His Gln Ser Ser Asp Ser Thr Phe Leu Val Phe Met Ser His Gly Ile Leu Glu Gly Ile Cys Gly Val Lys His Arg Asn Lys Lys Pro Asp Val Leu His Asp Asp Thr Ile Phe Lys Ile Phe Asn Asn Ser Asn Cys Arg Ser Leu Arg Asn Lys Pro Lys Ile Leu Ile Met Gln Ala Cys Arg Gly Arg Tyr Asn Gly Thr Ile Trp Val Ser Thr Asn Lys Gly Ile Ala Thr Ala Asp Thr Asp Glu Glu Arg Val Leu Ser Cys Lys Trp Asn Asn Ser Ile Thr Lys Ala His Val Glu Thr Asp Phe Ile Ala Phe Lys Ser 5er Thr Pro His Asn Ile Ser Trp Lys Val Gly Lys Thr Gly Ser Leu Phe Ile Ser Lys Leu Ile Asp Cys Phe Lys Lys Tyr Cys Trp Cys Tyr His Leu Glu Glu Ile Phe Arg Lys Val Gln His Ser Phe Glu Val Pro Gly Glu Leu Thr Gln Met Pro Thr Ile Glu Arg Val Ser Met Thr Arg Tyr Phe Tyr Leu Phe Pro Gly Asn <210> 3 <211> 5 <212> PRT
<213> Unknown <220>
<223> Description of Unknown Organism: conserved pentapeptide <400> 3 Gln Ala Cys Arg Gly <21 0> 4 <211> 418 <21 2> PRT
<213> Unknown <220>
<223> Description of Unknown Organism: Caspase-5 <400> 4 Met Phe Lys Gly Ile Leu Gln Ser Gly Leu Asp Asn Phe Val Ile Asn His Met Leu Lys Asn Asn Val Ala GIy Gln Thr Ser Ile Gln Thr Leu Val Pro Asn Thr Asp Gln Lys Ser Thr Ser Val Lys Lys Asp Asn His Lys Lys Lys Thr Val Lys Met Leu Glu Tyr Leu Gly Lys Asp Val Leu His Gly Val Phe Met Tyr Leu Ala Lys His Asp Val Leu Thr Leu Lys Glu Glu Glu Lys Lys Lys Tyr Tyr Asp Ala Lys Thr Glu Asp Lys Ala Leu Ile Leu Val Asp Ser Leu Arg Lys Asn Arg Val Ala His Gln Met Phe Thr Gln Thr Leu Leu Asn Met Asp Gln Lys Ile Thr Ser Val Lys Pro Leu Leu Gln Ile Asp Ala Gly Pro Pro Glu Ser AIa Glu Ser Thr Asn Ile Leu Lys Leu Cys Pro Arg Glu Glu Phe Leu Arg Leu Cys Lys Lys Asn His Asp Glu Ile Tyr Pro Ile Lys Lys Arg Glu Asp Arg Arg Arg Leu Ala Leu Ile Ile Cys Asn Thr Lys Phe Asp His Leu Pro Ala Arg Asn Gly Ala His Tyr Asp Ile Val Gly Met Lys Arg Leu Leu Gln Gly Leu Gly Tyr Thr Val Val Asp Glu Lys Asn Leu Thr Ala Arg Asp Met Glu Ser Val Leu Arg Ala Phe AIa Ala Arg Pro Glu His Lys Ser Ser Asp Ser Thr Phe Leu Val Leu Met Ser His Gly Ile Leu Glu Gly Ile Cys Gly Thr Ala His Lys Lys Lys Lys Pro Asp Val Leu Leu Tyr Asp Thr Ile Phe Gln Ile Phe Asn Asn Arg Asn Cys Leu Ser Leu Lys Asp Lys Pro Lys Val Ile Tle Val Gln Ala Cys Arg Gly GIu Lys His Gly Glu Leu Met Val Arg Asp Ser Pro Ala Ser Leu Ala Val Ile Ser Ser Gln Ser Ser Glu Asn Leu Glu Ala Asp Ser Val Cys Lys Ile His Glu Lys Lys Asp Phe Ile Ala Phe Cys Ser Ser Ser Pro His Asn Val Ser Trp Arg Asp Arg Thr Arg Gly Ser Ile Phe Ile Thr Glu Leu Ile Thr Cys Phe Gln Lys Tyr Ser Cys Cys Cys His Leu Met Glu Ile Phe Arg Lys Val Gln Lys Ser Phe Glu Val Pro Gln Ala Lys Ala Gln Met Pro Thr Ile Glu Arg Ala Thr Leu Thr Arg Asp Phe Tyr Leu Phe Pro Gly Asn <210> 5 <211> 404 <212> PRT

<213> Homo Sapiens <400> 5 Met Ala Lys Leu Lys LysArg Lys Leu IleArg Asp Val Glu Phe Ser Met Gly Gly Ile Asn LeuLeu Asp Glu LeuGln Glu Thr Gly Leu Thr Arg Val Asn Glu Glu GluLys Val Lys GluAsn Leu Lys Met Arg Ala Thr Val Met Asp Lys Thr Arg Ala Leu Ile Asp Ser Val Ile Pro Lys Gly Ala Gln Ala Cys Gln Ile Cys Ile Thr Tyr Ile Cys Glu Glu Asp Ser Tyr Leu Ala Gly Thr Leu Gly Leu Ser Ala Asp Gln Thr Ser Gly Asn Tyr Leu Asn Met Gln Asp Ser Gln Gly Val Leu Ser Ser Phe Pro _g_ Ala Pro Gln Ala Val Gln Asp Asn Pro Ala Met Pro Thr Ser Ser Gly Ser Glu Gly Asn Val Lys Leu Cys Ser Leu Glu Glu Ala Gln Arg Ile Trp Lys Gln Lys Ser Ala Glu Ile Tyr Pro Ile Met Asp Lys Ser Ser Arg Thr Arg Leu Ala Leu Ile Ile Cys Asn Glu Glu Phe Asp Ser Ile Pro Arg Arg Thr Gly Ala Glu Val Asp Ile Thr Gly Met Thr Met Leu Leu Gln Asn Leu Gly Tyr Ser Val Asp Val Lys Lys Asn Leu Thr Ala Ser Asp Met Thr Thr Glu Leu Glu Ala Phe Ala His Arg Pro Glu His Lys Thr Ser Asp Ser Thr Phe Leu Val Phe Met Ser His Gly Ile Arg Glu Gly Ile Cys Gly Lys Lys His Ser Glu Gln Val Pro Asp Ile Leu Gln Leu Met Ala Ile Phe Asn Met Leu Asn Thr Lys Met Cys Pro Ser Leu Lys Asp Lys Pro Lys Val Ile Ile Ile Gln Ala Cys Arg Gly Asp Ser Pro Gly Val Val Trp Phe Lys Asp Ser Val Gly Val Ser Gly Asn Leu Ser Leu Pro Thr Thr Glu Glu Phe Glu Asp Asp Ala Ile Lys Lys Ala His Ile Lys Lys Asp Phe Ile Ala Phe Cys Ser Ser Thr Pro Asp Asn Val Ser Trp Arg His Pro Thr Met Gly Ser Val Phe Ile Gly Arg Leu Ile Gly His Met Gln Glu Tyr Ala Cys Ser Cys Asp Val Glu Glu Ile Phe Arg Lys Val Arg Phe Ser Phe Glu Gln Pro Asp Gly Arg Ala Gln Met Pro Thr Thr Glu Arg Val Thr Leu Thr Arg Cys Phe Tyr Leu Phe Pro Gly His <210> 6 <211> 402 <21 2> PRT
<213> Mus musculus <400> 6 Met Ala Asp Lys Ile Leu Arg Ala Lys Arg Lys Gln Phe Ile Asn Ser Val Ser Ile Gly Thr Ile Asn Gly Leu Leu Asp Glu Leu Leu Glu Lys Arg Val Leu Asn Gln Glu Glu Met Asp Lys Ile Lys Leu Ala Asn Ile Thr Ala Met Asp Lys Ala Arg Asp Leu Cys Asp His Val Ser Lys Lys Gly Ala Pro Ala Ser Gln Ile Phe Ile Thr Tyr Ile Cys Asn Glu Asp Cys Tyr Leu Ala Gly Ile Leu Glu Leu Gln Ser Ala Pro Ser Ala Glu Thr Phe Val Ala Thr Glu Asp Ser Lys Gly Gly His Pro Ser Ser Ser Glu Thr Lys Glu Glu Gln Asn Lys Glu Asp Gly Thr Phe Pro Gly Leu Thr Gly Thr Leu Lys Phe Cys Pro Leu Glu Lys Ala Gln Lys Leu Trp Lys Glu Asn Pro Ser Glu Ile Tyr Pro Ile Met Asn Thr Thr Thr Arg Thr Arg Leu Ala Leu Ile Ile Cys Asn Thr Glu Phe Gln His Leu Ser Pro Arg Val Gly Ala Gln Val Asp Leu Arg Glu Met Lys Leu Leu Leu Glu Asp Leu Gly Tyr Thr Val Lys Val Lys Glu Asn Leu Thr Ala Leu Glu Met Val Lys Glu Val Lys Glu Phe Ala Ala Cys Pro Glu His Lys Thr Ser Asp Ser Thr Phe Leu Val Phe Met Ser His Gly Ile Gln Glu Gly Ile Cys Gly Thr Thr Tyr Ser Asn Glu Val Ser Asp Tle Leu Lys Val Asp Thr Ile Phe Gln Met Met Asn Thr Leu Lys Cys Pro Ser Leu Lys Asp Lys Pro Lys Val Ile Ile Ile Gln Ala Cys Arg Gly Glu Lys Gln Gly Val Val Leu Leu Lys Asp Ser Val Arg Asp Ser Glu Glu Asp Phe Leu Thr Asp Ala Ile Phe Glu Asp Asp Gly Ile Lys Lys Ala His Ile Lys Lys Asp Phe Ile Ala Phe Cys Ser Ser Thr Pro Asp Asn Val Ser Trp Arg His Pro Val Arg Gly Ser Leu Phe Ile Glu Ser Leu Ile Lys His Met Lys Glu Tyr Ala Trp Ser Cys Asp Leu Glu Asp Ile Phe Arg Lys Val Arg Phe Ser Phe Glu Gln Pro Lys Glu Arg Leu Gln Met Pro Thr Ala Asp Arg Val Thr Leu Thr Lys Arg Phe Tyr Leu Phe Pro Gly His <210> 7 <211> 373 <212> PRT
<213> Unknown <220>
<223> Description of Unknown Organism: Caspase-11 <400> 7 Met Ala Glu Asn Lys His Pro Asp Lys Pro Leu Lys Val Leu Glu Gln Leu Gly Lys Glu Val Leu Thr Glu Tyr Leu Lys Lys Leu Val Gln Ser Asn Val Leu Lys Leu Lys Glu Glu Asp Lys GIn Lys Phe Asn Trp Ala Glu Arg Ser Asp Lys Arg Met Val Phe Val Asp Ala Met Lys Lys Lys His Ser Lys Val Gly Glu Met Leu Leu Gln Thr Phe Phe Ser Val Asp Pro Gly Ser His His Gly Glu Ala Asn Leu Glu Met Glu GIu Pro Lys Lys Ser Leu Met Thr Leu Lys Leu Cys Ser Pro Glu Glu Phe Thr Arg Leu Cys Arg Glu Lys Thr Gln Glu Ile Tyr Pro Ile Lys Glu Ala Asn Gly Arg Thr Arg Lys Ala Leu Ile Ile Cys Asn Thr Glu Phe Lys His Leu Ser Leu Arg Tyr Gly Ala Lys Phe Asp Ile Ile Gly Met Lys Gly Leu Leu Glu Asp Leu Gly Tyr Asp Val Val Val Lys Glu Asn Leu Thr Ala Glu Gly Met Glu Ser Glu Met Lys Asp Phe Ala Ala Leu Ser Glu Lys Gln Thr Ser Asp Ser Thr Phe Leu Val Leu Met Ser His Gly Thr Leu His Gly Ile Cys Gly Thr Met His Ser Glu Lys Thr Pro Asp Val Leu Gln Tyr Asp Thr Ile Tyr Gln Ile Phe Asn Asn Cys His Cys Pro Gly Leu Arg Asp Lys Pro Lys Val Ile Ile Val Gln Ala Cys Arg Gly Gly Met Ser Gly Glu Met His Ile Arg Glu Ser Ser Lys Pro Gln Leu Cys Arg Gly Val Asp Leu Pro Arg Asn Met Glu Ala Asp Ala Val Lys Leu Ser His Val Lys Lys Asp Phe Ile Aia Phe Tyr Ser Thr Thr Pro His His Leu Ser Tyr Arg Asp Lys Thr Gly Gly Ser Tyr Phe Ile Thr Arg Leu Ile Ser Cys Phe Arg Lys His Ala Cys Ser Cys His Leu Phe 325 :330 335 Asp Ile Phe Leu Lys Val Gln Gln Ser Phe Glu Lys Ala Ser Ile His Ser Gln Met Pro Thr Ile Asp Arg Ala Thr Leu Thr Arg Tyr Phe Tyr Leu Phe Pro Gly Asn <210> 8 <211> 379 <212> PRT
<213> Unknown <220>
<223> Description of Unknown Organism:Caspase-4 <400> 8 Met Ala Glu Gly Asn His Arg Lys Lys Pro Leu Lys Val Leu Glu Ser Leu Gly Lys Asp Phe Leu Thr Gly Val Leu Asp Asn Leu Glu Val Gln Asn Val Leu Met Trp Lys Lys Glu Glu Lys Lys Lys Tyr Tyr Asp Ala Lys Thr Glu Asp Lys Val Arg Ala Met Ala Asp Ser Met Gln Glu Lys Gln Arg Met Ala Gly Gln Met Leu Leu Gln Thr Phe Phe Asn Ile Asp Gln Ile Ser Pro Asn Lys Lys Ala His Pro Asn Met Glu Ala Gly Pro Pro Glu Ser Gly Glu Ser Thr Asp Ala Leu Lys Leu Cys Pro His Glu Glu Phe Leu Arg Leu Cys Lys Glu Arg Ala Glu Glu Ile Tyr Pro Ile Lys Glu Arg Asn Asn Arg Thr Arg Leu Ala Leu Ile Ile Cys Asn Thr Glu Phe Asp His Leu Pro Pro Arg Asn Gly Ala Asp Phe Asp Ile Thr Gly Met Lys Glu Leu Leu Leu Leu Glu Gly Leu Asp Tyr Ser Val Asp Val Glu Glu Asn Leu Thr Ala Arg Asp Met Glu Ser Ala Leu Arg Ala Phe Ala Thr Arg Pro Glu His L,ys Ser Ser Asp Ser Thr Phe Leu Val Leu Met Ser His Gly Ile Leu Glu Gly Ile Cys Gly Thr Val His Asp Glu Lys Lys Pro Asp Val Leu Leu Tyr Asp Thr Ile Phe Gln Ile Phe Asn Asn Arg Asn Cys Leu Ser Leu Lys Asp Lys Pro Lys Val Ile Ile Val Gln Ala Cys Arg Gly Ala Met Arg Gly Glu Leu Met Val Arg Asp Ser Pro Ala Ser Leu Glu Val Ala Ser Ser Gln Ser Ser GIu Asn Leu Glu Glu Asp Ala Val Tyr Lys Thr His Val Glu Lys Asp Phe Ile Ala Phe Cys Ser Ser Thr Pro His Asn Val Ser Trp Arg Asp Ser Thr Met Gly Ser IIe Phe Ile Thr Gln Leu Ile Thr Cys Phe Gln Lys Tyr Ser Trp Cys Cys His Leu Glu Glu Val Phe Arg Lys Val Gln Gln Ser Phe Glu Thr Pro Arg Ala Lys Ala Gln Met Pro Thr Ile Glu Arg Leu Ser Met Thr Arg Tyr Phe Tyr Leu Phe Pro Gly Asn <21 0> 9 <211> 13 <212> PRT
<213> Caenorhabditis elegans <400> 9 His Gly Cys Arg Gln Arg Ser Val Trp Asn Ser Ser Gly <210> 10 <211> 435 <212> PRT
<213> Unknown <220>
<223> Description of Unknown Organism: Caspase-2 <400> 10 Met Ala Ala Asp Arg Gly Arg Arg Ile Leu Gly Val Cys Gly Met His Fro His His Gln Glu Thr Leu Lys Lys Asn Arg Val Val Leu Ala Lys Gln Leu Leu Leu Ser Glu Leu Leu Glu His Leu Leu Glu Lys Asp Ile Ile Thr Leu Glu Met Arg Glu Leu Ile Gln Ala Lys Val Gly Ser Phe 50 55 b0 Ser Gln Asn Val Glu Leu Leu Asn Leu Leu Pro Lys Arg Gly Pro Gln Ala Phe Asp Ala Phe Cys Glu Ala Leu Arg Glu Thr Lys Gln GIy His Leu Glu Asp Met Leu Leu Thr Thr Leu Ser Gly Leu Gln His Val Leu Pro Pro Leu Ser Cys Asp Tyr Asp Leu Ser Leu Pro Phe Pro Val Cys Glu Ser Cys Pro Leu Tyr Lys Lys Leu Arg Leu Ser Thr Asp Thr Val Glu His Ser Leu Asp Asn Lys Asp Gly Pro Val Cys Leu Gln Val Lys Pro Cys Thr Pro Glu Phe Tyr Gln Thr His Phe Gln Leu Ala Tyr Arg Leu Gln Ser Arg Pro Arg Gly Leu Ala Leu Val Leu Ser Asn Val His Phe Thr Gly Glu Lys Glu Leu Glu Phe Arg Ser Gly Gly Asp Val Asp His Ser Thr Leu Val Thr Leu Phe Lys Leu Leu Gly Tyr Asp Val His Val Leu Cys Asp Gln Thr Ala Gln Val Met Gln Glu Lys Leu Gln Asn Phe Ala Gln Leu Pro Ala His Arg Val Thr Asp Ser Cys Ile Val Ala Leu Leu Ser His Gly Val Glu Gly Ala Ile Tyr Gly Val Asp Gly Lys Leu Leu Gln Leu Gln Glu Val Phe Gln Leu Phe Asp Asn Ala Asn Cys Pro Ser Leu Gln Asn Lys Pro Lys Met Phe Phe Ile Gln Ala Cys Arg Gly Asp Glu Thr Asp Arg Gly Val Asp Gln Gln Asp Gly Lys Asn His Ala Gly Ser Pro Gly Cys Glu Glu Ser Asp Ala Gly Lys Glu Lys Leu Pro Lys Met Arg Leu Pro Thr Arg Ser Asp Met Ile Cys Gly Tyr Ala Cys Leu Lys Gly Thr Ala Ala Met Arg Asn Thr Lys Arg Gly Ser Trp 355 360 3b5 Tyr Ile Glu Ala Leu Ala Gln Val Phe Ser Glu Arg Ala Cys Asp Met His Val Ala Asp Met Leu Val Lys Lys Asn Ala Leu Ile Lys Asp Arg Glu Gly Tyr Ala Pro Gly Thr Glu Phe His Arg Cys Lys Glu Met Ser Glu Tyr Cys Ser Thr Leu Cys Arg His Leu Tyr Leu Phe Pro Gly His Pro Pro Thr <210> 11 <211> 277 <212> PRT
<213> Unknown <220>
<223> Description of Unknown Organism: Caspase-3 <400> 11 Met Glu Asn Thr Glu Asn Ser Val Asp Ser Lys Ser Ile Lys Asn Leu Glu Pro Lys Ile Ile His Gly Ser Glu Ser Met Asp Ser Gly Ile Ser Leu Asp Asn Ser Tyr Lys Met Asp Tyr Pro Glu Met Gly Leu Cys Ile Ile Ile Asn Asn Lys Asn Phe His Lys Ser Thr Gly Asn Thr Ser Arg Ser Gly Thr Asp Val Asp Ala Ala Asn Leu Arg Glu Thr Phe Arg Asn Leu Lys Tyr Glu Val Arg Asn Lys Asn Asp Leu Thr Arg Lys Glu Ile Val Glu Leu Met Arg Asp Val Ser Lys Glu Asp His Ser Lys Arg Ser Ser Phe Val Cys Val Leu Leu Ser His Gly Lys Glu Gly Ile Ile Phe Gly Thr Asn Gly Pro Val Asp Leu Lys Lys Ile Thr Asn Phe Phe Arg Gly Asp Arg Cys Arg Ser Leu Thr Gly Lys Pro Lys Leu Phe Ile Ile Gln Ala Cys Arg Gly Thr Lys Leu Asp Cys Gly Ile Glu Thr Asp Ser Gly Val Asp Asp Asp Met Ala Cys His Lys Ile Pro Val Glu Ala Asp Phe Leu Tyr Ala Tyr Ser Thr Ala Pro Gly Tyr Tyr Ser Trp Arg Asn Ser Lys Asp Gly Ser Trp Phe Ile Gln Ser Leu Cys Ala Met Leu Lys Gln Tyr Ala Asp Lys Leu Glu Phe Met His Ile Leu Thr Arg Val Asn Arg Lys Val Ala Thr Glu Phe Glu Ser Phe Ser Phe Asp Ala Thr Phe His Ala Lys Lys Gln Ile Pro Cys Il.e Val Ser Met Leu Thr Lys Glu Leu Tyr Phe Tyr His <210> 12 <211> 503 <212> PRT
<213> Caenorhabditis elegans <400> 12 Met Met Arg Gln Asp Arg Arg Ser Leu Leu Glu Arg Asn Ile Met Met Phe Ser Ser His Leu Lys Val Asp Glu Ile Leu Glu Val Leu Ile Ala Lys Gln Val Leu Asn Ser Asp Asn Gly Asp Asn Ile Asn Ser Cys Gly Thr Val Arg Glu Lys Arg Arg Glu Ile Val Lys Ala Val Gln Arg Arg Gly Asp Val Ala Phe Asp Ala Phe Tyr Asp Ala Leu Arg Ser Thr Gly His Glu Gly Leu Ala Glu Val Leu Glu Pro Leu Ala Arg Ser Val Asp Ser Asn Ala Val Glu Phe Glu Cys Pro Met Ser Pro Ala Ser His Arg Arg Ser Arg Ala Leu Ser Pro Ala Gly Tyr Thr Ser Pro Thr Arg Val His Arg Asp Ser Val Ser Ser Val 5er Ser Phe Thr Ser Tyr G1n Asp Ile Tyr Ser Arg Ala Arg Ser Arg Ser Arg Ser Arg Ala Leu His Ser Ser Asp Arg His Asn Tyr Ser Ser Prc> Pro Val Asn Ala Phe Pro Ser Gln Pro Ser Ser Ala Asn Ser Ser Phe Thr Gly Cys Ser Ser Leu Gly Tyr Ser Ser Ser Arg Asn Arg Ser Phe Ser Lys Ala Ser Gly Pro Thr Gln Tyr Tle Phe His Glu Glu Asp Met Asn Phe Val Asp Ala Pro Thr Ile Ser Arg Val Phe Asp Glu Lys Thr Met Tyr Arg Asn Phe Ser Ser Pro Arg Gly Met Cys Leu Ile Ile Asn Asn Glu His Phe Glu Gln Met Pro Thr Arg Asn Gly Thr Lys Ala Asp Lys Asp Asn Leu Thr Asn Leu Phe Arg Cys Met Gly Tyr Thr Val Ile Cys Lys Asp Asn Leu Thr Gly Arg Gly Met Leu Leu Thr Ile Arg Asp Phe Ala Lys His Glu Ser His Gly Asp Ser Ala Ile Leu Val Ile Leu Ser His Gly Lys Glu Asn Val Ile Tle Gly Val Asp Asp Ile Pro Ile Ser Thr His Glu Ile Tyr Asp Leu Leu Asn Ala Ala Asn Ala Pro Arg Leu Ala Asn Lys Pro Lys Ile Val Phe Val Gln Ala Cys Arg Gly Glu Arg Arg Asp Asn Gly Phe Pro Val Leu Asp Ser Val Asp Gly Val Pro Ala Phe Leu Arg Arg Gly Trp Asp Asn Arg Asp Gly Pro Leu Phe Asn Phe Leu Gly Cys Val Arg Pro Gln Val Gln Gln Val Trp Arg Lys Lys Pro Ser Gln Ala Asp Ile Leu Ile Ala Tyr Ala Thr Thr Ala Gly Ile Val Ser Trp Arg Asn Ser Ala Arg Gly Ser Trp Phe Ile Gln Ala Val Cys Glu Val Phe Ser Thr His Ala Lys Asp Met Asp Val Val Glu Leu Leu Thr Glu Val Asn Lys Lys Val Ala Cys Gly Phe Gln Thr Ser Gln Gly Ser Asn Ile Leu Lys Gln Met Pro Glu Met Thr Ser Arg Leu Leu Lys Lys Phe Tyr Pro Trp Pro Glu Ala Arg Asn Ser Ala Val <210> 13 <211> 1050 <21 2> DNA
<213> Artificial Sequence <220>
<221 > CDS
<222> (1)..(1047) <220>
<223> Description of Artificial Sequence: cDNA
<400> 13 atg gcg gcc agg agg aca cat gaa aga gat cca atc tac aag atc aaa 48 Met Ala Ala Arg Arg Thr His Glu Arg Asp Pro Ile Tyr Lys Ile Lys gaa ttt tct aat gat gag gat gat gga cct cag aag ata tgt aca cct 96 Glu Phe Ser Asn Asp Glu Asp Asp Gly Pro Gln Lys Ile Cys Thr Pro tct tct cca tca gaa tcc aag aga aaa gta gag gat gat gaa atg gag 144 Ser Sex Pro Ser Glu Ser Lys Arg Lys Val Glu Asp Asp Glu Met Glu gta aat get gga ttg gcc cat gaa tca cat cta atg ctg aca get cct 192 Val Asn Ala Gly Leu Ala His Glu Ser His Leu Met Leu Thr Ala Pro cat gga ctc cag agc tca gaa gtc caa gat aca ctg aag ctt tgt cca 240 His Gly Leu Gln Ser Ser Glu Val Gln Asp Thr Leu Lys Leu Cys Pro cgt gat cag ttt tgt aag ata aag aca gaa agg gca aaa gag ata tat 288 Arg Asp Gln Phe Cys Lys Ile Lys Thr Glu Arg Ala Lys Glu Ile Tyr cca gtg atg gag aag gag gga cga aca cgt ctg get ctc atc atc tgc 336 Pro Val Met Glu Lys Glu Gly Arg Thr Arg Leu Ala Leu Ile Ile Cys aac aaa aag ttt gac tac ctt ttt gat aga gat aat get gat act gac 384 Asn Lys Lys Phe Asp Tyr Leu Phe Asp Arg Asp Asn Ala Asp Thr Asp att ttg aac atg caa gaa cta ctt gaa aat ctt gga tac tct gtg gtg 432 IIe Leu Asn Met Gln Glu Leu Leu Glu Asn Leu Gly Tyr Ser Val Val tta aaa gaa aac ctt aca get cag gaa atg gag aca gag tta atg cag 480 Leu Lys Glu Asn Leu Thr Ala Gln Glu Met Glu Thr Glu Leu Met Gln ttt get gge cgt eea gag cac cag tcc tca gac agc aca ttc ctg gtg 528 Phe Ala Gly Arg Pro Glu His Gln Ser Ser Asp Ser Thr Phe Leu Val ttt atg tcc cat ggc atc ctg gaa gga atc tgt ggg gtg aag cac cga 576 Phe Met Ser His Gly Ile Leu Glu Gly Ile Cys Gly Val Lys His Arg aac aaa aag cca gat gtt ctt cat gat gac act atc ttc aaa att ttc 624 Asn Lys Lys Pro Asp Val Leu His Asp Asp Thr Ile Phe Lys Ile Phe aac aac tct aac tgt cgg agt ctg aga aac aaa ccc aag att ctc atc 672 Asn Asn Ser Asn Cys Arg Ser Leu Arg Asn Lys Pro Lys Ile Leu Ile atg cag gcc tgc aga ggc aga tat aat gga act att tgg gta tcc aca 720 Met Gln Ala Cys Arg Gly Arg Tyr Asn Gly Thr Ile Trp Val Ser Thr aac aaa ggg ata gce act get gat aca gat gag gaa cgt gtg ttg age 768 Asn Lys Gly Ile Ala Thr Ala Asp Thr Asp Glu Glu Arg Val Leu Ser tgt aaa tgg aat aat agt ata aca aag gcc cat gtg gag aca gat ttc 816 Cys Lys Trp Asn Asn Ser Ile Thr Lys Ala His Val Glu Thr Asp Phe att get ttc aaa tct tct acc eca cat aat att tct tgg aag gta ggc 864 Ile Ala Phe Lys Ser Ser Thr Pro His Asn Ile Ser Trp Lys Val Gly aag act ggt tcc ctc ttc att tcc aaa ctc att gac tgc ttc aaa aag 912 Lys Thr Gly Ser Leu Phe Ile Ser Lys Leu Ile Asp Cys Phe Lys Lys tac tgt tgg tgt tat cat ttg gag gaa att ttt cga aag gtt caa cac 960 Tyr Cys Trp Cys Tyr His Leu Glu Glu Ile Phe Arg Lys Val Gln His tca ttt gag gtc cca ggt gaa ctg acc cag atg ccc act att gag aga 1008 Ser Phe Glu Val Pro Gly Glu Leu Thr Gln Met Pro Thr Ile Glu Arg gta tcc atg aca cgc tat ttc tac ctt ttt ccc ggg aat tag 1050 Val Ser Met Thr Arg Tyr Phe Tyr Leu Phe Pro Gly Asn <210> 14 <211> 349 <212> PRT
<213> Artificial Sequence <220>
<223> Description of Artificial Sequence: Deduced amino acid of caspase-12S
<400> 14 Met Ala Ala Arg Arg Thr His Glu Arg Asp Pro Ile Tyr Lys Ile Lys Glu Phe Ser Asn Asp Glu Asp Asp Gly Pro Gln Lys Ile Cys Thr Pro Sex Ser Pro Ser Glu Ser Lys Arg Lys Val Glu Asp Asp Glu Met Glu Val Asn Ala Gly Leu Ala His Glu Ser His Leu Met Leu Thr Ala Pro His Gly Leu Gln Ser Ser Glu Val Gln Asp Thr Leu Lys Leu Cys Pro Arg Asp Gln Phe Cys Lys Ile Lys Thr Glu Arg Ala Lys Glu Ile Tyr Pro Val Met Glu Lys Glu Gly Arg Thr Arg Leu Ala Leu Ile Ile Cys Asn Lys Lys Phe Asp Tyr Leu Phe Asp Arg Asp Asn Ala Asp Thr Asp Ile Leu Asn Met Gln Glu Leu Leu Glu Asn Leu Gly Tyr Ser Val Val Leu Lys Glu Asn Leu Thr Ala Gln Glu Met Glu Thr Glu Leu Met Gln Phe Ala Gly Arg Pro Glu His Gln Ser Ser Asp Ser Thr Phe Leu Val i65 170 175 Phe Met Ser His Gly Ile Leu Glu Gly Ile Cys Gly Val Lys His Arg Asn Lys Lys Pro Asp Val Leu His Asp Asp Thr Ile Phe Lys Ile Phe Asn Asn Ser Asn Cys Arg Ser Leu Arg Asn Lys Pro Lys Ile Leu Ile Met Gln Ala Cys Arg Gly Arg Tyr Asn Gly Thr Ile Trp Val Ser Thr Asn Lys Gly Ile Ala Thr Ala Asp Thr Asp Glu Glu Arg Val Leu Ser Cys Lys Trp Asn Asn Ser Ile Thr Lys Ala His Val Glu Thr Asp Phe Ile Ala Phe Lys Ser Ser Thr Pro His Asn Ile Ser Trp Lys Val Gly Lys Thr Gly Ser Leu Phe Ile Ser Lys Leu Ile Asp Cys Phe Lys Lys Tyr Cys Trp Cys Tyr His Leu Glu Glu Ile Phe Arg Lys Val Gln His Ser Phe Glu Val Pro Gly Glu Leu Thr Gln Met Pro Thr Ile Glu Arg Val Ser Met Thr Arg Tyr Phe Tyr Leu Phe Pro Gly Asn <21 0> 1 5 <211> 20 < 21 2 > DNA
<213> Artificial Sequence <220>
<223> Description of Artificial Sequence: DNA Primer <220>
<221> unsure <222> (3) <223> May be any nucleic acid <220>
<221> unsure <222> (6) <223> May be any nucleic acid <220>
<221> unsure <222> (12) <223> May be any nucleic acid <400> 15 tgnccnggga anaggtagaa 20 <210> 16 <211> 23 <212> DNA
<213> Artificial Sequence <220>
<221> unsure <222> (6) <223> May be adenine, thymine or cytosine <220>
<223> Description of Artificial Sequence: DNA Primer <220>
<221> unsure <222> (15) <223> May be any nucleic acid <400> 16 atcatnatcc aggcntgcag rgg 23 <210> 17 <211> 6 <21 2> PRT
<213> Artificial Sequence <220>
<223> Description of Artificial Sequence: DNA Primer <400> 17 Phe Tyr Leu Phe Pro Gly <210> 18 <211> 20 <212> DNA
<213> Artificial Sequence <220>
<223> Description of Artificial Sequence: DNA Primer <400> 18 gagatccaat ctacaagatc 20 <210> 19 <211> 18 <212> DNA
<213> Artificial Sequence <220>

<223> Description of Artificial Sequence: DNA Primer <400> 19 caccacagag tatccaag 18 <210> 20 <211> 31 <212> DNA
<213> Artificial Sequence <220>
<223> Description of Artificial Sequence: DNA Primer <400> 20 ctcgaattca tggcggccag gaggacacat g 31 <210> 21 <211> 26 <212> DNA
<213> Artificial Sequence <220>
<223> Description of Artificial Sequence: DNA Primer <400> 21 ctcggatcct tcccgggaaa aggtag 26 <210> 22 <211> 32 <212> DNA
<213> Artificial Sequence <220>
<223> Description of Artificial Sequence: DNA Primer <400> 22 ctcggtacca tgggacctca gaagatatgt ac 32 <210> 23 <211> 30 <21 2> DNA
<213> Artificial Sequence <220>
<223> Description of Artificial Sequence: DNA Primer <400> 23 ctcgtcgacc cattcccggg aaaaaggtag 30 <210> 24 <211> 42 <212> DNA
<213> Artificial Sequence <220>
<223> Description of Artificial Sequence: DNA Primer <400> 24 ctggatccgt atggcggcca ggaggacaCa tgaaagagat cc 42 <210> 25 <211> 30 <212> DNA
<213> Artificial Sequence <220>
<223> Description of Artificial Sequence: DNA Primer <400> 25 ctcgtcgacc cattcccggg aaaaaggtag 30 <210> 26 <211> 28 < 21 2 > DNA
<213> Artificial Sequence <220>
<223> Description of Artificial Sequence: DNA Primer <400> 26 ctcctcgagc taattcccgg gaaaaagg 28 <210> 27 <211> 29 <21 2> DNA
<213> Artificial Sequence <220>
<223> Description of Artificial Sequence: DNA Primer <400> 27 ctcggatccg gacctcagaa gatatgtac 29 <210> 28 <211> 31 <212> DNA
<213> Artificial Sequence <220>
<223> Description of Artificial Sequence: DNA Primer <400> 28 ctcggatccc taattcccgg gaaaaaggta g 31 <210> 29 <211> 29 < 21 2 > DNA
<213> Artificial Sequence <220>
<223> Description of Artificial Sequence: DNA Primer <400> 29 ctcggatcca cactgaagct ttgtccacg 29 <210> 30 <211> 4 <212> PRT
<213> Unknown <220>
<221> UNSURE
<222> (2) .. (3) <223> May be any amino acid <400> 30 Asp Xaa Xaa Asp <210> 31 <211> 13 <212> PRT
<213> Unknown <220>
<223> Description of Unknown Organism: ICE
<400> 31 His Gly Cys Arg Gln Arg Ser Val Trp His Pro Arg Gln <210> 32 <211> 13 <212> PRT
<213> Unknown <220>
<223> Description of Unknown Organism: Caspase-12 <400> 32 His Gly Cys Arg Gln Lys Ser Ile Trp Val Gly Leu Gln <210> 33 <211> 13 < 21 2 > PRT
<213> Unknown <220>
<223> Description of Unknown Organism: Caspase-11 <400> 33 His Gly Cys Arg Gln Arg Ser Leu Tyr Asp Lys His Gln <210> 34 <211> 13 <212> PRT
<213> Unknown <220>
<223> Description of Unknown Organism: Caspase-2 <400> 34 His Gly Cys Arg Gln Arg Ser Ala Met Asn Thr Tyr Pro <210> 35 <211> 13 <21 2> PRT
<213> Unknown <220>
<223> Description of Unknown Organism: Caspase-3 <400> 35 His Gly Cys Arg Gln Arg Ser Tyr Trp Asn Ser Phe Phe <210> 36 <211> 4 <212> PRT
<213> Artificial Sequence <220>
<223> Description of Artificial Sequence: Peptide Inhibitor <400> 36 Tyr Val Ala Asp <210> 37 <211> 4 <212> PRT
<213> Artificial Sequence <220>
<223> Description of Artificial Sequence: Peptide Inhibitor <400> 37 Asp Glu Val Asp <210> 38 <211> 5 <212> PRT
<213> Unknown <220>
<223> Description of Unknown Organism: Pro-caspase-12 <400> 38 Asp Glu Asp Asp Gly

Claims (20)

1. An isolated nucleic acid molecule at least 90% identical to a nucleic acid molecule selected from the group consisting of:
(a) a nucleic acid molecule comprising a nucleotide sequence encoding the amino acid sequence of caspase-12S as shown in Figure 9 (SEQ ID
NO:14);
(b) a nucleic acid molecule comprising a nucleotide sequence encoding the amino acid sequence of caspase-12S as encoded by the cDNA clone contained in ATCC Deposit No. 209710;
(c) a nucleic acid molecule comprising the nucleotide sequence of caspase-12S as shown in Figure 9 (SEQ ID NO:13);
(d) a nucleic acid molecule comprising a nucleotide sequence encoding caspase-12.DELTA. (amino acid residues 95 to 419 of SEQ ID NO:2);
(e) a nucleic acid molecule comprising a nucleotide sequence encoding caspase-12.DELTA. (amino acid residues 145 to 419 of SEQ ID NO:2);
and (f) a nucleic acid molecule comprising a nucleotide sequence complementary to (a), (b), (c), (d) or (e).
2. The nucleic acid molecule of claim 1, wherein said nucleic acid molecule comprises a nucleotide sequence encoding the amino acid sequence of caspase-12S as shown in Figure 9 (SEQ ID NO:14).
3. The nucleic acid molecule of claim 1, wherein said nucleic acid molecule comprises a nucleotide sequence encoding the amino acid sequence of caspase-12S as encoded by the cDNA clone contained in ATCC Deposit No.
209710.
4. The nucleic acid molecule of claim 1, wherein said nucleic acid molecule comprises the nucleotide sequence of caspase-12S as shown in Figure 9 (SEQ ID NO:14)
5. The nucleic acid molecule of claim 1, wherein said nucleic acid molecule comprises a nucleotide sequence encoding caspase-12.DELTA. (amino acid residues 95 to 419 of SEQ ID NO:2).
6. The nucleic acid molecule of claim 1, wherein said nucleic acid molecule comprises a nucleotide sequence encoding caspase-12.DELTA.2 (amino acid residues 145 to 419 of SEQ ID NO:2).
7. A nucleic acid molecule which hybridizes under stringent conditions to the nucleic acid molecule of claim 1.
8. An isolated nucleic acid molecule encoding a caspase-12S
polypeptide, said nucleic acid molecule prepared by a process comprising:
(a) hybridizing a population of nucleic acid molecules to a nucleic acid molecule comprising the sense or antisense nucleotide sequence of SEQ ID NO:13, wherein the hybridization is performed under stringent hybridization conditions;
(b) selecting those nucleic acid molecules of said population that hybridize to said nucleic acid molecule comprising the sense or antisense nucleotide sequence of SEQ ID NO:13; and (c} selecting nucleic acid molecules of (b) that encode caspase-125.
9. The isolated nucleic acid molecule of claim 8, wherein said stringent hybridization conditions comprise:
(a) prehybridizing for 1 hour;

(b) hybridizing overnight at 65°C in the hybridization buffer;
and (c) washing once for 15 minuses in 2xSSC at room temperature, then two times for 30 minutes in 0.1%xSSC and 0.1% SDS at 60°C.
10. A vector comprising the nucleic acid molecule of claim 1.
11. A host transformed with the vector of claim 10.
12. A nucleic acid construct comprising a nucleic acid molecule encoding a caspase-12S polypeptide operably linked to a heterologous promoter.
13. A method for making a caspase-12 polypeptide, comprising:
(a) inserting a nucleic acid molecule of claim 1 into a vector;
(b) transforming a host with said vector; and (c) culturing said host under conditions to induce expression of the caspase-12 polypeptide.
14. An isolated polypeptide at least 90% identical to a polypeptide selected from the group consisting of:
(a) an isolated polypeptide comprising the amino acid sequence of caspase-12S as shown in Figure 9 (SEQ ID NO:14);
(b) an isolated polypeptide comprising the amino acid sequence of caspase-12S as encoded by the cDNA clone contained in ATCC
Deposit No. 209710;
(c) an isolated polypeptide comprising the amino acid sequence of caspase-12.DELTA. (amino acid residues 95 to 419 of SEQ ID NO:2);
and (d) an isolated polypeptide comprising the amino acid sequence of caspase-12.DELTA.2 (amino acid residues 145 to 419 of SEQ ID
NO:2).
15. The isolated polypeptide of claim 14, wherein said polypeptide comprises the amino acid sequence of caspase-12S as shown in Figure 9 (SEQ ID
NO:14).
16. The isolated polypeptide of claim 14, wherein said polypeptide comprises the amino acid sequence of caspase-12S as encoded by the cDNA
clone contained in ATCC Deposit No. 209710.
17. The isolated polypeptide of claim 14, wherein said polypeptide comprises the amino acid sequence of caspase-12.DELTA. (amino acid residues 95 to 419 of SEQ ID NO:2).
18. The isolated polypeptide of claim 14, wherein said polypeptide comprises the amino acid sequence of caspase-12.DELTA.2 (amino acid residues 145 to 419 of SEQ ID NO:2).
19. A method for modulating programmed cell death in a cell comprising contacting said cell with a polypeptide of claim 14.
20. A method for selectively killing fibroblast cells comprising transfecting said cells with a vector of claim 10.
CA002402599A 1998-04-16 1999-04-14 Programmed cell death and caspase-12 Abandoned CA2402599A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US8196298P 1998-04-16 1998-04-16
US60/081,962 1998-04-16
CA002327516A CA2327516A1 (en) 1998-04-16 1999-04-14 Programmed cell death and caspase-12

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CA002327516A Division CA2327516A1 (en) 1998-04-16 1999-04-14 Programmed cell death and caspase-12

Publications (1)

Publication Number Publication Date
CA2402599A1 true CA2402599A1 (en) 1999-10-21

Family

ID=25682272

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002402599A Abandoned CA2402599A1 (en) 1998-04-16 1999-04-14 Programmed cell death and caspase-12

Country Status (1)

Country Link
CA (1) CA2402599A1 (en)

Similar Documents

Publication Publication Date Title
Van de Craen et al. Identification of a new caspase homologue: caspase-14
US6730779B2 (en) Antibody that specifically binds an Mch4 polypeptide
AU752689B2 (en) Truncated Apaf-1 and methods of use thereof
CA2318369A1 (en) Recombinant, active caspases and uses thereof
US6797812B2 (en) Caspase-14, an apoptotic protease, nucleic acids encoding and methods of use
US6716960B2 (en) Mch3, a novel apoptotic protease, nucleic acids encoding and methods of use
US6759227B2 (en) Caspase homologue
AU751167B2 (en) Programmed cell death and caspase-12
US5851815A (en) MCH4 and MCH5, apoptotic proteases
CA2402599A1 (en) Programmed cell death and caspase-12
US6455296B2 (en) Apoptotic protease Mch6, nucleic acids encoding same and methods of use
JP5085570B2 (en) Mch4 and Mch5, apoptotic proteases, encoding nucleic acids, and methods of use
MXPA99011188A (en) Modulators of intracellular inflammation, cell death and cell survival pathways
AU2760502A (en) Truncated Apaf-1 and methods of use thereof

Legal Events

Date Code Title Description
FZDE Dead