CA2390531A1 - ¬(indol-3-yl)-cycloalkyl|-3-substituted azetidines for the treatment of central nervous system disorders - Google Patents

¬(indol-3-yl)-cycloalkyl|-3-substituted azetidines for the treatment of central nervous system disorders Download PDF

Info

Publication number
CA2390531A1
CA2390531A1 CA002390531A CA2390531A CA2390531A1 CA 2390531 A1 CA2390531 A1 CA 2390531A1 CA 002390531 A CA002390531 A CA 002390531A CA 2390531 A CA2390531 A CA 2390531A CA 2390531 A1 CA2390531 A1 CA 2390531A1
Authority
CA
Canada
Prior art keywords
carbon atoms
compound
pharmaceutically acceptable
acceptable salt
azetidin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002390531A
Other languages
French (fr)
Inventor
Magda Asselin
Richard Eric Mewshaw
John Watson Ellingboe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wyeth LLC
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CA2390531A1 publication Critical patent/CA2390531A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/08Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a carbon chain containing alicyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/22Anxiolytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/24Antidepressants

Abstract

This invention provides novel compounds and pharmaceutical compositions and methods of using the compounds in the treatment of central nervous system disorders, such as anxiety and depression, the compounds having formula (I), wherein: X is N-R, O, S(O)m; m is 0 to 2; n is 0 to 4; Ar is an aryl group o f 6 to 12 carbon atoms optionally substituted with 1 to 3 R3 groups, or a heteroaryl group of 4 to 10 carbon atoms optionally substituted with 1 to 3 R3 groups; R and R2 are independently H, straight chain alkyl of 1 to 6 carbon atoms, branched alkyl of 3 to 6 carbon atoms, cycloalkyl of 3 to 6 carbon atoms, alkoxycarbonyl of 1 to 6 carbon atoms, alkylcarbonyl of 1 to 6 carbon atoms, aminocarbonyl, or alkylaminocarbonyl of 1 to 4 carbon atoms; R1 and R 3 are independently H, straight chain alkyl of 1 to 4 carbon atoms, branched alkyl of 3 to 6 carbon atoms, cycloalkyl of 3 to 8 carbon atoms, halo, alkox y group of 1 to 4 carbon atoms, haloalkyl of 1 to 4 carbon atoms, OH, nitro, amino, sulfonyl, CN, carboxy, alkoxycarbonyl of 1 to 4 carbon atoms, alkylcarbonyl of 1 to 4 carbon atoms, aminocarbonyl, or alkylaminocarbonyl o f 1 to 4 carbon atoms; and all crystalline forms or a pharmaceutically acceptable salt thereof.

Description

f (INDOL-3-YL)-CYCLOALKYLI-3-SUBSTITUTED AZETIDINES FOR THE
TREATMENT OF CENTRAL NERVOUS SYSTEM DISORDERS
Field of the Invention This invention relates to new N-(indolyl-cycloalkyl) azetidine derivatives which are useful as pharmaceuticals for the treatment of diseases caused by disorders of the serotonin-affected neurological systems, such as depression and anxiety.
Background of the Invention Pharmaceuticals which enhance serotonergic neurotransmission are useful for the treatment of many psychiatric disorders, including depression and anxiety.
The first generation of non-selective serotonin-affecting drugs operated through a variety of physiological functions which endowed them with several side-effect liabilities.
The more currently prescribed drugs, the selective serotonin (5-HT) reuptake inhibitors (SSRIs), act predominately by inhibiting 5-HT, which is released at the synapses, from being actively removed from the synaptic cleft via a presynaptic serotonin transport carrier.
The present invention relates to a new class of molecules which have the ability to act at the 5-HT transporter. Such compounds are therefore potentially useful for the treatment of depression as well as other serotonin disorders.
Described in WO 95/20588 are compounds of general formula:
W ~ (CH2)r A NRRi Wherein R and RI are each independently hydrogen or C,_a alkyl, or R and R, are linked to form an azetidine ring. These compounds are reported to have activity at the SH'T, receptor and be useful for the treatment of migraine, headache and headache associated with vascular disorder.
Summary of the Invention In accordance with this invention there is provided a group of compounds represented by the formula I:
Rs Ri Ar-(CH2)n I
wherein:
X is N-R, O, S(O)m;
m is an integer of 0 to 2;
n is an integer of 0 to 4;
Ar is an aryl group of 6 to 12 carbon atoms optionally substituted with 1 to 3 groups selected independently from R3, RQ and R5, or a heteroaryl group of 4 to 10 carbon atoms optionally substituted with 1 to 3 selected independently from R3, R, and R~;
R and R~ are independently H, straight chain alkyl of 1 to 6 carbon atoms, branched alkyl of 3 to 6 carbon atoms, cycloalkyl of 3 to 6 carbon atoms, alkoxycarbonyl of 1 to 6 carbon atoms, alkylcarbonyl of 1 to 6 carbon atoms.
aminocarbonyl, or alkylaminocarbonyl of 1 to 4 carbon atoms;
RI, R3, R4 and RS are independently H, straight chain alkyl of 1 to 4 carbon atoms, branched alkyl of 3 to 6 carbon atoms, cycloalkyl of 3 to 8 carbon atoms, halogen, alkoxy group of 1 to 4 carbon atoms, haloalkyl of 1 to 4 carbon atoms, hydroxy, nitro, amino, sulfonyl, cyano, carboxy, alkoxycarbonyl of 1 to 4 carbon atoms, alkylcarbonyl of 1 to 4 carbon atoms, aminocarbonyl, or alkylaminocarbonyl of 1 to 4 carbon atoms;
and all crystalline forms or a pharmaceutically acceptable salt thereof.
In a preferred aspect of this invention are provided compounds of formula I
wherein:
X is O, or NR;
n is an integer of 0 to 1;
Ar is an aryl group of 6 to 10 carbon atoms optionally substituted with 1 to 3 groups selected independently from R3, R~ and R5, or a heteroaryl group of 5 to 10 carbon atoms optionally substituted with 1 to 3 groups selected independently from R3, R; and R5;
R and R~ are independently H, straight chain alkyl of 1 to 6 carbon atoms.
branched alkyl of 3 to 6 carbon atoms, or cycloalkyl of 3 to 6 carbon atoms;
R~, R3, R~ and RS are independently H, straight chain alkyl of 1 to 6 carbon atoms, branched alkyl of 3 to 6 carbon atoms, cycloalkyl of 3 to 6 carbon atoms, halogen, alkoxy of 1 to 4 carbon atoms, haloalkyl of 1 to 4 carbon atoms, hydroxy, nitro, nitrite, amino, sulfonyl, cyano, carboxy, alkoxycarbonyl of 1 to 4 carbon atoms, alkylcarbonyl of 1 to 4 carbon atoms, aminocarbonyl, or alkylaminocarbonyl of 1 to 4 carbon atoms;
and all crystalline forms or a pharmaceutically acceptable salt thereof.
In another preferred group of compounds of this invention:
X is S(O)m;
m is an integer of 0 to 2;
n is an integer of 0 or l;
Ar is an aryl group of 6 to 10 carbon atoms optionally substituted with 1 to 3 groups selected independently from R3, RQ and R5, or a heteroaryl group of 5 to 10 carbon atoms optionally substituted with 1 to 3 groups selected independently from R3, RQ and R5;
R and RZ are independently H, straight chain alkyl of 1 to 6 carbon atoms, branched alkyl of 3 to 6 carbon atoms, or cycloalkyl of 3 to 6 carbon atoms;
R1, R3, R4 and RS are independently selected from H, straight chain alkyl of 1 to 6 carbon atoms, branched alkyl of 3 to 6 carbon atoms, cycloatkyl of 3 to 6 carbon atoms, halogen, alkoxy of 1 to 4 carbon atoms, haloalkyl of 1 to 4 carbon atoms, hydroxy, nitro, nitrite, amino, sulfonyl, cyano, carboxy, alkoxycarbonyt of 1 to 4 carbon atoms, alkylcarbonyl of 1 to 4 carbon atoms, aminocarbonyl, or alkylaminocarbonyl of 1 to 4 carbon atoms;
and all crystalline forms or a pharmaceutically acceptable salt thereof.
A subset of these preferred compounds includes those in which X is S(O)m; m is an integer from 0 to 2; and Ar is a phenyl ring optionally substituted by from 1 to 3 groups independently selected from R3, R~ and R5, defined above.
Aryl, as used herein refers to single or multiple 6 to 12 membered aromatic ring radicals including but not limited to phenyl, naphthalene, anthracene, phenanthrene, indene and indacene, in some embodiments of the present invention, the aryl group may be substituted with one to three groups selected from R3, R4 and R5.
Heteroaryl as used herein refers to single or multiple 5 to 10 membered aromatic ring radicals having from 1 to 3 hetero atoms independently selected from nitrogen, oxygen and sulfur, including, but not limited to, furan, thiophene, pyrrole, imidazole, oxazole, thiazole, isoxazole, pyrazole, isothiazole, oxadiazole, triazole, thiadiazole, quinolizine, quinoline, isoquinoline, cinnoline, phthalazine, quinazoline, quinoxaline, napthyridine, pteridine, pyridine, pyrazine, pyrimidine, pyridazine, pyran, triazine, indole, isoindole, indazole, indolizine, and isobenzofuran.
In some embodiments of the present invention, the heteroaryl group is substituted with one to three groups selected from those of R3, R~ and R5.
Alkyl, whether used alone or as part of another group includes straight and branched chain alkyl groups containing from 1 to 6 carbon atoms, for example, methyl, ethyl, propyl, isopropyl, butyl, i-butyl and t-butyl are encompassed by the term alkyl. In alkyl-containing groups herein, such as alkylcarbonyl and alkylaminocarbonyl groups, the number of carbon atoms listed refers to the alkyl group, itself, and not including the carbonyl carbon. In some embodiments of the present invention alkyl may refer to substituted or unsubstituted alkyl. The substituted alkyl groups in these compounds may be fully substituted, such as with perhalogenated compounds. Other alkyl groups in these definitions may be substituted by from 1 to 3 substituents selected from halogen, hydroxy, CN, NO2, or NH3. The number of carbon number refers to carbon backbone and does not include carbon atoms of substituents such as alkoxy substitutions and the like.
Halogen is preferably fluoro, chloro, bromo or iodo.
Among the most preferred compounds of the present invention are:
{ 1-[cis-4-(5-Fluoro-1H-indol-3-yl)-cyclohexyl]-azetidin-3-yl)-2-methoxy-phenyl )amine;
{ 1-[trans-4-(5-fluoro-1H-indol-3-yl)-cyclohexyl]-azetidin-3-yl)-2-methoxy-phenyl) amine;
3-{cis-4-[3-(3-fluoro-phenoxy)-azetidin-1-yl]-cyclohexyl}-1H-indole-5 carbonitrile;
3-{ trans-4-[3-(3-fluoro-phenoxy)-azetidin-1-yl]-cyclohexyl }-1H-indole-5-carbonitrile;
2-{ cis-4-[3-(3-methoxy-phenoxy)-azetidin-1-yl]-cyclohexyl }-1H-indole-5-carbonitrile;
2-{trans-4-[3-(3-methoxy-phenoxy)-azetidin-1-yl]-cyclohexyl}-1H-indole-5-;

_ '7 _ { 1-[cis-4-(5-fluoro-1H-indol-3-yl)-cyclohexyl]-azetidin-3-yl }-(3-fluoro-phenyl)-arrune;
{ 1-[cis-4-(1H-indol-3-yl)-cyclohexyl]-azetidin-3-yl }-(2-methoxy-phenyl)-amine;
{1-[trans-4-(1H-indol-3-yl)-cyclohexyl]-azetidin-3-yl}-(2-methoxy-phenyl)-amine;
2-{ cis-4-[3-(3-methoxy-phenoxy)-azetidin-1-yl]-cyclohexyl }-1H-indole;
2-{ trans-4-[3-(3-methoxy-phenoxy)-azetidin-1-yl]-cyclohexyl }-1H-indole;
5-fluoro-3-{cis-4-[3-(3-fluoro-phenoxy)-azetidin-1-yl]-cyclohexyl}-1H-indole ;
5-fluoro-3-{trans-4-[3-(3-fluoro-phenoxy)-azetidin-1-yl]-cyclohexyl}-1H-indole ;
5-fluoro-3-{cis-4-[3-(3-methoxy-phenoxy)-azetidin-1-yl]-cyclohexyl}-1H-indole;
5-fluoro-3-{trans-4-[3-(3-methoxy-phenoxy)-azetidin-1-yl]-cyclohexyl }-1H-indole;
3-{cis-4-[3-(3-fluoro-phenoxy)-azetidin-1-yl]-cyclohexyl }-1H-indole;
3-{trans-4-[3-(3-fluoro-phenoxy)-azetidin-1-yl]-cyclohexyl }-1H-indole;
6-fluoro-3-{cis-4-[3-(3-fluoro-phenoxy)-azetidin-1-yl]-cyclohexy1}-1H- indole;
6-fluoro-3-{trans-4-[3-(3-fluoro-phenoxy)-azetidin-1-yl]-cyclohexyl}-1H-indol;
or a pharmaceutically acceptable salt of one or more of these compounds.

_g_ It is understood that the definition of the compounds of formula I, when R, R,, RZ or R3 contain asymmetric carbons, encompass all possible stereoisomers and mixtures thereof which possess the activity discussed below. In particular, it encompasses racemic modifications and any optical isomers which possess the indicated activity. Optical isomers may be obtained in pure form by standard separation techniques.
Pharmaceutically acceptable salts are those derived from such organic and inorganic acids as: lactic, citric, acetic, tartaric, succinic, malefic, malonic, oxalic, fumaric, hydrochloric, hydrobromic, phosphoric, nitric, sulfuric, methanesulfonic, and similarly known acceptable acids. Where R, R1, R, or R; contain a carboxyl group, salts of the compounds of this invention may be formed with bases such as alkali metals (Na, K, Li) or the alkaline earth metals (Ca or Mg).
As mentioned previously, the compounds of formula I have been found to have affinity for the 5-HT reuptake transporter. They are therefore useful in the treatment of diseases affected by disorders of the serotonin affected neurological systems, such as depression, anxiety, sleep disorders, sexual dysfunction, alcohol and cocaine addiction, cognition enhancement and related problems. The present invention accordingly provides methods of treatment or prevention of these maladies, the methods comprising administering to a mammal, preferably a human, in need thereof pharmaceutically effective amount of a compound of this invention, or a pharmaceutically acceptable salt thereof.
This invention also provides pharmaceutical compositions which comprise one or more compounds of this invention, or a pharmaceutically acceptable salt thereof, in combination or association with one or more pharmaceutically acceptable carriers or excipients. The compositions are preferably adapted for oral or subcutaneous administration. However, they may be adapted for other modes of administration.
The compositions of the invention may be formulated with conventional excipients, such as a filler, a disintegrating agent , a binder, a lubricant, a flavoring agent and the like. They are formulated in conventional manner, for example, in a manner similar to that use for known antihypertensive agents, diuretics and (3-blocking agents.
Applicable solid carriers or excipients can include one or more substances which may also act as flavoring agents, lubricants, solubilizers, suspending agents, fillers, glidants, compression aids, binders or tablet-disintergrating agents or an encapsulating material. In powders, the carrier is a finely divided solid which is in admixture with the finely divided active ingredient. In tablets, the active ingredient is mixed with a carrier having the necessary compression properties in suitable proportions and compacted in the shape and size desired. The powders and tablets preferably contain up to 99% of the active ingredient. Suitable solid carriers include, for example, calcium phosphate, magnesium stearate, talc, sugars, lactose, dextrin, starch, gelatin, cellulose, methyl cellulose, sodium carboxymethyl cellulose, polyvinylpyrrolidine, low melting waxes and ion exchange resins.
Liquid carriers may be used in preparing solutions, suspensions, emulsions, syrups and elixirs. The active ingredient of this invention can be dissolved or suspended in a pharmaceutically acceptable liquid carrier such as water, an organic solvent, a mixture of both or pharmaceutically acceptable oils or fat. The liquid carrier can contain other suitable pharmaceutical additives such as solubilizers, emulsifiers, buffers, preservatives, sweeteners, flavoring agents, suspending agents, thickening agents, colors, viscosity regulators, stabilizers or osmo-regulators.
Suitable examples of liquid carriers for oral and parenteral administration include water (particularly containing additives as above e.g. cellulose derivatives, preferably sodium carboxymethyl cellulose solution), alcohols (including monohydric alcohols and polyhydric alcohols e.g. glycols) and their derivatives, and oils (e.g.
fractionated coconut oil and arachis oil). For parenteral administration the carrier can also be an oily ester such as ethyl oleate and isopropyl myristate. Sterile liquid carriers are used in sterile liquid form compositions for parenteral administration.
Liquid pharmaceutical compositions which are sterile solutions or suspensions can be utilized by, for example, intramuscular, intraperitoneal or subcutaneous injection. Sterile solutions can also be administered intravenously. Oral administration may be either liquid or solid composition form.
Preferably the pharmaceutical composition is in unit dosage form, e.g. as tablets or capsules. In such form, the composition is sub-divided in unit dose containing appropriate quantities of the active ingredient; the unit dosage forms can be packaged compositions, for example packeted powders, vials, ampoules, prefilled syringes or sachets containing liquids. The unit dosage form can be, for example, a capsule or tablet itself, or it can be the appropriate number of any such compositions in package form.
In order to obtain consistency of administration, it is preferred that a composition of the invention is in the form of a pharmaceutically effective unit dose.
Suitable unit dose forms include tablets, capsules and powders in sachets or vials.
Such unit dose forms may contain from 0.1 to 100 mg of a compound of the invention and preferably from 2 to 50 mg. Still further preferred unit dosage forms contain 5 to 25 mg of a compound of the present invention. The compounds of the present invention can be administered orally at a dose range of about 0.01 to mg/kg or preferably at a dose range of 0.1 to 10 mg/kg. Such compositions may be administered from 1 to 6 times a day, more usually from 1 to 4 times a day.
The following specific examples illustrate the synthetic procedures for the preparation of intermediates and invention compounds and should not be construed as limiting the scope of this disclosure. Those skilled in the art of organic synthesis may be aware of still other routes to prepare compounds of this invention.
Reactants and intermediates are either commercially available or can be prepared according to standard literature procedures.
In accordance with the present invention, compounds of formula I may be prepared by Scheme I

Scheme I
/~ Rs v-i X \NH R2 (2) NaBH(OAc)3, HOAc DCE, 23°C, 12 hours -R~
R- \

(I) R2 Thus, a compound of formula (2) is reacted with a compound of formula (3) in the presence of a reducing reagent such as sodium triacetoxyborohydride, and acetic acid in a solvent such as dichloroethane at 23 °C to give a compound of formula I in accordance with the procedure described by Abdel-Magid, Carson, Harris, Maryanoff and Shah in J. Org. Chem. 1996, 61, 3849.
In accordance with the present invention, compounds of formula (3) may be prepared by Scheme II.

Scheme II

I
KOH, MeOH, 65°C
R~ ~4) ~ 5 v 2 Ri ( ) R

H2, 5% P~
H CI
EtOH, 2~ THF/H2C
R1 W) R2 R1 ~s) v Thus a compound of formula (4) is reacted with 1,4-cyclohexanedione monoethylene ketal, potassium hydroxide in methanol at 65 °C to give compounds of formula (5) as described by Wustrow et al. in J. Med. ChenZ. 1997, 40, 250.
Hydrogenation to a compound of formula (6) can be realized by treatment in suitable solvents such as an alcohol, but not limited to ethanol with H, and 5% Pd/C.
Hydrolysis to a compound of formula (3) can be carried out using 1N HCl in a 1:1 mixture of THF and water.

In accordance with the present invention, compounds of formula (2) may be prepared by Scheme III.
Scheme III

OH TEA/CH2C1' oSO2CH3 (7) XH
Rs s II R3 HCOOH4/10% Pd/C
MeOH
Thus, a compound of formula (7) is prepared by reaction of N-benzhydryl-3-hydroxyazetidine with methanesulfonyl chloride and triethylamine in a solvent such as dichloromethane. Compound (7) is reacted with a compound of formula (9) in the presence of a base such as potassium carbonate in a solvent such as acetonitrile to yield a compound of formula (8). Deprotection of the azetidine nitrogen with ammonium formate in an alcoholic solvent such as methanol yields a compound of formula (2).
Compounds of formula (2) where X is NR are prepared according to scheme IV. Standard N-alkylation methods may be used to convert a compound of formula (9) where R is hydrogen to a compound of formula (9) where R is alkyl.
Scheme IV
R
~H
NH 1 ) HCOOC2H5 R3 ~ 2) LAH ~ R3 I
/ (9) R = alkyl R=H
1-(Diphenylmethyl)-3-methane sulfonyl azetidinE

R
HN~\
HCOONH ,~/4 10% Pd/C >
(2) While the reaction schemes above show intermediates substituted only by R3 groups, the presence of optional RQ and RS groups in these compounds is understood.
The present invention further provides a compound of the invention for use as an active therapeutic substance. Compounds of formula I are of particular use in the treatment of diseases affected by disorders of the serotonin.
The present invention further provides a method of treating depression and anxiety in mammals including man, which comprises administering to the afflicted mammal an effective amount of a compound or a pharmaceutical composition of the invention.
The following examples are presented to illustrate rather than limit the present invention.

Examples The 5-HT transporter affinity of the compounds of this invention was established in accordance with standard pharmaceutically accepted test procedures with representative compounds as follows:
Rat Brain 3H-Paroxetine Binding Assay (RB 5HT Transporter):
The following assay was used to determine a compound's affinity for the 5-HT transporter.
A protocol similar to that used by Cheetham et. al. (Neuropharmacol.. 1993, 32, 737) was used. Briefly, frontal cortical membranes prepared from male S.D.
rats were incubated with 3H-paroxetine (0.1 nM) for 60 min. at 25 °C. All tubes also contained either vehicle, test compound (one to eight concentrations), or a saturating concentration of fluoxetine (10 ~.M) to define specific binding. All reactions are terminated by the addition of ice cold Tris buffer followed by rapid filtration using a Tom Tech filtration device to separate bound from free 3H-paroxetine. Bound radioactivity was quantitated using a Wallac 1205 Beta Plate~ counter.
Nonlinear regression analysis was used to determine ICso values which were converted to K;
values using the method of Cheng and Prusoff (Biochem. Pharmacol. 1973, 22, 3099):
ICso - _____________ K. -Radioligand concentration/(1+KD) Inhibition of 'H-5-HT Uptake by cells Possessing the Human 5-HT Transporter (HC
SHT Transporter):
A human carcinoma cell line (Jar cells) possessing low endogenous levels of the 5-HT-transporter are seeded into 96 well plates and treated with staurosporine at least 18 h prior to assay. [Staurosporine greatly increases the expression of the 5-HT-transporter.] On the day of assay, vehicle, excess of fluoxetine, or test compound is added to various wells on the plate. All wells then receive 'H-5-HT and are incubated at 37 °C for 5 min. The wells are then washed with ice cold 50 mM Tris HCl (pH
7.4) buffer and aspirated to remove free 3H-5-HT. 25 ~,1 of 0.25 M NaOH is then added to each well to lyse the cells and 75 p1 scintillation cocktail (MicroscintTM 20) added prior to quantitation on a Packard TopCount machine. Tubes with vehicle represent total possible uptake, radioactivity counted in tubes with fluoxetine represent nonspecific binding/uptake and is subtracted from the total possible uptake to give total possible specific uptake. This nonspecific binding (usual low in number) is then subtracted from the counts obtained in wells with various test compounds (or different concentrations of test drug) to give specific uptake in the presence of drug.
Specific uptake is then expressed as a % of control values and is analyzed using nonlinear regression analysis (Prizm) to determine ICSo values. If the compound is active at inhibiting 5-HT uptake, its counts will be close to that obtained with fluoxetine.
Results from these two assays are presented below in Table I.

Table I
Compound n RB SHT TransporterHC SHT Transporter K; (nM) ICSO (nM) Example 1 15.0 962 1 a Example 1 17.0 591 1b Example 1 16.0 336.50 2a Example 1 48.0 282 2b Example 1 2.38 91 3a Example 1 11.0 232 3b Example 1 18.0 6390 Example 1 124 -Sa Example 1 34.0 -Sb Example 1 120.0 -6a Example 1 - -6b Example 1 257 -7a Example 1 68 6000 7b Example 1 24.0 6000 8a Example 1 45.0 1500 8b Example 1 275.0 -9a Example 1 455.0 -9b Example 1 190 -10a Example 1 73 4600 lOb Example la { 1-[cis-4-(5-Fluoro-1H-indol-3-yl)-cyclohexyl]-azetidin-3-yl)-2-methoxy-phenyl)-amine Step 1 4-(5-Fluoro-1H-3-indolyl)-cyclohex-3-ene-ethylene ketal 5-Fluoroindole (4.96, 0.036 mol), 1,4-cyclohexanedione monoethylene ketal (7.17 g, 0.046 mol) and potassium hydroxide (6 g, 0.043 mol) were heated to reflux in 70 mI, of methanol for 6 h. The reaction was cooled and the product was isolated by filtration and washed with water to give 8.59 g (86%) of product as a white solid:
mp 153-155°C.
Step 2 4-(5-Fluoro-1H-3-indolyl)-cyclohexanone ethylene ketal A mixture of 4-(5-fluoro-1H-3-indolyl)-cyclohex-3-en-ethylene ketal (8.5 g) and 10% palladium on carbon (2.72 g) in ethanol (200 mL) was hydrogenated for 5 h.
The catalyst was filtered off and the solvent was removed under vacuum.
Chromatography (methanol-methylene chloride) afforded 7.55 g (82 %) of product as a white solid: mp 183-185°C.

Step 3 4-(5-Fluoro-1H-3-indolyl)-cyclohexanone A solution of 4-(5-fluoro-1H-3-indolyl)-cyclohexanone ethylene ketal (2.8 g, mmol) in 2 L of 1:l tetrahydrofuran-hydrochloric acid (1N) was allowed to stir at 10 room temperature for 16 h. The solvent was evaporated under vacuum. The crude product was dissolved in ethyl acetate, washed with 1N sodium hydroxide (3 x mL). The organic layer was dried over anhydrous sodium sulfate, and filtered.
Chromatography (40% ethyl acetate/hexanes) afforded 2.1 g (91 %) of product as a yellow solid: mp 112-114°C.
Step 4 1-(Diphenylmethyl)-3-methane sulfonyl azetidine To a cold solution of 34 g (0.142 mol) of 1-(diphenylmethyl)-3-hydroxyazetidine in 200 mL of CHZCIZ was added 30 mL (212 mol) of triethylamine.
To the cold mixture a solution of 19.5 g (0.171 mol) of methanesulfonyl chloride in 50 mL of CHZC12 was added dropwise. The reaction was stirred at room temperature for 2 h. Water was added and the methylene chloride was removed under vacuo.
The product was extracted with ether, the combined extracts were dried over anhydrous sodium sulfate, and filtered to yield 36 g of product. 'H NMR (300 MHz, CDC13) 2.98 (s, 3H), 3.21 (m, 2H), 3.66 (m, 2H), 4.39 (s, 3H), 5.10 (m, 1H), 7.22 (m, 2H), 7.27 (m, 4H), 7.38 (m, 4H).

Step 5 (1-Benzhydryl-azetidin-3-yl)-(2-methoxy-phenyl)-amine To a solution of 4.1 g (0.033 mol) of o-anisidine in 20 mL DMF, 4.6 g (0.033 mol) of K,C03 was added, followed by 9.5g (0.030 mol) of 1-(diphenylmethyl)-3-methane sulfonyl azetidine. The reaction was heated at 80 °C for 5 h.
Water was added and the product was extracted with ether. The organic phase was dried and the solvent was removed under vacuo. The residue was filtered through silica gel, starting with 100% methylene chloride, then 25% ethyl acetate/hexane to give 1.5 g of the desired product: mp 75-77 °C. 'H NMR (300 MHz, CDC13) 8 2.89 (dd, 2H), 3.70 (dd, 2H), 3.84 (s, 3H), 4.13 (m, 1H), 4.40 (m, 1H), 4.38 (s,lH), 6.42 (dd,lH), 6.69 (dd, 1H), 6.79 (m, 2H), 7.20 (m, 2H), 7.26 (m, 4H), 7.42 (m, 4H); MS (ES) m/z (relative intensity): 345 (M'+H).
Elemental analysis for C23HZQN20 Calculated: C, 80.20; H, 7.02; N, 8.13 Found: C, 80.53; H, 7.17; N, 8.13.
Step 6 Azetidin-3-yl-(2-methoxy-phenyl- amine) A solution of 2.0 g of (1-benzhydryl-azetidin-3-yl)-(2-methoxyphenyl)-amine in 30 mL of methanol was added to a suspension of 10°lo Pd/C in methanol. 4.0 g of ammonium formate was added portion wise and the reaction was heated under reflux for 2 h. The mixture was cooled, filtered over celite, the filtrate was evaporated. The residue was triturated with CHZCI=, and filtered. The filtrate was evaporated to give 0.840 g of the desired product.

Step 7 { 1-[cis-4-(5-Fluoro-1H-indol-3-yl)-cyclohexyl]-azetidin-3-yl)-2-methoxy-phenyl)-amine To a solution of 0.170 g of (1-benzhydryl-azetidin-3-yl)-(2-methoxy-phenyl)-amine in 10 mL of CHZCI" was added 4-(5-fluoro-1-H-3-indolyl)-cyclohexanone followed by 0.420 g of sodium triacetoxyborohydride. The reaction was stirred at room temperature overnight. It was quenched with 1N NaOH, and the product was extracted with ether. The organic phase was washed with water and dried over magnesium sulfate. The product was filtered through 150 mL of silica gel using 50%
ethyl acetate/hexanes, 75% ethyl acetate/hexanes, and finally 100% ethyl acetate to give 0.150 g of the desired product: mp 158-160 °C. 'H NMR (300 MHz, CDCI3) 8 1.50-1.94 (m, 8H), 2.28 (m, 1H), 2.84-2.90 (m, 2H), 3.80-3.85 (m, 5H), 4.08-4.14 (m, 1H), 4.38 (m, 1H), 6.51-6.68 (dd, 1H), 6.69-6.91 (m, 4H), 7.07 (d, 1H), 7.24-7.28 (m, 2H), 8.02 (s, 1H); MS (ES) m/z (relative intensity): 394 (M++H).
Example 1b { 1-[trans-4-(5-Fluoro-1H-indol-3-yl)-cyclohexyl]-azetidin-3-yl)-2-methoxy-phenyl)-amine F
~~ WI
N N
NH

The trans isomer of the compound of Example la was isolated at the same time as the cis isomer as an off white solid (0.045 g): mp 73-76 °C. MS
(ES) m/z (relative intensity): 394 (M++H).
Example 2a 3-(cis-4-[3-(3-Fluoro-phenoxy)-azetidin-1-yl]-cyclohexyl)-1H-indole-5-carbonitrile Step 1 4-(5-Cyano-1H-3-indolyl)-cyclohex-3-ene-ethylene ketal The title compound was prepared according to the procedure of Example la, Step 1 except that 5-cyanoindole was used in place of 5-fluoroindole. Yield:
50%;
mp 158-160 °C.
Step 2 4-(5-Cyano-1H-3-indolyl)-cyclohexanone ethylene ketal The title compound was prepared according to the procedure of Example la, Step 2, using 4-(5-cyano-1H-3-indolyl)-cyclohex-3-ene-ethylene ketal. Yield:
95%;
mp 153-155 °C.

Step 3 3-(4-Oxo-cyclohexyl)-1H-indole-5-carbonitrile The title compound was prepared according to the procedure of Example 1, Step 3, except that 4-(5-cyano-1H-3-indolyl)-cyclohexanone ethylene ketal was used.
Yield: 81%; mp 162-164 °C.
Step 4 1-Benzhydryl- 3-(3-Fluoro-phenoxy)-azetidine To a solution of 3.9 g (0.035 mol) of 3-fluorophenol in 250 mL of acetonitrile, was added 6.3 g (0.045 mol) of KZC03 followed by 12.25 g (0.039 mol) of 1-(diphenylmethyl)-3-methane sulfonyl azetidine, prepared according to the procedure of Example la, Step 4. The reaction mixture was heated at 75 °C for 18 h.
The solvent was removed under vacuo, and the residue was taken up in a mixture of ether and water. The aqueous layer was extracted with ether, the combined extracts were dried over magnesium sulfate, and the solvent was removed under vacuo.
The product was filtered through 500 mL of silica gel, eluted with 50%
CHzCl2/hexane then 15% ethyl acetate/hexane to give 3.4 g of the title compound: mp 81-82 °C. 'H
NMR (300 MHz, CDC13) 8 3.17 (dd, 2H), 3.72 (dd, 2H), 4.46 (s, 1H), 4.77 (m, 1H), 6.48 (dd, 1H), 6.53 (dd, 1H), 6.63 (m, 1H), 7.22 (m, 3H), 7.29 (m, 4H), 7.31 (dd, 4H); MS (ES) m/z (relative intensity): 334 (M++H).

Step 6 3-(3-Fluoro-phenoxy)-azetidine A solution of 2.50 g of 1-benzhydryl-3-(3-fluoro-phenoxy)-azetidine in 10 mL of THF was added to a suspension of 10% Pd/C in methanol. Ammonium formate (4.6g) were added portion wise and the reaction was heated under reflux for 3 h. The mixture was cooled, filtered through celite, and the filtrate was concentrated. The residue was triturated with CH~C12 and filtered. The filtrate was concentrated to give 0.840 g of the desired product.
Step 7 3-(cis-4-[3-(3-Fluoro-phenoxy)-azetidin-1-yl]-cyclohexyl)-1H-indole-5-carbonitrile To a solution of 0.170 g of 3-(3-fluoro-phenoxy)-azetidine in 10 mL of CHzCl2 was added 0.180 g of 3-(4-oxo-cyclohexyl)-1H-indole-5-carbonitrile followed by 0.420 g of sodium triacetoxyborohydride. The reaction was stirred at room temperature overnight. It was quenched with 1N NaOH and the product was extracted with ether. The organic phase was washed with water, dried over magnesium sulfate, filtered, and concentrated. The product was filtered through 150 mL of silica gel using 50% ethyl acetate/hexane, 75% ethyl acetate/hexane and finally 100% ethyl acetate to give 0.095 g of the desired product: mp 187-190 °C. 'H NMR
(300 MHz, CDCl3) 8 1.51-1.65 (m, 2H), 1.69-1.75 (m, 4H), 1.77-1.90 (m, 2H), 2.45 (m, 1H), 2.90 (m, 1H), 3.03 (dd, 2H), 3.81 (dd, 2H), 4.77 (m, 1H), 6.53-6.59 (m, 2H), 6.66 (m, 1H), 7.13-7.22 (m, 2H), 7.39 (dd, 2H), 8.00 (s, 1H), 8.28 (s, 1H); MS
(ES) m/z (relative intensity): 390 (M++H).
Elemental analysis for Cz4HZ4FN3O

Calculated: C, 74.01; H, 6.21; N, 10.79 Found: C, 73.95; H, 6.24; N, 10.45.
Example 2b 3-(trans-4-[3-(3-Fluoro-phenoxy)-azetidin-1-yl]-cyclohexyl)-1H-indole-5-carbonitrile N
NH
The trans isomer of the compound of Example 2a was isolated at the same time as the cis isomer as a white solid (0.037 g): mp 186-192 °C. 'H
NMR (300 MHz, CDC13) 8 1.98-1.33 (m, 2H), 1.45-1.49 (m, 2H), 1.95-1.99 (m, 2H), 2.14-2.23 (m, 3H), 2.73-2.83 (m,lH), 3.17 (dd, 2H), 3.89 (dd, 2H), 4.78 (m, 1H), 6.48-6.70 (m, 3H), 7.06 (d, 1H), 7.18-7.24 (m, 2H), 7.40 (dd, 2H), 8.00 (s, 1H), 8.23 (s, 1H); MS
(ES) m/z (relative intensity): 390 (M++H).

Example 3a 2-{cis-4-[3-(3-Methoxy-phenoxy)-azetidin-1-yl]-cyclohexyl}-1H-indole-5 carbonitrile The title compound was prepared according to the procedure of Example 2a, using m-methoxy-phenol in Step 5, and 3-(4-oxo-cyclohexyl)-1H-indole-5-carbonitrile in Step 7. mp 126-127 °C. MS (ES) m/z (relative intensity): 402 (M++H).
Example 3b 2-{trans-4-[3-(3-Methoxy-phenoxy)-azetidin-1-yl]-cyclohexyl}-1H-indole-5-carbonitrile N
~~~ill H3C0 ~ O 'N ~ NH

The trans isomer of the compound of Example 3a was isolated at the same time as the cis isomer as a white solid (O.OSSg ): mp 58-62 °C. MS (ES) m/z (relative intensity): 402 (M'+H).
Example 4 {1-[cis-4-(5-Fluoro-1H-indol-3-yl)-cyclohexyl]-azetidin-3-yl}-(3-fluoro-phenyl)-amine The title compound was prepared according to the procedure of Example la, Step 5 using m-fluoroaniline: mp 67-70 °C. MS (ES) m/z (relative intensity): 382 (M++H).

Example Sa { 1-[cis-4-(1H-Indol-3-yl)-cyclohexyl]-azetidin-3-yl}-(2-methoxy-phenyl)-amine The title compound was prepared according to the procedure of Example 1 a, using 3-(4-oxo-cyclohexyl)-1H-indole in Step 7: mp 67-70 °C. MS (ES) m/z (relative intensity): 382 (M'+H).
Example Sb {1-[trans-4-(1H-Indol-3-yl)-cyclohexyl]-azetidin-3-yl}-(2-methoxy-phenyl)-amine H3C N ~N ~~ ~nl \ NH
The trans isomer of the compound of Example Sa was isolated at the same time as the cis isomer as an off white solid (0.045 g): mp 73-76 °C. MS
(ES) m/z (relative intensity): 394 (M'+H).

Example 6a 2-{cis-4-[3-(3-Methoxy-phenoxy)-azetidin-1-yl]-cyclohexyl}-1H-indole O

The title compound was prepared according to the procedure of Example 2a, using m-methoxy-phenol in Step 5, and 3-(4-oxo-cyclohexyl)-1H-indole in Step 7:
mp 126-127 °C. MS (ES) m/z (relative intensity): 383 (M++H).
Elemental analysis for Cz3H2~F,NZOZ
Calculated: C, 72.23; H, 6.33; N, 7.32 Found: C, 72.43; H, 5.88; N, 7.07.
Example 6b 2-{trans-4-[3-(3-Methoxy-phenoxy)-azetidin-1-yl]-cyclohexyl}-1H-indole ~~~iii N

The trans isomer of the compound of Example 6a was isolated at the same time as the cis isomer as an off white solid: mp 52-57 °C. MS (ES) m/z (relative intensity): 383 (M++H).
Example 7a 5-Fluoro-3-{cis-4-[3-(3-fluoro-phenoxy)-azetidin-1-yl]-cyclohexyl}-1H-indole F
O
F
The title compound was prepared according to the procedure of Example 2a, Step 7 using 4-(5-fluoro-1H-3-indolyl)-cyclohexanone: mp 119-125 °C.
MS (ES) m/z (relative intensity): 383 (M++H).

Example 7b 5-Fluoro-3-{trans-4-[3-(3-fluoro-phenoxy)-azetidin-1-yl]-cyclohexyl}-1H-indole F
~ n11 NH
The trans isomer of the compound of Example 7a was isolated at the same time as the cis isomer as an off white solid: mp 52-57 °C. MS (ES) m/z (relative intensity): 395 (M'+H).
Example 8a 5-Fluoro-3-{cis-4-[3-(3-methoxy-phenoxy)-azetidin-1-yl]-cyclohexyl}-1H-indole The title compound was prepared according to the procedure of Example 2a, using m-methoxy-phenol in Step 5, and 4-(5-fluoro-1H-3-indolyl)-cyclohexanone in Step 7: mp 125-127 °C. MS (ES) m/z (relative intensity): 395 (M++H).

Example 8b 5-Fluoro-3-{trans-4-[3-(3-methoxy-phenoxy)-azetidin-1-yl]-cyclohexyl}-1H-indole F
O ~N .~nII \
H3C0 ~ NH
The trans isomer of the compound of Example 8a was isolated at the same time as the cis isomer as a white solid (0.055 g): mp 59-63 °C. MS (ES) m/z (relative intensity): 395 (M++H).
Elemental analysis for CZaH2,FN~OZ
Calculated: C, 73.07; H, 6.90; N, 7.10 Found: C, 72.98; H, 7.32; N, 6.51.
Example 9a 3-{4-[3-(3-Fluoro-phenoxy)-azetidin-1-yl]-cyclohexyl}-1H-indole O
F

The title compound was prepared according to the procedure of Example 2a, using 3-(4-oxo-cyclohexyl)-1H-indole in Step 7: mp 114-117 °C. MS (ES) m/z (relative intensity): 365 (M++H).
Example 9b 3-{4-[3-(3-Fluoro-phenoxy)-azetidin-1-yl]-cyclohexyl}-1H-indole ~~~il NH
The trans isomer of the compound of Example 9a was isolated at the same time as the cis isomer as a white solid (0.055 g): mp 146-148 °C. MS
(ES) m/z (relative intensity): 365 (M'+H).
Example 10a 6-Fluoro-3-{4-[3-(3-fluoro-phenoxy)-azetidin-1-yl]-cyclohexyl}-1H-indole y F

The title compound was prepared according to the procedure of Example 2a, using 4-(5-fluoro-1H-3-indolyl)-cyclohexanone in step 7: mp 117-123 °C.
MS (ES) m/z (relative intensity): 383 (M++H).
Elemental analysis for CZ3H24F2N0 Calculated: C, 72.23; H, 6.33; N, 7.32 Found: C, 72.19; H, 6.49; N, 7.13.
Example lOb 6-Fluoro-3-{4-[3-(3-fluoro-phenoxy)-azetidin-1-yl]-cyclohexyl}-1H-indole F
O 'N ~.y I
F ~ ~ NH
The trans isomer of the compound of Example 10a was isolated at the same time as the cis isomer as a white solid: mp 111-114 °C. MS (ES) m/z (relative intensity): 383 (M++H).
Example 11 N-methyl o-Anisidine ~Hs NH

A solution of 12.3 g of o-anisidine in 50 mL of ethyl formate was heated under reflux for 6 h. Excess ethyl formate was removed under vacuo. The residue was washed with ether to give 10.0 g of N-formyl o-anisidine.
To a cold solution of 9.0 g of N-formyl o-anisidine in 50 mL of THF was added 66 mL of a 1M solution of LAH in THF dropwise at 0 °C. After complete addition the reaction mixture was stirred at 0 °C for one h. The reaction was then quenched with ethyl acetate, then with a saturated solution of NHQCI. The mixture was extracted with ether, the combined extracts were dried over magnesium sulfate, and the solvent was removed to give 6.0 g of product. 'H NMR (300 MHz, CDC13) 2.85 (s, 3H), 3.83 (s, 3H), 4.16 (s, 1H), 6.61 (dd, 1H), 6.69 (m, 1H), 6.75 (dd, 1H), 6.87 (m, 1H).
Example 12 (1-Benzhydryl-azetidin-3-yl)-(2-methoxy-phenyl)-methyl-amine N
To a solution of 0.65 g of N-methyl o-anisidine in 15 mL of acetonitrile, was added 0.280g of KzC03, followed by 0.650g of 1-(diphenylmethyl)-3-methane sulfonyl azetidine. The reaction mixture was heated at 80 °C for 1 h then at 50 °C
overnight. Water was added and the mixture was extracted with ether. The organic phase was dried and the solvent was removed under vacuo. The product was filtered through 100 mL of silica gel, eluting with 15% ethyl acetate/hexanes then 25%
ethyl acetate/hexanes to give 0.200 g of the desired product: mp 91-95 °C. MS
(ES) m/z (relative intensity): 356 (M++H).
Elemental analysis for CZ~Hz6NZ0 Calculated: C, 80.41; H, 7.31; N, 7.81 Found: C, 80.57; H, 7.39; N, 7.69.

Claims (30)

What is Claimed:
1. A compound of the formula:

wherein:
X is N-R, O, S(O)m;
m is an integer of 0 to 2;
n is an integer of 0 to 4;
Ar is an aryl group of 6 to 12 carbon atoms optionally substituted with 1 to 3 groups selected independently from R3, R4 and R5, or a heteroaryl group of 4 to 10 carbon atoms optionally substituted with 1 to 3 groups selected independently from R3, R4 and R5;
R and R2 are independently H, straight chain alkyl of 1 to 6 carbon atoms, branched alkyl of 3 to 6 carbon atoms, cycloalkyl of 3 to 6 carbon atoms, alkoxycarbonyl of 1 to 6 carbon atoms, alkylcarbonyl of 1 to 6 carbon atoms, aminocarbonyl, or alkylaminocarbonyl of 1 to 4 carbon atoms;
R1, R3, R4 and R5 are independently H, straight chain alkyl of 1 to 4 carbon atoms, branched alkyl of 3 to 6 carbon atoms, cycloalkyl of 3 to 8 carbon atoms, halogen, alkoxy group of 1 to 4 carbon atoms, haloalkyl of 1 to 4 carbon atoms, hydroxy, nitro, amino, sulfonyl, cyano, carboxy, alkoxycarbonyl of 1 to 4 carbon atoms, alkylcarbonyl of 1 to 4 carbon atoms, aminocarbonyl, or alkylaminocarbonyl of 1 to 4 carbon atoms;
and all crystalline forms or a pharmaceutically acceptable salt thereof.
2. A compound of Claim 1 wherein:
X is O, or NR;
n is an integer of 0 to 1;
Ar is an aryl group of 6 to 10 carbon atoms optionally substituted with 1 to 3 groups selected independently from R3, R4 and R5, or a heteroaryl group of 5 to 10 carbon atoms optionally substituted with 1 to 3 groups selected independently from R3, R4 and R5;
R and R2 are independently H, straight chain alkyl of 1 to 6 carbon atoms, branched alkyl of 3 to 6 carbon atoms, or cycloalkyl of 3 to 6 carbon atoms;
R1, R3, R4 and R5 are independently H, straight chain alkyl of 1 to 6 carbon atoms, branched alkyl of 3 to 6 carbon atoms, cycloalkyl of 3 to 6 carbon atoms, halogen, alkoxy of 1 to 4 carbon atoms, haloalkyl of 1 to 4 carbon atoms, hydroxy, nitro, nitrite, amino, sulfonyl, cyano, carboxy, alkoxycarbonyl of 1 to 4 carbon atoms, alkylcarbonyl of 1 to 4 carbon atoms, aminocarbonyl, or alkylaminocarbonyl of 1 to 4 carbon atoms;
or a pharmaceutically acceptable salt thereof.
3. A compound of Claim 1 wherein:
X is S(O)m;
m is an integer of 0 to 2;
n is an integer of 0 to 1;

Ar is an aryl group of 6 to 10 carbon atoms optionally substituted with 1 to 3 groups selected independently from R3, R4 and R5, or a heteroaryl group of 5 to 10 carbon atoms optionally substituted with 1 to 3 groups selected independently from R3, R4 and R5;
R and R2 are independently H, straight chain alkyl of 1 to 6 carbon atoms, branched alkyl of 3 to 6 carbon atoms, or cycloalkyl of 3 to 6 carbon atoms;
R1, R3, R4 and R5 are independently H, straight chain alkyl of 1 to 6 carbon atoms, branched alkyl of 3 to 6 carbon atoms, cycloalkyl of 3 to 6 carbon atoms, halogen, alkoxy of 1 to 4 carbon atoms, haloalkyl of 1 to 4 carbon atoms, hydroxy, nitro, nitrite, amino, sulfonyl, cyano, carboxy, alkoxycarbonyl of 1 to 4 carbon atoms, alkylcarbonyl of 1 to 4 carbon atoms, aminocarbonyl, or alkylaminocarbonyl of 1 to 4 carbon atoms;
or a pharmaceutically acceptable salt thereof.
4. A compound of Claim 1 which is {1-[cis-4-(5-Fluoro-1H-indol-3-yl)-cyclohexyl]-azetidin-3-yl)-2-methoxy-phenyl )amine; or a pharmaceutically acceptable salt thereof.
5. A compound of Claim 1 which is {1-[trans-4-(5-fluoro-1H-indol-3-yl)-cyclohexyl]-azetidin-3-yl)-2-methoxy-phenyl) amine; or a pharmaceutically acceptable salt thereof.
6. A compound of Claim 1 which is 3-{cis-4-[3-(3-fluoro-phenoxy)-azetidin-1-yl]-cyclohexyl}-1H-indole-5 carbonitrile; or a pharmaceutically acceptable salt thereof.
7. A compound of Claim 1 which is 3-{trans-4-[3-(3-fluoro-phenoxy)-azetidin-1-yl]-cyclohexyl}-1H-indole-5-carbonitrile; or a pharmaceutically acceptable salt thereof.
8. A compound of Claim 1 which is 2-{cis-4-[3-(3-methoxy-phenoxy)-azetidin-1-yl]-cyclohexyl}-1H-indole-5-carbonitrile; or a pharmaceutically acceptable salt thereof.
9. A compound of Claim 1 which is 2-{trans-4-[3-(3-methoxy-phenoxy)-azetidin-1-yl]-cyclohexyl}-1H-indole-5-; or a pharmaceutically acceptable salt thereof.
10. A compound of Claim 1 which is {1-[cis-4-(5-fluoro-1H-indol-3-yl)-cyclohexyl]-azetidin-3-yl}-(3-fluoro-phenyl)-amine; or a pharmaceutically acceptable salt thereof.
11. A compound of Claim 1 which is {1-[cis-4-(1H-indol-3-yl)-cyclohexyl]-azetidin-3-yl}-(2-methoxy-phenyl)-amine; or a pharmaceutically acceptable salt thereof.
12. A compound of Claim 1 which is {1-[trans-4-(1H-indol-3-yl)-cyclohexyl]-azetidin-3-yl}-(2-methoxy-phenyl)-amine; or a pharmaceutically acceptable salt thereof.
13. A compound of Claim 1 which is 2-{cis-4-[3-(3-methoxy-phenoxy)-azetidin-1-yl]-cyclohexyl}-1H-indole; or a pharmaceutically acceptable salt thereof.
14. A compound of Claim 1 which is 2-{trans-4-[3-(3-methoxy-phenoxy)-azetidin-1-yl]-cyclohexyl}-1H-indole; or a pharmaceutically acceptable salt thereof.
15. A compound of Claim 1 which is 5-fluoro-3-{cis-4-[3-(3-fluoro-phenoxy)-azetidin-1-yl]-cyclohexyl}-1H-indole; or a pharmaceutically acceptable salt thereof.
16. A compound of Claim 1 which is 5-fluoro-3-{trans-4-[3-(3-fluoro-phenoxy)-azetidin-1-yl]-cyclohexyl}-1H-indole; or a pharmaceutically acceptable salt thereof.
17. A compound of Claim 1 which is 5-fluoro-3-{cis-4-[3-(3-methoxy-phenoxy)-azetidin-1-yl]-cyclohexyl}-1H-indole; or a pharmaceutically acceptable salt thereof.
18. A compound of Claim 1 which is 5-fluoro-3-{trans-4-[3-(3-methoxy-phenoxy)-azetidin-1-yl]-cyclohexyl}-1H-indole;
19. A compound of Claim 1 which is 3-{cis-4-[3-(3-fluoro-phenoxy)-azetidin-1-yl]-cyclohexyl}-1H-indole; or a pharmaceutically acceptable salt thereof.
20. A compound of Claim 1 which is 3-{trans-4-[3-(3-fluoro-phenoxy)-azetidin-1-yl]-cyclohexyl}-1H-indole; or a pharmaceutically acceptable salt thereof.
21. A compound of Claim 1 which is 6-fluoro-3-{cis-4-[3-(3-fluoro-phenoxy)-azetidin-1-yl]-cyclohexyl}-1H- indole; or a pharmaceutically acceptable salt thereof.
22. A compound of Claim 1 which is 6-fluoro-3-{trans-4-[3-(3-fluoro-phenoxy)-azetidin-1-yl]-cyclohexyl}-1H- indol; or a pharmaceutically acceptable salt thereof.
23. A compound of the formula:

wherein:
X is N-R, O, S(O)m;
m is an integer of 0 to 2;
n is an integer of 0 to 4;
R and R2 are independently H, straight chain alkyl of 1 to 6 carbon atoms, branched alkyl of 3 to 6 carbon atoms, cycloalkyl of 3 to 6 carbon atoms, alkoxycarbonyl of 1 to 6 carbon atoms, alkylcarbonyl of 1 to 6 carbon atoms, aminocarbonyl, or alkylaminocarbonyl of 1 to 4 carbon atoms;
R1, R3, R4 and R5 are independently H, straight chain alkyl of 1 to 4 carbon atoms, branched alkyl of 3 to 6 carbon atoms, cycloalkyl of 3 to 8 carbon atoms, halogen, alkoxy group of 1 to 4 carbon atoms, haloalkyl of 1 to 4 carbon atoms, hydroxy, nitro, amino, sulfonyl, cyano, carboxy, alkoxycarbonyl of 1 to 4 carbon atoms, alkylcarbonyl of 1 to 4 carbon atoms, aminocarbonyl, or alkylaminocarbonyl of 1 to 4 carbon atoms;
and all crystalline forms or a pharmaceutically acceptable salt thereof.
24. A compound of Claim 22 wherein:

X i s N-R or O;
n is an integer of 0 to 4;
R and R2 are independently H, straight chain alkyl of 1 to 6 carbon atoms, branched alkyl of 3 to 6 carbon atoms, cycloalkyl of 3 to 6 carbon atoms, alkoxycarbonyl of 1 to 6 carbon atoms, alkylcarbonyl of 1 to 6 carbon atoms, aminocarbonyl, or alkylaminocarbonyl of 1 to 4 carbon atoms;

R1, R3, R4 and R5 are independently H, straight chain alkyl of 1 to 4 carbon atoms, branched alkyl of 3 to 6 carbon atoms, cycloalkyl of 3 to 8 carbon atoms, halogen, alkoxy group of 1 to 4 carbon atoms, haloalkyl of 1 to 4 carbon atoms, hydroxy, nitro, amino, sulfonyl, cyano, carboxy, alkoxycarbonyl of 1 to 4 carbon atoms, alkylcarbonyl of 1 to 4 carbon atoms, aminocarbonyl, or alkylaminocarbonyl of 1 to 4 carbon atoms;

and all crystalline forms or a pharmaceutically acceptable salt thereof.
25. A compound of Claim 23 wherein:
X is N-R;
R is H, straight chain alkyl of 1 to 4 carbon atoms or branched alkyl of 3 to carbon atoms; and R1, R2, R3, R4 and R5 are as defined in Claim 23;

and all crystalline forms or a pharmaceutically acceptable salt thereof.
26. A method of treating anxiety in a mammal, the method comprising administering to a mammal in need thereof a pharmaceutically effective amount of a compound of Claim 1, or a pharmaceutically acceptable salt thereof.
27. A method of treating depression in a mammal, the method comprising administering to a mammal in need thereof a pharmaceutically effective amount of a compound of Claim 1, or a pharmaceutically acceptable salt thereof.
28. A pharmaceutical composition comprising a pharmaceutically effective amount of a compound of Claim 1, or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier or excipient.
29. A compound as claimed in any one of claims 1-24 for use in treating anxiety or depression.
30. The use of a compound as claimed in any one of claims 1-24 for the manufacture of a medicament for the treatment of anxiety or depression.
CA002390531A 1999-11-08 2000-10-31 ¬(indol-3-yl)-cycloalkyl|-3-substituted azetidines for the treatment of central nervous system disorders Abandoned CA2390531A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US43611999A 1999-11-08 1999-11-08
US09/436,119 1999-11-08
PCT/US2000/029954 WO2001034598A1 (en) 1999-11-08 2000-10-31 [(indol-3-yl)-cycloalkyl]-3-substituted azetidines for the treatment of central nervous system disorders

Publications (1)

Publication Number Publication Date
CA2390531A1 true CA2390531A1 (en) 2001-05-17

Family

ID=23731187

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002390531A Abandoned CA2390531A1 (en) 1999-11-08 2000-10-31 ¬(indol-3-yl)-cycloalkyl|-3-substituted azetidines for the treatment of central nervous system disorders

Country Status (8)

Country Link
EP (1) EP1228065A1 (en)
JP (1) JP2003513970A (en)
CN (1) CN1414962A (en)
AU (1) AU1446601A (en)
BR (1) BR0015401A (en)
CA (1) CA2390531A1 (en)
MX (1) MXPA02004555A (en)
WO (1) WO2001034598A1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070021404A1 (en) * 2003-06-24 2007-01-25 Dan Peters Novel aza-ring derivatives and their use as monoamine neurotransmitter re-uptake inhibitors
TW200616967A (en) 2004-06-24 2006-06-01 Smithkline Beecham Corp Novel indazole carboxamides and their use
PE20060748A1 (en) 2004-09-21 2006-10-01 Smithkline Beecham Corp INDOLCARBOXAMIDE DERIVATIVES AS KINASE INHIBITORS IKK2
US8063071B2 (en) 2007-10-31 2011-11-22 GlaxoSmithKline, LLC Chemical compounds
AR065804A1 (en) 2007-03-23 2009-07-01 Smithkline Beecham Corp COMPOSITE OF INDOL CARBOXAMIDE, PHARMACEUTICAL COMPOSITION THAT UNDERSTANDS IT AND USE OF THIS COMPOUND TO PREPARE A MEDICINAL PRODUCT
ES2555004T3 (en) 2008-12-10 2015-12-28 Janssen Pharmaceutica N.V. CCR2 4-azetidinyl-1-heteroaryl cyclohexanol antagonists
WO2010102968A1 (en) 2009-03-10 2010-09-16 Glaxo Group Limited Indole derivatives as ikk2 inhibitors
EP2419418B1 (en) 2009-04-17 2015-04-15 Janssen Pharmaceutica NV 4-azetidinyl-1-heteroatom linked-cyclohexane antagonists of ccr2
CN102459227B (en) 2009-04-17 2014-08-20 詹森药业有限公司 4-azetidinyl-1-phenyl-cyclohexane antagonists of ccr2
TW201211027A (en) * 2010-06-09 2012-03-16 Janssen Pharmaceutica Nv Cyclohexyl-azetidinyl antagonists of CCR2
KR101743280B1 (en) * 2010-06-17 2017-06-02 얀센 파마슈티카 엔.브이. Cyclohexyl-azetidinyl antagonists of ccr2
CN116554168A (en) 2016-06-21 2023-08-08 X4 制药有限公司 CXCR4 inhibitors and uses thereof
CN109641838A (en) * 2016-06-21 2019-04-16 X4 制药有限公司 CXCR4 inhibitor and application thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9401436D0 (en) * 1994-01-26 1994-03-23 Wellcome Found Therapeutic heterocyclic compounds
DK1068184T3 (en) * 1998-04-08 2002-12-30 Wyeth Corp N-aryloxyethylamine derivatives for the treatment of depression
JP2002534411A (en) * 1999-01-07 2002-10-15 ワイス Arylpiperazinyl-cyclohexylindole derivatives for the treatment of depression

Also Published As

Publication number Publication date
EP1228065A1 (en) 2002-08-07
AU1446601A (en) 2001-06-06
JP2003513970A (en) 2003-04-15
WO2001034598A1 (en) 2001-05-17
CN1414962A (en) 2003-04-30
MXPA02004555A (en) 2004-09-10
BR0015401A (en) 2002-07-02

Similar Documents

Publication Publication Date Title
US6245799B1 (en) [(Indol-3-yl)-cycloalkyl]-3-substituted azetidines for the treatment of central nervous system disorders
US7049335B2 (en) 3-azabicyclo[3.1.0]hexane derivatives
EP1551803B1 (en) Azabicyclo derivatives as muscarinic receptor antagonists
CA2390531A1 (en) ¬(indol-3-yl)-cycloalkyl|-3-substituted azetidines for the treatment of central nervous system disorders
CZ20011760A3 (en) Pyrrolidine derivatives functioning as CCR-3 receptor antagonists
EP2167083B1 (en) 1- heteroaryl-3-azabicyclo[3.1.0]hexanes, methods for their preparation and their use as medicaments
JP2010505851A (en) N-substituted azacyclylamines as histamine-3 antagonists
EP1581522B1 (en) Flavaxate derivatives as muscarinic receptor antagonists
US20070010568A1 (en) Substituted azabicyclo hexane derivatives as muscarinic receptor antagonists
AU2003214535B2 (en) Substituted azabicyclo hexane derivatives as muscarinic receptor antagonists
CA2511726A1 (en) Xanthine derivatives as muscarinic receptor antagonists
US6066637A (en) Indolyl derivatives as serotonergic agents
US20070135508A1 (en) 3,6-Disubstituted azabicyclo hexane derivatives as muscarinic receptor antagonists
CA2074727A1 (en) Indole derivatives, their preparation and use
CA2330437A1 (en) Indolyl derivatives as serotonergic agents
CA2390530A1 (en) N-aryl-(homopiperazinyl)-cyclohexyl amines as 5-ht transporters
US6337326B1 (en) N-aryl-(homopiperazinyl)-cyclohexyl amines
RU2139287C1 (en) Compounds of 3-substituted 1-arylindole and pharmaceutical composition based on said
JPH0948776A (en) Pyrimidinyl pyrazole derivative
MXPA00010456A (en) Serotonergic agents

Legal Events

Date Code Title Description
FZDE Dead