CA2375497A1 - Detergent particles and methods for making them - Google Patents

Detergent particles and methods for making them Download PDF

Info

Publication number
CA2375497A1
CA2375497A1 CA002375497A CA2375497A CA2375497A1 CA 2375497 A1 CA2375497 A1 CA 2375497A1 CA 002375497 A CA002375497 A CA 002375497A CA 2375497 A CA2375497 A CA 2375497A CA 2375497 A1 CA2375497 A1 CA 2375497A1
Authority
CA
Canada
Prior art keywords
detergent
particulate
components
component
geometric mean
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002375497A
Other languages
French (fr)
Inventor
Scott John Donoghue
Christopher Andrew Morrison
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Procter and Gamble Co
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CA2375497A1 publication Critical patent/CA2375497A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D11/00Special methods for preparing compositions containing mixtures of detergents
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0039Coated compositions or coated components in the compositions, (micro)capsules
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/06Powder; Flakes; Free-flowing mixtures; Sheets

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Detergent Compositions (AREA)

Abstract

Detergent particles formed from irregular colour, size and shape individual particulate components. At least two particulate components, a first compone nt of a first colour and a second component of a second colour, the first and second components are adhered to one another, the mean particle size of at least the first or second particulate component being no more than 50% of th e mean particle size of the detergent particle to give particles of desirable colour. In addition, a detergent particle having sphericity index no greater than 1.7 and/or narrow particle size distribution from particulates where on e has a sphericity index greater than 1.7 or at least one of the first and second particulate components has a span of at least 2. The detergent particles are produced substantially in the absence of pressure compaction. Also provided is a method for making the detergent particles described and detergent compositions comprising these detergent particles.

Description

DETERGENT PARTICLES AND METHODS FOR MAKING THEM
Field of the invention The present invention relates to particulate detergent compositions and methods for making them. Such detergent compositions may be used for any cleaning purposes, in particular for dish-washing or laundry detergents. They may be used directly in the form of particulate detergent compositions or alternatively, may be formed into tablets of detergent composition using any of the well known tabletting methods such as compaction.
BackQ-round of the Invention In order to meet the needs of the consumer, particulate detergents must meet several criteria in addition to providing good cleaning properties. Such additional criteria include: good flow properties so that they can be easily delivered from the container to the washing machine or washing process; good solubility/dispensing so that they will be delivered into the wash effectively; and in addition, particulate detergents must appeal to the consumer aesthetically.
Most particulate detergents comprise a primarily white or pale-coloured base with optional colour-contrasting speckles. It has been found that detergents where the base particles vary in hue are judged by the consumer to be undesirable and are even thought by the consumer to provide less effective cleaning.
However, since detergent compositions generally comprise pre-processed detergent components such as agglomerates, blown powder produced by spray drying processes or extrudates, in addition to raw materials, and because the raw materials themselves vary so much in colour, size and/or shape, significant efforts must be made to avoid non-uniformity. In order to address this, considerable efforts and high costs are required to provide detergent particulates with uniform properties.
It would therefore be desirable to find a method for making detergents which enable use of a wider range of active detergent materials such as those with wide variations of colour, shape and/or size, yet to produce detergent particles with good flow properties and good dispensing and dissolving properties in addition to good aesthetic properties.
The present inventors have now found improved particles and methods for making such particles which overcome these problems of the prior art.
Summary of the Invention In accordance with the present invention, there is now provided a detergent particle comprising at least two particulate components, a first component of a first colour and a second component of a second colour, the first and second components being adhered to one another, the mean particle size of at least the first or second particulate component being no more than 50% of the mean particle size of the detergent particle.
In accordance with a further aspect of the present invention there is provided a detergent particle having a sphericity index no greater than 1.7 comprising at least two particulate components, a first component and a second component, at least one of the first and second components having a sphericity index greater than 1.7, the first and second components being adhered to one another substantially in the absence of pressure compaction.
In accordance with a further aspect of the present invention there is provided a detergent particle having a geometric mean particle diameter greater than 500 microns, the detergent particle comprising a first particulate component and a second particulate component, the first and second particulate components being adhered to one another substantially in the absence of pressure compaction, the geometric mean particle size of at least one of the first and second components being no more than 50 % of the geometric mean particle size of the detergent particle. Preferably at least one of the first and second particulate components has a span of at least 1.7.
In accordance with the present invention, there is also provided a method for making the detergent particles described, comprising contacting the first particulate component and the second particulate component, optionally in the presence of a binder in a moderate to low shear mixing step to adhere the first and second particulate components to one another and detergent composition comprising the claimed detergent particles.
Detailed Description of the Invention The present inventors have found that by selecting a combination of first and second particulate detergent components and forming these into a single particle, the undesirable properties and lack of uniformity can be overcome. Furthermore, these benefits can be achieved without the intensive processing steps which have been used in the prior art, such as formation of particulates from pastes which require lengthy, energy intensive mixing such as high shear mechanical mixing and even extrusion, both of which use compaction pressure to form particulates and require energy intensive drying processes.
In accordance with a first aspect of the present invention, the first and second particulates are differently coloured from one another. Colour difference as used herein refers to the DE
value as measured using tri-stimulus colorimetry using a D25M Colorimeter manufactured by Hunter Laboratories. In such a colorimeter, L, a and b values are generated for a sample by directing incident light onto a sample of powder at a 45° angle.
Incident light is reflected from the sample and collected by photo detectors which are set vertically above the powder sample at 0°. The detectors convert the light intensity into tri-stimulus values (X,Y,Z) as documented by Commission Internationale de 1'Eclairage (CIE). These values are then used to form a descriptive colour term on a standard CIELAB colour scale. The method is well documented, for example, in "Industrial Color Technology" by R. Johnston and M. Saltzman, American Chemical Society, 1971.
Using the CIELAB colour scale, L expresses whiteness where L=100 for white samples and L=0 for black samples; a represents red/green where positive numbers indicate redness and negative numbers indicate colours towards the green end of the spectrum; and b represents yellow/blue where positive numbers indicate yellowness and negative numbers indicate blueness.
Thus for the present invention, colour difference is a positive DE value between samples of the first and second particulate components where DE = ~(OLz + Daz + ~b2), where OL is the difference in L value between the first and second particulate components, Da is the difference in a value between the first and second particulate components and 0b is the difference in b value between the first and second particulate components. In particular, in the invention there will generally be a DE value of at least 3. The invention is particularly useful for even larger colour differences such as 0E
values of at least 4, or even at least 6 or 8 or even at least 10. A further useful colour definition is whiteness which is represented by W=L-3b. A whiteness value of from 92 to 100 is preferred for the detergent particles of the invention.
As used herein, "sphericity index" refers to the mean value obtained when one measurement is taken of each of 50 particles taken from a sample of particles (either the detergent particles produced according to the invention, or the first or second partiuclates which form the detergent particles), and the value for sphericity index is calculated for each particle based on the following equation: sphericity index = p2/(4~a), where p is the perimeter of the particle and a is the area of the particle as measured using a Leica QSOOMC
image analysis system. The apparatus consists of a microscope connected to a video camera and computer.
Commercially available software such as the Q500 software supplied by Leica is used to analyse the magnified images and to give values for p and a. The sphericity index of a perfect circle is 1.
Thus, in accordance with a further aspect of the invention, the sphericity index of the detergent particle is no greater than 1.7 and the sphericity index of at least one of the first and second particulate components is at least 1.7. Preferably the standard deviation of the span of the detergent particles of the invention is less than 0.8, preferably less than 0.5 and most preferably below 0.2.
The sphericity index of the detergent particles according to the invention is preferably no greater than 1.5, more preferably no greater than 1.3 or even 1.2. The sphericity index of at least one of the first and second particulates is preferably greater than 1.9 or even greater than 2.1 or even greater than 2.5. Thus, the invention enables highly irregular components to be adhered together to form a highly regular detergent particle without the need for high energy compaction pressure processing via aqueous pastes or slurries such as in extrusion or high shear mixing processes. The invention is even useful when both the first and second particulates comprise highly irregular particles, so that preferably, the sphericity index of both the first and second particulates is greater than 1.9 or even greater than 2.1 or 2.5 or even 3 As used herein, "geometric mean particle diameter" means the geometric mass median diameter of a set of discrete particles as measured by any standard mass-based particle size measurement technique, preferably by dry sieving. A suitable sieving method is in accordance with ISO 3118 ( 1976). A suitable device is the Ro-Tap testign sieve shaker Model B
using 8" sieves of selected sizes. As used herein, the phrase "geometric standard deviation" or "span" of a particle size distribution means the geometric breadth of the best-fitted log-normal function to the above-mentioned particle size data which can be accomplished by the ratio of the diameter of the 84.13 percentile divided by the diameter of the 50'"
percentile of the cumulative distribution (Dgq.~3~D50), See Gotoh et al, Powder Technology Handbook, pp. 6-1 l, Marcel Dekker 1997.
In accordance with a third aspect of the present invention, the geometric mean particle diameter of at least the detergent particle is at least 500 microns and the geometric particle diameter of at least one of the first and second particulate components is no more than 50% of the geometric mean particle diameter of the detergent particle, preferably no greater than 25% or even no greater than 10% or 5%. Preferably, the geometric mean particle diameter of both the first and second particulate components is as defined. In addition, at least one of the first and second particulate components has a span (geometric standard deviation) of at least 1.7, or even at least 2 or 2.5 or at least 3 or at least 3.5 or even at least 4 or at least 5. Preferably, the span of both the first and second particulate components is as defined. The invention is particularly useful for forming detergent particles having a span at least 0.3, preferably at least 0.4 or even at least 0.5 or greater, below the span of the first and/or second particulates.
Thus, in trying to achieve highly regular detergent particles, rather than using as raw materials for the processing, highly regular materials and high energy processes, the present inventors have found that the process of the present invention enable highly irregular, less energy intensive raw materials to be used in a less energy intensive process to produce high quality, high regularity detergent particles.
The particle sizes of the first and second components can vary widely. The invention has been found to be useful even where there is a difference in geometric mean particle diameter between the first and second particulate components of at least 200 microns or even of at least 250 or 300 or even at least 400 or even at least 500 microns. Preferably one or both of the first and second particulates has a geometric mean particle diameter below SSO~m. It is particularly preferred that at least one of the first and second particulate components has a geometric mean particle diameter greater than 150~m or even greater than 200pm and preferably no greater than 450~m or even no greater than 400~.m.
In one embodiment of the invention, the ratio of the mean particle sizes of the first and second particulate components respectively will be at least 3:2, preferably at least 2:1 or even a high ratio of at least 5:1 or at least 10:1. The ratio may be even higher such that the ratio is at least 20:1 or even at least 50:1. Where the ratio is high it is preferred that the relatively smaller particulate component has a colour which is most desirable relative to the colour of the other particulate component. It may also be preferred that the smaller particle diameter particulate component the smaller sphericity index.
In addition, the process of the present invention is suitable for forming detergent particles from first and second particulates each having a wide span of bulk densities and having bulk densities which vary significantly from one that of one another. As used herein the term "bulk density" refers to the uncompressed, untapped powder bulk density, as measured by pouring an excess of particulate sample through a funnel into a smooth metal vessel (e.g.
a SOOmI volume cylinder) scraping off the excess off the heap above the rim of the vessel, measuring the remaining mass of powder and dividing the mass by the volume of the vessel.
The bulk density of the first and second particulate components may differ by at least 25 g/1, or even by at least 75 g/1 or at least 100 g/1. The bulk density of the first and second particulate components, respectively is generally above 200 g/1 and may be as high as 1500 g/1. It is particularly preferred that the bulk density of at least one particulate component will be greater than 700 g/1, preferably greater than 750 g/1 or even above 800 g/1.
The bulk density of the detergent particles of the invention will generally be from 400 to 1100g/1, generally the bulk density will be above 550 g/1, preferably greater than 650 g/1 or even greater than 700 g/1. The invention may be particularly useful for preparing detergent particles having bulk density below 550g/1, or even below 500 or below 450g/1.
Each of the first and second particulate components may comprise an individual detergent ingredient in particulate form or may comprise a pre-formed detergent particulate. As used herein, the pre-formed particulate may comprise any combination of two or more detergent ingredients. Suitable pre-formed particulates may have been formed by a spray-drying, agglomeration, marumerisation, extrusion or compaction process, all of which methods for combining detergent ingredients are well known in the art. Particularly preferred pre-formed particulates are powders obtained from spray-drying processes, agglomerates and extrudates.
Spray dried powders are particularly useful.
Suitable spray-drying processes for forming such pre-formed particulates are described for example in EP-A-763 594 or EP-A- 437888. Suitable processes for forming pre-formed particulates which are agglomerates are described for example in W093/25378, EP-A-367339, EP-A-420317 or EP-A-506184 and suitable processes for forming pre-formed particulates by extrusion are described for example in W091/02047.
The pre-formed particulates may be in their wet or dry states for example, it is common in formation of detergent particulates that initially, the particulates are wet and undergo a drying stage. In the present invention, the pre-formed particulate may be a particulate before it has undergone a drying stage. Generally this means that a solvent used as a binding agent for the processing is present in higher amounts that are desirably present in a finished particulate detergent. Generally, such a solvent will be water and the particulates may have a water content for example 15 to 30 wt % of the pre-formed particulate. Often however, the pre-formed particulate will already have undergone a drying step prior to addition to the mixer so that the water content may be below 15 wt % or even below 10 wt %.
It is particularly preferred that any pre-formed particulate component comprises a surfactant or mixture of surfactants. Suitable surfactants are described below. The surfactant content of a pre-formed particulate component is preferably from 5 to 80 % by weight of the particulate component. Amounts of surfactants above 10 or even above 30% may be preferred.
Amounts of surfactant below 70% or even below 50% may be preferred. Where the pre-formed particulate component comprises surfactant, generally it will in addition comprise a builder or alkalinity agent such as sodium carbonate, zeolite, or phosphate. For example, each of these components individually, or in mixtures may be present in amounts above 5%, preferably above 10% or even above 20% by weight of the content of the pre-formed particulate component.
Particularly preferred builder components are sodium carbonate and/or zeolite.
Zeolite A and zeolite MAP are both suitable.
A pre-formed particulate component preferably also comprises an organic builder such as a poly carboxylic acid and/or salt such as citric acid, tartaric acid, malic acid, succinic acid and their salts or a polymeric polycarboxylate such as polymers based on acrylic acids or malefic acids or co-polymers thereof. Such components are generally present in the particle at levels below 15 wt % of the particulate component, preferably below 10 wt % of the particulate component.
Other preferred ingredients in the pre-formed particulate component are chelants such as phosphonate chelants NTA, DTPA and succinic acid derivative chelants, as described below.
These components are preferably present in a pre-formed particulate component in amounts below 5 wt % or even below 2 wt % of the first particulate component. Suds suppressors and/or soil release polymers and/or bleach activators are also preferred ingredients in pre-formed particulates.
Where the particulate components are detergent raw materials, any particulate detergent ingredient is suitable. These may be solid surfactants or soaps, or water soluble or dispersable polymeric materials, enzymes, bleaching components such as bleach activators or bleach salts such as peroxy salts, but are generally inorganic components, particularly water soluble inorganic components such as builders. These ingredients are discussed in more detail below.
The detergent particles themselves may contain all of the ingredients of a full formulated detergent or may be mixed with additional detergent components such as individual detergent ingredients in particulate form or pre-formed detergent particles as described above. Preferably, detergent compositions of the present invention comprise more than 30 wt%, more preferably more than 50 wt% or even as high as 80 or 90 wt% or even at least 95 wt% of the detergent particles according to the present invention.
The processes of the invention may comprise the step of adding to the mixer a binder to facilitate production of the desired detergent particles. Generally such a binder will be liquid in the form of a solution or melt and will be added by spraying either directly into the mixer or onto the particulate components as they travel into the mixer. Preferably the binder is added directly into the mixer for example by spraying. The binder is added for purposes of enhancing agglomeration by providing a binding or sticking agent for detergent components. The binder may be any conventional detergent binding agent, preferably selected from the group consisting of water, anionic surfactants, nonionic surfactants, polyethylene glycol, polyvinyl pyrrolidone, polyacrylates, organic acids or their salts such as citric acid or citric salts, and mixtures thereof.

_g_ Other suitable binder materials including those listed herein are described in Beerse et al, US
Patent number 5108646 (Procter and Gamble Company), the disclosure of which is incorporated herein by reference.
Thus, in one aspect of the invention, a first feed stream of first particulate component is fed into the mixer and in addition a second feed stream comprising the second particulate component is fed into the mixer and binder is also present in the mixer. The binder may be fed directly via a third stream into the mixer or it may be contacted with the first and/or second particulate component prior to one or both of these feed streams entering the mixer. Where the mixer is divided into different zones, the three components may be fed into the same zone or optionally may be fed into different zones. In a preferred embodiment of the invention, the first and second particulate components will be pre-mixed prior to addition of the binder.
In a further preferred aspect of the invention, after mixing of the first and second particulate components optionally with binder, so that adhesion of the two components has taken place, a further liquid component is applied to the outside of the particles produced. This further coating may be the same chemical composition as the binder or may be any of the other coating materials or detergent ingredients described below.
In order to provide the moderate to low shear mixing in which the first and second particulates are adhered to one another in the present invention, suitable moderate to low shear mixers may be for example a Lodige KM (trademark) (Ploughshare) moderate speed mixer, or mixer made by Fukae, Draes, Schugi or similar brand mixers which mix with only moderate to low shear. The Lodige KM (ploughshare) moderate speed mixer which is a preferred mixer for use in the present invention comprises a horizontal hollow static cylinder having a centrally mounted rotating shaft around which several plough-shaped blades are attached.
Preferably, the shaft rotates at a speed of from about 15 rpm to about 140 rpm, more preferably from about 80 rpm to about 120 rpm. The grinding or pulverizing is accomplished by cutters, generally smaller in size than the rotating shaft, which preferably operate at about 3600 rpm.
Other mixers similar in nature which are suitable for use in the process include the Lodige PloughshareT"" mixer and the Drais~ K-T 160 mixer. Generally, in the processes of the present invention, the shear will be no greater than the shear produced by a Lodige KM mixer with the tip speed of the ploughs below 10 m/s, or even below 8m/s or even lower.
Preferably, the mean residence time of the various starting detergent ingredients in the low or moderate speed mixer is preferably in range from about 0.1 seconds to about 30 minutes, most preferably the residence time is about 0.5 to about S minutes. In this way, the density of the resulting detergent agglomerates is at the desired level.

Other suitable mixers for use in the present invention are low or very low shear mixers such as rotating bowl agglomerators, drum agglomerators, pan agglomerators and fluid bed agglomerators.
Fluid bed agglomerators are particularly preferred. Typical fluidised bed agglomerators are operated at a superficial air velocity of from 0.1 to 4 m/s, either under positive or negative pressure. Inlet air temperatures generally range from -10 or 5°C up to 250°C. However inlet air temperatures are generally below 200°C, or even below 150°C. The fluidized bed granulator is preferably operated such that the flux number FN of the fluid bed is at least about 2.5 to about 4.5. Flux number (FNm) is a ratio of the excess velocity (Ue) of the fluidisation gas and the particle density (pp) relative to the mass flux (q,;q) of the liquid sprayed into the bed at a normalized distance (D°) of the spraying device. The flux number provides an estimation of the operating parameters of a fluidized bed to control granulation within the bed.
The flux number may be expressed either as the mass flux as determined by the following formula:
FNm = log~oL {PvUe}/qnql or as the volume flux as determined by the formula:
FN,, = log~oL {Ue)/q~tiq~
where q,,,;g is the volume of spray into the fluid bed. Calculation of the flux number and a description of its usefulness is fully described in WO 98/58046 the disclosure of which is herein incorporated by reference.
In addition, the fluidized bed is generally operated at a Stokes number of less than about 1, more preferably from about 0.1 to about 0.5. The Stokes number is a measure of particle coalescence for describing the degree of mixing occurring to particles in a piece of equipment such as the fluid bed. The Stokes number is measured by the formula:
Stokes number = 4pvd/9u wherein p is the apparent particle density, v is the excess velocity, d is the mean particle diameter and a is the viscosity of the binder. The Stokes number and a description of its usefulness is described in detail in WO 99/03964, the disclosure of which is herein incorporated by reference.

Thus, where the mixer is a fluid bed mixer, the first and second particulate components are passed into a fluid bed optionally having multiple internal "stages" or "zones". A stage or zone is any discrete area within the fluid bed, and these terms are used interchangeably herein.
The process conditions within a stage may be different or similar to the other stages in the fluid bed/dryer. It is understood that two adjacent fluid beds are equivalent to a single fluid bed having multiple stages. The various feed streams of the first and second particulate components can be added at the same or different stages, depending on, for example, the particle size and moisture level of the feed stream. Feeding different streams to different stages can minimize the heat load on the fluid bed, and optimize the particle size and increase uniformity of the shape of the detergent particles produced.
The bed is typically fluidized with heated air in order to dry or partially dry moisture such as any binder liquids from the ingredients in the fluid bed. Where binder is sprayed into the fluid bed the spraying is generally achieved via nozzles capable of delivering a fine or atomized spray of the binder to achieve intimate mixing with the particulates.
Typically, the droplet size from the atomizer is less than about 2 times the particle size. This atomization can be achieved either through a conventional two-fluid nozzle with atomizing air, or alternatively by means of a conventional pressure nozzle. To achieve this type of atomization, the solution or slurry rheology is may have a viscosity of less than about 500 centipoise, preferably less than about 200 centipoise at the point of atomization. While the nozzle location in the fluid bed may be in most any location, the preferred location is a positioning that allows a vertical down spray of any liquid components such as binder. This may be achieved for example, using a top spray configuration. To achieve best results, the nozzle location is placed at or above the fluidized height of the particles in the fluid bed. The fluidized height is typically determined by a weir or overflow gate height. The agglomeration/granulation zone of the fluid bed may be followed by an optional coating zone, followed by a drying zone and a cooling zone. Of course, one of ordinary skill in the art will recognize that alternative arrangements are also possible to achieve the resultant particles of the present invention.
Typical conditions within a fluid bed apparatus of the present invention include: (i) a mean residence time from about 1 to about 20 minutes, (ii) a depth of unfluidised bed of from about 100 to about 600 mm, (iii) a droplet spray size of less than 2 times the mean particle size in the bed, which is preferably not more than about 100 micron more preferably not more than 50 micron, (iv) spray height generally from 150 to 1600 mm of spray height from the fluid bed plate or preferably 0 to 600mm from the top of the fluid bed , (v) from about 0.1 to about 4.0 m/s, preferably 1.0 to 3.Om/s of fluidizing velocity and (vi) from about 12 to about 200 °C of bed temperature, preferably 15 to 100°C. Once again, one of ordinary skill in the art will recognize that the conditions in the fluid bed may vary depending on a number of factors.
The detergent particles produced in the mixer can be further processed by adding a coating agent to improve the particle colour, increase the particle whiteness or improve the particle flowability after the detergent particles exit the mixer or the dryer if an optional drying step is added subsequently to the mixer or in a later stage in the mixer, to obtain the high density granular detergent compositions produced by the processes of the invention.
Those skilled in the art will appreciate that a wide variety of methods may be used to dry as well as cool the exiting detergent without departing from the scope of the invention. Since the mixer can be operated at relatively low temperatures, the need for cooling apparatus is generally not required in the present process which thereby further reduces manufacturing costs of the final product.
Another optional processing step includes continuously adding a coating agent such as zeolite and/or fumed silica to the mixer to facilitate free flowability of the resulting detergent particles and to prevent over agglomeration. Such coating agents generally have a mean particle size below 100 microns, preferably below 60 microns, even more preferably below 50 microns.
Any coating stage may take place either immediately after formation of the detergent particles of the invention either before or after any drying step and optionally after the detergent particles have been mixed with additional detergent ingredients for forming a fully formulated detergent composition. Preferably any such coating agent will also have detergent active properties. A particularly preferred coating agent is a surfactant or aqueous solution of surfactant.
The detergent particles produced according to the present invention preferably have a geometric mean particle diameter of at least 500 microns or at least 600 or even at least 700 microns. Generally the mean particle diameter will be no greater than 3000 microns, preferably no greater than 2500 or even no greater than 1500 microns. The sphericity index of the detergent particles according to the present invention will preferably be no greater than 1.5 or even no greater than 1.4 or 1.3 or even no greater than 1.2. The span of the detergent particles according to the invention is generally from 1 to 1.8, preferably no greater than 1.7, most preferably no greater than 1.6 or even 1.4.
The weight percentage of the detergent particles derived from the first and second particulate components respectively may be in a ratio of from 100: I to 1:100.
Where the geometric mean particle diameter of a desirably coloured particulate component is no more than 10% or even no more than 5% of the geometric mean particle diameter of an undesirably coloured particulate the weight ratio will be low, but the number average of particles of the desirably coloured component in the detergent particle will generally be at least 50, preferably at least 100 or even 500 or 1000 times the number average of the undesirably coloured component in the detergent particle.
Detergent ingredients which are suitable as ingredients of the first particulate component or the second particulate component andlor as ingredients of any additional ingredients added to the detergent particles of the present invention to form the fully formulated detergent compositions of the invention, are described below.
Deter eng, t )n~redients Surfactant Suitable surfactants for use in the invention are anionic, nonionic, ampholytic, and zwitterionic classes of these surfactants, is given in U.S.P. 3,929,678 issued to Laughlin and Heuring on December 30, 1975. Further examples are given in "Surface Active Agents and Detergents" (Vol. I and II by Schwartz, Perry and Berch). A list of suitable cationic surfactants is given in U.S.P. 4,259,217 issued to Murphy on March 31, 1981.
Preferably, the detergent particle of the present invention and compositions comprising such particles comprises an additional anionic surfactant. Essentially any anionic surfactants useful for detersive purposes can be comprised in the detergent composition.
These can include salts (including, for example, sodium, potassium, ammonium, and substituted ammonium salts such as mono-, di- and triethanolamine salts) of the anionic sulfate, sulfonate, carboxylate and sarcosinate surfactants. Anionic sulfate and sulfonate surfactants are preferred.
The anionic surfactants may be present in the detergent particle in amounts below 25 wt or even below 20 wt % but in a final detergent composition comprising the particle, is preferably present at a level of from 0.1% to 60%, more preferably from 1 to 40%, most preferably from 5% to 30% by weight.
Other ariionie surfactants include the anionic carboxylate surfactants such as alkyl ethoxy carboxylates, alkyl polyethoxy polycarboxylates and soaps ("alkyl carboxyls") such as water-soluble members selected from the group consisting of the water-soluble salts of 2-methyl-1-undecanoic acid, 2-ethyl-1-decanoic acid, 2-propyl-1-nonanoic acid, 2-butyl-1-octanoic acid and 2-pentyl-1-heptanoic acid. Certain soaps may also be included as suds suppressors. Other suitable anionic surfactants are the alkali metal sarcosinates of formula R-CON (R1) CH2 COOM, wherein R is a C5-C17 linear or branched alkyl or alkenyl group, R1 is a C1-C4 alkyl group and M is an alkali metal ion. Other anionic surfactants include isethionates such as the acyl isethionates, N-acyl taurates, fatty acid amides of methyl tauride, alkyl succinates and sulfosuccinates, monoesters of sulfosuccinate (especially saturated and unsaturated C12 C18 monoesters) diesters of sulfosuccinate (especially saturated and unsaturated C6-C14 diesters), N-acyl sarcosinates. Resin acids and hydrogenated resin acids are also suitable, such as rosin, hydrogenated rosin, and resin acids and hydrogenated resin acids present in or derived from tallow oil.
Anionic sulfate surfactants suitable for use herein include the linear and branched primary and secondary alkyl sulfates, alkyl ethoxysulfates, fatty oleoyl glycerol sulfates, alkyl phenol ethylene oxide ether sulfates, the C5-C1~ acyl-N-(C1-C4 alkyl) and -N-(C1-C2 hydroxyalkyl) glucamine sulfates, and sulfates of alkylpolysaccharides such as the sulfates of alkylpolyglucoside (the nonionic nonsulfated compounds being described herein). Alkyl sulfate surfactants are preferably selected from the linear and branched primary C 10-C 1 g alkyl sulfates, more preferably the C 11-C 15 branched chain alkyl sulfates and the C 12-C 14 linear chain alkyl sulfates. Alkyl ethoxysulfate surfactants are preferably selected from the group consisting of the C10-Clg alkyl sulfates which have been ethoxylated with from 0.5 to 20 moles of ethylene oxide per molecule. More preferably, the alkyl ethoxysulfate surfactant is a C11-Clg, most preferably C 11-C 15 alkyl sulfate which has been ethoxylated with from 0.5 to 7, preferably from 1 to 5, moles of ethylene oxide per molecule.
Preferred surfactant combinations are mixtures of the preferred alkyl sulfate and/ or sulfonate and alkyl ethoxysulfate surfactants optionally with cationic surfactant. Such mixtures have been disclosed in PCT Patent Application No. WO 93/18124.
Anionic sulfonate surfactants suitable for use herein include the salts of CS-C20 linear alkylbenzene sulfonates, alkyl ester sulfonates, C6-C22 primary or secondary alkane sulfonates, C6-C24 olefin sulfonates, sulfonated polycarboxylic acids, alkyl glycerol sulfonates, fatty acyl glycerol sulfonates, fatty oleyl glycerol sulfonates, and any mixtures thereof.
Essentially any alkoxylated nonionic surfactant or mixture is suitable herein.
The ethoxylated and propoxylated nonionic surfactants are preferred.
Preferred alkoxylated surfactants can be selected from the classes of the nonionic condensates of alkyl phenols, nonionic ethoxylated alcohols, nonionic ethoxylated/propoxylated fatty alcohols, nonionic ethoxylate/propoxylate condensates with propylene glycol, and the nonionic ethoxylate condensation products with propylene oxide/ethylene diamine adducts.
The condensation products of aliphatic alcohols with from 1 to 25 moles of alkylene oxide, particularly ethylene oxide and/or propylene oxide, are particularly suitable for use herein.

Particularly preferred are the condensation products of straight or branched, primary or secondary alcohols having an alkyl group containing from 6 to 22 carbon atoms with from 2 to 10 moles of ethylene oxide per mole of alcohol.
Polyhydroxy fatty acid amides suitable for use herein are those having the structural formula R2CONR1Z wherein : R1 is H, C1-C4 hydrocarbyl, 2-hydroxy ethyl, 2-hydroxy propyl, ethoxy, propoxy, or a mixture thereof, preferable C1-C4 alkyl; and R2 is a C5-C31 hydrocarbyl;
and Z is a polyhydroxyhydrocarbyl having a linear hydrocarbyl chain with at least 3 hydroxyls directly connected to the chain, or an alkoxylated derivative (preferably ethoxylated or propoxylated) thereof. Z preferably will be derived from a reducing sugar in a reductive amination reaction; more preferably Z is a glycityl.
Suitable alkylpolysaccharides for use herein are disclosed in U.S. Patent 4,565,647, Llenado, issued January 21, 1986, having a hydrophobic group containing from 6 to 30 carbon atoms and a polysaccharide, e.g., a polyglycoside, hydrophilic group containing from 1.3 to 10 saccharide units. Preferred alkylpolyglycosides have the formula:
R20(CnH2n0)t(glYcosyl)x wherein R2 is selected from the group consisting of alkyl, alkylphenyl, hydroxyalkyl, hydroxyalkylphenyl, and mixtures thereof in which the alkyl groups contain from 10 to 18 carbon atoms; n is 2 or 3; t is from 0 to 10, and x is from 1.3 to 8. The glycosyl is preferably derived from glucose.
Suitable amphoteric surfactants for use herein include the amine oxide surfactants and the alkyl amphocarboxylic acids. Suitable amine oxides include those compounds having the formula R3(OR4)xN0(RS)2 wherein R3 is selected from an alkyl, hydroxyalkyl, acylamidopropoyl and alkyl phenyl group, or mixtures thereof, containing from 8 to 26 carbon atoms; R4 is an alkylene or hydroxyalkylene group containing from 2 to 3 carbon atoms, or mixtures thereof; x is from 0 to 5, preferably from 0 to 3; and each RS is an alkyl or hydroxyalkyl group containing from 1 to 3, or a polyethylene oxide group containing from 1 to 3 ethylene oxide groups. Preferred are C10-Clg alkyl dimethylamine oxide, and C10-18 acylamido alkyl dimethylamine oxide.
Zwitterionic surfactants can also be incorporated into the detergent compositions in accord with the invention. These surfactants can be broadly described as derivatives of secondary and tertiary amines, derivatives of heterocyclic secondary and tertiary amines, or derivatives of quaternary ammonium, quaternary phosphonium or tertiary sulfonium compounds.

Betaines such as C12-18 dimethyl-ammonio hexanoate and the C10-18 acylamidopropane (or ethane) dimethyl (or diethyl) betaines and sultaine surfactants are exemplary zwitterionic surfactants for use herein.
Suitable cationic surfactants to be used herein include the quaternary ammonium surfactants. Preferably the quaternary ammonium surfactant is a mono C6-C 16, preferably C6-C10 N-alkyl or alkenyl ammonium surfactants wherein the remaining N positions are substituted by methyl, hydroxyethyl or hydroxypropyl groups. Preferred are also the mono-alkoxylated and bis-alkoxylated amine surfactants.
Cationic ester surfactants such as choline ester surfactants, have for example been disclosed in US Patents No.s 4228042, 4239660 and 4260529 are also suitable as are cationic mono-alkoxylated amine surfactants preferably of the general formula I:
WH2~2-4W 1-SH
\N+//
CH3/ \CH3 wherein RI is C10-Clg hydrocarbyl and mixtures thereof, especially C10-C14 alkyl, preferably Clp and C12 alkyl, and X is any convenient anion to provide charge balance, preferably chloride or bromide.
The levels of the cationic mono-alkoxylated amine surfactants in the detergent compositions of the invention are generally from 0.1 % to 20%, preferably from 0.2% to 7%, most preferably from 0.3% to 3.0% by weight.
Cationic bis-alkoxylated amine surfactant such as R\ +/CH2CH20H XO
N
CH3/ \CH2CH20H
are also useful, wherein Rl is C10-Clg hydrocarbyl and mixtures thereof, preferably C10, C12 C14 alkyl and mixtures thereof. X is any convenient anion to provide charge balance, preferably chloride.
Bleach Activator The detergent particles or detergent compositions containing them preferably comprise a bleach activator, preferably comprising an organic peroxyacid bleach precursor. It may be preferred that the composition comprises at least two peroxy acid bleach precursors, preferably at least one hydrophobic peroxyacid bleach precursor and at least one hydrophilic peroxy acid bleach precursor, as defined herein. The production of the organic peroxyacid occurs then by an in situ reaction of the precursor with a source of hydrogen peroxide. The bleach activator may alternatively, or in addition comprise a preformed peroxy acid bleach.
It is preferred that the bleach activator is present in the detergent particle. It may be preferred that the bleach activator is present as a separate, admixed particle.
Preferably, at least one of the bleach activators, preferably a peroxy acid bleach precursor, is present in a particulate component having an average particle size, by weight, of from 600 microns to 1400 microns, preferably from 700 microns to 1100 microns.
More preferably, all of the activator are present in one or more particulate components having the specified weight average particle size.
Hereby, it may be preferred that at least 80%, preferably at least 90% or even at least 95 or even substantially 100% of the component or components comprising the bleach activator have a particle size of from 300 microns to 1700 microns, preferably from 425 microns to 1400 microns.
Preferred hydrophobic peroxy acid bleach precursor preferably comprise a compound having an oxy-benzene sulphonate group, preferably NOBS, DOBS, LOBS and/ or NACA-OBS.
Preferred hydrophilic peroxy acid bleach precursors preferably comprises TAED.
Peroxyacid Bleach Precursor Peroxyacid bleach precursors are compounds which react with hydrogen peroxide in a perhydrolysis reaction to produce a peroxyacid. Generally peroxyacid bleach precursors may be represented as O
X-C-L
where L is a leaving group and X is essentially any functionality, such that on perhydroloysis the structure of the peroxyacid produced is O
X-C-OOH
For the purpose of the invention, hydrophobic peroxyacid bleach precursors produce a peroxy acid of the formula above wherein X is a group comprising at least 6 carbon atoms and a hydrophilic peroxyacid bleach precursor produces a peroxyacid bleach of the formula above wherein X is a group comprising 1 to 5 carbon atoms.

The leaving group, hereinafter L group, must be sufficiently reactive for the perhydrolysis reaction to occur within the optimum time frame (e.g., a wash cycle). However, if L is too reactive, this activator will be difficult to stabilize for use in a bleaching composition. Preferred L groups are selected from the group consisting of:

O , -O ~ Y , and -O
t O 4 -N-C-R -N N -N-C-CH-R
I > > I I
R3 (-I R3 Y
I
Y

-O-C H=C-C H=C H2 -O-C H=C-C H=C H2 O Y O
O CH2-C ~ ~NR4 _O-C-R~ -N~ /NR4 -NwC/
O ~ O

-O-C=CHR4 , and -N-S-CH-R4 and mixtures thereof, wherein R1 is an alkyl, aryl, or alkaryl group containing from 1 to 14 carbon atoms, R3 is an alkyl chain containing from 1 to 8 carbon atoms, R4 is H or R3, and Y is H or a solubilizing group. Any of Rl, R3 and R4 may be substituted by essentially any functional group including, for example alkyl, hydroxy, alkoxy, halogen, amine, nitrosyl, amide and ammonium or alkyl ammmonium groups.

+ + + + 3 X- and The preferred solubilizing groups are -S03 M , -C02 M , -S04 M , -N (R )4 O<--N(R3)3 and most preferably -S03 M+ and -C02 M+ wherein R3 is an alkyl chain containing from 1 to 4 carbon atoms, M is a canon which provides solubility to the bleach activator and X is an anion which provides solubility to the bleach activator.
Preferably, M is an alkali metal, ammonium or substituted ammonium canon, with sodium and potassium being most preferred, and X is a halide, hydroxide, methylsulfate or acetate anion.
Peroxyacid bleach precursor compounds are preferably incorporated in final detergent compositions at a level of from 0.5% to 30% by weight, more preferably from 1%
to 15% by weight, most preferably from 1.5% to 10% by weight. The ratio of hydrophilic to hydrophobic bleach precursors, when present, is preferably from 10:1 to 1:10, more preferably from 5;1 to 1:5 or even from 3:1 to 1:3. Suitable peroxyacid bleach precursor compounds typically contain one or more N- or O-acyl groups, which precursors can be selected from a wide range of classes.
Suitable classes include anhydrides, esters, imides, lactams and acylated derivatives of imidazoles and oximes. Examples of useful materials within these classes are disclosed in GB-A-1586789. Suitable esters are disclosed in GB-A-836988, 864798, 1147871, 2143231 and EP-A-0170386.
Alkyl percarboxylic acid bleach precursors form percarboxylic acids on perhydrolysis.
Preferred precursors of this type provide peracetic acid on perhydrolysis.
Preferred alkyl percarboxylic precursor compounds of the imide type include the N-,N,N1N1 tetra acetylated alkylene diamines wherein the alkylene group contains from 1 to 6 carbon atoms, particularly those compounds in which the alkylene group contains 1, 2 and 6 carbon atoms.
Tetraacetyl ethylene diamine (TAED) is particularly preferred as hydrophilic peroxy acid bleach precursor.
Other preferred alkyl percarboxylic acid precursors include sodium 3,5,5-tri-methyl hexanoyloxybenzene sulfonate (iso-NOBS), sodium nonanoyloxybenzene sulfonate (HOBS), sodium acetoxybenzene sulfonate (ABS) and pentaacetyl glucose.
Amide substituted alkyl peroxyacid precursor compounds are suitable herein, including those of the following general formulae:
R~ CN-R2C L R~ -NCR2-C-L
O R5 O or R5 O O

wherein R1 is an aryl or alkaryl group with from about 1 to about 14 carbon atoms, R2 is an alkylene, arylene, and alkarylene group containing from about 1 to 14 carbon atoms, and RS is H
or an alkyl, aryl, or alkaryl group containing 1 to 10 carbon atoms and L can be essentially any leaving group. RI preferably contains from about 6 to 12 carbon atoms. R2 preferably contains from about 4 to 8 carbon atoms. RI may be straight chain or branched alkyl, substituted aryl or alkylaryl containing branching, substitution, or both and may be sourced from either synthetic sources or natural sources including for example, tallow fat. Analogous structural variations are permissible for R2. R2 can include alkyl, aryl, wherein said R2 may also contain halogen, nitrogen, sulphur and other typical substituent groups or organic compounds.
RS is preferably H
or methyl. RI and RS should not contain more than 18 carbon atoms total. Amide substituted bleach activator compounds of this type are described in EP-A-0170386. It can be preferred that Rl and RS forms together with the nitrogen and carbon atom a ring structure.
Preferred examples of bleach precursors of this type include amide substituted peroxyacid precursor compounds selected from (6-octanamido-caproyl)oxybenzenesulfonate, (6-decanamido-caproyl) oxybenzene- sulfonate, and the highly preferred (6-nonanamidocaproyl)oxy benzene sulfonate, and mixtures thereof as described in EP-A-0170386.
Perbenzoic acid precursor compounds which provide perbenzoic acid on perhydrolysis benzoxazin organic peroxyacid precursors, as disclosed for example in EP-A-332294 and EP-A
482807 and cationic peroxyacid precursor compounds which produce cationic peroxyacids on perhydrolysis are also suitable.
Cationic peroxyacid precursors are described in U.S. Patents 4,904,406;
4,751,015;
4,988,451; 4,397,757; 5,269,962; 5,127,852; 5,093,022; 5,106,528; U.K.
1,382,594; EP 475,512, 458,396 and 284,292; and in JP 87-318,332.
Examples of preferred cationic peroxyacid precursors are described in UK
Patent Application No. 9407944.9 and US Patent Application Nos. 08/298903, 08/298650, and 08/298906.
Suitable cationic peroxyacid precursors include any of the ammonium or alkyl ammonium substituted alkyl or benzoyl oxybenzene sulfonates, N-acylated caprolactams, and monobenzoyltetraacetyl glucose benzoyl peroxides. Preferred cationic peroxyacid precursors of the N-acylated caprolactam class include the trialkyl ammonium methylene benzoyl caprolactams and the trialkyl ammonium methylene alkyl caprolactams.
The particles or compositions of the present invention may contain, in addition to, or as an alternative to, an organic peroxyacid bleach precursor compound, a preformed organic peroxyacid , typically at a level of from 0.1 % to 15% by weight, more preferably from 1 % to 10% by weight.
A preferred class of organic peroxyacid compounds are the amide substituted compounds as described in EP-A-0170386.
Other organic peroxyacids include diacyl and tetraacylperoxides, especially diperoxydodecanedioc acid, diperoxytetradecanedioc acid and diperoxyhexadecanedioc acid.
Mono- and diperazelaic acid, mono- and diperbrassylic acid and N-phthaloylaminoperoxicaproic acid are also suitable herein.
Peroxide Source Inorganic perhydrate salts are a preferred source of peroxide. Preferably these salts are present at a level of from 0.01% to 50% by weight, more preferably of from 0.5% to 30% by weight of the composition or component.
Examples of inorganic perhydrate salts include perborate, percarbonate, perphosphate, persulfate and persilicate salts. The inorganic perhydrate salts are normally the alkali metal salts.
The inorganic perhydrate salt may be included as the crystalline solid without additional protection. For certain perhydrate salts however, the preferred executions of such granular compositions utilize a coated form of the material which provides better storage stability for the perhydrate salt in the granular product. Suitable coatings comprise inorganic salts such as alkali metal silicate, carbonate or borate salts or mixtures thereof, or organic materials such as waxes, oils, or fatty soaps.
Sodium perborate is a preferred perhydrate salt and can be in the form of the monohydrate of nominal formula NaB02H202 or the tetrahydrate NaB02H202.3H20.
Alkali metal percarbonates, particularly sodium percarbonate are preferred perhydrates herein. Sodium percarbonate is an addition compound having a formula corresponding to 2Na2C03.3H202, and is available commercially as a crystalline solid.
Potassium peroxymonopersulfate is another inorganic perhydrate salt of use in the detergent compositions herein.
Chelants As used herein, chelants refers to detergent ingredients which act to sequester (chelate) heavy metal ions. These components may also have calcium and magnesium chelation capacity, but preferentially they show selectivity to binding heavy metal ions such as iron, manganese and copper.

Chelants are generally present in the detergent particle or final detergent composition at a level of from 0.005% to 10%, preferably from 0.1% to 5%, more preferably from 0.25% to 7.5%
and most preferably from 0.3% to 2% by weight of the compositions or component Suitable chelants include organic phosphonates, such as the amino alkylene poly (alkylene phosphonates), alkali metal ethane 1-hydroxy disphosphonates and nitrilo trimethylene phosphonates, preferably, diethylene triamine penta (methylene phosphonate), ethylene diamine tri (methylene phosphonate) hexamethylene diamine tetra (methylene phosphonate) and hydroxy-ethylene 1,1 diphosphonate, 1,1 hydroxyethane diphosphonic acid and 1,1 hydroxyethane dimethylene phosphonic acid.
Other suitable chelants for use herein include nitrilotriacetic acid and polyaminocarboxylic acids such as ethylenediaminotetracetic acid, ethylenediamine disuccinic acid, ethylenediamine diglutaric acid, 2-hydroxypropylenediamine disuccinic acid or any salts thereof, and iminodiacetic acid derivatives such as 2-hydroxyethyl diacetic acid or glyceryl imino diacetic acid, described in EP-A-317,542 and EP-A-399,133. The iminodiacetic acid-N-2-hydroxypropyl sulfonic acid and aspartic acid N-carboxymethyl N-2-hydroxypropyl-3-sulfonic acid sequestrants described in EP-A-516,102 are also suitable herein. The (3-alanine-N,N'-diacetic acid, aspartic acid-N,N'-diacetic acid, aspartic acid-N-monoacetic acid and iminodisuccinic acid sequestrants described in EP-A-509,382 are also suitable. EP-A-476,257 describes suitable amino based sequestrants. EP-A-510,331 describes suitable sequestrants derived from collagen, keratin or casein. EP-A-528,859 describes a suitable alkyl iminodiacetic acid sequestrant.
Dipicolinic acid and 2-phosphonobutane-1,2,4-tricarboxylic acid are alos suitable. Glycinamide-N,N'-disuccinic acid (GADS), ethylenediamine-N-N'-diglutaric acid (EDDG) and 2-hydroxypropylenediamine-N-N'-disuccinic acid (HPDDS) are also suitable.
Especially preferred are diethylenetriamine pentacetic acid, ethylenediamine-N,N'-disuccinic acid (EDDS) and 1,1 hydroxyethane diphosphonic acid or the alkali metal, alkaline earth metal, ammonium, or substituted ammonium salts thereof, or mixtures thereof. In particular the chelating agents comprising a amino or amine group can be bleach-sensitive and are suitable in the compositions of the invention.
Water-Soluble Builder Compound The component or compositions herein preferably contain a water-soluble builder compound, typically present in detergent compositions at a level of from 1% to 80% by weight, preferably from 10% to 60% by weight, most preferably from 15% to 40% by weight.

The detergent compositions of the invention preferably comprise phosphate-containing builder material. Preferably present at a level of from 0.5% to 60%, more preferably from 5% to 50%, more preferably from 8% to 40%.
The phosphate-containing builder material preferably comprises tetrasodium pyrophosphate or even more preferably anhydrous sodium tripolyphosphate.
Suitable water-soluble builder compounds include the water soluble monomenc polycarboxylates, or their acid forms, homo or copolymeric polycarboxylic acids or their salts in which the polycarboxylic acid comprises at least two carboxylic radicals separated from each other by not more that two carbon atoms, borates, and mixtures of any of the foregoing.
The carboxylate or polycarboxylate builder can be momomeric or oligomeric in type although monomeric polycarboxylates are generally preferred for reasons of cost and performance.
Suitable carboxylates containing one carboxy group include the water soluble salts of lactic acid, glycolic acid and ether derivatives thereof. Polycarboxylates containing two carboxy groups include the water-soluble salts of succinic acid, malonic acid, (ethylenedioxy) diacetic acid, malefic acid, diglycolic acid, tartaric acid, tartronic acid and fumaric acid, as well as the ether carboxylates and the sulfinyl carboxylates. Polycarboxylates or their acids containing three carboxy groups include, in particular, water-soluble citrates, aconitrates and citraconates as well as succinate derivatives such as the carboxymethyloxysuccinates described in British Patent No.
1,379,241, lactoxysuccinates described in British Patent No. 1,389,732, and aminosuccinates described in Netherlands Application 7205873, and the oxypolycarboxylate materials such as 2-oxa-1,1,3-propane tricarboxylates described in British Patent No. 1,387,447.
The most preferred polycarboxylic acid containing three carboxy groups is citric acid, preferably present at a level of from 0.1% to 15%, more preferably from 0.5% to 8% by weight.
Polycarboxylates containing four carboxy groups include oxydisuccinates disclosed in British Patent No. 1,261,829, 1,1,2,2-ethane tetracarboxylates, 1,1,3,3-propane tetracarboxylates and 1,1,2,3-propane tetracarboxylates. Polycarboxylates containing sulfo substituents include the sulfosuccinate derivatives disclosed in British Patent Nos. 1,398,421 and 1,398,422 and in U.S.
Patent No. 3,936,448, and the sulfonated pyrolysed citrates described in British Patent No.
1,439,000. Preferred polycarboxylates are hydroxycarboxylates containing up to three carboxy groups per molecule, more particularly citrates.
The parent acids of the monomeric or oligomeric polycarboxylate chelating agents or mixtures thereof with their salts, e.g. citric acid or citrate/citric acid mixtures are also contemplated as useful builder components.

Borate builders, as well as builders containing borate-forming materials that can produce borate under detergent storage or wash conditions are useful water-soluble builders herein.
Suitable examples of water-soluble phosphate builders are the alkali metal tripolyphosphates, sodium, potassium and ammonium pyrophosphate, sodium and potassium and ammonium pyrophosphate, sodium and potassium orthophosphate, sodium polymeta/phosphate in which the degree of polymerization ranges from about 6 to 21, and salts of phytic acid.
Examples of organic polymeric compounds include the water soluble organic homo-or co-polymeric polycarboxylic acids or their salts in which the polycarboxylic acid comprises at least two carboxyl radicals separated from each other by not more than two carbon atoms.
Polymers of the latter type are disclosed in GB-A-1,596,756. Examples of such salts are polyacrylates of MWt 1000-5000 and their copolymers with malefic anhydride, such copolymers having a molecular weight of from 2000 to 100,000, especially 40,000 to 80,000.
The polyamino compounds are useful herein including those derived from aspartic acid such as those disclosed in EP-A-305282, EP-A-305283 and EP-A-351629.
Partially Soluble or Insoluble Builder Compound The component in accord with the present invention or the compositions herein may contain a partially soluble or insoluble builder compound, typically present in detergent compositions at a level of from 0.5% to 60% by weight, preferably from 5% to 50% by weight, most preferably from 8% to 40% weight.
Examples of largely water insoluble builders include the sodium aluminosilicates. As mentioned above, it may be preferred in one embodiment of the invention, that only small amounts of alumino silicate builder are present.
Suitable aluminosilicate zeolites have the unit cell formula Naz[(A102)z(Si02)y]. xH20 wherein z and y are at least 6; the molar ratio of z to y is from 1.0 to 0.5 and x is at least 5, preferably from 7.5 to 276, more preferably from 10 to 264. The aluminosilicate material are in hydrated form and are preferably crystalline, containing from 10% to 28%, more preferably from 18% to 22% water in bound form.
The aluminosilicate zeolites can be naturally occurring materials, but are preferably synthetically derived. Synthetic crystalline aluminosilicate ion exchange materials are available under the designations Zeolite A, Zeolite B, Zeolite P, Zeolite X, Zeolite HS
and mixtures thereof. Zeolite A has the formula:
Na 12 [A102) 12 (Si02)12]~ X20 wherein x is from 20 to 30, especially 27. Zeolite X has the formula Nag6 [(A102)g6(Si02)106~~
276 H20.
Another preferred aluminosilicate zeolite is zeolite MAP builder.
The zeolite MAP can be present at a level of from 1% to 80%, more preferably from 15%
to 40% by weight.
Zeolite MAP is described in EP 384070A (Unilever). It is defined as an alkali metal alumino-silicate of the zeolite P type having a silicon to aluminium ratio not greater than 1.33, preferably within the range from 0.9 to 1.33 and more preferably within the range of from 0.9 to 1.2.
Of particular interest is zeolite MAP having a silicon to aluminium ratio not greater than 1.15 and, more particularly, not greater than 1.07.
In a preferred aspect the zeolite MAP detergent builder has a particle size, expressed as a median particle size d50 value of from 1.0 to 10.0 micrometres, more preferably from 2.0 to 7.0 micrometres, most preferably from 2.5 to 5.0 micrometres.
The d50 value indicates that 50% by weight of the particles have a diameter smaller than that figure. The particle size may, in particular be determined by conventional analytical techniques such as microscopic determination using a scanning electron microscope or by means of a laser granulometer, described herein. Other methods of establishing d50 values are disclosed in EP 384070A.
Other Detergent Ineredients A preferred ingredients of the compositions herein are dyes and dyed particles or speckles, which can be bleach-sensitive. The dye as used herein can be a dye stuff or an aqueous or nonaqueous solution of a dye stuff. It may be preferred that the dye is an aqueous solution comprising a dyestuff, at any level to obtain suitable dyeing of the detergent particles or speckles, preferably such that levels of dye solution are obtained up to 2% by weight of the dyed particle, or more preferably up to 0.5% by weight, as described above. The dye may also be mixed with a non-aqueous carrier material, such as non-aquous liquid materials including nonionic surfactants.
Optionally, the dye also comprising other ingredients such as organic binder materials, which may also be a non-aqueous liquid.
The dyestuff can be any suitable dyestuff. Specific examples of suitable dyestuffs include E104 - food yellow 13 (quinoline yellow), E110 - food yellow 3 (sunset yellow FCF), E131 -food blue 5 (patent blue V), Ultra Marine blue (trade name), E133 - food blue 2 (brilliant blue FCF), E140 - natural green 3 (chlorophyll and chlorphyllins), E141 and Pigment green 7 (chlorinated Cu phthalocyanine). Preferred dyestuffs may be Monastral Blue BV
paste (trade name) and/ or Pigmasol Green (trade name).
Another preferred ingredient of the particles or compositions of the invention is a perfume or perfume composition. Any perfume composition can be used herein.
The perfumes may also be encapsulated. Preferred perfumes containing at least one component with a low molecular weight volatile component , e.g. having a molecular weight of from 150 to 450 or preferably 350. Preferably, the perfume component comprises an oxygen-containing functional group. Preferred functional groups are aldehyde, ketone, alcohol or ether functional groups or mixtures thereof.
Another highly preferred ingredient useful in the particles or compositions herein is one or more additional enzymes. Preferred additional enzymatic materials include the commercially available lipases, cutinases, amylases, neutral and alkaline proteases, cellulases, endolases, esterases, pectinases, lactases and peroxidases conventionally incorporated into detergent compositions. Suitable enzymes are discussed in US Patents 3,519,570 and 3,533,139.
Preferred commercially available protease enzymes include those sold under the tradenames Alcalase, Savinase, Primase, Durazym, and Esperase by Novo Industries A/S
(Denmark), those sold under the tradename Maxatase, Maxacal and Maxapem by Gist-Brocades, those sold by Genencor International, and those sold under the tradename Opticlean and Optimase by Solvay Enzymes. Protease enzyme may be incorporated into the compositions in accordance with the invention at a level of from 0.0001 % to 4% active enzyme by weight of the composition.
Preferred amylases include, for example, a-amylases described in more detail in GB-1,269,839 (Novo). Preferred commercially available amylases include for example, those sold under the tradename Rapidase by Gist-Brocades, and those sold under the tradename Termamyl, Duramyl and BAN by Novo Industries A/S. Highly preferred amylase enzymes maybe those described in PCT/ US 9703635, and in W095/26397 and W096/23873. Amylase enzyme may be incorporated into the composition in accordance with the invention at a level of from 0.0001 to 2% active enzyme by weight. Lipolytic enzyme may be present at levels of active lipolytic enzyme of from 0.0001% to 2% by weight, preferably 0.001% to 1% by weight, most preferably from 0.001% to 0.5% by weight. The lipase may be fungal or bacterial in origin being obtained, for example, from a lipase producing strain of Humicola sp., Thermom~ces sp.
or Pseudomonas sp. including Pseudomonas ~seudoalcaligenes or Pseudomas fluorescens. Lipase from chemically or genetically modified mutants of these strains are also useful herein. A
preferred lipase is derived from Pseudomonas pseudoalcali~enes, which is described in Granted European Patent, EP-B-0218272.
Another preferred lipase herein is obtained by cloning the gene from Humicola lams ig~nosa and expressing the gene in Aspery~llus oryza, as host, as described in European Patent Application, EP-A-0258 068, which is commercially available from Novo Industri A/S, Bagsvaerd, Denmark, under the trade name Lipolase. This lipase is also described in U.S. Patent 4,810,414, Huge-Jensen et al, issued March 7, 1989.
The component or compositions herein also preferably contain from about 0.005%
to 5%
by weight of certain types of hydrophilic optical brighteners, as mentioned above.
Examples are Tinopal-UNPA-GXTM and Tinopal-CBS-XTM by Ciba-Geigy Corporation.
Others include Tinopal SBM-GXTM, Tinopal-DMS-XTM and Tinopal AMS-GXTM by Ciba Geigy Corporation.
Photo-Bleaching Agent Photo-bleaching agents are preferred ingredients of the compositions or components herein.
Preferred photo-bleaching agent herein comprise a compounds having a porphin or porphyrin structure. Porphin and porphyrin, in the literature, are used as synonyms, but conventionally porphin stands for the simplest porphyrin without any substituents; wherein porphyrin is a sub-class of porphin. The references to porphin in this application will include porphyrin. The porphin structures preferably comprise a metal element or cation, preferably Ca, Mg, P, Ti, Cr, Zr, In, Sn or Hf, more preferably Ge, Si or Ga, or more preferably A1 , most preferably Zn.
It can be preferred that the photo-bleaching compound or component is substituted with substituents selected from alkyl groups such as methyl, ethyl, propyl, t-butyl group and aromatic ring systems such as pyridyl, pyridyl-N-oxide, phenyl, naphthyl and anthracyl moieties.
The photo-bleaching compound or component can have solubilizing groups as substituents.
Alternatively, or in addition hereto the photo-bleaching agent can comprise a polymeric component capable of solubilizing the photo-bleaching compound, for example PVP, PVNP, PVI
or co-polymers thereof or mixtures thereof.
Highly preferred photo-bleaching compounds are compounds having a phthalocyanine structure, which preferably have the metal elements or cations described above.
The phthalocyanines can be substituted for example the phthalocyanine structures which are substituted at one or more of the 1-4, 6, 8-11, 13, 15-18, 20, 22-25, 27 atom positions.
Organic Polymeric Ingredients Organic polymeric compounds are preferred additional herein and are preferably present as components of any particulate components where they may act such as to bind the particulate component together. By organic polymeric compound it is meant herein essentially any polymeric organic compound commonly used as dispersants, and anti-redeposition and soil suspension agents in detergent compositions, including any of the high molecular weight organic polymeric compounds described as clay flocculating agents herein, including quaternised ethoxylated (poly) amine clay-soil removal/ anti-redeposition agent in accord with the invention.
Organic polymeric compound is typically incorporated in the detergent compositions of the invention at a level of from 0.01% to 30%, preferably from 0.1% to 15%, most preferably from 0.5% to 10% by weight of the compositions or component.
Terpolymers containing monomer units selected from malefic acid, acrylic acid, polyaspartic acid and vinyl alcohol, particularly those having an average molecular weight of from 5,000 to 10,000, are also suitable herein.
Other organic polymeric compounds suitable for incorporation in the detergent compositions herein include cellulose derivatives such as methylcellulose, carboxymethylcellulose, hydroxypropylmethylcellulose and hydroxyethylcellulose.
Further useful organic polymeric compounds are the polyethylene glycols, particularly those of molecular weight 1000-10000, more particularly 2000 to 8000 and most preferably about 4000.
Highly preferred polymeric components herein are cotton and non-cotton soil release polymer according to U.S. Patent 4,968,451, Scheibel et al., and U.S. Patent 5,415,807, Gosselink et al., and in particular according to US application no.60/051517.
Another organic compound, which is a preferred clay dispersantl anti-redeposition agent, for use herein, can be the ethoxylated cationic monoamines and diamines of the formula:
CH3 i H3 X-(--OCH2CH2)n N+-CH2-CH2-~CH2)a N+-CH2CH20~X
b (CH2CH20~X (CH2CH20~X
wherein X is a nonionic group selected from the group consisting of H, C1-C4 alkyl or hydroxyalkyl ester or ether groups, and mixtures thereof, a is from 0 to 20, preferably from 0 to 4 (e.g. ethylene, propylene, hexamethylene) b is 1 or 0; for cationic monoamines (b=0), n is at least 16, with a typical range of from 20 to 35; for cationic diamines (b=1), n is at least about 12 with a typical range of from about 12 to about 42.

Other dispersants/ anti-redeposition agents for use herein are described in EP-and US 4,659,802 and US 4,664,848.
Suds Suppressing System The components and detergent compositions herein, when formulated for use in machine washing compositions, may comprise a suds suppressing system present at a level of from 0.01 to 15%, preferably from 0.02% to 10%, most preferably from 0.05% to 3% by weight of the composition or component.
Suitable suds suppressing systems for use herein may comprise essentially any known antifoam compound, including, for example silicone antifoam compounds and 2-alkyl alcanol antifoam compounds or soap.
By antifoam compound it is meant herein any compound or mixtures of compounds which act such as to depress the foaming or sudsing produced by a solution of a detergent composition, particularly in the presence of agitation of that solution.
Particularly preferred antifoam compounds for use herein are silicone antifoam compounds defined herein as any antifoam compound including a silicone component. Such silicone antifoam compounds also typically contain a silica component. The term "silicone" as used herein, and in general throughout the industry, encompasses a variety of relatively high molecular weight polymers containing siloxane units and hydrocarbyl group of various types.
Preferred silicone antifoam compounds are the siloxanes, particularly the polydimethylsiloxanes having trimethylsilyl end blocking units.
Other suitable antifoam compounds include the monocarboxylic fatty acids and soluble salts thereof as described in US Patent 2,954,347, issued September 27, 1960 to Wayne St. John.
Other suitable antifoam compounds include, for example, high molecular weight fatty esters (e.g. fatty acid triglycerides), fatty acid esters of monovalent alcohols, aliphatic C 1 g-C40 ketones (e.g. stearone) N-alkylated amino triazines such as tri- to hexa-alkylmelamines or di- to tetra alkyldiamine chlorniazines formed as products of cyanuric chloride with two or three moles of a primary or secondary amine containing 1 to 24 carbon atoms, propylene oxide, bis stearic acid amide and monostearyl di-alkali metal (e.g. sodium, potassium, lithium) phosphates and phosphate esters.
A preferred suds suppressing system comprises antifoam compound, preferably comprising in combination polydimethyl siloxane, at a level of from 50% to 99%, preferably 75%
to 95% by weight of the silicone antifoam compound; and silica, at a level of from 1% to 50%, preferably S% to 25% by weight of the silicone/silica antifoam compound wherein said silica/silicone antifoam compound is incorporated at a level of from 5% to 50%, preferably 10% to 40% by weight a dispersant compound, most preferably comprising a silicone glycol rake copolymer with a polyoxyalkylene content of 72-78% and an ethylene oxide to propylene oxide ratio of from 1:0.9 to 1:1.1, at a level of from 0.5% to 10%
such as DC0544, commercially available from DOW Corning, and an inert carrier fluid compound, most preferably comprising a C16-Clg ethoxylated alcohol with a degree of ethoxylation of from 5 to 50, preferably 8 to 15, at a level of from 5% to 80%, preferably 10% to 70%, by weight.
A highly preferred particulate suds suppressing system is described in EP-A-0210731.
EP-A-0210721 discloses other preferred particulate suds suppressing systems.
Other highly preferred suds suppressing systems comprise polydimethylsiloxane or mixtures of silicone, such as polydimethylsiloxane, aluminosilicate and polycarboxylic polymers, such as copolymers of laic and acrylic acid.
Polymeric dye transfer inhibiting agents when present are generally in amounts from 0.01% to 10 %, preferably from 0.05% to 0.5% and are preferably selected from polyamine N-oxide polymers, copolymers of N-vinylpyrrolidone and N-vinylimidazole, polyvinylpyrrolidonepolymers or combinations thereof, whereby these polymers can be cross-linked polymers.
Polymeric soil release agents, hereinafter "SRA", can optionally be employed in the present components or compositions. If utilized, SRAs will generally be used in amounts from 0.01% to 10.0%, typically from 0.1% to 5%, preferably from 0.2% to 3.0% by weight.
Preferred SRA's typically have hydrophilic segments to hydrophilize the surface of hydrophobic fibers such as polyester and nylon, and hydrophobic segments to deposit upon hydrophobic fibers and remain adhered thereto through completion of washing and rinsing cycles, thereby serving as an anchor for the hydrophilic segments. This can enable stains occurring subsequent to treatment with the SRA to be more easily cleaned in later washing procedures. Preferred SRA's include oligomeric terephthalate esters, typically prepared by processes involving at least one transesterification/oligomerization, often with a metal catalyst such as a titanium(IV) alkoxide.
Such esters may be made using additional monomers capable of being incorporated into the ester structure through one, two, three, four or more positions, without, of course, forming a densely crosslinked overall structure.
Suitable SRAs are for example as described in U.S. 4,968,451, November 6, 1990 to J.J.
Scheibel and E.P. Gosselink. Other SRAs include the nonionic end-capped 1,2-propylene/polyoxyethylene terephthalate polyesters of U.S. 4,711,730, December 8, 1987 to Gosselink et al. Other examples of SRA's include: the partly- and fully-anionic-end-capped oligomeric esters of U.S. 4,721,580, January 26, 1988 to Gosselink; the nonionic-capped block polyester oligomeric compounds of U.S. 4,702,857, October 27, 1987 to Gosselink; and the anionic, especially sulfoaroyl, end-capped terephthalate esters of U.S.
4,877,896, October 31, 1989 to Maldonado, Gosselink et al. SR.As also include: simple copolymeric blocks of ethylene terephthalate or propylene terephthalate with polyethylene oxide or polypropylene oxide terephthalate, see U.S. 3,959,230 to Hays, May 25, 1976 and U.S. 3,893,929 to Basadur, July 8, 1975; cellulosic derivatives such as the hydroxyether cellulosic polymers available as METHOCEL from Dow; the C1-C4 alkyl celluloses and C4 hydroxyalkyl celluloses, see U.S.
4,000,093, December 28, 1976 to Nicol, et al.; and the methyl cellulose ethers having an average degree of substitution (methyl) per anhydroglucose unit from about 1.6 to about 2.3 and a solution viscosity of from about 80 to about 120 centipoise measured at 20°C as a 2% aqueous solution. Such materials are available as METOLOSE SM100 and METOLOSE SM200, which are the trade names of methyl cellulose ethers manufactured by Shin-etsu Kagaku Kogyo KK.
Additional classes of SRAs include those described in U.S. 4,201,824, Violland et al. and U.S. 4,240,918 Lagasse et al.; U.S. 4,525,524 Tung et al., and U.S. 4,201,824, Violland et al.
Other optional ingredients suitable for inclusion in the compositions of the invention include colours and filler salts, with sodium sulfate being a preferred filler salt.
Highly preferred compositions contain from about 2% to about 10% by weight of an organic acid, preferably citric acid. Also, preferably combined with a carbonate salt, minor amounts (e.g., less than about 20% by weight) of neutralizing agents, buffering agents, phase regulants, hydrotropes, enzyme stabilizing agents, polyacids, suds regulants, opacifiers, anti-oxidants, bactericides and dyes, such as those described in US Patent 4,285,841 to Barrat et al., issued August 25, 1981 (herein incorporated by reference), can be present.
The detergent compositions can include as an additional component a chlorine-based bleach. However, since the detergent compositions of the invention are solid, most liquid chlorine-based bleaching will not be suitable for these detergent compositions and only granular or powder chlorine-based bleaches will be suitable. Alternatively, a chlorine based bleach can be added to the detergent composition by the user at the beginning or during the washing process.
The chlorine-based bleach is such that a hypochlorite species is formed in aqueous solution. The hypochlorite ion is chemically represented by the formula OCI-.
Those bleaching agents which yield a hypochlorite species in aqueous solution include alkali metal and alkaline earth metal hypochlorites, hypochlorite addition products, chloramines, chlorimines, chloramides, and chlorimides. Specific examples include sodium hypochlorite, potassium hypochlorite, monobasic calcium hypochlorite, dibasic magnesium hypochlorite, chlorinated trisodium phosphate dodecahydrate, potassium dichloroisocyanurate, sodium dichloroisocyanurate sodium dichloroisocyanurate dihydrate, trichlorocyanuric acid, 1,3-dichloro-5,5-dimethylhydantoin, N-chlorosulfamide, Chloramine T, Dichloramine T, chloramine B and Dichloramine B. A preferred bleaching agent for use in the compositions of the instant invention is sodium hypochlorite, potassium hypochlorite, or a mixture thereof. A preferred chlorine-based bleach can be Triclosan (trade name).
Most of the above-described hypochlorite-yielding bleaching agents are available in solid or concentrated form and are dissolved in water during preparation of the compositions of the instant invention. Some of the above materials are available as aqueous solutions.
Laundry Washing Method Machine laundry methods herein typically comprise treating soiled laundry with an aqueous wash solution in a washing machine having dissolved or dispensed therein an effective amount of a machine laundry detergent composition in accord with the invention. By an effective amount of the detergent composition it is meant from l Og to 300g of product dissolved or dispersed in a wash solution of volume from 5 to 65 litres, as are typical product dosages and wash solution volumes commonly employed in conventional machine laundry methods.
Preferred washing machines may be the so-called low-fill machines.
In a preferred use aspect the composition is formulated such that it is suitable for hard-surface cleaning or hand washing. In another preferred aspect the detergent composition is a pre-treatment or soaking composition, to be used to pre-treat or soak soiled and stained fabrics.
EXAMPLES
The following examples are presented for illustrative purposes only and are not to be construed as limiting the scope of the appended claims in any way.
Abbreviations used in the Examples In the detergent compositions, the abbreviated component identifications have the following meanings:
LAS . Sodium linear C11-13 alkyl benzene sulfonate TAS . Sodium tallow alkyl sulfate CxyAS . Sodium C 1 x - C 1 y alkyl sulfate Branched AS . branched sodium alkyl sulfate as described in W099/19454 C46SAS . Sodium C14 - C16 secondary (2,3) alkyl sulfate CxyEzS . Sodium Clx-Cly alkyl sulfate condensed with z moles of ethylene oxide CxyEz . Clx-Cly predominantly linear primary alcohol condensed with an average of z moles of ethylene oxide QAS : R2.N+(CH3)2(C2H40H) with R2 = C12 - C14 QAS 1 . R2.N+(CH3)2(C2H40H) with R2 = C8 - C 11 APA . C8 - C10 amido propyl dimethyl amine Soap . Sodium linear alkyl carboxylate derived from an 80/20 mixture of tallow and coconut fatty acids STS : Sodium toluene sulphonate CFAA : C 12-C 14 (coco) alkyl N-methyl glucamide TFAA . C 16-C 18 alkyl N-methyl glucamide TPKFA : C12-C14 topped whole cut fatty acids STPP . Anhydrous sodium tripolyphosphate TSPP . Tetrasodium pyrophosphate Zeolite A : Hydrated sodium aluminosilicate of formula Nal2(AlO2Si02)12.27H20 having a primary particle size in the range from 0.1 to 10 micrometers (weight expressed on an anhydrous basis) NaSKS-6 . Crystalline layered silicate of formula d- Na2Si2O5 Citric acid Anhydrous citric acid .

Borate . Sodium borate Carbonate . Anydrous sodium carbonate: particle size 200~.m to 900~m Bicarbonate Anhydrous sodium bicarbonate with a particle . size distribution between 400~m and 1200~m Silicate . Amorphous sodium silicate (Si02:Na20 = 2.0:1) Sulfate . Anhydrous sodium sulfate Mg sulfate Anhydrous magnesium sulfate .

Citrate : Tri-sodium citrate dihydrate of activity 86.4%
with a particle size distribution between 425~m and 850pm MA/AA : Copolymer of 1:4 maleic/acrylic acid, average m. wt. about 70,000 MA/AA (1) . Copolymer of 4:6 maleic/acrylic acid, average m. wt. about 10,000 AA : Sodium polyacrylate polymer of average molecular weight 4,500 CMC : Sodium carboxymethyl cellulose Cellulose etherMethyl cellulose ether with a degree of polymerization : of 650 available from Shin Etsu Chemicals Protease . Proteolytic enzyme, having 3.3% by weight of active enzyme, sold by NOVO Industries A/S under the tradename Savinase Protease I . Proteolytic enzyme, having 4% by weight of active enzyme, as described in WO 95/10591, sold by Genencor Int. Inc.

Alcalase . Proteolytic enzyme, having 5.3% by weight of active enzyme, sold by NOVO Industries A/S

Cellulase . Cellulytic enzyme, having 0.23% by weight of active enzyme, sold by NOVO Industries A/S under the tradename Carezyme Amylase : Amylolytic enzyme, having 1.6% by weight of active enzyme, sold by NOVO Industries A/S under the tradename Termamyl Lipase : Lipolytic enzyme, having 2.0% by weight of active enzyme, sold by NOVO Industries A/S under the tradename Lipolase Lipase (1) : Lipolytic enzyme, having 2.0% by weight of active enzyme, sold by NOVO Industries A/S under the tradename Lipolase Ultra Endolase . Endoglucanase enzyme, having 1.5% by weight of active enzyme, sold by NOVO Industries A/S

PB4 . Sodium perborate tetrahydrate of nominal formula NaB02.3H2 O.H2O2-PB1 . Anhydrous sodium perborate bleach of nominal formula NaB02.H 2O2 Percarbonate Sodium percarbonate of nominal formula 2Na2C03.3H2O2 .

NOBS . Nonanoyloxybenzene sulfonate in the form of the sodium salt NAC-OBS : (6-nonamidocaproyl) oxybenzene sulfonate TAED . Tetraacetylethylenediamine DTPA . Diethylene triamine pentaacetic acid DTPMP . Diethylene triamine penta (methylene phosphonate), marketed by Monsanto under the Tradename bequest 2060 EDDS : Ethylenediamine-N,N'-disuccinic acid, (S,S) isomer sodium salt.

Photoactivated bleach . Sulfonated zinc phthlocyanine encapsulated in bleach (1) dextrin soluble polymer Photoactivated bleach . Sulfonated alumino phthlocyanine encapsulated in bleach (2) dextrin soluble polymer Brightener 1 . Disodium 4,4'-bis(2-sulphostyryl)biphenyl Brightener 2 . Disodium 4,4'-bis(4-anilino-6-morpholino-1.3.5-triazin-2-yl)amino) stilbene-2:2'-disulfonate HEDP : 1,1-hydroxyethane diphosphonic acid PEGx : Polyethylene glycol, with a molecular weight of x (typically 4,000) PEO : Polyethylene oxide, with an average molecular weight of 50,000 TEPAE . Tetraethylenepentaamine ethoxylate PVI : Polyvinyl imidosole, with an average molecular weight of 20,000 PVP . Polyvinylpyrolidone polymer, with an average m. wt. of 60,000 PVNO . Polyvinylpyridine N-oxide polymer, with an av.
m. wt. of 50,000 PVPVI : Copolymer of polyvinylpyrolidone and vinylimidazole, with an average molecular weight of 20,000 QEA . bis((C2H50)(C2H40)n)(CH3) -N+-C6H12-N+-(CH3) bis((C2H50)-(C2H4 O))n, wherein n = from 20 to 30 SRP 1 . Anionically end capped poly esters SRP 2 . Diethoxylated poly (1, 2 propylene terephthalate) short block polymer PEI . Polyethyleneimine with an average molecular weight of 1800 and an average ethoxylation degree of 7 ethyleneoxy residues per nitrogen Silicone antifoam:Polydimethylsiloxane foam controller with siloxane-oxyalkylene copolymer as dispersing agent with a ratio of said foam controller to said dispersing agent of 10:1 to 100:1 Opacifier . Water based monostyrene latex mixture, sold by BASF

Aktiengesellschaft under the tradename Lytron Wax : Paraffin wax HMEO . Hexamethylenediamine tetra(ethylene oxide)24 EXAMPLE I
This Example illustrates a process according to this invention which produces uniform free flowing, good dispensing and dissolving detergent particles with uniformity of colour and particle shape. Multiple detergent starting ingredients are dry mixed in an orbital vertical screw mixer of 200kg batch size, and several batches prepared. This premix is conveyed at SOOkg/hr into a horizontal plate fluidised bed drier with outlet weir to maintain a constant static bed depth of 20cm. Fluidising inlet air at 120°C is blown into the bed to maintain a fluidisation velocity of typically 2.0 ms-1. Fines are elutriated from the top of the bed, are collected in a hopper and recycled back to the bed. Air atomised spray nozzles are installed in the bed in a specific arrangement - typically 2 manifolds each with 3 nozzles aligned along the horizontal axis of the bed, positioned above the surface of the static bed.

Binder is made by weighing PEG 4000 into an agitated hot water jacketed tank of water at 60°C, to create a 30% PEG solution. Binder is pumped to the spray nozzle at 100 kg/hr and atomised with 3 bar air within the fluid bed. Product is collected from the fluid bed and is screened on Mogensen vibratory screening units using three decks with 1250~m, 710pm and 425~m screens installed. Oversize particles are ground and recycle to the fluid bed with the fines stream.
Collected product (yield between the 1250~m and 425pm screens) is of density 445 g/L and mean particle size 570pm. The sphericity index is 1.4 with a standard deviation of 0.4. The product has a high whiteness vlaue of W=98.5. Other standard detergent materials are post dry-added to the product in a mixing drum - including enzymes, perfume and dyed carbonate speckles. Spray -on materials such as perfume or nonionic surfactant may also be added at this stage to make a fully formulated detergent product.
The finished detergent has the following composition Component % Weight of Total Feed Dr~materials added to the premix Spray dried blown powder* 76.6%
TAED as agglomerate 4.2%
Silicone based antifoam 4.0%
as agglomerate Sodium carbonate 3.1 Polymeric soil release agent 0.5%
Na2Si205 layered silicate (SKS-6) 5.8%
Binder sprayed onto the premix in the fluid bed Polyethylene glycol (RMM = 4000) 5.7%
(delivered via a 30% active solution) * = comprising of sodium linear alkyl benzene sulphonate (13.4wt%), zeolite A
(40%), sodium sulphate (23.5%), sodium carbonate (8.4%), magnesium sulphate (0.7wt%), EDDS
(0.4wt%), MA/AA (2.5wt%), soap (l.5wt%), QAS 1(2.Owt%), HEDP(0.3wt%), optical brightener(0.5wt%), water (5.3 wt%), diamine hexamethylene tetra (ethylene oxide) 24 (l.5wt%).
EXAMPLE II
This Example also illustrates the process of the invention and incorporates the parameters of Example I. A premix of dry detergent materials is prepared as in example 1, of composition as listed below. The mix is fed into a continuous Lodige KM 600 plough-share mixer, which is a horizontally-positioned moderate speed mixer, at 200kg/hr feedrate. The rotational speed of the shaft in the mixer is about 100 rpm and the rotational speed of the cutters is about 3000 rpm.

Water, at 60°C, is pumped from a hot water jacketed tank, as binder at 20 kg/hr. The water is atomised using air atomised nozzles positioned within the Lodige KM.
Product from the Lodige KM is fed continuously into a horizontal plate fluidised bed drier, which reduces the free moisture content to about 6% (Mettler infra-red oven method).
Product is collected from the fluid bed and is screened on Mogensen vibratory screening units using three decks with 1180pm, 710pm and SOO~m screens installed. Oversize particles are ground and recycled to the fluid bed with the fines stream. Collected product (yield between the 1180pm and SOO~m screens) is of density 620 g/L and mean particle size 610um. The sphericity index is 1.21 with a standard deviation 1.2 and a whiteness value W=97Ø Other standard detergent materials are post dry-added to the product in a mixing drum - including enzymes, perfume and dyed carbonate speckles. Spray -on materials such as perfume or nonionic surfactant may also be added at this stage to form a fully formulated detergent.
Component % Weight of Total Feed Dry materials added to the premix Spray dried blown powder* 70.4%
Na2Si2O5 layered silicate (SKS-6) 12.7%
QAS 1 2.4%
TAED as agglomerate 4.0%
Silicone based antifoam 0.8%
as agglomerate sodium carbonate 5.0%
sodium sulphate 4.6%
Binder, sprayed onto the premix in the Lodi~e KM
Water 10.0%
Water removed in drying process -10.0%
Brightener 1 S 0.1 * = formulation as described in example 1 above.
Further example compositions In the following examples all levels are quoted as % by weight of the composition:

WO 00/78914 PC'T/US00/16920 _3;_ TABLE
The following compositions are in accordance with the invention.
B C D E F GeometricSpan Spheric mean Colourity article ifferencindex iameter of (pm) raw aterial ompare to finished omposi ion 1. S rav-dried SOpm 1.8 ~.4 1.9 Granules LAS .0 5.0 11.0 7.0 .0 5.0 AS 1.0 45AS 1.0 1.0 16-C 17 branched~.0 .0 ~.0 S

DTPA, HEDP .5 .6 0.~ .7 1.0 0.~
nd/or EDDS

MgS04 .5 .4 .S .4 .S .5 Sodium carbonate10.0 7.0 8.0 8.0 .0 10.0 Sodium sulphate5.0 .0 ~.0 5.0 .0 .0 ~'~

eolite A 18.0 X0.018.0 10.0 '0.0 17.0 A/AA or AA 1.0 1.~ 1.0 .6 1.0 .6 8-C 10 HEQ 1.0 .5 1.0 .8 I
.0 Brightener .l .0~ .0~ .06 .OS .OS
~
I

HMEO .~ .~ 1.0 .5 1.0 .0 Soap 1.~ 1.0 1.5 1 .5 SUBSTITUTE SHEET (RULE26) WO 00/7$914 CA 02375497 2001-11-27 '. Com onents ~~ithin the remix Spray dried 50.0 50.0 8.0 0.0 0.0 50.0 eranules ( 1 ) onionic 5.0 Sodium carbonate.0 8.0 .0 6.0 5.0 200pm 1.5 .0 1.5 Sodium sulphate '.0 1.0 350pm 1.6 .5 1.5 AS 1 '.0 1.0 500~tm '.7 5.0 '.l agglomerate onionic 10.0 500pm 1.9 8.3 1.8 agglomerate SKS-6 / LAS 12.0 350pm 1.8 14.6 1.9 agglomerate Silicone .5 .5 .0 0.5 .5 5001tm .0 14.3 1.5 antifoam agglomerate SRP 1 .5 .5 0.3 500pm .0 10.4 .0 AED .5 .5 .0 550~tm 1.5 11.4 1.6 gglomerate SKS-6 powder.5 .5 .0 .5 5.0 60~m 1.9 .0 I
.7 AED powder 1.5 '.0 80pm 1.7 .5 1.6 . Premix binder pplied to the remix (2) EG 4000 .0 EG 1 S00 .0 S, LAS, 5.0 6.0 ranched AS

ater as binder 10.0 I
(removed 5.0 on tying) SUBSTffUTE SHEET (RUL.E~~

W~ 00/78914 CA 02375497 2001-11-27 Other additives ost-added to make the frrral etergerrt ormulation:

. S rav-on materials erfume .4 .? .4 .4 . 0.3 ~

5. Drv-added materials Premix (2) 70.0 65.055.0 65.0 70.0 60.0 Enzymes .0 1.5 1.0 1.3 1.? 1.5 (protease, lipolase, mylase, cellulase) ACAOBS .0 .5 .0 .5 .5 .5 Sodium 13.0 10.010.0 12.0 12.0 10.0 ercarbonate hotobleach .0? .02 .02 .02 .0? .02 Perfume .7 .5 .6 .8 0.9 0.4 ncapsulates uric acid 6.0 .0 .0 .0 6.5 5.0 Sodium carbonate1.0 1.0 1.0 .5 1.5 1.5 peckle eolite A .1 w .3 AED .0 gglomerate Silicone antifoam .0 gglomerate 6. Coatin pplied to premix 2) SUBSTfGUTE SttEEf (RULE26~

W~ 00/7$914 CA 02375497 2001-11-27 Burkeite .() 5.0 8.0 ~.0 (applied from 30wt~~
aqueous solution) Bri~htener . 0.
1 > I I

Fillers up to 100~0 Finished product Median particle600pm600p600pm80Upm800p 600pm size Span (geometric1.4 1.2 1.4 1.2 1.4 1.6 standard deviation) Sphericity 1.30 1.201.35 1.40 1.45 1.40 index hiteness 98.0 96.s98.~ 92.0 97.0 101.5 =L-3b SUBSTITUTE SHAT (RULE26~

Claims (20)

WHAT IS CLAIMED IS:
1. A detergent particle comprising at least two particulate components, a first component of a first colour and a second component of a second colour, the first and second components being adhered to one another, the geometric mean particle diameter of at least one of the first or second particulate component being no more than 50%
of the geometric mean particle diameter of the detergent particle.
2. A detergent particle according to claim 1 in which the colour difference (.DELTA.E) between the first and second particulate components as measured using tri-stimulus colorimetry on a D25M Hunter Lab. Colorimeter is at least 3, where .DELTA.E =
.sqroot.~(.DELTA.L2 + .DELTA.a2 + .DELTA.b2), where .DELTA.L is the difference in L value between the first and second particulate components, .DELTA.a is the difference in a value between the first and second particulate components and .DELTA.b is the difference in b value between the first and second particulate components.
3. A detergent particle according to claim 1 or claim 2 in which the colour difference (.DELTA.E) between the first and second particulate components is at least 5.
4. A detergent particle according to any preceding claim in which the first particulate component has a geometric mean particle diameter greater than 150 microns.
5. A detergent particle according to any preceding claim in which both the first and second particulate components have a geometric mean particle diameter greater than 150 microns.
6. A detergent particle having a sphericity index no greater than 1.7 comprising at least two particulate components, a first component and a second component, at least one of the first and second components having a sphericity index greater than 1.7, the first and second components being adhered to one another substantially in the absence of pressure compaction.
7. A detergent particle according to claim 6 having a sphericity index no greater than 1.5.
8. A detergent particle according to claim 6 or claim 7 in which the sphericity index of at least the first or second component is greater than 2.
9. A detergent particle having a geometric mean particle diameter greater than microns, the detergent particle comprising a first particulate component and a second particulate component, the first and second particulate components being adhered to one another substantially in the absence of pressure compaction, the geometric mean particle size of at least one of the first and second components being no more than 50 % of the geometric mean particle size of the detergent particle and at least one of the first and second particulate components having a span of at least 2.
10. A detergent particulate according to claim 9 in which at least one of the first and second particulate components has a span at least 3.
11. A detergent particle according to claim 9 or claim 10 in which at least one of the first and second particulate components has a geometric mean particle diameter no more than 25% of the geometric mean particle size of the detergent particle.
12. A detergent particle according to any preceding claim having a span less than 1.8.
13. A detergent particle according to any preceding claim in which at least the first particulate component has a geometric mean particle diameter from 200-500 microns.
14. A detergent particle according to any preceding claim having a geometric mean particle diameter from 500-2500 microns.
15. A detergent particle according to any preceding claim in which there is a difference in geometric mean particle diameter between the first and second particulate components of at least 250 microns.
16. A method for making a detergent particle according to any preceding claim comprising contacting the first particulate component and the second particulate component, optionally in the presence of a binder in a moderate to low shear mixing step to adhere the first and second particulate components to one another.
17. A method according to claim 16 in which the mixing step is a low shear mixing step which takes place in a pan granulator, drum mixer, rotating bowl mixer or fluidised bed.
18. A method according to claim 16 in which the mixing step is a moderate shear mixing step which takes place in a Ploughshare mixer having a tip speed for the ploughs of below 10m/s.
19. A method according to any of claims 16 to 18 in which a binder is added during or immediately preceding the mixing step.
20. A detergent composition comprising detergent particles according to any of claims 1 to 15.
CA002375497A 1999-06-21 2000-06-20 Detergent particles and methods for making them Abandoned CA2375497A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US14008199P 1999-06-21 1999-06-21
US60/140,081 1999-06-21
PCT/US2000/016920 WO2000078914A1 (en) 1999-06-21 2000-06-20 Detergent particles and methods for making them

Publications (1)

Publication Number Publication Date
CA2375497A1 true CA2375497A1 (en) 2000-12-28

Family

ID=22489666

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002375497A Abandoned CA2375497A1 (en) 1999-06-21 2000-06-20 Detergent particles and methods for making them

Country Status (9)

Country Link
EP (1) EP1187905A1 (en)
JP (1) JP2003503549A (en)
CN (1) CN1399673A (en)
AR (1) AR024427A1 (en)
AU (1) AU5751200A (en)
BR (1) BR0011844A (en)
CA (1) CA2375497A1 (en)
MX (1) MXPA02000030A (en)
WO (1) WO2000078914A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0718532D0 (en) * 2007-09-22 2007-10-31 Unilever Plc Improvements relating to fabric treatment compositions
US9512388B2 (en) * 2015-02-18 2016-12-06 Henkel Ag & Co. Kgaa Solid state detergent in a transparent container
MX2022016034A (en) 2020-07-03 2023-02-02 Procter & Gamble Particulate laundry composition.

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2190921A (en) * 1986-05-27 1987-12-02 Unilever Plc Granular detergent composition
DE4243704A1 (en) * 1992-12-23 1994-06-30 Henkel Kgaa Granular detergents and / or cleaning agents
DE69729287T2 (en) * 1996-03-19 2005-06-02 Kao Corp. Granular detergent with high bulk density
AU1449100A (en) * 1998-10-26 2000-05-15 Procter & Gamble Company, The Detergent particles and processes for making them

Also Published As

Publication number Publication date
AU5751200A (en) 2001-01-09
CN1399673A (en) 2003-02-26
AR024427A1 (en) 2002-10-02
BR0011844A (en) 2002-03-05
MXPA02000030A (en) 2002-07-02
EP1187905A1 (en) 2002-03-20
JP2003503549A (en) 2003-01-28
WO2000078914A1 (en) 2000-12-28

Similar Documents

Publication Publication Date Title
US6583098B1 (en) Detergent composition
CA2352627C (en) Effervescence components
US6579844B1 (en) Detergent particles and methods for making them
US6683043B1 (en) Process for manufacturing effervescence components
CA2375408A1 (en) Detergent particles and processes for making them
US6833346B1 (en) Process for making detergent particulates
CA2386338A1 (en) Detergent compositions and methods for cleaning
CA2375497A1 (en) Detergent particles and methods for making them
WO2000024859A1 (en) Detergent particles and processes for making them
CA2386131A1 (en) Detergent compositions
CA2386253A1 (en) Washing methods utilizing an effervescent product added prior to agitation
CA2386948A1 (en) Detergent compositions
GB2351500A (en) Detergent compositions
GB2348884A (en) Light reflecting particles
WO1999064558A1 (en) Cleaning compositions containing speckle particles
CA2362475A1 (en) Detergent compositions
MXPA01005770A (en) Effervescence components

Legal Events

Date Code Title Description
EEER Examination request
FZDE Discontinued